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Abstract

The limiting fact that is impeding the increase in data rate in the current generation of

wireless communication is the limited available spectrum in the sub-6 GHz bands. This has

motivated the shift to higher frequencies such as millimeter waves (mm-wave) and terahertz

frequencies where modulation bandwidth of several hundreds of MHz can be utilized to

increase the communication link capacity. The deployment of high data rate mm-wave

base stations will highly depend on the maximum achievable equivalent isotropic radiated

power (EIRP) and on the ability to generate reliable and error free wideband signals. High

EIRP and high efficiency operation can be achieved by using active phased arrays operated

deep into the power amplifiers (PAs) nonlinear region. In this work, a low power and low

complexity compensation schemes to mitigate the impairments exhibited by phase arrays

driven with wideband signals and high efficient nonlinear PAs at mm-wave frequencies are

proposed.

Digital pre-distortion (DPD) techniques can provide an attractive solution to linearize

high efficiency and high EIRP nonlinear phased arrays at mm-wave frequencies. However,

the viable deployment of DPD solutions call for the reduction in the power consumption

of the transmitter observation receiver (TOR) feedback path required to train the DPD

function. To that end, a low power DPD scheme for linearizing mm-wave hybrid beam-

forming antenna systems is presented. The proposed DPD scheme exploits the modularity

of hybrid beamforming systems. During the training phase, the constituent sub-arrays,

are categorized, into (i) the main sub-array that exhibits non-linear distortion and is to

be linearized, and (ii) the auxiliary sub-arrays that operate in the backoff region to avoid

nonlinearity. To produce the error signal necessary to train the DPD function (and com-

pensate for the distortions exhibited by the main sub-array), the signals transmitted by

the main and auxiliary sub-arrays are combined. This error signal is captured using a

TOR with low dynamic range and is digitized using a low-bit resolution analog-to-digital

converter (ADC). Proof-of-concept validation experiments are conducted by applying the

proposed DPD system to linearize an off-the-shelf hybrid-beamforming array comprised of

four 64-element sub-arrays, operating at 28 GHz and driven with up to 800 MHz orthogo-

nal frequency-division multiplexing (OFDM) modulated signals. Using the proposed DPD
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scheme, a TOR with a 4-bit ADC was sufficient to improve the adjacent channel power

ratio (ACPR) by 10 dB and the error vector magnitude (EVM) improved from 5.8% to

1.6%. These results are similar to those obtained using a TOR with 16-bit ADCs.

Reducing the complexity of the DPD scheme for phased arrays is also of primordial im-

portance to the successful deployment of DPD solutions. For instance, the DPD function

needs to be desensitize to the load modulation effects exhibited by large antenna systems

and be able to linearize phased arrays at different steering angles. To address the chal-

lenges associated with the load modulation for phased arrays, we propose a generalized

SISO DPD scheme as solution to minimize the EVM variation at different steering angles.

The measurement results of the proposed scheme, using a 400 MHz OFDM signal with

subcarriers modulated using 256 QAM and on a commercial 64-elements beamforming ar-

ray, was able to maintain the EVM below 2% across the full steering range. This solution,

however, failed to maintain the ACPR below −45 dBc. The effect of tapering on the load

modulation and the array nonlinearity is also analysed. The measurement results using

different tapers are used to validate the theory and the simulation results. Using taper-

ing, the ACPR and EVM variation before and after DPD were minimized versus steering

angles. For instance, using taper setting 2, the ACPR and EVM are maintained below

−46 dBc and 1% from −38◦ to 45◦ and below −42.3 dBc and 1.8% from −45◦ to 45◦

respectively. Better results are measured when tapering is used in conjunction with the

proposed generalized DPD scheme. In that case, the ACPR is improved from −35.5 to at

worst −46.4 dBc and at best −50 dBc and the EVM is improved from at worst 4.5% to

at worst 1.2% and at best 0.85%. The EVM is also maintained below 0.95% from −39◦ to

45◦.
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Chapter 1

Introduction

Since the digital revolution and the industry paradigm shift to the information technology

economy, the requirements for higher values of information transfer have been growing ex-

ponentially. In fact, according to the International Data Corporation (IDC), it is estimated

that more than 150 billion devices will be connected across the globe by 2025 [6]. More-

over, Cisco’s Visual Networking Index (VNI) predicts an overall increase in the Compound

Annual Growth Rate (CAGR) of mobile data traffic by 46% between 2017 and 2022 [7].

This rapid growth brings forth significant challenges in the area of communication that

needs to be addressed through innovative and creative engineering solutions.

The successful deployment of many applications enabled by next generation networks,

such as high definition streaming, driver-less cars, and the Internet of Things (IoT), re-

quires low latency real-time operation and high data rates. The peak data rate is expected

to increase from hundreds of Mbps to tens of Gbps in the next few years [8]. One of the

limiting factors that impedes the increase of data rates in current generation of wireless

communication is the crowded spectrum at sub-6 GHz and thus the limited availability in

the communication bands. To alleviate this issue, the next generation of wireless commu-

nication network will target higher frequencies, such as the millimeter-wave bands. This

will enable the use of larger modulation bandwidths, thus lowering latency and increasing

the date rate to the Gbps range. This is further demonstrated in Shannon-Hartley theorm,

from which we know that the channel capacity, C, in bits per second, for a fixed signal to
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noise ratio (SNR), scales linearly with an increase in the modulation bandwidth, B, and

can be expressed as follows:

C [bits/Sec] = B× log2(1 + SNR). (1.1)

However, the migration to mm-wave radio frequencies (RF) brings about many chal-

lenges and an increase in design and hardware complexity. For instance, when dealing

with higher modulation bandwidth signals, the nonidealities in the RF chain, such as the

group delay and the non-flat frequency response of the chain, can significantly degrade the

signal quality leading to an increase in the normalized mean square error (NMSE) between

the received signal and the ideal signal as well as some deterioration in the error vector

magnitude (EVM) at the signal symbol level. Ultimately, if not addressed, this leads to

an increase in the bit error rate (BER) and a decrease in the peak achievable data rate.

Moreover, the free-space path loss (FSPL), given by:

FSPL [dB] = 10log10

((4πRf

c0

)2)
, (1.2)

where c0 is the speed of light in free space, scales quadratically with the increase in fre-

quency, f . Hence, for a fixed transmitted power, Ptx, and fixed transmitter and receiver

gain, Gtx and Grx respectively, the received power, Prx, can be expressed by Friis’ equation

as:

Prx [dBm] = Gtx [dBi] + Ptx [dBm] + Grx [dBi]− FSPL [dB], (1.3)

is greatly reduced at mm-wave frequencies compared to the sub-6 GHz bands. From 1.1,

the effect of this would impact the channel capacity, due to the deterioration in SNR given

a constant link distance, and would limit the coverage area of mm-wave base transceiver

stations (BTS) when compared to their sub-6 GHz counterpart.

Furthermore, achieving high data rate communication links also requires the deploy-

ment of spectral efficient (in bit/s/Hz) and thus sophisticated modulation schemes, such

as orthogonal frequency division multiplexing (OFDM) signals. Unfortunately, OFDM

exhibits high peak-to-average-power-ratios (PAPRs) that greatly affect the signal amplifi-

cation building blocks at the base station, i.e. power amplifiers (PAs), that are required

to operate in backoff to avoid signal clipping or gain compression, and hence suffer from
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severe degraded power efficiency. Alternatively, the PAs can be operated at higher efficient

operating points, however, this calls for the deployment of linearization techniques such as

digital predistortion (DPD) to mitigate the effect of the nonlinear behaviour and meet the

adjacent channel power ratio (ACPR) and EVM requirements imposed by the federal com-

munication community (FCC). For instance, DPD has been implemented in the previous

generation of wireless communication systems to maximize the tradeoff between linearity

and power efficiency and is expected to be an integral part in the next generation of com-

munication systems especially given that mm-wave power amplifiers suffer from notably

lower efficiency when compared to their sub-6 GHz counterpart.

While DPD schemes have been extensively studied in the literature, their successful

deployment calls for several advancements to reduce their overall power over-head and

complexity. Specifically, it is critical to reduce the requirements on the transmitter ob-

servation receiver (TOR) needed to train the DPD function. This includes decreasing the

required sampling speed and bit resolution of the analog-to-digital converter (ADC) stage,

the importance of which increases dramatically with the broadening of the bandwidth of the

new generation of communication signals. In an attempt to tackle the challenges associated

with DPD at mm-wave frequencies, this thesis proposes a novel single input single output

(SISO) DPD scheme to linearize mm-wave hybrid-beamforming based large-scale multiple-

antenna systems (LSMAS) using a feedback loop TOR with low bit resolution ADC and

without affecting the DPD linearization capacity. For this, a novel DPD system architec-

ture, that makes use of the inherent modularity of hybrid-beamforming arrays to minimize

the hardware requirements of the TOR is first presented. The underlying challenges asso-

ciated with its practical implementation, namely local oscillator (LO) phase-offset, delay

alignment and channel calibration, are then addressed. Lastly, the validation and experi-

mental results of the proposed DPD scheme on an off-the-shelf hybrid-beamforming array

are presented.

Moreover, the complexity of the DPD engine for multiple-antenna arrays is also of pri-

mordial importance to address. For single PA systems, SISO DPD showed good lineariza-

tion capacity. In order to extend the use of SISO DPD to LSMAS, the load modulation

variation versus steering angles, due to the antenna coupling, needs to be investigated and

addressed. In an attempt to tackle the challenges associated with the load modulation
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for phased arrays, this thesis proposes, a generalized SISO DPD scheme trained at dif-

ferent steering angles, to minimize the variation in the EVM versus steering angles after

DPD. This scheme is then compared to the SISO DPD trained at broadside and to the

peace-wide DPD function in [5]. Afterward, an analysis of the variation in the array non-

linear behavior versus steering angels using the antennas S-parameters is proposed. Using

this approach, the effect of tapering on the antennas reflected power is then investigated.

Lastly, the validation and experimental results of a SISO DPD trained at broadside and of

the proposed generalized SISO DPD on a commercial 64-elements array and with tapering

applied are presented.

This thesis is organized into the following chapters. First, the background theory

behind phased arrays, ADCs and DPD, as well as a literature review of the previous work

on reducing the ADC power consumption and on DPD solutions for phased arrays are

presented in Chapter 2. Chapter 3 then discusses the proposed reduced resolution DPD

scheme and the experimental results. In chapter 4, a generalized SISO DPD is devised,

an analysis of the load modulation on the array nonlinear behavior is presented and the

effect of tapering on the impedance variance and on the DPD performance are presented.

Lastly, the conclusions and the future work of this thesis are summarized in Chapter 5.

