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Abstract

Lighting load accounts for approximately one third of overall energy consumption in
modern office buildings. To reduce this load, we have designed a smart lighting control
system that attempts to minimize power consumption, while simultaneously increasing oc-
cupant comfort, by dynamically accommodating heterogeneous illuminance requirements
as well as changes in occupancy. Most current daylight-harvesting lighting systems mea-
sure lighting levels at the luminaires or at the walls to deduce illuminance on work surfaces.
However, this computation is prone to error, which can potentially result in compromised
user comfort. Instead, our system measures illuminance and occupancy directly from sen-
sors located at each work station. It uses sensor readings to dynamically estimate the
relationship between the dimming level of each luminaire and the illuminance at each work
station using an unobtrusive calibration process. Subsequently, a linear-programming-
based adaptive control algorithm determines power-efficient and comfort-preserving dim-
ming levels for each luminaire. Plug-and-play design lets us seamlessly connect and discon-
nect system components, such as additional luminaires and sensing modules, even while
the system is in use. Based on the deployment of our system in a real office environ-
ment, we demonstrate that it maintains the desired illuminance at work surfaces despite
environmental fluctuations. We also show, through extensive simulations using 7 months
of collected daylight and occupancy data, that our system substantially reduces energy
consumption compared to even an occupancy-aware LED lighting system.
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Chapter 1

Introduction and Background

1.1 Introduction

Artificial lighting load accounts for approximately a third of overall electrical energy con-
sumption in commercial office buildings [58, 52, 15, 38]. It is important to reduce this load
and associated carbon footprint, ideally without compromising the comfort of building oc-
cupants. The illuminance level that must be provided by a lighting system depends on the
occupancy of the room and individual preferences of occupants. Standard comfort levels
require providing a specific illuminance level on work surfaces with typical values ranging
between 300 and 500 lux [2, 38].

To reduce lighting energy consumption, beside the use of more energy-efficient lumi-
naires such as LEDs [15], numerous lighting control methods have been designed and imple-
mented. The luminous output of LED luminaires can be controlled easily and accurately.
This, in combination with sensing technology, makes it possible to reduce lighting load by
adapting the level of illumination to occupancy changes and availability of daylight. Many
lighting systems capable of occupancy detection and daylight harvesting have been studied
over the past two decades [39, 7, 5, 56, 22, 45]. Although these systems have shown that a
reduction in energy of up to 61 % is feasible [45], many of them suffer from a potentially
severe drawback. A study by Newsham et al. [30] suggests that the illuminance on a work
surface is the main determinant of occupant comfort. Thus, lighting systems should place
illuminance sensors close to these surfaces [52]. However, many existing systems measure
the illuminance not on a work surface, but at a lighting fixture [39, 45, 5, 1] or at the
walls [50] instead, and then deduce the illuminance on the desktop. This computation
is necessarily flawed, thus potentially compromises user comfort. For example, if a sensor
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mounted on a luminaire can sense daylight, but this daylight does not reach a work surface,
then the luminaire would be dimmed inadvertently [49, 48, 17].

Several market adoption barriers prevent daylight-harvesting and occupancy-aware
lighting systems from being widely used, despite a clear energy-saving potential. Among
these barriers are difficulty in installation, deployment, and calibration, low return-on-
investment, and integration with other building systems [3, 36].

In this thesis we present a power-efficient smart lighting control system that meets the
following goals:

• Energy saving

• Personalized lighting comfort

• Robustness to modeling errors

• Responsiveness to changes in the environment

• Plug-and-play deployment

Our design relies on the key insight that rapidly declining sensor costs make it economi-
cally feasible to incorporate occupancy and illuminance sensors at each work station. With
“per-desk” sensing, it is possible to realize energy reductions while ensuring user comfort.

To provide personal lighting comfort, the lighting level at each location in an office
can be chosen by a user (or the set of users sharing a common space). To reduce power
consumption despite occupancy and daylight changes, we periodically compute a nearly
optimal dimming level of each luminaire using a linear program, whose objective is to min-
imize power consumption subject to user comfort requirements. Furthermore, to account
for modeling and calibration errors, we use an iterative control algorithm that converges
dimming levels so that desired illuminances are achieved at all work surfaces. We use
off-the-shelf luminaires and sensing systems with a carefully-chosen software architecture
to allow plug-and-play deployment.

Our evaluation in a realistic setting demonstrates that the proposed system reacts
to changes in illuminance in under 2 seconds, and changes in occupancy - in about 350
milliseconds. We also find that it utilizes 40% less power compared to a conventional
lighting system1 that requires all luminaires to be fully on whenever the office is occupied,
which is the typical use case in current buildings.

1Throughout this thesis, “conventional lighting systems” refers to LED-based systems that do not have
occupancy and illuminance information and cannot control dimming levels of individual luminaires.
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Our work makes the following contributions:

• We have modeled and designed a power-efficient lighting control system that exploits
daylight and occupancy information to minimize energy consumption while satisfying
individual lighting preferences of all occupants.

• We have implemented the system with off-the-shelf components and deployed it in
a realistic environment. A plug-and-play design makes deployment rapid and cost-
effective, as well as allows seamlessly connecting and disconnecting system compo-
nents, such as additional luminaires and sensing modules, even while the system is
in use.

• We have performed extensive laboratory experiments to study the performance of
our system in a typical office setting under changing daylighting, occupancy and
occupants’ lighting preferences.

• We have conducted an extensive evaluation using 7 months of collected daylight and
occupancy data to demonstrate the system’s ability to reduce energy consumption.

The rest of this thesis is structured as follows. Section 1.2 presents background on
lighting comfort and an overview of prior work. In Chapter 2, we formulate a mathemati-
cal model and propose the design of our smart lighting system. Implementation details are
presented in Chapter 3. In Chapter 4 we evaluate the system’s robustness and responsive-
ness to changes in environmental lighting, occupancy and users’ illuminance preferences, as
well as estimate the reduction in energy consumption. Finally, in Chapter 5, we conclude
the thesis.

1.2 Related Work

This section discusses related work.

1.2.1 Occupant Preferences for Lighting

What makes occupants of an office happy about their lighting? The answer to this question
gives us some important clues that we use in our design. We begin by discussing research
that addresses this issue.
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Newsham et al. [30] investigated how well various metrics correlate to occupant satisfac-
tion with office lighting. Their study featured two adjacent, identical rooms with similar
illumination that had south-southeast facing windows. Only one of the two rooms was
occupied. A person working in that room was given the chance to change lighting levels
in this room regularly, which identically adjusted lighting levels in both rooms. Mean-
while, the second room was equipped with photometric equipment measuring illuminance
and luminance at multiple locations. As the occupant was performing various office tasks,
lighting data in the second room was collected.

The authors observed that illuminance measured on the work surface was the best
predictor of whether participants were satisfied with their lighting level. Particularly,
illuminance measured at the ceiling was a substantially worse predictor. They also observed
that people are not sensitive to minor lighting changes, often choosing not to adjust to
changed lighting conditions. Hence, automated lighting systems could employ a dead-band
range (i.e., a range of lighting levels within which no control actions are taken) around the
target illuminance without disturbing occupants. Another important finding of this work
is that preferred illuminance levels differ both among different people and for the same
person throughout the day.

Newsham et al. also studied occupants in an open-plan office laboratory [32, 31] and
demonstrated that occupants whose preferred light levels were met had significant im-
provements in mood, productivity, and comfort. This result has been corroborated by
Lashina et al. [24], who showed that giving light control to occupants in multi-occupancy
offices results in increased occupant satisfaction, compared to the case with a fixed light
level. Galasiu et al. [18] also concluded that fully automated systems have low acceptance
among occupants. The work demonstrated that acceptance becomes higher when users
are provided with at leat partial control of their lighting system. This result has guided
our work in allowing building occupants to specify their desired lighting level at multiple
points within their working area.

It has been found that occupants strongly prefer daylight to artificial lighting [18]. The
presence of daylight improves lighting quality, positively affects psychological comfort and
overall health. Indeed, some of the known benefits of daylight include stress reduction,
increased productivity [19, 54] and human circadian rhythms regulation [14]. Thus, in
our work, we design a system that co-exists with natural lighting, compensating only when
natural lighting is insufficient to provide adequate lighting comfort.

To sum up, a well-designed lighting system measures illuminance on (or near) work
surfaces, allows users to control their lighting conditions, and works synergistically with
natural lighting. These results inform our design.
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1.2.2 Recent Surveys on Lighting Control

Much research has been done on various lighting control approaches in office buildings in
the past decade. In this section, we discuss prior work on smart lighting systems, relying
on several recent surveys of this area. We note that, despite the existence of a considerable
body of research, we are not aware of a system, other than our own, which meets our
design criteria of power-optimality, personalized lighting comfort, robustness to estimation
errors, fast response time, and plug-and-play deployment.

A survey by Haq et al. [52] classifies lighting control systems into three categories,
namely, timers, occupancy-based controls, and daylight-linked controls. The authors dis-
cuss various trade-offs that one has to consider when designing an automated lighting
system. For example, depending on circumstances, one has to choose between switching
and dimming, between open-loop and closed-loop daylighting, and among various occu-
pancy sensing technologies.

Pandharipande and Newsham [36] discuss the evolution of lighting control strategies,
particularly focusing on open-plan office applications. The authors review and compare two
state-of-the-art lighting system architectures: a wireless distributed lighting control system
and a centralized power-over-Ethernet system with cloud connectivity. The difficulty of
lighting control commissioning, lack of methods to evaluate the return on investment and
challenges related to integration with other systems are indicated as the main barriers of
smart lighting. In our work, we attempt to mitigate these issues.

In another survey, Williams et al. [58] did a meta-analysis of 240 energy saving estimates
from 88 papers and case studies. They report that lighting controls can reduce, on average,
24% of energy use by using occupancy detection, 28% using daylighting, and 38% when
combining these and additional methods. Their analysis excluded savings that are due
to more efficient light and other aspects not directly related to control techniques. They
also excluded savings reported in simulations, as they found that, in comparison to actual
installations, simulations tend to highly over-estimate potential energy savings, especially
for daylighting (i.e., the use of natural lighting). Thus, in our work, we do real-world
evaluation, rather than simulations. The savings from our system are in line with these
results.

