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Abstract 
 
Individuals with heart failure (HF) have lower cerebral blood flow (CBF) and oxygenation at 

rest, and lower cerebral oxygenation at peak exercise, likely due to insufficient cardiac output 

and poor respiratory function; however, no studies have examined the effects of low intensity 

activity such as are common of activities of daily living, on cerebral hemodynamics in 

individuals with HF. We recruited 10 individuals with HF (aged 78±4 years, 7 men, LVEF 20-

61%), and 13 healthy age-matched controls (aged 79±8 years, 4 men, LVEF 52-73%) to examine 

the cerebral hemodynamic response to quiet standing and walking. Participants completed 3 

transitions; 1) supine to 3-minutes standing, 2) sitting to 3-minutes walking at a self-selected 

slow pace, 3) sitting to 3-minutes walking at a self-selected normal pace. Portable finger 

plethysmography measured central hemodynamics, portable capnography measured partial 

pressure end-tidal carbon dioxide (PETCO2), portable transcranial Doppler ultrasound measured 

cerebral blood flow velocity (CBFV), and near infrared spectroscopy (NIRS) measured cerebral 

oxygenation. Participants with HF had lower cardiac index (Qi), compared to control participants 

during seated and supine rest (P < 0.001), quiet standing (P < 0.001), and normal and slow pace 

walking (P = 0.006). Participants with HF had an attenuated Qi response during walking 

compared to control participants (group x speed interaction: P = 0.008), suggesting a poor 

cardiac response to low intensity activity. Cerebral oxygenation was lower in participants with 

HF during seated and supine rest (P = 0.020), quiet standing (P = 0.034), and normal and slow 

pace walking (P = 0.004), compared to control participants. Repeated-measures correlation 

analysis was used to examine the relationship between Qi and cerebral oxygenation across 

exercise challenges (quiet standing, as well as slow and normal pace walking). Interestingly, 

there was a significant negative relationship between Qi and cerebral oxygenation (rrm = -0.53, P 
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< 0.001) in the participants with HF, whereas there was a significant positive relationship (rrm = 

0.35, P = 0.003) in the control participants. This was likely the consequence of ineffective blood 

flow redistribution, which has been previously documented during exercise in individuals with 

HF; however, this finding in the present study is particularly problematic as the experimental 

conditions (quiet standing and walking) are extremely common during daily living. Sustained 

cerebral desaturation experienced repeatedly during daily function may manifest as ischemic 

damage in cerebral tissue with adverse clinical outcomes. In particular, cerebral desaturation 

during standing and low intensity activity may partially explain poor exercise tolerance and 

cognitive impairment previously reported in individuals with HF. 
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1.0 Literature Review 

 Heart failure (HF) is a complex, systemic, and multifactorial disease that can be 

challenging to manage from a clinical perspective. Presented below are sections of text extracted 

from the review paper, “The influence of ejection fraction on cerebral perfusion in the setting of 

heart failure: a scoping literature review” currently submitted to JACC HF by KR Murray, JAM 

Poirier, RL Hughson, RS McKelvie, and GA Heckman that outlines of the current literature of 

the epidemiology and pathophysiology of HF. The pathophysiology discussed will have a 

specific focus on the structural and functional changes of the central cardiac and peripheral 

systems that might precipitate cerebral hypoperfusion during rest, orthostasis, and physical 

activity. Importance should be placed on understanding these mechanisms as ischemic damage 

from cerebral hypoperfusion may clinically manifest as cognitive impairment in individuals with 

HF, further complicating disease management. As well, these mechanisms may present novel 

treatment targets to prevent adverse health outcomes in this patient group. 

1.1 Epidemiology of Heart Failure 

The global burden of HF is substantial, with over 26 million people affected world-wide 

(Ponikowski et al., 2014). HF is associated with increased costs of healthcare due to direct (e.g., 

hospitalization) and indirect (e.g., rehabilitation and management) costs, which are expected to 

increase in the coming decades due to increased prevalence from improved HF management and 

aging populations (Dickstein et al., 2008; Ambrosy et al., 2014; Blecker et al., 2013; Farré et al., 

2016). 

HF is a condition characterized by low cardiac output (Q), along with underlying 

structural and functional changes to cardiac tissues such as fibrosis, changes in left ventricular 

morphology, and changes in contractility (Savarese & Lund, 2017). This results in a mismatch 
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between oxygen requirement and delivery in peripheral tissues. These anatomical and 

physiological changes lead to HF being originally classified as either systolic or diastolic, but 

since both systolic and diastolic dysfunction can coexist in individuals with HF it has become 

more clinically relevant to classify HF based on left ventricular ejection fraction (LVEF). Recent 

Canadian Cardiovascular Society management guidelines proposed three subtypes of HF: 

preserved ejection fraction (HFpEF), > 50% LVEF; mid range ejection fraction (HFmEF), 40-

49% LVEF; and reduced ejection fraction (HFrEF), < 40% LVEF (Ezekowitz et al., 2017). 

Recent data have shown a global shift in the prevalence of each HF subtype, with HFpEF 

becoming more prevalent than HFrEF (Ambrosy et al., 2014). This has been attributed to 

increased life expectancy and aging populations, increased prevalence of both cardiovascular and 

non-cardiovascular comorbidities, and increased recognition of HFpEF by clinicians (Oktay et 

al., 2013) It is also relevant and common clinical practice to characterize HF patients by 

functional symptomology. Dyspnea, either at rest or during exercise, is often experienced by 

individuals with HF and is the basis for the New York Heart Association (NYHA) classification 

system, which is summarized in Table 1.1 (Criteria Committee of the New York Heart 

Association, 1974; Raphael et al., 2007; Apostolo et al., 2012). 

Table 1.1 NYHA functional classification system (modified from Raphael et al., 2007) 
Class NYHA functional classification 

I Patients have cardiac disease but without the resulting limitations of physical activity. 

Ordinary physical activity does not cause undue fatigue, palpitation, dyspnoea or 

anginal pain. 

II Patients have cardiac disease resulting in slight limitation of physical activity. They 

are comfortable at rest. Ordinary physical activity results in fatigue, palpitation, 

dyspnoea or anginal pain. 

III Patients have cardiac disease resulting in marked limitation of physical activity. They 

are comfortable at rest. Less than ordinary physical activity causes fatigue, 

palpitation, dyspnoea or anginal pain. 

IV Patients have cardiac disease resulting in inability to carry on any physical activity 

without discomfort. Symptoms of cardiac insufficiency or of the anginal syndrome 
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may be present even at rest. If any physical activity is undertaken, discomfort is 

increased. 

Despite advances in disease management, HF is associated with high rates of mortality 

and hospitalization (Dunlay et al., 2009). Clinical trials often focus on measuring these 

outcomes, but of equal importance are the changes in physiology of end-organs caused by 

hypoperfusion and ischemic damage, as well as the clinical impacts of these changes. The brain 

is particularly susceptible to hypoperfusion injury, as it requires 60% of blood glucose, 15-20% 

of Q at rest, and is considered a high-flow, low-resistance organ (Williams & Leggett, 1989; 

Berg et al., 2002). The clinical manifestation of cerebral end-organ damage in the setting of 

cardiac disease was originally termed “cardiogenic dementia”, but recent literature classifies this 

as a form of vascular cognitive impairment (Lancet Editorial, 1997; Rizzi et al., 2014). In light of 

the projected two-fold increase in dementia cases globally (estimated at an overwhelming 81 

million), it is increasingly apparent that understanding the link between cardiovascular and 

neurological disease is vital (Ferri et al., 2005). A recent review from Brassard and Gustafsson 

(2016) detailed the effects of HF, its comorbidities, and its treatments on cerebral blood flow 

(CBF) and oxygenation, with a focus on exercise intolerance in this patient group. This review 

conclusively presents the need for an integrative understanding of cerebrovascular physiology in 

the setting of HF to improve the quality of life and health outcomes. 

1.2 Pathophysiology of Heart Failure 

Some differences exist in the pathological progression of HF subtypes, but in general HF 

can be thought of as a vicious cycle in which sustained activation of early compensatory 

mechanisms leads to progressive ventricular dysfunction and terminal HF. Central to the 

mechanism of HF is low Q, which in the absence of compensatory mechanisms, lowers mean 

arterial pressure (MAP). Initially, MAP is rescued by the Frank-Starling mechanism: increased 
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end diastolic volume elevates end diastolic pressure, leading to increased myocardial stretch and 

Q (Westerhof & O’rourke, 1995; Kemp & Conte, 2012). Inability of the Frank-Starling 

mechanism to fully rescue MAP leads to recruitment of the sympathetic nervous system (SNS), 

which while initially adaptive, leads to maladaptive secondary symptomology with chronic 

adaptation (Kemp & Conte, 2012). By elevating heart rate (HR) and contractility, as well as 

promoting systemic vasoconstriction, increased activation of the SNS increases stroke volume 

(SV) and total peripheral resistance (TPR), thereby increasing MAP (Lee & Tkacs, 2008; 

Chagger et al., 2009; Kemp & Conte, 2012). However, sustained sympathetic activity is 

detrimental to the myocardium and peripheral vasculature. Sympathetic toxicity compromises 

contractility of the heart, decreasing ejection fraction, and promoting arrhythmias (Chagger et al., 

2009). Sympathetic activation also results in upregulation of the global and vascular renin-

angiotensin-aldosterone system (RAAS), which augments MAP by promoting sodium retention, 

thirst, and vasoconstriction. Similar to SNS activity, sustained activation of RAAS is detrimental, 

promoting peripheral artery stiffness and progressive changes in cardiac tissue (Chagger et al., 

2009). 

With sustained hemodynamic stress, the heart undergoes morphological changes in mass, 

shape, and ventricular function, a process termed cardiac remodelling (Kitzman et al., 2002). 

While these changes initially increase SV and Q, progressive remodelling hastens disease 

progression through cardiac fibrosis and myocardial apoptosis (Curry et al., 2000; Kemp & 

Conte, 2012). Interestingly, there are stark differences in ventricular remodelling between 

HFpEF and HFrEF, while HFmEF exists on a spectrum between the two extremes. HFrEF 

classically manifests with a normal SV, but significant dilation of left ventricular chamber 

dimensions (Kitzman et al., 2002; Fukuta & Little, 2007), whereas HFpEF often presents with 
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normal chamber size, but increased wall thickness and myocardial fibrosis (Kitzman et al., 2002; 

Borlaug et al., 2010). 

As cardiac function worsens, and insufficiency develops, the inability of the heart to 

adequately handle venous return results in peripheral and pulmonary edema (Kemp & Conte, 

2011). Congestive HF is a term used to describe HF patients with pulmonary edema and these 

patients often experience shortness of breath, particularly in supine posture, and fatigability as 

edema of the lungs and hypoperfusion of working muscles drastically impact respiratory 

dynamics and oxygen delivery, respectively. 

1.3 Cerebral Hypoperfusion at Rest in Heart Failure 

Cerebral hypoperfusion has been observed in patients with HFrEF and HFmEF. In 17 

stable HF patients (73.7 ± 5.4 years, LVEF < 50%), single-photon emission computed 

tomography (SPECT) revealed significantly reduced cerebral perfusion in several regions of the 

brain, compared to healthy age-matched controls. Interestingly, cerebral hypoperfusion was 

correlated to impaired visual memory, a symptom commonly experienced by older adults with 

dementia (Alves et al., 2005). Choi and colleagues (2006) measured global cerebral perfusion 

using radionucleotide angiography in a younger adult cohort of 52 patients with advanced 

congestive HF secondary to idiopathic dilated cardiomyopathy (aged 41 ± 11 years, and LVEF £ 

35%). This study revealed areas of significant hypoperfusion in HF patients, compared to healthy 

age-matched controls (Choi et al., 2006). Arterial spin labelling investigations, using magnetic 

resonance imaging (MRI), have also shown similar hypoperfusion in HF patients. This recent 

study showed lower CBF in 19 HF patients (aged 55.5 ± 9.1 years, LVEF 30.5 ± 11.5%), 

compared to healthy age-matched controls. Reduced CBF was noted in numerous regions of the 
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brain, concomitant with impairments in multiple autonomic, mood, and cognitive regulatory sites 

(Roy et al., 2017). 

While hypoperfusion and reduced LVEF are certainly related, limited evidence suggests 

that CBF is correlated to LVEF in patients with HFrEF. Outside of conventional neuroimaging 

techniques, CBF can be quantified using Doppler ultrasound of the extracranial arteries that 

supply the brain (bilateral internal carotid and vertebral arteries). Loncar and colleagues (2011) 

used this method to investigate CBF in 71 men (aged 68 ± 7 years LVEF 29 ± 8%), and found 

that extracranial CBF was lower compared to healthy age-matched controls, as well as positively 

correlated with LVEF (r = 0.271, p = 0.022). While a sexually homogenous cohort limits the 

external validity of a study, HFrEF shows a slight sex bias (62% of patients are male), and thus 

these findings may be relevant to most HFrEF patients (Borlaug & Redfield, 2011). 

Cerebral autoregulation is the physiological mechanism that maintains consistent CBF 

across a range of blood pressure (BP). However, even for BP within the autoregulatory range, 

both acute (Levine et al., 1994; van Lieshout et al., 2001; Ogawa et al., 2007) and chronic 

(Rajagopalan et al., 1984; Paulson et al., 1984; van Bommel et al., 2010; Loncar et al., 2011) 

reductions in Q have been shown to lower CBF. While acute suppression of Q appears to have 

no effect on cerebral autoregulation (Deegan et al., 2010), cerebral ischemia from chronically 

low Q in the setting of HF may be exaggerated by impaired cerebral autoregulation. A study of 

52 ischemic HF patients (aged 64.3 ± 9 years, LVEF 20-45%), demonstrated that HF patients 

were more likely to show impaired dynamic cerebral autoregulation during supine rest, 

compared to age-, sex-, and BP-matched controls (Caldas et al., 2016). More recent work in a 

group of 40 HF patients (aged 62.9 ± 8.7 years, LVEF 30-40%) determined that dynamic 

cerebral autoregulation was more likely to be impaired during sub-maximal handgrip exercise, 
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compared to healthy age-matched controls (Caldas et al., 2018). However, the possibility of an 

impaired cerebral autoregulatory response may only affect CBF in patients with severe HF. A 

group of 15 patients with mild HF (median age = 48 years, interquartile range = 37-56 years, and 

median LVEF = 32%, interquartile range = 26-43%) were more likely to show differences in 

cerebral autoregulation and vasomotor reactivity, without showing changes in CBF (Erkelens et 

al., 2016). 

 Hyperventilation and Cheyne-Stoke breathing are common symptoms of HF that lead to 

chronic hypocapnia (Fanfulla et al., 1998; Oldenburg et al., 2015). As carbon dioxide is a potent 

stimulus of vasodilation, hypocapnia causes elevated cerebral vascular resistance, and may 

exacerbate reduced CBF in HF patients. The complex pathophysiological mechanisms that result 

in reduced CBF in the setting of HF, as described above, are summarized in Figure 1.1. 

  
Figure 1.1 Systemic interactions promote reduced CBF in the setting of HF 
HF and reduced Q directly lower CBF. Comorbid hypertension and arterial stiffness may also be 

present, and are commonly seen in HFpEF. These increase pulse pressure, which causes vascular 

damage, increasing cerebral vascular resistance. The potential of an impaired cerebral 

autoregulatory response, may lead to further reductions in CBF. Neurohormonal activation, 
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systemic inflammation, and endothelial dysfunction have also been hypothesized to indirectly 

affect CBF, further promote cerebral ischemia in HF patients. 