A note on the notational style: In thesis, RF signals are denoted without a subscript

while Intermediate Frequencies (IF) signals are denoted with the subscript IF, i.e., x(t) is

an RF signal and xIF (t) is the corresponding IF signal. The complex baseband envelope of

x(t) is denoted in the text as x̃(t). The discrete-time representation of x(t), xIF (t) and x̃(t)

are x[n], xIF [n] and x̃[n], respectively. In addition, x̃(n) denotes a block of M samples,

such that x̃(n) =
(
x̃[n], x̃[n − 1], ..., x̃[n −M + 1]

)
. If x̃[n] and h̃[n] are two discrete time

sequences, then
(
h̃ ∗ x̃

)
[n] =

∑
k h̃[k]x̃[n− k] denotes the convolution of the sequence h̃[n]

with x̃[n]. Finally,
(
h̃ ∗ x̃

)
(n) denotes the vector

(
z̃[n], z̃[n − 1], ..., z̃[n −M + 1]

)
where

z̃[n] =
(
h̃ ∗ x̃

)
[n]
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Chapter 2

Background Theory

2.1 Phased arrays for millimeter wave frequencies

Due to the increase in the free-space path loss at higher frequencies, phased arrays can be

an attractive solution for mm-wave base stations. Increasing the number of transmitting

antennas and combining their output at the user equipment (UE), has for effect to increase

the array gain, Gtx, and thus the antenna isotropic radiated power (EIRP) defined as,

EIRP [dBm] = Gtx [dBi] + Ptx [dBm], (2.1)

and subsequently, from (1.3), increasing BTS coverage area given a constant targeted

received power. It is to note that, the increase in the array gain is only achieved in the

direction of maximum combining and can be further explained using the concept of array

factor (AF). Fig. 2.1, shows an example of a linear array with N elements spaced by d,

and where ~rn designates the direction of propagation of the nth antenna towards a receiver

positioned at an angle θ and at a distance R in the far-field (R ≥ 2D2

λ
, where D is the

antenna array length). Assuming that the antennas are excited using a signal tone source

expressed in phasor form as, ṽn = |ṽn|ejφn , using (1.3), the far-field received power can

then be expressed as follows:

Prx(R, θ) = Ga [dBi] + Ptx [dBm] + Grx [dBi] + FSPL(R) + 20log10

(∣∣AF(θ)
∣∣), (2.2)
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…  

            

Figure 2.1: N Elements Linear Phased Array.

where ∣∣AF(θ)
∣∣ =

∣∣∣∣N−1∑
n=0

ej(φn−krn−kR)

∣∣∣∣
=

∣∣∣∣N−1∑
n=0

ej(φn−nkd cos θ−kR)

∣∣∣∣ =

∣∣∣∣N−1∑
n=0

ej(φn−nkd cos θ)
∣∣∣∣,

(2.3)

and Ga and Ttx are the gain and transmitted power per antenna respectively, k = 2π
λ

is

the wave-number and φn are referred to as the beamforming coefficient of the nth antenna
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Figure 2.2: (Left) Array factor of a linear array versus θ; (Right) Normalized array factor

versus N .

element. The normalized AF, denoted with a tilde, ÃF, can then be defined as follows:

∣∣ÃF(θ)
∣∣ =

1

N

∣∣∣∣N−1∑
n=0

ej(φn−nkd cos θ)
∣∣∣∣, (2.4)

Subsequently, with proper element phasing, and in the direction of maximum combining,

the transmitter array gain, Gtx, scales linearly with the increase in number of elements and

can be expressed as follows:

Gtx [dBi] = Ga [dBi] + 20log10

(
|AF |

)
= Ga [dBi] + 20log10(N).

(2.5)

The phased array technique can be further extended to a 2D array with antenna el-

ements tiled with spacing dx and dy. In this configuration, the corresponding AF of an

N ×M array can be expressed as follows:

AF(θ, φ) =
N−1∑
n=0

M−1∑
m=0

ej(φn,m−k sin θ(ndx cosφ−mdy sinφ)), (2.6)
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Figure 2.3: Linearity vs efficiency tradeoff.

where φ and θ designates the azimuthal and polar spherical coordinates of the far-field

receiver.

2.2 Sidelobes reduction using tapering

The array factor pattern in Fig. 2.2 exhibits sidelobes that, if not addressed properly, can

contribute to cause spacial interference with other users and hence affect the SNR and the

achievable channel capacity.

A potential solution to reduce the sidelobes is via the use of windowing techniques

inspired from the filter theory. This is relatively straight forward for the special case of

linear arrays. Fig. 2.4, illustrates the use of different tapers, i.e. Chebyshev windowing

and Taylor windowing, on a 64-elements 8 × 8 rectangular RF beamforming array. The

sidelobes reduction achieved using tapering, however, comes at the cost of an increases

in the half power beam width and a decrease in the array gain. Another application of

8



Figure 2.4: Radiation pattern of an 8× 8 array using different tapers.

tapering for phased arrays is to generate wide beams for broadcasting applications. An

example of such a taper is the flat-top window illustrated in Fig. 2.4.

In order to extend the application of tapering to 2-D arrays various techniques can be

used. One of such approach is to obtain the 2-D window by rotating the frequency response

of the 1-D window in the Fourier space and followed by the inverse Fourier transform

[9]. Alternatively, the 2-D filter coefficients can be obtained by applying the McClellan

transformation to the 1-D windows [10].
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2.3 Power amplifier as an important nonlinear block

At the input of the BTS antennas, a PA stage is required to boost the signal power to an

appropriate power level for signal transmission over the air and in order to meet the required

coverage area. An ideal linear amplifier is assumed to have an input power independent

gain, G, defined as:

G =
Pout
Pin

, (2.7)

where Pin and Pout are the input and output power respectively. This is, however, very

difficult to achieve for a wide range of input powers. In fact, for output powers higher that

the P1dB, defined as the output power point where the gain is 1dB lower than the linear

gain, G, the PA becomes highly nonlinear. The nonlinear behaviour can be mitigated by

operating the PA in the the back-off region where the gain is power independent. However,

this will result in degraded drain and power added efficiency defined as:

ηDE =
Pout
PDC

, (2.8)

and

ηPAE =
(Pout − Pin)

Pin
, (2.9)

respectively, where PDC is the Direct Current (DC) power consumption. Fig. 2.3, illustrates

the tradeoff between efficiency and linearity, where the PA efficiency increases for higher

input power.

2.3.1 PAPR

The PA is an amplitude sensitive device that exhibits power gain dependency near its peak

output power. Spectral efficient signals have a time varying envelop, hence, if the PA is

exhibiting a nonlinear behaviour, the instantaneous gain experienced by the input signal

will vary with the input power. It is therefore important to define a metric that quantifies

the variation of signal envelope power, and consequently, can be used to determine the

power backoff level at which the PA can be driven before nonlinear distortions become

10



significant. To that end we define the PAPR of signal, x(t), as:

PAPR =
max

(
|x̃(t)|2

)
mean

(
|x̃(t)|2

) . (2.10)

For example, the input power needs to be backed-off by at least the PAPR from the PA

maximum input power, PSAT , in order to avoid saturating the amplifier.

The definition in (2.10) is, however, very stringent for most communication applications

as it defines the PAPR based of the peak signal power while disregarding its occurrence

rate. Alternatively, its more common to define the PAPR based of the complementary

cumulative distribution function (CCDF) of the instantaneous power, P (t), where:

P (t) =
|x̃(t)|2

mean
(
|x̃(t)|2

) (2.11)

The CCDF defines the probability that P (t) will be greater that a given value p0. The

PAPR is, hence, commonly defined as the p0 which corresponds to the 0.1% CCDF point.

Fig. 2.5, shows the CCDF of the instantaneous envelop power of spectrum efficient signals.

It is clear from Fig. 2.5, that the PAPR increases for higher-order modulation techniques

and is the highest for OFDM signals. Consequently, spectrum efficient signals, such as

OFDM signals, would require the PA to operate in high backoff and with low efficiency in

order to avoid nonlinear behaviour. Alternatively, it is possible to use DPD techniques to

characterize and compensate for the PA nonlinearity and hence, achieving high efficiency

operation.

2.3.2 Gain Distortion and AM/PM

In order to compensate for the PA nonlinear distortion, we first need to accurately measure

and characterize the PA nonlinearity. The Gain Distortion and AM/PM are visual tools

that can be used to quantify the PA power dependent behaviour. In the Gain Distortion

curve, the instantaneous PA power gain, Py [n]

Px[n]
, is plotted versus the instantaneous PA input

power, Px[n]. For PAs that exhibit nonlinear behavior, the Gain Distortion curve shows

a gain drop as the input power increases. Similarly, in the AM/PM, the phase response
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Figure 2.5: CCDF of the instantaneous envelop power, P (t), for different spectral efficient

signals.

of the instantaneous power gain, is plotted versus the instantaneous input power. The

AM/PM illustrates the power dependent phase attributed distortion created by the PA.

An example of the gain and phase distortion curves of a nonlinear PA driven by modulated

signals is shown in Fig. 2.6.

2.3.3 Memoryless versus dynamic systems

The PA nonlinear behavior can often be classified as static or dynamic distortion. A

memoryless (static) PA nonlinear behavior produces distortions that do not depend on the

12



Figure 2.6: Gain Distortion and AM/PM of an nonideal PA.

input signal past values and, hence, can be modeled using a simple polynomial:

y(t) = α0 + α1x(t) + α2x
2(t) + α3x

3(t) + ..., (2.12)

where x(t) and y(t) are the PA input and output signals respectively. On the other hand,

a dynamic nonlinear behavior generates distortions that depend on the input signal past

values. Such distortion can be modeled using an augmented Weiner or augmented Ham-

merstein model, [11, 12].

2.4 Digital predistortion DPD

PAs are most efficient near their saturation power level where they exhibit nonlinear be-

haviour. Advanced PA power efficiency enhancement techniques have been investigated in

the literature. These include Doherty PAs, outphasing techniques, and envelop tracking.

Yet, the successful deployment of PAs calls for the use of linearization techniques, such as

digital predistotion, to mitigate the distortions exhibited by the high efficiency PAs.
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2.4.1 Forward modeling

The PA nonlinear behavior can be described using the complex baseband Volterra equiv-

alent (CBBE) series [13], such that the PA equivalent baseband signal, ỹ[n], is expressed

as linear combination of the discrete baseband input signal, x̃[n], as follows:

ỹ[n] =
N∑
k=0

∑
m1∈Lk

∑
m2∈Lk+1

f̃km1,m2

k∏
i=1

x̃∗[n−m1(i)]
k+1∏
j=1

x̃[n−m2(j)], (2.13)

where 2N + 1 is the highest static nonlinearity order, f̃km1,m2
are the Volterra kernels, M

is the memory depth and Lk are the sets defined as

Lk =
{
m ∈ {0, ...,M − 1}k, |0 ≤m(1) ≤ ... ≤m(k) ≤M − 1

}
(2.14)

If the PA exhibit memoryless static nonlinearity, then all the memory lags are 0, i.e.

f̃km1,m2
= 0 when m1 > 0 or m2 > 0, and the CBBE can be expressed as follows:

ỹ[n] =
2N∑
k=0

x̃[n]
∣∣x̃[n]

∣∣k. (2.15)

Due to the complexity and large number for kernels used by the CBBE model, various

attempts have been made to reduce the Volterra series complexity, including the pruned

Volterra model presented in [17], the General Memory Polynomial model (GMP) proposed

in [18], and the dynamic deviation reduction (DDR) introduced in [19]. In this thesis, the

Complexity-Reduced Volterra model (CRV), first outlined in [20], is used to model the PA

and is expressed as follows:

ỹ[n] =
L∑
l=0

alψ̃l
(
x̃[n]

)
, (2.16)

where the basis functions, ψ̃l
(
x̃[n]

)
are chosen to be

ψ̃l
(
x̃[n]

)
= x̃[n−m′

l]
∣∣x̃[n−ml]

∣∣2pl , (2.17)

such that the lth polynomial basis function, ψ̃l(.), is of order 2pl + 1 with lags m
′

l and ml.
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Figure 2.7: Learning architecture to train the predistoter modules: (Left) Indirect learning;

(Right) Direct learning.

