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Abstract

There exists wide research surrounding the detection of out of distribution sample for image
classification. Safety critical applications, such as autonomous driving, would benefit from
the ability to localise the unusual objects causing an image to be out of distribution. This
thesis adapts state-of-the-art methods for detecting out of distribution images for image
classification to the new task of detecting out of distribution pixels, which can localise the
unusual objects. It further experimentally compares the adapted methods to a new dataset
derived from existing semantic segmentation datasets, proposing a new metric for the task.
The evaluation shows that the performance ranking of the compared methods successfully
transfers to the new task.
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Notation

The notation followed is that of Goodfellow et al . [18] with some minor modifications.

Numbers and Arrays

a A scalar (integer or real)

a A vector, ordered collection of scalars

A A matrix, ordered collection of vectors

A A tensor, ordered collection of matrices

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

Sets and Graphs

A A set

R,N The set of real and natural numbers

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e. the elements of A that are not in B
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Indexing

ai Element i of vector a, with indexing starting at 1

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

Linear Algebra Operations

AT Transpose of matrix A

A−1 Inverse of A

A�B Element-wise (Hadamard) product of A and B

Calculus
dy
dx

Derivative of y with respect to x

∂y
∂x

Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect to X∫
f(x)dx Definite integral over the entire domain of x∫

S f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

a ∼ P Random variable a has distribution P

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ
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Functions

f : A→ B The function f with domain A and range B

f(x;θ) A function of x parametrized by θ. For brevity f(x) is also used without θ

log(x) Natural logarithm of x

||x||p lp norm of x

1condition is the indicator function, i.e. 1 if the condition is true, 0 otherwise

The function notation is often abused to simplify equations. Functions with scalar argu-
ments can be given vector, matrix, or tensor input. This implies that the function is applied
element wise. For example, let f : R 7→ R, then b = f(a) is shorthand for bi = f(ai) for
all valid i.

Datasets and Distributions

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i)
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Chapter 1

Introduction

The surge in availability of data and programmable graphics processing units (GPUs) has
contributed to a drastic increase in the popularity of machine learning (ML) over the last
few years. It has spread into many new fields with a wide variety of applications. Some
of these applications are safety critical, such as autonomous driving, where errors in the
output of an ML algorithm could be fatal. This thesis will look at a way to improve the
existing methods in order to make them more trustworthy.

The inherent risk when using machine learning methods in safety critical areas is that
neural networks are not robust or fault tolerant. That is, neural networks typically output
a confidence value that can’t always be trusted. Neural networks are a series of non linear
operations, therefore it is not trivial to analyse when an erroneous state has been reached.

Supervised learning approaches are trained using datasets that have inputs and tar-
get outputs. The training datasets are assumed to have some underlying, unknown or
unknowable, data-generating distribution. Given an input that is not from this data gen-
erating distribution, the output should not be trusted. This type of input is termed “out
of distribution” (OOD). One mode of action to make neural networks more robust to these
OOD examples is to detect when such an example is encountered. This is the task of OOD
detection.

A large body of research exists for detecting entire images as OOD for the task of image
classification. Image-level OOD detection outputs a classification for the entire image. This
coarse level of detection may be inadequate for many safety critical applications. Most
of any image taken from an onboard camera will have the majority of its pixels as “in
distribution” (ID), i.e. an image of a road scene with cars, people, and roadway, but an
unusual object that was not part of the training set may cause only a small number of OOD
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pixels. Extending the framework to semantic segmentation networks, that is networks
that perform pixel-level classification, will allow each pixel to have an “in” or “out of”
distribution classification. Applied to autonomous driving, groups of pixels classified as
OOD could be considered as unknown objects. Depending on the location of the unknown
objects, a planner could then proceed with caution or hand over control to a safety driver.
Another application is automatic tagging of images with OOD objects, which could then
be sent for human labelling. Figure 1.1 shows a segmentation failure case where OOD
detection is beneficial. In the centre image, the two crates are predicted as road. The
right image of this figure shows the result of pixel-level OOD detection using one of the
proposed methods, which clearly shows higher values for the unusual objects.

Figure 1.1: Image from the LostAndFound dataset [38], where two unlikely objects (storage
crates) are almost entirely incorrectly predicted to be road. The Max Softmax method –
described in detail later – clearly highlights these crates as OOD. (best viewed in colour)

This thesis adapts existing state-of-the-art image-level OOD detection and uncertainty
estimation methods to the new task of pixel-level OOD classification and compares their
performance on a new dataset designed for this task. In addition to adapting the methods,
it addresses the question of whether the best-performing image-level methods maintain
their performance when adapted to the new task. In order to answer this question, it
also proposes pixel-level OOD detection performance metrics, drawing from both existing
image-level OOD detection and semantic segmentation performance metrics. Furthermore,
a new dataset for pixel-level OOD detection with test images that contains both pixels
that are in distribution and pixels that are out of distribution. Somewhat surprisingly, the
evaluation shows that the best performing pixel-level OOD detection methods were derived
from image-level OOD detection methods that were not necessarily the best performing
on the image-level OOD detection task.

In summary, the contributions of this paper are the following:

• adaptation of image-level OOD detection methods to pixel-level OOD detection and
their evaluation;
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• introduction of a pixel-level OOD detection evaluation dataset derived from existing
segmentation datasets; and

• a new metric for pixel-level OOD detection, called MaxIoU.

This thesis is organised as follows: Chapter 2 covers the necessary background on con-
volutional neural networks and the image processing tasks of concern, concluding with the
related and alternative OOD detection methods. Chapter 3 provides details on the exper-
iments that are performed. It describes the neural network used, what changes are needed
when moving from image-level OOD detection to pixel-level detection, the performance
metrics used, a post-processing step introduced to remove artefacts from the resulting
OOD predictions, and finally the research questions and the experiments behind them.
Chapter 4 contains results and discussion. Chapter 5 presents the conclusions and future
work.
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Chapter 2

Background

This chapter covers the formulation of common image-processing neural-network operations
as well as some common architectures for semantic segmentation networks. It concludes
by discussing some related OOD detection methods. These concepts form the foundation
for the topics covered by this thesis. Please refer to Appendix for details on the notation
used.

2.1 Convolutional Network Primitives

Convolutional neural networks (CNNs) are very prevalent in computer vision, and drasti-
cally outperform other neural network architectures on image processing tasks. This is due
to their inherent exploitation of spatial correlations in images and the benefits of weight
sharing for training speedup. This section briefly covers some network primitives that are
common to image processing, and are needed to understand this work.

2.1.1 Convolution

The convolution operator is a method of weight sharing. It reduces the number of weights
required, compared to fully connected networks, while leveraging the spatial correlations
in images. In general, the convolution operator is a method of composing two functions.
In the case of neural networks these functions are discrete. Given an input feature map
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Figure 2.1: Example of a 3×3 convolution, sliding weights over the input feature map [16].

X ∈ Rh×w×d1 and a weight matrix W ∈ Rm×n×d1×d2 , the discrete convolution is:

Yi,j,k = (W ∗ X)i,j,k

=
m∑
p=1

n∑
q=1

Wp,q,:,k · X
[
i+
(
p−

⌈m
2

⌉)
, j +

(
q −

⌈n
2

⌉)
, :
]

(2.1)

where the range of i and j depend on whether padding with zeros is desired. When padding
with zeros, y ∈ Rh×w×d2 . Since indexing into the X tensor is non-trivial, X[·] is used for
better clarity. This operation is often viewed as sliding the weight matrix over an input
feature map as shown in Figure 2.1.

There are several variants of the convolution operator, such as atrous (or dilated)
[7], and transposed convolutions [58]. These variants have similar definitions, but with
variations on the indexing used.

2.1.2 Pooling

Pooling is often used as a method for dimensionality reduction. Pooling summarises the
activations of the input over some neighbourhood [18]. The summary function can vary,
but it is usually the maximum value, or the mean of the neighbourhood. Figure 2.2 shows
an example of pooling using the maximum summary function.