 
 In addition to the mechanisms previously described, ischemic damage to cerebral tissue 

can also develop as a result of an embolic stroke. HF increases the risk of stroke by two- to three-

fold, and is the second leading cardiac cause of stroke. Estimates suggest for every 5% decrease 

in LVEF, stroke risk increases by 18% (Sila, 2007). Clinically, HF is considered a 

hypercoagulable state. Progressive left ventricular dysfunction and chamber dilation promote 

intra-cardiac stasis and thrombus formation (Gibbs et al., 2001; Sila, 2007). Concomitantly, 

systemic endothelial dysfunction and rheological abnormalities (e.g., hypersensitivity of the 

coagulation cascade) satisfy Virchow’s triad and place HF patients at risk of complication from 

thromboembolism formation (Gibbs et al., 2001; Chin et al., 2003; Lip & Gibbs, 1999).  

Atrial fibrillation, another common comorbidity of HF due to shared risk-factors, also 

promotes intra-cardiac stasis and increases ischemic stroke risk (Wang et al., 2003; Wolf et al., 

1991). In atrial fibrillation, the sinoatrial node fails to trigger atrial contraction, leading to 

uncoordinated depolarizations. As a result, the rate of atrial contraction is greater than ventricular 

contraction, which causes ineffective ventricular filling and low Q (Daoud et al., 1996). 

Improper ventricular filling also contributes to intra-cardiac stasis as stagnant blood remains in 

the left atrium, further elevating the risk for thromboembolism formation and peripheral 

ischemia secondary to a thromboembolic event. 

1.4 Cerebral Blood Flow During Orthostasis in Heart Failure 

The cardio- and cerebrovascular system of HF patients is often unable to adequately 

maintain CBF during supine rest; however, impairment of additional mechanisms responsible for 

maintaining BP and CBF during orthostasis challenges worsens CBF regulation during such 

challenges. During transition from supine-to-standing posture, the body experiences a 
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redistribution of blood volume such that blood pools predominantly in the abdomen and lower 

limbs, which decreases venous return to the heart (Swenne, 2013). Resultant decreases in 

ventricular filling lower Q, and subsequently decrease BP. During non-pathological conditions, 

this response is detected by a group of stretch-sensitive mechanoreceptors, termed baroreceptors, 

which are located in the aortic arch and carotid sinus (Swenne, 2013). Decreased BP results in 

decreased stretch of the baroreceptors, which is relayed to the cardiovascular control centre in 

the medulla oblongata, resulting in modulation of the parasympathetic nervous system (PNS) and 

SNS. Initially, vagal withdrawal increases HR, but secondary activation of the SNS further 

increases HR, SV, and promotes vasoconstriction (Swenne, 2013). Together, these responses 

increase Q and TPR to restore BP. 

Studies have reported abnormalities in the baroreflex of patients with HF. Using a neck 

chamber device to perform a step-wise modulation of the apparent pressure detected by the 

carotid baroreceptors (i.e., loading or unloading the baroreceptors by decreasing or increasing the 

pressure in the neck chamber, respectively), a study of 14 mostly HFrEF patients (aged 38-68 

years, LVEF 11-62%) showed impaired baroreflex sensitivity in this group (Sopher et al., 1990). 

Caution should be taken in drawing conclusions from this finding, as increased arterial stiffness, 

an expected pathology in both healthy older adults and those with cardiovascular disease, has 

been shown to be an independent predictor of impaired baroreflex sensitivity in older 

populations (Mattace-Raso et al., 2007). Abnormalities in the baroreflex of these patients could 

be explained in part by the attenuation of the HR response during upright posture seen in HF 

patients (Levine et al., 1983). Some HFrEF patients undergo a paradoxical vasodilation, opposed 

to expected vasoconstriction, in peripheral vascular bed during orthostasis (Goldsmith et al., 

1983a; Wroblewski, 1994). Both of these factors would greatly impact the baroreflex response, 
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but HF patients also exhibit elevated levels of neurohormonal factors at rest, indicating some 

degree of autonomic dysfunction. These molecules (e.g., arginine vasopressin) are potent 

vasoconstrictors, and elevated resting levels attenuate their release in response to orthostasis, 

further limiting the efficacy of the baroreflex response in these patients (Goldsmith et al., 

1983b). 

Several studies have been conducted to investigate if these abnormal physiological 

responses to orthostasis predispose HF patients to reductions in CBF during upright posture.  A 

group of forty HFrEF patients (aged 53 ± 7.5 years, LVEF = 26.8 ± 8.3%) showed lower middle 

cerebral artery (MCA) blood flow velocity, and abnormal vasomotor reactivity during several 

autonomic challenges, including a 5% carbon dioxide and hyperventilation tests, Valsalva, and 

orthostatic tilt (Serber et al., 2014). A more recent cross-sectional study examined extracranial 

CBF in 22 HF patients (aged 69 ± 9 years, LVEF = 33 ± 11%, 4 participants had LVEF ³ 45%). 

Compared to healthy age-matched controls, HF patients had lower resting CBF in supine 

posture, and a greater decrease in CBF in response to upright posture (Fraser et al., 2015). These 

two studies suggest that impairment of the protective physiological mechanism responsible for 

maintaining CBF may predispose HFrEF and HFmEF patients to both acute and chronic cerebral 

ischemia during transient autonomic challenges (e.g., orthostasis) and sustained upright posture 

as is common during activities of daily living (ADL), both of which are risk factors for falls in 

older adults (Tinetti & Williams, 1997; Finucane & Kenny, 2017).  

1.5 Cerebral Blood Flow During Acute Physical Activity in Heart Failure 

  CBF was assumed to remain unchanged in healthy adults when transitioning from rest to 

exercise (Scheinberg et al., 1954; Zobl et al., 1965), but recent evidence from both transcranial 

Doppler ultrasound and MRI studies have shown that global CBF increases with exercise 
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intensity up to approximately 70% VO2 max (Madsen et al., 1993; Subudhi et al., 2008; Smith et 

al., 2012). This has been attributed to multiple factors, including, elevations in Q (Querido and 

Sheel, 2007; Meng et al., 2015), cerebral metabolic and neuronal activity which overcome SNS 

induced cerebral vasoconstriction (Secher et al., 2008; Brassard et al., 2010), central command 

(Sato et al., 2009), and mechanoreflex (Jørgensen 1992a,b, 1993)  .  

In the setting of HF, several cardiac and non-cardiac pathologies may limit the expected 

increase in CBF during exercise, thereby contributing to exercise intolerance in this patient 

population. In a summary of the report by Hellstrom et al. (1997), it was noted that when healthy 

individuals perform single-leg exercise, mean cerebral blood flow velocity (CBFV) increased by 

approximately 20% and was maintained during double-leg exercise; however, individuals with 

HF did not increase mean CBFV during single-leg exercise, and double-leg exercise decreased 

mean CBFV. In HFrEF, reduced maximal HR, lower HR reserve, and an attenuated exercise-

induced increase in SV all contribute to reduced maximal Q during exercise (Sullivan et al., 

1989; Cooke et al., 1998; Florea et al., 1999). In the case of HFpEF both HR and SV are also 

inadequately modulated in response to exercise, but elevated afterload, likely a consequence of 

vascular endothelial dysfunction, is an important component in reduced Q and elevated 

ventricular filling pressure (associated with dyspnea) during exercise (Bourlag et al., 2006; 

Bourlag et al., 2010; Andersen et al., 2012; Maeder et al., 2012). Non-cardiac factors affecting 

exercise tolerance are similar between HF subtypes. Impaired lung function and excessive dead 

space ventilation (observed as a high ventilation rate to expired carbon dioxide ratio (VE / VCO2)) 

during exercise are considered hallmarks of HF (Wasserman et al., 1997; Clark et al., 2000).  In 

addition, increased peripheral and central chemoreflex and ergoreflex responses contribute to 

increased ventilation during exercise in individuals with HF. The peripheral chemoreceptors are 
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located in the carotid bodies, and respond primarily to hypoxaemia, but potassium and hydrogen 

ions, and carbon dioxide also influence peripheral chemoreceptor activation. The central 

chemoreceptors are found in the region of the brainstem, and activate in response to hypercapnia. 

Regardless of the location, activated chemoreceptors initiate a physiological cascade that results 

in hyperventilation and sympathetic activation (Kara et al., 2003). Hypersensitivity of the 

chemoreflex has also been associated with attenuated baroreflex sensitivity and poor prognosis in 

ambulatory individuals with HF (Ponikowski et al., 2001a). The ergoreflex is initiated in 

response to muscle contraction and metabolite accumulation, such that activation of muscle 

ergoreceptors stimulate sympathetic drive, ventilation, and peripheral vasoconstriction (Schmidt 

et al., 2005). In individuals with HF hypersensitivity of the ergoreflex has been associated with 

exercise intolerance and hyperventilation, worse symptomology, and increased central 

chemosensitivity (Ponikowski et al., 2001b). Overall, the chemo- and ergoreflex are important 

homeostatic feedback mechanisms for BP and respiratory regulation, and their disruption 

explains the common occurrence of oscillatory breathing, hyperventilation, and dyspnea in HF 

patients during exercise (Schmidt et al., 2005; Dhakal and Lewis, 2016). In particular, oscillatory 

breathing during exercise has been shown to be present in both HFrEF and HFpEF, and 

individuals with HF and oscillatory ventilation during exercise have lower peak VO2, and peak 

and resting PETCO2 (Cornelis et al., 2015). This reflects lower exercise capacity in this 

population, which may also be limited by the stronger sensation of dyspnea experienced by 

individuals with HF and oscillatory ventilation during exercise (Matsuki et al., 2013). Together, 

this may help explain results from a meta-analysis that showed that individuals with HF and 

oscillatory breathing during exercise are fourfold more likely to experience adverse health 

outcomes compared to individuals with HF but no oscillatory breathing during exercise (Cornelis 
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et al., 2015). The spiral phenomenon which is observed on the plot of VCO2 and VO2 for some 

individuals with HF and oscillatory breathing during cardiopulmonary exercise testing is 

attributed to phase and amplitude differences between VCO2 and VO2 (Nagayama et al., 2015). 

These individuals exhibit greater cardiopulmonary dysfunction (lower peak VO2 and PETCO2, 

and steeper VE-VCO2 slope) compared to individuals with HF that do not exhibit the spiral 

phenomenon (Nagayama et al., 2015). These respiratory disturbances contribute to lower CBF 

and oxygenation seen in HF patients as they reduce arterial carbon dioxide, in turn promoting 

cerebral vasoconstriction.  

While exercise intolerance has long been identified as a consequence of HF, only recently 

has reduced CBF, resulting from the pathologies discussed above, been identified as a key to 

understanding this intolerance. Thus, there are a limited number of studies that have measured 

CBF and oxygenation during exercise in the setting of HF. Fu and colleagues used near-infrared 

spectroscopy to monitor cerebral oxygenation of the frontal lobe in NYHA Class II (n = 53 aged, 

66.5 ± 1.2, LVEF 38.6 ± 1.1) and NYHA Class III (n = 48, aged 67.5 ± 1.5, LVEF 38.5 ± 1.5) 

HF patients, as well as matched controls. The Class III HF group showed a significant reduction 

in frontal lobe oxygenation which was associated with ventilatory abnormalities (Fu et al., 2011). 

Similarly, a group of 34 mostly male HF patients (aged 56 ± 13 years, LVEF 32 ± 14%) showed 

lower resting cerebral oxygenation and peak oxygenation during an incremental 

cardiopulmonary exercise test, compared to healthy controls (Chen et al., 2018). 

1.6 Cognitive Impairment in Heart Failure 

Decreased CBF impairs the delivery of glucose and oxygen to the brain, reduces 

adenosine triphosphate (ATP) production, and contributes to injury and death of cerebral tissue. 

Sustained cerebral injury clinically manifests as cognitive impairment, which is diagnosed in 25-
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75% of HF patients, and may progress to dementia if the primary cause of the cognitive 

impairment is left untreated (Ampadu & Morley, 2015). 

 The high prevalence with which structural brain abnormalities are present in HF patients 

was uncovered with advancements in neuroimaging (Ampadu & Morley, 2015). This increased 

prevalence has been attributed to hypoxia and ischemic damage due to reduced LVEF and Q 

commonly seen in HF (Alosco et al., 2013). As previously discussed, a variety of physiological 

mechanisms are responsible for low CBF and subsequent cerebral ischemia. In response to 

ischemic damage, cerebral tissue releases local vasodilators (e.g., endothelial nitric oxide), and 

vasoconstrictors (e.g., endothelin-1) in an effort to regulate CBF (de la Torre, 2012). 

Unfortunately, these vasoactive molecules have been linked to impaired clearance of beta-

amyloid and phosphorylated tau proteins, and thus may contribute to the progression of 

Alzheimer’s dementia (Ampadu & Morley, 2015). 

Cross-sectional studies have implicated a link between reduced LVEF and cognitive 

impairment in the setting of HF. A group of 57 patients (aged 77 ± 1 years) showed a positive 

nonlinear association between LVEF and cognitive function (b = 0.58, p = 0.001), such that 

patients with LVEF < 30% had significantly greater cognitive impairment than patients with 

LVEF ³ 30% (Zuccalà et al., 1997). It is noteworthy that this study utilized the Mini-Mental 

State Examination to quantify cognitive impairment, which, while commonly used by clinicians, 

has been shown to be less effective in assessing clinically relevant cognitive deficits compared to 

other screening techniques (Cameron et al., 2013). A cohort of 55 mostly male patients (aged 55 

± 7.8 years, LVEF 22.4 ± 12.8%) showed similar results, demonstrating a correlation between 

LVEF and subjective cognitive impairment, assessed with the Cerebral Insufficiency Self Report 

Inventory (Steinberg et al., 2011). Harkness and colleagues (2014) extended the knowledge of 
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cognitive impairment in HF by assessing cognitive function and self-care management in 100 HF 

patients (aged 72.4 ± 9.8 years, LVEF ≤ 45%). Of the patients in this study population, 71% 

were diagnosed with mild cognitive impairment, and only 21% had adequate self-care 

management. A backwards regression model, controlling for age and sex, revealed a significant 

interaction (p = 0.001) between cognitive function and self-care management, highlighting the 

difficulty with which some HF patients have with maintaining adequate self-care, particularly in 

the setting of cognitive dysfunction (Harkness et al., 2014). 

LVEF may also be predictive of cognitive aging outside of the setting of HF. Brain and 

cardiac MRI of 1114 healthy Framingham Heart Study Offspring Cohort participants free from 

clinical stroke or dementia (aged 67 ± 9 years, LVEF 67.3 ± 6.7 %) revealed a nonlinear, 

positive relationship between LVEF and mean cognitive performance (Jefferson et al., 2011). 

While these cross-sectional studies cannot establish causality, they do suggest a link between 

cognitive function and LVEF, in both healthy older adults and patients with chronic HFrEF. 

However, no studies have examined the relationship between cognition and LVEF in and 

HFpEF, even though potential differences in cognition between HFrEF and HFpEF have been 

noted (Witt et al., 2016), and subclinical cerebral infarcts (which have been related to cognitive 

dysfunction) are highly prevalent in patients with HFpEF (Chen et al., 2014; Cogswell et al., 

2017). 

