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Abstract

Using self-consistent field theory of worm-like chains with Maier-Saupe interactions we
study the equilibrium phase behaviour of liquid crystalline (LC) polymer brushes. In a
good solvent the brush extends out normal to the grafting plane in order to maximize the
contact between polymer and solvent molecules which results in a continuous transition
to an extended nematic state with increasing LC interaction strength. As LC interactions
are further increased the brush collapses into a high density nematic state. In contrast to
previous calculations, that assumed azimuthal symmetry and predict a collapse through
folding into a high density nematic state we find that for semi-flexible polymers the folded
state becomes unstable and the brush instead collapses through a continuous symmetry
breaking transition into a tilted state.
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Chapter 1

Introduction

1.1 Motivation

Polymer brushes offer a convenient method to modify the surface properties of materi-
als, [1,2,3] for this reason they are pervasive throughout biology and widely used in industrial
applications. By altering the surface chemistry polymer brushes enhance properties such
as wetting, lubrication, adhesion, and anti-fouling. Naturally occurring brushes control
surface wetting of the cartilage in joints, lubrication in lung tissue and limit deposition
of macromolecules onto surfaces (anti-fouling). [3,4,5] These properties depend critically on
the equilibrium phase behaviour of the brush. The majority of studies focus on flexible
brushes, but the often ignored stiffness of the polymer will effect the height of the brush
and can result in liquid crystal (LC) phases. Most notably, many biopolymers have persis-
tence lengths comparable to their contour length, so their stiffness can result in anisotropic
interaction and have a significant impact on their equilibrium phase behaviour. For exam-
ple, anisotropic excluded volume or van der Waals interactions between polymer segments
can give rise to LC phases, [6,7,8,9,10] which can be exploited for their chemical, mechanical
and optical properties.

One notable application of LC polymer brushes is to tailor the surface properties of
an LC material. [8,11] LC displays use the surface alignment of LCs to polarize light and
produce the high quality visuals present in most modern displays. Currently the only large
scale industrially applicable method for inducing surface anchoring consists of mechanically
rubbing spin-coated polymers with a piece of velvet cloth. Debris and static discharge cause
defects and can interfere or break electronic circuits reducing the overall quality and in-
creasing the cost associated with producing high definition displays. [12] Liquid crystalline
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Fig 1.1. Diagram depicting the possible surface anchoring effects of a polymer brush
(black) on liquid crystals (blue). The left image represents the bulk isotropic phase and
the right the bulk nematic.

polymer brushes are easy to produce, scalable and can be manufactured with a high de-
gree of homogeneity. [1] Additionally, brushes with different chemical properties or grafting
densities will allow for increased control over local LC alignment. Therefore, LC polymer
brushes are a promising candidate for surface anchoring conventional LC materials.

A polymer brush consists of a series of polymers grafted to a substrate with sufficient
density that they stretch out normal to the surface. Interactions between the polymers
and LCs give rise to surface anchoring effects that can be used to tailor the local LC align-
ment. Although the bulk LC phase might be isotropic, close to the surface intermolecular
interactions between the brush and the LCs could induce locally preferential alignments.
A schematic diagram is presented in Fig. 1.1. The direction and strength of alignment will
depend on the chemical structure and grafting density of the brush; therefore, adjusting
these properties allows for specific surface tailoring of LC order.

The theoretical framework we will be using is self-consistent field theory (SCFT) of
worm-like chains with Maier-Saupe (MS) interactions. SCFT is a mean field description
which has seen much success in providing a rigorous theoretical description of polymers. [13]

Much of the success of SCFT is in the precise universal description of the phase behaviour
of polymer systems [13,14] and the standard Gaussian chain model accurately describes the
equilibrium phase behaviour of a flexible polymer brush. [15,16,1,17] A key property of LCs
is orientational order; however, mesoscopic models of polymers accounting for orientation
(worm-like chain) are significantly more complex than those with no definite orientation
(Gaussian chain) or a fixed orientation (rigid rod). Additional complexity is added from
anisotropic intermolecular interactions such as Onsager and MS which are key to the de-
scription of LCs. Much of the difficulty in describing LC polymers comes from the complex-
ity and dimensionality of the problem. [18] It is important to account for both orientation
and non-trivial intermolecular interactions; therefore, we will rely on numerical SCFT. De-
spite these issues, spectral and pseudo spectral methods can provide efficient solutions to
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Fig 1.2. From left to right increasing LC alignment of rigid molecules with orientation
u. The director, n, is the average local orientation of the molecules and the angle, θ, is
the angle that an individual molecular axis makes with the director.

SCFT problems. [19,20] Since SCFT has seen tremendous success in both qualitatively and
quantitatively describing the phase behaviour of many polymeric systems it is well suited
to the task of describing liquid crystalline polymer brushes.

Recently, worm-like chain SCFT models have been used to describe a number of related
systems: liquid crystalline polymer brushes, [21] worm-like chains in confinement, [22] Maier
Saupe models of polymer nematics [23] and compressible Maier Saupe models. [24] However,
when it comes to LC polymeric brushes, previous models have either used the Alexander-de
Gennes model, [25,9,8] freely jointed chain model [26] or Onsager interactions. [21] It is known
that the Alexander-de Gennes model does not generally give an accurate description of
polymer brushes, [27,28] the freely-jointed chain model yields hairpin defects which it cannot
accurately describe [29] and the Onsager model limits the types of allowed interactions. By
using the worm-like chain model with MS interactions we can achieve a complete theoretical
description of the equilibrium phase behaviour of an LC polymer brush. LC polymers are
a diverse class of materials with novel physical properties that have relevant industrial
applications. A complete theoretical description is critical to understanding these material
properties.

1.2 Liquid Crystals

Liquid crystals are often exploited for their optical properties, most notably in LC displays.
The optical properties of an LC material depends critically on the orientational order of the
molecules. Due to the elongated, anisotropic shape of the molecules LCs transition into an
ordered phase with a shared orientation between molecules that persists over a macroscopic
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scale. In the simplest case the molecules align into what is known as a nematic phase,
with orientational but no translational order, as depicted in Fig. 1.2. For thermotropic
LC materials this transition takes place at a critical temperature while for lyotropic it
occurs at a critical concentration in a mixture. The isotropic (disordered) phase is found
at high temperature or low concentration with the nematic phase correspondingly at low
temperature or high concentration. In either case a strong electric field can induce directed
ordering. The anisotropic dielectric tensor caused by the orientational ordering of the
molecules is used to alter the polarization of incident light. Through this, electrically
induced transitions and surface anchoring allow for fine tuned optical displays. [30]

The ordering of an LC arises from the anisotropic shape of the molecule. Many LCs are
rod-like molecules (or contain a rod-like core), which are longer in one direction resulting
in preferential alignment. The nature and strength of the alignment will depend on the
intermolecular interactions and the two most common models are Onsager [6] and MS. [7]

Onsagers model of elongated hard rods emphasizes repulsive interactions and the associated
effects of the orientational dependent excluded volume. The model of Maier and Saupe is
more general and allows for anisotropic van der Waals forces of attraction in addition to
excluded volume and repulsive interactions. Both give rise LC phase transitions. [30]

Currently the most popular model of LC materials is based on Landau’s theory of
phase transitions, [30] which offers a simple and intuitive description. By representing the
free energy as a Taylor series expansion of an order parameter and accounting for the
symmetries of the underlying system we can discern key properties of phase transitions.
The difficulty arises from trying to find a good order parameter, one that captures the
phase behaviour of the system. Since we are interested in the orientational ordering we
define the director, n, which is a local average of the LCs orientation depicted in Fig. 1.2.
The director is obtained by averaging over several molecules but on a scale much smaller
than the size of the system. The director can represent the alignment of the molecules
but not the strength of alignment; therefore, we also introduce the uniaxial scalar nematic
order parameter,

S =
1

2
〈3 cos2(θ)− 1〉 (1.1)

the spatial average of the second Legendre Polynomial of cos(θ), the component of the
individual molecular axis, u, along the direction of the director, n. S is 0 in the isotropic
phase and 1 when the LC is perfectly aligned. For LCs the standard approach is called the
Landau-de Gennes model of phase transitions for which modern approaches use a more
general tensor order parameter, Q, which accounts for biaxiality. The Q-tensor is defined
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to be symmetric and traceless and takes the form:

Qij = λ1nn + λ2mm + λ3ll =
3S
2

(nn− 1

3
I) +

P
2

(mm− ll) (1.2)

n, m and l are eigenvectors of Q corresponding to axes of molecular orientation and λi
are their corresponding eigenvalues. S = λ1 is the uniaxial scalar nematic order parameter
and P = (λ2 − λ3) the biaxial scalar nematic order parameter.

A common application of LCs are liquid crystal displays (LCDs), which are the most
common modern display. LCDs rely on two key properties: orientational alignment with
an electric field and surface anchoring. In the presence of an applied electric field LCs
tend to preferential align in the direction of the field, and different surface geometries can
result in preferential local alignment at the boundary. By inducing an alignment at the
boundaries and applying an electric field a tunable alignment gradient is achieved which
will polarize incident light.

1.3 Polymer Brushes

A polymer brush is formed by binding a series of polymers to a substrate with sufficient
density that they stretch out normal to the surface. In a good solvent, and moderately high
grafting densities, interactions between the polymers and polymer-solvent mixing entropy
force them to extend outwards creating a brush-like appearance. There are two main meth-
ods for producing polymer brushes: grafting to and grafting from. [31,3] When grafting from,
polymerization initiators are bonded to the substrate at the desired density. Monomers are
then diffused onto the substrate and begin to polymerize at the initiator sites. This proce-
dure is carried out until polymers of the desired length have formed. Grafting from has the
ability to form complex architectures by coupling the appropriate surface initiator to con-
trolled radical polymerization methods. For example, atom transfer radical polymerization
(ATRP), nitroxide-mediated polymerization (NMP), and reversible additionfragmentation
chain transfer (RAFT) enable the precise control of grafting density. [32,33,34]

At the cost of control over grafting density, grafting to allows for a high degree of
homogeneity between polymers. This is done by immersing prepared polymers with end
functionalized groups into a solvent with the substrate. A chemical is added which reacts
with the substrate causing the polymers to bond with the activated site. Once a sufficient
polymer density is achieved another chemical is added to bond and close off the free
end of the polymer. Since the polymers are prefabricated their physical properties, such
as degree of polymerization, or chain architecture can be precisely controlled. However,
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due to the diffusive nature of the bonding it can be difficult to achieve high densities and
homogeneous distributions. In either case, grafting from or to, the method is stable, easy to
produce and scalable; however, there are trade offs between control of grafting density and
polymer structure. Nevertheless, both grafting from and to present promising techniques
for producing large scale polymer brushes with minimal imperfections.

Depending on the density and solvent conditions, grafted polymers can exhibit several
phases. At very low grafting densities the polymers do not strongly interact and are in
what is know as the mushroom regime, for moderate grafting densities, when the pervaded
volumes of the polymers significantly overlap, they form a brush. In a poor solvent the
intermolecular interactions overcome the mixing entropy and the brush and solvent phase
separate, forming a collapsed brush. In a good solvent the mixing entropy dominates
and the brush adopts an extended conformation. Generally, good solvent conditions are
achieved at high temperature and poor solvents at low temperatures. For an LC polymer,
the extended conformation causes the brush to align along the axis normal to the grafting
plane and LC interactions induce a continuous transition into the nematic phase. For
increasing LC interaction strength a number of theoretical studies have predicted that the
brush will collapse into a high density nematic state, [35] which has since been observed in
simulations. [36]

1.4 Previous Work

One of the earliest theoretical descriptions of a polymer brush is the Alexander-de Gennes
model, which yields a step profile with all the free ends at the outer edge of the brush. [25,37]

Although this model results in the correct linear scaling of the brush height with the
degree of polymerization, N , a more sophisticated model, using the classical trajectory
theory limit of SCFT, originally explored by Semenov [38] in the case of diblock copolymers,
Milner, Witten and Cates [15] elegantly showed that the concentration of a flexible polymer
brush has a parabolic profile. In general the step profile of the Alexander-de Gennes
model is unrealistic [28,27] while the parabolic profile has shown very good agreement with
both experiment [28,27,39,40,41,42,43] and simulation, [44,45,46] and the deviations, such as the
depletion layer near the grafting surface and exponential tail at the solvent boundary are
well understood and described through numerical SCFT. [43,47,16,17] However, this model is
not without its limitations.

The Gaussian chain model that is the basis for the parabolic profile has no orientational
dependence and therefore cannot describe the brush’s possible LC phases, additionally the
Gaussian chain is infinitely extensible so when the brush height approaches the contour
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length of the polymer, the model is no longer accurate. [48,49,21] As an alternative, the
worm-like chain model has finite extensibility and continuously interpolates between the
flexible Gaussian and rigid rod models, producing parabolic and step-like profiles in each
limit respectively. [21] As previously mentioned, the parabolic profile has been shown to
be quantitatively accurate in comparison with experiment, while the semi-flexible to rigid
cases are in agreement with simulations. A study by Deng et al. [21] explored the properties
of a semi-flexible polymer brush for degrees of flexibility ranging from Gaussian to rigid
rods and examined in detail the scaling behaviour of various physical quantities such as
the free energy and scalar nematic order parameter.

Brush calculations typically ignore the orientational interactions between polymer chains,
which generally favour parallel alignment. Even though they are relatively weak for flexible
polymers, they still enhance the degree of stretching. [50] More interesting, however, are the
stiffer LC polymers that tend to align into a nematic phase. Using an Alexander-de Gennes
type calculation, Halperin and Williams [8,11] demonstrated how LC brushes could be used
to control the alignment of a liquid-crystalline solvent, an important issue for LC dis-
play technology. This potential application, along with others such as organic electronics,
switches, and sensor, has spurred numerous experimental studies. [51,52,53,54,55,56,57,58,59,60,61]

Subsequent theoretical calculations have, so far, concentrated on the simpler system of
LC brushes in isotropic solvent. In particular, Birshtein et al., [9] examined freely-jointed
chains interacting by MS LC interactions. [7] They initially solved the statistical mechanics
assuming uniform stretching (i.e., the Alexander-de Gennes approximation) with the rigid
segments constrained to the bonds of a simple-cubic lattice. Provided the solvent quality
was sufficiently good, increasing the LC interactions produced a first-order transition from a
conventional brush (CB) to a collapsed liquid crystal brush (LCB). Kuznetsov and Chen [10]

performed a similar off-lattice calculation, which likewise predicted an analogous transition
for good solvents.

Birshtein and coworkers later dropped the Alexander-de Gennes approximation and
instead solved the statistical mechanics using lattice SCFT of a brush of freely jointed
chains, incorporating MS type LC interactions. In a series of papers [26,62,63,35] they find
that the brush evolved continuously from CB to LCB via the formation of a microphase-
segregated brush (MSB) in which an extended state coexists with a high density collapsed
nematic state. A characteristic concentration profile from Ref. [ 26] as well as a diagram
illustrating the behaviour is given in Fig. 1.3. In the collapsed region, the brush backfolds
several times forming multiple hairpin defects. Computer simulations of freely-jointed
polymers have since observed this phase. [36] However, since the freely jointed chain model
has no bending energy penalty there is no cost to forming hairpin defects. [8,11,64] Since the
folds take place over very short length scales one would expect that for real polymers, even
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Fig 1.3. Left: characteristic brush profile of a microphase-segregated brush, as observed
in Ref. [26]. Right: cartoon depicting the possible configurations of the polymers in this
state. The high density region near the grafting plane z = 0 is a highly nematically
ordered state with backfolds while the low density region is a coexisting conventional
brush.

when they are relatively flexible, the cost would be non negligible (recent work by Odjik [65]

and Chen [66] discuss the energy cost of hairpin folds). Additionally, polymers exhibiting
LC phases tend to be relatively rigid so if the penalty was included the brush may opt for
other ways of increasing its concentration.

Indeed, simulations of short-chains LC molecules with an energy penalty for folding
observe tilting. [67,68,69,70] Birshtein and coworkers [26] did in fact perform some calculations,
where the bending between consecutive chain segments was restricted, but nevertheless
their lattice precluded the possibility of tilting. Deng et al. [21] did perform off-lattice
SCFT for worm-like chains [71,72] with Onsager LC interactions. [6] In their work they did
not observe the nematic collapse of the polymer brush; however, this can be attributed
to the LC interactions being of Onsager type rather than the MS form used by Birshtein.
Since Onsager interactions are purely excluded volume it will always favour the extended
state. In general, interactions will not be purely excluded volume and attractive potentials
can arise from, for example, van der Waals forces. The MS form allows for this type of
interaction and is more general than the Onsager form.

Some studies have accounted for the possibility of tilting when considering LC polymeric
brushes subjected to external forces, either shear [73] or compression. [74,75,76] However, it
seems that the possibility of spontaneous tilting due to strong LC interactions has so far
been overlooked. Therefore, we reconsider the SCFT for worm-like chains by Deng et al., [21]

allowing for breaking of the azimuthal symmetry. We also switch to the more general MS
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interactions, rather than the Onsager interactions specific to hard-core cylindrical segments.

1.5 Organization

This thesis is organized as follows. We begin by outlining the model of LC polymer brushes
in Chapter 2 and discuss popular alternatives. In order to study the equilibrium properties
of the brush, we evaluate the statistical mechanics in the mean field approximation using
SCFT, which we outline in Chapter 3.

With the model and theory well established, we begin by studying the phase behaviour
of an LC polymer brush. In general we study three separate phases and their transitions:
extended, folded and tilted. In Chapter 4 we begin by studying the effects of finite exten-
sibility on the predictions from strong-stretching theory (SST) for flexible polymers before
turning our attention to the extended nematic state of semi-flexible to rigid polymers. In
the extended state the polymers align normal to the grafting plane, which allows us to
assume azimuthal symmetry. Continuing to assume azimuthal symmetry, we study the ne-
matic collapse of a brush into a folded state in Chapter 5. Finally, in Chapter 6 we arrive at
the main result of this thesis by breaking azimuthal symmetry and demonstrating that the
folded state becomes unstable and is pre-empted by a tilting transition. We then conclude
by summarizing our findings and present the outlook for future work in Chapter 7.
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Chapter 2

Model

In this chapter, we describe the model of LC polymer brushes immersed in solvent as well
as some comparisons to other popular model choices. We will be using the worm-like chain
model with MS LC interactions and implicit solvent in the canonical ensemble with fixed
number of polymers, np, and solvent molecules, ns, in a volume V at temperature T .

In general, for a given model system there are many methods for evaluating the statis-
tical mechanical properties and determining the equilibrium phase behaviour. Discussion
of this will be reserved to Chapter 3. In this chapter, our aim is simply to describe the
model which can then be evaluated using statistical mechanics; however, we use notation
and expressions that translate easily onto field theoretic methods and express the model
in terms of its energetics.