2.1.3 Batch Normalisation

Batch normalisation [23] is a method of reducing the covariate shift. The covariate shift
was originally described as the change in distribution between the training dataset and
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Figure 2.2: 3× 3 max pooling example [16]
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the evaluation dataset [47]. The same principle can be applied to the input of each layer.
Let fl(x; θl) be the lth transformation function of the network, where x is the output of
the previous layer and θl are the parameters to optimise over. Let u = fl(x; θl), and
v = fl+1(u; θl+1) for some layer l and input x. During training, θl will be updated many
times, which in turn will change the distribution of u. This distribution change is the
internal covariate shift problem [23], since θl+1 will require updating to compensate for the
shift.

Image Whitening could be performed for each layer over the whole dataset; however, it
is inefficient as well as not differentiable everywhere [23]. Therefore, Ioffe and Szegedy [23]
developed the batch based version which does not perform decorrelation. Batch normali-
sation is computed as:

µ =
1

m

m∑
i=1

x(i) (2.2)

σ2 =
1

m

m∑
i=1

(x(i) − µ)2 (2.3)

x̂(i) =
x(i) − µ√
σ2 + ε

(2.4)

y(i) = γ · x̂(i) + β (2.5)

where µ is the batch mean, σ2 is the batch variance, x̂(i) is the normalised input, ε is a
small value added for numerical stability, γ and β are learned parameters, and y(i) is the
output. µ and σ2 are tracked using a moving average during training to approximate the
population mean and variance that is used during inference. Here x(i),y(i) are the inputs
and outputs of the batch normalisation layer, with a batch with size m.

2.1.4 Activation Functions

Activation functions are non-linear functions applied to the output of a transformation layer
(convolution, batch normalisation, etc.). Rectified Linear Unit (ReLU) [24] is a common
activation function. It is a piecewise linear function, meaning it has the advantage of easier
optimisation and better generalisation [18]. The function ReLU : R→ R is defined as:

ReLU(x) = max(0, x) (2.6)

ReLU is applied element-wise to the input. Figure 2.3 shows a plot of the ReLU function.
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Figure 2.3: ReLU function

The next function is used to normalise the final outputs so that they are in the range
[0, 1], which represents the probability distribution of a random variable with n possible
values [18]. This function is called the softmax function and is defined as softmax:Rn 7→ Rn

softmax(x)i =
exi∑
j e

xj
(2.7)

The softmax function, in general, is applied to the last layer of a neural network to produce
class probabilities.

2.2 Image Processing

There are three main image classification tasks. Each of these tasks have a different level
of localisation and density of output. They are: image-level classification, object detection,
and semantic segmentation. Image-level classification does not have any localisation, and
typically only has one main object in an image to classify. The goal of object detection
is to locate foreground objects of interest within an image. This consists of determining a
minimal bounding box that the whole object lies within and providing a classification of
said object. This thesis is not concerned with regressing bounding boxes, therefore object
detection is outside the scope of this work. Semantic segmentation has significantly more
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Figure 2.4: Example image from the SUN dataset [56], with labels for each task.

fine grained localisation, where the goal is to classify individual pixels, outlining the shape
of all object classes. Segmentation sometimes has the added difficulty of classifying all
pixels in an image, both foreground and background. Figure 2.4 shows an example of an
image with each of these types of labels.

Many of the top performing segmentation architectures borrow their feature extractor
from image classification literature [17]. A possible factor for using feature extractors from
image classification is due to the lack of large scale datasets such as ImageNet [12] with over
14 million images, with labels for other tasks. The major innovations for segmentation are
how these common feature extractors are augmented. The final dense layers are removed
and replaced with some form of upscaling. Another common practice is to create some
skip connections from shallow layers in the network to penultimate (or near penultimate).
This allows the network to incorporate high-level features with low-level features into the
final prediction.

Segnet [2] uses VGG16 [49] as an encoder, and mirrors the architecture with max pooling
replaced with un-pooling (using max pooling indices) to increase resolution. DeepLabv3+
[8] uses the Xception [9] feature extractor with a shallow to deep skip connection, multi-
scale atrous convolutions, and bilinear up-sampling. PSPNet [59] uses the ResNet [20]
feature extractor with multi-scale average pooling. PSPNet is used in this work, and is
described in much greater detail later.
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2.3 Out-of-Distribution Detection

This section will give a brief overview of the categories of OOD detection, as well as how
well-suited they are to localising the OOD source from within the input. Note that there are
three related terms throughout the literature – anomaly detection, novelty detection and
out-of-distribution detection. They are often used interchangeably, however, a distinction
will be made here. Anomaly detection will refer to the task of detecting oddities within a
sequence of data, and possibly localising those oddities. OOD detection will refer to the
detection of samples that are oddities with respect to the data generating distribution.

OOD detectors have many applications. The common trend between these applications
is the notion of rare events. The common positive classes are well-represented in data.
However, there may only be a few labelled samples of the rare positive event. Some
examples in the literature include: detecting brain tumours [39], detecting breast cancer
[10], and detecting obstacles in fields for automated farming robots [41].

There are a number of techniques in the literature to detect OOD samples. Zhou et
al . [60] use a threshold on the confidence output from a random forest. Ding et al . [15]
estimate the level set function of the training data (density estimates) and threshold the
density to achieve an ID/OOD decision boundary. Bodesheim et al . [5] train a kernel
null space model with the k-nearest neighbours of the test image from the training images.
These approaches are algorithmic or classical ML based methods. There are many methods
that use support vector machines (SVMs) [45, 51, 25], and many that use kernel methods
[34, 6, 42]. Given the success of deep learning in computer vision, the focus of this section
will be on methods that have been applied to deep learning. There are a number of classes
of neural networks that are used to detect OOD samples. The main types are classification,
auto-encoders, and generative adversarial networks. The classification methods are used
for adapting to pixel-level OOD detection, therefore they are discussed later.

2.3.1 Auto-Encoders

Auto-encoders (AEs) are a form of unsupervised learning that have two components –
the encoder and the decoder. The encoder attempts to compress the input maintaining
only the necessary information (called the latent features), then the decoder attempts to
reconstruct the input from the compressed latent features. One method of detecting OOD
samples is using the reconstruction error [40, 52]. The assumption is that the AE learns
the manifold that the data lies on, and inputs that do not exist on that manifold will not
be properly reconstructed. Denouden et al . [13] extend this by doing a weighted sum of
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the reconstruction error and the Mahalanobis distance of the encoded latent features from
the mean of the training dataset. The latent features have also been used for the distance
to the kth-nearest neighbour to determine OOD samples [19].

2.3.2 Generative Adversarial Networks

Another class of network architectures used are generative adversarial networks (GANs).
A GAN has two components, the generator denoted G and a discriminator denoted D.
D is trained to distinguish between real images from a dataset and images generated by
G. At the same time, G is given a random vector z sampled from some pre-determined
distribution, and is trained to output images that are meant to “fool” D. G and D are
trained via a minimax game (minimising w.r.t. G and maximising w.r.t. D). Schlegl et
al . [44] use a GAN for OOD detection. First, through backpropagation, a vector z is
iteratively updated such that G(z) is close to the image in question x, and z is close to
the pre-determined distribution. |x − G(z)| is used to detect OOD pixels, and a convex
combination of the G loss and D loss are used to determine if the sample x is OOD. Wang
et al . [55] perform a very similar anaylsis on the MNIST dataset [29].

2.3.3 Pixel-Wise OOD

As of writing, there are very few works researching pixel-level OOD detection. Bevandic et
al . [3] train a segmentation network with two datasets – one ID and one OOD dataset. The
network learns to classify between the two on a per pixel-level, and then it is compared to
the Max Softmax baseline. The major flaw with this approach is that the network learns
its weights directly from OOD samples and is specific to an OOD dataset.