In HFrEF, several studied have shown that improvements in LVEF and Q are associated 

with improved cognitive function. Thirty-six HF patients (aged 66 ± 8 years, LVEF 32 ± 12%) 

showed improvement in Q following enhanced external counterpulastion therapy, which 

artificially improves venous return back to the heart. Compared to a standard medical treatment 

control group, the experimental treatment group also exhibited significantly greater improvement 
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in several cognitive domains, including spontaneous naming, attention, and executive function 

(Kozdağ et al., 2013). Cardiac resynchronization therapy in 27 HF patients (aged 68 ± 9 years, 

baseline LVEF 31.4%) resulted in improvements in LVEF, which had a significant effect on 

improving several cognitive domains over a 3-month treatment period (Hoth et al., 2010). The 

use of both pulsatile (n = 18, aged 50 ± 10 years, LVEF = 20 ± 5%) and continuous (n = 11, aged 

56 ± 15 years, LVEF = 20 ± 6%) ventricular assist devices in patients with terminal HF 

improved cognitive function (Zimpfer et al., 2006). Independent studies of patients with severe 

HFrEF have shown that cardiac transplantation improves both CBF (Gruhn et al., 2001) and 

several domains of cognitive function (Grimm et al., 1996; Deshields et al., 1996). 

 Although the pathophysiology and disease progression of HF are still not fully 

understood by clinicians and researchers, a clear but complex interaction exists between HF, 

reduced CBF, and cognitive impairment. Efforts to further characterise the mechanism of this 

interaction should reveal therapeutic targets and intervention strategies to ameliorate adverse 

health outcomes in HF patients.  
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2.0 Study Rationale 

 
Compared to healthy controls, individuals with HF have lower CBF during supine rest, 

and an exaggerated reduction in CBF in upright posture (Fraser et al, 2015). Cerebral 

oxygenation is also lower in individuals with HF during upright posture, compared to healthy 

controls (Chen et al., 2018). While previous investigations in individuals with HF have only 

assessed CBF and oxygenation in the confines of strictly imposed laboratory conditions, 

advances in ambulatory monitoring technologies allow for the assessment of cerebral 

hemodynamics and oxygenation in both healthy and clinical populations during dynamic real-life 

scenarios. Impaired blood pressure regulation and orthostatic hypotension, commonly observed 

in older adults, may lead to cerebral hypoperfusion, presyncope or syncope, and increased falls 

risk (Tinetti & Williams, 1997; Finucane & Kenny, 2017). For individuals with HF, the 

prevalence of orthostatic hypotension has been reported to range from 8% in community-

dwelling individuals to 83% in elderly hospitalized patients (Potocka-Plazak and Plazak 2001; 

Mehagnoul-Schipper et al., 2002; Gorelik et al., 2016). An inability to effectively regulate 

cerebral perfusion may predispose individuals with HF to cerebral ischemia, as well as further 

exacerbate the risk of falls; however, it is unknown how CBF and oxygenation respond to 

dynamic ADLs in individuals with HF. The purpose of this study was to investigate the effects of 

posture transitions and walking on CBF and oxygenation in individuals with HF. Chronic 

cerebral ischemia as a results of reduced CBF and cerebral oxygenation during ADLs may result 

in chronic cerebral ischemia, which has been linked to cognitive impairment in individuals with 

HF (Loncar et al., 2011; Zucalla et al., 1997). Cognitive impairment has become increasingly 

apparent in individuals with HF, elevating their risk for hospitalization and adverse health 

outcomes. This research will generate critical information to assess dynamic cardio- and 
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cerebrovascular adaptations and their impact on cerebral oxygenation under conditions reflecting 

real-life scenarios in individuals with HF. 
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3.0 Study Objectives and Hypotheses  

Primary Objective 1: 

To investigate the central cardiac response to walking in individuals with HF and healthy-

matched controls. 

Hypothesis 1: 

Compared to healthy-matched controls, participants with HF will have an attenuated rise in 

cardiac index (Qi = Q/body surface area) in response to walking. 

Primary Objective 2: 

To investigate the acute and sustained cerebrovascular responses during supine-to-stand and sit-

to-walk transitions in participants with HF and age-matched controls without HF. 

Hypothesis 2a: 

Compared to healthy-matched controls, participants with HF will have a lower absolute cerebral 

tissue saturation index (TSI) and mean CBFV nadir after transitioning from supine rest to upright 

standing, as well as from upright seated posture to walking. 

Hypothesis 2b: 

Participants with HF will have lower absolute mean CBFV and cerebral TSI during quiet 

standing and walking, compared to healthy-matched controls. 

Secondary Objective 1: 

To determine if LVEF, arterial stiffness, and cognition are associated with cerebral perfusion 

during supine rest. 

Hypothesis 3a: 

Across the range of physiological characteristics anticipated with the HF and control 

participants, the absolute mean CBFV and cerebral TSI measured during supine rest will be 
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positively correlated with carotid distensibility and LVEF, and negatively correlated with 

carotid-femoral pulse wave velocity. 

Hypothesis 3b: 

In both HF and control participants the absolute mean CBFV and cerebral TSI measured during 

supine rest will be positively correlated with Montreal Cognitive Assessment (MoCA) score.  
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4.0 Methods 

4.1 Ethics 

 The experimental procedures for this study were approved by the Office of Research 

Ethics at the University of Waterloo (ORE #21025). 

4.2 Recruitment 

 Participants for each study group (individuals with HF and age-matched controls who 

considered themselves to be relatively healthy, “healthy controls”) were recruited from both the 

community and primary care centers. Both sexes were recruited. For the HF cohort, patients with 

HFrEF, HFmEF, and HFpEF were recruited using inclusion/exclusion criteria shown in Table 

4.1. The control group consisted of age-matched healthy individuals, free from cardio- and 

cerebrovascular disease. 

Table 4.1 Inclusion/exclusion criteria (also provided in Poirier, see Declaration (pg. ii)) 

Inclusion criteria Exclusion Criteria 

• Age greater or equal to 

65 years old 

• Assistive devices for 

walking were  

permitted. 

 

• Taking alpha adrenergic blocking agents 

• Transplant recipients 

• NYHA functional class IV 

• Major hospitalization for cardiovascular events or 

procedures within the last 4 weeks 

• Hospital admission that required an overnight stay 

within the past 3 months (risk of delirium) 

• Psychiatric illness or use of psychoactive drugs 

• History of myocardial infarction in the past 3 months 

• History of drug/alcohol abuse 

• Carotid stenosis > 50% (ICA systolic peak velocity > 

125cm/s) 

• Atrial fibrillation requiring Warfarin or Coumadin 

• Uncontrolled hypertension (greater or equal to 

140/90) and/or resting HR >110 

• Severe arthritis or arthralgia limiting mobility 

• Prior diagnosis of dementia 

• Prior diagnosis of sleep apnea 

• Medicine regimen changed in the past 6 weeks.� 
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4.3 Data Collection 

4.3.1 Study Overview 

To investigate the two primary objectives of this project, the proposed sample size was 

calculated for α = 0.05, power = 0.8 using GPower 3.1.9.4 (Faul et al., 2007). Estimated mean 

and standard deviation values were taken from Fraser 2014. Using seated Qi data (Primary 

Objective 1) sample size was estimated at 5 participants per group, and using seated CBF data 

(Primary Objective 2) sample size was estimated at 15 participants per group (sample size 

calculation also presented in Poirier, see Declaration (pg. ii)). Overall we were able to recruit 10 

individuals with HF and 13 relatively healthy age-matched controls. During each testing session, 

resting vascular and cardiac investigations were conducted to assess cardiovascular health. 

Following resting investigations, participants were outfitted with ambulatory monitoring devices 

to assess their cardio- and cerebrovascular responses during ADLs. For this study, ADLs were 

operationalized as three transitions: supine to quiet standing, siting to walking at a self-selected 

normal pace, and siting to walking at a self-selected slow pace. Transitions were block 

randomized such that the two walking trials were always competed one after the other, but the 

order of the walking transitions was random, and the supine-to-stand transition randomly 

preceded or followed the walking transitions. 

4.3.2 Cognitive Testing 

 Global cognition was assessed with the MoCA. This short duration, minimal burden 

examination assesses domains of attention and concentration, executive function, memory, 

language, visual/constructional skills, conceptual thinking, calculations, and orientations 

(Harkness et al., 2011). The MoCA is sensitive to cognitive deficits seen in older HF patients, 

with a sensitivity of 90% and a specificity of 78% for mild cognitive impairment (Harkness et 
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al., 2011).  It is currently recommended by the Canadian Stroke Network and used in large 

population-based studies, including the Irish Longitudinal Study on Aging (Nolan et al., 2017). 

4.3.3 8-Meter Walk Test 

 An 8-meter was test was used to determine gait speed as a measure of frailty in both 

participant groups (Castell et al., 2013). Participants were allowed to use walking devices if they 

were required. Following a countdown, participants began walking at their normal pace. The 

time required to walk 8-meters was recorded but participants were instructed to walk past the 8-

meter mark so that deceleration did not influence their gait speed measurement. 

4.3.4 Ultrasound (methodology also reported in Poirier, see Declaration (pg. ii)) 

 Both vascular and cardiac ultrasound were conducted using a standard clinical ultrasound 

system (iE33 xMatrix, Koninklijke Philips Electronics, NV USA). The right common carotid 

artery (CCA) was imaged with a 10-17 MHz linear array transducer (L9-3, Koninklijke Philips 

Electronics, NV USA) to assess arterial wall thickness and CCA stiffness. Applying American 

Society for Echocardiography guidelines, a cardiac probe (X5-1, Koninklijke Philips Electronics, 

NV USA) was used to assess LVEF and diastolic function (e.g., E/A, E/e’) (Lang et al., 2005; 

Nagueh et al., 2016). 

4.3.5 Applanation Tonometry (methodology also reported in Poirier, see Declaration (pg. ii)) 

 Tonometry (SPT-301, Millar Instruments, Houston TX USA) was used to determine 

pulse pressure of both the CCA and femoral artery. To determine carotid distensibility, the 

tonometer was held to the left CCA for 10-15 cardiac cycles while ultrasonography of the right 

CCA was being conducted (see 4.4.3). The tonometer was then held against the right CCA for 

30-40 cardiac cycles, while a second tonometer was held against the right femoral artery for the 

same 30-40 cardiac cycles. Calipers were used to measure the distance between the carotid and 
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femoral measurement sites, and 80% of this distance was used to calculate carotid-femoral pulse 

wave velocity (cfPWV; see Eq1), the criterion standard measure of central arterial stiffness 

(Townsend et al., 2015). 

cfPWV	(cm/s) =
-./	0	12	34567819	(1:)

12	;<=59	>7?9	6@78546	64:9	(5)
     [Eq1] 

4.3.6 Ambulatory Monitoring (similar methodology reported in Poirier, see Declaration (pg. ii)) 

 Hemodynamics: Both HF and control participants were outfitted with ambulatory devices 

to monitor cardio- and cerebrovascular parameters during transitions and walking. The Portapres 

(Portapres Model-2, Finapres Medical Systems, Amsterdam The Netherlands) was used to 

measure continuous arterial BP through finger cuff photoplethysmography. While this device is 

portable, it is too cumbersome for older adults to carry, and therefore, was placed on a walker 

which moved with the participant. The continuous finger BP waveform yields beat-by-beat 

estimate of brachial BP, Q, and SV by using the Modelflow algorithm. Estimated Q and SV were 

normalized to echocardiography derived values of Q and SV (see 4.4.4 Echocardiography 

Measurements) 

 MCA Blood Velocity: A portable transcranial Doppler (TCD) device (TCD-X, Atys 

Medical, Soucieu-en-Jarrest France) was used to measure MCA blood velocity during posture 

transitions and walking. This device is equipped with a robotic probe, which maintains signal 

quality during movement and is ideal for ambulatory monitoring. While TCD only measures 

blood flow velocity, it is often used as a surrogate marker of CBF under the assumption that the 

MCA diameter remains constant. Studies have shown that the diameter of the MCA remains 

unchanged during perturbations in blood gases and orthostatic stimulus (Serrador et al., 2000; 

Verbree et al., 2014), while others has shown changes in MCA diameter during hyper- and 

hypocapnia (Coverdale et al., 2014; Coverdale et al., 2015). In an older HF population, there 
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may be considerable variation in MCA diameter due to genetics, sex, and risk of atherosclerosis. 

Differences in blood gases at rest, during transitions, and walking may also affect MCA 

diameter. Thus, TCD was only be used as a measure of MCA blood flow velocity, not CBF. This 

was considered in conjunction with measures of tissue oxygenation to characterise cerebral 

hemodynamics during posture transitions and walking. 

 Cerebral Oxygenation: A near infrared spectroscopy (NIRS) system (PortaLite, Artinis 

Medical Systems, Zetten The Netherlands) was placed on the right side of the forehead of 

participants, such that oxygenation data were collected from the pre-frontal cortex. This device 

uses near infrared light to determined changes in oxygenated (Oxy Hb), deoxygenated (HHb), 

and total hemoglobin (tHb) concentration and derives a tissue saturation index (TSI) in real-time. 

 Expired CO2: Participants were outfitted with a nasal cannula, connected to a portable 

gas analyser (Capnostream 35, Metronic, United States) in order to determine breath-by-breath 

PETCO2. 

Walking Speed: During both the slow and normal walking conditions participants 

traversed back and forth along a straight hallway. Pylons were place a know distance apart at 

either end of the hallway and gait speed was calculated as the time required to completed each 

hallway length. The participants’ overall gait speed for each condition was then calculated as the 

average of the gait speeds for each hallway length completed. 

4.4 Data Analysis 

4.4.1 Anthropometric Calculations 

 Body mass index (BMI), based on height and weight, was calculated as a measure of 

body size (calculation also presented in Poirier, see Declaration (pg. ii)). 

BMI (kg/m2) = mass (kg) / (weight (m))2       [Eq2] 
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 The Dubois formula was used in this study to estimate human body surface area (Du Bois 

& Du Bois, 1989). Measures of SV and Q were normalized to body surface area for each 

participant to account for differences in body size. 

BSA (m2) = 0.007184 x weight (kg) 0.425 x height (cm) 0.725       [Eq3] 

 

4.4.2 Cognitive Testing 

 Total MoCA scores were calculated as the sum of the individual cognitive domain scores. 

The six domains tested are: short-term memory, visuospatial function, executive function, 

attention, concentration and working memory, language and orientation scores. An additional 

point was added for participants with less than 12 years of formal education (Nasreddine et al., 

2005). 

4.4.3 Vascular Measurements 

 Carotid intima-media thickness (IMT) was calculated from B-mode images of the right 

CCA using the ultrasound systems built-in software (QLAB, Koninklijke Philips Electronics). 

IMT is known to change across the cardiac cycle; therefore, measurements were assessed at end 

diastole and averaged over ten separate cardiac cycles (Polak et al., 2012). 

 Distensibility of the CCA was calculated as an indication of the relative change in arterial 

diameter for a given pressure and is inversely proportional to arterial stiffness. 

Distensibility AmmHg
-1B	= 

∆ Cross Sectional Area

(Pulse Pressure)	(Minimum Cross Sectional Area)
  [Eq4] 

 

4.4.4 Echocardiography Measurements (methodology also reported in Poirier, see Declaration 

(pg. ii)) 

 Apical four-chamber and two-chamber echocardiography images were used in the “gold 

standard” Simpson’s biplane method to quantify LVEF (Schiller et al., 1989; Otterstad, 2002). 

Doppler ultrasound of mitral valve inflow in the apical four-chamber view was used to quantify 
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early (E) and late (A) diastolic filling velocities. Tissue Doppler Imaging of the left ventricular 

septal and lateral walls were used to determine myocardial relaxation (e’). From these values, 

diastolic function was characterized using E/A and E/e’ ratios (Nishimura et al., 2014). As well, 

parasternal long axis and apical five-chamber echocardiography images were used to measure 

the cross-sectional area of the aorta during peak systole, and the velocity time integral of the 

Doppler spectrum of the left ventricular outflow tract, respectively. From these values, SV was 

calculated as described in Eq5 and Q was calculated as the product of SV and HR during 

echocardiography assessment. Theses values were then used to adjust Modelflow estimates of 

SV and Q in a single point calibration method described in Eq6, where QModelflow is the beat-by-

beat estimate of Q, QEcho is the echocardiography derive value of Q, and QBaseline is the 90-second 

average Modelflow Q from the baseline time point during supine rest. Figure 4.1 shows 

echocardiography derived Qi plotted against baseline Qi predicted from Modelflow. 