In order to identify the PA model coefficients, the input and output baseband signals

relationship described in (2.16) can be rewritten in matrix form:

ỹ = Ψ̃a + ε̃, (2.18)

where a = (a1, ..., aL) are the model coefficients, ε̃ is modeling error and Ψ̃ is the basis

matrix with entries in the ith row and jth column given by[
Ψ̃(x̃)

]
i,j

= ψj
(
x̃[n+ i− 1]

)
. (2.19)

The parameters a are then given from (2.18) by minimizing the squared l2 norm of the

modeling error, i.e. minimizing

J =‖ ε̃ ‖22
=‖ ỹ− Ψ̃a ‖22

=
∑
n

∣∣∣∣ỹ[n]−
L∑
l=0

alψ̃l
(
x̃[n]

)∣∣∣∣2.
(2.20)

This is a standard least-square fit, with the well known solution:

a =
(
Ψ(x̃)HΨ(x̃)

)−1
Ψ(x̃)H ỹ. (2.21)

Alternatively, the parameters can be estimated using more computational efficient algo-

rithm such as recursive least square (RLS) for optimal hardware implementation.
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2.4.2 Direct and indirect learning

In the DPD formulation, the predistorter (PD) model is modeled using similar basis func-

tions as the forward model, i.e., Volterra series or CRV, and can be expressed as follows:

x̃PD[n] =

LPD∑
l=0

clψ̃l
(
x̃[n]

)
, (2.22)

where x̃PD[n] is the predistorted signal, LPD is the total number of basis of the linearizer

and cl are the DPD coefficients. In order to identify the PD parameters, two approaches

are commonly used in the literature. The indirect learning approach, illustrated in Fig.

2.7 (Left), assumes that the PA pre-inverse and post-inverse are identical such that:

f̃−1PA
(
ỹ[n]

)
= x̃⇒ x̃PD[n] = f̃−1PA

(
x̃[n]

)
(2.23)

where f̃−1PA is the PA post inverse model functions. As a results, the PD’s coefficients, c

are estimated using the post inverse’s least square solution given by

c =
(
ΨH(ỹ)Ψ(ỹ)

)−1
Ψ(ỹH)x̃. (2.24)

In the direct learning case, illustrated in Fig. 2.7 (Right), the PD parameters are identified

iteratively by minimizing the LSE, ẽ[n] = ỹ[n] − x̃[n], between the PA output signal ỹ[n]

and the desired signal x̃[n]. For this, blocks of the baseband input x̃[n] and corresponding

error ẽ[n] = ỹ[n]− x̃[n] are used to iteratively refine the estimate of c. Using this approach,

the nonlinear distortion of the PA is modeled as an additive error and can be written as:

f̃PA
(
x̃
)

= x̃[n] + ẽ
(
x̃
)

(2.25)

2.4.3 Single PA DPD model using direct learning

To apply the DPD model given by (2.19) and (2.22) using the direct learning approach,

first the underlying coefficients c = (c1, ..., cLPD
) ∈ CLPD must be identified. This yields a

sequence c(1), c(2),..., c(N) of N estimates of the the pre-distorter coefficients. Specifically,

before the 1st iteration, the pre-distorter is chosen to pass x̃[n] undistorted, i.e.,

c1 = (1, 0, ..., 0), (2.26)
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and the coefficients after the kth iteration, 1 ≤ k ≤ N − 1, are updated according to

ck+1 = ck − γ∆ck (2.27)

where 0 < γ < 1 is the update step size, and ∆c(k) ∈ CLPD is the update direction

of the predistorter model coefficients. To determine the update direction ∆c(k) of the

predistortion model coefficients, for the kth iteration, we fit the error ẽ[nk] over a block of

N samples as

ẽ(k) = Ψ(k)∆c(k) + ε̃(k) (2.28)

where

ẽ(k) =
(
ẽ[nk], ..., ẽ[nk +N − 1]

)T
, (2.29)

is the block of N error samples at the kth iteration, ε̃(k) =
(
ε̃[nk], ..., ε̃[nk +N − 1]

)T
is the

modelling error in fitting ∆c(k), and Ψ(k) is a N × L matrix with entry in the ith row and

jth column given by [
Ψ(k)

]
i,j

= ψj(x̃[nk + i− 1]). (2.30)

Given x̃[n] and ẽ[n] for n = nk, ..., nk + N − 1, to determine the update direction ∆c(k)

from (2.28) that minimize the squared l2 norm of the modeling error, i.e., that minimize

J =‖ ε̃(k) ‖22
=‖ ẽ(k) −Ψ(k)∆c(k) ‖22

=

nk+N−1∑
n=nk

∣∣∣∣ẽ(k)[n]−
L∑
l=1

c
(k)
l ψl

(
x̃[n]

)∣∣∣∣2.
(2.31)

are determined with standard least-square fit, with well known solution

∆c(k) =
(
Ψ(x̃)HΨ(x̃)

)−1
Ψ(x̃)H ẽ(k). (2.32)

Hence, (2.27), (2.28), (2.30) and (2.32) comprise the iterative training process to identify

the predistortion coefficients.
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10dB

Figure 2.8: 1 GHz OFDM signal sampled using fs = 4×BW and fs = 40×BW .

2.5 Overview of analog to digital converters theory

In order to sample the PA output signal required for the DPD training, a signal acquisition

block is required to digitize the analog signal. The ADC is a signal acquisition block that

samples the input waveform and generates a finite binary representation of the voltage

levels. This process, however, introduces quantization error denoted by eq and imposes a

limit on the digitized signal SNR that can observed.

2.5.1 Oversampling

The SNR of an ideal ADC under an input sine wave excitation, vin, can be expressed as a

function of the ADC resolution, N , as follows:

SNR [dB] = 10log10

(
v2in
e2q

)
= 6.02N + 1.76.

(2.33)

18



In many applications, however, the the captured signal observed bandwidth, is less than

ADC bandwidth defined as fs
2

where fs is the ADC sampling rate. It is possible then to use

digital processing to filter out the excess noise outside the wanted observation bandwidth,

BW , and improve the SNR. Using this concept, (2.33) can be rewritten as:

SNR(dB) = 6.02N + 1.76 + 10log10

(
fs

2 ·BW

)
. (2.34)

This technique is commonly referred to as oversampling. Fig. 2.8, shows an example of a

signal with oversampling factor of 4 and with an oversampling factor of 40. From Fig. 2.8,

it can be clear seen that the signal quantized using an oversampling ratio of 40 has around

10 dB of SNR improvement when compared to the signal sampled using an oversampling

ratio of 4. This increase in the SNR is equivalent to an increase in the ADC bit resolution

in (2.33). Consequently, using (2.34), it is possible to define an effective number of bits

(ENOB) that reflects the effective resolution gain due to the oversampling factor and can

be expressed as follows:

ENOB(bits) =
SNR− 1.76

6.02
. (2.35)

2.5.2 ADC figure of merit

Reducing the ADC power consumption is detrimental for the successful deployment of

mm-wave digital predistortion techniques and hence it is important to define a framework

that can be used to assess and compare the ADCs power consumption irrespective of their

architecture. Such framework that IEEE has relied on is the Figure Of Merit (FOM)

calculation described below:

FOM =
Power

2ENOB × fs
. (2.36)

From (2.36), it can be observed that the ADC power consumption scales linearly with an

increase in the sampling rate and quadratically with an increase in bit resolution.
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Figure 2.9: Dual-input DPD scheme using antenna coupling matrix to estimate the reverse

waves [1]

2.6 Literature on DPD for antenna arrays

There have been some attempts to extend the application of DPD to multiple-antenna

transmitter arrays at mm-wave frequencies. These can be classified into two distinct cat-

egories: those that use multi-input (mainly dual-input) modelling approaches (i.e., with

both the forward and reverse waves provided as inputs to the model), and those based

on single-input single-output (SISO) modelling approaches (i.e., with only forward waves

provided as inputs). Both types of approaches have shown an aptitude to linearize 5G

Large Scale Massive Antenna Systems (LSMAS).
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Figure 2.10: Single-input SISO DPD model for RF beamforming arrays.

2.6.1 Dual-input DPD scheme

The dual-input DPD scheme proposed in [14, 1] is trained using the individual PAs forward

and reverse wave, and then used in conjunction with a cross-talk and mismatch model to

linearize a 4-element digital beamforming array operating at 2.12 GHz and driven with 5

MHz modulated signals. Fig. 2.9 illustrate a system block diagram of the proposed DPD

scheme, where the forward waves are sampled at the PA outputs using directional couplers

and the reverse waves are generated using the antennas coupling matrix. In [14, 1], the PAs

S22’s are assumed to be very low and hence ignored while estimating the reverse waves.

The PA output signal b2k of the kth static PA can then be modeled as a function of the

input signal a1k and the reverse wave a2k as follows:

b2k =

(P−1/2−1)∑
p=0

p∑
v=0

p+1∑
u=0

αkpvua1k
p+1a∗1k

p−va2k
ua∗2k

v (2.37)

where αkpvu are the model complex coefficients and P is the static nonlinearity order.

This formulation is similar to the dual-band DPD formuation. A similar dual-input DPD

scheme was also used in [15, 16] to predict the behavior of beamforming arrays formed

of simulated PA models. In this approach the forward and reverse waves are assumed to

be known. A practical implementation of the feedback path in [15, 16], would be using

couplers at the PA outputs to measure the forward and reverse waves.
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2.6.2 Single-input DPD scheme

In terms of single-input approaches, lower complexity SISO DPD solutions have also

demonstrated interesting linearization capacity when applied to LSMAS driven with 5G

signals. For example, in [17, 18], a SISO model is applied in simulation to linearize both

a hybrid and an RF beamforming array. Using this approach the array system is modeled

as a single PA system, illustrated in Fig. 2.10, and is trained using the sum of the PA

outputs. In [19, 20, 5], the capacity of a SISO model to linearize a sub-6 GHz 2x2 array

driven by 10 MHz modulated signals, a 16-element array at 2 GHz driven with 20 MHz

modulated signals, and a mm-wave 64-element RF beam-forming array driven with up to

800 MHz signals, was experimentally validated. The feedback signals in [19] are sampled

using couplers at the PA outputs and digitally summed to form the DPD training sig-

nal. Alternatively, the authors in [20], trained the DPD signal using an anti-beamforming

transmitter observation receiver (TOR) module that generates a far-field equivalent signal.

Finally, in [18, 5], a far-field probing antenna was used to generate the feedback signal

needed for DPD.

2.6.3 Limitation of the existing schemes

While the reported works have been successful in demonstrating the applicability of DPD

for arrays, challenges to its practical implementation on commercial products are yet to be

addressed. For instance, the dual input DPD model introduced in [14, 1] requires couplers

at the PA outputs to sample the forward and reverse waves required for DPD training or

a prior knowledge of the cross-coupling matrix. This approach is, however, impractical

for mm-wave arrays, due to the large number of PA elements and the compact size of the

array. Alternatively, SISO models trained using over the air combining in [18, 5] can offer

a more attractive solution as it does not require additional design overhead on the array

system. This approach however, is limited by the nonidealities in the array such as the

load modulation, and requires a peace-wise beam steering angle dependent sets of DPD

coefficients to linearize the array for different combination of θ and φ. Moreover, despite

the issues relating the practical implementation of the DPD feedback path, the successful
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deployment of DPD also calls for several advancements to reduce the TOR overall power

overhead and complexity.