Pham et al . [37] create an open world dataset. Known object labels are drawn from the
COCO dataset [33], and labels drawn from the NYU dataset [48] are relabelled as unknown
if the class doesn’t exist in COCO. Using a class specific object detector, a boundary
detector and simulated annealing, a generic object instance-level segmentation algorithm
is developed, which is evaluated on the new dataset. This approach splits the image into
visually distinct connected regions, meaning that two portions of the same object could be
detected as two objects. Thus, it is orthogonal to pixel-level OOD detection.

Sabokrou et al . [43] perform anomaly detection with localisation on surveillance videos.
They use AlexNet [28] pre-trained on ImageNet [12] as a feature extractor. Only the output
of the second or third layer is used, thus maintaining a smaller receptive field for easier
localisation. The input to AlexNet is the past six images pixel-wise averaged in groups of
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two (i.e. three images). The mean and covariance are computed over all extracted features
from the second AlexNet layers across the three inputs. An initial three class classification
is performed using the Mahalanobis distance of each feature. Two thresholds are used,
one to determine normal and one to determine abnormal features. Features between these
two thresholds are considered suspicious. Suspicious features are fed to the third layer of
AlexNet and then a second distance threshold classifier. The main assumption in this work
is that a video sequence is from a stationary camera with most pixels being normal.

Concurrent work has been released since the development of this thesis. Blum et al . [4]
compare different uncertainty estimation methods applied pixel-wise and evaluated on a
new dataset. The dataset is created by extracting animals from the COCO dataset and
placing them in Cityscapes images. The animals are considered OOD pixels, while the
rest are ID. They also create a hand made dataset that is similar to the automatically
generated one. The animal images are manually cut out of images from the internet, then
placed on top of Cityscapes images.
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Chapter 3

Experimental Setup

This chapter focuses on the details of the experiments, neural network, training, and post
processing algorithms. More specifically, this chapter starts with the network architecture,
and the OOD detection methods, followed by the datasets used for training and evaluation,
then the performance metrics used, an algorithm for the removal of boundary artefacts,
and finally the research questions and their accompanying experiments.

3.1 Network Architecture

The PSPNet [59] network architecture was chosen with the ResNet50 feature extractor [20]
for the experiments in this thesis. The two driving factors for this network are: near top
performance on the Cityscapes benchmark [11] (top 16, with only 2.4 less mIoU than the
top scoring algorithm) and the final operation before the softmax classification layer being
a bi-linear upsample. The upsample is important for two reasons. The first is that there
is a clear relationship between the softmax values and a pixel prediction. The second is
that each spatial location in the penultimate layer has a fixed relationship to each output
pixel. Both of these ensure a fair comparison between methods that use the softmax values
directly, the Confidence method which has auxiliary pixel predictions, and the Mahalanobis
method that uses the penultimate layer activations.

13



n×n

Input Conv BN ReLU

Legend

Figure 3.1: The squence of Convolution, Batch Nomalisation, then ReLU is a ConvBlock.

1×1 3×3 1×1

1×1

Input ConvBlock Sum ReLU

Legend

Figure 3.2: Sequence of operations for a single ResNetBlock. The thick blocks represent
a depth of 4 times that of the smaller blocks. The decrease in depth is a bottleneck in
the ResNetBlock. The dimensions below the ConvBlocks indicate the internal convolution
kernel shape.
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Figure 3.3: Sequence of operations for a the ResNet feature extractor. The thick blocks
represent a depth of 4 times that of the input. The dimensions below the convolution
blocks indicate the kernel shape. The text below a ResNetBlock takes the from n@ f × d,
where f is the height and width multiplier, d is the depth of the block, and n is the number
of times that block configuration is repeated. Each decrease in height and width represents
halving each. Here the first ConvBlock halves the height and width.
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Figure 3.4: The PSPNet architecture with ResNet50 backbone. The number under each
average pooling layers and the resize layers indicate the change in scale (height and width).
The kernel size is shown below each ConvBlock.
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The ResNet architecture has two composable parts. The first composable component
will be called a “ConvBlock”. This block is a sequence of a convolution, then batch
normalisation (BN), followed by the ReLU function as shown in Figure 3.1. The second
composable component is the “ResNetBlock”. Figure 3.2 shows that each ResNetBlock
has two paths. The top path is the shortcut or skip connection. This is a 1× 1 ConvBlock
to change the depth to match the output of the bottom path, if needed. The bottom path
consists of two bottleneck ConvBlocks followed by a ConvBlock to expand the depth to
the desired output. These two paths are summed element wise before applying the ReLU
function. The skip connections have been shown to flatten out the loss landscape [31], as
well as improve performance [20]. The full ResNet feature extractor is shown in Figure 3.3.

Figure 3.4 shows the full PSPNet architecture. Zhao et al . [59] state that the addition of
the four different scaling branches allows the network to capture different scales of features
allowing for better classification of both large and small objects.

The loss function used to train the network is the cross entropy loss [18] with l2 norm
weight regularisation. Let Ŷ ∈ Rn×c,Y ∈ Rn×c,Wl ∈ Rvl be the output of the network
after softmax, the target one-hot vector, and the weights of layer l respectively. Where n
is the number of pixels, c is the number of classes, and vl is the dimension on the lth layer.
The total loss is therefore:

Lc = − 1

n

∑
i

Yi,: · log(Ŷi,:) (3.1)

Lw =
1

L

∑
l

||Wl||22 (3.2)

L = Lc + λ · Lw (3.3)

where L is the number of layers, and λ is a hyperparameter (λ = 0.0001 in all experiments).
The ADAM optimiser [27] is used with parameters β1 = 0.9, β2 = 0.999, ε = 10−8.

3.2 Adaptations for Semantic Segmentation

There are two main concerns when considering the differences between OOD detection for
image classification and semantic segmentation. Both adapting OOD detection methods,
and adapting datasets to asses performance have a number of challenges that need to be
addressed in order to properly conduct experiments.
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3.2.1 OOD Detection Methods

There are many OOD detection methods that are candidates for to pixel-level detection.
To limit the scope of this work, three criteria are used to select existing image-level OOD
detection methods to adapt to pixel-level OOD detection. First, the candidate methods
are top performers on image classification datasets. Second, they must be computationally
feasible for semantic segmentation. Third, they must apply to deep learning models. The
Dropout method [26] and the Entropy method do not meet the first criterion, but they
are included as an existing baseline for uncertainty estimation applied to pixel-level OOD
classification. Max Softmax [21], ODIN [32], Mahalanobis [30] and Confidence [14] fit all
the above criteria. One method that is excluded from the experiments because it does not
meet the second criterion is an ensemble method by Vyas et al . [54], with an ensemble of
K leave out classifiers. AEs and GANs are also excluded as the goal is to add to semantic
segmentation networks. In general, images and architectures for semantic segmentation
are larger than for image classification, and therefore an ensemble method is much less
feasible for segmentation than classification due to GPU memory limitations.

The following are descriptions of the selected image-level OOD detection methods and
any modifications that are necessary to adapt them to pixel-level.1 Each original/adapted
method produces a value that can be thresholded to predict whether an image/pixel is
OOD. All metrics used to evaluate performance are threshold independent, therefore, no
thresholds are discussed in this section.

Each subsection uses notation and variable names close to the original works, so that
readers can refer to said works for more detail. Variable names should not be carried
between sections unless explicitly stated. Assume the segmentation and image classification
neural network are functions f : Rn → Rn×c and g : Rn → Rc respectively, where n, c are
the number of pixels and the number of classes respectively. Unless otherwise stated, f and
g do not include softmax output. For brevity, images are represented by flattened vectors,
and segmentation output is a matrix where each column is the predicted probability of a
class. The set of pixels P will be used with typical subscripts i, j ∈ P. For example f(x)i
is the ith prediction vector (i.e. the predicted distribution over the classes) of the result of
f(x).