SV	(mL) = (Velocity	Time	Integral)(Cross	Sectional	Area)                  [Eq5] 

Adjusted	Q = QWX39=2=X>	x	(
Z[\]^

Z_`abcdeb
)                                      [Eq6] 
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Figure 4.1 Modelflow vs. echocardiography derived estimates of Qi 
Salmon circles represent control participants and blue triangles represent participants with HF. 

QiMF – Modelflow estimate of cardiac output estimate during 90-seconds of supine rest; QiEcho – 

echocardiography estimate of cardiac output. 
 

4.4.5 Continuous Variables During Transitions and Walking 

 Continuous central hemodynamics, CBFV, cerebral oxygenation, and respiratory data 

were time-aligned post-collection. This was accomplished using time-sync markers that were 

added to the data from each collection device at the beginning and end of each data collection. 

The alignment of beat-by-beat data (central hemodynamics and CBFV) was further refined by 

RR interval matching using Matlab 9.4 (The MathWorks, Natick, Massachusetts, United States). 

Finally, central hemodynamic, CBFV, and cerebral oxygenation data were visually inspected at 

each transition for the characteristic transient reduction in mean BP, mean CBFV, and 

oxygenation, as well as in RR interval for central hemodynamics and CBFV. An example time 

aligned dataset can be seen in Figure 4.3. Baseline was defined as a 90 second average of stable 

signal during supine/seated rest, prior to orthostatic transition. Nadir values were calculated as 

the lowest single value after transition to upright posture and mean values were calculated for 
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each variable at 30 to 60 seconds (early transition), 90 to 120 seconds (middle transition), and 

150 to 180 seconds (late transition) after each transition and compared between groups. CBFV 

data were susceptible to data dropout and thus, was cleaned using a spline interpolation function 

in R 3.6.0 (R Core Team, Vienna, Austria; see Appendix C). Beat-by-beat variables were 

interpolated to second-by-second data using SigmaPlot 12.5 (Systat Software, Inc., Chicago, 

Illinois, United States). Data alignment process also described in Poirier, see Declaration (pg. ii). 

For some variables, data could not be collected on all participant due to poor signal quality. In 

figures, the number of participants collected is indicated by the number of individual data points, 

and in tables the number of participants collected is indicated in the associated text for variables 

that do not have a full complement of data. 

 
Figure 4.2 Representative time-aligned data set 
Representative data from a participant during a supine-to-stand transition prior to beat-by-beat 

and breath-by-breath data extraction. FinAP – finger arterial pressure; Ht – height correction, 

CBFV – cerebral blood flow velocity; TSI – tissue saturation index; Oxy Hb – oxygenated 

hemoglobin; HHb – deoxygenated hemoglobin; tHb – total hemoglobin; PCO2 – partial pressure 

of carbon dioxide. 
 
4.5 Statistical Analysis 

 All variables were assessed for normality using the Shapiro-Wilk’s test and visual 
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examination of frequency distributions. Group gait speed, MoCA score, and resting vascular 

measurements were summarized as mean ± standard deviation values. Comparisons between HF 

and control participants were made using independent Student’s t-tests for normally distributed 

data and Mann-Whitney U Rank Sums tests for non-normally distributed continuous variables. 

Comparisons between HF and control participants were made using Fisher’s exact test for 

categorical variables. Seated and supine baseline, nadir, early middle, and late values were 

compared by linear mixed model analysis with Tukey’s honestly significant difference used for 

post-hoc testing. Pearson’s r correlations were used to assess relationships between LVEF, 

MoCA score, cfPWV, and carotid distensibility with mean CBFV and TSI during supine rest. 

Due to the inherent grouping of LVEF values correlation analysis was conducted on both the 

group as a whole and independently on the HF and control groups. Repeated measures 

correlation analysis was used to assess relationships between cardio- and cerebrovascular 

variables during the early, middle, and late phases of the supine-to-stand transition and both sit-

to-walk transitions. Analysis was conducted on the participant group as a whole, as well as on 

the HF and control groups separately. Statistical significance was set a priori at α = 0.05 and 

trends were reported at α = 0.1. All statistical analysis was completed using R 3.6.0 (R Core 

Team, Vienna, Austria). 

 
 
 
 
 
 
 
 
 
  



 31 

5.0 Results 

5.1 Participant Characteristics (also reported in Poirier, see Declaration (pg. ii)) 

Characteristics of the 10 HF and 13 age-matched healthy control participants are 

summarized in Table 5.1, and medication characteristics are summarized in Table 5.2. The ratio 

of male/female participants in the HF group (7/3) and control group (4/9), and while not 

significantly different (P = 0.10) these ratios probably influenced some to of the physiological 

characteristics. Participants with HF were significantly taller (P = 0.04), weighed more (P = 

0.004), and had a greater BMI (P = 0.012), compared to control participants. A history of 

smoking was more prevalent in participants with HF (P < 0.001), and they also had a slower gait 

speed (P = 0.02) compared to control participants. 

 Brachial SBP and DBP, measured during supine rest, were not significantly different 

between groups. Similarly, carotid IMT, distensibility, ß Stiffness, and cfPWV were not 

significantly different between groups. The HF group included individuals with HFrEF, HFmEF, 

and HFpEF, thus participants with HF had a large range of LVEF (20-61%), as well as a 

significantly lower LVEF, compared to control participants (P < 0.001). There were no 

significant differences in measures of diastolic function (E/A and E/e’) between groups. 

 The control group included both non-hypertensive and treated hypertensive individuals, 

therefore, some control participants were on similar medication regimens to the participants with 

HF. However, more participants with HF were on ß-blockers (P < 0.001), angiotensin converting 

enzyme (ACE) inhibitors (P = 0.02), diuretics (P = 0.006), and anticoagulants (P = 0.007) 

compared to control participants. There were no significant differences in the number of 

angiotensin receptor blockers (ARB), calcium channel blockers, angiotensin receptor-neprilysin 

inhibitors (ARNi), statins, or nitroglycerin sprays used by each group. 
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5.2 Changes in Cardiac Index in Response to Walking 

 Figure 5.1 compares the Qi response to slow and normal pace walking in both 

participants with HF and control participants. The significant group x speed interaction effect 

was due to a greater increase in Qi at the normal pace walking speed in control participants 

compared to the participants with HF (P = 0.008). 

5.3 Cardiorespiratory and Cerebrovascular Response to Posture Transition and Walking 

5.3.1 Supine and Seated Rest 

 The cardiorespiratory and cerebrovascular response during supine and seated rest are 

presented in Figure 5.2 and 5.3. An average of the baseline values from both sit-to-walk 

transitions was used as the seated baseline for each variable. Both MAP and SBP trended lower 

in the participants with HF during both supine and seated rest (main effect of group: P = 0.08 

and 0.06, respectively). Control participants had a lower resting HR in supine compared to seated 

posture (group x condition interaction: P < 0.001), but there were no differences between the 

participants with HF and control participants. In both seated and supine posture, SVi and Qi were 

lower in participants with HF compared to control participants (main effect of group: P < 0.001 

for both). While there were no differences in peak CBFV, both min and mean CBFV were higher 

in supine compared to seated posture (main effect of condition: P = 0.018 and 0.047, 

respectively). There was also a trend for participants with HF to have lower min CBFV 

compared to control participants (main effect of group: P = 0.089). TSI was also lower in HF 

participants compared to control participants in both supine and seated posture (main effect of 

group: P = 0.020). Lastly, there was a trend for PETCO2 (partial pressure of end-tidal carbon 

dioxide) to be lower in participants with HF compared to control participants in both supine and 

seated posture (main effect of group: P = 0.094). 
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5.3.2 Supine-to-Stand and Sit-to-Walk Nadirs 

 Nadir values for both central and cerebral hemodynamics during the supine-stand 

transition are shown in Figure 5.4 and Appendix I. There was a trend for lower MAP nadir in the 

control participants compared to participants with HF (P = 0.067). Both SVi (P = 0.028), and Qi 

(P = 0.021) nadirs were significantly lower in participants with HF compared to control 

participants. There were no between group differences in HR, min, peak, mean CBFV, or TSI or 

relative Oxy Hb, HHb, or tHb nadir. 

 Figure 5.5 and Appendix J show nadir values for both slow and normal pace sit-to-walk 

transitions. Compared to the slow pace condition, SBP was higher at nadir in the normal pace 

walking condition (main effect of condition: P = 0.036). There were no significant differences in 

MAP, DBP or HR. Both SVi and Qi nadir were lower in participants with HF compared to 

control participants in both walking conditions (main effect of group: P = 0.007 and P < 0.001, 

respectively). There was no difference in peak, min, mean CBFV nadir. TSI nadir was lower in 

participants with HF compared to control participants during both walking conditions (main 

effect of group: P = 0.009), but there were no differences in relative Oxy Hb, HHb, or tHb nadir. 

5.3.3 Quiet Standing after Supine-to-Stand Transition 

 The early, middle, and late phases of the quiet standing period after the supine-to-stand 

transition are shown in Figure 5.6 and 5.7, and Appendix K. Both SBP and MAP were 

significantly lower across all time points in the participants with HF, compared to the control 

participants (main effect of group: P = 0.041 and 0.028, respectively). As well, MAP and SBP 

increased in both groups from early to middle (P = 0.012 and 0.025, respectively), and early to 

late (P = 0.033 and 0.020, respectively). Similarly, DBP increased significantly in both groups 

from early to middle stand (P = 0.013), and trended toward an increase from early to late stand 
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(P = 0.063). There were no significant differences in HR during quiet standing, but SVi and Qi 

were both lower in participants with HF compared to control participants (main effect of group: 

P = 0.005 and 0.006, respectively). There was no significant difference in peak, min, or mean 

CBFV. TSI was significantly lower in participants with HF compared to control participants 

across all time points (main effect of group: P = 0.034). While TSI did not change across time 

points, both relative HHb (P < 0.001) and tHb (P < 0.001) increased from early to middle stand, 

and relative Oxy Hb (P = 0.025), HHb (P = 0.010), and tHb (P = 0.002) increased from early to 

late stand. There were no significant differences in PETCO2. 

5.3.4 Slow and Normal Pace Walking after Sit-to-Stand Transition 

 Figure 5.8 shows the blood pressure response between normal and slow pace walking, as 

well as across time points. MAP was significantly lower in participants with HF compared to 

control participants (main effect of group: P = 0.043) and trended to be higher in the normal 

compared to slow pace walking conditions (main effect of condition: P = 0.062). Similarly, SBP 

was lower in participants with HF compared to control participants (main effect of group: P = 

0.006) and was higher in the normal compared to slow pace walking conditions (main effect of 

condition: P = 0.008). There were no significant differences in DBP. 

 Figure 5.9 shows the central cardiac response across walking conditions and time points. 

HR was significantly higher in the normal compared to the slow pace walking condition (main 

effect of condition: P < 0.001) and increased from early to late walking (P = 0.007). SVi was 

lower in participants with HF compared to control participants (main effect of group: P = 0.001) 

and in the slow pace compared to the normal pace walking condition (main effect of condition: P 

= 0.013). Similar to HR, Qi increased from early to late walking (P = 0.013). There was also a 

significant group x condition interaction effect due a greater Qi in the control participants 
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compared to participants with HF in both the normal (P < 0.001) and slow (P = 0.001) pace 

walking conditions, as well as in the normal compared to the slow pace walking condition in 

both the control participants (P < 0.001) and the participants with HF (P = 0.017). 

 Depicted in Figure 5.10 and Appendix L is the CBFV and oxygenation, and respiratory 

response between normal and slow pace walking, as well as across time points. Mean CBFV had 

a trend to increase from early to middle walking (P = 0.056) and increased significantly from 

early to late walking (P = 0.011). Mean CBFV also had a significant group x condition 

interaction effect due to lower mean CBFV in participants with HF compared to control 

participants in the slow pace walking condition (P = 0.019), as well as lower mean CBFV in the 

slow compared to the normal pace walking condition within the HF group (P = 0.002). 

Participants with HF also had a trend for lower mean CBFV compared to control individuals in 

the normal pace condition (P = 0.078). Peak CBFV had a significant group x condition 

interaction effect due to the participants with HF having a lower peak CBFV in the slow 

compared to the normal pace walking condition (P = 0.048). Similarly, min CBFV had a 

significant group x condition interaction effect due to lower min CBFV in in the slow compared 

to the normal pace walking condition within the HF group (P = 0.008), as well as a trend for 

participants with HF to have lower min CBFV compared to control participants in the slow pace 

walking condition (P = 0.54). 

TSI was significantly lower in participants with HF compared to control participants 

(main effect of group: P = 0.004) and decreased from early to late walking (P = 0.027). There 

were no significant differences in Oxy Hb. HHb trended to increase from early to middle 

walking (P = 0.052), and significantly increased from early to late walking (P = 0.012). HHb 

also had a significant group x condition interaction effect from participants with HF having 
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lower HHb in the normal compared to the slow pace condition (P = 0.012). There was also a 

trend for participants with HF to have lower HHb, compared to control participants in the normal 

pace condition (P = 0.090). Similarly, tHb had a significant group x condition interaction effect 

due to participants with HF having lower tHb than control participants in the normal pace 

condition (P = 0.024) and tHb was lower in the normal compared to the slow pace condition (P = 

0.016) within the HF group. PETCO2 was significantly higher in the slow compared to the normal 

pace condition (main effect of condition: P = 0.035). 

Appendix P shows a relatively consistent cerebral hemodynamic response within the 

individuals with HF between sustained slow and normal pace walking. 

5.4 Reparatory Dysfunction 

 As noted in the above literature review, a variety of abnormal respiration patterns are 

common in individuals with HF. While technological limitations prevented a formal and robust 

assessment of abnormal respiratory patterns in this participant group (see Future Directions), 

visual inspection of capnography data did suggest that one participant with HF presented with 

periodic breathing, which was not noted on the health screening questionnaire. Unfortunately, we 

were unable to collect CBFV data on this participant, but cerebral oxygenation seemed well 

preserved in this individual as TSI never dropped below 68% and the early, middle, and late 

averages never deviated by more than 2% from the supine or seated baseline average. 

5.5 Cognitive Function 

 MoCA scores are summarized in Table 5.3. Neither total MoCA score, nor the number of 

individuals with an abnormal score (MoCA < 26) were significantly different between groups. 

There were also no significant between group differences in the scores for the individual 
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cognitive domains assessed by the MoCA (visuospatial, executive function, attention and 

concentration, short term memory, language, and orientation). 

5.6 Resting and Repeated-Measures Correlation Analysis 

5.6.1 Mean CBFV and TSI During Supine Rest 

 Figure 5.11 shows scatterplots with correlations of LVEF, MoCA Score, cfPWV, and 

carotid distensibility with mean CBFV during supine rest. There was no significant relationship 

between LVEF or carotid distensibility and mean CBFV. MoCA score had a significant positive 

relationship (r = 0.58, P = 0.018), while cfPWV had a significant negative relationship (r = -

0.67, P = 0.005) with mean CBFV. 

 Figure 5.12 shows scatterplots with correlations of LVEF, MoCA Score, cfPWV, and 

carotid distensibility with TSI during supine rest. There was a significant positive relationship 

between LVEF and TSI for the full group (r = 0.46, P = 0.040), but no significant relationship 

was detected when analysis was conducted on the groups independently. There were no 

significant relationships between supine TSI and MoCA Score, cfPWV, or carotid distensibility. 