2.1 Worm-like Chain

Some of the most popular polymer models are the Gaussian chain, freely jointed chain,
rigid rod and worm-like chain, shown in Fig. 2.1. [77,13] Due to its simplicity and universality,
the most popular among these is the Gaussian chain model which represents the flexible
limit. In this model there is no cost associated with bending. The Gaussian chain has a
fractal structure (Fig. 2.1) meaning that the orientation is completely isotropic on any scale
which ignores the orientation of the chain reducing the dimensionality and significantly
simplifying the system. For a real polymer this is achieved in the high molecular weight
limit. [13] Although the Gaussian chain has seen success in describing the phase behaviour
of many polymer systems, [77,13] it has significant limitations. The Gaussian chain model is
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Fig 2.1. Schematic diagrams depicting from left to right: Gaussian chain model
demonstrating isotropic fractal nature, freely jointed chain model with rigid segments
isotropically and independently connected, rigid rod model with fixed orientation and
finally the worm-like chain model with orientation u at contour position s.

only valid in the limit of high molecular weight, is infinitely extensible, and ignores possible
LC phases.

In the opposite limit we have the rigid rod. As the name implies, this model describes
polymers with a fixed orientation (infinite rigidity). LCs are often modelled as rigid rods,
most famously by Onsager, [6] Maier and Saupe. [7] Similarly, SCFT can be applied to rigid
rod polymers. [77] Since rigid rods can have a locally preferential alignment, these models
can give rise to orientational order which is a key property of LCs. Although the rigid
rod model is often sufficient for describing conventional LCs, due to the high degree of
polymerization, most polymers have some ability to bend; therefore, it is important to
account for the polymers flexibility but not so much that we lose all orientation dependence.

The freely jointed chain model is similar to a combination of the Gaussian chain and
rigid rod models. In this model, the polymers are made up of a series of rigid segments
connected by isotropic and independent bonds. Since the rigid segments have a definite
orientation this model can be used to describe a polymers possible LC phases and has been
used to model LC polymer brushes in the past. [35] However, most LC polymers are relatively
rigid and therefore the freely jointed segments can be unrealistic. Additionally, previous
models of LC polymer brushes found many hairpin folds (rapid reversals in direction) which
will have a large energetic cost for a semi-flexible polymer brush [65,66] but are not penalised
within the freely jointed chain model. It will be important to use a semi-flexible model to
verify whether these hairpin folds persist once this energetic cost is accounted for.

The most popular and successful model of semi-flexible polymers, which accounts for
the energy cost associated with chain bending, is the worm-like chain. This is the model
we will be using to describe the polymer brush. The worm-like chain model is not as
commonly used as the Gaussian or freely jointed chain models due to the added complexity
arising from the increased dimensionality of the problem; however, it is often used for the
description of biopolymers, which have persistence lengths comparable to their contour
length. The complexity arises from accounting for the orientation at every point along
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the chain; however, this represents a more realistic model which reveals the orientational
properties of the system and reduces to both the Gaussian and rigid rod models in the
appropriate limits. Additionally, spectral and pseudo spectral methods can be employed
to efficiently solve the worm-like chain model. [78,79]

In the worm-like chain model a polymer with degree of polymerization N has segments
with a fixed bond length b such that the total contour length `c = bN is fixed. The
conformation of a worm-like chain is determined by a harmonic bending energy penalty

UB

kBT
=

κ

2N

∫ 1

0

ds

∣∣∣∣du(s)

ds

∣∣∣∣2 . (2.1)

The dimensionless bending modulus κ controls the persistence length `p = bκ, u is the
unit tangent vector to the chain and s is the backbone parameter which runs from 0 to 1,
depicted in Fig. 2.1. It should be noted that this is a coarse grained model and the bond
length will not in general directly correspond to the microscopic bond length between
monomers.

We are interested in the equilibrium phase behaviour of a brush of worm-like chains.
This amounts to evaluating the statistical mechanics of a series of polymers grafted to a
rigid substrate and determining the stable phases from free energies. To create a brush
one simply needs to graft one end of each chain, say s = 0, to a rigid substrate. Eq. (2.1)
is for an individual polymer; however, in a brush, due to the relatively high density, the
polymers will be strongly interacting with themselves and each other. Additionally, the
brush will be in contact with solvent molecules so we must specify the polymer-polymer and
polymer-solvent interactions. In general we can group the interactions into two categories:
isotropic and anisotropic. The interactions between the polymers will consist of repulsive
excluded volume and attractive van der Waals forces which will have both isotropic and
anisotropic contributions. For a simple solvent, polymer-solvent interactions will also result
from excluded volume and van der Waals forces but will be purely isotropic. We will refer
to all anisotropic interactions as LC interactions.

2.2 Liquid Crystalline Interactions

Their are two popular models of LC polymers: one based on Onsagers model of rigid rods [6]

and another based on the MS [7] theory. [18] Previously, most studies used the Onsager form;
however, recently the MS model has become increasingly popular. This is in large part due
to the generality of the MS model as compared to Onsagers. The Onsager model is specific
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Fig 2.2. Cartoon depicting Onsager interactions between two polymers with orientation
u and u′ respectively. The overlapping segments are approximated as cylinders.

to rigid rods interacting purely through excluded volume, while the MS is a truncated
series expansion which combines all the interactions (excluded volume, van der Waals, etc.
) into one anisotropic parameter, analogous to the Flory-Huggins χ parameter for isotropic
interactions. Both the Onsager and MS interactions will be discussed and compared in
detail here and in subsequent sections. In general we will express the interactions between
polymers indexed by α and α′ as a general pair potential

U({rα})
kBT

=
1

2

np∑
α=1

np∑
α′=1,α′ 6=α

∫
dsds′u(rα(s), rα′(s′),uα(s),uα′(s′)) . (2.2)

2.2.1 Onsager

One of the earliest models of LC interactions is the Onsager model. Consider two polymers
with excluded volume interactions as depicted in Fig. 2.2. The interaction is regarded as
excluded volume from cylindrical filaments characterised by a cross-sectional diameter d
so the interaction between the two polymer segments is

u(r, r′,u,u′) = εδ(r− r′)|u× u′| (2.3)

where ε = 2db2κ2 and δ(r−r′) the Dirac delta function. Since our model is coarse-grained,
d is not generally known and so ε is treated as an independent parameter.

This model gives rise to many of the LC phases observed in nature and provides a
relatively simple qualitative description of LC polymers. The main shortcoming of this
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model is that it assumes the interactions are purely excluded volume, which is in general
not the case. Additionally, this model fails in the presence of solvent, where the polymer
interactions are mediated by solvent molecules. This model might be reasonably accurate
for a pure melt of chemically identical polymers, but in most other cases we expect it to
be inaccurate, not just quantitatively but qualitatively as well.

2.2.2 Maier-Saupe

In general the interactions between two polymers will not be purely excluded volume
and attractive potentials can arise from van der Waals forces, schematically depicted in
Fig. 2.3. Instead of assuming a particular type of interaction, as is the case with Onsager,
we instead expand the interactions in a general orientation dependent series. Convenient
basis functions are the Legendre polynomials

u(r, r′,u,u′) = δ(r− r′)
∑
l

νlPl(u · u′) , (2.4)

defined as

Pl(x) ≡ 1

2ll!

dl

dxl
(x2 − 1)l . (2.5)

Since the orientation of an LC is symmetric in u→ −u all the odd terms are zero. Keeping
only the first anisotropic interaction we have,

u(r, r′,u,u′) = ν0δ(r− r′)− ν2δ(r− r′)P2(u · u′) . (2.6)

This is what we refer to as MS interactions.

It should be noted that if we did not truncate the series, MS interactions could ex-
actly reproduce Onsager. Consider their spherical harmonic expansion: from the addition
theorem it follows that

|u× u′| =
∑
lm

4π

4l + 1
d2lY2l,m(u)Y ∗2l,m(u′) , (2.7)

where

d0 =
π

4
, d2l =

−π(4l + 1)(2l)!(2l − 2)!

24l+1(l − 1)!l!(l + 1)!
, (2.8)
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Fig 2.3. Cartoon depicting MS interactions between two polymers with orientation u
and u′ respectively. In contrast to the Onsager interactions which treat the polymers as
rigid cylinder the MS form allows for any type. Cartoons of excluded volume of rigid rods
and van der Waals forces are shown to illustrate possible repulsive and attractive
potentials.

and Yl,m(u) are the spherical harmonics, defined in more detail in Appendix A. Similarly∑
l

Pl(u · u′) =
∑
lm

4π

2l + 1
Yl,m(u)Y ∗l,m(u′) , (2.9)

so setting

ν0 = ε
π

4
, ν2l = ε

−π(4l + 1)(2l)!(2l − 2)!

24l+1(l − 1)!l!(l + 1)!
, (2.10)

and νl = 0 if l is odd reproduces the Onsager interactions.

As we show in Appendix B for a melt of polymers, the MS interactions can reproduce
not only the same qualitative behaviour but quantitatively similar values for the bulk
isotropic-nematic phase transition even when truncated at leading order, ν2. Therefore,
the MS interactions are more general than Onsager interactions.

2.3 Solvent Models

Solvent molecules are generally much smaller than polymers. Due to the size discrepancy
and the large pervaded volume of polymers, the solvent molecules tend to be at a relatively
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Fig 2.4. Left: Polymer brush (black) in contact with a good solvent (blue circles), since
the solvent is good the brush and solvent mix. Right: Polymer brush in contact with a
poor solvent, since the solvent is poor the brush and solvent phase separate.

high concentration (compared to polymers in the brush). In this work we will be considering
only simple solvents, which are treated as isotropic spheres, rather than LC solvents which
would be treated as rigid rods. A brush in contact with a simple solvent is schematically
depicted in Fig. 2.4. Depending on the chemistry and temperature the solvent can be a
good, poor, or theta solvent. In a good solvent the mixing entropy dominates, which causes
the brush to stretch out away from the grafting plane and into the solvent. In a poor
solvent intermolecular interactions dominate causing the polymers and solvents to phase
separate, resulting in a collapsed brush. In a theta solvent these two contributions exactly
balance and the solvent is perfectly neutral. In general, varying the temperature from
high to low will always cause the solvent to go from good to theta and finally to poor;
however, some solvent-polymer mixtures evaporate (crystallise) before reaching the good
(poor) regime so it is not always possible to explore all three with a single combination.

Consider a mixture of ns solvent and np polymer molecules in a system of volume V and
temperature T . We assume each chain occupies a fixed volume Nρ−1

0 , with ρ0 the segment
density of the polymer in a pure melt. Each solvent molecule occupies a volume vs, with
the segment density chosen such that vs = ρ−1

0 . Analogously to the LC interactions, we
represent the polymer solvent interactions with a pairwise potential

U({rα, rk})
kBT

=
1

2

np∑
α=1

∫
ds

ns∑
α′=1

u(rα(s), rs,α′) , (2.11)

with the key differences being that since the solvent is isotropic we have integrated out the
orientations and now we have the polymer at position r(s), interacting with a solvent at
position rs.

If the polymer concentration is relatively high the solvent molecules need to be mod-
elled explicitly, but in the semi-dilute regime the solvent molecules can be modelled fully

16



implicitly. Generally the implicit model will be accurate provided it is a good solvent with
the polymers grafted at a relatively low grafting density, while the explicit solvent model is
always required for a poor solvent since the phase separation increases the polymer density
and the semi-dilute approximation will break down.

2.3.1 Explicit

The most general solvent model involves explicitly solving the statistical mechanics of the
solvent and polymer simultaneously. We assume that the system is locally incompressible,
such that the total concentration at any point r is 1 in dimensionless units. The polymer-
solvent interactions are described by a local pairwise interaction of the form

u(r, r′) = χδ(r− r′) , (2.12)

with χ the Flory-Huggins polymer-solvent interaction parameter. In general we addition-
ally require separate polymer-polymer and solvent-solvent Flory-Huggins χ parameters;
however, these terms will simply rescale the polymer-solvent interaction parameter or add
a constant to the free energy and can be safely ignored.

This interaction potential, along with the LC interactions and bending energy of the
worm-like chain are sufficient to specify the statistical mechanics of LC polymer brushes;
however, there are further simplifications that can be made provided there are good sol-
vent conditions. In the semi-dilute approximation, the solvent degrees of freedom can be
integrated out and treated implicitly.

2.3.2 Implicit

The implicit solvent model is a mean field approximation. We combine the polymer-
solvent interactions and solvent entropy into a polymer-polymer interaction representing
the mean enthalpic and entropic forces acting on the polymers from the solvent assuming
a semi-dilute mixture. In this way the solvent degrees of freedom can be integrated out
significantly simplifying the model and reducing the parameter space. To arrive at the
implicit solvent model, we assume a form of the free energy common to mean field theory.

Consider the free energy contributions from the solvent molecules within the polymer
solvent mixture: there is an enthalpic contribution through the Flory-Huggins χ parameter
as well as an entropic contribution through mixing. Denoting the polymer concentration
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by φ(r) and the solvent concentration by φs(r), we can write these contributions as

F

npkBT
=
χρ0

2

∫
drφ(r)φs(r)− 1

vs

∫
drφs(r) ln(φs(r)) . (2.13)

Since we have assumed incompressibility, we can express the solvent concentration as
φs(r) = 1− φ(r), so that the free energy becomes

F

npkBT
=
χρ0

2

∫
drφ(r)(1− φ(r))− 1

vs

∫
dr(1− φ(r)) ln(1− φ(r)) . (2.14)

We now arrive at the first major approximation of the implicit solvent model, the semi-
dilute approximation, assuming the polymer concentration is relatively low, the entropy
term can be expanded in Taylor series so that the free energy becomes

F

npkBT
=
χρ0

2

∫
drφ(r)(1− φ(r)) +

1

vs

∫
dr

[
φ(r)− φ2(r)

2
−O(φ3(r))

]
. (2.15)

Integrals over φ(r) give the total amount of material and just add a constant to the free
energy and therefore can be ignored. Combining and dropping constant terms we arrive at

F

npkBT
=
ρ0

2

(
1

vsρ0

− 2χ

)∫
drφ2(r) . (2.16)

The second simplification is to replace the polymer solvent interaction energy, Eq. (2.12),
that describes the polymer-solvent interactions into a new effective potential between poly-
mer segments (no solvent) that incorporates the solvent contributions as an average effect.
This new potential takes the form

u(r, r′) = ν0δ(r− r′) , (2.17)

where ν0 is called the excluded volume parameter, and now it is an interaction between
polymer segments,

U({rα})
kBT

=
1

2

np∑
α=1

np∑
α′=1,α′ 6=α

∫
dsds′u(rα(s), rα′(s′)) , (2.18)

rather than polymer-solvent as in Eq. (2.12). By setting ν0 = (vsρ0)−1 − 2χ we arrive at
an identical form for the free energy as in Eq. (2.16). We have now replaced the entropy
of mixing with a mean entropic force which will stretch the polymer brush.
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It is important to note some key properties of the excluded volume parameter, ν0.
If ν0 > 0 then the entropic contribution (vsρ0)−1 is dominant and the polymer will mix
with the solvent resulting in good solvent conditions. When ν0 = 0, then the enthalpic
contribution exactly balances the entropy of mixing and it is a theta solvent. Finally, if
ν0 < 0 than the enthalpic contribution dominates causing the polymer and solvents to
phase separate meaning it is a poor solvent. Since the implicit solvent model relies on the
semi-dilute approximation, it is only valid for good (or theta) solvent conditions, so we are
restricted to the case ν0 ≥ 0 in this model.
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Chapter 3

Self-Consistent Field Theory

The theoretical framework we use is self-consistent field theory (SCFT). SCFT is a mean
field theory, which is an approach commonly used in statistical mechanics to describe a
many body interacting system and is especially useful for describing emergent properties.
By replacing the system with a single body in an external field, we can gain insight into the
properties of the system while significantly reducing complexity. Since the external field
represents the many body interactions, it will itself depend on the single body solution
and therefore must be solved self-consistently. The particle to field transformation is
schematically depicted in Fig. 3.1. In polymer physics, SCFT has been widely used to
accurately describe the properties of polymeric systems, with its most notable success
from attaining both qualitative and quantitative agreement with experimental results for
the stable phases of block-copolymer melts. [13]

The focus of this chapter is to derive the statistical field theory and mean field approx-
imation for the worm-like chain model with LC interactions, closely following analogous
arguments as presented by Fredrickson. [77] For the purposes of calculation and the results
of the following chapters only the main results are required, and could be directly cited
from Fredrickson. [77] In the interest of clarity we will first summarise the main results here
which constitute the full 6-dimensional (3 Cartesian, 2 polar and 1 contour) form of the
equation we will be solving in subsequent chapters.

We assume each polymer occupies a fixed volume N/ρ0 and has a fixed contour length
`c = bN , where N is the degree of polymerization, ρ0 represents the segment density in
a pure melt and b is the fixed bond length. The configuration of the α’th molecule is
specified by the space curve rα(s), with unit tangent vector uα(s) ≡ `−1

c
d
ds

rα(s), where the
backbone parameter runs from s = 0 to 1. The energetics and interactions are assumed to
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Fig 3.1. Image illustrating the particle to field transformation in SCFT. The many body
interacting system of polymers on the left is averaged over and replaced by a single
polymer interacting with a mean field w.

be of the form described in Chapter 2.

The partial partition function q(r,u, s) satisfies the diffusion equation for a continuous
worm-like chain in an external field w(r,u)

∂q(r,u, s)

∂s
+ `cu · ∇rq(r,u, s) =

`c
2`p
∇2

uq(r,u, s)− w(r,u)q(r,u, s) , (3.1)

and the reverse partial partition function q†(r,u, s) satisfies the same equation with the
left hand side multiplied by −1. Throughout, ∇r denotes the gradient with respect to r
and ∇2

u the spherical Laplacian. In the mean field approximation the interactions from
Chapter 2 are replaced by a self-consistent field, w(r,u), which satisfies

w(r,u) = N

∫
dr′du′f(r, r′,u,u′)φ(r′,u′) , (3.2)

with MS interactions

f(r, r′,u,u′) = ν0δ(r− r′)− ν2δ(r− r′)P2(u · u′) . (3.3)

The concentration is

φ(r,u) =
1

Q

∫
dsq(r,u, s)q†(r,u, s) , (3.4)

where Q is the single chain partition function, which satisfies

Q =

∫
drdu q(r,u, s)q†(r,u, s) . (3.5)
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Finally, the free energy per polymer is

F

npkBT
= − lnQ− ρ0

2V

∫
drduw(r,u)φ(r,u) . (3.6)

It is at this point that we would like to introduce some notation for the following
sections: throughout, square brackets, g[Φ], will denote a functional, a hat, Φ̂, an operator,
Dg[Φ]/DΦ a functional derivative,

∫
DΦ a functional integral and a semi colon (a; b) the

conditional probability of a given b.