2.7 Literature review on reduced complexity TOR for

DPDs

There have been multiple attempts in the literature on reducing the DPD TOR overall

complexity and power consumption. This includes decreasing the required sampling speed

and bit resolution of the analog-to-digital converter stage. The importance of the latter

increases dramatically with the broadening of the signal bandwidth at mm-wave frequen-

cies. These attempts can be categorized into two main groups, i) Subsampling DPD and

ii) reduced resolution DPD.

2.7.1 Subsampling DPD

This approach is commonly used in the literature to reduce the TOR power consumption

by reducing the the ADC sampling speed from 10× the signal bandwidth to F× the signal

bandwidth where 0 < F < 10.

Band-limited DPD

In [2, 21, 22], a band limited DPD scheme was proposed to lower the TOR’s ADC sampling

rate while avoiding aliasing by limiting the bandwidth of the PA’s output signal using a

bandpass filter. Fig. 2.11 provide a system block diagram of the proposed scheme. Using

this approach, the DPD basis functions in (2.22) needed to be adjusted to accommodate

for the band limiting function H(.) and can be expressed as follows:

x̃PD[n] =

LPD∑
l=0

clH
(
ψ̃l
(
x̃[n]

))
, (2.38)
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Figure 2.11: Band-limited DPD [2].

By applying this approach, the authors could linearize the PA output signal within the

bandpass filter bandwidth and is further illustrated in Fig. 2.12 where a comparison

between the proposed scheme using a sampling rate fs = 2 × 40MHz and conventional

DPD using fs = 2× 140MHz is provided. Hence, by reducing the required feedback signal

bandwidth and including a band limiting function in the DPD formulation, the ADC

sampling rate can be reduced. The drawback of this technique is that it required the use

of additional bandpass filters at the PA output hence making it impractical for an array

of PAs. This approach is also limited to weak nonlinear memory systems.

Subsampling restoration

Alternatively, the authors in [3] proposed a sampling rate relaxation technique that uses

low ADC sampling speed along with increased capture time and signal processing in order

to reconstruct the original signal without information loss. For the simple case of reducing

the required sampling rate fs by a factor of 2, the original signal waveform is sampled at the

initial sampling rate fs and a second copy of the desired signal is appended to the first copy

after applying a one-sample delay. Accordingly, sampling the received signal at a sampling

rate of fs
2

will result in the acquisition of the odd indexed desired samples in the first half

of the received signal and the even indexed desired terms in the second half of the received
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Figure 2.12: Band-limited DPD spectrum results [2].

signal. Thus, by rearranging the samples, the desired full rate signal sampled at fs can be

recomposed. This process is further demonstrated in Fig. 2.13, where the received samples

(Left) and the digitally reconstructed desired signal (Right) are illustrated. The main

disadvantage of this method is that the discontinuity introduced in the transmitted signal

can cause some spectral regrowth and can alter the PA input signal characteristics, hence

limiting the DPD linearization capability. Moreover, this method requires an increase in

the acquisition time and therefore the reduction of the power consumption due to the use

of lower sampling speed is reduced.

2.7.2 Reduced resolution DPD

While the investigation to reduce the TOR sampling speed showed potential, attempts to

reduce the required ADC bit resolution has not seen further significant research attention.

In fact, only recently was a new DPD system proposed in [4] that investigated the utilization

of 1-bit complex ADC receiver for DPD training. A block diagram of the proposed system
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Figure 2.13: Subsampling restoration [3]: (Left) Received sampled signal (Right) Restored

signal.

is shown in Fig. 2.14. The least square estimate of the DPD coefficients can then be

rewritten as follows:

∆(k)
c = γ(k)

(
Ψ(x̃)HΨ(x̃)

)−1
Ψ(x̃)H∆s

(k), (2.39)

where γ(k) is the kth iteration learning parameter and ∆
(k)
s is the kth iteration error signal

captured using the 1-bit complex ADC and can be further described as

∆(k)
s = sign(ỹ

(k)
I [n]− x̃I [n]) + jsign(ỹ

(k)
Q [n]− x̃Q[n]). (2.40)

This approach is, however, highly dependent on the learning parameter γ(k) which is crit-

ical to the linearization performance as well as to the convergence speed. This method,

also, requires the deployment of two additional high speed digital to analog converters

to generate an ideal copy of the desired signal needed at the comparators input stage,

a pre-characterization of the Device Under Test (DUT) AM/AM curve to estimate the

learning parameters required for the DPD training and a large number of iterations to

reach convergence of the training algorithm. Time alignment between the ideal signal gen-

erated by the additional DACs and the PA baseband output is also critical in achieving
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Figure 2.14: Reduced resolution DPD using 1-bit complex ADC [4].

optimal results. This is however difficult to achieve given the 1-bit complex receiver. Con-

sequently, the power consumption reduction achieved thanks to the reduced receiver ADC

resolution comes at the cost of significant added complexity and hence limits the practical

implementation of this scheme.

2.7.3 Conclusion

In this chapter, phased arrays and data acquisition blocks were reviewed. Problems with

PAs at high frequencies and their effects on the ACPR and EVM were discussed. To

mitigate the effect of the PA nonlinearity, DPD solution for single PA and phased arrays

were devised. Although DPD is widely adopted for sub-6 GHz systems, the challenges of

its practical implementation at mm-waves were presented. More specifically, in order to

accommodate for the load modulation exhibited by phased arrays, multiple solutions in

the literature were proposed ranging from dual-input DPD that sample the forward and

reverse waves to single input peace-wise SISO DPD techniques. However, the proposed

solutions require added hardware and signal processing overhead that limits their real life
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deployment. A literate review of exiting TOR power consumption reduction techniques

were also introduced. Out of this review it was evident that practical implementation of

Subsampling and reduced resolution DPD were missing, the importance of which increases

dramatically, as the signal bandwidth increases. For that reason, a new DPD scheme is

proposed to linearize mm-wave hybrid-beamforming based LSMAS while using a TOR

with low bit resolution ADC and without added hardware or signal processing complexity.

A study of the effect of tapering on the load modulation is also presented and results

demonstrating the use of a single set of coefficients to linearize a commercial array at

different beam-steering angles are shown.
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Chapter 3

Reduced Resolution Transmitter

Observation Receiver Digital

Pre-Distorion Scheme

In this chapter, the proposed reduced resolution TOR receiver DPD scheme and its theo-

retical basis are presented. Afterward, the underlying challenges associated with its prac-

tical implementation, namely local oscillator (LO) phase-offset and delay alignment and

describes methods devised to tackle these challenges. Finally experimental results are pre-

sented and conclusions of the work are summarized. The work in this chapter is based on

the work in ??

3.1 Proposed DPD Scheme using Reduced Resolution

TOR and Theoretical Formulation

Fig. 3.1 shows the high-level block diagram of the proposed SISO DPD scheme applied

to a hybrid beamforming system with, for simplicity of exposition, two sub-arrays. The

proposed scheme exploits the inherent modularity of the hybrid-beamforming system to

minimize the hardware requirements of the TOR. It takes advantage of the fact that the
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Figure 3.1: Block diagram of proposed DPD system for the case of a two sub-array hybrid

beamformer: main sub-array transmits xPD(t); auxiliary sub-array transmits −x(t).

training of the DPD function for each sub-array is conducted separately using a weighted

sum of the constituent sub-array outputs. We denote the sub-array to be linearized as the

main sub-array (MSA); the second sub-array is referred to as the auxiliary sub-array (ASA).

During the DPD training process, the MSA transmits a pre-distorted input xPD(t)of the

desired RF signal x(t), while the ASA is mobilized to transmit an inverted instance −x(t)

of the desired signal x(t). In the following, the anti-beamforming module connected to the

MSA allows for the generation of a weighted sum, y(t), of the signals transmitted by the

constituent MSA antennas. This is used to emulate the signal that would be received by

a far-field antenna and includes distortions attributed to the PAs in the MSA. Similarly,

the anti-beamforming module connected to the ASA generates an output signal denoted

by yaux(t). It is of note that as the ASA operates in backoff during the training phase,

the corresponding signal at the anti-beamforming module,yaux(t), will be a replica of the

inverse −x(t). To ensure proper cancellation of x(t) in y(t), and to generate the error

(distortion) signal e(t) that will be used for DPD training, two attenuators are used to

adjust the magnitudes of y(t) and yaux(t). To simplify the theoretical derivations of the
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Figure 3.2: Power spectrum density of the MSA transmitted signal and corresponding error

signal e(t).

proposed DPD scheme, the following expression of the error signal is written as assuming

proper amplitude alignment of y(t) and yaux(t):

e(t) = y(t) + yaux(t)

= y(t)− x(t)
(3.1)

The error signal is then down-converted to IF to obtain eIF (t), digitized using an ADC to

obtain eIF [n], and further digitally down-converted to obtain the complex baseband signal

ẽ[n]. Fig. 3.2 shows an example of the MSA transmitted signal, y(t), and the corresponding

error signal, e(t). In this case the input signal x(t) is an 800 MHz OFDM signal and the

MSA and ASA are instances of a 64-element sub-array. Furthermore, the ASA operates in
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6-dB backoff compared to the MSAs operation power. Based on Fig. 3.2, the digitization

of the IF error signal, eIF (t), would require an ADC with a lower bit resolution than that

of the ADC to sample yIF (t). It is worth noting that, in principle, the proposed scheme

can be applied, to RF beamforming arrays. In this case, an additional dedicated RF chain

(i.e., DAC and I/Q Mixer) would be required to generate the −x(t) signal. However, the

added hardware would constitute additional overhead and only serve the DPD training.

This problem is avoided in hybrid-beamforming systems since the RF chains of the ASA

can be used to generate the inverse signal, −x(t).

3.1.1 Time Delay and LO Phase-Offset Callibration

In the hybrid beamforming architecture illustrated in Fig. 3.1, separate IQ mixers are used

to generate the input signals fed to each of the sub-arrays. Given that the LO inputs to

the mixers are typically generated by splitting a common LO source, it is important to

ensure proper phase alignment between the IQ mixers LO inputs. Moreover, it is also

important to compensate for any delay between the different RF paths. This is critical in

guaranteeing optimal cancellation between the signals of the MSA and ASA. In order to

identify the value φk of the phase-offsets of the different LO inputs, and the time delays

tkd at the different RF paths, two complex baseband signals, xk(t), k = 1, ..., K = 2, are

generated to feed the two sub-arrays. Note that in this sub-section of the paper, both the

MSA and ASA are operated in backoff. Let Cx̃k1 ,x̃k2 (τ) be the cross-correlation between

x̃k1(t) and x̃k2(t) defined by

Cx̃k1 ,x̃k2 (τ) =

∫ +∞

−∞
x̃k1 × x̃∗k2(t− τ)dt. (3.2)

The signals x̃k(t), k = 1, ..., K = 2, are chosen such that: 1) the cross-correlation Cx̃k1 ,x̃k2 (τ)

is small ∀τ and k1 6= k2, 2) the auto-correlation Cx̃k,x̃k(τ) is large, has a positive real-value

for τ = 0, and decays quickly for |τ | > 0. The complex baseband signals, x̃k(t), k =

1, ..., K = 2, are generated in the discrete domain using multi-tones with random phases

and magnitudes. The combined complex baseband output at the TOR, z̃(t), can be written
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as

z̃(t) =
K∑
k=1

Gkx̃k(t− tkd)e−j(φk+φ0), (3.3)

where φ0 is the phase-offset introduced by the down-converting mixer and Gk is the kth

sub-array gain. From (3.2) and (3.3), the cross-correlation coefficients between the received

signal z̃(t) and the kth input signal, x̃k(t), can be computed as,

Cx̃k,z̃(τ) =

∫ +∞

−∞
x̃k × z̃∗(t− τ)dt

= Cx̃k,x̃k(τ + tkd)×Gke
j(φk+φ0) +

∑
∀k′ 6=k

Cx̃k,x̃k′ (τ + tk
′

d )×Gk′e
j(φk′+φ0).