5.6.2 Repeated-Measures Correlation Analysis 

 As Q is known to impact CBF (reviewed by Meng et al., 2015), relationships between Qi 

and cerebral perfusion were investigated during the early, middle, and late time points from the 

supine-to-stand, sit-to-walk normal pace, and sit-to-walk slow pace condition for each participant 

using repeated-measures correlation analysis. 

 Figure 5.13 shows the repeated-measures correlation analysis for mean CBFV and Qi. 

There was a significant positive correlation between mean CBFV and Qi in the full group (rrm = 

0.36, P < 0.001), control participants (rrm = 0.37, P = 0.004), and in the participants with HF (rrm 

= 0.29, P = 0.036). 
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 Figure 5.14 shows repeated-measures correlations for TSI and Qi. There was no 

significant relationship between TSI and Qi when analysis was conducted on the full group, but 

there was a significant positive relationship (rrm = 0.35, P = 0.003) in the control participants, 

whereas there was a significant negative correlation (rrm = -0.53, P < 0.001) in the participants 

with HF. 
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Table 5.1 Participant characteristics 
 Control HF P-value 
Age (years) 78.8±7.8 78.4 ±8.4 n.s. 

Sex (Male/Female) 4/9 7/3 n.s. 

Height (cm) 163±11.6 173.3±10.9 0.040 

Weight (kg) 64.8±15.3 87.3±18.1 0.004 

BMI (kg/m2) 24.2±4.2 28.8±3.6 0.012 

Smoking history 1 (8%) 8 (80%) < 0.001 

Gait speed (m/s) 1.2±0.3 1.0±0.2 0.02 

Brachial SBP (mmHg) 136.6±13.7 132.8±10.7 n.s. 

Brachial DBP (mmHg) 70.8±6.8 68.5±12.6 n.s. 

HR (bpm) 59.5±11.0 65.0±7.8 n.s. 

Vascular Measures    

     Carotid IMT (mm) 0.7±0.1 0.8±0.1 n.s. 

     Carotid distensibility (mmHg-1) 0.0019±0.0008 0.0022±0.0007 n.s. 

     ß Stiffness (AU) 13.1±5.5 11.5±2.5 n.s. 

     cfPWV (m/s) 10.6±2.8 9.4±2.0 n.s. 

Systolic Cardiac Function    

     LVEF (%) 61.4±5.5 45.2±11.6 < 0.001 

     SVi 42.8±8.2 31.2±5.7 0.002 

     Qi 2.5±0.6 1.9±0.4 0.004 

Diastolic Cardiac Function    

     E/A (unitless) 1.2±0.4 1.2±0.4 n.s. 

     E/e’ (unitless) 6.7±1.8 7.2±1.2 n.s. 

All values are mean±standard deviation, except sex (n) and smoking history (n (%)). BMI – body 

mass index; MoCA – Montreal cognitive assessment; SBP – systolic blood pressure; DBP – 

diastolic blood pressure; IMT – intima-media thickness; cfPWV – carotid-femoral pulse wave 

velocity; LVEF – left ventricular ejection fraction; SVi – stroke volume index; Qi – cardiac 

index; E – early diastolic peak mitral inflow velocity; A – late diastolic peak mitral inflow 

velocity; e’ – early diastolic peak mitral annular velocity. Carotid distensibility/ ß Stiffness: HF n 

= 9, control n = 11; SVi/Qi: HF n = 10, controls n = 10; E/A: HF n = 6, control n = 12. All blood 

pressure, vascular, and cardiac measurements were taken during supine posture. Table also 

reported in Poirier, see Declaration (pg. ii)). 
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Table 5.2 Participant medications 
 Control HF P-value 
ß-blocker 0 (0) 8 (80) < 0.001 

ACE-inhibitor 1 (8) 6 (60) 0.020 

ARB 1 (8) 1 (10) n.s. 

ARNi 0 (0) 1 (10) n.s. 

Calcium channel blocker 1 (8) 3 (30) n.s. 

Diuretics 1 (8) 7 (70) 0.006 

     Thiazide 1 (8) 0 (0) n.s. 

     Loop 0 (0) 6 (60) 0.002 

     Potassium-sparing 0 (0) 2 (20) n.s. 

Anticoagulants 0 (0) 5 (50) 0.007 

Statins 3 (23) 6 (60) n.s. 

Nitroglycerin spray 0 (0) 3 (30) n.s. 

All values are n (%). ACE – angiotensin converting enzyme; ARB – angiotensin II receptor 

blocker; ARNi – angiotensin receptor-neprilysin inhibitor. Table also reported in Poirier, see 

Declaration (pg. ii)).
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Table 5.3 MoCA score 
 MoCA 

Item 
Total possible 
score 

Control HF P-value 

Overall score  30 25.2±3.9 24.1±3.9 n.s. 

Visuospatial function Cube, clock 4 3.5±0.7 2.9±0.9 n.s. 

Executive function Trails, 

fluency, 

abstraction 

4 3.4±0.8 2.8±0.9 n.s. 

Attention, 

concentration, 

working memory 

Digit, serial 

7, letter 

6 4.7±1.8 5.2±1.0 n.s. 

Short-term memory Delayed 

recall 

5 3±1.6 2.5±1.6 n.s. 

Language Naming, 

sentence 

repetition, 

fluency 

6 5.3±0.9 4.8±1.0 n.s. 

Orientation Orientation 6 5.7±0.9 5.9±0.3 n.s. 

Abnormal score (<26) - - 5 (38) 6 (60) n.s. 

All values are mean±standard deviation, except abnormal score (n (%)). 
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Figure 5.1 Cardiac index response to different walking speeds during slow and normal 
paced walking 
Salmon colouration and solid line represents the control group and blue colouration and dashed 

line represent the HF group. Circles represent the normal pace condition and triangles represent 

the slow pace condition. Error bars indicate the standard deviation of both walking speed and 

cardiac index. Qi – cardiac index. Group x speed interaction effect is shown in the lower left 

corner of the graph. 
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Figure 5.2 Supine and seated resting central hemodynamics 
Salmon coloured bars represent the control group and blue coloured bars represent the HF group. 

The lower and upper boundary of the box indicate the 25th and 75th percentile, respectively. The 

solid line within the box indicates the median and the dashed line within the box indicates the 

mean. Error bars indicate the minimum and maximum, while data outside of the error bars are 

considered outliers. Individual data are displayed as single points. MAP – mean arterial pressure; 

SBP – systolic blood pressure; DBP – diastolic blood pressure; HR – heart rate; SVi – stroke 

volume index; Qi – cardiac index. *** indicates significant difference P < 0.001. Significance 

lines centered above a single bar indicate an interaction effect, while significance lines centered 

between two bars indicate a main effect of condition. Group main effects are shown in the lower 

left corner of each graph. 
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Figure 5.3 Supine and seated resting cerebral hemodynamics and respiration 
Graph format is the same as described in Figure 5.2. CBFV – cerebral blood flow velocity; TSI – 

tissue saturation index; PETCO2 – partial pressure of end-tidal carbon dioxide. * indicates 

significant difference P < 0.05. Significance lines center above a single bar indicate an 

interaction effect, while significance lines centers between two bars indicate a main effect of 

condition. Group main effects are shown in the lower left corner of each graph. 
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Figure 5.4 Central and cerebral hemodynamic nadirs during supine-to-stand transition 
Graph format is the same as described in Figure 5.2. MAP – mean arterial pressure; SBP – 

systolic blood pressure; DBP – diastolic blood pressure; HR – heart rate; SVi – stroke volume 

index; Qi – cardiac index; CBFV – cerebral blood flow velocity; TSI – tissue saturation index. * 

indicates significant difference P < 0.05; † indicates a trend to be different P < 0.1. 
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Figure 5.5 Central and cerebral hemodynamic nadirs during sit-to-walk (slow) and sit-to-
walk (normal) transition 
Graph format is the same as described in Figure 5.2. MAP – mean arterial pressure; SBP – 

systolic blood pressure; DBP – diastolic blood pressure; HR – heart rate; SVi – stroke volume 

index; Qi – cardiac index; CBFV – cerebral blood flow velocity; TSI – tissue saturation index. * 

indicates significant difference P < 0.05. Significance lines center above a single bar indicate an 

interaction effect, while significance lines centers between two bars indicate a main effect of 

condition. Group main effects are shown in the lower left corner of each graph. 
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Figure 5.6 Central hemodynamics during early, middle, and late phase standing after 
supine-to-stand transition 
Graph format is the same as described in Figure 5.2. MAP – mean arterial pressure; SBP – 

systolic blood pressure; DBP – diastolic blood pressure; HR – heart rate; SVi – stroke volume 

index; Qi – cardiac index. * indicates significant difference P < 0.05; † indicates a trend to be 

different P < 0.1. Significance lines center above a single bar indicate an interaction effect, while 

significance lines centers between two bars indicate a main effect of condition. Group main 

effects are shown in the lower left corner of each graph. 
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Figure 5.7 Cerebral hemodynamics and respiration during early, middle, and late phase 
standing after supine-to-stand transition 
Graph format is the same as described in Figure 5.2. CBFV – cerebral blood flow velocity; TSI – 

tissue saturation index; PETCO2 – partial pressure of end-tidal carbon dioxide. Group main 

effects are shown in the lower left corner of each graph. 
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Figure 5.8 Blood pressure response during early, middle, and late phase slow and normal 
pace walking after sit-to-walk transition 
Left: Graph format is the same as described in Figure 5.2. Right: Salmon coloured points 

represent the control group and blue coloured points represent the HF group. Circles indicate 

normal pace walking and triangles indicate slow pace walking. The lower and upper boundary of 

the box indicate the 25th and 75th percentile, respectively. The solid line within the box indicates 

the median and the dashed line within the box indicates the mean. Error bars indicate the 

minimum and maximum, while data outside of the error bars are considered outliers. Individual 

data are displayed as single points. MAP – mean arterial pressure; SBP – systolic blood pressure; 

DBP – diastolic blood pressure. ** indicates significant difference P < 0.01; † indicates a trend 

to be different P < 0.1. Significance lines center above a single bar indicate an interaction effect, 

while significance lines centers between two bars indicate a main effect of condition (left) or a 

main effect of time (right). Group main effects are shown in the lower left corner of each graph. 
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Figure 5.9 Cardiac response during early, middle, and late phase slow and normal pace 
walking after sit-to-walk transition 
Graph format is the same as described in Figure 5.8. HR – heart rate; SVi – stroke volume index; 

Qi – cardiac index. * indicates significant difference P < 0.05; ** indicates significant difference 

P < 0.01; *** indicates significant difference P < 0.001. Significance lines center above a single 

bar indicate an interaction effect, while significance lines centers between two bars indicate a 

main effect of condition (left) or a main effect of time (right). Group main effects are shown in 

the lower left corner of each graph.  
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Figure 5.10 Cerebral hemodynamic and respiratory response during early, middle, and late 
phase slow and normal pace walking after sit-to-walk transition 
Graph format is the same as described in Figure 5.8. CBFV – cerebral blood flow velocity; TSI – 

tissue saturation index; PETCO2 – partial pressure of end-tidal carbon dioxide. * indicates 

significant difference P < 0.05; ** indicates significant difference P < 0.01; † indicates a trend to 

be different P < 0.1. Significance lines center above a single bar indicate an interaction effect, 

while significance lines centers between two bars indicate a main effect of condition (left) or a 

main effect of time (right). 
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Figure 5.11 Relationship between mean CBFV and LVEF, MoCA Score, cfPWV, and 
carotid distensibility during supine rest 
Salmon coloured circles represent the control group and blue coloured diamonds represent the 

HF group. Solid black line indicates the linear regression and r and P values are listed in the 

lower left hand corner of each graph. LVEF – left ventricular ejection fraction; CBFV – cerebral 

blood flow velocity; cfPWV – carotid-femoral pulse wave velocity. 
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Figure 5.12 Relationship between TSI and LVEF, MoCA Score, cfPWV, and carotid 
distensibility during supine rest 
Graph format is the same as described in Figure 5.11. LVEF – left ventricular ejection fraction; 

TSI – tissue saturation index; cfPWV – carotid-femoral pulse wave velocity. 
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Figure 5.13 Repeated measures correlations between mean CBFV and Qi 
Individual data from the early, middle, and late phase of quiet standing, and normal and slow 

pace walking are represented by circles with unique colours for each participant. Solid lines 

represent repeated measures correlations for each participant with colours matching the 

individual data points. For each graph rrm and P values are shown in the bottom left corner. 

CBFV – cerebral blood flow velocity; Qi – cardiac index. 
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Figure 5.14 Repeated measures correlations between TSI and Qi 
Graph format is the same as described in Figure 5.13. Individual data are from the early, middle, 

and late phase of quiet standing, and normal and slow pace walking for each participant. TSI – 

tissue saturation index; Qi – cardiac index. 
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6.0 Discussion 

 In the present study, participants with HF had characteristically low Qi during supine and 

seated rest, as well as quiet standing and walking. In addition, the participants with HF had an 

attenuated rise in Qi in response to walking at slow and normal paces, compared to control 

participants. This poor central cardiac response is likely the main factor responsible for lower 

cerebral oxygenation in the participants with HF compared to the control participants during 

supine and seated rest, standing, and walking. Participants with HF also had lower CBFV during 

walking compared to control participants, which again was likely driven by lower Qi. Overall, 

participants with HF were ineffective at maintaining cerebral hemodynamics during posture 

transitions and walking, which was likely attributable to diminished cardiac function.  

 The primary objectives of this thesis were: 1) to determine the central cardiac response to 

walking in participants with HF, compared to control participants; and 2) to investigate the acute 

and sustained response of cerebral hemodynamics to posture transitions and walking. We 

hypothesized that participants with HF would have an attenuated rise in Qi in response to 

walking, compared to control participants (Hypothesis 1), which was supported by the smaller 

increase in Qi in response to walking in the participants with HF compared to control 

participants. With respect to changes in cerebral hemodynamics, we hypothesized that 

participants with HF would have a lower TSI and mean CBFV nadir after posture transition, 

compared to control participants (Hypothesis 2a), which was supported by the TSI response 

during the sit-to-walk conditions, but not evident in mean CBFV, or the supine-to-stand 

condition. We also hypothesized that participants with HF would have lower TSI and mean 

CBFV during quiet standing and walking, compared to control participants (Hypothesis 2b). This 
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hypothesis was supported by the TSI response to quiet standing and the TSI and mean CBFV 

response to the sit-to-walk conditions. 

 The secondary objective of this thesis was to assess relationships between cerebral 

perfusion and resting cardiac, cognitive, and vascular function in both participants with HF and 

control participants. We hypothesized that supine and seated TSI and mean CBFV would be 

positively correlated with carotid distensibility, and LVEF and negatively correlated with cfPWV 

(Hypothesis 3a). This hypothesis was supported by relationships between supine mean CBFV 

and cfPWV, seated TSI and LVEF, and supine TSI and LVEF, and cfPWV. We also 

hypothesized that supine and seated TSI and mean CBFV would be positively correlated with 

MoCA score (Hypothesis 3b), which was supported by relationships between MoCA score and 

supine mean CBFV as well as supine TSI. 

 The results of the present study are discussed below, with reference to the current 

understanding of cerebral perfusion in individuals with HF. It is important to note that the studies 

discussed below assessed cerebral hemodynamics in groups of mostly HFrEF, whereas the HF 

group in the present study was composed mostly of individuals with HFmEF and HFpEF.  