1Code for each method discussed in this section is available at https://github.com/mattangus/

fast-semantic-segmentation
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3.2.1.1 Dropout

Background. Dropout [50] can be used as a regularisation technique in neural networks
to limit the number of weights that can be used in a single forward pass. A multiplier of 0
or 1 is randomly chosen for each neuron at train time. Typically at test/evaluation time,
all neurons are kept (all multipliers are set to 1). However, using dropout at test time can
act as a surrogate for uncertainty. Kendall et al . [26] use the variation in predictions of a
model that uses dropout at test time to compute an estimate of model uncertainty.

Repeatedly sampling new multipliers generates new outputs. The mean µ and variance
(not covariance) S can be computed over all of these outputs. The uncertainty score is
then

v =
1

c

c∑
j=0

S:,j (3.4)

Note, this method is not originally intended for OOD detection. Visually, however, there
seems to be a correlation between uncertainty and out of distribution. Since there are no
published methods for pixel-level OOD detection, Dropout is included in this comparison.

Adaptation. The mean of variances v is used to predict if a pixel is OOD. However, in
the experimental evaluation, each metric has many thresholds with a specific increment
between them. For any two distinct i, j ∈ P the absolute difference between vi and vj is
smaller than this increment. Therefore v is scaled by a factor λ, which equals 400 in all
experiments.

v′ = λ · v (3.5)

3.2.1.2 Max Softmax

Background. Hendrycks and Gimpel [21] show that the max softmax value can be used to
detect image-level OOD examples as a baseline for image classification. The max softmax
value for a prediction p = g(x) is:

Sŷ(p) = max
j

softmax(p)j (3.6)

The max softmax value v = Sŷ(p) is used to determine if an input sample is OOD.
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Adaptation. Applying Max Softmax to segmentation is done per pixel. Let P = f(x),
then

vi = max
j

softmax(Pi)j (3.7)

3.2.1.3 ODIN

Background. Liang et al . [32] create a similar method to the max softmax value, dubbed
ODIN. This method adds temperature scaling and input preprocessing. The softmax
function in Equation 3.6 is modified to include a temperature value t, given p = g(x):

Sŷ(p; t) = max
j

softmax
(p
t

)
j

(3.8)

Liang et al . found that perturbing the input in the direction of the gradient influences ID
samples more than OOD samples, thus further separating ID and OOD examples. The
input preprocessing step is:

x̃ = x− ε · sign(−∇x logSŷ(p; t)) (3.9)

where ε is a hyperparameter chosen from a set of 21 evenly spaced values starting at
0 and ending at 0.004. The best temperature value is chosen from a predefined set of
temperatures {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. These hyperparameters are selected
by performing a grid search while testing on a small subset of the OOD dataset.

The final value v is used to determine if a sample is OOD.

v = Sŷ(x̃; t) (3.10)

Adaptation. Similar to the adaptation of Max Softmax, Equation 3.8 is modified to be
applied per pixel. Given a prediction map P = f(x):

Sŷ(P ; t)i = max
j

softmax

(
Pi,:

t

)
j

(3.11)

The preprocessing step is then:

x̃ = x− ε · sign

(
−
∑
i

∇x logSŷ(P ; t)i

)
(3.12)
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where ε is a hyperparameter chosen from a set of 21 evenly spaced values starting at
0 and ending at 0.004. The best temperature value is chosen from a predefined set of
temperatures {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}.

The temperature-scaled and preprocessed max softmax score vi = Sŷ(x̃; t)i is used to
predict if pixel i is OOD.

3.2.1.4 Mahalanobis

To simplify indexing, this section will use a(c) to denote class specific quantities.

Background. Lee et al . [30] use the Mahalanobis distance for detecting OOD samples.
The Mahalanobis distance is the number of standard deviations a vector is away from the
mean, generalised to many dimensions. The class sample mean µ(c) and sample covariance
Σ are computed by Equation 3.13 and 3.14 respectively. These values are computed for
the penultimate layer gl of the network g.

µ(c) =
1

k(c)

∑
i:y(i)=c

gl(x
(i)) (3.13)

Σ =
1

k

∑
c

∑
i:y(i)=c

(gl(x
(i))− µ(c))(gl(x

(i))− µ(c))T (3.14)

where k(c) is the number of examples of class c, and k =
∑

c k
(c). Using these quantities

the Mahalanobis distance M (c)(x) for a sample x and class c is:

M(x; c) =
√

(gl(x)− µ(c))TΣ−1(gl(x)− µ(c)) (3.15)

The minimum distance is found over each class:

M(x) = min
c
M(x; c) (3.16)

An input preprocessing step, computing x̃, is performed using the gradients of the minimum
distance. According to Lee et al . [30], this step separates the in and out of distribution
examples to a greater extent. x̃ is computed by:

x̃ = x− ε · sign (−∇xM(x)) (3.17)

where ε is a hyperparameter chosen from a set of 21 evenly spaced values starting at 0 and
ending at 0.004. The best ε is found by evaluating on a held out test set. Lee et al . feed
M(x̃) to a logistic regression model to predict if the input is OOD.
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Adaptation. Each feature vector at every spatial location in the penultimate layer is
assumed to be normally distributed. Each distribution is parameterized by the pixel class
mean M (c) and global class covariance Σ(c) for a class c. The global class covariance is
computed for all pixels of a given class, independent of their location. Initial tests showed
that using per-pixel class means and a global class covariance has better performance
than global or per-pixel class mean and per-pixel class covariance, therefore they are used
throughout. Note that the labels are resized to match the height and width of the penul-
timate layer using nearest neighbour interpolation. Assume that the penultimate layer is
computed by fl : Rn → Rp×d, where p is the number of spatial locations, and d is the depth
of the feature map. The two quantities M (c) and Σ(c) are computed as follows:

M (c) =
1

k(c)
�
∑
i

1y(i)==c � fl(x(i)) (3.18)

Z(i)(c) = 1y(i)==c �
(
fl(x

(i))−M (c)
)

(3.19)

Σ(c) =
1

||k(c)||1

∑
i

p∑
j=1

(
Z

(i)(c)
j,:

)(
Z

(i)(c)
j,:

)T
(3.20)

where 1y(i)==c is the indicator function for the label vector y(i), k(c) =
∑

i 1y(i)==c is
a vector of the number of instances of a class for each spatial location, and 1

k(c) is the

element wise reciprocal. Note that M (c) ∈ Rp×d, Z(i)(c) ∈ Rp×d, and Σ(c) ∈ Rd×d. Here
the Hadamard product � follows broadcasting semantics, meaning that if A ∈ Rp and
B ∈ Rp×q, then A�B ∈ Rp×q since A is repeated q times to have the same shape as B.

Each spatial location has a class distance and minimum distance computed by:

M(x; c)i =

√(
fl(x)i,: −M (c)

i,:

)T
(Σ(c))

−1
(
fl(x)i,: −M (c)

i,:

)
(3.21)

M(x)i = min
c
M(x; c)i (3.22)

This increases the number of matrix multiplications required to compute each pixel dis-
tance. Due to hardware memory limitations, a dimensionality reduction layer is needed
after the penultimate layer, reducing the depth from 512 to 32 via a 1× 1 convolution. An
input preprocessing step is also performed. The new input x̃ is computed by:

x̃ = x− ε · sign

(
−
∑
i

∇xM(x)i

)
(3.23)
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Instead of a logistic regression layer, the minimum distance is normalised to have zero
mean and unit variance. The sigmoid function σ is applied to clip to the interval [0, 1]:

vi = σ

(
M(x)i − µ

s

)
(3.24)

where µ and s are the mean and standard deviation of all M(x) computed over the whole
training dataset. vi is used to determine if pixel i is OOD. The prediction values are resized,
with bi-linear interpolation, to the original input size.