3.1 Statistical field theory of a worm-like chain

All of the statistical mechanics of a system can be calculated provided one has knowledge of
the partition function. In the canonical ensemble, the partition function can be expressed
as an integral over all coordinates with probabilities taking the usual Boltzmann weighting

Z ∝
∫
Drαe

−U({rα})
kBT , (3.7)

where Z is the canonical partition function, and U the internal energy of the system.
Throughout we will be dropping any constant pre-factors multiplying Z as they will not
affect any observable quantities. We will only be concerned with pairwise potentials, in
which case the internal energy can be expressed as

U({rα}) =
κ

2N

np∑
α=1

∫ 1

0

ds

∣∣∣∣duα(s)

ds

∣∣∣∣2 +
1

2

np∑
α=1

np∑
α=1,α′ 6=α

u(rα, rα′ ,uα,uα′) , (3.8)

as defined in Chapter 2. Introducing the microscopic density operator, Φ̂(r,u), defined as

Φ̂(r,u) ≡ N

ρ0

np∑
α=1

∫ 1

0

dsδ(r− rα(s))δ(u− uα(s)) (3.9)

and the bending energy

UB({rα}) =
κ

2N

np∑
α=1

∫ 1

0

ds

∣∣∣∣duα(s)

ds

∣∣∣∣2 , (3.10)
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we can write the energy

U({rα})
kBT

= UB({rα}) +
ρ0

2V

∫
drdr′Φ̂(r)f(r, r′)Φ̂(r′)− 1

2
npu(0) . (3.11)

Here, and for the remainder of this section we suppress the explicit dependence on u
where it is understood that dependence on, or integration over, r includes u. The first
two terms are the familiar form presented in Chapter 2, while the third subtracts off
the self interactions and simply affects the reference chemical potential and will have no
thermodynamic consequence. The partition function, Eq. (3.7), can now be expressed as

Z ∝
∫
Drα exp

[
− 1

kBT

(
UB({rα}) +

ρ0

2V

∫
drdr′Φ̂(r)f(r, r′)Φ̂(r′)

)]
. (3.12)

We now introduce the delta functional, δ[Φ− Φ̂], defined by the sifting property∫
DΦδ[Φ− Φ̂]g[Φ] = g[Φ̂] (3.13)

for any functional g[Φ], and express it in exponential form

δ[Φ− Φ̂] ∝
∫
DW exp

(∫
drW (r)[Φ(r)− Φ̂(r)]

)
. (3.14)

Inserting this definition into Eq. (3.12) we have

Z ∝
∫
DΦDrαδ[Φ− Φ̂] exp

[
− 1

kBT

(
UB({rα}) +

ρ0

2V

∫
drdr′Φ(r)f(r, r′)Φ(r′)

)]
∝
∫
DΦDWDrα exp

[∫
drW (r)[Φ(r)− Φ̂(r)]− 1

kBT

(
UB({rα}) +

ρ0

2V

∫
drdr′Φ(r)f(r, r′)Φ(r′)

)]
.

(3.15)

Finally, integrating over the coordinates {rα} our partition function becomes

Z ∝
∫
DΦDWe

−H[Φ,W ]
kBT , (3.16)

where the functional, now including explicit dependence on u,

H[Φ,W ] = −
∫
drduW (r,u)Φ(r,u)+

ρ0

2V

∫
drdr′dudu′Φ(r,u)f(r, r′,u,u′)Φ(r′,u′)−np lnQ[W ] ,

(3.17)
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is referred to as the effective Hamiltonian, and Q[W ] is the single chain partition function,
resulting from the integration over the coordinates {rα} which factor into the product of
np single chains with partition function

Q[W ] =

∫
drdu exp

[
− κ

2N

∫ 1

0

ds

∣∣∣∣du(s)

ds

∣∣∣∣2 − ∫ 1

0

dsW (r(s),u(s))

]
. (3.18)

This is the partition function of a single worm-like chain in a field W (r,u).

From this partition function we can calculate several observable quantities. A central
quantity is the concentration given by the ensemble average (denoted by 〈· · · 〉) of the
microscopic density operator

〈Φ(r,u)〉 = −np
D lnQ[W ]

DW (r,u)
. (3.19)

which is conjugate to the field, W .

We have now transformed the system into an integral over two fluctuating fields Φ
and W . All the transformations thus far have been exact and could, at least in princi-
ple, be calculated through functional integral techniques or simulated through (field the-
oretic) Monte-Carlo or Langevin simulation; however, analytic techniques are virtually
non-existent for this model and the current simulation methods are computationally inten-
sive. Even the much simpler Gaussian chain model runs into difficulties. Therefore, our
approach will be to invoke the saddle point approximation, which will allow us to replace
the fluctuating fields W and Φ with their average in the usual mean field sense.

3.2 Mean Field Approximation

Explicitly, the mean field approximation, referred to as SCFT, amounts to evaluating the
partition function, Eq. (3.16), in the saddle point approximation. We assume the integral
is dominated by field configurations w(r,u) and φ(r,u) obtained from the saddle points of
the effective Hamiltonian, Eq. (3.17),

DH[Φ,W ]

DW (r,u)

∣∣∣∣
φ,w

=
DH[Φ,W ]

DΦ(r,u)

∣∣∣∣
φ,w

= 0 . (3.20)

The derivative with respect to the W field yields

φ(r,u) = −np
D lnQ[W ]

DW (r,u)

∣∣∣∣
φ,w

= 〈Φ(r,u)〉w , (3.21)
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which implies that in the saddle point approximation the φ field corresponds to the average
segment density, i.e. the concentration, of a single chain in the field w(r,u). The derivative
with respect to the Φ field results in the self-consistent field equation

w(r,u) = N

∫
dr′du′f(r, r′,u,u′)φ(r′,u′) . (3.22)

The field w(r,u) depends exclusively on the concentration, φ(r′,u′), of a single chain in the
field, w(r,u). Therefore all that remains is to evaluate this single chain partition function
for a worm-like chain in an external (but self-consistent) field.

3.3 Worm-like Chain in an External Field

In order to evaluate the single chain partition function, Eq. (3.18), we will use methods
in analogy to stochastic processes. The goal is to get the Fokker-Planck equation. This
is analogous to the Feynman-Kac transformation in quantum mechanics. Consider the
partial partition function of a constrained chain q(r,u, s), which represent the probability
density that the end of a worm-like chain with contour length s is at position r and the
tangent vector of the end segment is u. We can express the partial partition function in
the form of a Chapman-Kolmogorov equation as

q(r,u, s+ ∆s) =

∫
d(∆r)

∫
d(∆u)Tr(∆r,∆u; r−∆r,u−∆u)q(r−∆r,u−∆u, s) .

(3.23)

with Tr the transition probability. We can write the relation between r and u as (recall
u(s) = `−1

c
d
ds

r(s))

∆r = `c

∫ s+∆s

s

dsu(s) = `cu∆s+O(∆s2) . (3.24)

Thus, to first order in ∆s we can treat r as deterministic since all the stochastic nature is
contained in u. The transition probability then has the form

Tr(∆r,∆u; r,u) = tr(∆u; r,u)δ(∆r− u∆s) (3.25)

with tr the new transition probability. Substituting this leads to the simplified Chapman-
Kolmogorov equation

q(r,u, s+ ∆s) =

∫
d(∆u)tr(∆u; r,u−∆u)q(r,u−∆u, s) . (3.26)
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Expanding to order ∆s on the left hand side and to order ∆u2 on the right-hand side leads
to

∆s

[
∂

∂s
+ `cu · ∇r + w(r,u)

]
q(r,u, s) +O(∆s2) =−∇u · [〈∆u〉trq(r,u, s)]

+
1

2
∇u∇u : [〈∆u∆u〉trq(r,u, s)]

+O(〈∆u∆u∆u〉tr) .
(3.27)

Here the angle brackets denote and average with respect to the transition probability
tr ≈ e∆UB/kBT , with ∆UB ≡ κ|∆u|2/(2N) (field term just adds constant in the integral
over ∆u). The transition probability is Gaussian since we have ∆u constrained to the unit
sphere so we can write

∆UB

kBT
=

κ

2N∆s
|∆u|2 =

κ

2N∆s
[(∆θ)2 + (sin θ∆ϕ)2] . (3.28)

Thus the transition probability has first and second moments

〈∆u〉tr = 0 , 〈∆u∆u〉tr =
N∆s

κ
(eθeθ + eφeφ) (3.29)

Substituting this into Eq. (3.27) gives the desired Fokker-Planck, or diffusion, equation

∂q(r,u, s)

∂s
+ `cu · ∇rq(r,u, s) =

`c
2`p
∇2

uq(r,u, s)− w(r,u)q(r,u, s) , (3.30)

where we have used N/κ = `c/`p.

From the partial partition function, we can calculate the unconstrained single chain
partition function as

Q =

∫
drdu q(r,u, s)q†(r,u, s) , (3.31)

where q† is the partial partition function starting at the other end of the chain, s = 1, and
satisfies Eq. (3.30) with the left hand side multiplied by −1. Similarly, the concentration
is

φ(r,u) =
1

Q

∫
dsq(r,u, s)q†(r,u, s) . (3.32)

Finally, the free energy per polymer is

F

npkBT
= − lnQ− ρ0

2V

∫
drduw(r,u)φ(r,u) . (3.33)

where the second term subtracts off the double counting from the polymers interacting
with a mean field.
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Chapter 4

Extended State

We begin our study of LC polymer brushes in a simple solvent using self-consistent field
theory and assuming azimuthal symmetry, symmetry in rotations about the axis perpen-
dicular to the grafting plane. The polymers are modelled as worm-like chains with MS
interactions. For good solvent conditions and comparatively weak LC interactions the
brush is strongly stretched and aligns along the axis perpendicular to the grafting plane.
In the flexible limit, with only isotropic interactions, the brush approaches the parabolic
profile predicted by Milner, Witten and Cates [15] with the characteristic depletion layer
and tail predicted by numerical SCFT. [17] For semi-flexible polymers, the profile deviates
significantly due to the finite extensibility of worm-like chains and continuously transforms
into an extended nematic state with increasing LC interaction strength.

4.1 Theory

Consider a brush of np polymers grafted to a flat substrate of area, A, at z = 0, immersed
in a solvent of ns molecules. Each polymer consists of N segments of length b, giving a
total contour length of `c = bN . The configuration of the polymer chain is specified by the
space curve r(s), where the backbone parameter runs from s = 0 at the grafted end to 1 at
the free end. The orientation of the chain is then given by the unit vector u(s) = `−1

c
d
ds

r(s).

Treating the solvent implicitly also allows the grafting density, σ = np/A, to be ab-
sorbed into the scaled concentration

φ(z,u) ≡ bρ0

σ
〈φ(r,u)〉 , (4.1)
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which is normalized such that
1

`c

∫
dzφ(z) = 1 , (4.2)

where φ(z) =
∫
duφ(z,u). Note that we assume the grafting density is sufficient that

there is no need to constrain the lateral position of the grafting points, which implies that
ensemble-average concentrations will have no x or y dependence. In terms of the scaled
concentrations, the field equation, Eq. (3.2), becomes

w(z,u) =

∫
du′G(u,u′)φ(z,u′) , (4.3)

where
G(u,u′) = Λ0 − Λ2P2(u · u′) (4.4)

involves the reduced interaction parameters

Λ0 ≡
ν0σN

bρ0

, Λ2 ≡
ν2σN

bρ0

. (4.5)

The SCFT requires us to solve the statistical mechanics for the partition function,
Eq. (3.18), of a single polymer in the field with the s segment fixed at position r with
orientation u, which divides the molecule into two parts. The partition function of the
constrained chain can be written as the product, q(z,u, s)q†(z,u, s), of partial partition
functions for the two parts of the molecule. The q(z,u, s) for the part of the chain with
the grafted end satisfies the differential equation, Eq. (3.1), in reduced coordinates,

∂q

∂s
+ `cuz

∂q

∂z
=

`c
2`p
∇2

uq − wq , (4.6)

with uz = cos(θ) the component of the molecular axis along the z coordinate and an initial
condition q(z,u, 0) = g(z). The grafting function, g(z), typically taking a similar form as
a delta function. The q† for the part of the chain with the free end satisfies Eq. (4.6) with
the left hand side multiplied by −1 subject to q†(z,u, 1) = 1. The boundary conditions
are a fixed at q(0,u, s) = q†(0,u, s) = 0 and q(∞,u, s) = q†(∞,u, s) = 0, the former
corresponding to an impenetrable wall and the latter is due to finite extensibility of the
worm-like chain.

Once the partial partition functions are known, the distribution of polymers is

φ(z,u) =
`c
Q

∫ 1

0

dsq(z,u, s)q†(z,u, s) , (4.7)
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where

Q =

∫
dzdu q(z,u, s)q†(z,u, s) , (4.8)

is a partition function of an unconstrained chain. Note that the integration in Eq. (4.8) is
independent of s. The field must be adjusted such that φ(z,u) satisfies Eq. (4.3).

The orientational order of the polymer chains can be characterized by the tensor order
parameter, [18,77,80]

Qij(z) =
3

2φ(z)

∫
du

(
uiuj −

δij
3

)
φ(z,u) , (4.9)

where i, j ∈ {x, y, z}. The Kronecker delta is included to make the tensor traceless (i.e.,
TrQ = 0). The symmetric tensor can be expressed in the diagonal form

Qij =
3S
2

(
ninj −

δij
3

)
+
P
2

(lilj −mimj) , (4.10)

where n, l and m are three orthogonal eigenvector, referred to as unit directors. The largest
eigenvalue corresponding to the nematic director, n, defines the uniaxial order parameter,
S(z), which takes on values between zero for an isotropic phase and one for a fully-ordered
nematic phase. The difference between the two smallest eigenvalues defines the biaxial
order parameter, P(z).

The field equation often has multiple solutions corresponding to different metastable
phases, and so we need to evaluate their free energy to determine which is the stable
equilibrium phase. In mean-field theory, the free energy is given by Eq. (3.6) but here we
replace the field with MS interactions using Eq. (4.3),

F = −npkBT lnQ− 1

`c

∫
dzU(z) . (4.11)

The logarithmic term provides the free energy of np chains in the mean field, which double
counts the interaction energy. To correct for this, the second term subtracts Utotal, where
the energy density can be expressed as

U(z)

npkBT
=

1

2

∫
dudu′φ(z,u)G(u,u′)φ(z,u′) ,

=

(
Λ0

2
− Λ2

3
TrQ2(z)

)
φ2(z) ,

=
1

2

[
Λ0 − Λ2

(
S2(z) +

P2(z)

3

)]
φ2(z) .

(4.12)
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The partial partition functions, q and q† are solved according to the numerical scheme
described in A.2, q with a grafted initial condition q(z,u, 0) = g(z), where g(z) is a grafting
function, typically taking a similar form as a delta function. q† is the partial partition
function starting at the free end of the chain and has a free initial condition q†(z,u, 0) = 1.
The boundary conditions are a fixed 0 condition for both the partial partition functions
at z = 0 and z = ∞, the former corresponding to an impenetrable wall and the latter is
due to finite extensibility of the worm-like chain. The field must be adjusted such that the
concentration satisfies the field equation, Eq. (4.3). To avoid potential divergences in the
algorithm we graft the polymer a small distance dz from the interface and approximate
the delta function with a strongly peaked Gaussian, g(z) = exp[−(z/ξ)2], where ξ = `c/32
controls the sharpness of the peak. For accurate comparisons with SST in Fig. 4.1 and 4.2
we use a grid spacing of dz = `c/3200, ds = 1/3200 and nLP = 10, with nLP the number
of Legendre polynomials. For the shorter chains, (more rigid) we find a grid spacing of
dz = `c/800, ds = 1/800 and nLP = 10 to be sufficient.

4.2 Results

We begin by examining the flexible limit with no LC interactions. In this case, the parabolic
profile predicted by SST for Gaussian chains is achieved in the flexible limit `c � `p
provided classical brush height, [17]

L =

(
8Λ0`p
π2`c

)1/3

`c , (4.13)

is larger than the average end-end length, R0, but significantly smaller than the contour
length, `c, which implies R0 � L� `c. In the flexible limit, R0 ≈

√
2`p`c for a worm-like

chain. [77] The concentration from SST is

φSST(z) =
3R0

2L3
(L2 − z2) , (4.14)

with end-segment distribution

φSST
e (z) =

3zR0

L3

√
L2 − z2 . (4.15)

Within our model the distribution of end segments is found by calculating

φ(z, s) =
`c
Q

∫
duq(z,u, s)q†(z,u, s) , (4.16)
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Fig 4.1. (a) Brush profiles, φ(z), for interactions corresponding to L/
√

2`p`c = 1, 2, 4
and Λ2 = 0, calculated for flexible worm-like chains of (a) `c = 64`p and (b) `c = 512`p.
The dotted curve shows the classical profile predicted by SST for Gaussian chains with
no LC interactions.
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Fig 4.2. (a) Chain end distributions, φe(z), for interactions corresponding to
L/
√

2`p`c = 1, 2, 4 and Λ2 = 0, calculated for flexible worm-like chains of (a) `c = 64`p
and (b) `c = 512`p. The dotted curve shows the classical profile predicted by SST for
Gaussian chains with no LC interactions.

32



and setting s = 1, that is φe(z) = φ(z, 1).

Fig. 4.1 shows the concentration profiles as the isotropic interactions, L/
√

2`p`c ∼
Λ

1/3
0 , is increased for worm-like chains of different flexibility, `c/`p, in the absence of LC

interactions (i.e., Λ2 = 0). The polymers in Fig. 4.1(a) approach the prediction from
SST as the classical height increases from L/

√
2`p`c = 1 to 2, corresponding to weak to

intermediate stretching. However, when L/
√

2`p`c = 4 the classical height is roughly 70%
of the total contour length, so the profile deviates significantly from the prediction from
SST since it ignores the finite extensibility of the polymer. Similar behaviour is observed
in 4.1(b) for the more flexible polymers. In this case, the profile for L/

√
2`p`c = 4 is

very close to the SST prediction, but we can already begin to observe the effects of finite
extensibility even for this very flexible polymer. For L/

√
2`p`c = 4, the concentration near

the grafting plane has already increased past the SST prediction, despite the relatively
small classical height of 25% of the total contour length. Although small, this deviation
will become more significant for stronger stretching.

Analogous plots of the distribution of free ends, φe(z), shown in Fig. 4.1 display similar
deviation from SST predictions. Most notably as the more rigid chains in (a) become
strongly stretched L/

√
2`p`c = 4, the distribution is sharper than that predicted by SST.

In fact, as L → ∞ the end distribution will approach a delta function with all the ends
concentrated at z = `c. As was discussed previously by Deng et al., [21] we can conclude
that SST is valid in the intermediate stretching regime. As a general rule, in order for
SST to be valid we require `c � `p and R0 � L � `c, and as a rule of thumb we find
2R0 . L . 1

4
`c to be sufficient.

In order to explore the possible LC phases of the brush, we now turn our attention
to more rigid polymers with increasing LC interaction strength. Fig. 4.3 shows the con-
centration profiles as the LC interactions, Λ2, are increased for worm-like chains ranging
from semi-flexible, `c = 16`p, to rigid, `c = `p. In the absence of LC interactions (i.e.,
Λ2 = 0), the most flexible polymers in Fig. 4.3(a) have a parabolic-like profile, similar to
that predicted by SST for flexible Gaussian chains. In this case, the classical brush height,
Eq. (4.13), is nearly 80% of the polymer contour length, `c. Naturally, there is a signif-
icant deviation from the classical profile. In any case, increasing the LC interaction, Λ2,
and reducing the flexibility, `c/`p, both cause the profile to deviate from the parabolic-like
profile toward a step-like profile of height `c. For the most rigid polymer with strong LC
interactions, the concentration profile extends slightly beyond the contour length of the
polymers; this is because we used a sharply peaked Gaussian for the grafting function,
g(z), rather than a Dirac delta function.