6.1 The Effect of Walking Speed on Cardiac Index (Primary Objective 1) 

 To obtain continuous estimates of Qi during walking activity, one of the few approaches 

available is calculation from the non-invasive measurement of finger arterial pressure with the 

Modelflow algorithm. This method tracks cardiac output well during exercise in young adults 

(Faisal et al., 2009); but, Modelflow derived estimates of Q are inaccurate in the setting of 

cardiovascular disease (Bogert et al., 2010). Thus, a single point calibration of Modelflow 

derived Qi using an echocardiography estimate of Qi, as shown in Eq6, was employed in the 

present study. The use of a single point calibration is generally less desirable than using a 
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multiple calibration technique, but a single point lithium dilution calibration of pulse contour 

analysis derived Q has shown similar efficacy to multiple calibrations during incremental 

exercise in healthy, young adults (Elliot et al., 2012). To assess the validity of the single point 

echocardiography calibration of Modeflow derived Qi for ambulatory studies in healthy 

individuals and clinical populations, this technique should be validated using a portable 

rebreathing device, such as the Innocor (Innovision A/S, Odense, Denmark). This device has 

been shown to produce estimates of Q comparable to “gold standard” techniques, such as Fick 

and thermodilution (Dong et al., 2005; Sobanski et al., 2008). As such a validation was not 

possible in the present study, the potential inaccuracy of the single point calibration technique 

should be considered when interpreting reported values of Qi.  

Determining the central cardiac response to exercise (e.g., cardiopulmonary exercise 

testing) has significant prognostic value for individuals with HF (Lee et al., 2012). In the present 

study, participants with HF had a poor central cardiac response to low intensity activity. Despite 

significantly lower SVi, in the participants with HF compared to control participants during late 

phase walking, there were no significant differences between groups in HR. This blunted HR 

response could potentially be attributed to ß-blockade in participants with HF (Wilmore et al., 

1983; Racine et al., 2003). Given that SVi was lower and there was no compensatory rise in HR, 

it follows that Qi was lower during late phase walking in the participants with HF compared to 

control participants. This finding is in agreement with others that have reported low Q during 

exercise in individuals with HF compared to healthy controls. (Fukuda et al., 2012; Abudiab et 

al., 2013). 

 The participants with HF also showed an attenuated rise in Qi in response to low intensity 

activity, which suggests a poor cardiac response to low intensity activity that is commonly 
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encountered during ADLs. These results are interesting considering that VO2 increases linearly 

with Q (Burton et al., 2004), and since individuals with HF are less metabolically efficient 

(Kemp et al., 1996), it may be expected that they have a higher VO2, and thus Q for the same 

activity level compared to healthy individuals. Previous work has shown that individuals with 

HF have a lower change in Q relative to VO2 during maximum exercise testing, and attributed 

reduced exercise capacity to an inadequate Q response to increased metabolic demand (Abudiab 

et al., 2013). Additionally, the potential impact low Q has on cerebral perfusion (review by Meng 

et al., 2015) may also help explain previously documented exercise intolerance (reviewed by 

Brassard & Gustafsson, 2016) even at low intensity activity, and functional deficits during ADLs 

(Dunlay et al., 2015) in individuals with HF.  

Also noteworthy is that the participants with HF appeared to have a small range of 

walking speeds during the sit to walk transitions, as well as significantly slower gait speed during 

the 8-meter walk test. While slow gait speed during the walking trials may be a consequence of 

exercise intolerance in this patient group, slow gait speed is also an independent predictor of 

frailty in older adults (Castell et al., 2013). Frailty is associated with poor quality of life and 

health outcomes, and it is estimated that up to 79% of HF patients are frail (Vitale et al., 2018). 

While frailty is multifactorial, a poor cardiac response may contribute to decreased exercise 

tolerance and quality of life in the frail state, and measuring gait speed and the cardiac response 

to low intensity activity may be important for effective clinical management of HF.  

6.2 Cerebrovascular Response to Posture Transition, Quiet Standing, and Walking 

(Primary Objective 2) 

6.2.1 Supine and Seated Rest 

 In both supine and seated rest, participants with HF had a trend for lower MAP and SBP, 
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compared to controls participants. This is likely the consequence of the participants with HF 

being on guideline recommended HF management therapy (Ezekowitz et al., 2017). In addition, 

both SVi and Qi were significantly lower in participants with HF compared to control 

participants in both supine and seated postures. Impairment of central hemodynamics has a direct 

effect on cerebral hemodynamics, and in the present study were likely responsible for between 

group differences in cerebral oxygenation. 

During both supine and seated rest, cerebral oxygenation was lower in participants with 

HF compared to control participants. While no studies have reported lower cerebral oxygenation 

during supine rest in individuals with HF, Chen and colleagues (2018) showed lower cerebral 

oxygenation, measured by NIRS, in participants with HF compared to healthy control 

participants during upright seated posture. Seated cerebral oxygenation has also been shown to 

improve in response to decongestion treatment in individuals with acute HF (Madsen et al., 

2000). 

 Surprisingly, despite lower cerebral oxygenation, there were no significant differences in 

mean CBFV during either supine or seated rest between the participants with HF and the control 

participants. This contradicts previous work, which reported lower mean CBFV in individuals 

with HF compared to control participants in both supine and seated posture (Vogels et al., 2008; 

Serber et al., 2014). Previous studies have also reported lower CBF in supine posture in 

participants with HF compared to healthy controls (Loncar et al., 2011; Fraser et al., 2015). In 

the present study the lack of difference between groups in mean CBFV is likely the consequence 

of response variability and small sample size. 

 Unlike in supine posture, the physiological mechanisms responsible for maintaining 

cerebral perfusion must overcome the hydrostatic gradient resulting from the force of gravity in 
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upright postures. This can result in lower cerebral perfusion while in upright compared to supine 

postures, as was observed in the present study and others (Alperin et al., 2005; Fraser et al., 

2015; Garret et al., 2017). Fraser and colleagues (2015) reported a greater reduction in CBF 

when moving from supine to seated posture in individuals with HF compared to controls. This is 

in contrast to the present study, which found that there were no significant differences between 

groups in the reduction in mean CBFV when comparing seated and supine postures.  

6.2.2 Acute Response to Posture Transition 

No previous studies have reported the acute response of cerebral hemodynamics during 

supine-to-stand transition in individuals with HF. In the present study, there were no significant 

differences in mean CBFV or TSI nadir between participants with HF and control participants. 

The latter result is particularly interesting given that participants with HF started at a 

significantly lower TSI during supine rest compared to control participants; however, a trend for 

a higher MAP nadir in participants with HF may be indicative of better BP regulation in the 

acute phase of the supine-to-stand posture transition. Better BP regulation in the HF group could 

potentially be the consequence of the high male to female ratio (7/3) in the HF group, as men 

have been shown to have better orthostatic tolerance compared to women (Montgomery et al., 

1977; Covertino 1998; Fu et al., 2004). While this has been attributed to the effect of sex 

hormones on peripheral vascular tone in young women (Shoemaker et al., 2001; Edgell et al., 

2012), older postmenopausal women have shown decreased sensitivity of the cardiac arm of the 

baroreflex along with greater drops in BP in response to nitroprusside compared to young men 

and women (Barnes et al., 2012). Additionally, studies of older adults have shown that women 

have higher rates of orthostatic hypotension (Finucane et al., 2014), are more likely to fall 

(Finucane et al., 2017), and are more likely to present at an emergency department with syncope 
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(Groosman et al., 2005), compared to men. Better BP regulation could have helped attenuate the 

reduction in cerebral oxygenation, despite lower Qi in participants with HF compared to the 

control participants. Additionally, the TSI nadir response in the participants with HF showed a 

high degree of variability, which could have affected the ability to detect differences between 

groups. 

 The TSI nadir was significantly lower in the participants with HF compared to the control 

participants in both the sit-to-walk normal and slow transitions. Unlike in the supine-to-stand 

transition, there were no significant differences in BP nadir between groups, which along with 

lower Qi nadir, could contribute to the lower TSI nadir in participants with HF compared to 

control participants. It is important to note that estimates of SVi, and consequently Qi, during the 

acute phase of either posture transitions should be assessed with caution, as a recent report 

documented significant underestimation of SV by Modelfow during dynamic fluctuations in SV 

(Gibbons et al., 2018). 

6.2.3 Sustained Response to Posture Transition 

 During the quiet standing period after the supine-to-stand transition, MAP, SBP, and Qi 

were significantly lower in the participants with HF compared to the control participants. TSI 

was also significantly lower in the HF compared control group, but mean CBFV was not 

significantly different between groups. The latter result is in contrast to previous work which 

reported lower mean CBFV during quiet standing in individuals with HF compared to healthy 

controls (Serber et al., 2014). Previous reports have shown impaired baroreflex sensitivity in 

individuals with HF (Sopher et al., 1990; Rostagno et al., 1999) which could help explain lower 

BP during upright posture. Lower BP along with lower Qi likely explain lower cerebral 

oxygenation in the HF group. 
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 An interesting finding in the present study was that participants with HF had an effective 

BP response during the acute phase of the supine-to-stand transition (higher MAP compared to 

controls), but lower BP during the sustained phase of quiet standing after transition (lower MAP 

and SBP). A wide range of cardiovascular responses have been reported in individuals with HF, 

likely as a consequence of differing medication regimens between individuals (Bronzwaer et al., 

2017). Both maintained (Abelmann & Fareeduddin, 1969), and significantly reduced (Kubo & 

Cody, 1983; Bronzwaer et al., 2017) BP immediately after transition to upright posture have 

been reported in individuals with HF, but a recent study also showed reduced BP and TPR 

during sustained quiet standing (Bronzwaer et al., 2017). Poor BP regulation during sustained 

quiet standing after posture transition has been attributed to increased venous pooling in some 

individuals with HF (Kubo & Cody, 1983), which could be the consequences of vasodilation of 

peripheral vasculature during upright posture (Goldsmith et al., 1983a; Wroblewski, 1994). In 

the present study, TPR was not significantly different between the participants with HF and the 

control participants at nadir (HF – 1.8±1.6 mmHg/mL/s vs. Control – 1.2±0.9 mmHg/mL/s P = 

0.435) or in the sustained phase (early: HF – 1.2±0.6 mmHg/mL/s vs. Control – 2.0±1.6 

mmHg/mL/s, middle: HF – 1.4±0.6 mmHg/mL/s vs. Control – 2.1±1.7 mmHg/mL/s, late: HF – 

1.4±0.5 mmHg/mL/s vs. Control – 2.1±1.8 mmHg/mL/s, P = 0.224) of the supine-to-stand 

transition; however, a greater number of participants and additional measurement would likely 

be required to effectively assess the peripheral vascular response to orthostasis in this group.  

 In the present study, central hemodynamics (SBP, MAP, SVi, and Qi) and cerebral 

oxygenation were lower in participants with HF compared to control participants during slow 

and normal pace walking. Previous work has shown BP (MAP and SBP) and cerebral 

oxygenation at peak exercise to be lower in participants with HF, compared to control 
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participants (Chen et al., 2018). Similar work has shown MAP, Q, and cerebral oxygenation to 

be lower from 20-80% peak exercise in individuals with HF and COPD, compared to individuals 

with COPD only (Oliveira et al., 2015). Together, these findings suggest that poor central cardiac 

function in individuals with HF may result in cerebral ischemia during acute high intensity 

activity, but also chronically during low intensity activities that are common of ADLs. 

 We also showed that the participants with HF had lower mean CBFV during slow pace 

walking and a trend for lower mean CBFV during normal pace walking compared to control 

participants. This is similar to the findings of Oliveira and colleagues (2015), which showed 

lower NIRS-based CBF index from 20-80% peak exercise in individuals with HF and COPD 

compared to individuals with COPD only. Low cerebral perfusion during walking and higher 

intensity exercise could be the result of a poor Q response to exercise or impaired cerebral 

autoregulation. As a result of reduced Q at rest, individuals with HF operate with lower CBF 

compared to healthy individuals (Fraser et al., 2015; reviewed by Meng et al., 2015). In addition, 

cerebral autoregulation has been previously documented to be more likely to be impaired in 

individuals with HF compared to controls during rest (Caldas et al., 2016) and sub-maximal 

handgrip exercise (Caldas et al., 2018). In the absence of effective autoregulation, individuals 

with HF may experience greater fluctuations in CBF during ADLs. Work completed in 

conjunction with this thesis attempted to characterize the cerebral autoregulation response in 

individuals with HF during posture transitions and walking, and showed potentially impaired 

static cerebral autoregulation in response to ambulation in this same group of HF participants 

(Poirier, see Declaration (pg. ii)).  

6.3 Relationship between Cerebral Perfusion and LVEF, MoCA, and Arterial Stiffness 

(Secondary Objective 1) 
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6.3.1 Relationship between Cerebral Perfusion and LVEF 

 Previous work has shown a significant positive correlation (r = 0.27, P = 0.022) between 

supine CBF and LVEF in individuals with HF (Loncar et al., 2010). In the present study, LVEF 

was significantly lower in the HF group, and while there was no significant correlation between 

mean CBFV and LVEF it is possible that had supine mean CBFV data had been available for all 

participants in the study, and had we recruited more participants there would have been a 

significant relationship between LVEF and mean CBFV. We were able to collect supine TSI data 

on all of our participants, and this larger sample size likely helped reveal the significant positive 

relationship between LVEF and supine TSI (r = 0.46, P = 0.040). 

6.3.2 Relationship between Cerebral Perfusion and MoCA 

 There were no significant between group difference in MoCA score, but there was a 

significant relationship between MoCA score and mean CBFV during supine rest (r = 0.58, P = 

0.018). Previous studies have reported relationships between CBF and cognition in healthy adults 

(Leeuwis et al., 2018) and CBF and cognitive decline in individuals with hypertension (Kitagawa 

et al., 2009). Interestingly, despite a well described relationship between cerebral ischemia and 

cognitive impairment in the literature (Stradecki-Cohan et al., 2017) there was no relationship 

between MoCA score and supine TSI. 

6.3.3 Relationship between Cerebral Perfusion and Arterial Stiffness 

 There were no significant between group differences in either carotid distensibility or 

cfPWV. This was particularly surprising given that hypertension, a common consequence of 

arterial stiffening, is the leading risk factor for HF (GDB 2016 Risk Factors Collaborators, 2017; 

Pinho-Gomes & Rahimi, 2019). There were no significant relationships between carotid artery 

distensibility and mean CBFV; however, there was a significant positive relationship between 
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cfPWV and supine mean CBFV. While no previous investigations have reported the relationship 

between mean CBFV and cfPWV in older adults with HF, studies of normo- and hypertensive 

older adults have shown a trend for a negative relationship between supine anterior cerebral 

blood flow and brachial-ankle PWV (rs = −0.36, P = 0.07) as well as a significant positive 

relationship between supine cerebrovascular resistance and brachial-ankle PWV (rs = 0.59, P = 

0.001) (Robertson et al., 2009). There were no significant relationships between arterial stiffness 

and TSI. Evidence has linked elevated cfPWV to poor grey and white matter integrity in middle-

aged adults, which presumably is the consequence of ischemic damage, but no similar 

investigations have been conducted in individuals with HF (Tsao et al., 2013; Maillard et al., 

2016). 

 It was expected that mean CBFV and TSI would respond similarly to posture transitions 

and walking, as well as be similarly correlated to resting parameters. This is in contrast to what is 

shown in the above data and correlation analysis, and is further discussed in the limitations 

section. 