3.2.1.5 Confidence Estimation

Background. DeVries and Taylor [14] train a secondary branch of an image classification
network to output a confidence value c. For a prediction vector and confidence value
p, c = g(x) a new prediction p′ is computed by:

b ∼ B(0.5) (3.25)

c′ = c · b+ (1− b) (3.26)

p′ = c′ · p+ (1− c′) · y (3.27)

Where B is a Bernoulli distribution and y is the one-hot ground truth vector. c gives
“hints” to the network when there is a low confidence, and b is used to limit those hints.
Figure 3.5 shows an example of how c changes the updated prediction p′.

0

0.2

0.4

0.6

0.8

1

p y p′ when c = 0.35 p′ when c = 0.95

Figure 3.5: Example of how c influences the prediction vector, giving “hints” by increasing
the correct prediction when c is low.

The negative log likelihood loss is then applied to the new p′:

Lt = − log(p′) · y (3.28)
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This loss is lower when c is lower, therefore a regularisation term is added to force c to 1
(i.e. high confidence):

Lc = − log(c) (3.29)

The total loss is then:

L = Lt + λLc (3.30)

where λ is a hyperparameter. See [14] to understand the trade off between Lt and Lc.

Next, a preprocessing step is applied. x̃ is computed using the gradients w.r.t. Lc, which
makes the predicted confidence higher. DeVries and Taylor state that this preprocessing
step further separates the in and out of distribution examples.

x̃ = x− ε · sign (∇xLc) (3.31)

Let p̃, c̃ = f(x̃), then c̃ is used to determine if an image is OOD.

Adaptation. Similar to the image classification counterpart, a secondary branch is added
to the network f . Therefore c,P = f(x), where c is the confidence vector and P is the
prediction matrix. The new branch is trained by creating a new prediction P ′ as:

b ∼ B(0.5) (3.32)

c′ = c� b+ (1− b) (3.33)

P ′ = c′ � P + (1− c′)� Y (3.34)

where B is a Bernoulli distribution (sampled i.i.d. for each element in b) and Y is the
one-hot ground truth vector associated with each spatial location of the input. Again, �
follows broadcasting semantics. The mean negative log likelihood is then applied to the
new P ′:

Lt = − 1

n

∑
i

log(P ′i,:) · Yi,: (3.35)

The same regularisation term is added, and averaged over all spatial locations to force each
ci to 1 (i.e. high confidence):

Lc = − 1

n

∑
i

log(ci) (3.36)

L = Lt + λLc (3.37)
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where L is the total loss that is used to train the network, and λ is a hyperparameter. λ
is 0.5 in all experiments.

Each pixel has a preprocessing step is applied to at test time, and is computed using
the gradients of the Lc loss. Note, that the adapted Lc sums over all the pixel confidence
predictions ci, therefore the gradient implicitly sums over output pixels as well.

x̃ = x− ε · sign (∇xLc) (3.38)

Let P̃ , c̃ = f(x̃), then c̃i is used to determine if pixel i is OOD.

3.2.1.6 Entropy

Background. Shannon entropy [46] is an information theoretic concept, that is used to
determine how much information a source contains. The entropy equation is H : Rn → R:

H(x) = −
∑
i

xi · log xi (3.39)

Since H was developed for probabilities, x must behave like a probability distribution
meaning: ∑

i

xi = 1 (3.40)

∀i, xi >= 0 (3.41)

Hendrycks et al . [22] train an image-level classifier with a third outlier dataset that is
disjoint from both the training and OOD dataset. An auxiliary loss is added minimising
the entropy of predictions of outlier images. The network learns to predict uniform values
for all classes. The max softmax value is then used at test time to determine if a sample
is OOD.

Adaptation. The entropy function is applied to the softmax output, which satisfies the
properties in Equations 3.40 and 3.41. Let P = f(x) then

S = softmax(P ) (3.42)

v = H(S) (3.43)

vi is used to determine if pixel i is OOD.

25



3.2.1.7 Summary

Table 3.1 shows a summary of the key properties of the adapted pixel-level methods to be
compared. “Preprocessing” indicates if the method includes input preprocessing based on
the gradients of the output. “Modified Network” indicates if the method requires modifica-
tion of the base network architecture. “Modified Method” indicates if the adapted method
has significant changes from the corresponding method being adapted. “Classification”
indicates if the method has an image-level OOD detection counterpart in the literature.

Max Softmax and ODIN do not require any modifications to the network as they both
use the output logits of the network. The Dropout method requires adding dropout layers
periodically. Mahalanobis has a larger GPU memory footprint, so a dimensonality reduc-
tion layer is required. This modification is the only one driven by hardware limitations; the
other modifications are inherent to each method. The Confidence method requires that a
new branch is added to predict the confidence value. The majority of methods also seem
to benefit from preprocessing based on the gradients of the network. Although Dropout
could be applied to image-level OOD detection, I am unaware of any prior work doing so.

Method Preprocessing Modified Network Modified Method Classification
Dropout × X × ×

Max Softmax × × × X
ODIN X × × X

Mahalanobis X X X X
Confidence X X × X

Entropy × × × ×

Table 3.1: Summary of key properties of the methods compared

3.2.2 Adapting Datasets

Previous work on image-level OOD detection designates a dataset used for training as the
ID dataset, and an OOD dataset for testing. This framework is not easily extended to
semantic segmentation, as any two datasets may share features with the ID dataset. For
example, people may exist in both datasets, but one contains indoor scenes and the other
contains outdoor scenes. This section describes the datasets used in this work and any
modifications required to convert the labels to be binary pixel-level classification, from the
original segmentation labels.
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(a) Input Image (b) Ground Truth

Figure 3.6: Example image and ground truth from the Cityscapes [11] dataset. Best viewed
in colour.

3.2.2.1 Training

The motivation behind this work is the application of OOD detection for the purpose
of increasing safety, specifically for autonomous driving. Therefore, the dataset used for
training the weights of all networks is the unmodified Cityscapes train dataset [11]. This
dataset contains road scenes labelled with 19 classes for training and benchmarking se-
mantic segmentation for autonomous driving (excluding the license plate label, which is
not evaluated). Figure 3.6 shows an example image from the Cityscapes train set as well
as the list of the classes. Pre-trained weights from ImageNet [12] are used for initialising
the ResNet backbone.

3.2.2.2 Evaluation

The diverse SUN dataset [56] is used as the main evaluation dataset. The main motivation
for using the SUN dataset is that it has a large variety of scenes (e.g . street, forest, and
conference room), as well as a large variety of labels (e.g . road, door, and vase). In total,
there are 908 scene categories and 3819 label categories. Anonymous label submissions are
ignored, as their validity is not confirmed.

The SUN dataset labels have to be modified before the dataset can be used for evaluat-
ing OOD detection2. The approach for modifying this dataset is similar to the open world

2Code for converting the SUN dataset is available at https://github.com/mattangus/SUN-Scripts
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dataset created by Pham et al . [37]. Let C = {person, car, ignore, ...} be the set of labels
available in Cityscapes. Let S = {person, roof, chair, ...} be the set of labels available in
the SUN dataset. Ambiguous classes such as “wall” (can appear indoor and outdoor) or
“path” (a sidewalk or a dirt path in the woods) are sorted into a third set A ⊂ S. The
map M : S → C ∪ {OOD} is defined as:

M(s) =


s if s ∈ C \ A
ignore if s ∈ A
OOD otherwise

(3.44)

For every image in the SUN dataset, each pixel label li gets a new label l′i =M(li). Pixels
with the “ignore” class are given a weight of 0 during evaluation.

All the images in the SUN dataset have various dimensions. To prevent artefacts in the
input after resizing, only images that have more than 640 · 640 = 409, 600 pixels are used.
All images are resized to the same size as Cityscapes (1024× 2048).

The SUN dataset is split into a train set and an evaluation set (25%/75% split). It
is stressed that the training set is only used to select the best hyperparameters of each
method.