(3.4)

Given that the cross-correlation between the different input signals Cx̃k,x̃k′ (τ), k 6= k′ is

small, (3.4) can be approximated as:

Cx̃k,z̃(τ) ∼= Cx̃k,k̃(τ + tkd)×Gke
j(φk+φ0). (3.5)

Moreover, since Cx̃k,x̃k(τ + tkd) takes its maximum for τ + tkd = 0 and decays quickly for∣∣τ + tkd
∣∣ > 0, Cx̃k,z̃(τ) is small for τ 6= −tkd. the cross-correlation is (3.5) at τ = −tkd is

C−x̃k,z̃(t
k
d)
∼= Cx̃k,k̃(0)×Gke

j(φk+φ0). (3.6)

Thus, from (3.5) it is clear that the time delay tkd of the different RF chains can be estimated

by finding
tkd = −argmax

τ∈R

∣∣Cx̃k,z̃(τ)
∣∣ (3.7)

and from (3.7), the relative phase-offsets with respect to φ1, ∆φk = φk − φ1 can be given

by:

∆φk = ∠Cx̃k,z̃(t
k
d)− ∠Cx̃1,z̃(t

1
d). (3.8)

To determine the time delay tkd and the relative phase-offsets ∆φk accurately, the cross-

correlation in (3.5) is approximated by using an up-sampled discrete time cross-correlation

function

Cx̃k,z̃[k] =
M ′∑
n=0

x̃k[n]× z̃∗[n− k], (3.9)

33



where M ′ is the length of the signal x̃k[n] and z̃∗[n] after up-sampling. The up-sampling

allows for fractional delay calibration and results in better cancellation of x(t) in y(t). The

up-sampling ration used in the following thesis is 30 : 1. Fig. 3.3 shows the measurement

results of the received power versus phase-offset between the MSA and the ASA. Fig. 3.3

also provides an idea about how sensitive the combining is to the phase-offset calibration.

Based on Fig. 3.3, it is also evident that the minimum received power is about 30 dB less

than the maximum. This is particularly interesting as it indicates that the ASA will reduce

the dynamic range at the TOR by almost 30 dB; hence, significantly reducing the required

bit-depth of the digitizer. It is of note that while the derivation described above has been

carried out for the LSMAS in Fig.1 (formed of two sub-arrays), it can be easily generalized

for the case where the number of sub-arrays is greater that two, i.e. K > 2.

3.2 Validation Challenges: Definitions and Solution

In order to demonstrate the capacity of the proposed DPD to linearize an off-the-shelf

mm-wave hybrid-beamforming array, an experimental test bed was developed. Due to the

inability to modify the off-the-shelf beamforming array as necessary, i.e., to integrate the

directional couplers needed to sample the PA outputs in Fig. 3.1, a far-field probing antenna

was used in the proposed experimental test bed to capture the error signal e(t). Hence,

the probing antenna fulfils the functions of both the anti-beamforming modules and the

out-of-phase combiner in Fig. 3.1. It is worth noting that the use of the far-field probing

antenna to produce the error signal brings about additional challenges that are not present

in the conceptual block diagram of Fig. 3.1. Those challenges needed to be mitigated to

ensure accurate validation. For example, more than one ASA, operating linearly (in backoff

to minimize the nonlinearity), is needed to transmit a sufficient amount of power to cancel

the portion linearly related to x(t) in y(t) at the far-field probing antenna. For instance,

if K − 1 ASAs are available and used, each ASA is operated with backoff:

Backoff [dB] = 20× log10(K − 1) (3.10)

compared to the MSA. Furthermore, the DPD training algorithm presented in Section II

assumed ideal transfer functions between the sub-arrays and the TOR. This assumption
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Figure 3.3: Received power at TOR with ASA turned on versus phase-offset.

does not hold in the validation test bed because i) the front ends of the MSA and ASAs

may exhibit non-ideal frequency responses and ii) the error signal is obtained by combining

the transmitted signals at a far-field receiving antenna after undergoing over-the-air prop-

agation. Fig. 3.4 depicts the functional diagram of the proposed DPD scheme, including

the impulse responses of the channels between the sub-arrays and the probing antenna as

well as the corresponding baseband compensation blocks. In the following, the procedure

devised to estimate the discrete baseband channel impulse responses is described.
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Channel Calibration

Let the discrete complex baseband equivalent of the channel impulse response between the

MSA and the TOR be h̃main[n]. Similarly, the channel impulse response between the kth

ASA and the TOR is denoted by h̃ASAk
[n]. Hence, the combined response h̃aux[n] between

the ASAs and the TOR can be expressed as

h̃aux[n] =
K−1∑
k=1

h̃ASAk
[n] (3.11)

The channel impulse response of the MSA was estimated by operating the MSA in backoff

(to avoid nonlinearities) and with non-radiating ASAs. Similarly, the channel impulse

response of the ASAs was estimated with a non-radiating MSA. The complex baseband

representations of the received signal corresponding to the MSA and ASAs at the TOR

are then

ỹ[n] =
(
h̃main ∗ ũ

)
[n] (3.12)

and

ỹaux[n] =
(
h̃aux ∗ ṽ

)
[n] (3.13)
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respectively, where ũ[n] is the signal transmitted by the MSA and ũ[n] is the signal

transmitted by the ASAs. Considering a complex channel response of length P + 1 (i.e

h̃main[n] = 0 for n < 0 and n > P and likewise h̃aux[n] = 0 for n < 0 and n > P ), (3.12)

and (3.13) can then be written in matrix form as follows

ỹ = Uh̃main + ε̃main (3.14)

ỹaux = Vh̃aux + ε̃aux (3.15)

where h̃main =
(
h̃main[0],

(
h̃main[1], · · · ,

(
h̃main[P ]

)
, and likewise, h̃aux =

(
h̃aux[0],

(
h̃aux[1],

· · · ,
(
h̃aux[P ]

)
, ε̃main and ε̃aux are the modelling errors in fitting h̃main and h̃aux respectively

and U and V are the convolution matrices

U =

 ũ[n] · · · ũ[n− P ]
...

. . .
...

ũ[n−M + 1] · · · ũ[n− P −M + 1]

 (3.16)

V =

 ṽ[n] · · · ṽ[n− P ]
...

. . .
...

ṽ[n−M + 1] · · · ṽ[n− P −M + 1]

 (3.17)

where M is the length of the block of samples for ũ[n] and ṽ[n] used in estimating the

channels. The least-square estimates ĥmain and ĥaux of the complex baseband channel

impulse responses h̃main and h̃aux, can then be written as

ĥmain =
(
UHU

)−1
UH ỹ (3.18)

ĥaux =
(
VHV

)−1
VH ỹaux (3.19)

The use of different impulse responses to describe the channels of the MSA and ASAs is

necessary because the non-ideal frequency responses of the sub-arrays may vary. The im-

pulse response of the channel between MSA and the probing antenna, and its corresponding

inverse, ĥ−1main, (shown in Fig. 3.4), are then used to rewrite the DPD basis matrix described

in (2.17) as follows:

ψ̃l
(
x̃[n]

)
=
(
ĥ−1main ∗ x̃

)
[n−m′

l]
∣∣∣(ĥ−1main ∗ x̃)[n−ml]

∣∣∣2pl , (3.20)
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Figure 3.5: Left: MSA’s AM/AM before (blue) and after (red) channel calibration. Right:

MSA’s AM/PM before (blue) and after (red) channel calibration.

where the inverse channel impulse response ĥ−1main[n] is defined so that (3.21) is satisfied(
ĥ−1main ∗ ĥmain

)
[n] = δ[n]. (3.21)

Similarly, ĥ−1aux[n] is used to pre-process the input signal to the ASAs so that the cancellation

of yaux(t) from y(t) is maximized. Thus the inverse, ĥ−1aux[n], is determined so that (3.22)

is satisfied (
ĥ−1aux ∗ ĥaux

)
[n] = δ[n]. (3.22)

For illustration purposes, Fig. 3.5 shows the AM/AM and AM/PM characteristics of an

MSA, when the ASAs are non-radiating, before and after pre-compensation for the chan-

nel response using ĥ−1main[n], with impulse response length P + 1 = 120. Based of Fig. 3.5,

one can deduce that the application of ĥ−1main allowed for the de-embedding of the chan-

nel response, so that the AM/AM and AM/PM characteristics are focused on the MSA

nonlinearity. This approach also enable the DPD coefficients to be more robust to the

variation in the channel.
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Figure 3.6: Block diagram of experimental setup with two alternate configurations of the

radio head; three ASAs, and two ASAs.

3.3 Experimental Validation

3.3.1 Measurement Setup

The diagram shown in Fig. 3.6 depicts the measurement setup used to validate the proposed

DPD system modeled in Fig. 3.4. The vector signal generation portion of the setup includes

an arbitrary waveform generator (AWG, M8190A from Keysight Technologies) used to

synthesize the test signals around an IF of 2.4 GHz. The IF signals are then up-converted

to 28 GHz using an image-rejection IQ mixer (MMIQ1037H from Marki) and fed into an

Anokiwave AWMF-0134 radio head [23] that includes the PAs, attenuators, phase shifters

and four 64-element sub-arrays. Of the four sub-arrays, one was used as the MSA in this

experiment and, depending on the experiment, two or three sub-arrays were used as ASAs.

A receiving horn probing antenna was placed in the far-field and its out-put signal down-

converted to an IF using a down-converting mixer (MM11140H from Marki). The received

IF signal was then digitized and used to train the DPD function. The radio head was

attached to a step motor to automatically control its relative angle to the receiving horn

antenna. The experiments were conducted using two wideband OFDM signals of 200 MHz
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Figure 3.7: Photograph of measurement setup.

and 800 MHz bandwidths with subcarriers modulated using 256-QAM, sub-carrier spacing

of 120 KHz, and characterized by a PAPR of 10 dB. The test signals sampling rates were

1 Gsps and 4 Gsps respectively. The setup shown in Fig. 3.7 was configured to allow for

two experimental variations. Experiments used either two or three sub-arrays as ASAs

that were operated at 6 dB and 9 dB backoff respectively. In order to ensure acceptable

signal accuracy, the setup was calibrated using a wideband multi-tone signal with a 1 MHz

tone spacing following the procedure described in [24]. Furthermore, LO phase-offset and

channel impulse response characterization were performed using the theory described in

the above sub-sections.