6.3.4 Relationship between Cardiac Function and Cerebral Perfusion 

 Several studies have shown that HF results in compromised CBF at rest (Loncar et al., 

2011; Fraser et al., 2015; Oliveira et al., 2015), and CBF and Q during exercise (Oliveira et al., 

2015). Cerebral oxygenation has also been shown to be reduced as a consequence of HF at rest 

and during exercise (Oliveira et al., 2015; Chen et al., 2018). Here we showed an expected 

positive relationship between Qi and mean CBFV in both the participants with HF and control 

participants. Alternatively, there were differing relationships between TSI and Qi in the 

participants with HF and control participants, such that the relationship was positive in the 

control participants, and negative in the participants with HF. This suggests cerebral desaturation 
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in individuals with HF during quiet standing and low intensity activity, which was likely the 

consequence of both low Q, and elevated SNS activity promoting vasoconstriction in both 

cerebral and peripheral vascular beds, including a relative constriction in the working leg 

muscles that are almost certainly operating under reduced flow compared to healthy adults. 

Distribution of blood flow toward working muscles and away from the brain has been shown in 

previous work in healthy young adults (Ogoh et al., 2005), the relationship demonstrated in the 

present study is particularly problematic because the conditions evaluated (quiet standing, and 

slow and normal pace walking) are extremely common during ADLs. Consequently, there is the 

potential for individuals with HF to experience cerebral ischemia chronically, which may 

contribute to previously documented functional deficits during ADLs (Dunley et al., 2015), 

cognitive impairment (Heckman 2007; Harkness 2012; Ampadu & Morley, 2015), and exercise 

intolerance (reviewed by Brassard & Gustafsson, 2016) in individuals with HF. Further 

investigation into the mechanism responsible for cerebral desaturation in individuals with HF, 

and potential interventions, such as preventing hypoxia by increasing oxygen delivery by altering 

hemoglobin affinity for oxygen, a method shown to be effective in improving exercise tolerance 

in mice with chronic HF (Watanabe et al., 2008), is warranted. 
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7.0 Limitations 

 The main outcomes discussed, TSI and mean CBFV, were collected using NIRS and 

TCD ultrasound respectively, both of which have inherent limitations that should be considered. 

NIRS is susceptible to light attenuation from extracranial skin contamination, skin blood flow, 

and melanin, none of which are likely to be uniform between participants (Greenberg et al., 

2017), impacting the absolute comparisons between groups. Also, while the NIRS signal was 

pulsatile, confirming that an arterial component was being measured, more than 70% of the 

hemoglobin in the brain is in venous beds; therefore, detected changes may predominately reflect 

changes in venous saturation (Wahr et al., 1996). Changes in cerebral hemoglobin saturation can 

result from either changes in oxygen delivery, due to changes in CBF or arterial saturation, or 

cerebral oxygenation utilization (Wahr et al., 1996) thus, changes in cerebral hemoglobin 

saturation measured by NIRS may not necessarily suggest changes in CBF. Finally, a wide range 

of cerebral oxygenation values have been reported in individuals with HF with no concrete 

clinical significance derived from the absolute value, thereby limiting the clinical implications of 

even a significant finding (Rifai et al., 2012). 

 The limitations of TCD ultrasound are also discussed in Poirier, see Declaration (pg. ii). 

TCD ultrasound is a non-imaging form of ultrasound, so it is not possible to determine the angle 

of incidence when calculating blood velocity from the Doppler spectrogram. As a result, an 

insonation angle of 0° is assumed, but may not always be accurate. Furthermore, due to the 

absence of an imaging component, TCD does not allow for estimation of vessel diameter; 

therefore, for CBFV to be an accurate estimate of CBF, vessel diameter is assumed to stay 

constant. Previous reports have shown MCA diameter to change in young healthy adults during 

hypo- and hypercapnia (Coverdale et al., 2014; Coverdale et al., 2015), but in the present study 
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there were no significant differences between groups in PETCO2, suggesting relative normocapia 

in the participants with HF. The effect of posture, and subsequently changes in BP at the level of 

the MCA may also result in changes in CBFV without corresponding changes in CBF. In the 

present study, control participants showed a reduction in mean CBFV in upright seated, 

compared to supine posture, whereas previous work showed that CBF was not significantly 

decreased in seated compared to supine posture in healthy controls (Fraser et a., 2015). The 

potential impact of age, genetics, and atherosclerotic risk in the present study population may 

impact MCA diameter. Additionally, changes in CO2 affects cerebral vascular resistance and can 

alter CBF potentially without changing CBFV, and overall CBFV should not be directly 

interpreted as CBF. 

 Due to the difficulty in recruiting clinical populations, this study had a very small sample 

size (n = 10 for HF and n = 13 for controls) that was not effectively sex-matched (male/female: 

HF – 7/3; Control – 4/9). In addition, a cross-sectional design was employed, and participants 

only completed each transition in the experimental protocol once. There is large variability in the 

cardio- and cerebrovascular response to posture transition, and these responses may change 

within a person even over the course of the day. Also likely a consequence of the small sample 

size and subject variability was the lack of consistency between mean CBFV and TSI. 

Considering CBF is a major determinant in cerebral oxygenation, it was expected that TSI and 

mean CBFV would show similar responses; however, the above data and correlations, as well as 

Appendix N show inconsistency between these two variables. As noted, this is likely the 

consequence the small sample size, but may also be affected by changes in arterial oxygenation 

(see Appendix N; Munger et al., 1994). 
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 Variability within the HF group was also likely impacted by the inclusion of individuals 

with HFrEF, HFmEF, and HFpEF. Each subtype of HF may differ in underlying 

pathophysiology, which in turn could affect the cardio- and cerebrovascular responses measured 

in this study; however, it is important that clinical research studies include individuals that are 

representative of a real-world clinical population, thus we included individuals from each HF 

subtype.  

 Some control participants were treated for hypertension and on similar BP regulating 

medications to the participants with HF. Still, the participants with HF were significantly more 

likely to be taking ß-blockers (P < 0.001), ACE-inhibitors (P = 0.020), diuretics (P = 0.006), and 

anticoagulants (P = 0.007), and thus medication cannot be ruled out as a confounding factor. 

Additionally, the control group was comprised of community dwelling older adults who were 

presumed to be healthy. Some features of this group (e.g., arrhythmias and elevated cfPWV) may 

have affected comparisons between the HF and control groups. There is the potential that had the 

control group been “healthier”, then between group comparisons would have shown additional 

deficits in the HF group. 

 Finally, the inclusion of a sit-to-stand transition would have allowed for comparisons 

between quiet standing and walking. Unfortunately, due to time constraints, we were unable to 

include a sit-to-stand transition in the current study. 
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8.0 Future Directions 

 While this study was able to show lower cerebral oxygenation in individuals with HF 

compared to control participants, more robust conclusions could be drawn with continued data 

collection. Ideally, this study would include larger groups of participants with HFrEF, HFmEF, 

and HFpEF, as well as a healthy age- and sex-matched control group and a treated hypertensive 

age- and sex-matched control group. Each of these populations present unique characteristics 

that could allow for the further characterization of cerebral ischemia across the spectrum of HF. 

 A cross-sectional design allowed for only minimal interrogation of relationships between 

cerebral and central hemodynamics. Future work should attempt to further investigate how 

differences in pathophysiology between HFpEF and HFrEF (e.g., elevated rates of hypertension 

and potentially greater arterial stiffness in HFpEF) affect cerebral perfusion and oxygenation, 

both at rest and during ADLs. As noted, the acute and sustained BP response during the supine-

to-stand transition also warrants further investigation in a larger study of individuals with HF, 

treated hypertensive, and healthy older adults as medication may significantly impact the 

responses observed in this study. Characterization of the peripheral vascular response to 

orthostasis in individuals with HF may reveal possible treatment avenues that help prevent 

adverse health outcomes as a result of falls in this older patient group. Similarly, we were unable 

to fully interrogate the effect of respiratory dysfunction, common in individuals with HF (e.g. 

exercise oscillatory ventilation), on CBF and oxygenation. There is the potential that respiratory 

abnormalities further reduce CBF adversely affect exercise tolerance and quality of life in 

individuals with HF. Further work should attempt to characterize cerebral hemodynamics during 

low and moderate intensity activity that is common of ADLs in individuals with HF and 

respiratory abnormalities. 
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Individuals with NYHA class IV HF were excluded from this study, as is common in the 

literature. This is perhaps due to limited mobility, and severe symptomology which frequently 

requires hospitalization. Efforts to characterize resting cerebral hemodynamics in these 

individuals may elucidate avenues for treatment that preserve quality of life. 

In the present study we noted an interesting relationship between TSI and Qi such that in 

individuals with HF cerebral oxygenation decreased in response to increased Qi during low 

intensity activity. To determine if this relationship is the result of blood flow competition 

between working muscle and cerebral tissue, future work should attempt to measure TSI and Qi 

during increases in Q that are not concomitant with blood flow competition, such as during a 

cold presser test (Elias & Ajayi, 2019) or in response to acute dobutamide treatment (Dubin et 

al., 2017). 

 Finally, a longitudinal study that follows individuals with HF over the course of their 

disease progression could determine how cerebral perfusion is affected over the course of HF 

treatment. There is the potential that disease progression, or intervention through exercise and 

pharmacotherapy could drastically alter CBF and the cerebral hemodynamic response to 

functional challenges such as posture transitions and walking. Without longitudinal or 

randomized control trial data, the characterization of cerebral ischemia in individuals with HF 

will have minimal clinical impact, and not translate into improved quality of life in clinical 

populations. 
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9.0 Conclusion 

 We sought to investigate the cerebral hemodynamic response to posture transitions and 

walking in participants with HF. Overall, cerebral oxygenation was lower in participants with HF 

compared to control participants during rest, quiet standing, and walking. Reduced cerebral 

oxygenation is likely the consequence of the dysregulation of multiple physiological system, 

with BP and Q being the most suspect in the present study. Interestingly, participants with HF 

had a negative relationship between Qi and TSI, whereas there was a positive relationship in the 

control participants. This suggests an ineffective blood flow redistribution during standing and 

walking in individuals with HF and may explain previously reported exercise intolerance and 

cognitive impairment in this population. These results clearly show the need for the further 

investigation of cerebral hemodynamics in individuals with HF, particularly those with HFpEF. 

These individuals often respond ineffectively to clinical treatment, and understanding the effect 

of changes in central cardiac function on cerebral integrity and cognitive function may 

precipitate treatment avenues that improve quality of life. 

This study was the first to assess cardio- and cerebrovascular responses in real world 

conditions outside of the strict confines of a conventional laboratory setting. Experimental 

paradigms like in the present study, while challenging from a data collection perspective, allow 

for the characterization of hemodynamic responses that mimic the stress of daily function. 

Additional work should continue to characterize these responses by utilizing advanced 

ambulatory and optical monitoring technology, in an effort to interrogate clinically relevant 

questions that are also impactful to the challenges daily life and quality of life of older adults. 
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Appendix 
 
Appendix A: Health Status Questionnaire 
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Appendix B: Spline Interpolation of CBFV Trace 

 
This sample figure shows the raw CBFV trace (black) and the clean CBFV trace generated from 

spline interpolation (red). Vertical dashed black lines indicate cardiac cycles. There is minimal 

difference between raw and clean data when the input signal is high quality (cardiac cycles 1 and 

2), but spline interpolation prevented data loss when signal dropout occurred (cardiac cycles 3 

and 4).  
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Appendix C: Cardiorespiratory and cerebrovascular variables during supine and seated 
rest 

All values are mean±SD. HR – heart rate; MAP – mean arterial pressure; SBP – systolic blood 

pressure; DBP – diastolic blood pressure; SVi – stroke volume index; Qi – cardiac index; CBFV 

– cerebral blood flow velocity; TSI – tissue saturation index; PETCO2 – partial pressure of end-

tidal carbon dioxide. Statistical analysis: gr – group effect; con – condition effect; int(b) – control 

group: supine vs. seated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Supine Seated P-value 

 Control HF Control HF  

HR (bpm) 59.5±11.0 65.0±7.8 64.6±11.1 64.9±7.3 int(b): < 0.001 

MAP (mmHg) 92.5±10.9 83.5±10.4 91.3±14.5 81.7±10.3 gr: 0.062 

SBP (mmHg) 139.4±19.6 122.8±21.8 135.0±21.5 114.8±16.5 gr: 0.079 

DBP (mmHg) 68.9±10.1 62.9±8.6 69.8±14.1 64.2±8.8 n.s. 

SVi (mL/m2) 42.8±8.2 30.5±5.6 41.7±10.6 27.1±4.8 gr: < 0.001 

Qi (L/min/m2) 2.5±0.6 1.9±0.5 2.7±0.6 1.6±0.3 gr: < 0.001 

Mean CBFV(cm/s) 47.5±11.0 41.9±6.1 44.3±6.0 39.6±5.7 con: 0.047 

Peak CBFV (cm/s) 75.5±14.1 70.9±11.5 76.0±12.7 71.6±10.9 n.s. 

Min CBFV (cm/s) 26.5±6.6 22.1±5.6 22.8±3.6 19.9±4.4 gr: 0.089; con: 

0.018 

TSI (%) 70.3±4.0 67.1±5.9 71.3±3.6 65.1±6.0 gr: 0.020 

PETCO2 (mmHg) 37.4±2.4 35.2±2.9 37.0±2.7 35.1±3.7 gr: 0.094 
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Appendix D: Cardio- and cerebrovascular variables at nadir during supine-to-stand 
transition 

All values are mean±SD. HR – heart rate; MAP – mean arterial pressure; SBP – systolic blood 

pressure; DBP – diastolic blood pressure; SVi – stroke volume index; Qi – cardiac index; CBFV 

– cerebral blood flow velocity; TSI – tissue saturation index; Oxy Hb – oxygenated hemoglobin; 

HHb – oxygenated hemoglobin; tHb – total hemoglobin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Control HF P-value 

HR (bpm) 69.8±17.9 71.4±19.3 n.s. 

MAP (mmHg) 53.8±12.6 64.0±9.2 0.066 

SBP (mmHg) 80.2±16.7 88.7±16.8 n.s. 

DBP (mmHg) 44.3±13.4 54.8±17.6 n.s. 

SVi (mL/m2) 47.9±17.0 27.2±16.3 0.028 

Qi (L/min/m2) 3.4±1.3 1.7±1.2 0.021 

Mean CBFV(cm/s) 37.4±9.6 34.6±7.0 n.s. 

Peak CBFV (cm/s) 69.1±17.6 66.4±11.1 n.s. 

Min CBFV (cm/s) 17.5±5.1 16.3±3.7 n.s. 

TSI (%) 68.2±4.0 65.1±6.0 n.s. 

Relative Oxy Hb ( μM) -2.2±1.5 -2.2±1.7 n.s. 

Relative HHb (μM) -0.5±0.3 -0.5±0.6 n.s. 

Relative tHb (μM) -2.3±1.6 -2.5±2.2 n.s. 
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Appendix E: Cardio- and cerebrovascular variables at nadir during sit-to-walk (normal) 
and sit-to-walk (slow) transitions 

All values are mean±SD. HR – heart rate; MAP – mean arterial pressure; SBP – systolic blood 

pressure; DBP – diastolic blood pressure; SVi – stroke volume index; Qi – cardiac index; CBFV 

– cerebral blood flow velocity; TSI – tissue saturation index; Oxy Hb – oxygenated hemoglobin; 

HHb – oxygenated hemoglobin; tHb – total hemoglobin. Statistical analysis: gr – group effect; 

con – condition effect.

 Normal Slow P-value 

 Control HF Control HF  

HR (bpm) 73.2±12.0 65.4±11.5 73.9±12.5 72.9±16.7 n.s. 

MAP (mmHg) 69.0±13.1 64.8±12.2 65.3±18.1 60.6±8.3 n.s. 

SBP (mmHg) 99.8±12.4 97.1±20.4 94.4±15.3 79.7±16.0 con: 0.036 

DBP (mmHg) 54.3±15.0 54.8±16.5 53.7±17.8 52.2±8.6 n.s. 