Following previous work on image-level OOD detection, two synthetic datasets are used
as well. A third noise dataset is also used, which is not used in previous works. They are
random uniform noise images, random normal noise images, and Perlin noise [36]. Each of
these datasets have the entire image labelled as OOD. The LostAndFound dataset [38] is
also used for qualitative analysis. The reason for using this dataset for qualitative analysis
only is that the labels of this dataset are very sparse, with only the road class and new
objects having labels.

One issue with the noise datasets used in previous works is that they are unstructured
noise. The high frequency information in both uniform and normal noise is easily captured
by small kernels, like those used by convolutional neural networks. To combat this, a Perlin
noise [36] dataset is used as well. Perlin noise is a smooth noise generation technique. This
is accomplished by randomly selecting gradients at lattice points on a grid. The number
of lattice points determines the scale of the noise. Figure 3.7 shows an image generated
from Perlin noise. The dataset is generated from three noise images for each red, green,
and blue colour channels. Figure 3.8 shows two lattice scales of colour Perlin noise. The
scale used for all experiments is 10.

All OOD train/evaluation datasets used are mixed with Cityscapes train/evaluation
sets.
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Figure 3.7: 2D greyscale Perlin noise example.

(a) Lattice scale 10 (b) Lattice scale 100

Figure 3.8: Examples of colour noise images with different lattice scales.
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3.2.2.3 Dataset Statistics

The created dataset has different characteristics to Cityscapes, as shown by the frequency
plot in Figure 3.9. The most important conclusion from the distribution of classes is that
the modified SUN dataset has 40% OOD pixels. A prevalent issue in OOD detection is the
very small ratio of OOD to ID samples. The number of ID pixels is similar to the number
of OOD pixels, so the ratio in this dataset is not a barrier.
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Figure 3.9: Fraction of dataset for each class.

3.3 Performance Metrics

There are five metrics used to evaluate the performance of each model. The first four listed
below are the same metrics used by most previous works on OOD detection [32, 21, 30, 14].
Since the output of semantic segmentation is so much larger than image classification, and
cannot be kept in memory, the below metrics must be approximated. This is done by
using 400 linearly spaced thresholds between 0 and 1 and tracking all true positives (TP),
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true negatives (TN), false positives (FP), and false negatives (FN) for each threshold.
For a given threshold in image-level OOD detection, each image has a prediction that
contributes to or increments one of TP,TN,FP,FN. In pixel-level OOD detection, each
pixel contributes to one of TP,TN,FP,FN for a given threshold—accumulated across all
images. In the following sections TP,TN,FP,FN are used as functions with a threshold
input mapping [0, 1] 7→ N. For example, given a threshold t ∈ [0, 1] there are TP(t) true
positives.

3.3.1 AUROC

The first metric is the area under the receiver operating characteristic (ROC) curve. The

ROC curve is found by plotting the false positive rate (FPR(t)) FP(t)
FP(t)+TN(t)

against the true

positive rate (TPR(t)) TP(t)
TP(t)+FN(t)

. This is a parametric curve ROC(t) = (FPR(t),TPR(t)),
therefore the AUROC is:

AUROC =

∫ 1

0

TPR(t)
dFPR(t)

dt
dt (3.45)

This can be computed exactly for a given dataset by sorting the test examples by the OOD
score assigned. Let si be the score of the ith lowest scoring pixel, and let N be the total
number of pixels. For brevity s−1 = 0.

AUROC =
N∑
i=0

TPR(si) · (FPR(si)− FPR(si−1)) (3.46)

This version exactly computes the AUROC, since all possible thresholds are taken into
account. Any finer grained thresholds would be redundant, i.e. FPR(si)−FPR(si + ε) = 0
when si + ε < si+1. This computation is tractable for image-level OOD detection, since
each image only has one score. The number of scores for pixel-level OOD detection is
the number of total number of pixels in the dataset, which makes the exact computation
much less feasible. Let τi = i

k
for i ∈ {0, 1, ..., k}, be a sequence of precomputed thresholds

(k = 400 in all experiments). Again τ−1 = 0. The approximation used is the composite
trapazoid rule with variable subintervals:

AUROC ≈ 1

2

k∑
i=0

· (TPR(τi) + TPR(τi−1)) · (FPR(τi)− FPR(τi−1)) (3.47)
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Figure 3.10: Examples of ROC curves for different qualities of classifiers, with correspond-
ing area under the curve values. (best viewed in colour)

Figure 3.10 shows examples of ROC curves for varying qualities of classifiers, as well
as a random classifier for a baseline.

The AUROC metric is very sensitive when there is a vastly disproportionate number
of positives and negatives. However, as shown in Figure 3.9, there are many OOD pixels
in the modified SUN dataset.

3.3.2 AUPRC

The next metric is the area under the precision recall (PR) curve. The PR curve is found

by plotting the TPR(t) (or recall) the against precision (PRE(t)) TP(t)
TP(t)+FP(t)

. This is a

parametric curve PRC(t) = (TPR(t),PRE(t)), therefore the AUPRC is:

AUPRC =

∫ 1

0

PRE(t)
dTPR(t)

dt
dt (3.48)
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Figure 3.11: Examples of PR curves for different qualities of classifiers, with corresponding
area under the curve values. (best viewed in colour)

The same analysis for approximating AUROC is applied to AUPRC, resulting in the foll-
wing approximation:

AUPRC ≈ 1

2

k∑
i=0

· (PRE(τi) + PRE(τi−1)) · (TPR(τi)− TPR(τi−1)) (3.49)

Figure 3.11 shows the corresponding PRC curves for the same classifiers shown in
Section 3.3.1.

3.3.3 FPRatTPR

The next metric is FPR at 95% TPR (FPRatTPR for short). It is extracted from the
ROC curve, and can be interpreted as the probability that an OOD sample is classified as
ID, when the TPR is set to be 95%. This is computed by finding a threshold t such that
TPR(t) = 0.95, then simply computing FPR(t). This metric is undefined for a perfect
classifier (i.e. when AUROC = 1).
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3.3.4 DE

Detection Error (DE) is the probability that a misdetection will occur with a 95% TPR,
assuming that there are an equal number of OOD and ID samples. Computed as 0.5 ·
(1 − TPR(t)) + 0.5 · FPR(t), where t is a threshold such that TPR(t) = 0.95. Note
that the minimum value for DE is not zero; it is 0.025. As with FPRatTPR, this metric is
undefined for a perfect classifier. This metric is an affine transformation of the FPRatTPR.
It is included as it is used throughout the literature.

3.3.5 MaxIoU

MaxIoU is introduced, inspired from the semantic segmentation community. Mean inter-
section over union (mIoU) is the canonical performance metric for semantic segmentation.
mIoU for segmentation does not have a threshold value, as segmentation is normally a
multi-class problem. In this case, the binary classification has a single value to threshold.
The equation for MaxIoU is:

MaxIoU = max
t

TP(t)

FP(t) + FN(t) + TP(t)
(3.50)

Figure 3.12 shows the IoU curves for different classifiers. Notice that the peaks are not
aligned.

Maximising the IoU quantity punishes false positives more than AUROC. The optimal
threshold is generally greater, resulting in fewer positive predictions than for AUROC. To
verify that the MaxIoU is complimentary to AUROC, the optimal thresholds selected by
each metric were experimentally compared. The mean absolute difference between the
threshold selected via Youden index [57] and that chosen via MaxIoU was found to be
0.039.

3.4 Removing Boundary Artefacts

One observation for all OOD predictions in Figure 4.3 is that predicted class boundaries
are visually correlated with high prediction values. This is an issue because even ID pixels
are predicted to be OOD when a class boundary is nearby. Classical computer vision
techniques can be used to remove these artefacts from the prediction as a postprocessing
step. The steps are as follows:
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Figure 3.12: Examples of IoU curves for different qualities of classifiers, with corresponding
maximum values (best viewed in colour).