3.3.2 Measurement Results Using Three ASAs and 200 MHz

Test Signal

In this variant, three sub-arrays were employed as ASAs and an OFDM signal with mod-

ulation bandwidth equal to 200 MHz was used as a test signal. The test signal was pre-

processed to pre-compensate for the channel impulse response (channel between the MSA
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Figure 3.8: Far-field received signal for non-radiating ASAs without DPD using: (a) full

16-bit ADC resolution; (b) 4-bits ADC resolution; and (c) 2-bits ADC resolution.

and the probing antenna), and then fed as the RF input of the MSA (64-element) of the

four 64-element radio head. The same test signal was also pre-processed to account for the

LO phase-offset, time misalignment and channel impulse response (channel between the

three ASAs and the probing antenna) before driving the three remaining sub-arrays. The

resulting error signal captured by the far-field probing antenna was then used to identify

the coefficients of the CRV-series based SISO DPD function. For that, the nonlinearity

order, and nonlinear and linear memory depths were set to 5, 7 and 15 respectively, re-

sulting in a total of 24 coefficients. It is of note that in this experiment, the nonlinear

basis of the CRV expression of (2.17) was used, with even orders higher than two removed.
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Figure 3.9: Far-field received signal spectrum (three-ASAs case): (a) before DPD; (b) after

DPD with non-radiating ASAs and 16-bit ADC; (c) after DPD with radiating ASAs and

4-bit ADC; and (d) after DPD with radiating ASAs and 2-bit ADC.

Furthermore, the error signal was captured using an ADC (AD9208 from Analog Devices)

with a sampling rate of 3 Gsps and 16-bit, 4-bit and 2-bit, and an analog bandwidth of 1.5

GHz. 3.8, illustrates the measured spectrum without DPD and with non-radiating ASAs.

From Fig. 3.8; it is clear that the cases using a 4-bit and 2-bit ADC resolution imply a

quantization noise in excess of the out-of-band distortion levels. This limited the ability

of the resulting DPD to demonstrate any appreciable linearization. These problems were

not encountered when the DPD was trained using a 16-bit resolution ADC as can be seen

in Fig. 3.9-(b). However, when the ASAs were used during the DPD training (as can be

deduced from Fig. 3.9), a 4-bit resolution ADC allowed for a reduction in the adjacent
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channel power ratio (ACPR) from −33 to −43 dBc, and the error vector magnitude (EVM)

dropped from 5.8% to 1.64%. These results are com-parable to the DPD performance with

the non-radiating ASAs when using a full resolution receiver that achieved an ACPR of

−42.3 dBc and EVM of 1.68% after DPD. According to Fig. 3.9, when a 2-bit ADC is

used during DPD training, the linearization capacity was slightly reduced. The results in

Fig. 3.9 show an improvement in ACPR from -33 to -41.8 dBc and in EVM from 5.8% to

2.1%.
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Figure 3.10: Far-field received signal spectrum (two-ASAs case): (a) before DPD; (b) after

DPD with non-radiating ASAs; (c) after DPD with radiating ASAs and full resolution

ADC; (d) after DPD with radiating ASAs and 4-bit ADC; (e) after DPD with radiating

ASAs and 2-bit ADC.
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Figure 3.11: Far-field received signal spectrum (two-ASAs case): (a) before DPD; (b) after

DPD with radiating ASAs and 1-bit ADC.

3.3.3 Measurement Results Using Two ASAs and 800 MHz Test

Signal

In this variant, two sub-arrays are employed as ASAs and an OFDM signal with modulation

bandwidth equal to 800 MHz was used as a test signal. Again, as in the first variant, the

error signal captured by the probing antenna was used to identify the coefficients (even

orders above two were re-moved) of the CRV-series based SISO DPD function. For that, the

nonlinearity order, nonlinear and linear memory depths were set to 7, 9 and 0, respectively,

resulting in a total of 13 coefficients. Note that during DPD training, the main beam
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was directed towards the broadside and the error signal was captured using a high-speed

oscilloscope (DSA91304A from Keysight Technologies) with resolution of 8-bit, 4-bit, 3-

bit, 2-bit and 1-bit, analog bandwidth of 13 GHz, and sampling rate of 40 Gsps. Fig. 3.10

shows the spectrum captured at the probing antenna before and after application of the

trained DPD function and with non-radiating ASAs. Based on Fig. 3.10, the application of

the trained DPD allowed for a reduction of the ACPR and the EVM from −35 to −44 dBc

and from 5.0% to 1.6%, respectively. These results were then compared to those obtained

when the DPD was trained with non-radiating ASAs and using a full resolution (8-bit)

digitizer. The results showed that the ACPR was reduced from −35 to −43 dBc, and

the EVM from 5.0% to 1.7%. It is worth noting that the significant linearization capacity

seen in Fig. 3.10 was obtained with different digitizer resolutions (i.e. full or 8-bit, 4-

bit and 2-bit resolutions) and the EVM was maintained at 1.6%. This confirms that the

digitizer resolution reduction enabled by the proposed DPD scheme did not com-promise

the schemes linearization capacity. A 1-bit receiver was also tested and the linearization

performance is depicted in Fig. 3.11. The results show that even a 1-bit receiver resolution

was able to improve the ACPR by approximately 5 dB and decrease the EVM by half,

from 5% to 2.5%. As with the first set of measurement results, it was shown that better

results could be achieved by increasing the number of iterations for the training and by

enabling auto-scaling.

3.4 Conclusions

A novel SISO DPD scheme using reduced receiver bit resolution to linearize the sub-arrays

of a hybrid-beamforming array was proposed. Here, ASAs are mobilized to transmit an

inverted version of the input signal to the MSA, the target to be linearized. Using anti-

beamforming modules connected to the MSA and ASAs, the error signal needed for DPD

training is generated. The input signal cancellation created by the weighted combining

of the anti-beamforming module outputs results in a significant reduction of the required

dynamic range for the TOR and consequently lowering the required ADC bit resolution.

Experimental validation of the proposed DPD scheme using over the air combining showed

excellent linearization capacity with only 4-bit resolution when applied to an array com-
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prised of four 64-element sub-arrays operating at 28 GHz and when driven by 200 MHz

modulated signals, and using a 2-bit resolution ADC when driven with 800 MHz signals.
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Chapter 4

Single Set of DPD Coefficients

Versus Steering Angles

In this chapter, a generalized SISO DPD scheme is introduced, where the DPD coefficients

are trained using the signals captured at different steering angles. The measurement results

of the proposed scheme are compared to the SISO DPD trained at θ = 0◦ and to the

piece wise DPD approach in [5]. A systematic approach to predict the variation in RF

beamforming arrays nonlinear behavior versus steering angles using an S-parameters based

analysis is then presented and the effect of tapering on the PAs active load impedance

variation is introduced. Afterward, the measurement result of a SISO DPD trained at

0◦ and the generalized SISO DPD trained using the signal captured at θ = 0◦, θ = 20◦

and θ = 40◦ of a 64-elements RF beamforming array with tapering applied are presented.

Finally, the contributions and conclusions of this work are summarized.

4.1 Intoducrion

There have been some attempts, in the literature, to extend the application of DPD to

multiple-antenna transmitter arrays. A conventional implementation of DPD technique,

based on sub-6 GHz theory, is done in digital baseband and requires as many feedback
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paths and predistorders as the number of power amplifiers. For the special case of RF

beamforming, where a signal baseband transmission branch is connected to several PA and

antenna elements, only a single DPD is expected to linearize the array of PAs. Different

approaches have been investigated in the literature to linearize RF beamforming systems

based a single-input-single-output (SISO) DPD modeling approach. In [25], the authors

proposed a SISO DPD scheme to linearize RF beamforming arrays, in simulation, using

all the PAs output signals. The DPD coefficients are trained to minimize the sum of the

least squared errors of the different branches and is compared to the case where a single

PA element is used to train the antenna array. A SISO beamforming oriented DPD is

also introduced in [26, 19] where the DPD function is trained to linearize the main beam

signal. In the proposed scheme, the PA outputs are sampled using direction couplers and

utilizing a time-shared feedback path. The SISO DPD coefficients, in [26, 19], are then

trained to minimize the sum of least square error of the PA outputs after the effect of

analog beamforming coefficients are removed. Moreover, a SISO DPD for phased arrays

using far-field probing antenna was proposed in [19, 18, 27], where the combined error

signal at the far-field is minimized. In an attempt to reduce the variation between the

PA nonlinear behaviour in phased arrays and linearize the array response in the main

beam and the sidelobes, [28] proposed the use of analog tuners implemented before the

PAs to compensate for the variation in the PA outputs between the different RF chains.

Finally, the author in [20] used couplers at the PA outputs in conjunction with an anti-

beamforming module, implemented in hardware, to cancel the beamforming weights and

generate a far-field equivalent signal to train the SISO DPD function. One of the major

issue that phased arrays suffer from is the angle dependent load modulation exhibited

by the array at the PA outputs [29, 30, 31]. This is mainly due to the finite isolation

between the antenna elements that causes the impedance seen by the different PAs to vary.

Consequently, this causes the PAs to exhibit different nonlinear behaviour that is steering

angle dependent. The authors in [27], showed in measurements that the linearization

capacity of a single set of SISO DPD coefficients trained at broadside, was not maintained

for different beamforming direction. In an attempt to tackle the challenges associated with

the load modulation on the DPD linearization performance, the author in [27], proposed

the use of a steering angle-dependent sets of DPD coefficients to linearize the array for
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Figure 4.1: Block diagram of an RF beamforming array with K antenna elements and

finite antenna cross-coupling.

different combination of beamforming directions. Using the scheme in [27], the authors

demonstrated, in measurements, the capacity of three sets of DPD coefficients trained at

θ = 0◦, θ = 20◦ and θ = 40◦ to linearize a 64-elements RF beamforming array at different

directions using an 800 MHz Orthogonal frequency-division multiplexing (OFDM) and

operated at 28 GHz. A dual input-solution was also proposed in [14, 1, 15, 16] to linearize

phased arrays with antenna mismatch. Using this scheme the DPD function is trained

using the forward and reverse waves at the PA outputs. The dual-input modeling approach

demonstrated good linearization capability. The effect of the load modulation variation

versus steering angles on the dual-input DPD did not, however, seen further investigation.

It is hence, important to investigated the effect of the load modulation variation at different

steering angles on the PAs nonlinear behaviour.

In this thesis, we propose to investigate the effect of the load modulation on the PAs

nonlinear behaviour using an S-parameters based analysis. A single set of DPD coefficients,
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Figure 4.2: Normalized reflection coefficent, Γ̃k(θ, φ), at the antenna elements versus steer-

ing angles.

trained using signals captured at different steering angles to minimize the sum of the least

squared error at different beamforming angles is then proposed. Finally, an analysis of

the effect of tapering on the reflected power variation at the PA outputs and on the DPD

linearization capacity are investigated.