A more recent comparative analysis by Chew et al. [14] also argues that once installed in
real buildings, most daylight harvesting systems do not achieve the expected energy savings.
According to the authors, daylight harvesting effectiveness depends on multiple factors,
including the presence of shading devices, geographical location, building orientation, as
well as geometry and reflectance of the office. Thus, it is generally suggested that the
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performance of lighting systems should be validated through real field measurements, rather
than just simulations alone [58, 14, 15]. We note that in our work, in the spirit of this
conclusion, we use real field measurements.

A thorough analysis of why the use of daylight-linked control of lighting systems is
limited, despite all potential benefits, was conducted by Bellia et al. [3]. The difficulty
related to design, calibration, and installation of daylight-linked control systems is indicated
as one of the main factors preventing their spread. Problems related to evaluating realistic
energy savings and determining the payback period is another important reason, which is
in agreement with Ref. [36]. Our design goals of plug-and-play deployment (which includes
self-calibration) attempts to address this issue.

Finally, a study by Ding et al. [16] concludes that a general tendency in smart lighting
research increasingly emphasizes occupants’ visual comfort, in addition to energy efficiency.
We do not address visual comfort in our work, leaving this to future work.

1.2.3 Automated Lighting Strategies in the Literature

We now focus on work that is closely related to ours, in that it uses a control system for
lighting control. For each such system, we discuss where it fails to meet our design goals.

Perhaps the earliest work in this area was by Rubinstein et al. [47], who gave an early
demonstration of a closed-loop daylight-harvesting system based on illuminance sensing.
Many automated lighting systems since then have been proposed, using a variety of control
methods and sensing approaches. Although this work is more than 25 years old as of the
time of this writing, its insights are still relevant today.

A number of open-loop control systems are presented in the literature. For example,
Wen and Agogino [56] present a linear optimization-based lighting system for open-plan
offices that provides each occupant with preferred task lighting while improving energy
efficiency. However, open-loop control systems cannot perform daylight harvesting because
daylight levels can vary rapidly. Therefore, such systems are only suitable for offices with
no windows. In our work, we used closed-loop control to allow daylight harvesting.

Closed-loop control

Closed-loop lighting strategies based on a mathematical formulation can be classified
into three groups: logic-based controllers, regulation-based controllers, and optimization-
based controllers [20]. Logic-based methods utilize decision-making techniques to deter-
mine actions of the lighting system based on the illuminance measurements [28]. Regulation-
based strategies strive to achieve closed-loop stability while matching generated illuminance
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to a reference value [48, 49, 53, 1, 23, 6]. In optimization-based methods, the control prob-
lem is formulated as an optimization problem [59, 57, 9, 38, 10, 7]. Our work lies in the
third category.

Optimization-based approaches

Other researchers have also used an optimization framework to exploit non-occupancy
and presence of daylight. One of the control strategies that is suitable for open-plan offices
is to adjust individual luminaires’ intensities to minimize power consumption while supply-
ing some minimum required illumination to all occupied regions. Some researchers modeled
this optimization as a linear programming problem [59, 11, 38]. These studies mainly focus
on a theoretical framework for the optimization problem, assuming that illuminance con-
tributions of both artificial luminaires and daylight on the workspace surface are known.
Another study where the knowledge of illuminance levels is assumed was conducted by
Boscarino et al [6], who developed a lighting strategy based on self-tuning multivariable
controller. In contrast, our approach uses both theory and implementation; we also do not
assume knowledge of daylight contribution to illuminance.

Luminaire-based light sensors

Many studies consider a lighting system where illuminance and occupancy sensors are
embedded in luminaires, and each luminaire corresponds to a specified work zone [39, 37,
35, 1, 8, 53, 48, 10]. With this configuration, the system is initially calibrated during
the night time, mapping illuminance on work surfaces to illuminance on corresponding
ceiling-based luminaire sensors. Then, the ceiling-based sensors are used for control. The
advantages of such design include simplified sensor commissioning through sharing a power
supply between luminaire and sensors. For example, Pandharipande et al. [35] and van
de Meugheuvel et al. [53] proposed regulation-based control strategies (though they focus
on achieving desired illuminances on desks, and not on minimizing power consumption).
However, their approach has not been validated using experiments.

In other work, Koroglu et al. [23] propose a regulation-based distributed control method
for a lighting control system with only local communication between luminaires. Their ap-
proach claims to address problems of cross-illumination and daylight disturbances. How-
ever, it has been found that under high cross-illumination between luminaires, this ap-
proach fails to consistently achieve uniform illumination and track the desired illuminance
level [20]. Similarly, a study by Afshari et al [1] presents a decentralized feedback control
for a system that has spectrally tunable luminaires with co-located color sensors and with
no communication between luminaires. This work assumes that measurements on each
light sensor are mainly due to the fixture’s own light source, precluding the use of daylight
harvesting. Moreover, this requires special luminaires, so is not plug-and-play.
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Studies by Caicedo et al. [8, 12] present optimization-based control strategies for sys-
tems with co-located luminaires and light sensors. They implicitly assume knowledge of
the daylight contribution at light sensors by using specialized software to simulate day-
light distribution. In practice, isolated daylight contribution is unknown, as light sensors
measure illuminance from a combination of daylight and artificial lighting. Moreover, sim-
ulation of light paths requires detailed modeling of offices, which precludes plug-and-play
deployment.

We note that all luminaire-based sensor configurations have a potentially severe draw-
back. While a calibration step allows a reasonable estimation of illuminance contribution
on work surfaces due to artificial luminaires, estimation of daylight contribution is prone
to error. For example, Pandharipande and Caicedo reviewed two control strategies for the
lighting system with luminaire-based photosensors: proportional integral (PI) control and
linear optimization [39]. Their benchmarking shows that, under high daylight penetration,
both approaches, in comparison to an optimization system that had full knowledge about
illuminances on the work surface, under-illuminate the office space. Similarly, the studies
by Rubinstein et al. [49, 48] and Doulos et al. [17] demonstrate that ceiling-to-working plane
illuminance ratio is not constant throughout the day due to its dependence on the variabil-
ity of daylight distribution, with the most consistent correlation observed in the regions
further away from windows. We conclude that, in general, a ceiling-based photosensor is
not able to track illuminance at the working surface accurately. Besides, depending on
the field of view of light sensors, accurately detecting cross-illumination on work-surfaces
might be a challenge for the lighting system with luminaire-based photosensors.

This motivates the use of desk-based light sensors, discussed next.

Desk-based light sensors

Several researchers have studied using desk-based light sensors to prevent under-illumination
due to luminaire-based sensors. In particular, a decrease in under-illumination was demon-
strated in the methods presented in References [7] and [4, 5]. Unfortunately, both of these
methods have certain limitations, discussed next.

Caicedo et al. [7] placed additional wireless light sensors at each work surface that pro-
vide low-rate feedback to luminaire-based sensors. However, since additional light sensors
are subject to blockage and occlusion, this method does not provide a significant advan-
tage over the design that places light sensors near the work surface. Also, as experiments
conducted by the authors showed, the response of the proposed system to changes in en-
vironmental illuminance is quite slow with the adaptation to changes in environmental
illuminance taking around 100 seconds. This is primarily due to the low transmission
rate of work surface-based light sensors. Moreover, the system imposes an additional im-
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plicit constraint that the number of work surface-based light sensors and the number of
luminaires has to be the same.

In their work, Borile et al. [4, 5] proposed an interesting data-driven approach for
determining the linear mapping between measurement points on the ceiling and points of
interest at the work surface. This approach requires collecting sensor measurements from
both work plane-based and luminaire-based sensors during the daytime when the office is
not occupied. Then, the collected data is used to learn the daylight mapping. One practical
limitation of the proposed method is that system re-calibration takes a lot of time, as it
requires the collection of a new training data set. Also, the proposed method does not
guarantee good performance under different weather conditions and varying amounts of
daylight. For instance, the daylight mapping that was obtained based on the training data
collected on cloudy days would potentially perform poorly on a sunny day. Finally, data-
driven approaches like the proposed method should be validated with real experiments, in
addition to a simulation, which was not done.

Closely-related work

We now discuss the work that is closest to ours in that it uses wireless illuminance
sensors near work surfaces without associating luminaires one-to-one with work areas [57,
29, 50]. An important advantage of such a design choice is that due to the explicit knowl-
edge of illuminance near the work surface, such systems are usually capable of finding
optimum, or nearly-optimum dimming levels, achieving target illuminances at all work
surfaces. However, as we discuss, prior work makes some assumptions that precludes prac-
tical deployment.

Miki et al. [29] present a distributed lighting control strategy that utilizes infra-red
communication between neighboring luminaires. This requires special-purpose luminaires,
so is not plug-and-play.

Similar to our work, Wen and Agogino [57] propose an energy-efficient linear optimization-
based lighting control. However, to generate an illuminance model and determine artificial
light distribution in the office, the authors use image rendering program RADIANCE [44],
which is based on backward ray tracing. This illuminance model generation step requires
explicit knowledge of several office parameters, such as office dimensions, internal surface
reflectance, locations and geometries of furniture and other objects, as well as luminaire
parameters and locations. This precludes practical deployment of their approach.

In their work, Tan et al. [50] employ a PI controller and measure the illuminance near
work surfaces. In addition to savings from automatic control, they also study what savings
can be achieved through the use of more efficient lamps and direct current (DC) microgrids.
Some practical concerns related to their work are that illuminance sensors placed directly
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on work surfaces can be occluded or shadowed. In our work, we place sensors on the edges
of shelves or monitors, preventing occlusion.

Yeh et al. [60] and Pan et al. [34] present a system for daylight harvesting, assuming
that locations of office occupants are known and that they carry wireless light sensors on
their mobile phones. Lighting control strategies based on linear programming and sequen-
tial quadratic programming algorithms were proposed to satisfy individual illumination
requirements of the users, based on their activities. Again, this approach suffers from
occlusion of sensors. Moreover, not all office occupants may be willing to have sensing
software installed on their personal mobile devices.