Fig. 4.4 shows the corresponding distribution of free ends as the LC interactions, Λ2, are
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Fig 4.3. Concentration profiles, φ(z), corresponding to Λ0 = 10 and Λ2 = 0, 25, and 50,
calculated for worm-like chains of (a) `c = 16`p, (b) `c = 4`p, and (c) `c = `p. The dotted
curve in (a) denotes the parabolic profile predicted by SST for Gaussian chains with no
LC interactions.
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Fig 4.4. (a) Chain end distributions, φe(z), for interactions corresponding to Λ0 = 10
and Λ2 = 0, 25, and 50, calculated for worm-like chains of (a) `c = 16`p, (b) `c = 4`p, and
(c) `c = `p. The dotted curve in (a) shows the classical profile predicted by SST for
Gaussian chains with no LC interactions.

35



Fig 4.5. Eigenvalues of the tensor order parameter, Qij(z), for worm-like chains of
`c = 16`p with interaction parameters of Λ0 = 10 and Λ2 = 25. The eigenvalue λ⊥(z)
corresponds to an eigenvector in the z direction and the two degenerate eigenvalues λ‖(z)
correspond to eigenvectors in the x-y plane. Their crossing point defines z∗.

increased. In the absence of LC interactions (i.e., Λ2 = 0), the most flexible polymers in Fig.
4.3(a) have ends distributed throughout the brush, similar to the prediction from SST for
flexible Gaussian chains. Just as for the total concentration, the free end distribution still
deviates significantly from the SST prediction since the classical brush height, Eq. (4.13),
is nearly 80% of the polymer contour length, `c. For the more rigid cases in (b) and (c), for
strong LC interactions, the end segment distribution is sharply peaked at the edge of the
brush, similar to the Alexander-de Gennes approximation. This is due to the high degree
of nematic order.

To assess the orientation of the polymer chains, we diagonalize the tensor order pa-
rameter, Qij(z), defined in Eq. (4.9). Under the azimuthal symmetry, the tensor has a
single eigenvalue, λ⊥(z), corresponding to an eigenvector in the z direction, and two de-
generate eigenvalues, λ‖(z), corresponding to eigenvectors in the x-y plane. Given that
Qij(z) is traceless, it follows that λ⊥(z) + 2λ‖(z) = 0, and thus λ⊥(z) and λ‖(z) have
opposite signs. As shown in Fig. 4.5, there is a point near the surface, z = z∗, where the
eigenvalues simultaneously switch sign. This implies that the polymer chains are generally
oriented perpendicular to the grafting surface, except in the vicinity of the surface (i.e.,
z < z∗) where they tend to orient parallel to the surface. This is consistent with a general
trend for worm-like chains to align parallel to surfaces and interfaces; [81,82] however, we do
find that the length of the parallel region depends relatively strongly on the width of our
grafting function, g(z), and therefore would require a more accurate grafting function to
conclusively determine the behaviour near the grafting plane.
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Fig 4.6. Uniaxial order parameter, S(z), corresponding to Λ0 = 10 and Λ2 = 0, 25, and
50, calculated for worm-like chains of (a) `c = 16`p, (b) `c = 4`p, and (c) `c = `p.
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By convention, the uniaxial order parameter, S(z), is defined as the largest eigenvalue,
and the corresponding eigenvector defines the nematic director n. Thus, the director is
oriented in the x-y plane near the surface and switches to the z direction away from the
surface. From the decomposition of Qij(z) in Eq. (4.10), it follows that the biaxial order
parameter takes on the value P(z) = 3

2
λ⊥(z) in the surface region, z < z∗, and then

P(z) = 0 in the region beyond, z > z∗.

The dependence of the uniaxial order parameter, S(z), on the system parameters is
illustrated in Fig. 4.6. Note that it becomes computationally difficult to determine S(z) as
the polymer concentration approaches zero, and so the curves are only plotted for φ(z) &
0.01. As expected, S(z) is smallest for our most flexible chains, `c = 16`p, without LC
interactions, Λ2 = 0. Reducing the flexibility, `c/`p, and increasing the LC interaction, Λ2,
and both cause an increase in orientational order. Indeed, S(z) approaches the maximum
allowed value of one for the most rigid polymer, `c = `p, with the strongest LC interaction,
Λ2 = 50. In all cases, the region of parallel alignment with the wall shrinks as the LC
interactions increase in strength.

4.3 Discussion

The Gaussian chain model that is the basis for the parabolic profile is infinitely extensible;
therefore, it results in unphysical behaviour as the brush height approaches the contour
length of the polymer. The worm-like chain model is the natural extension to account for
finite extensibility. Consistent with previous calculations, [21] we find that for flexible chains
the brush profile agrees with the parabolic profile in an intermediate stretching regime. For
intermediate stretching, the deviations from the parabolic profile such as the depletion layer
near the grafting plane and exponentially-decaying tail at the outer edge of the brush are
completely consistent with those predicted by numerical SCFT of Gaussian chains. As the
brush becomes strongly stretched and the brush height approaches the contour length of
the polymer, we observe significant deviations from the parabolic profile. In fact, in the
strong stretching limit, the step profile predicted by Alexander and de Gennes would be
a better approximation. As a general rule, in order for the parabolic profile to be valid,
we require `c � `p and R0 � L � `c, and as a rule of thumb, we find 2R0 . L . 1

4
`c to

be sufficient. For semi-flexible, `c ∼ 16`p, or rigid polymers, `c ∼ 4`p, the parabolic profile
is inappropriate and this effect is further exacerbated by LC interactions. Therefore, for
many bio and LC polymers, which tend to range from semi-flexible to rigid, the worm-like
chain model is necessary for an accurate description of the brush.

One of the main benefits of the worm-like chain model is that it accounts for the
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orientation of individual polymer segments. This allows us to explore the possible LC
phases of the brush. In the absence of LC interactions, since the brush is strongly stretched,
it already possesses a relatively high degree of nematic order, aligning along the axis normal
to the grafting plane. As LC interactions are increased, this order increases resulting in a
continuous transformation, i.e. no transition, into an extended nematic phase. This is in
contrast to the isotropic-nematic transition observed for a melt of polymers in Appendix B,
where the transition is first order. The continuous transformation from strongly stretched
to extended nematic is consistent with previous results for a brush of worm-like chains with
Onsager interactions. [21] An interesting behaviour is observed near the grafting plane. The
alignment of the polymer brush rapidly switches from perpendicular to parallel alignment.
This is caused by the loss of translational entropy as the density goes to zero at the
grafting plane due its impenetrability. This behaviour is generally seen for LC polymers
near interfaces with and without LC interactions. [82,81]

4.4 Summary

We have investigated semi-dilute main-chain LC polymer brushes in good solvent, using
SCFT for worm-like chains with MS interactions. The calculation assumes sufficient overlap
among the polymers such that the brush has no lateral structure (i.e., no dependence on
x and y), but a small enough polymer concentration such that the solvent can be treated
implicitly. Under these assumptions, the grafting density and solvent size can be scaled out
of the problem, reducing the number of system parameters to three: the scaled isotropic
interaction strength Λ0, the scaled anisotropic LC interaction strength Λ2, and the number
of persistence lengths per chain `c/`p. Our study focuses on good solvent conditions that
favour an extended brush (i.e., Λ0 > 0) for polymers ranging from flexible (i.e., `c = 512`p)
to relatively rigid (i.e., `c = `p).

Our study begins by considering the effects of finite extensibility on strongly stretched
flexible polymers. For intermediate amounts of stretching 2R0 . L . 1

4
`c the concentration

and end distribution are in good agreement with the SST of Milner, Witten and Cates [15]

with the usual deviation from SST from the depletion layer near the grafting plane and
exponentially decaying tail at the free end predicted by numerical SCFT of Gaussian
chains. [17] Once the brush height approaches the contour length of the polymers, we observe
significant deviations.

In addition to isotropic interactions, our model allows us to consider LC interactions and
to observe the orientational ordering of the brush for polymers ranging from semi-flexible
(i.e., `c = 16`p) to relatively rigid (i.e., `c = `p). As the LC interactions are increased, the
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brush continuously transforms into a nematic state aligned along the axis normal to the
grafting plane. For strong LC interactions the brush approaches a step profile with the
ends of the chains concentrated at the outer edge of the brush.

All of our results thus far are consistent with previous calculations carried out by Deng et
al. [21] using Onsager interactions, provided the isotropic interactions are sufficiently strong
for the brush to remain strongly stretched. Within the MS model, the LC interactions
can overcome the isotropic interactions and a number of studies have predicted that the
brush will collapse into a high density nematic state. [9,26,10] As we will show in the following
chapters, this is where we will begin to see qualitatively distinct behaviour from the Onsager
form of LC interactions.
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Chapter 5

Backfolding Transitions

We continue our study of LC polymer brushes maintaining azimuthal symmetry with strong
LC interactions. For good solvent conditions, the isotropic interactions favour a stretched
brush while the anisotropic LC interactions favour folding into a high-density nemati-
cally collapsed brush. The brush undergoes first-order transitions as the number of folds
increases depicted in Fig. 5.1. The folding transitions can be qualitatively understood
through a simple analytic model balancing the energetic benefit from increased LC align-
ment and the cost associated with the bending energy of hairpin folds. These results hold
under azimuthal symmetry but, as we will show in the following chapter, will become
unstable in favour of a tilted state.

Increasing LC Interaction Strength

...

Fig 5.1. Diagram depicting the folded states. As LC interaction strength increases the
brush collapses, first with a single fold, then two and so on.
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Fig 5.2. Diagram depicting the folded states, here we assume the polymer is perfectly
straight except in the regions where it forms a hairpin fold. The folds are assumed to be
a semi-circle with radius R and the straight portions have a length
L2 = (`c − nfπR)/(nf + 1), which, when nf ≥ 2 ignores the initial portion of length R at
s = 0. L0 is the distance from the grafting substrate to the end of the first fold, and for
sharp fold is L0 ≈ `c/(nf + 1).

5.1 Theory

5.1.1 SCFT

We begin by solving the SCFT of a worm-like polymer brush with implicit solvent and MS
interactions assuming azimuthal symmetry identically to chapter 4. In terms of numerics,
in order to resolve the sharp hairpin folds, we use a very fine grid spacing of dz = `c/3200,
ds = 1/3200 and nLP = 20.

5.1.2 Uniform Distribution Approximation

Anticipating the collapse of the brush into a backfolded phase we now present a simple
description of the transition assuming the polymers are sufficiently well aligned as to have
a uniform distribution and follow a single trajectory r(s). Through simple energetic argu-
ments we can qualitatively describe the transition and gain intuition for its behaviour.

Consider a strongly nematic polymer with nf folds, depicted in Fig. 5.2, the free energy
of this conformation can be approximated as the sum of the bending, excluded volume and
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LC interaction energies
F = UB + U0 + U2 . (5.1)

Assuming the fold is a semicircle of radius R, the bending energy, Eq. (2.1), is

UB = nf
κ

2N

∫ 1

0

ds

∣∣∣∣du(s)

ds

∣∣∣∣2 = nf
π`p

2R
. (5.2)

If the LC interactions are sufficiently strong than we can approximate the concentration
with a step profile φ(z) = (nf + 1) if z ≤ L0 ≈ `c/(nf + 1) and 0 otherwise. Within this
approximation the excluded volume energy is given by the first component of Eq. (4.12),

U0

npkBT
=

Λ0

2`c

∫
dzφ2(z) =

Λ0

2
(nf + 1) . (5.3)

Finally, if we assume the straight portions are fully uniaxial nematic (TrQ2 = 3
2
S2, S = 1)

and the bent portions have S = 0 then the LC interaction energy is, from the second
component of Eq. (4.12),

U2

npkBT
= −Λ2

2`c

∫
dzφ2(z)S2(z)

= −Λ2

2
(nf + 1)

(
1− nfπR

`c

)
.

(5.4)

The total free energy of a strongly nematic state with nf folds is then

F

npkBT
= nf

π`p

2R
− Λ2

2
(nf + 1)

(
1− Λ0

Λ2

− nfπR

`c

)
. (5.5)

Here we have two unknowns, the radius of the fold, R, and the number of folds, nf .
Minimizing with respect to the radius of the fold yields

R =

√
`p`c

Λ2(nf + 1)
. (5.6)

Substituting this into Eq. (5.5) we have

F

npkBT
=

Λ0 − Λ2

2
(nf + 1) + nfπ

√
Λ2(nf + 1)`p

`c

. (5.7)
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If we equate the energy of the nf and nf + 1 states we can find the phase transitions,

Λ0 = Λ2 − π
√

Λ2

√
(nf + 1)`p

`c

[√
(nf + 2)(nf + 1)− nf

]
. (5.8)

Note that this equation is still valid when nf = 0. Since the transition involves a discrete
jump in the number of folds it will be discontinuous.

5.2 Results

Armed with a simple model, we now investigate the full SCFT solutions. The configurations
of strongly stretched polymers in the collapsed nematic states are depicted in Fig. 5.3. The
segmental distribution is plotted as a function of both the contour position, s, and spatial
location, z, of the polymer at fixed `c/`p, Λ0 and Λ2 for one, two and three fold states. The
profile predicted by the uniform distribution approximation is overlaid as a dashed line.
At z = 0 one end (s = 0) of the polymers are grafted to a flat substrate while the other
ends (s = 1) are free. In the one fold state, Fig. 5.3(a), the polymers fold halfway along
their contour (s = 0.5) to form two aligned segments of equal length. Similarly the two,
Fig. 5.3(b), and three, Fig. 5.3(c), fold states fold at s = 1/3 and s = 1/4 to form 3 and 4
segments of equal length respectively. The high degree of nematic order is demonstrated by
the sharp localization of polymer concentration around straight paths. The profile closely
follows the black dashed line, representing a fully ordered state with semi-circular folds
with radius R given by Eq. (5.6) as depicted in Fig. 5.2.

The folds are highly localized in order to maximize the amount of nematic order. Since
the folds involve a reversal in direction, they break nematic order by turning parallel to the
grafting plane. Aligning the folds reduces the amount of broken nematic order and aligns
the parallel portions of the polymer which results in integer numbers of folds. The size of
the fold is determined by a balance between the LC interactions, isotropic interactions and
bending energies. The result of which, for our simplified model, gives a radius in Eq. (5.6)
drawn as the dashed black line. The radius of the folds appears to be consistent with those
predicted, including the decrease in radius as the number of folds increases. These hairpin
folds are relatively sharp, with the radius of the largest one shown only roughly 4.4% of
the length of the polymer. In terms of the persistence length the widest hairpin shown is
still less than 1/3 the persistence length of the polymer, with the sharpest being less than
1/7 the persistence length of the polymer. Since the folds are sub-persistence length they
have a relatively large energetic cost.
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0 0.5 1.0

Fig 5.3. Density plot of φ(z, s), with Λ0 = 10, Λ2 = 65 and `c = 4`p for (a) 1 fold, (b) 2
fold and (c) 3 fold states. Dashed line corresponds to the profile depicted in Fig. 5.2 with
radius given by Eq. (5.6) to be R/`c ≈ 0.044, 0.036 and 0.031 for 1, 2 and 3 folded states
respectively. 45



Fig 5.4. (a) Concentration, φ(z), with `c = 4`p and Λ2 = 65, for 0,1,2,3 fold states and
(b) corresponding scalar nematic order parameter S(z). Discontinuities in S(z) represent
a switch between perpendicular and parallel alignment.
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Fig 5.5. Energy density, U(z), for an extended brush of worm-like chains with `c = 4`p
and interaction strengths of Λ0 = 10 and Λ2 = 0, 25 and 50 (solid curves). For the latter
parameter combination, U(z) is plotted for a brush of folded chains (dashed curve).

The corresponding polymer concentration and scalar nematic order parameter as a
function of distance from the grafting plane, z, are plotted in Fig. 5.4 (a) and (b) respec-
tively for the zero, one, two and three fold nematic states. Each concentration profile is
step-like with a sharp peak where the folds take place and an increasing density with each
fold. As the polymers collapse, the higher density results in stronger LC interactions which
increases the amount of order, as demonstrated by an increasing order parameter S with
increasing number of folds. Where the polymer folds, S switches from parallel to perpen-
dicular alignment analogously to Fig. 4.5, where λ‖ > λ⊥. Parallel alignment is necessary
for a reversal in direction.

Fig. 5.5 illustrates the energetic advantage of the backfolded state by comparing its
interaction density, U(z), with that of the extended state. In the absence of LC interactions,
U(z) is positive for all z, and thus the extended state is favoured. However, as Λ2 becomes
sufficiently large, U(z) eventually becomes negative. Given that the energy density is
proportional to φ2(z), folding approximately doubles this energetic advantage. However,
the transition will not happen until U(z) is sufficiently large to compensate the energy cost
of folding. This has two contributions; one is the energy penalty of folding worm-like chains
and the other is the loss of nematic order in the folding region. The sharpness of the fold
is dictated by a competition between these two energy penalties; the interaction energy
favours a sharp fold while the bending energy favours a gradual fold. The transition occurs
at Λ2 = 43.3 well beyond the Λ2 ≈ 30 where U(z) first becomes negative, reflecting the
high cost of hairpin folds. Naturally, as Λ2 increases further, U(z) is able to compensate for
additional folds per chain, and thus producing a series of discontinuous folding transitions.
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Fig 5.6. (a) Concentration, φ(z), with `c = 8`p for Λ2 = 40, 45, 50 depicting the
continuous transition from disordered to one fold nematic states and (b) corresponding
scalar nematic order parameter S(z). The discontinuity of S(z) for Λ2 = 50 results from
the polymers switching from perpendicular to parallel alignment in the region of the fold.
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Maintaining a constant isotropic interaction strength, Λ0, we now investigate a more
flexible polymer `c = 8`p. Due to the increased flexibility, the brush is less ordered, folds
more readily and is not as strongly stretched. As Λ2 is increased from the disordered
(moderately stretched) state for this more flexible polymer, as demonstrated in Fig. 5.6, it
continuously deforms into the one fold state, with an increasing fraction of the polymers
folding. Beyond this we observe discontinuous transitions. The concentration profiles in (a)
depict the continuous transition from a disordered moderately stretched brush (Λ2 = 40)
to a nematically collapsed brush in the one fold state (Λ2 = 50). The disordered profile has
a relatively small fraction of polymers in the one fold state, does not exhibit the step profile
of the zero fold nematic state and has a scalar nematic order parameter significantly lower
than seen for the more rigid polymer in Fig. 5.4. This state still has an order parameter of
roughly 0.3 to 0.5 since it is moderately stretched. The intermediate state, Λ2 = 45, has a
significant fraction of the polymers in both the extended disordered state and the one fold
collapsed nematic state. The polymers in the high density nematic state have a high degree
of order, while the polymers extending past this portion are weakly ordered, as seen by the
order parameter in Fig. 5.6(b). The strength of the LC interactions is proportional to the
density of polymer; therefore, the low density regions have relatively weak LC interactions
and a lower degree of order.

This behaviour is further demonstrated by considering the polymer configurations cor-
responding to these three states plotted in Fig. 5.7. Since these polymers are more flexible
and are therefore not as strongly ordered, the segmental concentration profiles are more
diffuse than those in Fig. 5.3. For the disordered state in (a), the polymers are primarily
grouped around an extended distribution with decreasing order as they extend outwards.
For Λ2 = 45 in (b), two divergent paths occur halfway along the length of the polymers
s = 0.5. A fraction of the polymers continue to follow the extended path of the disor-
dered brush in (a) while the remainder fold into a nematically collapsed state. In (c), the
majority of the polymers have collapsed into the one fold state.