4.2 Investigation of DPD linearization capacity over

wide steering angels: with and without tapering

In order to compensate for the variation in the PAs nonlinear behaviour at different steering

angles in RF beamforming arrays, the work in [5], suggested the use of multiple sets of DPD

coefficients trained at different steering angles to linearize an RF beamforming array at

different directions. As the array is steered, the appropriate set of trained DPD coefficients
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Figure 4.3: Measured ACPR of a 64-element array versus θ in [5].

are selected to linearize the array. The training angles used in [5], were selected where

the ACPR before DPD showed the largest variation. The approach in [5] was able to

minimize the EVM and ACPR variation for different steering angles. In this section, we

will investigate the effect of the variation in the reflected power at the PA outputs on the

array nonlinear behaviour and on the DPD linearization capacity.

Analyzing the effect of the load modulation on the array nonlinear behavior can be

very challenging given the high dimensionality of the problem. Fig. 4.1, illustrate an RF

beamforming array with K antenna elements where V +
1,k is the kth PA input incident wave,

V −2,k and V +
2,k are the kth antenna incident and reflect waves respectively, V −1,k is the kth

PA input reflected wave and S(k) =
[
S
(k)
11 , S

(k)
12 , S

(k)
21 , S

(k)
22

]
are the kth PA S-parameters.
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Figure 4.4: Radiation pattern with and without tapering applied on a 8 × 8 64-elements

array; (Left) Simulation results; (Right) Measurement results.

Consequently, the kth antenna incident wave can be expressed as follows:

V −2,k = S
(k)
21 V

+
1,k + S

(k)
22 V

+
2,k

= S
(k)
21 V

+
1,k + S

(k)
22

K∑
i=1

SAkiV
−
2,i

= S
(k)
21 V

+
1,k + S

(k)
22

K∑
i=1

SAki
(
S
(i)
21 V

+
1,i + S

(i)
22

K∑
j=1

SAijV
−
2,j

)
= S

(k)
21 V

+
1,k + S

(k)
22

K∑
i=1

SAkiS
(i)
21 V

+
1,i + S

(k)
22

K∑
i=1

SAkiS
(i)
22

K∑
j=1

SAijV
−
2,j

(4.1)

where SA is the array coupling matrix. In order to simplify the recursive function described

in Eqn. (4.1), we will assume that

S
(k)
22

K∑
i=1

SAkiS
(i)
21 V

+
1,i � S

(k)
22

K∑
i=1

SAkiS
(i)
22

K∑
j=1

SAijV
−
2,j (4.2)

and second that the PAs S-parameters S(k) are identical for k = 1, · · · , K. Consequently,
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Figure 4.5: Normalized reflection coefficient, Γ̃k(θ, φ), at the antenna elements versus steer-

ing angles with tapering; (Top) Taylor window; (Middle) Triangle window; (bottom) Flat-

top window.

Eqn. (4.1) can be rewritten as follows:

V −2,k = S21V
+
1,k + S22S21

K∑
i=1

SAkiV
+
1,i (4.3)

Apply the RF beamforming assumption,

V +
1,k(θ, φ) = wke

jφk(θ,φ), (4.4)

Eqn. (4.3) becomes:

V −2,k(θ, φ) = S21wke
jφk(θ,φ) + S22S21

K∑
i=1

SAkiwie
jφi(θ,φ) (4.5)
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where wk and φk(θ, φ) are the kth chain tapering and beamforming coefficients. The far-field

equivalent received signal, r(θ, φ) can hence be expressed as follows:

r(θ, φ) =
K∑
k=1

αV −2,k(θ, φ)e−jφk(θ,φ)

=
K∑
k=1

αS21wk + αS22S21

K∑
k=1

K∑
i=1

SAkiwie
j(φi(θ,φ)−φk(θ,φ))

(4.6)

where α ∈ R is a normalization factor that includes the transmitting and receiving antennas

efficiency and the propagation loss. Contrary to the ideal scenario without coupling and

cross-talk, the user received signal, described by (4.6), depends on the beam-steering angle

(θ, φ). From (4.6), it is also clear that the effect of the load-modulation at different steering

angles takes the form a 2-D Fourier transform. In order to analyze the impact of the load

modulation on the individual antenna PA elements and on the overall array we can define

the reflected coefficient,Γk(θ, φ), at the kth antenna element as:

Γk(θ, φ) =
K∑
i=1

SAkiwie
j(φi(θ,φ)

wkej(φk(θ,φ)
(4.7)

We also define the normalized reflected coefficient at the kth antenna element, Γ̃k(θ, φ), as

follows:

Γ̃k(θ, φ) =
Γk(θ, φ)

max
(
Γk(θ, φ)

) (4.8)

Fig. 4.2, illustrates
∣∣Γ̃k(θ, φ)

∣∣ for φ = 0◦ and θ ∈ [−45◦, 45◦] using an 8×8 array with lattice

spacing dx = dy = λ/2 at 28 GHz. Due to the unavailability of an 8 × 8 EM simulated

array, the S-parameters used in Fig. 4.2 were generated using the infinite array analysis,

using the assumption that the coupling characteristics is the same in both the E and H

plane and that the radiation pattern of each individual patch antenna is isotropic. The

array S-parameter, SAmn, are then expressed as follows:

SAmn =
c

dmn
ejkdmn , (4.9)

and

SAnn = 0. (4.10)
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Figure 4.6: Measurement setup block diagram

From Fig. 4.2 we can observe a variation in the magnitude of the antennas reflection coef-

ficient versus steering angles. This would induce a variation in the in the reflected power

at the PA outputs that would theoretically impact the PAs inter-modulation distortion

(IMD3) and cause the ACPR to vary versus steering angles. Fig. 4.3 illustrates the mea-

sured ACPR before and after DPD on a 64-elements RF beamforming array [23] measured

in [5]. From the measurement results in Fig. 4.3, we can clearly see that the ACPR before

DPD follows a similar behaviour as the simulated results in Fig. 4.2.

From (4.8), it is also evident that the reflection coefficient at the PAs port-2 are depen-

dent of the tapering coefficients. This calls for the investigation on the effect of tapering

on the reflection coefficients versus steering angles. This is remindful to the concepts used

in the transmission line matching theory where tapering is commonly used to improve

the matching bandwidth, however in the case of phased arrays the tapering has a spacial

impact on the variation of the reflection coefficients versus steering angles. Hence, it is

important to study if tapering could be used to reduce the variation of
∣∣Γk(θ, φ)

∣∣ at differ-

ent beamforming directions. This is even more relevant, since tapering can also be used to

shape the array factor, i.e, reduce the sidelobes and synthesize broader beam patterns, and

consequently, is expected to be used on commercial phased arrays. Fig. 4.5, illustrates the

effect of three different tapers on the magnitude of the active reflection coefficient at the
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antenna elements,
∣∣Γ̃k(θ, φ)

∣∣, for φ = 0◦ and θ ∈ [−45◦, 45◦], and on an 8 × 8 64-elements

RF beamforming array. Fig. 4.4 (Left) illustrate the simulated radiation pattern of the

used tapers. It is clear from Fig. 4.5 that applying tapering helped reduce the variation

in
∣∣Γk(θ, φ)

∣∣ versus steering angles. This theoretically, would help reduce the variation in

the array nonlinear behavior versus steering angles and enables the DPD coefficients to be

more robust to the variation in the beamforming direction.

4.3 Theoretical formulation of the proposed DPD scheme

Figure 4.7: Measurement results of the ACPR (Left) and EVM (Right) before and after

DPD trained at broadside and using signals captured at θ = 0◦, θ = 20◦ and θ = 40◦.

4.3.1 Proposed DPD formulation

Due to the variation in the load modulation at the PA outputs, the work in [27] demon-

strated that a single set of DPD coefficients trained at broadside is not sufficient to linearize

the array at different steering angles. In this section, we propose a novel DPD scheme
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Figure 4.8: Measurement results of the ACPR (Left) and EVM (Right) before and after

DPD trained at broadside; (a) Before DPD and without tapering; (b) Before DPD and

with taper setting 1; (c) After DPD, without tapering and with average power of -28.8

dBm; (b) After DPD, with taper setting 1 with average power of -28.94 dBm.

trained that aims to minimize the variation in ACPR and EVM after DPD using a single

set of DPD coefficients. Using this scheme the DPD function is trained using the captured

error signal at different steering angles where the reflected power at the PA outputs shows

significant variation and using the theory described above.

The error signal is denoted ẽ[n; θ] where θ is the steering angle used to generate the error

signal for training. The set of all possible steering angles for training purposes is denoted

θT . Given x̃[n] and ẽ[n; θ] for n = nk, ..., nk + N − 1 and θ ∈ θT , the update direction

∆C(k) of the predistortion model coefficients for the kth iteration of DPD training is the

direction that minimizes the squared l2 norm, i.e, that minimizes

J =
∑
θ∈θT

nk+N−1∑
n=nk

∣∣∣∣ẽ(k)[n; θ]−
L∑
l=1

c
(k)
l ψl

(
x̃[n]

)∣∣∣∣2 (4.11)

and is determined with a standard least-square fit, with the solution

∆c(k) =
1

|θT |
(
Ψ(x̃)HΨ(x̃)

)−1
Ψ(x̃)H

∑
θ∈θT

ẽ
(k)
i (θ). (4.12)
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Figure 4.9: Measurement results of the ACPR (Left) and EVM (Right) before and after

DPD trained at broadside; (a) Before DPD and without tapering; (b) Before DPD and

with taper setting 2; (c) After DPD, without tapering and with average power of -28.8

dBm; (b) After DPD, with taper setting 2 with average power of -31.94 dBm.

Hence, by capturing the signal at different beamforming angles and using (4.12), the pro-

posed generalized DPD function that minimize the variation in the NMSE and consequently

the EVM is trained.

4.4 Measurement results

The diagram shown in Fig. 4.6 depicts a system block diagram of the measurement set

up used to validate the proposed DPD scheme. The vector signal generation portion

of the setup includes an arbitrary waveform generator (AWG, M8190A from Keysight

Technologies) used to generate the test signals around an IF of 1.7 GHz. The IF signal

is then up-converted to 28 GHz and fed to an 8 × 8 64-elements RF beamforming array

that includes the PAs, the antennas and the digital phase shifters to steer the beams and

has an EIRP at 1-dB compression point of 50 dBmi. A far-field receiving horn antenna is

used to capture the training signal. A digitally controlled motor is used to align the beam

58



Figure 4.10: Measurement results of the ACPR (Left) and EVM (Right) before and after

DPD trained at broadside; (a) Before DPD and without tapering; (b) Before DPD and

with taper setting 3; (c) After DPD, without tapering and with average power of -28.8

dBm; (b) After DPD, with taper setting 3 with average power of -37.76 dBm.

with the receiver to capture the training signal and maximize the received power. The

far-field signal is then down-converted to IF using a down-converting mixer (MM11140H

from Marki). The received IF signal is then digitized using a digitized (M8131A from

Keysight). The measurements were conducted using a 400 MHz wideband OFDM signal

with subcarriers modulated using 256-QAM, sub-carrier spacing 120 KHz and characterized

by a PAPR of 11 dB. In order to ensure a good signal accuracy, the setup was calibrated

using a wideband multi-tone signal with 1 MHz tone spacing following the procedure in

[24]. The DPD nonlinearity order, and nonlinear and linear memory depths were set to 9,

9, and 0 respectively, resulting in a total of 25 coefficients.