Matta and Mahmud [28] present an ad hoc daylight harvesting method. However, it
relies on only one illuminance sensor inside the room (at the ceiling level), so it is only
suitable for small, single-occupant offices. In addition to this sensor, a daylight harvesting
sensor is placed next to the window, which automatically controls a Venetian blind. We
do not consider blind control in our work.

AI-based approaches

We note, in conclusion, that in recent years, artificial intelligence-based algorithms have
been proposed for smart lighting. For example, Madias et al. [27] apply an evolutionary
multi-objective genetic algorithm to minimize energy consumption and maximize illumina-
tion uniformity subject to task illuminance requirements at the desks. Tran et al. [51] and
Wang et al. [55] present a sensorless lighting system, where the relationship between lumi-
naire intensities and illuminance levels on work surfaces in a multi-occupancy office setting
was modeled using an artificial neural network (ANN). While being able to successfully
minimize the power consumed by the luminaires, these approaches do not take into consid-
eration environmental illuminance and daylighting. Moreover, this data-driven approach
requires collection of a training data set with a varying number of active lights, dimming
levels, and the daylight intensity, which precludes plug-and-play deployment. In addition,
based on the provided experimental results, it takes the system around 200 seconds to
respond to changes in environmental illuminance, which can potentially compromise the
comfort of the occupants.

10



Chapter 2

System Design

2.1 Problem Formulation

Consider an office that has N workspaces, such as the one illustrated in Figure 2.1. The
office has two sources of lighting: daylight coming from one or more windows, and a set of
M dimmable LED luminaires. Light and occupancy sensors placed at each work station
provide per-desk illuminance and occupancy sensing. The office can be multi-occupancy
or single-occupancy with several workspaces belonging to the same person. In addition,
occupants can adjust illumination levels at their work stations, when desired, allowing
personalization.

The goal of a smart lighting system is to provide the desired level of illuminance at each
of the work stations while minimizing energy consumption through the exploitation of day-
light and occupancy information. Thus, the system strives to dynamically accommodate
heterogeneous illuminance requirements, taking full advantage of daylight and resorting to
artificial lighting only to compensate for insufficient daylight. The sensors installed at each
work station communicate occupancy status and illuminance level of their respective work
station to the central controller, which, in turn, determines nearly optimal dimming levels
for all individual luminaires, and sends them control signals.

In response to the analysis by Bellia et al.,1 an additional requirement imposed on the
system is a flexible plug-and-play design that can be easily deployed in all types of spaces
without requiring any manual calibration, regardless of the geometry and configuration of
the room.

1The study by Bellia et al. [3] concludes that the main barrier that prevents daylight-linked control
systems from becoming widely applied is a difficulty in calibration, installation and deployment.
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Figure 2.1: Illustration of the office.

2.2 Luminaire Model

We assume that an office is lit by a combination of environmental lighting, such as daylight,
and dimmable LED luminaires, and we only have control over the latter.2 This section
develops a mathematical model of PAR38 Philips Hue LED bulbs [41], used in our study.
A similar model can be developed for other commercially-available luminaires.

Let Aij(t) be the illuminance gain of sensor i from a fully-lit luminaire j at time t.
We assume that Aij(t) is time-dependent because it may be affected by objects or people
between sensor i and luminaire j, as well as by slight accidental movements of sensors and
changes in the luminaires’ temperatures [25]. Let dj ∈ [0.0; 1.0] be a dimming level of the
jth luminaire. In this work we define dimming level as a measure of the bulb’s relative
luminous power output, linearly scaled with illuminance. In other words, if Lij(dj, t) is the
illuminance gain of sensor i from a luminaire j whose dimming level is dj at time t, then

dj = Lij(dj, t)/Lij(1.0, t) = Lij(dj, t)/Aij(t) (2.1)

Therefore, Lij(dj, t) = djAij(t). Thus, when a bulb is completely off, dj = 0 and

2Some studies [28, 22, 45] also consider an automatic control of daylight using motorized blinds.
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Lij(0, t) = 0.0. On the other hand, when it is fully lit, dj = 1.0 and Lij(1, t) = Aij(t).

2.2.1 Dimming Level vs. Brightness Control Value for a PAR38
Philips Hue Bulb

(a) (b) (c) (d)

Figure 2.2: Experimental setup for measuring the relationship between the dimming level
and the brightness control value for PAR38 Philips Hue bulbs. a) Light sensing module
that measures illuminance. b-d) Experiments conducted for different PAR38 Philips Hue
luminaires.

Unfortunately, the Philips Hue API [40] does not allow us to control dimming levels
directly. Instead, it only allows turning a luminaire on and off, as well as setting its
brightness control value to an integer between 0 and 255. The brightness control value on
luminaire j is denoted as bj ∈ {0, 1, ..., 255}.

The mapping between brightness control value and dimming level, dj(bj), was deter-
mined empirically through experiments that were conducted for 8 different PAR38 Philips
Hue bulbs. The experimental setup is illustrated in Figure 2.2. In each experiment, a
light sensor was placed directly under one of the luminaires. Next, as the luminaire’s
brightness control value was gradually increased, illuminance readings on the light sensor
were recorded. Throughout each experiment, lighting in the office was supplied only by
a luminaire being evaluated, i.e., all other luminaires were completely off and there was
no environmental illumination in the office. Finally, measured illuminance values were
converted into dimming levels, according to Equation 2.1.

Experimental results, shown in Figure 2.3, were very consistent across all experiments.
An analytic relationship between the dimming level and the brightness control value was
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determined by fitting a curve to the experimental data points. Note that when the bright-
ness control value is 0, a bulb’s dimming level is 0.047, i.e. a bulb’s luminous output power
is at 4.7%. The dimming level becomes 0 only when a bulb is completely turned off. Thus,
the dj(bj) relationship can be written as follows:

dj(bj) =

{
2.64 · 10−5 · b1.90j + 0.047 if bulb j is on and 0 ≤ b ≤ 255
0 if bulb j is off

(2.2)

This equation provides a 1:1 mapping between the dimming level and the brightness
control value. Unlike the Philips Hue brightness control value, however, the dimming
level has a clear physical meaning, which is useful for modeling the optimization problem,
presented in Section 2.4.

Figure 2.3: Empirically obtained relationship between dimming level dj and brightness
control value bj of a PAR38 Philips Hue bulb, and the corresponding best-fit curve.

Note that, as the temperature of luminaire j increases, its luminous power output
slightly decreases3 [25] and consequently, illuminance contributions of a fully lit luminaire

3This has been empirically confirmed by an experiment presented in Figure A.1 in Appendix A.
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j on all sensors, represented by the jth column of matrix A, also proportionally decrease.
At the same time, dimming level dj, being a measure of relative luminous output (see
Equation 2.1), stays the same because both Lij(dj, t) and Lij(1, t) decrease by the same
fraction. Since both the brightness control value bj and the dimming level dj are indepen-
dent of the luminaire’s temperature, the relationship in Equation 2.2 is also temperature-
independent.4 Thus, a decrease in illuminance on light sensors caused by the increase in
the bulbs’ temperature is fully captured by the illuminance gains matrix A(t) = (Aij(t)).

2.2.2 Power Consumption vs. Dimming Level for a PAR38 Philips
Hue Bulb

Recall that the goal of the smart lighting system is to find a dimming level configuration
that minimizes the energy consumption of the system. This task requires the knowledge
of the relationship between luminaires’ power consumption Pj and dimming level dj. Con-
ventionally, it is assumed in the literature [38, 56] that the electric power consumption
of an LED bulb is linearly proportional to its dimming level. Our laboratory experiment
conducted for PAR38 Philips Hue bulbs is mostly in agreement with this assumption, with
a couple of remarks.

First, we have observed that similarly to the luminous power output, the electrical power
consumption of PAR38 Philips Hue bulbs depends on their temperature. To investigate this
dependence, after turning a bulb on at time t0 = 0, at which point it is at room temperature,
we measure how much the amount of drawn power changes over time (∼70 minutes) as the
bulb gets warmer. Our findings are shown in Figure 2.4, from which one can see that, over
50 minutes, the power consumption decreases by about 3%, and then it becomes steady.

Note that, since the dimming level does not depend on the luminaire’s temperature,
while the power consumption does, the relationship between power and dimming level is
temperature-dependent. In our work, we use a steady-state estimate of the power vs.
dimming level relationship to model the luminaires. Thus, the experiments to estimate
this relationship are run after the bulbs are fully lit for 70 minutes, to ensure that power
consumption stabilizes. This can introduce an error of up to about 3% in determining the
optimal power level.

As Figure 2.5a indicates, the power vs. dimming level relationship is nearly linear for
the experimental data points corresponding to the turned on bulb with brightness control
values bj ∈ {0, 1, ..., 255}. On the other hand, a slight non-linearity is observed when the

4This is demonstrated in an experiment shown in Figure A.2 in Appendix A.
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Figure 2.4: The reduction of power consumption of a fully lit PAR38 Philips Hue LED
luminaire, as it heats up. At time t0 = 0 the luminaire is at the room temperature. (Note
that the vertical axis does not originate at 0.)

bulb is turned off and the dimming level is 0.5 It should also be pointed out, that the bulb
has a standby power draw of 1.18 W , which is consumed as long as it is connected to a
power supply. This standby power consumption is due to the Zigbee protocol [61] that
most wireless Philips Hue products use. Taking into consideration the aforementioned
non-linearity, the power vs. dimming relationship can be written as:

Pj(dj) =

{
1.18 if dj = 0.0
9.97dj + 2.47 if 0.0 < dj ≤ 1.0

(2.3)

where 9.97dj + 2.47 is the best fit line to the data points for the turned on bulb.

For modeling convenience, we further relax this relationship by fully linearizing it, as
illustrated in Figure 2.5b. This is achieved by making the line pass through the standby
power value of 1.18 W at the dimming level of 0,6 followed by the best-fit-line behavior
for the rest of the dimming level range (0.0; 1.0]. If we denote the standby power as
Pstandby = 1.18 W and the effective power as Peffective = 11.83 W , the relaxed model for
Philips Hue power consumption can be written as:

Pj(dj) = Peffectivedj + Pstandby = 11.83dj + 1.18 (2.4)

5The observed non-linearity indicates that the bulb requires some extra activation power to stay on,
even if its dimming level is negligibly small.