So far, we have demonstrated the existence of the zero, one, two and three fold nematic
states; however, we have yet to discuss which of these states is stable. In Fig. 5.8 we,
plot the free energies corresponding to the states in the previous figures as a function
of the LC interaction strength, Λ2, for fixed isotropic interaction strength Λ0 = 10. We
plot the free energy for (a) the more rigid polymer `c = 4`p and (b) the more flexible
`c = 8`p. In both, as Λ2 increases the free energy decreases and the states with higher
number of folds have steeper slopes since in our model there is an energetic benefit from
increased nematic alignment. Additionally, the folded states appear to have relatively
linear free energy curves. In (a), we observe clear transitions taking place sequentially
with increasing numbers of folds, and the states persist past the transition, a characteristic
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0 0.5 1.0

Fig 5.7. Density plot of φ(z, s), with Λ0 = 10 and `c = 8`p for (a) Λ2 = 40, (b) Λ2 = 45
and (c) Λ2 = 50. Dashed line corresponds to the profile depicted in Fig. 5.2 with radius
given by Eq. (5.6) to be R/`c ≈ 0.040, 0.037 and 0.035 for Λ2 = 40, 45 and 50 respectively.
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Fig 5.8. Free energy as a function of Λ2 with fixed Λ0 = 10 for (a) `c = 4`p, and (b)
`c = 8`p. Crossing points denote first-order transitions.

behaviour of a first-order transition. In (b), we observe similar behaviour; however, since
the brush does not exhibit a zero fold nematic state and transitions continuously from
disordered to one fold, we do not observe the zero to one fold transition. The continuous
transformation from disordered to one fold can be seen by the continuously decreasing
slope. All of the transitions in (b) occur at lower Λ2, because the increased flexibility
reduces the cost associated with backfolding into the collapsed states.

By following the phase boundaries between the folded states as a function of Λ0 and
Λ2 for `c = 4`p and 8`p, we construct phase diagrams in Fig. 5.9. An increase in Λ0 can be
thought of as an increase in the quality of solvent; therefore, as Λ0 increases an increasing
number of solvent molecules penetrate into the brush and force it to stretch out which
decreases the number of folds. As Λ2 is increased, the polymers gain an increased benefit
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Fig 5.9. Phase diagram in the Λ0 − Λ2 plane for (a) `c = 4`p, and (b) `c = 8`p.

from alignment which draws the polymers together, collapsing the brush and increasing the
number of folds. All the phase boundaries observed have similar slopes and are relatively
linear. Presumably, there are increasing integer numbers of folds not shown here due
to numerical difficulties resolving large numbers of folds with sharp hairpins. The phase
boundary between the zero and one fold states is not present in (b) since it continuously
transitions from disordered to one fold. All the transitions for the more flexible polymers
in (b) take place at lower values of Λ2 due to the reduced energetic penalty for folding.

The simplified model described in 5.1.2 yields simple analytic results for free energies
and phase transitions between the folded states. The free energy, Eq. 5.7, is plotted
in Fig. 5.10 as a function of Λ2 for fixed Λ0 = 10 at `c = 4`p and 8`p in (a) and (b)
respectively, to be compared with the numerical SCFT counterparts in Fig. 5.8. In both we

52



Fig 5.10. Free energy of the simplified model, Eq. (5.7), as a function Λ2 fixed Λ0 = 10
for (a) `c = 4`p, and (b) `c = 8`p.

see very similar qualitative behaviour, the free energies are decreasing in Λ2 with steeper
slopes for states with higher numbers of folds and transition sequentially through first
order transitions. The free energies from the simple model and numerical SCFT both
follow relatively linear curves. In (b) the simple model incorrectly predicts the existence
of a transition from zero to one fold, this is because the model assumes the polymers are
strongly nematic, which is not the case for the more flexible polymer for the values of Λ2

where this transition takes place. In both cases the simple model predicts transitions in a
similar parameter range to those observed from SCFT, which can be more readily observed
through the phase diagrams.

Fig. 5.11 is the phase diagram constructed from Eq. 5.8 for the zero, one, two and
three fold states with identical parameter to Fig. 5.9. As with the free energy we see
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similar qualitative behaviour: the phase boundaries are relatively linear with similar slopes
between the folded states. The main differences are the predicted values for the phase
transitions. In (a) we see that the simple model underestimates the values of Λ2 required
for the brush to fold. This could be due to the assumption that the straight portions of
the polymer are perfectly ordered (i.e., S = 1), in reality we know that it will always be
less than this, as is clearly demonstrated in Fig. 5.4(b) with values of S ≈ 0.7 for the least
ordered state. However, the underestimation does not continue for the two and three fold
states. As the number of folds increases, the assumption that the profile is flat and the
bends do not contribute to the nematic order become increasingly invalid. The profiles in
Fig. 5.4(a) have sharp peaks where the polymers fold and in (b) the order parameter is non-
zero. Despite these shortcomings, the simple model predicts transition for parameter values
that are surprisingly close to those from SCFT with very similar qualitative behaviour.

5.3 Discussion

Strong LC interactions can cause a polymer brush to collapse; however, in order to collapse
while maintaining nematic order and azimuthal symmetry the polymers must undergo rapid
reversal in direction, forming hairpin folds. Previously, the energy penalty associated with
these folds was not accounted for. In accounting for this penalty, we find that the brush is
still able to collapse; however, the transition occurs through multiple distinct folded states
with specific conformations. In order to maximize the LC alignment, the polymers fold
into segments of equal length such that the folds all take place at the boundaries of the
polymer profile demonstrated in Fig. 5.3. This maintains the largest fraction of polymer
nematically aligned between the folds while aligning the folded portions oriented parallel
to the grafting plane. The polymers closely follow the simple conformation depicted in
Fig. 5.2 represented by the dashed black line in Fig. 5.3. The radius of the fold in the
simple model, Eq. (5.6), appears to reasonably well approximate the radius of the hairpins
from numerical SCFT calculations. The simple model predicts that the radius of the fold
decreases with the number of folds. Comparing Fig. 5.3 (a), (b) and (c) the change in radius
of the dashed line is consistent with the numerical density; however, since the dependence
is relatively weak, (nf + 1)−1/2, the radius from (a) to (c) is only

√
2 ≈ 1.4 times smaller

so it is difficult to conclusively determine the validity of this dependence.

Rather than assuming a semi-circle, a more precise way to estimate the shape and
bending energy of a hairpin fold would be to minimize the bending, isotropic and LC
interaction energies with respect to the shape of the fold, similar to recent work by Chen [66]

where they minimize the energy of a hairpin, accounting just for the bending energy of a
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Fig 5.11. Phase diagram in Λ0 − Λ2 plane of the simplified model, Eq. 5.8, for (a)
`c = 4`p, and (b) `c = 8`p.
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worm-like chain, to obtain the shape and energetic cost of a hairpin. For comparison, their
bending energy is 1.43557/R (here R is half the distance between parallel segments, which
for a semi-circle is simply the radius) while that of our assumed semi-circle is π/2R ≈
1.57/R. We see identical dependence on R with similar energy costs. We can’t simply
readjust the energy and expect to be more accurate since our model has strong isotropic
and LC interactions, increased accuracy would require a full treatment of these energies as
well. Since the precise shape should not effect the qualitative behaviour, in the interest of
simplicity we maintain the assumption that the fold is a semi-circle.

Despite the approximations, the simple model appears to qualitatively describe the ne-
matic collapse of an LC polymer brush. The model allows for simple, intuitive explanations
for the collapse of the brush. The LC interactions act as an attractive potential drawing
parallel segments of the brush together. Once this attraction is strong enough to overcome
both the excluded volume from increased density and bending energy from hairpin folds,
the brush collapses. As it overcomes the energy cost from integer increases in the number
of hairpins, the brush collapses through multiple distinct folded states. The analytic free
energies in Fig. 5.10 closely resemble the corresponding numerical SCFT free energies in
Fig. 5.8. Eq. (5.7) predicts that the steepness of the free energy curves should increase
linearly with nf ; rough estimates of slopes in Fig. 5.8 point towards this being true but
more folding states would be required to accurately validate this claim. Eq. (5.8) predicts
that the phase boundaries separating the folded states (Λ0 against Λ2) will be relatively
linear for large Λ2, small `p/`c or small nf . Additionally, the analytic theory predicts the
change in Λ2 between transitions will increase with the number of folds and decrease with
`p/`c. This is demonstrated in Fig. 5.11 and is in agreement with the behaviour of the
numerical SCFT calculations in Fig. 5.9. The main shortcoming of the simple model is
that it can only describe polymers in a strongly nematic state.

Due to numerical difficulties, we were unable to explore a wide variety of flexibility,
represented by the ratio of the contour to persistence length, `c/`p, which is large for a
flexible polymer. In the weakly nematic states, we expect that the trend of the more flexible
polymer being less strongly stretched and continuously transitioning from disordered to a
folded state (Fig. 5.6, 5.7 and 5.8 (b)) to continue. For the strongly nematic state, we
turn to the analytic model to gain additional insight into the dependence on flexibility.
Eq. (5.7) predicts that the free energy is independent of the persistence length in the zero
fold state and increases as the polymer becomes more rigid as (`p/`c)

1/2 when nf > 0, with
an increased slope with increasing number of folds. Physically, a more rigid polymer has a
larger penalty from forming hairpin folds. If there are no folds there is no penalty and the
larger the number of folds the larger the cost. Eq. (5.8) predicts that the phase boundaries
of Λ0 against `c/`p decrease as −(`c/`p)

−1/2, once again with a steeper slope for states with
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more folds. When `c/`p →∞, the transitions become independent of the number of folds
and takes place at Λ0 = Λ2. The first transition, from zero to one fold, requires a negative
Λ0 when Λ2 < 2π2`p/`c, representing the limit for a backfolding state to exist in a good
solvent.

5.4 Summary

We have continued our investigation of semi-dilute main-chain LC polymer brushes in
good solvent, using SCFT for worm-like chains with MS interactions. Our study focuses
on good solvent conditions that favour an extended brush (i.e., Λ0 > 0) and LC interactions
becoming strong enough to collapse the brush (i.e., Λ2 & Λ0) for polymers ranging from
semi-flexible (i.e., `c = 8`p) to relatively rigid (i.e., `c = 4`p). In this study we consider
only azimuthally-symmetric solutions of the field Eq. (4.3).

Consistent with previous predictions, [9,10] we find that once the LC interactions are
sufficiently strong, the brush will collapse into a high density nematic state; however,
the phase that we observe is distinct from the micro-phase segregated brush predicted by
Ref. [ 26] for freely jointed chains on a lattice. We do observe a collapse to a backfolded
state, but through a series of transitions corresponding to integer numbers of folds. Due
to the bending penalty in the worm-like chain model, the LC interactions need to be
sufficiently strong to overcome the cost of forming hairpin defects, which results in a series
of discontinuous transitions with increasing LC interaction strength.

We provide a simple model assuming a uniform distribution with polymers following a
single trajectory that permits analytic calculations and qualitatively describes the transi-
tions. The trajectories of the polymers predicted by this model are in good agreement with
the most probable trajectories predicted from numerical SCFT provided the polymers are
sufficiently well ordered and show good qualitative agreement between the free energy and
phase diagrams.

The present calculations were restricted to azimuthally symmetric solutions; however,
this assumption relies on the polymer being strongly stretched and breaks down upon the
collapse of the brush. Indeed, if we break the azimuthal symmetry then backfolding is not
the only way for the brush to increase its density; it can instead tilt to gain an identical
increase in density without the cost of hairpin folds. In the following chapter we will
investigate this possibility.
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Chapter 6

Tilting Transition

Now that we have established that the brush will indeed collapse under strong LC inter-
actions, we continue studying SCFT of worm-like polymer brushes but allow for the pos-
sibility of tilting through broken azimuthal symmetry. We continue to focus on the phase
behaviour in the strongly stretched regime. So long as the brush is strongly stretched,
the assumption that the polymers align perpendicular to the grafting plane made in all
the previous studies is true; however, in the collapsed state this is no longer the case.
Upon breaking azimuthal symmetry, we find that the backfolded configurations are unsta-
ble and pre-empted by a tilted nematic phase. Schematic diagram of the phases is shown
in Fig. 6.1.

Increasing LC Interaction Strength
Fig 6.1. Diagram depicting the transition to a tilted brush. As LC interaction strength
increases the brush extends into a nematic phase before collapsing into a tilted nematic
brush.
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6.1 Theory

6.1.1 SCFT

Once again the theory is identical to Chapter 4; however, we now allow for azimuthally
asymmetric solutions. This requires the full numerical treatment in terms of spherical
harmonics described in Appendix A. We continue to graft the polymer with a strongly
peaked Gaussian, g(z) = exp[−(z/ξ)2], where ξ = `c/32. For all calculations, we use a grid
spacing of ∆z = `c/800, ∆s = 1/800 and spherical harmonics of up to degree 10.

6.1.2 Uniform Distribution Approximation

In the same spirit as Chapter 5, we begin by developing a simplified model that will give a
qualitative description of the transition. If the polymers are strongly nematic, then we can
assume the the distribution will be uniform. We expect this approximation to be valid for
rigid polymers. Within the semi-dilute approximation (implicit-solvent model), the free
energy is identical to the model for backfolding, Eq. (5.1), with no bending energy and
a concentration φ ∼ 1/ cos(θn); however, it becomes immediately evident that without a
cost associated with increasing the density (previously from folding) the transition will be
an instability. In reality, once the brush collapses by tilting the semi-dilute approximation
breaks down and it becomes necessary to explicitly account for the solvent molecules, as
discussed in Chapter 2. Due to the added parameters and computational difficulty full
SCFT calculations with explicit solvent are beyond the scope of this thesis. Although the
numerical calculations are restricted to an implicit solvent model, in the uniform distribu-
tion approximation we can treat the solvent interactions explicitly and then take the limit
of low grafting density for comparison.

The free energy of LC polymer brush can be approximated as the sum of polymer-
solvent interactions, LC interactions and solvent entropy

F = Ups + U2 − TSs , (6.1)

respectively. Assuming an incompressible mixture, the solvent concentration, φs, can be
expressed in terms of the polymer concentration as

φs(z) = 1− Σφ(z) , (6.2)

where we have defined the scaled grafting density

Σ ≡ σ

bρ0

. (6.3)
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This allows us express all quantities in terms of the polymer concentration. The polymer-
solvent interactions are represented by the standard pairwise potential, Eq. (2.12),

Ups

npkBT
=

χ

α`c

∫ ∞
0

dzφ(z)φs(z)

= −χΣ

α`c

∫ ∞
0

dzφ2(z) +
χ

α
,

(6.4)

with α ≡ vsρ0/N the ratio of solvent to polymer size. The constant χ/α will not have any
effect and will be dropped in all future expressions. The LC interaction energy is identical
to the implicit solvent model

U2

npkBT
= −Λ2

3`c

∫ ∞
0

dzφ2(z)TrQ2(z) . (6.5)

Finally, the solvent entropy is

Ss

npkB

= − 1

vsnp

∫
drφs(z) lnφs(z)

= − 1

αΣ`c

∫ ∞
0

dz(1− Σφ(z)) ln(1− Σφ(z)) ,

(6.6)

where we recall np = σA. The free energy per polymer is then

F

npkBT
=

1

`c

∫ ∞
0

dz

[
−χΣ

α
φ2(z)− Λ2

3
φ2(z)TrQ2(z) +

1

αΣ
(1− Σφ(z)) ln(1− Σφ(z))

]
.

(6.7)
In the limit of low polymer concentration Σφ(z)� 1, the free energy is (Taylor expanding
the logarithmic term to third order)

F

npkBT
≈ 1

`c

∫ ∞
0

dz

[
−φ(z)

α
+

(
Λ0 −

Λ2

3
TrQ2(z)

)
φ2(z) +

Σ2

6α
φ3(z)

]
(6.8)

where we recall Λ0 = Σ
α

(1− 2χ).

Assuming a fully uniaxial nematic (TrQ2 = 3
2
S2 and S = 1) step profile φ(z) = φ, if

z ≤ `c/φ and φ(z) = 0 otherwise with φ the (constant) polymer concentration at position
z, the free energy becomes

F

npkBT
= −α(Λ2 − Λ0) + Σ

2α
φ+

(1− Σφ)

αΣφ
ln(1− Σφ)

≈ − 1

α
− Λ2 − Λ0

2
φ+

Σ2

6α
φ2 ,

(6.9)

60



where we have replaced χ with Λ0 using Λ0 = Σ
α

(1 − 2χ) and the second line is in the
low Σ limit. This function is minimized at φ = −∞ provided the first term is positive;
however, since we have a fixed total concentration of polymer the free energy is minimized
at the minimum concentration φ = 1, i.e. the extended state. When the first term becomes
negative a new minima appears, which becomes the global minimum when

Λc
2 = Λ0 −

Σ

α
− 2

α

[
ln (1− Σ)

Σ
+ 1

]
≈ Λ0 +

2Σ2

3α
.

(6.10)

In the implicit solvent model the term involving Σ2 is assumed to be negligible which leads
to a transition at Λc

2 = Λ0, and in this case the transition is an instability that causes the
concentration to diverge.

Eq. (6.10) is the critical LC interaction strength that causes the brush to collapse into
a high density nematic state. Previously, it was believed this collapse would form through
backfolding which increases the density of the nematic state; however, in order to maintain
nematic order backfolding results in hairpin folds which take place over short length scales
(sub-persistence length) resulting in a non negligible energetic costs for even the most
flexible polymers. In order for the brush to collapse it is not necessary for it to backfold,
the nematic director can instead tilt at an angle θn relative to the z axis which results
in the same increase in density without the cost of hairpin defects. The transition from
moderately stretched, to strongly stretched nematic and finally to a tilted state is depicted
in Fig. 6.1.

The tilted configuration corresponds to a concentration φ = 1/ cos(θn). Minimizing
with respect to θn yields two solutions: θn = 0 and

Λ2 = Λ0 −
Σ

α
− 2

α

[
cos2(θn)

Σ
ln

(
1− Σ

cos(θn)

)
+ cos(θn)

]
, (6.11)

which becomes a global minimum when Eq. (6.10) is satisfied. In the limit of low grafting
density we can explicitly solve for the tilt angle

cos(θn) =
2Σ2

3α(Λ2 − Λ0)
. (6.12)

Eq. (6.12) has two solutions, symmetric positive and negative tilt angles. After reaching
the spinodal a transitions corresponding to a spontaneously broken symmetry occurs and
the tilt angle of the brush continuously increases with Λ2 until it reaches melt density
cos(θn) = Σ.
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Fig 6.2. Free energy, F , as a function of Λ2 for the extended and folded phases,
corresponding to Λ0 = 10 and `c = 4`c. Dots denote the locations of a first-order folding
transition and the spinodal, where the extended phase becomes unstable with respect to
tilting.

6.2 Results

To validate that the tilted phase is indeed preferred over the backfolded state in the full
SCFT calculation, we begin by considering the extended to single fold transition presented
in Chapter 5. Therefore we begin by maintaining the assumption of azimuthal symmetry.
Since the isotropic and LC interactions enter Eq. (4.12) with opposite signs, they compete
against each other. Positive Λ0 favours low φ(z) (i.e., extended brushes) while positive
Λ2 favours high φ(z) (i.e., collapsed brushes). In order to determine which state is the
stable phase, we compare their free energies in Fig. 6.2. As the LC interaction strength
is increased, the free energy of the backfolded state crosses the extended state. It is thus
a discontinuous or first-order transition. However, folding is not the most efficient way to
increase the polymer density. The most effective way of increasing φ(z) is for the polymers
to tilt, since this avoids the energy penalty associated with folds. However, like most
calculations, this is prevented by our assumption of azimuthal symmetry. Our symmetric
self-consistent fields, w0(z, uz), only depend on uz = cos θ because we restrict our expansion
in spherical harmonics, Ylm(θ, ϕ), to m = 0.