1. Apply Canny edge detector to OOD prediction output

2. Apply morphological close (dilate then erode)

3. Compute the distance transform of the remaining edges

4. Threshold distance to 10 pixels maximum

5. Normalise distance map from 0 to 1

6. Element wise multiply the result from previous step by the original output values

Figure 3.13 shows the stages of the postprocessing algorithm as described in the steps
above. The zoomed-in portion shows a group of pixels in a shadow (that should be kept),
above a line that is the class boundary between the sidewalk and road (that should be
removed). The image after removing these artefacts is a better quality result, with fewer
class boundary pixels highlighted.
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(a) Input image (b) OOD prediction probabilities

(c) Extracted Edges, from (b) (step 1 and 2) (d) Distance Transform (step 3)

(e) Thresholded and inverted distance transform
(step 4 and 5)

(f) (1− (e))× (b) (step 6)

Figure 3.13: Stages of boundary artefact removal process from Max Softmax OOD predic-
tion

3.5 Experiments

There are four main research questions (RQ) that this thesis focuses on. Each question
has an associated experiment.
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• RQ1: Do the required modifications to architecture and loss functions negatively
affect the semantic segmentation performance of the network?

• RQ2: To what extent does removing class boundary artefacts affect OOD detection
performance?

• RQ3: Which OOD detection method performs the best?

• RQ4: Which methods are the most computationally feasible?

To answer RQ1, the semantic segmentation performance is evaluated on Cityscapes using
the standard class mean intersection over union metric. As long as the performance drop
of modified networks is not too large, the modifications will not interfere with the primary
segmentation task. The evaluation is done on the Cityscapes evaluation dataset. RQ2
is answered by removing class boundary artefacts and observing the effect on the OOD
detection performance according to all metrics. RQ3 is answered by evaluating each
method on the datasets described in Section 3.2.2. Finally, RQ4 is addressed by comparing
the average runtime on specific hardware.
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Chapter 4

Results and Discussion

The following sections describe the results of the four experiments, and addresses their
research questions.

4.1 RQ1: Architecture Modifications

Table 4.1 shows the mIoU of PSPNet trained on Cityscapes and evaluated on Cityscapes.
The modifications to the network only slightly degrade the performance. The maximum
difference between the unmodified network and any modified version is 0.0161. This dif-
ference is acceptable since the focus of this paper is the OOD metrics.

Network mIoU Difference
PSPNet 0.6721 -
PSPNet + dim reduce 0.6701 0.0020
PSPNet + dropout 0.6593 0.0128
PSPNet + confidence 0.6560 0.0161

Table 4.1: mIoU values for modified PSPNet architectures showing efficacy for original
segmentation task
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4.2 RQ2: Class Boundary Artefacts

Visually, the effect appears to be good; however, the impact on the OOD detection per-
formance is very small. Table 4.2 shows the change in performance after removing class
boundary artefacts for all of the methods. The values displayed are the values after removal
minus the value before. In the majority of cases the performance increases; however, the
increase is very small. The reason for such a small increase is that there is a relatively
small number of pixels that are corrected compared to the size of the image. It is important
to note that an application that is concerned with identifying unknown objects may still
benefit from this step.

Method AUROC ↑ AUPRC ↑ MaxIoU ↑ FPRatTPR ↓ DE ↓
Dropout -1.302 1.405 0.000 0.519 0.260

Max Softmax 3.743 6.190 0.201 -0.459 -0.229
ODIN 1.829 2.709 0.751 -1.115 -0.558

Mahalanobis 2.108 2.487 1.291 -2.395 -1.197
Confidence 0.296 1.150 0.011 1.064 0.532

Entropy 3.193 2.261 -0.004 5.032 10.063

Table 4.2: Change in performance of each method after removing class boundary artefacts
on the SUN dataset. All values are scaled ×103. Bolded values indicate when the perfor-
mance increases. The arrow beside each metric indicates if larger values are better (↑) or
smaller values are better (↓).

4.3 RQ3: Method Performance

Figure 4.1 shows the comparison of the performance of the different methods. Each graph
shows a different metric (c.f . Section 3.3) for each dataset. Max Softmax, ODIN, and
Mahalanobis follow the same trend as their image classification counterparts, increasing
in performance in that order. For image-level OOD detection, the Confidence method
outperforms the Max Softmax baseline. However, for pixel-level OOD detection it performs
worse.

Across each metric, Dropout has the biggest performance increase from the modified
SUN dataset to the random uniform and random normal datasets, moving from worst to
near top performance. The Confidence method seems to mostly learn to highlight class
boundaries, as that is where prediction errors are likely to occur. Therefore, the prediction
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loss Lt in Equation 3.35 forces lower confidence levels. This makes it less suitable for the
random uniform and normal datasets, where the network predicts one single class for the
majority of the input.

The metrics’ values reported in the original works for the image-level OOD detection
for all methods (except Dropout) are very close to 1 (∼0.95 and above). The drop in
performance for pixel-level OOD detection could be due to features that cause large dis-
ruptions at the pixel-level, but they would not affect an entire image, for example, shadows,
occlusion, and far away objects. The actual reason should be investigated in future work.

4.4 RQ3: Qualitative Discussion

Figure 4.2 contains the Cityscapes class colours for reference. Figure 4.3 shows images
and the OOD prediction values for the Cityscapes dataset. Note, that all of these pixels
are considered ID. The purpose of this figure is to show normal execution of each method,
however there are several interesting observations to be made. In all images and all meth-
ods cyclist and rider are often confused, which seems to lead to higher OOD prediction
values. However, when the bicycle is without a rider, as shown in row 5, OOD values
are lower. Rows 1, 3, and 8 have buses and trucks contained within them. These classes
are underrepresented in the training data, so it is no surprise that the predicted OOD
values are higher. Rows 7, 9, and 10 have strollers, suitcases, and a dog. These classes are
unlabelled in Cityscapes, and they are highlighted by most methods.

Figure 4.4 shows some more successful classifications, and Figure 4.5 shows some failure
cases that are both drawn from the modified SUN dataset. One common theme is that
when road is predicted near the bottom portion of any image, the OOD prediction is much
lower. There also seems to be some confusion between water and the road class, further
exacerbating the problem. Row 7 is particularly interesting for two reasons. The first
being that even the splashes from the truck are classified as road. The second reason is
that row 7 is a typical road scene other than the flooding. One very likely explanation for
why these cases fail is that all of the methods heavily rely on the correct classification of
pixels.
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Figure 4.2: Reference class colours for ground truth and predictions. Best viewed in colour.
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Figure 4.6 shows examples from the LostAndFound dataset (rows 1 to 6) as well as
from each random noise dataset (rows 7 to 9). The LostAndFound images have quite a
diverse set of objects that are mostly picked up by all methods. Examining the Perlin noise
class prediction helps to explain why there is a performance drop when compared to the
other noise types. Interiors of most objects from Cityscapes are predicted to have a low
OOD score. Since the prediction is not a single class for the entire image, the predicted
OOD values are less uniform as well.

The image from the LostAndFound dataset in row 4 of Figure 4.6 is an example related
to the motivation behind this paper, where the unknown object is localised. The removed
car bumper lying in the road is highlighted by each method, even when the prediction
has only small blobs of non-road that could be ignored as outliers in the primary task of
semantic segmentation.

4.5 RQ4: Runtime comparison

The input is normally distributed images with each red, green, and blue pixel component
sampled i.i.d. The runtime is averaged over at least 400 iterations, ignoring the first
iteration as a warm up step. The programming language used is Python [53] with almost
all operations are implemented using the TensorFlow [1] library, some (as few as possible)
are implemented using NumPy [35]. The GPU used is an Nvidia Tesla V100.