6Through this requirement we model the power consumption of switched off bulbs accurately, which is
important because switched off state is typically the most common state of a bulb throughout a day.
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(a) A line is fitted to data points corresponding to a turned on bulb.

(b) A line is fitted to data points with an additional constraint that power equals to the standby
power at the dimming level of 0.

Figure 2.5: Empirically obtained relationship between power Pj(bj) and dimming level
dj(bj) of a PAR38 Philips Hue bulb. Each experimental data point is labeled with a
corresponding Philips Hue brightness control value bj.
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As one can see from Figure 2.5b, the effect of this linearization is slight over-estimation
(up to 0.75W ) of power consumption for high dimming levels, and under-estimation (up
to 1.25 W ) for lower dimming levels.

Lastly, as mentioned above, when developing the luminaire model we used power mea-
surements of the fully heated bulbs. However, in practice, the bulbs are not always fully
heated. For example, the bulb cools down if it is off for a long time, or it might not get
fully heated when operated at low dimming levels. Even though our model indeed further
under-estimates power consumption when the bulb is not fully warmed, from Figure 2.6
one can see that this under-estimation is insignificant in magnitude, compared to the effect
of linearization of the power vs. dimming level relationship.

Figure 2.6: This experiment demonstrates how the power vs. dimming level relationship
changes, as a PAR38 Philips Hue bulb heats up. At time t0 = 0 the luminaire is at room
temperature.

2.3 Calibration

We now discuss how to calibrate our system.
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2.3.1 Illuminance as a Linear Combination

For sensor i, let Ri(d, t) be its illuminance at time t when the luminaire dimming levels
are d = [d1, ..., dM ], where M is the total number of luminaires. We also refer to d as the
dimming vector. According to the additivity of light [48, 39], the total illuminance level at
any point is a linear combination of illuminance contributions of all light sources. Thus,
taking into consideration Equation 2.1, we can write

Ri(d, t) = Ei(t) +
M∑
j=1

Lij(dj, t) = Ei(t) +
M∑
j=1

djAij(t) (2.5)

where Ei(t) is the illuminance gain of sensor i from the environment, which comprises
of daylight and other environmental light sources out of our control. Similar to Aij(t),
Ei(t) is also time-dependent.

To evaluate daylight distribution at work stations, the literature on daylight harvesting
commonly places daylight sensors near windows [28, 57] or infers Ei(t) from illuminance
levels at the ceiling [45, 39, 38]. We propose a novel method to estimate both environmental
gains E(t) ∈ RN×1 and the illuminance gains matrix A(t) ∈ RN×M without distracting
occupants of the room. This unobtrusive calibration method is described next.

2.3.2 Calibration Procedure for Matrix A

We start by obtaining the illuminance gains matrix A(t). Recall that Aij(t) is the illumi-
nance gain of sensor i from a fully lit bulb j (dj = 1.0). Therefore, one straightforward way
to obtain A(t) is to first measure environmental illuminance gains by getting light sensor
readings while all luminaires are off. Next, we could sequentially turn on one bulb at a
time, record new illuminance readings, and subtract respective environmental illuminance
gains from these readings. Even though this calibration process allows us to estimate the
matrix A(t), it is obtrusive, and thus cannot be performed when the system is in use. To
address this, we developed an unobtrusive calibration method, based on the observation
that, while a human eye is insensitive to minor lighting changes [30], photosensors are
capable of detecting them accurately. The method is described next.

Suppose that, just before calibration, luminaires are dimmed according to d ∈ [0; 1].

Let d̂
(j)

be the dimming level vector with all the entries but j-th equal to those of d, and
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d̂
(j)
j =

{
dj + S if dj < B
dj − S if dj ≥ B

(2.6)

where, in our experiment, we use the dimming step S = 0.1 and the pivot point B =
0.65.

We estimate A(t) as follows. First, we record illuminance readings Ri(d, t). Immedi-
ately after, sequentially for every luminaire j we do the following. We change the dimming

level of luminaire j to d̂
(j)
j , record illuminance readings Ri(d̂

(j)
, t′) for all sensors i, and

then restore the brightness of the luminaire to its original value dj, and proceed to the
next luminaire. We ensure that t and t′ are at most a few seconds apart, and we assume
that neither daylight nor the illuminance gains matrix change much on such a timescale.

Hence, considering that Aij(t) ≈ Aij(t
′) and Ei(t) ≈ Ei(t

′) and using Equation 2.5 we
get

Ri(d, t)−
M∑
j=1

djAij(t) = Ri(d̂
(j)
, t′)−

M∑
j=1

d
(j)
j Aij(t

′)

|d̂(j)j − dj|Aij(t) = SAij(t) = |Ri(d̂
(j)
, t′)−Ri(d, t)|

Aij(t) =
|Ri(d

(j), t′)−Ri(d, t)|
S

(2.7)

for all sensors i and luminaires j.

Values of S and B are open to further tuning. Sizing of S provides a trade-off between
precision and unobtrusiveness of the calibration. Note that this calibration procedure
allows estimating the illuminance gains matrix without requiring explicit knowledge of
office geometry and locations of luminaires and photosensors, thereby contributing to the
system’s plug-and-play design.

2.3.3 Inference of Environmental Illuminance Gains E

Because we obtain columns of the illuminance gains matrix one after another in quick
succession, we assume that its values, as well as environmental illuminance gains, do not
change drastically during this procedure. Thus, knowing total illuminance values Ri(d, t)
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on all sensors i, dimming level settings dj on all luminaires j, and illuminance gains Aij(t),
we can estimate the environmental illuminance gains Ei(t) from Equation 2.5 as

Ei(t) = Ri(d, t)−
M∑
j=1

djAij(t) (2.8)

or, in a vector form,

E(t) = R(d, t)− A(t)d (2.9)

2.3.4 Estimation Error for A and E

The calibration Equation 2.7 demonstrates how one can obtain Aij(t) using two consecutive
illuminance readings from sensor i, with one of the readings measured when dimming level
of bulb j is shifted by S. The term Aij(t) is a time-varying ground-truth illuminance
contribution value on sensor i from luminaire j, which assumes perfect sensor measurements
and no environmental fluctuations. At the same time, the proposed calibration process
gives us only an empirical estimate of a snapshot of matrix A at the calibration time,
which we denote as Ã ∈ RN×M . Ã is not a function of time and is subject to estimation
errors.

Let ε(t) ∈ RN×M be an estimation error, defined as the difference between the estimated
and the true illuminance gains matrices:

ε(t) = Ã− A(t) (2.10)

The estimation error ε(t) varies with time, because, while Ã is constant, A(t) is time-
dependent. Thus, ε(t) captures both calibration errors and estimation errors caused by the
time-varying nature of A(t).

Likewise, Equation 2.9 uses the true matrix A(t) to estimate the environmental illu-

minance contribution on sensors. However, in practice, only the estimated matrix Ã is
available through the calibration process. By combining Equations 2.9 and 2.10, we get

R(d, t) = E(t) + (Ã− ε(t))d (2.11)

which is the equation for additivity of illuminance, expressed in terms of Ã.
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Since the error term ε(t) in the equation above is unknown, environmental contribution
E(t) cannot be calculated directly. We can only estimate it as:

Ẽ(t) = E(t)− ε(t)d = R(d, t)− Ãd (2.12)

where Ẽ(t) is an estimate of the environmental illumination at time t, and −ε(t)d is
the associated estimation error in the environmental illumination.

Note that, as Equations 2.10 and 2.12 indicate, the smaller the estimation error ε(t)

is, the more accurate Ã and Ẽ(t) are. The effect of the estimation error on the system
performance is further discussed in Sections 2.4.5 and 4.2.5.

2.4 Optimization and Adaptive Control

2.4.1 Installed Light Capacity

Installed light capacity is the maximum amount of illumination the system’s luminaires can
supply. Depending on the occupancy of a work station and a user’s desired illuminance
level, we want the illuminance on sensor i to be at least a certain target value hi. We
suppose that the installed light capacity is such that, for every sensor i, hi is no more than

ci =
M∑
j=1

1 · Aij (2.13)

that is, the illuminance on the sensor with all lights fully on.

Or, in a vector form,

c(t) = A(t) · 1 ≥ h (2.14)

2.4.2 Optimization Problem Formulation

The goal of the system is to minimize the total power consumed by M luminaires while
providing (at least) the target illuminance levels at N work stations. Thus, we consider
the following optimization problem:
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minimize
d

M∑
j=1

P (dj)

subject to Ri(d, t) ≥ hi for all i ∈ 1 ... M

0 ≤ dj ≤ 1 for all j ∈ 1 ... N

(2.15)

Recall that, based on the luminaire model developed in Section 2.2, the relationship
between power and dimming level is linear (Equation 2.4). Therefore, the optimization
problem is reduced to minimizing the sum of dimming levels subject to illumination re-
quirements. By combining the optimization problem formulation above with Equations 2.4
and 2.5, we get

minimize
d

sum{d}

subject to E(t) + A(t)d ≥ h

0 ≤ d ≤ 1

(2.16)

Based on this optimization problem formulation, one can tell that the system saves
energy by avoiding unnecessary over-illumination of workspaces, whenever possible. Note
that the optimization problem 2.16 is always feasible, because, when all the lights are fully
on (that is, dj = 1 for all bulbs j), we have

R(1, t) = E(t) + A(t) · 1 ≥ c ≥ h

To solve the linear program 2.16, the knowledge of A(t) and E(t) is required. If we
knew the real A(t) and E(t) at every moment t, our system would be amenable to a
simple snapshot optimization.7 However, in reality, we can only estimate A(t) and E(t),
and these estimations are prone to error. Next, we present an approximated optimization
problem and an iterative control algorithm, which allows compensating for inaccuracies in
the system model.