To determine the spinodal of the extended state, where it becomes unstable with respect
to tilting, we evaluate the Jacobian,

JII′ = δII′ −
∫
du′′G(u,u′′)

Dφ(z,u′′)

Dw(z′,u′)
(6.13)
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0.0 0.5 1.0

Fig 6.3. Density plots of the concentration, φ(z, s), for (a) the azimuthal symmetric
field, w0(z, uz), and (b) the symmetrically broken field, w0(z, uz) + 2δw(z,u), calculated
for `c = 4`p, Λ0 = 10 and Λ2 = 28. In both the dashed line follows the most probable
unperturbed (c = 0) path for comparison. (c) Tilt angle of the director as a function of
distance from the grafting surface for different levels of broken symmetry.

63



of the field, Eq. (4.3). Here, the index I ≡ {z,u} is shorthand notation for the arguments
of w(z,u) and φ(z,u). The functional derivative inside the integral is the change in the
polymer distribution at z and u′′ due to a small change in the field at z′ and u′, which
we evaluate numerically. In practice, we expand all functions in spherical harmonics and
so the indices of the Jacobian actually represent I ≡ {z, l,m}. Since we are interested in
knowing the azimuthal symmetry is broken, we evaluate the Jacobian for the symmetric
field solution, w0(z, uz). The solution is stable if all the eigenvalues of JII′ are positive,
and it becomes unstable at the point where an eigenvalue of zero occurs. The dot in Fig.
6.2 denotes the point, Λ2 ≈ 28, where the extended state become unstable with respect to
tilting. As expected, this instability pre-empts the folding transition.

To confirm that the instability does indeed correspond to tilting, we can examine an
eigenvector, δw(z,u), corresponding to the zero eigenvalue. Note that the zero eigenvector
is degenerate because the chains can tilt in any azimuthal direction; we select the eigen-
vector corresponding to a tilt in the ϕ = 0 direction. The fact that its corresponding
eigenvalue is zero implies that

w(z,u) = w0(z, uz) + cδw(z,u) (6.14)

remains an approximate solution to the field equation for small c.

The tilt can be inferred by examining the distribution φ(z, s) for the s’th segment of
the polymer. Fig. 6.3 plots φ(z, s) for the symmetric and asymmetric fields corresponding
to c = 0 and c = 2, respectively. For the symmetric field in plot (a), the most probable
location of the s’th segment reaches a height of z ≈ 0.8`c. However, for the asymmetric
field, the polymers do not reach the same height since they are tilted. For a uniform tilt,
the height would be reduced by a factor cos(θn). Another way of inferring the tilt is to
diagonalize the Qij(z) tensor to obtain the nematic director, n(z). Fig. 6.3(c) shows the
tilt of the director, θn(z). Once the symmetry is broken (i.e., c > 0), the angle decreases
continuously as the polymers move away from the grafting plane. Furthermore, adding a
larger amount of the eigenvector, δw(z,u), to the symmetric solution, w0(z, uz), increases
the amount of tilt.

The diagonalizing Qij(z) also provides the uniaxial, S(z), and biaxial, P(z), order
parameters plotted in Fig. 6.4. The polymer concentration, φ(z), increases as the chains
tilt, which in turn enhances the level of LC order as evident by the increase in S(z). The
tilt of the director relative to the grafting surface breaks the rotational symmetry about n,
which induces a small degree of biaxiality into the brush. The increase of both S(z) and
P(z) reduces the interaction energy as illustrated in Fig. 6.4(c). The reduction in energy
continues monotonically as c increases, and thus the tilt angle will jump all the way to 90◦

64



Fig 6.4. (a) Uniaxial order parameter, (b) biaxial order parameter, and (c) energy
density corresponding to self-consistent fields, Eq. (6.14), with different levels of broken
symmetry, calculated for `c = 4`p, Λ0 = 10 and Λ2 = 27.8.
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Fig 6.5. Phase diagram showing the boundary between extended and tilted brushes,
calculated for polymers of different flexibility. The dotted line, Λ2 = Λ0, denotes the
minimum LC interactions required before tilting can possibly occur.

as soon as the spinodal is crossed. As we discussed previously, this unphysical behaviour
is a limitation of the semi-dilute approximation for the solvent entropy. If we include the
cubic term in Ss, the spinodal will coincide with a second-order transition, beyond which
the equilibrium tilt angle evolve continuously away from 0◦ as Λ2 is increases.

Although the current model is insufficient to determine the equilibrium properties of
the tilted phase, all we need is its boundary in order to calculate a phase diagram as
depicted in Fig. 6.5. As mentioned previously, the more flexible polymer, `c = 16`p, is not
as well ordered and therefore requires stronger LC interaction strength, Λ2, to overcome
the excluded volume interactions, Λ0. As we will show in Section 6.3, once the polymers
become perfectly ordered we expect them approach the limit Λ0 = Λ2 (Eq. (6.10) assuming
the Σ2 term is negligible), plotted as a dotted line in Fig. 6.5. In reality there will always
be a deviation due to the depletion layer in the proximity of the grafting plane.

The phase transition for the two more rigid polymers, `c = `p and 4`p, increases rel-
atively linearly while the most flexible `c = 16`p has an increasing slope for small values
of Λ0. The transition occurs when the LC interactions overcome the isotropic, ie. when
Λ0 ∼ S2Λ2 (P ≈ 0). Once the polymers are strongly ordered, the order parameter, S, in-
creases relatively slowly with Λ0 and Λ2, so S is roughly constant and the phase transition
increases linearly with Λ2. The most flexible polymer is not well ordered when Λ0 is small
and S increases rapidly resulting in an increasing slope Λ0/Λ2 ∼ S2. When Λ2 is large S
becomes roughly constant and the phase transition increases linearly.

Although the tilting instability pre-empts the folding transition, Fig. 6.6(a) shows a
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(b)

(a)

0.00 0.25 0.50

Fig 6.6. (a) Concentration profile, φ(z), and (b) s-segment distribution, φ(z, s), for an
extended brush of relatively flexible polymers just prior to the tilting transition; Λ0 = 20,
Λ2 = 71 and `c = 16`p.

67



Fig 6.7. Free energy assuming a uniform distribution, Eq. (6.9), as a function of Λ2 for
multiple Σ = 0.1, 0.2, 0.4, fixed Λ0 = 10 and α = 0.01.

concentration profile for our most flexible polymer, `c = 16`p, just prior to the tilting
transition that is reminiscent of the microphase segregated brushes predicted by Birshtein
and co-workers. Although the effect is not nearly as pronounced, the inner half of the
brush, 0 . z . 0.4`c, exhibits a polymer concentration that is distinctly higher than that
of the outer region, 0.4`c . z . 0.8`c. The concentration distributions, φ(z, s), plotted in
Fig. 6.6(b) illustrates that this results due to a small equilibrium population of backfolded
chains among the extended chains. Evidently, the entropy gain by having two distinct
populations is enough to compensate for the bending penalty of a few chains, provided the
chains are not too stiff.

To explore the effects of grafting density we turn to the simplified model presented
in 6.1.2. In Fig. 6.7 we plot the free energy as a function of Λ2 for increasing grafting
density. In all cases, after the spinodal (denoted by a dot), the concentration continuously
increases until it reaches the melt density at an angle cos(θn) = Σ, which can be observed
by the free energy asymptoting to the free energy of a tilted melt brush represented by
a dashed line. For low grafting density the tilt angle increases rapidly in Λ2 as described
approximately by Eq. 6.12 while for larger values of grafting density the increase is more
gradual. Additionally, an increase in grafting density shifts the spinodal to higher values
of Λ2. This effect is further demonstrated in the phase diagram in Fig. 6.8, where the
phase boundaries follow Eq. (6.10). For small values of Σ = 0.1 or 0.2 the shift is relatively
small; however, this shift increases rapidly as Σ is further increased to 0.4 and as Σ → 1
the transition shifts to Λ2 → ∞. As the density increases the entropy of mixing the few
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Fig 6.8. Phase diagram in Λ0-Λ2 plane for multiple Σ = 0.1, 0.2, 0.4 and fixed α = 0.01.
The solution in the limit of low grafting density, Λ0 = Λ2, is plotted as a dotted line.

remaining solvent molecules dominates and the concentration only ever asymptotically
approaches melt density.

6.3 Discussion

Within the implicit solvent model the transition is an instability; however, it is well known
that the semi-dilute approximation breaks down in the poor solvent regime. [77] Beyond the
semi-dilute approximation higher order corrections to the solvent entropy will limit the
degree of tilting. Prior to tilting the configuration is symmetric about positive or negative
tilt angles θn as well as rotations about the azimuthal angle ϕn, so the transition results
in spontaneously broken symmetry in the angles relative to the z axis.

Eq. (6.10) implies that inclusion of Σ2 and higher terms push the tilting instability in
Fig. 6.5 towards slightly larger Λ2 as shown in Fig. 6.8. We can also qualitatively account
for the effect of a reduced average order parameter (i.e., S < 1) by making the substitution
Λ2 → Λ2S2. This simply pushes the spinodal to larger Λ2 by a factor of S−2, which is
indeed qualitatively consistent with our phase diagram in Fig. 6.5. Furthermore, we can
account for the fact that tilting increases the nematic order, as illustrated in Fig. 6.4(a).
In this case, it is better to follow the more conventional Landau expansion of F in even
powers of θn. (Note that odd powers are excluded due to the symmetry between positive
and negative tilts.) In this spirit, the angular dependence of the nematic order parameter
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takes the form S2 ≈ S2
0 + C

2
θ2
n, where C > 0. Expanding the free energy in the uniform

distribution approximation, Eq. (6.9), about θn = 0,

∆F

nkBT
≈ A

2

(
1− Λ2

Λc
2

)
θ2
n +

B

4
θ4
n , (6.15)

where ∆F ≡ F −F0 is the free energy relative to the θn = 0 configurations. In general the
specific form of A and B is unimportant beyond their sign, but in the limit of low grafting
density they are:

A =
S2

0 + C

2Λc
2

and B =
5Λc

2

12

(
1− Λ2

Λc
2

+
2Σ2 − αCΛ2

5α
(
Λ0 + 2Σ2

3α

)) , (6.16)

with a shifted critical point Λc
2 = (Λ0 + 2Σ2

3α
)/(S2

0 + C). For small C, the only significant
change is a shift in the spinodal to smaller Λ2, which is obtained by equating the θ2

n

coefficient to zero. However, if C becomes sufficiently large, C > 2Σ2/(αΛc
2), the θ4

n

coefficient becomes negative, which implies a first-order transition. Note that the coefficient
of the θ6

n term (not shown) is still positive when this occurs. Thus, for small Λ0 or large
`c/`p, we expect the spinodal to be pre-empted by a discontinuous tilting transition.

In light of our findings, there are a considerable number of previous studies that need
to be reconsidered, specifically those where strong LC interactions cause the brush to
collapse by the way of chain folding. In such cases, it is essential to account for the penalty
of hairpin folds and to allow the nematic director, n, the freedom to tilt. It is likely the
phase behavior predicted in studies that fail to do so will be replaced by more stable tilted
phases. This includes, for example, the much discussed microphase-segregated brushes
(MSB). [26,62,63,35,36] Fig. 6.6 does provide some indication that the MSB might emerge prior
to the tilting instability for sufficiently flexible polymers. However, this is the situation
where the tilting transition may become first order, in which case it will also pre-empt the
spinodal and thus possibly also the MSB.

Investigating the switch of the tilting transition from continuous to discontinuous with
SCFT will be challenging. As we pointed out, one would have to forego the semi-dilute ap-
proximation, which would increase the parameter space of the model. If one just included
the cubic term for Ss, then there would only be the one additional system parameter,
NΣ2/vsρ0, from Eq. (6.9). However, this approximation would also breakdown at high
concentrations, and so it would probably be necessary to include the full expression for Ss.
In this case the number of system parameters would increase to five: the scaled isotropic
interaction parameter, ν0N , the scaled LC interaction parameter, ν2N , the polymer flexi-
bility, `c/`p, the dimensionless grafting density, σ/bρ0, and the size of the polymer relative
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to the solvent, N/vsρ0. In addition to the extraordinarily large parameter space, the nu-
merics of solving the self-consistent field, w(z,u), for a tilted phase would be demanding.
When Tang et al., [76] were confronted with this problem, they resorted to solving the sta-
tistical mechanics of the single worm-like chain in w(z,u) using Monte Carlo simulations.
However, this can likely be overcome with improved numerical methods for solving the
diffusion Eq. (4.6). [83]

The previous study of worm-like polymer brushes by Deng et al. [21] did constrain the
orientation of n, but Onsager interactions, f(u,u′) = ε|u× u′|, [6,77] are not strong enough
to cause the brush to collapse. It can be shown that Onsager interactions are, to leading
order in anisotropic interactions, equivalent to setting a fixed ratio ν2 = 5

8
ν0, [84] which

according Fig. 6.5 puts the system well in the extended brush regime. This can be phys-
ically understood by noting that the interactions are original entirely from the repulsive
excluded-volume interactions between cylindrically shaped polymers, and thus the system
always favours low density. One shortcoming of the Onsager interaction, however, is that it
overlooks the attractive interactions (e.g., van der Waals forces). The MS approach, on the
other hand, represents a general expansion of all the interactions truncated at leading order
in anisotropic interactions, and therefore applies to a wider class of polymers. More impor-
tantly though, the Onsager approach overlook interactions involving the solvent molecules
as well as the solvent entropy, Ss, both of which contribute to the excluded-volume param-
eter, ν0. This is of no consequence in bulk phases, because φ(z) is uniform and thus the
value of ν0 has no impact. However, this is not the case for polymer brushes, and thus it
is inappropriate to just use Onsager interactions.

The advantage of the present SCFT approach with the worm-like chain model is its
considerable versatility. For instance, the interaction can be extended to include any type
of orientational interaction as well as allowing for a finite range to the interactions by
using a more general G(|r − r′|,u,u′) in Eq. (4.4). The grafting function, g(z,u), can
also be readily selected to include any desired dependence on the orientation of the grafted
segment (s = 0). [8] In reality, main-chain LCs often involve rigid mesogenic segments
joined together by relatively flexible linkers. This can be modeled by simply allowing the
bending modulus, κ, to alternate as a function of s between a finite value for the linkers
and infinity for the mesogens. [8] It is also straightforward to allow distinct interactions for
the linkers and the mesogens. The SCFT can readily handle branched architectures, and
therefore the calculation can also be extended to side-chain LCs. [51,52,53,54] In this case, it
would be important to include a bending energy between the mesogen side-chains and the
relatively flexible backbone, in order to couple the orientation of the backbone with that
of the mesogens. Furthermore, the simple solvent molecules could readily be replaced by
LC molecules. Provided that the grafting density is sufficient that the fields only depends
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on z (i.e, the system is in the brush vs mushroom regime), the computational cost of
these extensions is not that much. Nevertheless, these extensions will greatly increase the
number of system parameters.

6.4 Summary

We have investigated semi-dilute main-chain LC polymer brushes in good solvent, using
SCFT for worm-like chains with MS interactions. The calculation assumes sufficient overlap
among the polymers such that the brush has no lateral structure (i.e., no dependence on
x and y), but a small enough polymer concentration such that the solvent can be treated
implicitly. Under these assumptions, the grafting density and solvent size can be scaled out
of the problem, reducing the number of system parameters to three: the scaled isotropic
interaction strength Λ0, the scaled anisotropic LC interaction strength Λ2, and the number
of persistence lengths per chain `c/`p. Our study focuses on good solvent conditions that
favour an extended brush (i.e., Λ0 > 0) and LC interactions becoming strong enough to
collapse the brush (i.e., Λ2 & Λ0) for polymers ranging from semi-flexible (i.e., `c = 16`p)
to relatively rigid (i.e., `c = `p).

The study begins by considering azimuthally-symmetric solutions, w0(z, uz), of the
field Eq. (4.3). Under this constraint, the extended brush collapses by a series of first-
order folding transitions, as the LC interaction become strong enough to compensate for
an increasing number of folds per chains. However, these transitions overlook the fact
that the brush can increase its concentration without the cost of hairpin folds, by instead
tilting. Indeed, when the constraint is relaxed, the extended brush becomes unstable with
respect to tilting prior to the folding transitions. Within the semi-dilute approximation,
the brush concentration increases indefinitely, and thus it becomes necessary treat the
solvent entropy, Eq. (6.6), more accurately. Doing so will result in a second-order tilting
transition coinciding with the spinodal that likely switches to a first-order tilting transition
pre-empting the spinodal, as the polymers become increasingly flexible.

In light of our new findings, it would be prudent to reconsider previous studies that
omitted the penalty for hairpin folds and/or assumed a nematic director normal to the
grafting surface. Although the SCFT for worm-like chains will become considerably com-
putational for tilted phases, it should be manageable provided the lateral symmetry is
retained. The reward of using this approach is its remarkable versatility. Generalization,
for example, to multicomponent brushes, orientationally-dependent grafting conditions,
and LC solvents are trivial. The approach can even be extended, with relatively little ad-
ditional cost, to more elaborate architectures such as main-chain LC polymers consisting of
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rigid mesogens connected by semi-flexible segments or side-chain LC polymers consisting
of a semiflexible backbone with mesogen side-groups. Thus, the SCFT for worm-like chains
should be able to handle most of the systems that experimentalists are likely to study.
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Chapter 7

Conclusion and Outlook

Using SCFT of the worm-like chain model, with implicit solvent and MS type LC inter-
actions, we have investigated the equilibrium phase behaviour of an LC polymer brush,
taking into account polymer rigidity and breaking azimuthal symmetry. We first focus on
the extended state in Chapter 4. Comparing the solution for flexible worm-like chains to
the classical SST of Milner, Witten and Cates [15] we show that for strong stretching there
is good agreement provided the classical brush height, L, satisfies 2R0 . L . 1

4
`c and is

flexible `c � `p. The deviations for flexible chains such as the depletion layer near the
grafting plane and exponentially decaying tail are consistent with numerical SCFT of Gaus-
sian chains. [17] Once the brush height approaches the contour length of the polymer, the
Gaussian chain model is no longer valid and significantly over estimates the brush height.
For worm-like chains, we find that in this limit the brush approaches a step profile with
all the ends concentrated at the outer edge of the brush, analogous to the Alexander-de
Gennes approximation consistent with previous SCFT calculations for worm-like chains. [21]

For brushes ranging from semi-flexible to rigid, SST is never valid and it will always be
necessary to use a semi-flexible model. This is further exacerbated once we incorporate
LC interactions. As LC interactions are increased, the brush continuously transforms into
a nematic state with the polymers aligned along the axis normal to the grafting plane,
consistent with previous calculations involving Onsager interactions. [21]

In the extended state, the brush aligns normal to the grafting plane, implying azimuthal
symmetry. In Chapter 5, we study the nematic collapse of an LC polymer brush maintain-
ing azimuthal symmetry. Under these conditions, we find that for strong LC interactions
the brush collapses through a number of distinct, first order, backfolding transitions. In
order to increase the density of the nematic state, the brush folds first in half, then thirds,
fourths, and so on. We provide a simple analytic model, assuming a uniform distribution,
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which predicts these transitions and yields excellent qualitative agreement with numerical
SCFT, even accurately reproducing the most probable configurations of the folded states.
In reality, however, the polymer brush is not necessarily azimuthally symmetric. The as-
sumption is based on the brush being strongly stretched, which is not always the case in
the collapsed state, which leads us to the main result of this thesis.