4.4.1 Case 1: No tapering

The training angles used to capture the signals needed to train the CRV-series based SISO

DPD function are θT = {0◦, 20◦, 40◦}. Note that during the DPD training, the main beam
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was directed towards 0◦, 20◦ and 40◦ in that order and the motor was used to align the

main beam with the receiving horn antenna at each training angle before capturing the

signal. Fig. 4.7 (Left) and Fig. 4.7 (Right) show the ACPR and EVM before and after

DPD versus steering angles using a single SISO DPD trained at θ = 0◦ and the proposed

scheme trained using the signals captured at θ ∈ θT respectively. The results from Fig. 4.7

(Left) and Fig. 4.7 (Right) show that the SISO DPD trained at θ = 0◦ was able to improve

the ACPR from −35 to −48 dBc and the EVM from 4% to 1.1% at θ = 0◦, those results

did not generalize well versus steering angles. For example at θ = 25◦ the ACPR only

improved by 5 dB and the EVM was only reduced from 5.5% to 3%, hence the SISO DPD

trained at θ = 0◦ is not enough to maintain an EVM below 2% for different steering angles.

Those results are consistent with the results in [5]. In contrast to the SISO DPD trained

at θ = 0◦, the proposed DPD was able to improve the ACPR from −34 to −45 dBc and

the EVM from 6% to 1.4% for a wide range of steering angles, i.e. from −45◦ to −15◦ and

from 15◦ to 45◦. Using the proposed scheme, the EVM was maintained below 2% across all

the steering range. The proposed DPD, however, was not enough to maintain the ACPR

below −45 dBc for different steering angles, i.e. from −15◦ to 15◦. In order to maintain the

EVM and ACPR below 2% and −45 dBc respectively, the peace-wise DPD in [5] provides

better results versus steering angles when compared to proposed scheme.

4.4.2 Case 2: With tapering

Tapering can help reduce the sidelobes or to synthesize a wider beam pattern, this, however,

comes at the expense of reduced array gain and can be further illustrated in Fig. 4.4 that

shows the measured radiation pattern of the Anokiwave AWMF-0128 64-elements radio

head [32] with and without tapering applied. In this measurement subsection, the DPD

function is trained at broadside with different tapers and with the input average power to

the array varied to keep a constant starting ACPR.

Fig. 4.8 (a) and (c) show the ACPR and EVM before and after DPD respectively

and without tapering applied. The DPD in Fig. 4.8 was trained at broadside and with

an average received power of −28.54 dBm. From Fig. 4.8 the ACPR and EVM were

improved from −33 to −46 dBc and from 5% to 1% respectively at broadside. As expected
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Figure 4.11: Measurement results of the ACPR (Left) and EVM (Right) before and after

DPD trained at broadside and with the proposed DPD trained using signals captured at

θ = 0◦, θ = 20◦ and θ = 40◦; (a) Before DPD and without tapering; (b) Before DPD and

with taper setting 1; (c) After DPD trained at broadside and without tapering; (b) After

proposed DPD and with taper setting 1.

the DPD performance is not maintained versus steering angles where the ACPR and EVM

deteriorate to −39.5% and up to 2.6% respectively. Those results will be used as a reference

in studying the effect of tapering on the ACPR and EVM before and after DPD. Fig. 4.8 (b)

and (d) illustrate the DPD results with taper 1 applied and at a received power of −28.94

dBm. From Fig. 4.8, the ACPR and EVM were improved from −33 to −48.7 dBc and from

5% to 0.9% respectively at θ = 0◦. The ACPR and EVM where maintained below −43.2

and 1.65% from −35◦ to 45◦ and below −41.7 dBc and 2% for the whole steering range.

Using Taper 2 in Fig. 4.9 (b) and (d) the received power was further reduced to −31.9

dBm. Using this configuration, the measurement results show that the ACPR was reduced

from −33.8 to −48 dBc and the EVM from −4.5% to 0.85% at θ = 0◦. The ACPR and

EVM were maintained below −46 dBc and 1% from −38◦ to 45◦ and below −42.3 dBc and

1.8% from −45◦ to 45◦. Finally, using the flat-top taper, the received power was measured

to be −37.76 dBm. Using taper 3 and from Fig. 4.10 (b) and (d), it is clear that the ACPR

and EVM were reduced from −33 to −47 dBc and from 5% to 1.1% respectively at the
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Figure 4.12: Measurement results of the ACPR (Left) and EVM (Right) before and after

DPD trained at broadside and with the proposed DPD trained using signals captured at

θ = 0◦, θ = 20◦ and θ = 40◦; (a) Before DPD and without tapering; (b) Before DPD and

with taper setting 2; (c) After DPD trained at broadside and without tapering; (b) After

proposed DPD and with taper setting 2.

angle, θ = 0◦, where the DPD was trained. The ACPR and EVM were maintained below

−43 dBc and 1.6% for the full steering range.

Better results were measured when using the generalized SISO DPD proposed above

in combination with tapering. Fig. 4.11 (b) and (d), shows the results of the proposed

generalized DPD with tapering 1 applied. The received power in this case was −30.6 dBm

compared to −29.4 dBm without tapering in Fig. 4.11 (a) and (c) for the same starting

ACPR. From Fig. 4.11 (b) and (d), it is clear that the ACPR was improved by 10 to 14

dBc from −35 to at worst −45 dBc and at best −49 dBc and the EVM was improved from

at worst 5% to at worst 1.6%. It is important to note that the EVM was maintained below

1.2% from −38◦ to 45◦. Finally, using taper 2, the received power was −32.6 dBm. The

results from Fig. 4.12 (b) and (d), show that using the proposed generalized DPD trained

at θ = 0◦, 20◦, 40◦, the ACPR was improved from −35.5 to at worst −46.4 dBc and at best

−50 dBc and the EVM improved from at worst 4.5% to at worst 1.2% and at best 0.85%.
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The EVM was maintained below 0.95% from −39◦ to 45◦.

4.5 Conclusions

In this Chapter, a generalized DPD scheme trained using the captured signal at different

steering angles was introduced. Using this scheme, we showed that the EVM was able to be

maintained below 2%. The proposed DPD was then compared to the SISO DPD trained

at θ = 0◦ and to the peace-wise DPD in [5]. Afterward, the variation of the array nonlinear

behavior was analyzed. The analysis lead to show that the load modulation is dependent

on the steering angle and on the tapering coefficients. It was then demonstrated that

tapering can be used to minimize the load modulation variation versus different steering

angles. To confirm the simulation results, DPD measurement on a commercial 64-elements

RF beamforming array were introduced. The measurement results, showed that using

tapering the ACPR before DPD showed less variation compared to the case where no

tapering is applied and that a SISO DPD trained at broadside was enough to linearize the

array at different beamforming angles. Finally, the measurement result using the proposed

generalized SISO DPD scheme with tapering applied showed further improvement in the

EVM and ACPR versus steering angles.
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Chapter 5

Conclusion

In this thesis, the practical deployment of DPD solutions for mm-wave phased arrays was

studied. First, a power consumption reduction technique was introduced, then the load

modulation effect on the array nonlinear behavior at different beamforming angles was

analyzed and finally, a generalized DPD scheme, and a tapering assisted DPD were devised

and demonstrated capacity to linearize a commercial array in different steering directions.

Hence, by minimizing the DPD power consumption and reducing the DPD complexity

using tapering and the proposed generalized DPD scheme, a practical implementation of

DPD on phased arrays was devised.

In Chapter 2, we saw how mm-wave phased arrays can be used to mitigate the effect of

the increase of free space path loss at higher frequencies. We then introduced the concept

of tapering and it effect on array factor and on sidelobes levels. We then discussed the

tradeoff between linearity and power efficiency in PAs and proposed DPD as a method to

increasing the efficiency and allow the array to operate further in its non-linear region where

the PAs are most efficient. Finally, we discussed the power consumption and complexity

issues with the existing DPD solutions in the literature.

In Chapter 3, a novel SISO DPD scheme using reduced receiver bit resolution to lin-

earize hybrid-beamforming arrays was proposed. A conceptual solution as well as a more

practical implementation of the proposed scheme was introduced. Challenges with real life

deployment of this DPD solution, like LO phase-offset cancellation and channel calibra-
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tion were also discussed. Experimental validation of the proposed DPD scheme using a

4-bit resolution when applied to commercial array comprised of four 64-element sub-arrays

operating at 28 GHz and when driven by 200 MHz modulated signals, and using a 2-bit

resolution ADC when driven with 800 MHz signals were presented.

In chapter 4, we proposed a generalized SISO DPD scheme to linearize RF beamforming

arrays and minimize the EVM variation versus steering angles. The measurement results of

the proposed scheme were then compared to the SISO DPD trained at broadside and to the

peace-wise DPD in [5]. The proposed scheme showed robustness to the load modulation

variation at different steering angles and was able to maintain an EVM below 2%. A

theoretical analysis of the effect of the load modulation on RF beamforming arrays was then

introduced. The analysis lead to the conclusion that the load modulation is dependent on

the steering angles and on the tapering coefficients. The effect of tapering on a 16-elements

EM simulated and on a 64-elements Matlab simulated array was then investigated and

the findings showed that applying certain tapers could decrease the variation in the load

modulation and hence reduce the variation in the ACPR and EVM versus steering angles.

The simulation results were further confirmed using the measurement results on a 64-

elements commercial RF beamforming array that proved that the tapering help reduce the

ACPR variation, before and after DPD, in different beamforming directions. The results

also showed that a SISO DPD function trained at broadside was enough to linearize the

64-elements array. Finally, the proposed generalized DPD scheme was used to linearize the

array with tapering applied. The results showed even further improvements to the ACPR

and EVM results.

5.1 Future work

The ultimate goal of this work was to demonstrate that a low complexity low power con-

sumption DPD is feasible under real-world measurement conditions and has the potential

to be practical in commercial deployments. The presented work demonstrated the capacity

of tapering to reduce the load modulation variation for different beamforming angles and

that a SISO DPD trained at broadside in conjuncture with tapering or a DPD trained

65



using the signals captured at different angles was enough to linearize RF beamforming

arrays, however there are many practical considerations that need further investigation.

This includes the following avenues below.

Open-loop vs closed-loop DPD

There remains ambiguity on the practical implementation of the TOR architecture and

whether or not it is necessary to have it. Open-loop DPD would be similar to factory

calibration and would need to only be done once. This is, however, still unclear if it can

be accomplished and further work on the thermal effect of the array on the DPD and the

stability of the DPD coefficients has to be conducted. In the closed-loop implementation,

the DPD feedback path architecture issue is still unsolved. The implementation of couplers

at the PA output is not a feasible solution at mm-wave frequencies as it requires added

design complexity and cost. A possible implementation of the TOR being considered uses

near-field probing and could be potentially implemented in the sub-arrays.

EVM reduction focused DPD

The DPD solutions proposed in the literature are usually based on sub-6 GHz theory and

aim to reduce the out-of-band distortions via improving the ACPR. However, ACPR is less

of an issue at mm-wave frequencies and hence solutions that focus on improving the EVM,

similar to the proposed generalized DPD scheme is chapter 4, have to be investigated

Real-time implementation

Lastly, if closed-loop DPD is to be implemented, the DPD training and execution must be

implemented in real time. There is still much work to be done on the efficient implemen-

tation of the DPD function on real hardware and on the system learning time.
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