2.4.3 Approximated Optimization Problem

To design a practical system, rather than using a true unknown matrix A(t), we express

the optimization problem 2.16 in terms of Ã, obtained in the process of calibration, and the

7If we knew A(t) and E(t), the optimal dimming levels could be chosen at each optimization step
without regard to the past or future lighting conditions.
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associated estimation error ε(t), defined in Equation 2.10. Moving forward with developing
the iterative algorithm, for the sake of convenience, let us use indices to indicate different
iterations of the algorithm. An index k denotes a variable’s value at the moment of iteration
k, thus capturing its time-varying nature. The optimization program can then be written
as

minimize
dk

sum{dk}

subject to Ek − εkdk + Ãdk ≥ h

0 ≤ dk ≤ 1

(2.17)

This linear program cannot be solved directly because neither εk nor Ek is known.
Recall from Equation 2.12 that the aggregate sum of Ek and −εkdk is denoted by the
environmental illumination estimate Ẽk and calculated as

Ẽk = Ek − εkdk = Rk − Ãdk (2.18)

However, both terms on the right-hand side of Equation 2.18 can be measured only
after dk has already been computed and set on luminaires, thus, they are unavailable to
the optimizer. We propose to approximate the estimated environmental illumination Ẽk

by Ẽk−1, which can be readily calculated with Equation 2.18. Then we can write

Ek − εkdk = Ẽk ≈ Ẽk−1 = Ek−1 − εk−1dk−1 = Rk−1 − Ãdk−1 (2.19)

To see why Ek − εkdk ≈ Ek−1− εk−1dk−1 is a reasonable approximation, let us look at
all of the respective variables on both sides individually. First, since we want the dimming
levels on luminaires to converge, we force dk ≈ dk−1. The condition for dk’s convergence
is discussed in more detail in the next section. Second, considering that the time between
iterations is at most a few seconds, Ek ≈ Ek−1 when there are no abrupt changes in
environmental illuminance. Similarly, εk ≈ εk−1 when no big sensor movements, shadows
or reflections occur between two consecutive iterations.8

After substituting Ek − εkdk according to Equation 2.19 in the program 2.17, we get

8Note that, in general, due to the control loop, discussed in Section 2.4.4, the system is capable of
quickly and effectively adapting even if Ek and εk change substantially between the two iterations. This
is demonstrated by a set of experiments presented in Chapter 4.
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minimize
dk

sum{dk}

subject to Ã · (dk − dk−1) + Rk−1 ≥ h

0 ≤ dk ≤ 1

(2.20)

Now, all of the terms, except for the unknown dimming vector dk, are readily available.
Specifically, to solve the optimization problem 2.20 and find optimal dimming levels dk,
one needs the matrix Ã, empirically obtained through the calibration process, a target
illuminance vector h,9 a previous dimming vector dk−1, and illuminance levels Rk−1 on
the light sensors achieved when dk−1 is set on the luminaires.10 Then, a solution can be
obtained by standard linear programming algorithms, such as Simplex or Interior-Point.

2.4.4 Adaptive Control Algorithm

The linear program 2.20 is approximated, and consequently, dimming levels obtained by
solving it are also approximate. The proximity of illumination achieved by setting these
dimming levels on luminaires to target set points depends on the accuracy of our system
model, namely on the magnitude of the estimation error εk, defined in the Equation 2.10.
As εk approaches 0, Ã tends to Ak and Ẽk tends to Ek. However, since the calibration
process is subject to various errors and due to time-varying nature of Ak, error εk can be
significant, which can result in a significant deviation of the achieved illumination from the
target.

To force the illuminance on light sensors to converge to target set points11 and make the
system robust to the aforementioned model imperfections, an iterative control algorithm
is used. Figure 2.7 shows the corresponding control diagram. At each iteration k the
controller executes the following steps:

1. Using target illumination h, the previous iteration’s dimming vector dk−1 and il-
luminance readings Rk−1, solve the optimization problem 2.20, whose solution is a
dimming vector dk.

9Target illuminance is a function of office occupancy and individual illuminance preference of users.
This is discussed in greater detail in Section 3.4.2.

10If it is the first iteration of the algorithm (k = 1), we can use the currently set dimming levels as dk−1,
and the resulting light sensor readings as Rk−1.

11Whenever target illumination is physically feasible on the light sensors, the system will converge to it.
On the other hand, if the exact target illumination is physically infeasible, the system will deliver the
amount of light at least equal to the target set points to all work stations, while minimizing the sum of
luminaires’ dimming levels. This is due to the formulation of the optimization problem 2.16.
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Figure 2.7: Control diagram for the smart lighting control.

2. Set the computed dimming levels dk on luminaires, and wait until the luminaires
fully adapt to the new dimming levels.12

3. Measure new illuminance Rk on the light sensors, which is composed of artificial
lighting and environmental lighting.

4. Go back to step 1.

2.4.5 Convergence of Dimming Levels

We now discuss the convergence conditions of the proposed lighting control. To make our
analysis easier, let us assume that the target illumination is physically achievable by all
sensors, i.e., all illuminance constraints in the optimization problem 2.20 can be satisfied
with equality. Another assumption used in the convergence analysis is that the system
converges sufficiently fast so that environmental illuminance gains and the estimation error
matrix do not change much on such timescale. In other words, we assume that εk = εk−1 = ε
and Ek = Ek−1 = E.13

12Our measurements indicate that the full adaption of the luminaires to the new dimming levels typically
requires less than 700 milliseconds, but, for additional robustness, we allocate 1300 milliseconds for this
adaption.

13Note that these assumptions are only used in the convergence analysis. In general, the smart lighting
system can adapt to the time-varying environmental lighting, and is robust to the time-varying estimation
errors.
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First, let us go through several steps of the control algorithm. At iteration k the
controller solves the optimization problem 2.20 and computes the dimming vector dk. The
computed vector dk satisfies the illuminance constraint with equality so that

Ã · (dk − dk−1) + Rk−1 = h

or, considering Equation 2.19,

Ãdk − εdk−1 + E = h (2.21)

Then, after the luminaires fully adapt to the new dimming levels dk, light sensors mea-
sure the illuminance levels Rk, which comprise environmental illuminance E and artificial
illuminance Akdk:

Akdk + E = Rk

where Ak is a true theoretical illuminance gains matrix. By expressing Ak in terms of
the empirically obtained matrix Ã, as specified in Equation 2.10, we can write it as

Ãdk − εdk + E = Rk (2.22)

Now, using the updated dimming vector dk and the most recent illuminance readings
Rk, along with Ã and h, the controller solves the optimization problem 2.20 again and
finds the new solution dk+1, while satisfying the illuminance constraint with an equality:

Ãdk+1 − εdk + E = h (2.23)

By subtracting Equation 2.22 from Equation 2.21 we get:

ε(dk − dk−1) = h−Rk (2.24)

On the other hand, subtracting Equation 2.22 from Equation 2.23 gives

Ã(dk+1 − dk) = h−Rk (2.25)

Note that, since Equations 2.24 and 2.25 have the same right-hand side, they can be
combined into:
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Ã(dk+1 − dk) = ε(dk − dk−1) (2.26)

By introducing ∆dk = dk − dk−1, we can rewrite Equation 2.26 as

Ã∆dk+1 = ε∆dk (2.27)

and, therefore

∆dk+1 = Ã−1ε∆dk (2.28)

Equation 2.28 indicates the convergence condition of the control system. Thus, whether
the system converges depends on the product of matrices Ã−1 and ε. Intuitively, if the
elements of matrix ε are smaller than the elements of matrix Ã, the convergence occurs. To
demonstrate this, we consider the simplest possible example with one bulb and one light
sensor, such that Ã, ε ∈ R1×1. If, for example, Ã = [1000] and ε = [1], then the system
converges very quickly:

1000∆dk+1 = 1∆dk

∆dk+1 = 0.001∆dk

∆dk+2 = 0.000001∆dk

...

On the other hand, when Ã ≈ ε, we get:

Ã∆dk+1 = ε∆dk

∆dk+1 ≈ ∆dk

∆dk+2 ≈ ∆dk+1

...

This result has been empirically confirmed by a set of testbed experiments discussed
in Section 4.2.5. Even when some sensors are partially occluded during the calibration
process, making Ã inaccurate, the system converges quickly as long as Ã � ε. On the
other hand, if elements of ε are too big, convergence might not occur.14 Thus, we have

14Note that, the calibration process proposed in Section 2.3 guarantees that Ã � ε, provided that the
sensor blockage is not too severe.
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demonstrated the convergence conditions of the lighting control algorithm in the small-
error regime. When the dimming vector converges, target illuminance is achieved on all
sensors, which is forced by the illuminance constraint of the linear program 2.20.

2.4.6 The System’s Response to Changes in Environment and
Occupancy

Changes in environmental illumination Ek (e.g., daylight) are handled directly by the
optimizer in the control epoch following these changes. Specifically, after the environmental
changes occur, the illuminance readings on the light sensors deviate from the target set
points. Then, based on these readings, the optimizer calculates the new dimming vector
(by solving the optimization problem 2.20) to recover the target illuminance on the sensors.
The convergence of the dimming levels occurs as discussed in Section 2.4.

On the other hand, changes in target illuminance set points h (e.g., occupancy and
users’ illuminance preferences) are handled differently for time-efficiency reasons: when
a change in target illuminance occurs, we terminate the ongoing control iteration, and
immediately start the next one with the updated vector h. More details on specifics of the
implementation are presented in Chapter 3.

2.5 Integrating New Sensing Modules and Luminaires

into the System

One of the goals of the smart lighting system is a flexible plug-and-play design that does not
require any manual calibration. Thus, we have developed a seamless method for integrating
new components, such as luminaires and sensing modules, into the lighting system, even
while it is in use. This method utilizes the proposed calibration process that allows the
system to unobtrusively obtain illuminance gains on desired sensors from desired bulbs.
This section describes how integration of new components into the system is modeled,
whereas implementation details and performance evaluation of this method are discussed
in Sections 3.2.4 and 4.2.4, respectively.

Let the lighting system have N light sensors and M luminaires, and assume that it is
in use. To integrate a new sensing module into the system, illuminance gains on its light
sensor (N + 1) from each luminaire j ∈ {1, ...,M} have to be estimated and added to the

illuminance gains matrix Ã as an (N + 1)’th row. These illuminance gains can be obtained
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through the calibration routine described in Section 2.3, where we slightly dim one bulb
at a time, and infer the respective illuminance contributions. Therefore, time complexity
of integrating a new sensing module into the system is proportional to the number of
luminaires, namely θ(M).