In Chapter 6, we break the azimuthal symmetry and show that the backfolded states
are no longer stable, and are pre-empted by a tilting transition. In order to increase the
density of the nematic state, it is not necessary for the brush to backfold, but it can instead
tilt. This achieves an identical increase in concentration without the energy cost of forming
hairpin defects and will therefore always be the preferred configuration of a semi-flexible
polymer brush in the nematically collapsed state. Within the implicit solvent model, the
transition to a tilted brush is an instability, which will become continuous once the semi-
dilute approximation is relaxed. We predict this transition to be a continuous symmetry
breaking transition provided the polymers are sufficiently rigid.

There are three mains lessons gained from the current study. First, we stress the impor-
tance of careful treatment of the molecular interactions, specifically the proper treatment
of solvent molecules and LC interactions. For an extended configuration, the implicit sol-
vent model offers a convenient simplification; however, it breaks down in the collapsed
state. Whether the solvent is treated implicitly or explicitly the polymer solvent interac-
tions should be carefully accounted for. For LC interactions the MS form is more general
than Onsager interactions. The Onsager form is most valid in the melt phase, where no
solvent molecules are present, and we have shown that even in this case the MS theory
gives not only identical qualitative behaviour but similar quantitative description. For the
specific case of a polymer brush, Onsager interactions do not properly treat the solvent
molecules and miss qualitatively distinct behaviour, the collapse of the brush under strong
LC interactions.

Secondly, accounting for the bending energy penalty through the worm-like chain model
has dramatically changed the qualitative behaviour of the LC collapse of a polymer brush
as compared to the freely jointed chain model. To the best of our knowledge, all previous
calculations and simulations investigating the nematic collapse of a polymer brush used
some variant of the freely jointed chain model, which gave rise to backfolded conformations.
These previous studies need to be re-evaluated in this new light.

Finally, the previous studies assumed the polymers align perpendicular to the grafting
plane, which is generally true for a strongly stretched brush, but breaks down once the
brush collapses. We stress the importance of critically examining this assumption when
investigating the LC properties of a polymer brush. It is likely that once this assumption
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is relaxed previously discussed collapsed phases, such as the MSB, may become unstable
in favour of tilted configurations.

Keeping these lessons in mind, this model can easily be extended to describe many
different models of LC polymer brushes. For example, many main chain LC polymers
consists of flexible and rigid segments grafted together. By varying the rigidity of the
polymer along the backbone κ → κ(s) this model can easily be adapted to flexible-rigid
multi blocks. Additionally, by grafting polymers to the backbone this model can be adapted
to describe side-chain LC polymers.

One motivation for this work was to investigate the ability of polymer brushes to
induce local orientational alignment to LC solvent molecules. Now that we have a good
description of the equilibrium phase behaviour of an LC polymer brush immersed in a
simple solvent our model can readily be extended to replace the solvent molecules with LC
or LC polymers. The LC molecules could be treated as rigid rods, while polymers would
be treated as worm-like chains, identical to the brush molecules. In either case at least one
additional parameter would be required.
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[72] N. Saitô, K. Takahashi, and Y. Yunoki. The statistical mechanical theory of stiff
chains. J. Phys. Soc. Jpn., 22(1):219–226, 1967.

[73] A. A. Polotsky and T. M. Birshtein. Normal and lateral deformation of lyotropically
ordered polymer brush. Macromol. Theory Simul., 15(9):654–667, 2006.

[74] A. Milchev and K. Binder. Bending or buckling: Compression-induced phase transi-
tion in a semi-flexible polymer brush. EPL, 102(5):58003, 2013.

[75] A. Milchev and K. Binder. Unconventional ordering behavior of semi-flexible poly-
mers in dense brushes under compression. Soft Matter, 10(21):3783–3797, 2014.

[76] J. Tang, X. Zhang, and D. Yan. Compression induced phase transition of nematic
brush: A mean-field theory study. The Journal of chemical physics, 143(20):204903,
2015.

[77] G. Fredrickson. The Equilibrium Theory of Inhomogeneous Polymers. Oxford Uni-
versity Press, 2006.

[78] K. C. Daoulas, D. N. Theodorou, V. A. Harmandaris, N. C. Karayiannis, and V. G.
Mavrantzas. Self-consistent-field study of compressible semiflexible melts adsorbed
on a solid substrate and comparison with atomistic simulations. Macromolecules,
38(16):7134–7149, 2005.

[79] M. W. Matsen. Melts of semiflexible diblock copolymer. J. Chem. Phys.,
104(19):7758–7764, 1996.

[80] P. G. De Gennes and J Prost. The physics of liquid crystals, 2nd edn. Clarendon,
volume 93. Oxford University Press, 1993.

[81] D. C. Morse and G. H. Fredrickson. Semiflexible polymers near interfaces. Phys.
Rev. Lett., 73:3235–3238, 1994.

[82] Y. Jiang and J. Z. Y. Chen. Isotropic-nematic interface in a lyotropic system of
wormlike chains with the Onsager interaction. Macromolecules, 43(24):10668–10678,
2010.

83



[83] A. F. Hannon, R J. Kline, and D. DeLongchamp. Advancing the computational
methodology of rigid rod and semiflexible polymer systems: A new solution to
the wormlike chain model with rod-coil copolymer calculations. J. Polym. Sci. B,
57(1):29–39, 2019.

[84] S. M. Cui, O. Akcakir, and J. Z. Y. Chen. Isotropic-nematic interface of liquid-
crystalline polymers. Phys. Rev. E, 51:4548–4557, 1995.

[85] T. M. Birshtein, A. A. Mercurieva, L. I. Klushin, and A. A. Polotsky. Liquid-
crystalline polymer brushes: deformation and microphase segregation. Comput.
Theor. Polym. Sci., 8(1):179 – 189, 1998.

[86] L. I. Klushin, T. M. Birshtein, and A. A. Mercurieva. Microphase segregation in
bridging polymeric brushes: Regular and singular phase diagrams. Macromol. Theory
Simul., 7(5):483–495, 1998.

[87] T. M. Birshtein and V. M. Amoskov. Homeotropic and planar structures in liquid-
crystalline polymer brushes. Comput. Theor. Polym. Sci., 10(1):159 – 163, 2000.

[88] V. M. Amoskov and T. M. Birshtein. Polydisperse anisotropic brushes. Macro-
molecules, 34(15):5331–5341, 2001.

[89] L. I. Klushin, T. M. Birshtein, and V. M. Amoskov. Microphase coexistence in
brushes. Macromolecules, 34(26):9156–9167, 2001.

[90] T. M. Birshtein, V. M. Amoskov, L. I. Klushin, A. A. Mercurieva, A. A. Polotsky,
and P. A. Iakovlev. Microphase coexistence in polymeric brushes. Macromol. Symp.,
191(1):51–58, 2003.

[91] T. Odijk. Theory of lyotropic polymer liquid crystals. Macromolecules, 19(9):2313–
2329, 1986.

[92] A. R. Khokhlov and A. N. Semenov. Liquid-crystalline ordering in the solution of
long persistent chains. Physica A, 108(2):546 – 556, 1981.

[93] J. Z. Y. Chen. Nematic ordering in semiflexible polymer chains. Macromolecules,
26(13):3419–3423, 1993.

[94] S. Blaber, P. Mahmoudi, R. K. W. Spencer, and M. W. Matsen. Effect of chain
stiffness on the entropic segregation of chain ends to the surface of a polymer melt.
J. Chem. Phys., 150(1):014904, 2019.

84



[95] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM,
12(4):547–560, 1965.

[96] Y. Jiang, X. Zhang, B. Miao, and D. Yan. The study of the structure factor of a
wormlike chain in an orientational external field. J. Chem. Phys., 142(15):154901,
2015.

[97] B. Zdyrko and I. Luzinov. Polymer brushes by the “grafting to” method. Macromol.
Rapid Commun., 32(12):859–869, 2011.

[98] H. H. H. Homeier and E.O. Steinborn. Some properties of the coupling coefficients
of real spherical harmonics and their relation to gaunt coefficients. J. Mol. Struct.:
THEOCHEM, 368:31 – 37, 1996.

[99] A. J Liu and G. H Fredrickson. Free energy functionals for semiflexible polymer
solutions and blends. Macromolecules, 26(11):2817–2824, 1993.

[100] S. Cheng, M. J. Stevens, and G. S. Grest. Ordering nanoparticles with polymer
brushes. J. Chem. Phys., 147(22):224901, 2017.

[101] D. Zhang, Y. Jiang, X. Wen, and L. Zhang. Phase separation and crystallization
of binary nanoparticles induced by polymer brushes. Soft Matter, 9(6):1789–1797,
2013.

[102] D. Zhang, Y. Jin, J. Cheng, Y. Jiang, L. He, and L. Zhang. Self-assembly of
nanorod/nanoparticle mixtures in polymer brushes. J. Polym. Sci. B, 52(4):299–
309, 2014.

[103] Y. Hua, D. Zhang, and L. Zhang. Compression-driven migration of nanoparticles in
semiflexible polymer brushes. Polymer, 83:67–76, 2016.

[104] R. B. Thompson, K. Ø. Rasmussen, and T. Lookman. Improved convergence in
block copolymer self-consistent field theory by Anderson mixing. J. Chem. Phys.,
120(1):31–34, 2004.

85



APPENDICES

86



Appendix A

Numerical Method

In this chapter we present the numerical scheme used for solving the SCFT of a worm-
like polymer brush interacting with an implicit solvent and MS type LC interactions. To
solve the worm-like chain equation we will be using a method used previously, [94,78] but
extended to include the azimuthal angle ϕ. We begin with the full treatment, including
the spatial coordinate z, polar angle θ and azimuthal angle ϕ, then present the reduction
from assuming azimuthal symmetry for a strongly stretched brush and finally a further
reduction by assuming spatial homogeneity for a pure melt. We then conclude this chapter
by describing the Anderson mixing scheme used for solving the field equations.

A.1 3D: Spherical Harmonics

If the grafting density is homogeneously distributed on the substrate then the concentration
will be uniform along the axes parallel to the grafting plane (x, y) so these coordinates can
be integrated out. Therefore, we will need 3 spatial coordinates: the distance from the
grafting plane, z, the angle relative to the z axis, θ, and the azimuthal angle, ϕ as well
as the backbone parameter s. The azimuthal angle ϕ allows for the polymers to align in
any direction. The diffusion equation for the worm-like chain, Eq. (3.1), in the reduced
coordinates is

∂sq(z,u, s) + `cuz∂zq(z,u, s) =
`c
2`p
∇2

uq(z,u, s)− w(z,u)q(z,u, s) , (A.1)

where uz = cos(θ) is the projection of u onto the z axis. Within this chapter ∂z denotes the
partial derivative with respect to z. In order to simplify the spherical Laplacian, ∇2

u, we
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will be evaluating the angular coordinates through spherical harmonic basis functions and
using direct discretisation for z and s. The first step is therefore to expand all quantities
in spherical harmonics. We will be using the real spherical harmonics with the Condon-
Shortley phase defined as

Ylm(u) ≡


(−1)m

√
2
√

(2l+1)
4π

(l−|m|)!
(l+|m|)!P

|m|
l (cos(θ)) sin(|m|ϕ) if m < 0√

(2l+1)
4π

Pm
l (cos(θ)) if m = 0

(−1)m
√

2
√

(2l+1)
4π

(l−|m|)!
(l+|m|)!P

m
l (cos(θ)) cos(mϕ) if m > 0

(A.2)

where Pm
l (cos(θ)) are the associated Legendre polynomials,

Pm
l (x) ≡ (−1)m(1− x2)m/2

dm

dxm
(Pl(x)) , (A.3)

for non negative integer l and m. The associated Legendre polynomials are expressed in
terms of the usual Legendre polynomials Pl(x),

Pl(x) ≡ 1

2ll!

dl

dxl
(x2 − 1)l . (A.4)

The spherical harmonics satisfy the normalization (recall du = sin(θ)dθdϕ)∫
duYlm(u)Yl′m′(u) = δll′δmm′ , (A.5)

with δll′ the Kronecker delta.

Expanding the relevant quantities in spherical harmonics we have the field,

w(z,u) =
∑
lm

wlm(z)Ylm(u) , (A.6)

concentration,

φ(z,u) =
∑
lm

φlm(z)Ylm(u) , (A.7)

and partial partition functions

q(z,u, s) =
∑
lm

qlm(z, s)Ylm(u)

q†(z,u, s) =
∑
lm

q†lm(z, s)Ylm(u) .
(A.8)
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We begin by writing the field, Eq. (4.3), in terms of Legendre polynomials

w(z,u) =

∫
du′ (Λ0P0(u · u′)− Λ2P2(u · u′))φ(z,u′) . (A.9)

Using Eq. (2.9) the first term gives the l = 0 and m = 0 component

w00(z) = 4πΛ0φ00(z) , (A.10)

and the second yields

w2m(z) = −4πΛ2

5

∑
m

φ2m(z) . (A.11)

In general, for interactions of the form in Eq. (2.4) the coefficients are

wlm(z) = −
∑
lm

Λl
4π

2l + 1
φlm(z) . (A.12)

The concentration is determined from the partial partition functions, using Eq. (A.8), (3.4)
and (A.7), the concentration is∑

l′′m′′

φl′′m′′(z)Yl′′m′′(u) =
1

Q

∑
lm

∑
l′m′

∫
dsqlm(z, s)q†l′m′(z, s)Ylm(u)Yl′m′(u) . (A.13)

Multiplying both sides by Yl′′′m′′′(u) and integrating over u, by the orthogonality condition
of the spherical harmonics, Eq. (A.5), we have

φl′′m′′(z) =
1

Q

∑
l,l′

∑
m,m′

ψmm
′m′′

ll′l′′

∫ 1

0

dsqlm(z, s)q†l′m′(z, s) (A.14)

where

ψmm
′m′′

ll′l′′ ≡
∫
duYlm(u)Yl′m′(u)Yl′′′m′′′(u) (A.15)

are the Gaunt coefficients for the real spherical harmonics, which are calculated as described
in Ref. [98].

Finally, the partition function, Eq. (3.5), is

Q =
∑
lm

∫
dzqlm(z, s)q†lm(z, s) , (A.16)

by Eq. (A.5). Now all that remains is the evaluation of the partial partition functions,
which is the most computationally intensive step.
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A.1.1 Solution to the Worm-like Chain Equation

Our numerical methods have been discussed previously. We solve Eq. 4.6 using the nu-
merical algorithm described in Refs. [78,94] but with the expansion in terms of spherical
harmonics, Ylm(θ, ϕ), rather than Legendre polynomials. We will be using a second order
Lax-Wendroff approach to numerically solve Eq. (A.19). Taylor expanding q(z,u, s)

q(z,u, s+ ∆s) ≈ q(z,u, s) + ∆s∂sq(z,u, s) +
(∆s)2

2
∂ssq(z,u, s) (A.17)

leads to

q(z,u, s+ ∆s)− q(z,u, s)
∆s

≈ ∂sq(z,u, s) +
∆s

2
∂ssq(z,u, s) . (A.18)

We will be using only difference equations for ∂s, ∂z and ∂zz so we must write ∂ss in terms
of ∂s, ∂z and ∂zz.

In the spherical harmonic basis, Eq. (A.1) can be written as

Ylm(u)∂sqlm(z, s) + `c

√
4π

3
Y10(u)Ylm(u)∂zqlm(z, s)

=
`c
2`p

l(l + 1)Ylm(u)qlm(z, s)− Yl′m′(u)Ylm(u)wl′m′(z)qlm(z, s) ,

(A.19)

where in this section we adopt the Einstein summation convention of implied summation
over all repeated indices and we used that fact that Y10(u) =

√
3/(4π)uz. Multiplying by

Ylm(u) and integrating over u we have

δl,l′′δmm′′∂sqlm(z, s) + `c

√
4π

3
ψ0m′′m

1l′′l ∂zqlm(z, s)

=
`c
2`p

l(l + 1)δl,l′′δmm′′qlm(z, s)− wl′m′(z)ψm
′m′′m

l′l′′l qlm(z, s) ,

(A.20)

By defining constants c ≡ `c
2`p

and a ≡
√

4π
3

, our equation becomes

δl,l′′δmm′′∂sqlm(z, s) + `caψ
0m′′m
1l′′l ∂zqlm(z, s)

= cl(l + 1)δl,l′′δmm′′qlm(z, s)− wl′m′(z)ψm
′m′′m

l′l′′l qlm(z, s) ,
(A.21)

Or in matrix notation we have

I∂sq + `caΨ1∂zq = −cLq − [w ·Ψ]q , (A.22)
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where I is the lm × l′′m′′ identity matrix, q is a column vector with elements qlm, Ψ1

has elements ψ0m′′m
1l′′l , L is an lm × l′′m′′ diagonal matrix L = diag(l(l + 1)δm0δm′′0) and

[w ·Ψ] =
∑

l′m′ ψm
′m′′m

l′l′′l wl′,m′ .

Deriving with respect to s leads to

I∂ssq + `caΨ1∂szq = −cL∂sq − [w ·Ψ]∂sq (A.23)

and with respect to z

I∂szq + `caΨ1∂zzq = −cL∂zq − [w ·Ψ]∂zq − [∂zw ·Ψ]q (A.24)

Combining these two equations ((A.23)-`caΨ1(A.24)) allows us to solve for ∂ssq in terms
of ∂s, ∂z, ∂zz:

I∂ssq = `2
caΨ1aΨ1∂zzq + [bcaΨ1L+ `caΨ1[w ·Ψ]] ∂zq − [cL+ [w ·Ψ]] ∂sq + `caΨ1[∂zw ·Ψ]q .