Table 4.3 shows the runtime comparison of all methods. Unsurprisingly, Entropy and
Softmax are fastest by a large margin, since there is only a few pixel-wise operations added
at the end of the unmodified PSPNet. ODIN and Confidence have a large increase over
Entropy and Softmax because backpropagation is added, thus effectively requiring two
forward passes, and one backward pass of the network. Mahalanobis has backpropagation
as well as many added matrix multiplications for the distance calculation, causing a larger
increase. Dropout is very inefficient as the forward pass is computed many times (10 for
this experiment). Dropout is implemented as a batch of 10 of the same image, thus the
computation is not linearly scaling with number of iterations.

Figure 4.7 shows a comparison of performance against runtime. This comparison shows
that there is a trade off between performance and runtime for the Entropy, ODIN, and
Mahalnobis methods. Applications that are not as time sensitive would be best off with
the Mahalanobis method, and time sensitive applications are best suited for Entropy or
Softmax.
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Figure 4.7: Comparison of methods performance on the modified SUN dataset against
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Method Runtime (sec)
Softmax 0.3300
ODIN 0.7919

Entropy 0.3288
Mahalanobis 1.0262
Confidence 0.7739
Dropout 2.1756

Table 4.3: Runtime comparison of all methods

4.6 Threshold Selection

As discussed in Section 3.3.5, MaxIoU suggests a different threshold than ROC curve.
Figure 4.8 explores this further, with a comparison of the OOD predictions from the ODIN
method using MaxIoU and ROC. Rows 1 and 2 show images where the majority of pixels
are ID, and rows 3 and 4 show images where a much larger number of pixels are OOD.
The threshold selected by MaxIoU has strengths over ROC for tasks where the majority of
pixels are ID. Rows 1 and 2 illustrate MaxIoU selecting a much tighter region around the
OOD object. Rows 2 and 3 illustrate that the ROC threshold has tighter boundaries to
the OOD region. Note, that the threshold is selected per image to illustrate the differences
between the two metrics. In practice, the threshold would be selected based on the whole
dataset.
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Figure 4.8: Thresholded OOD predictions for ODIN, using MaxIoU and ROC to select the
optimal threshold. Black pixels are ID predictions, Yellow pixels are OOD predictions.
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Chapter 5

Conclusions and Future Work

In this thesis, several methods for detecting OOD pixels were adapted from image-level
OOD detection, as well as uncertainty estimation methods applied to pixel-level OOD
detection. These methods were compared using metrics previously established by OOD
detection works, as well as a new metric – MaxIoU – that has roots in the semantic segmen-
tation task. This thesis also contributed a new dataset for pixel-level OOD classification
which is derived from a semantic segmentation dataset that have common classes but also
unique ones with respect to the ID Cityscapes dataset. The experiments performed are
the first steps in OOD detection at a pixel-level.

5.1 Limitations

There is great room for improvement for pixel-level OOD detection. One shortcoming of
all methods compared in this thesis is the ability to distinguish between class boundary
pixels and OOD pixels. Classical computer vision techniques could be used to visually fix
this problem, but the performance increase was negligible. The ODIN and Mahalanobis
methods have the best all around performance, beating the Dropout and Confidence meth-
ods by a significant margin. Therefore, the ODIN and Mahalanobis methods should be
considered the baseline for further research in pixel-level OOD detection.

The dataset proposed has a few limitations. The first being the applicability to au-
tonomous driving. There are many road scenes in the SUN datatset, however, the majority
are indoor. The networks could be leveraging context of the indoor scene as an indicator
of OOD pixels.
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One problem that plagues all works on OOD detection is that lack of formal definition
of what OOD means. The result is that some research that seem very similar may actually
be computing very different quantities. Once a precise definition is made, then better
datasets targeting that definition can be made as well.

A limitation specific to semantic segmentation is the ignore class that contains many
unknown or unlabelled pixels. Often these patches of pixels labelled ignore have a high
OOD prediction value, meaning that OOD and ignored pixels may not be separable.

5.2 Future Work

The main limitation of this work is that it was an initial exploratory comparison. Much
more should be done to understand why Mahalanobis and ODIN out perform the other
methods. Understanding the faults of pixel-level OOD detectors is crucial for progress. A
possible future study would include categorising the failure cases of a detector. For exam-
ple, understanding why a flooded road is not highlighted, and what makes that different to
shadows falsely being highlighted. Great improvements in deep learning applied to image
processing were made when spatial correlations were taken advantage of (i.e. the convo-
lution). All methods used in this thesis are applied per pixel, not using information of
neighbouring pixels. Incorporating this information might have great performance boosts.
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[44] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth,
and Georg Langs. Unsupervised anomaly detection with generative adversarial net-
works to guide marker discovery. In International Conference on Information Pro-
cessing in Medical Imaging, pages 146–157. Springer, 2017.

[45] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and
John C Platt. Support vector method for novelty detection. In Advances in neural
information processing systems, pages 582–588, 2000.

[46] Claude Elwood Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379–423, 1948.

[47] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weight-
ing the log-likelihood function. Journal of statistical planning and inference, 90(2):227–
244, 2000.

[48] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmen-
tation and support inference from rgbd images. In European Conference on Computer
Vision, pages 746–760. Springer, 2012.

[49] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[51] Ingo Steinwart, Don Hush, and Clint Scovel. A classification framework for anomaly
detection. Journal of Machine Learning Research, 6(Feb):211–232, 2005.

56



[52] Benjamin Berry Thompson, Robert J Marks, Jai J Choi, Mohamed A El-Sharkawi,
Ming-Yuh Huang, and Carl Bunje. Implicit learning in autoencoder novelty assess-
ment. In Proceedings of the 2002 International Joint Conference on Neural Networks.
IJCNN’02 (Cat. No. 02CH37290), volume 3, pages 2878–2883. IEEE, 2002.

[53] G. van Rossum. Python tutorial. Technical Report CS-R9526, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, May 1995. https://www.python.org/.

[54] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and
Theodore L Willke. Out-of-distribution detection using an ensemble of self supervised
leave-out classifiers. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 550–564, 2018.

[55] Huan-gang Wang, Xin Li, and Tao Zhang. Generative adversarial network based nov-
elty detection usingminimized reconstruction error. Frontiers of Information Technol-
ogy & Electronic Engineering, 19(1):116–125, 2018.

[56] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba.
Sun database: Large-scale scene recognition from abbey to zoo. In Computer vision
and pattern recognition (CVPR), 2010 IEEE conference on, pages 3485–3492. IEEE,
2010.

[57] William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

[58] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Robert Fergus. Deconvo-
lutional networks. In Cvpr, volume 10, page 7, 2010.

[59] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. CoRR, abs/1612.01105, 2016.

[60] Qi-Feng Zhou, Hao Zhou, Yong-Peng Ning, Fan Yang, and Tao Li. Two approaches for
novelty detection using random forest. Expert Systems with Applications, 42(10):4840–
4850, 2015.

57

https://www.python.org/

	List of Tables
	List of Figures
	Notation
	Introduction
	Background
	Convolutional Network Primitives
	Convolution
	Pooling
	Batch Normalisation
	Activation Functions

	Image Processing
	Out-of-Distribution Detection
	Auto-Encoders
	Generative Adversarial Networks
	Pixel-Wise OOD


	Experimental Setup
	Network Architecture
	Adaptations for Semantic Segmentation
	OOD Detection Methods
	Dropout
	Max Softmax
	ODIN
	Mahalanobis
	Confidence Estimation
	Entropy
	Summary

	Adapting Datasets
	Training
	Evaluation
	Dataset Statistics


	Performance Metrics
	AUROC
	AUPRC
	FPRatTPR
	DE
	MaxIoU

	Removing Boundary Artefacts
	Experiments

	Results and Discussion
	RQ1: Architecture Modifications
	RQ2: Class Boundary Artefacts
	RQ3: Method Performance
	RQ3: Qualitative Discussion
	RQ4: Runtime comparison
	Threshold Selection

	Conclusions and Future Work
	Limitations
	Future Work

	References