Similarly, in order to integrate a new luminaire into the smart lighting system, illumi-
nance gains on each sensor i ∈ {1, ..., N} from this luminaire M + 1 have to be obtained

and added to the illuminance gains matrix Ã as an (M + 1)’th column. This column can
be obtained using just one step of the calibration routine, i.e., we slightly dim only the new
luminaire, and deduce illuminance gains on each of the sensors from it. Therefore, inte-
grating a new luminaire always takes a constant time θ(1). Finally, to disconnect a sensing
module or a luminaire from the system, it is only required to remove a corresponding row
or column from the matrix Ã.
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Chapter 3

Implementation Details

As a proof-of-concept of the proposed smart lighting system, we have implemented a proto-
type testbed. It consists of three principal components: stand-alone sensing modules that
measure occupancy and illuminance of each work station, dimmable LED luminaires, and
a central controller that receives sensor inputs and sends control signals to each luminaire.
A high-level diagram of the system is shown in Figure 3.1. Next, we describe the testbed
and each of its components in greater detail.

Figure 3.1: High-level diagram of the smart lighting system.
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3.1 Experimental Testbed: High-level Overview

While the following sections discuss individual system components and communication
between them in greater detail, this section provides a high-level overview of our testbed
implementation of the smart lighting system, shown in Figure 3.2.

Figure 3.2: Testbed implementation of the smart lighting system.

To implement the system, we have installed a 2.45 m. high ceiling above four desks
in a secluded 3.0 × 3.8 m. work area. The space is illuminated by eight dimmable LED
luminaires (Section 3.3), evenly installed in the ceiling, that wirelessly communicate with a
central control module (Section 3.4). Each desk has a wireless sensing module (Section 3.2)
deployed on the edge of its shelf, which periodically sends occupancy status and illuminance
level to the control module via a local wireless network. Also, each occupant can express
individual illuminance preference at their desk through that desk’s sensing module. Users’
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illuminance preference, along with sensor readings, serve as inputs to the proposed control
algorithm, discussed in Section 2.4.4.

Our testbed does not have a window, therefore, we imitate daylight by switching on/off
the laboratory’s central light. Note that from the smart lighting system’s perspective,
the external artificial light and daylight are equivalent, and both of them are modeled as
environmental illuminance gains E(t). Thus, switching the artificial lighting on and off is
roughly equivalent to quickly opening and closing blinds.

Several experiments have been run on this experimental testbed to comprehensively
evaluate the performance of the proposed smart lighting system. The results of these
experiments are discussed in Chapter 4.

3.2 Sensing Modules

The smart lighting system is capable of sensing occupancy and illuminance at every work
station, which is accomplished by “per-desk” sensing modules. The main purpose of a
sensing module is to communicate sensor readings to the main controller with a certain
periodicity. In our implementation, a user can also use it to express an illuminance level
preference at their work station.

In general, communication between sensors and the controller can be implemented in
either a wireless or a wired fashion, and both of these implementations have certain pros
and cons, discussed in Section 3.2.5. Since one of the major goals of this work is to develop
a system that can be easily installed and deployed, we implement wireless stand-alone
sensing modules for our prototype testbed.

Each sensing module consists of a microcomputer, a light sensor and an occupancy
sensor, as illustrated in Figure 3.1. In particular, our sensing module implementation uses
the following hardware components:

• Onion Omega2 [33]: an expandable single-board microcomputer with 580 MHz
MIPS CPU processor, 64 MB of RAM, built-in Wi-Fi, a Linux Operating System,
and flexible GPIOs.

• Adafruit TSL-2561 light sensor [26]: a light-to-digital converter that transforms
light intensity to a digital signal output compatible with a direct Inter-Integrated
Circuit (I2C) interface.
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• Panasonic AMN-32111 motion sensor [42]: a digital passive infrared (PIR)
motion sensor with a sensing range of 2 meters.

Figure 3.3 shows stand-alone sensing modules, deployed at every work station of the
prototype testbed.

(a) (b) (c) (d)

Figure 3.3: Wireless stand-alone sensing modules that provide per-desk sensing. In our
implementation, sensing modules are placed on the edge of each desk’s shelf.

3.2.1 Illuminance Sensing

We want to develop a system that can sense illumination at each work station, ideally,
at the work surface level. However, placing light sensors directly on the work surfaces
is impractical because of the high possibility of sensor blockage, occlusion or shadowing.
In order to avoid occlusion and alleviate shadowing, for every work station we propose
mounting one upward-facing illuminance sensor on the top of a computer monitor, on
the edge of a shelf, or on an adjacent wall.1 In particular, our implementation places
illuminance sensors on the edge of each desk’s shelf, as depicted in Figure 3.3, and assumes
that illuminance measured there is a good approximation for the work surface illuminance.

The TSL-2561 is not a calibrated instrument [26]. Therefore, before using sensors, we
calibrate them, as shown in Figure 3.4. Each sensor stores its calibration value. Sens-
ing modules use these calibration values to compute accurate lux values, before sending
measurements to the controller.

1If neither monitors nor shelves are available, one could design a wireless peel-and-stick sensing module,
for example, sitting on top of a miniature L-shaped shelf stack to a wall.
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(a) Illuminance sensor cali-
bration setup.

(b) Output of calibrated illu-
minance sensors.

Figure 3.4: Illuminance sensor calibration.

3.2.2 Occupancy Sensing

Digital PIR motion sensors are used for per-desk occupancy detection. These sensors
produce a binary output, which indicates whether a motion is detected within their sensing
range. To work with a stream of binary motion signal, we maintain a motion history queue
containing the L most recent motion readings, which is asynchronously updated every
100 milliseconds. To deduce the occupancy status of a work station, first we calculate an
occupancy score, defined as a discounted sum of elements of the motion history queue:

occupancy score =
L−1∑
p=0

γp motion history[p] (3.1)

where γ is a position discount and motion_history is a binary array that imple-
ments a motion history queue. Note that motion_history is indexed in a way that
motion_history[0] is the most recent motion reading. Thus, a higher weight is given
to more recent motion values. Next, the occupancy status is determined as:

occupancy status =

{
1 if occupancy score ≥ T
0 if occupancy score < T

(3.2)

where T is a threshold above which we consider the sensor’s surroundings occupied.
γ and T are tuning parameters of the proposed occupancy detector. Since it is crucial
that occupied work stations are illuminated properly, these parameters should be chosen
to reduce false-negative errors2 in occupancy detection. In our implementation, we use

2In this case, a false negative error is when the occupancy detector thinks that a work station is not
occupied, while in reality, it is.
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T = 0.8, and γ = 0.95, which empirically demonstrate good performance. Note that since
T = 0.8, whenever a slight motion is detected in a PIR sensor’s field of view, the occupancy
status immediately changes from 0 to 1. On the other hand, the status changes from 1 to
0 only if there has been no registered motion for some time.

3.2.3 Concurrent Tasks of a Sensing Module

A sensing module has to perform several asynchronous tasks. To accommodate these tasks,
the following threads run concurrently on a sensing module’s microcomputer:

1. The first thread continuously updates the motion history queue by adding a new
motion sensor reading to the queue every 100 milliseconds, while maintaining its size
at L.

2. The second thread listens for user input to disconnect from the smart lighting sys-
tem or change preferred illuminance level on a work station. Whenever a user
input is received, a sensing module updates a locally stored persistent variable
illuminance_preference accordingly. illuminance_preference indicates how
much illumination a user wants to have on their work station when they occupy
it. When a command to disconnect a sensing module from the system is received,
illuminance_preference is set to −1.

3. The third thread listens for incoming requests from a control module. Whenever
a request is received, it reads the illuminance sensor reading, computes occupancy
status as described in Section 3.2.2, reads the value of the illuminance_preference
variable, and returns an (illuminance, occupancy, illuminance_preference)

tuple to the controller. When the system is in use, requests from the controller are
received every 100 milliseconds.

The code for sensing modules has been implemented in Python.

3.2.4 Additional Portable Sensing Modules

New sensing modules can be seamlessly integrated into the system, even while it is in
use. Thus, a user can place a sensing module on a surface of interest where illumination
needs to be controlled, and send a connection request from that sensing module to the
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controller. Once the controller accepts the connection request, it initiates the re-calibration
procedure to integrate the new module into the system, as discussed in Section 2.5. After
re-calibration is finished, the system starts maintaining the desired illuminance level on
this sensing module’s light sensor.

In addition to the regular “per-desk” sensing modules, one can use portable sensing
modules to maintain the desired illumination at any arbitrary surface. This can be useful
for tasks requiring a temporary illumination of some areas of the office. We assume that
portable sensing modules are used irregularly, and disconnected from the system, once a
user finishes the task. Therefore, in terms of hardware requirements, the only difference
between a “per-desk” and a portable sensing module is that the latter does not require
an occupancy sensor since the occupancy is implied as long as it is connected to the
system. Figure 3.5 shows an example implementation of a portable module, consisting of a
microcomputer and a sensor. Note that, in fact, “per-desk” sensing modules are portable
too, as they are not restricted to any specific location.

Figure 3.5: Example implementation of a portable sensing module.

In general, any device equipped with a light sensor and Wi-Fi connectivity, such as
a smartphone or a tablet, can be used as a portable sensing module. Thus, an example
use case is maintaining the desired illuminance by simply placing a smartphone with an
upward-facing light sensor to a surface of interest, and connecting it to the system. Note
that if a phone is lifted or moved significantly, its illuminance gains become inadequate.
To address this, the smartphone’s built-in accelerometer can be used to detect if the device
is lifted, moved, or tilted significantly. Then, whenever it happens, the smartphone can
immediately disconnect from the lighting system.
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3.2.5 Alternative Implementation of Occupancy and Illuminance
Sensing

Our testbed implementation uses wireless stand-alone sensing modules to measure per-
desk occupancy and illuminance. An advantage of this implementation is the simplicity of
installation and deployment, which makes the system flexible and plug-and-play. However,
since the problems of sensing and optimal lighting control are decoupled, our lighting
control strategy, discussed in Chapter 2, does not impose any restrictions on the used
illuminance and occupancy sensing technology. At a high level, a sensing module has only
one role - to communicate the illumination level and occupancy status of a work station
to the controller with a certain periodicity, and there are many possible implementations
that achieve this goal. Moreover, it should be straightforward to integrate any sensing
implementation with the smart lighting system, as long as it is capable of providing per-
desk occupancy and illuminance measurements.