(A.25)

Which simplifies to

I∂ssq = `2
ca

2Ψ1
2
∂zzq + `caΨ1 [cL+ [w ·Ψ]] ∂zq − [cL+ [w ·Ψ]] ∂sq + `caΨ1[∂zw ·Ψ]q ,

(A.26)

where Ψ1
2 = Ψ1Ψ1. Adding ∆s

2
(A.26) to the right hand side of Eq. (A.22) yields the form

of Eq. (A.18)

I∂sq =
∆s

2
`2
ca

2Ψ1
2
∂zzq + `caΨ1

[
∆s

2
cL+

∆s

2
[w ·Ψ]− I

]
∂zq −

∆s

2
[cL+ [w ·Ψ]] ∂sq

(A.27)

+

[
∆s

2
`caΨ1[∂zw ·Ψ]− cL− [w ·Ψ]

]
q

Solving for ∂sq[
∆s

2
cL+

∆s

2
[w ·Ψ] + I

]
∂sq =

∆s

2
`2
ca

2Ψ1
2
∂zzq + `caΨ1

[
∆s

2
cL+

∆s

2
[w ·Ψ]− I

]
∂zq

(A.28)

+

[
∆s

2
`caΨ1[∂zw ·Ψ]− cL− [w ·Ψ]

]
q
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Defining the matrices

A =

[
1

2
cL+

1

2
[w ·Ψ] +

1

∆s
I

]
(A.29a)

B =
∆s

(∆z)2

1

2
`2
ca

2Ψ1
2

(A.29b)

C =
∆s

2∆z
`caΨ1

[
1

2
cL+

1

2
[w ·Ψ]− 1

∆s
I

]
(A.29c)

D =

[
∆s

2
`caΨ1[∂zw ·Ψ]− cL− [w ·Ψ]

]
(A.29d)

So our equation becomes

∆sA∂sq = (∆z)2B∂zzq + 2∆zC∂zq +Dq . (A.30)

Next we approximate the derivatives by letting, i = s, i + 1 = s + ∆s and j = z ,
j + 1 = z + ∆z. Then we have our discretized derivatives:

∂sq =
1

∆s
(qi+1,j − qi,j) (A.31a)

∂zq =
1

2∆z
(qi,j+1 − qi,j−1) (A.31b)

∂zzq =
1

(∆z)2
(qi,j+1 − 2qi,j + qi,j−1) (A.31c)

(A.31d)

Substituting yields

A(qi+1,j − qi,j) = B(qi,j+1 − 2qi,j + qi,j−1) + C(qi,j+1 − qi,j−1) +Dqi,j . (A.32)

To get the desired forward marching solution we collect like terms and solve for qi+1,j

qi+1,j = A−1[B − C]qi,j−1 + A−1[A+D − 2B]qi,j + A−1[B + C]qi,j+1 . (A.33)

A.2 Azimuthally Symmetric: Legendre Polynomials

If we assume the chain is strongly stretched the polymers will tend to align along the z axis,
in which case the solution will be azimuthally symmetric (independent of ϕ). Integrating
over ϕ yields the concentration

φ(z, uz) =

∫ 2π

0

dϕφ(z,u) , (A.34)
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normalized such that ∫
dzduzφ(z, uz) = `c . (A.35)

Similarly, integrating out ϕ from the field equation we have

w(z, uz) =

∫
du′zG(uz, u

′
z)φ(z, u′z) , (A.36)

written in terms of the scaled interaction energy

G(uz, u
′
z) = Λ0 − Λ2P2(uz)P2(u′z) . (A.37)

Since the system is azimuthally symmetric, only the m = 0 spherical harmonics will be
non-zero, which reduces to the Legendre polynomials in terms of uz as

Yl0(u) =

√
(2l + 1)

4π
Pl(uz) . (A.38)

The Legendre polynomials satisfy the orthogonality relation∫ 1

−1

duzPl(uz)Pl′(uz) =
2

2l + 1
δl,l′ (A.39)

Expanding the relevant quantities in Legendre polynomials we have the field,

w(z, uz) =
∑
l

wl(z)Pl(uz) , (A.40)

concentration,

φ(z, uz) =
∑
l

φl(z)Pl(uz) , (A.41)

and partial partition functions

q(z, uz, s) =
∑
l

ql(z, s)Pl(uz)

q†(z, uz, s) =
∑
l

q†l (z, s)Pl(uz) .
(A.42)
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The coefficients are related to the previous spherical harmonic coefficients by

gl(z) =

√
(2l + 1)

4π
gl0 , (A.43)

in all cases.

In this case the field equation simplifies to

w(z, uz) = Λ0φ0(z)− Λ2φ2(z)P2(uz) , (A.44)

which, by the orthogonality of the Legendre polynomials, Eq. (A.39), implies coefficients

w0(z) = 2Λ0φ0(z) ,

w2(z) = −2Λ2

5
φ2(z) .

(A.45)

The concentration simplifies considerably

φl′′(z) =
1

Q

∑
l,l′

Γll′l′′

∫ 1

0

dsql(z, s)q
†
l′(z, s) (A.46)

where

Γl,l′,l′′ =

(
l l′ l′′

0 0 0

)
= (−1)k

√
(2k − 2l)!(2k − 2l′)!(2k − 2l′′)!

(2k + 1)!

k!

(k − l)!(k − l′)!(k − l′′)!
(A.47)

for 2k = l+ l′ + l′′ even and l, l′, l′′ satisfying |l− l′| ≤ l′′ ≤ l+ l′. It is zero otherwise. The
factor Γl,l′,l′′ arises from the integral over three Legendre polynomials.

The partition function, Eq. (3.5), is

Q =
∑
l

2

2l + 1

∫
dzql(z, s)q

†
l (z, s) , (A.48)

by Eq. (A.39). The partial partition functions are solved according to the numerical scheme
described in Section A.1.1 with only the m = 0 components.

94



A.3 Spatially Homogeneous Polymer Melt

In the melt state the distribution of polymer will be spatially homogeneous and we can
therefore integrate out the remaining Cartesian coordinate, z, leaving only θ and ϕ; ad-
ditionally, by orienting our coordinate system such that the z axis corresponds with the
alignment direction of the nematic phase we are only left with the coordinate uz. In these
reduced coordinates we still maintain our expansions in terms of Legendre polynomials
identical to Section A.2. Integrating the concentration over z we have

φ(uz) =

∫
dzφ(z, uz) , (A.49)

normalized such that
1

`c

∫
duzφ(uz) = 1 . (A.50)

Similarly, integrating out z from the field equation yields

w(uz) =

∫
du′zG(uz, u

′
z)φ(u′z) , (A.51)

written in terms of the scaled interaction energy

G(uz, u
′
z) = Λ2P2(uz)P2(u′z) . (A.52)

The greatest simplification is to the diffusion equation, Eq. (A.19), which becomes

∂sq(uz, s) =

[
`c
2`p
∇2
uz − w(uz)

]
q(uz, s) , (A.53)

or in terms of Legendre polynomials, in matrix notation,

I∂sq = −cLq − [w ·Ψ]q . (A.54)

This has the solution

q(s) = e−[cL+[w·Ψ]]sq(0) . (A.55)

In the melt phase both ends of the chain are free and therefore q and q† satisfy the
same initial condition, which we assume to be isotropic, q(uz, 0) = 1, which implies

ql(0) = δl0 , (A.56)
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and q†(uz, s) = q†(−uz, 1− s). We therefore have the concentration

φ(uz) =
1

Q

∑
l,l′

∫ 1

0

ds[e−[cL+[w·Ψ]]s]l,0Pl(uz)[e
[cL+[w·Ψ]]se−[cL+[w·Ψ]]]l′,0Pl′(uz)(−1)l

′
, (A.57)

or in Legendre coefficients

φl′′ =
1

Q

∑
l,l′

(−1)l
′
ψl,l′′,l′

∫ 1

0

ds[e−[cL+[w·Ψ]]s]l,0[e[cL+[w·Ψ]]se−[cL+[w·Ψ]]]l′,0 , (A.58)

with partition function

Q =
∑
l

2

2l + 1
[e−[cL+[w·Ψ]]]0,0 , (A.59)

The free energy per chain is

F = − ln (Q)− 1

2

∫
duzw(uz)φ(uz) , (A.60)

where in the isotropic phase w = 0 so Q = 2 and F = − ln 2.

A.4 Anderson Mixing

The methods described above solve for a worm-like chain in a given external field; how-
ever, the field is not entirely external and must be calculated self-consistently. The field
equations are solved using the Anderson mixing algorithm, [95] commonly used for block
copolymers. [104,20,19] We begin by describing the simpler, but closely related, Picard itera-
tion method, commonly referred to as “simple mixing”. In simple mixing one starts with
an initial guess for the field and iteratively updates it according to the scheme

win
i+1(r,u) = win

i (r,u) + λdi(r,u) (A.61)

with λ the iteration step size, typically taking a small value λ ∼ 0.1 and

di(r,u) ≡ wout
i (r,u)− win

i (r,u) . (A.62)
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The input field win
i (r,u) is used to calculate the concentration using the methods described

in the previous section, the output field, wout
i (r,u), is then calculated from this concen-

tration through the field equation and the input field is updated according to Eq. (A.61).
From the deviation, Eq. (A.62), we define the total deviation

dtot
i =

∣∣∣∣ ∫
drdud2

i (r,u)∫
drdu(wout

i (r,u))2

∣∣∣∣ (A.63)

simple mixing is performed until the total deviation is below a specified tolerance, typically
dtot
i ∼ 10−3.

The Anderson mixing scheme that we employ is similar to simple mixing, the key
difference being that simple mixing updates the field based solely on the current iteration
while Anderson mixing accounts for previous iteration steps and would give the best mixing
parameters possible if the system of equations was linear. Although the system is non-
linear, Anderson mixing can dramatically decrease the number of mixing steps required.

To incorporate the results of previous iterations, which we refer to as histories, we
define the matrix

Unm =

∫
drdu(di(r,u)− di−n(r,u))(di(r,u)− di−m(r,u)) (A.64)

and the vector

Vm =

∫
drdu(di(r,u)− di−m(r,u))di(r,u) . (A.65)

The indices n and m run over the number of histories chosen to keep. The product

An =
∑
m

U−1
nmVm (A.66)

gives the mixing coefficients and the field is then updated as

win
i+1(r,u) = wout

i (r,u) +
∑
n

An(wout
i−n(r,u)− wout

i (r,u)) . (A.67)

This procedure is repeated until the total deviation is below a specified tolerance.
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Appendix B

Polymer Melt

In this appendix we study the bulk behaviour of LC polymers within the WLC model with
MS interaction, focusing on the behaviour of the isotropic to nematic transition. Although
this has already been studied in Ref. [ 96], it will serve as a test of numerics and will set
bounds for when a brush will order. Additionally, this simplified system allows for direct
comparisons between Onsager and MS interactions.

B.1 Theory

Consider an incompressible melt of np polymers in a volume V interacting through MS type
LC interaction. Each polymer consists of N segments of length b, giving a total contour
length of `c = Nb. The configuration of the polymer chain is specified by the space curve
r(s), where the backbone parameter runs from s = 0 at the grafted end to 1 at the free
end. The orientation of the chain is then given by the unit vector u(s) = `−1

c
d
ds

r(s). In the
mean field approximation the melt will be spatially homogeneous and therefore we need
only consider the orientation of the polymers. By aligning our coordinate system with the
alignment axis of the polymers the system is reduced to one coordinate, uz, the angle that
a polymer makes with the alignment, z, axis.

As discussed in A.3 the concentration is

φ(uz) =

∫
dzφ(z, uz) , (B.1)

normalized such that ∫
duzφ(uz) = `c . (B.2)
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The field equation

w(uz) =

∫
du′zG(uz, u

′
z)φ(u′z) , (B.3)

is written in terms of the scaled interaction energy

G(uz, u
′
z) = −Λ2P2(uz)P2(u′z) . (B.4)

with the reduced interaction parameters defined as previously

Λ2 ≡
ν2npN

V ρ0

. (B.5)

We have dropped the isotropic term Λ0 since it will simply add a constant to field and will
not change the concentration. The degree of polymerization, N , and contour length `c can
be scaled out of the expressions by simply expressing all lengths in terms of `c = bN . Thus
the brush can be characterized by two parameters, `p/`c and Λ2.

To quantify the degree of orientational order we use the scalar nematic order parameter

S =

∫ 1

−1

duzP2(uz)φ(uz) , (B.6)

This allows us to express the field in term of the order parameter as

w(uz) = −SP2(uz) , (B.7)

so the difference of free energy between the nematic and isotropic states, ∆F ≡ Fnem−Fiso

is (A.60)

∆F

npkBT
= − ln

(
Q

2

)
− Λ2S2

2
, (B.8)

where,

Q =

∫ 1

−1

duz q(uz, s)q
†(uz, s) (B.9)

is a single-chain partition function. The partial partition functions q and q† are calculated
as described in A.3.

We can directly compare the transition from using Onsager interactions through the
relation described in Chapter 2

w(uz) = −
∑
l

Λ2l

2

∫ 1

−1

du′zP2l(u
′
z)φ(u′z) , (B.10)
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where

Λ2l = − εN

V ρ0

π(4l + 1)(2l)!(2l − 2)!

24l+1(l − 1)!l!(l + 1)!
. (B.11)

The relationship between the Onsager interaction strength ε and the MS interaction strength
Λ2 is found by equating the l = 1 components above.

B.2 Results

We begin by analysing the scalar nematic order parameter as a function of LC interaction
strength Λ2 in Fig. B.1. As Λ2 is increased the order parameter discontinuously jumps
from S = 0 to S > 0, the characteristic behaviour of a first order phase transition. From
this plot we can see the nematic transition moves toward higher interaction strength as
the persistence length decreases. Additionally, for higher persistence lengths we observe a
steeper slope meaning the polymers transition to a high degree of order more rapidly. For
very strong LC interactions S approaches its maximal possible value of 1.

In order to determine whether the isotropic or nematic phase is stable we compare
their free energy in Fig. B.1. When the difference in free energy ∆F crosses 0 the system
transitions from isotropic to nematic. The isotropic solution always exists but becomes
unstable past the spinodal. Similarly the nematic phase persists below the transition
before no longer being a solution. The distance over which it persists is very short, only
perceptible on the scale shown for the most flexible polymer `c = 16`p suggesting that the
transition is only weakly first order.

By varying the persistence length we can construct a phase diagram separating the
isotropic and nematic states in the `p/`c, Λ2 plane depicted in Fig. B.2. Rigid polymer and
high interaction strength result in nematic ordering. Previous calculations by Ref. [96] yield
identical results for the transition. Additionally, we can directly compare the transition
with that obtained through Onsager interaction. On the scale shown the difference in the
transition from the two methods is negligible. To leading order in Legendre polynomials the
transitions would be identical; however, in general the transition from Onsager interactions
is always below the MS since it includes higher order Legendre polynomial interactions
which all favour nematic ordering. We also compare the transition obtained from Landau
series expansion in terms of the scalar order parameter S which will be given in detail
within the discussion. In general it always over estimates the value of Λ2 required or the
transition.

100



Fig B.1. (a) Free energy and (b) scalar nematic order parameter as a function of
interaction strength for persistence lengths of `c = `p, 4`p and 16`p.
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Fig B.2. Isotropic-nematic phase transition as a function of persistence length `p/`c and
LC interaction strength Λ2. Solid line and red triangles separate the isotropic and
nematic phase for MS and Onsager interactions respectively, while the dashed line
denotes the series expansion approximation.
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B.3 Discussion

As discussed in Chapter 2 we can make a direct comparison between the Onsager and MS
interactions by equating the l = 0 and l = 2 terms between the two via Eq. (B.11). In
a melt the isotropic, l = 0, term does not effect the concentration and we can directly
compare the phase diagrams from Onsager and MS interactions shown in Fig. B.2. Since
near the phase transition their orientational order is small, the higher order terms in the
Onsager interactions do not significantly contribute and the phase diagrams are identical on
the scale shown. In general the the transition from Onsager interactions are slightly above
the MS. Although the Onsager interactions include higher order terms this should not be
misinterpreted as the Onsager model being more accurate, it will only be more accurate
in the specific scenario where the dominant contributions are from excluded volume of
rigid rods and it is questionable whether this is ever the case for semi-flexible polymers.
In all other scenarios the MS interactions should be preferred and in any case can easily
reproduce the Onsager results to a good approximation.

We find that the isotropic to nematic phase transition for a melt of worm-like polymers
is a discontinuous phase transition, as is generally the case for LCs [30] and is well known
behaviour of worm-like polymers. [96] Within our model this can be easily explained by
expanding the free energy near the transition assuming the order parameter S is small.

The free energy, Eq. (B.8), is expressed exclusively in terms of the order parameter S,
LC interaction strength Λ2 and the partition function Q. The first two terms will always
appear in the combination Λ2S which we will treat as an independent parameter to be
minimized while the partition function will be evaluated assuming Λ2S is small. As we
approach the phase transition from the nematic state the order parameter S gets smaller
and smaller until it vanishes at the phase transition. Therefore, close to the transition
we can expand ln(Q) in small S by noting that from A.3 we have the partition function,
Eq. (B.9),

Q = [e−[cL−Λ2SΨ2]]0,0 . (B.12)

In order to evaluate Q we must solve in infinite dimensional matrix exponential; however,
since the higher order terms correspond to Legendre polynomials of increasing order which
will be small near the phase transition we need only keep up to l = 2. Due to the symmetry
of the interactions only even order terms survive so this will be accurate up to l = 4.
Although this simplifies the system considerably, the functional form of the coefficients in
the Taylor series are not simple. Nevertheless, near the phase transition the free energy
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takes the form

∆F

nkBT
= (

1

2
+ AΛ2)Λ2S2 +BΛ3

2S3 + CΛ4
2S4 (B.13)

The exact numerical values of the coefficients are unimportant for our purposes beyond
their signs: A < 0, B < 0 and C > 0. If we didn’t have B the phase transition would
be continuous and occur at Λ2 = A/2 and both +S and −S solutions would be global
minima of the free energy. Since B < 0 the −S is only ever a local minima and is therefore
metastable, the +S solution transitions from a global minima, to a local minima before
disappearing completely. As the polymers transition from nematic to isotropic, or isotropic
to nematic it must discontinuously jump between the S = 0 and +S solutions since they
are metastable and the transition is first order. This is consistent with the original results
of Maier and Saupe. [7] Including the third order term, the phase transition occurs at

Λ2 =
1

2B + C2

2D

. (B.14)

The phase diagram described by this transition is plotted and compared with the exact
numerical solution in Fig. B.2. If the transition were continuous the expansion would
give the exact location of the phase transition; however, since it is discontinuous the order
parameter does not become infinitesimally small near the transition and the approximation
is not exact. Larger deviation are seen for larger values of Λ2 since it is expanded in Λ2S.
It should be noted that a more accurate calculation of this expansion has been previously
carried out in Ref. [99]; however, it does not result in qualitatively distinct behaviour so
the simpler calculation is sufficient for our purposes.

B.4 Summary

In the melt phase, within the mean field approximation, the distribution of LC polymers is
spatially homogeneous. This greatly simplifies numerical SCFT calculation and allows for
a precise description of the isotropic to nematic phase transition. We constructed a phase
diagram completely consistent with previous calculations, [96] and we similarly find that the
isotropic to nematic phase transition is first order. In addition, we find that the nematic
phase becomes unstable relatively rapidly (small distance in Λ2) below the transition,
indicating that the transition is only weakly first order. To further illustrate that the
transition is first order we expanded the free energy in terms of the order parameter S and
compared this result with the exact numerical calculations. For a continuous transition S
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gets infinitesimally small near the transition and the Taylor series becomes exact; however,
this is not the case for a discontinuous transition. Near the transition S discontinuously
jumps resulting in a systematic deviation between the two results, this arises from the non
zero cubic, S3, term in the Taylor series expansion.

We have provided a direct comparison for the phase transition calculated from both
MS and Onsager interactions. We find that the Onsager interactions do not give qualita-
tively distinct behaviour. In general Onsager interaction result in a lower LC interaction
strength required for the melt to order; however, the difference relatively small. Since MS
interactions can represent a wider class of polymers and accurately reproduce the results
from Onsager interactions and, as we discussed in Chapter 2, the issues with Onsager inter-
actions are even more severe in the presence of solvent molecules, MS interactions should
be preferred.
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