SVi (mL/m2) 46.0±11.9 34.1±11.8 42.9±9.2 28.2±9.4 gr: 0.007 

Qi (L/min/m2) 3.6±1.0 2.1±0.8 3.2±0.3 1.9±0.8 gr: < 0.001 

Mean CBFV(cm/s) 38.1±7.8 36.0±6.0 40.3±6.2 32.5±5.8 n.s. 

Peak CBFV (cm/s) 69.7±13.5 73.0±12.0 74.6±15.7 69.0±11.3 n.s. 

Min CBFV (cm/s) 17.2±5.1 17.1±5.3 18.4±5.1 14.1±4.2 n.s. 

TSI (%) 69.8±3.3 63.5±6.6 69.9±4.2 64.0±6.9 gr: 0.009 

Relative Oxy Hb (μM) -1.5±1.2 -1.5±0.9 -1.6±1.4 -1.5±1.0 n.s. 

Relative HHb (μM) -0.2±0.5 -0.4±0.3 -0.3±0.3 -0.3±0.2 n.s. 

Relative tHb (μM) -1.5±1.2 -1.9±1.0 -1.7±1.6 -1.6±1.1 n.s. 
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Appendix F: Cardiorespiratory and cerebrovascular variables during early, middle, and late stand 

All values are mean±SD. HR – heart rate; MAP – mean arterial pressure; SBP – systolic blood pressure; DBP – diastolic blood 
pressure; SVi – stroke volume index; Qi – cardiac index; CBFV – cerebral blood flow velocity; TSI – tissue saturation index; Oxy Hb 
– oxygenated hemoglobin; HHb – oxygenated hemoglobin; tHb – total hemoglobin; PETCO2 – partial pressure of end-tidal carbon 
dioxide. Statistical analysis: gr – group effect; ti (a) – time effect: early vs. middle; ti(b) – time effect: early vs. late. 

 Early Middle Late P-value 
 Control HF Control HF Control HF  
HR (bpm) 68.5±12.8 72.1±6.6 69.3±12.1 72.4±9.3 70.3±11.3 70.2±8.1 n.s. 
MAP (mmHg) 79.7±17.5 66.5±9.5 85.0±12.7 73.1±12.2 83.5±11.3 73.5±13.8 gr: 0.041; ti(a): 0.016; 

ti(b): 0.033  
SBP (mmHg) 115.6±25.2 95.3±14.1 124.4±19.6 104.2±24.4 124.4±17.7 106.3±23.6 gr: 0.028; ti(a): 0.025; 

ti(b): 0.020 
DBP (mmHg) 63.4±14.8 54.0±11.3 65.9±11.7 59.5±10.2 64.8±11.0 58.8±11.8 ti(a): 0.016; ti(b): 0.033 

SVi (mL/m2) 38.6±8.4 28.4±6.5 38.9±10.4 25.9±6.7 39.1±9.5 27.2±6.7 gr: 0.005 
Qi (L/min/m2) 2.6±0.6 1.9±0.5 2.7±0.7 1.7±0.5 2.8±0.7 1.8±0.5 gr: 0.006 
Mean 
CBFV(cm/s) 

41.7±9.6 37.1±6.0 42.4±8.0 38.4±7.7 43.1±8.8 37.5±6.5 n.s. 

Peak CBFV 
(cm/s) 

72.1±15.4 69.7±12.2 72.5±14.8 70.1±11.4 73.4±15.2 68.7±8.6 n.s. 

Min CBFV 
(cm/s) 

22.1±4.7 19.1±4.9 22.8±3.5 20.3±6.3 23.1±4.5 19.0±5.5 n.s. 

TSI (%) 69.7±4.0 65.3±5.9 69.9±4.2 64.8±6.0 69.6±4.3 64.8±6.1 gr: 0.034 
Relative Oxy 
Hb (μM) 

-1.6±1.1 -2.2±2.5 -1.4±1.2 -1.6±2.3 -1.4±1.2 -1.4±2.2 ti(b): 0.025 

Relative HHb 
(μM) 

0.4±0.8 0.4±0.8 0.6±0.7 0.7±0.9 0.7±0.8 0.8±1.1 ti(a): < 0.001; ti(b): 
0.010 

Relative tHb 
(μM) 

-1.2±1.5 -1.8±2.9 -0.8±1.7 -0.9±2.5 -0.7±1.8 -0.6±2.3 ti(a): < 0.001; ti(b): 
0.002 

PETCO2 (mmHg) 36.4±3.5 33.4±5.4 36.2±3.2 33.9±4.8 35.4±3.5 32.9±5.3 n.s. 
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Appendix G: Cardiorespiratory and cerebrovascular variables during early, middle, and late slow walking 

All values are mean±SD. HR – heart rate; MAP – mean arterial pressure; SBP – systolic blood pressure; DBP – diastolic blood 
pressure; SVi – stroke volume index; Qi – cardiac index; CBFV – cerebral blood flow velocity; TSI – tissue saturation index; Oxy Hb 
– oxygenated hemoglobin; HHb – deoxygenated hemoglobin; tHb – total hemoglobin; PETCO2 – partial pressure of end-tidal carbon 
dioxide. Statistical analysis: gr – group effect; cn – condition effect; ti (a) – time effect: early vs. middle; ti(b) – time effect: early vs. 
late; int(a) – slow pace walking: HF group vs. control group; int(c) – HF group: slow vs. normal pace; int(d) – control group: slow vs. 
normal pace. 
 
 

 Early Middle Late P-value 
 Control HF Control HF Control HF  
HR (bpm) 73.6±15.9 74.9±6.0 76.2±14.9 76.6±6.8 76.5±12.9 79.7±7.9 ti(c): 0.007; cn: < 0.001 

MAP (mmHg) 74.3±17.4 72.9±12.1 77.3±19.1 71.3±19.1 76.9±21.7 77.8±21.7 gr: 0.043; cn: 0.062 

SBP (mmHg) 119.8±21.6 100.8±19.4 127.4±23.4 96.0±23.3 126.3±28.5 106.9±28.7 gr: 0.006; cn: 0.008 

DBP (mmHg) 64.7±16.1 58.9±8.2 66.8±16.2 57.6±9.8 66.2±18.0 60.7±7.4 n.s. 

SVi (mL/m2) 44.0±10.7 31.4±7.0 44.4±10.5 29.7±8.6 45.7±9.7 30.8±8.5 gr: 0.001; cn: 0.013 

Qi (L/min/m2) 3.2±0.6 2.2±0.5 3.4±0.6 2.1±0.5 3.5±0.6 2.2±0.5 ti(c): 0.013; int(a): 0.001; int(c): 
0.017; int(d): < 0.001  

Mean CBFV(cm/s) 45.2±6.1 37.9±6.2 46.7±6.9 38.4±5.5 46.8±6.7 39.2±5.4 ti(a): 0.056 ti(c): 0.011; int(a): 
0.019; int(c): 0.002; 

Peak CBFV (cm/s) 81.7±10.1 76.2±10.6 83.3±10.6 76.8±9.6 83.3±11.0 77.0±10.2 int(c): 0.048 

Min CBFV (cm/s) 21.4±5.3 16.7±5.2 21.3±5.6 16.5±5.3 20.9±5.1 16.7±5.4 int(a): 0.054; int(c): 0.008 

TSI (%) 70.9±4.2 64.0±6.7 70.4±3.9 63.4±6.9 70.1±3.8 63.3±6.7 gr: 0.004; ti(c): 0.027 

Relative Oxy Hb 
(μM) 

-1.0±0.8 -1.3±1.0 -1.1±0.9 -1.6±0.9 -1.1±0.9 -1.5±0.9 n.s. 

Relative HHb (μM) 0.2±0.3 0.3±0.4 0.4±0.3 0.4±0.4 0.5±0.4 0.5±0.4 ti(a): 0.052; ti(c): 0.011; int(c): 
0.012 

Relative tHb (μM) -0.8±0.9 -1.1±1.0 -0.6±1.0 -1.1±1.0 -0.6±0.9 -1.0±1.0 int(c): 0.016 

PETCO2 (mmHg) 36.6±5.4 37.8±4.1 37.9±4.8 37.7±3.3 37.5±5.3 37.2±2.9 cn: 0.035 
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Appendix H: Cardiorespiratory and cerebrovascular variables during early, middle, and late normal walking 

All values are mean±SD. HR – heart rate; MAP – mean arterial pressure; SBP – systolic blood pressure; DBP – diastolic blood 
pressure; SVi – stroke volume index; Qi – cardiac index; CBFV – cerebral blood flow velocity; TSI – tissue saturation index; Oxy Hb 
– oxygenated hemoglobin; HHb – deoxygenated hemoglobin; tHb – total hemoglobin; PETCO2 – partial pressure of end-tidal carbon 
dioxide. Statistical analysis: gr – group effect; cn – condition effect; ti (a) – time effect: early vs. middle; ti(b) – time effect: early vs. 
late; int(b) – normal pace walking: HF group vs. control group; int(c) – HF group: slow vs. normal pace; int(d) – control group: slow 
vs. normal pace.

 Early Middle Late P-value 
 Control HF Control HF Control HF  
HR (bpm) 80.5±9.5 79.3±7.3 82.3±13.9 83.5±8.9 82.2±15.2 89.0±11.8 ti(c): 0.007; cn: < 0.001 

MAP (mmHg) 90.8±21.4 73.4±10.0 94.5±21.3 75.3±14.1 91.1±18.2 77.4±14.0 gr: 0.043; cn: 0.062 

SBP (mmHg) 128.7±20.0 104.3±18.8 136.1±16.4 105.6±26.1 134.2±15.3 104.5±24.3 gr: 0.006; cn: 0.008 

DBP (mmHg) 69.3±20.4 57.6±7.0 70.7±21.6 58.4±9.9 66.6±17.3 61.0±9.2 n.s. 

SVi (mL/m2) 44.9±12.5 34.0±7.7 47.8±11.1 32.9±9.2 53.2±11.7 29.4±8.9 gr: 0.001; cn: 0.013 

Qi (L/min/m2) 3.9±1.2 2.5±0.7 4.3±1.3 2.5±0.7 4.8±1.4 2.4±0.6 ti(c): 0.013; int(b): < 0.001; int(c): 
0.017; int(d): < 0.001 

Mean CBFV(cm/s) 44.2±8.4 40.4±6.7 46.4±8.6 40.7±5.9 47.1±7.5 41.0±5.7 ti(a): 0.056 ti(c): 0.011; int(b): 
0.078; int(c): 0.002; 

Peak CBFV (cm/s) 79.7±12.7 78.7±10.5 81.2±12.9 77.6±10.9 83.0±12.3 77.7±11.6 int(c): 0.048 

Min CBFV (cm/s) 19.8±5.3 18.4±7.1 21.0±4.3 18.8±6.2 20.3±4.9 18.6±5.3 int(a): 0.054; int(c): 0.008 

TSI (%) 70.6±3.7 63.3±6.6 70.3±3.5 64.0±6.6 70.1±3.5 64.0±6.9 gr: 0.004; ti(c): 0.027 

Relative Oxy Hb 
(μM) 

-1.1±1.1 -1.6±1.1 -1.0±1.0 -1.5±1.0 -1.0±1.0 -1.4±1.1 n.s. 

Relative HHb 
(μM) 

0.2±0.4 0.0±0.5 0.5±0.7 0.1±0.5 0.5±0.9 0.1±0.6 ti(a): 0.052; ti(c): 0.011; int(b): 
0.090; int(c): 0.012 

Relative tHb (μM) -1.0±1.1 -1.6±0.9 -0.5±1.0 -1.4±1.0 -0.5±0.9 -1.3±1.0 int(b): 0.024; int(c): 0.016 

PETCO2 (mmHg) 36.2±2.4 36.0±3.6 37.2±3.3 36.9±2.7 38.0±2.9 37.3±2.8 cn: 0.035 
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Appendix I: Cerebral hemodynamic and hemoglobin concentration nadirs during supine-
to-stand transition 

 
Graph format is the same as described in Figure 5.2. CBFV – cerebral blood flow velocity; Oxy 

Hb – oxygenated hemoglobin; HHb – deoxygenated hemoglobin; tHb – total hemoglobin. 

“Relative” indicates values are a change score from the baseline value. 
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Appendix J: Cerebral hemodynamic and hemoglobin concentration nadirs during sit-to-
walk (slow) and sit-to-walk (normal) transition 

 
Graph format is the same as described in Figure 5.2. CBFV – cerebral blood flow velocity; Oxy 

Hb – oxygenated hemoglobin; HHb – deoxygenated hemoglobin; tHb – total hemoglobin. 

“Relative” indicates the values are a change score from the baseline value. 
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Appendix K: Cerebral hemodynamic and hemoglobin concentration response during early, 
middle, and late phase standing after supine-to-stand transition 

 
Graph format is the same as described in Figure 5.2. CBFV – cerebral blood flow velocity; Oxy 

Hb – oxygenated hemoglobin; HHb – deoxygenated hemoglobin; tHb – total hemoglobin. 

“Relative” indicates the values are a change score from the baseline value. 
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Appendix L: Cerebral hemodynamic and hemoglobin concentration response during early, 
middle, and late phase slow and normal pace walking after sit-to-walk transition 

 
Graph format is the same as described in Figure 5.8. CBFV – cerebral blood flow velocity; Oxy 

Hb – oxygenated hemoglobin. * indicates significant difference P < 0.05; ** indicates significant 

difference P < 0.01; † indicates a trend to be different P < 0.1. Significance lines center above a 

single bar indicate an interaction effect, while significance lines centers between two bars 

indicate a main effect of condition (left) or a main effect of time (right). Group main effects are 

shown in the lower left corner of each graph. “Relative” indicates the values are a change score 

from the baseline value. 
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Appendix M: Cerebral hemoglobin response during early, middle, and late phase slow and 
normal pace walking after sit-to-walk transition 

 
Graph format is the same as described in Figure 5.8. HHb – deoxygenated hemoglobin. * 

indicates significant difference P < 0.05; ** indicates significant difference P < 0.01; † indicates 

a trend to be different P < 0.1. Significance lines center above a single bar indicate an interaction 

effect, while significance lines centers between two bars indicate a main effect of condition (left) 

or a main effect of time (right). Group main effects are shown in the lower left corner of each 

graph. “Relative” indicates the values are a change score from the baseline value. 
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Appendix N: Relationship between mean CBFV and Qi at rest 
 

 

 
Salmon coloured circles represent the control group and blue coloured triangles represent the HF 

group. CBFV and Qi were measured in supine (top) and seated (bottom) posture. CBFV – 

cerebral blood flow velocity; Qi – cardiac index. 
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Appendix O: Repeated-measures correlations between TSI and mean CBFV 

 
Graph format is the same as described in Figure 5.13. Individual data are from the early, middle, 

and late phase of quiet standing, and normal and slow pace walking for each participant.  TSI – 

tissue saturation index; CBFV – cerebral blood flow velocity. 

 
Shown here is a positive relationship between mean CBFV and TSI in the control participants, 

and a trend for a negative relationship in the participants with HF. It should be noted that the 

trend in the HF group was very weak (rrm = -0.21, P = 0.091), and that this was unexpected as 

cerebral oxygenation should increase in response to increasing cerebral perfusion, outside the 

setting of arterial oxygen desaturation. In the present study we did not measure arterial oxygen 

saturation; however, it is possible that arterial desaturation could have occurred in the 

participants with HF as a previous ambulatory study showed that arterial saturation is not 

preserved during wakeful hours in individuals with HF (Munger et al., 1994). 
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Appendix P: Consistency of the mean CBFV and TSI response to walking in individuals 
with HF 

 
Black circles connected by lines indicate individuals with HF during the slow and normal 
pace walking condition. CBFV – cerebral blood flow velocity; TSI – tissue saturation index. 