In particular, sensing can be implemented so that the light and occupancy sensors
are directly connected to the controller via wires. This implementation would reduce the
hardware cost by eliminating the need for additional microcomputers for the stand-alone
sensing module implementation. Moreover, considering that each microcomputer consumes
around 1 W of power, the system’s power consumption and associated cost would also go
down. However, the wired sensing implementation would potentially require significant
installation and deployment effort, especially in larger offices.

3.3 Luminaires and Actuation

Illumination of the office is done by screw-base controllable PAR38 Philips Hue LED
bulbs [41], whose power rating is 13 W and luminous flux rating is 1300 lumen. The bulbs
wirelessly communicate with the controller through a Philips Hue bridge, as depicted in
Figure 3.1. Section 3.4 discusses communication between the luminaires and the controller
in more detail.

To control Philips Hue bulbs we use its Python API [40]. This API supports switching
each bulb on and off, as well as setting its brightness control values to an integer between
0 and 255. The model of the PAR38 Philips Hue bulbs is presented in Section 2.2.
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3.3.1 Alternative Wired Implementation

Similarly to the implementation of sensing, we can implement luminaire actuation in a
hardwired fashion. The main advantage of a wired implementation over the wireless one is
power savings. As Section 2.2.2 demonstrates, each PAR38 Philips Hue luminaire consumes
1.18 W of power for wireless communication, even when it is off. Besides, hardwired
systems tend to be more reliable and secure. On the other hand, the wired implementation
of individual luminaire actuation would result in a significantly higher installation and
deployment costs, which is especially true when retrofitting existing lighting systems. Also,
once installed, wired systems are difficult to upgrade.

3.4 Control and Communication

We do not impose any restrictions on the controller technology being used, other than that
it has to be able to quickly solve the optimization problem 2.20 and orchestrate luminaire
switching and communication with sensing modules. For our controller implementation, we
use the Raspberry Pi 3 B+ [46] microcomputer with 1.4 GHz Broadcom BCM2837B0
quad-core A53 processor and 1 GB of RAM, running Raspbian Jessie operating system.
The code for the controller logic is implemented in Python.

As illustrated in Figure 3.1, the controller communicates with individual luminaires
and sensing modules wirelessly. Communication with the luminaires is achieved through a
Philips Hue bridge. The controller is connected to the bridge via an Ethernet cable. The
bridge, in turn, transmits signals to the luminaires via the wireless ZigBee protocol [61].
On the other hand, communication between the controller and sensing modules occurs
via Wi-Fi. In particular, the Raspberry Pi (controller) serves as a wireless access point,
via which sensing modules connect to the network. Then, TCP/IP peer-to-peer socket
communication is established between the controller and each sensing module.

The controller is where the system’s main logic resides, i.e., it is the “brain” of the
system. It performs multiple tasks, some of which have to be asynchronous. To accomplish
these tasks, the controller runs several processes presented next.

3.4.1 Calibration Process

A calibration process, as its name suggests, is responsible for conducting the system
calibration, i.e., estimating an illuminance gains matrix. The calibration process is the
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first process run when the system is started. In addition, it can be initiated by other
processes, when necessary.

3.4.2 Sensing Process

A sensing process is the process triggered right after the initial calibration completes.
This process always maintains an open connection with sensing modules and requests
(illuminance, occupancy, illuminance preference) readings from them every 100
milliseconds. These readings are used to update the respective illuminance vector R,
occupancy vector o, and illuminance preference vector p, which are persistently stored on
the controller. In particular, the illuminance preference value of pi = −1 received from a
sensing module i is interpreted as a request to disconnect that module from the system.

Also, whenever new sensor readings are received, a target illuminance vector h is re-
computed. Note that the target illuminance vector h is a function of occupancy and
illuminance preferences:

hi =

{
pi if oi = 1
HU if oi = 0

(3.3)

where pi and oi are an illuminance preference and an occupancy status of a sensing
module i respectively, and HU is a universal constant illuminance set point that is used
for all unoccupied work stations to provide ambient lighting in unoccupied areas.

The sensing process also initiates a control process, as well as establishes and
maintains a connection with it. Whenever there is a change in target illuminance h, the
sensing process immediately notifies the control process by sharing a new vector h.

Finally, the sensing process initiates the re-calibration process with a certain pe-
riodicity set by users to make sure that matrix Ã remains reasonably accurate over time.
Meanwhile, it also communicates with the control process to pause the control algorithm
before running the re-calibration, and restart it after the re-calibration is finished.

3.4.3 Control Process

A control process is responsible for running the optimization control algorithm discussed
in Section 2.4.4. It is implemented with two subprocesses. An optimizer subprocess is
where the optimization control algorithm is run, while a listener subprocess listens for
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commands from the sensing process to pause the iterative control algorithm or to restart
it with a new target illuminance vector h.

The optimizer has access to the illuminance vector R,3 which is maintained by the
sensing process. At the same time, each optimizer subprocess is passed a target illumi-
nance vector h only once - at the moment of its initiation. Then, the same constant h is
used throughout the entire existence of the subprocess, until it is killed. Using R, h and
the current dimming settings,4 in every iteration it computes a new dimming vector by
solving the optimization problem 2.20 and uses it to adjust dimming levels on luminaires.
Thus, each optimizer subprocess executes the logic for dynamically adapting to changes in
environmental illumination and maintaining a constant target illumination h at the work
stations.

When the listener receives a command from the sensing process to reset the illumi-
nance set points h, it terminates the optimizer subprocess, thereby interrupting an ongoing
iteration of the control algorithm. Then, it immediately starts a new optimizer subprocess
using the new h. The reason we interrupt the ongoing iteration of the control algorithm,
instead of letting it finish, is related to the desired reaction time to occupancy changes.5

When a work station becomes occupied, it is important to illuminate it as quickly as
possible. At the same time, waiting for the ongoing iteration of the control algorithm to
finish might take up to ∼2 additional seconds. While the reaction time of a few seconds
is acceptable for changes in illuminance, it is too slow for changes in occupancy. Besides,
changes in target illuminance do not occur nearly as frequently as changes in daylight.

3.4.4 Incoming Connection Listener Process

An incoming connection listener process listens for incoming connection requests from
new sensing modules. Whenever a connection request is received, the process integrates a
new sensing module into the system by adding a new row to the illuminance gains matrix
Ã through the re-calibration process described in Section 2.5. It also communicates
with the control process to ensure that the lighting control is paused during the sensing
module integration. Once the re-calibration is completed, the control is restarted with the
updated matrix Ã.

3Note that vector R refers to vector Rk−1 from Section 2.4.
4Here “current dimming settings” refers to vector dk−1 from Section 2.4.
5Note that an alternative slower implementation of the response to changes in target illuminance would

be to update vector h between iterations, to make sure that the next iteration uses the most up-to-date h
in its optimization program. In fact, this is how changes in environmental illuminance are addressed - we
supply a new most recent R to the optimizer before each iteration.
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Chapter 4

System Evaluation

This chapter discusses an evaluation of the smart lighting system, based on the experimen-
tal testbed described in Section 3.1. Specifically, we answer the following questions:

• Does the proposed adaptive control achieve target illuminance levels at all work
stations? (Section 4.2)

• How quickly does the system adapt to changes in environmental lighting? (Sec-
tion 4.2.2)

• How quickly does the system respond to changes in occupancy and users’ illuminance
preferences? (Section 4.2.3)

• How seamless is the integration of new sensing modules into the smart lighting sys-
tem, and how well does the system maintain target illuminance on them? (Sec-
tion 4.2.4).

• What is the effect of an error in the estimated illuminance gains matrix on the
performance of the system? (Section 4.2.5).

• What are the potential energy savings from daylight harvesting and occupancy de-
tection are, and how much energy does our system consume in comparison to other
lighting systems? (Section 4.3)

To investigate these questions, a series of experiments were conducted. These experi-
ments are discussed next.
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4.1 Obtaining the Illuminance Gains Matrix A

By using an unobtrusive calibration procedure described in Section 2.3, the following il-
luminance gains matrix Ã ∈ R4×8 is obtained for our experimental testbed with 4 light
sensors and 8 luminaires1:

176.19 5.46 13.66 329.15 2.73 6.83 25.95 13.66

5.40 195.84 12.16 1.35 430.85 21.61 4.05 9.45

198.54 2.70 6.75 14.86 4.05 5.40 301.19 17.56

5.87 199.69 5.87 2.94 13.21 431.68 5.87 19.09

From the matrix Ã the installed light capacity at sensor i can be computed as ci =∑8
j=1 Ãij. Therefore, the installed light capacity on the four work stations is

573.63 680.72 551.06 684.23

Thus, our experimental testbed is able to provide the required standard comfort levels,
which are typically between 300 lux and 500 lux [2, 38], on all desks. Note from the matrix

Ã above that the illuminance gains on all sensors from bulbs 3 and 8 (which correspond
to the third and the last columns in the matrix) are relatively small, due to these bulbs
being located further away from the sensing modules. If bulbs 3 and 8 are removed from
the system, the resulting illuminance gains matrix Ã ∈ R4×6 becomes

176.19 5.46 329.15 2.73 6.83 25.95

5.40 195.84 1.35 430.85 21.61 4.05

198.54 2.70 14.86 4.05 5.40 301.19

5.87 199.69 2.94 13.21 431.68 5.87

Then, the corresponding installed light capacity is

546.31 659.11 526.75 659.27

As one can see, six 1300 lumen-rated bulbs are sufficient to illuminate the office space
(delivering at least 500 lux to all work stations), even when no environmental lighting is
available. Therefore, in the evaluation of the reduction in energy consumption, presented
in Section 4.3, we consider systems with six bulbs and the estimated illuminance gains
matrix Ã ∈ R4×6 above.

1Recall that Ãij is the estimated illuminance gain of sensor i from a fully-lit luminaire j.
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4.2 System Performance

Now we investigate the performance of the smart lighting system, and in particular, how
quickly and accurately it converges to the target illuminance levels. The experiments pre-
sented in Sections 4.2.2, 4.2.3, and 4.2.4 are run after a careful calibration of the system.
Thus, we assume that the estimated illuminance gains matrix Ã in these experiments is
close to accurate. On the other hand, experiments in Section 4.2.5 are performed with
matrices Ã of different degrees of inaccuracy to investigate the effect of these model inac-
curacies on the system’s performance.

4.2.1 Timescales

The control of luminaires’ dimming levels is done via an iterative control algorithm, pre-
sented in Section 2.4.4. Therefore, the system’s timescales can be expressed in terms of
the number of iterations. Based on our empirical measurements, the maximum time of
one iteration is ∼1.65 seconds. To understand where this number comes from, refer to the
control diagram from Figure 2.7 and consider each step of the closed loop separately:

1. Obtaining an illuminance level vector R is the first step of the loop. The duration
of this step is primarily governed by the I/O procedure of reading the illuminance
vector R from a file persistently stored on the disk, as described in Section 3.4.3.
This step takes up to 50 milliseconds.

2. The next step is computing optimal dimming levels by solving the optimization prob-
lem (Equation 2.20). The Raspberry Pi 3 B+ solves this problem in up to 200 mil-
liseconds.

3. The third step is setting the dimming levels on the Philips Hue LED luminaires.
The duration of this step is determined primarily by the ZigBee network perfor-
mance, i.e., the latency with which the luminaires receive packets from the Philips
Hue bridge. Based on our measurements, the maximum time of this step is around
100 milliseconds.

4. Finally, after the dimming level is changed, the LED luminaires need time to fully
adapt to the new dimming level. Our measurements indicate that this typically
requires less than 700 milliseconds in most cases, but, for additional robustness, we
allocate 1300 milliseconds for this adaption. This step is indicated as “Delay” on the
control diagram in Figure 2.7.
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Thus, the total time required for one iteration of the control algorithm adds up to
1.65 seconds.

4.2.2 Responsiveness to Changes in Environmental Illuminance

Daylight is the most common source of environmental illumination in offices. However,
the laboratory where our experimental testbed is deployed has no windows, thus, there is
no access to daylight. On the other hand, as mentioned in Section 3.1, the laboratory has
binary (on-off) central lighting, which we use to provide environmental illuminance to the
system. From the smart lighting system’s perspective, switching the artificial lighting on
and off, as shown in Figure 4.1, is roughly equivalent to quickly opening and closing blinds.

(a) Laboratory’s central lighting is on. (b) Laboratory’s central lighting is off.

Figure 4.1: Experimental setup with external lighting on and off.

To evaluate the smart lighting system’s responsiveness to changes in environmental
illuminance, we run an experiment. First, we set the system to maintain heterogeneous
illuminance levels on the four sensing modules,2 namely, 300, 350, 450 and 500 lux. As
the laboratory’s central lighting is turned on and off, the following parameters with corre-
sponding timestamps are recorded:

1. Dimming levels on luminaires at the moment when they are set;

2. Illuminance readings from the four sensing modules when they are received by the
central controller, i.e., every ∼100 milliseconds;

2There is one sensing module deployed per work station, as discussed in Section 3.2.
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3. Timestamps for the central light turn on/turn off events.

The results of this experiment are illustrated in Figure 4.2. White and yellow regions
correspond to the laboratory’s main light being off and on, respectively. The top time
series show the illuminance signals on the four sensing modules. The bottom time series
show dimming levels on the luminaires, with the circles corresponding to the moments
when dimming levels are set.

Abrupt spikes on the illuminance time series correspond to abrupt changes in environ-
mental illuminance, i.e., turning on or turning off the laboratory’s central light. As one
can see, it takes the system 2-4 seconds to fully adapt to the environmental changes and
restore illuminance levels on all sensors. From the dimming level time series one can see
that the system’s reaction3 occurs within ∼2 seconds of the change in external lighting.
These time series also demonstrate that in most cases only 1 iteration is required for the
system to fully converge, which is due to a carefully estimated matrix Ã.

The exact reaction time depends on where in the control loop (Figure 2.7) the system is
when the environmental changes happen. In theory, the best possible reaction time occurs
if the change in environmental illuminance happens a moment before a new control iter-
ation starts4 and the updated illuminance values are accurately captured before the new
iteration. Thus, the best time of the system’s reaction to changed environmental illumi-
nance is around 350 milliseconds, which corresponds to steps 1-3 of the control algorithm
discussed in Section 4.2.1. On the other hand, the worst possible reaction time occurs if
the environmental illuminance change happens a moment after a new iteration starts. In
that case, the reaction time is one full iteration plus 350 milliseconds, which is around
2 seconds.

Provided that we have an accurately estimated matrix Ã and it takes 1 iteration for
the system to fully converge, illuminance on the sensors should be restored within an-
other 1.3 seconds5 after the system’s reaction. This makes the total time of adaptation to
changes in environmental illuminance 1.65-3.3 seconds. Note that if the matrix Ã is poorly
estimated, it would take more iterations for the system to converge. System performance
with inaccurate matrices Ã is considered in Section 4.2.5.

Finally, it should be pointed out that, while this experiment considers significant abrupt
changes in environmental illuminance, natural changes in daylight are much smoother and

3A reaction time is defined as the time it takes the system to set new dimming levels on luminaires
after the change in environmental illuminance happens.

4Here we refer to the control algorithm steps discussed in Section 4.2.1.
5We assume that 1.3 seconds is a maximum time that it takes luminaires to adapt to new dimming

levels.
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Figure 4.2: Smart lighting system’s response to changes in environmental illuminance.
Note that the bulbs that are off throughout the entire experiment, i.e., bulbs 3 and 8
(corresponding to the dimming level signals d2 and d7), are not shown in the bottom plot.
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subtler. When the environmental lighting changes per iteration are lower than the eye
sensitivity, the system adapts to these changes seamlessly.

4.2.3 Responsiveness to Changes in Users’ Illuminance Prefer-
ence and Occupancy

This section evaluates and analyzes the system’s responsiveness to changes in users’ illu-
minance preference and occupancy. Changes in illuminance preference and occupancy are
considered together because, as discussed in Sections 3.4.2 and 3.4.3, they are handled by
the controller in the same way. Specifically, illuminance preference and occupancy vectors
together determine target illuminance h, as specified by Equation 3.3.

To evaluate the system’s responsiveness to changes in users’ illuminance preferences,
we run an experiment. This time the system is set to maintain constant illuminance levels
of 300, 350 and 500 lux on three of the desks, while on the fourth desk a new illuminance
preference is set every 10-15 seconds by its occupant. For this experiment, the following
time series are recorded:

1. Dimming levels on luminaires at the moment when they are set;

2. Illuminance readings from the four sensing modules when they are received by the
central controller, i.e., every ∼100 milliseconds;

3. The occupants’ illuminance preferences, and timestamps corresponding to changes
in the occupants’ illuminance preferences.

The results of this experiment are shown in Figure 4.3. On the top plot, solid lines
correspond to sensor readings, while the dashed line corresponds to the user’s illuminance
preference that has been changed several times throughout the experiment. The bottom
plot shows dimming levels on the luminaires, with the circles corresponding to the moments
when dimming levels are set.

By comparing the top time series to the bottom ones, one can see that the target
illuminance changes are followed by the system’s reaction6 almost immediately, within a
fraction of a second. For instance, based on the experimental data, the first drop in the

6The “system’s reaction” refers to the system setting new dimming levels on luminaires to respond to
the new target illuminance.
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Figure 4.3: Smart lighting system’s response to changes in target illuminance. Note that
the bulbs that are off throughout the entire experiment, i.e., bulbs 3 and 8 (corresponding
to the dimming level signals d2 and d7), are not shown in the bottom plot.
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target illuminance occurs at time 5.92 seconds, which is followed by bulbs 1 and 4 taking
new dimming level values at time 6.23 seconds.

Recall from Section 3.4.3 that when a change in target illuminance is registered, the
system immediately terminates the ongoing iteration of the control loop, and restarts the
optimizer with the new target illuminance settings. This strategy results in the system’s
reaction to target illuminance (and occupancy) changes being consistently fast. Our mea-
surements indicate that the reaction time is up to 350 milliseconds, which corresponds to
getting illuminance values, solving an optimization program and sending commands to the
luminaires.7

After dimming levels are set, it takes the luminaires at most 1.3 seconds to fully adapt to
these new dimming settings. Thus, provided that we have an accurately estimated matrix Ã
and it takes 1 iteration for the system to fully converge, the maximum total time to achieve
the target illuminance on all sensors is 1.65 seconds.8 It should also be emphasized that
illuminance levels on other sensors, whose target illuminance is constant throughout the
entire experiment, remain unaffected despite the various changes in luminaires’ dimming
levels.

In the next experiment, we test the system’s response to sequential changes in occu-
pancy of all 4 work stations. We simulate the scenario where users come to their work
station one by one, stay for 50-60 seconds, and then leave. The target illuminance on
occupied desks is set according to user preferences, which are chosen to be 300, 350, 450
and 500 lux. On the other hand, the target illuminance of unoccupied desks is 0 lux, as
we assume that an unoccupied desk does not have to be illuminated. For this experiment,
the following time series are recorded:

1. Dimming levels on luminaires at the moment when they are set;

2. Illuminance readings from the four sensing modules when they are received by the
central controller, i.e., every ∼100 milliseconds;

3. Timestamps corresponding to changes in the occupancy of each work station.

The results of this experiment are shown in Figure 4.4. The top four plots show real
and target illuminances on the four light sensors, indicated by solid and dashed lines,

7Note that these are steps 1-3 discussed in Section 4.2.1.
8If the illuminance gains matrix estimate Ã is inaccurate, it would take more iterations for the system

to converge, as discussed in Section 4.2.5.
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Figure 4.4: Smart lighting system’s response to changes in occupancy. Note that the bulbs
that are off throughout the entire experiment, i.e., bulbs 3 and 8 (corresponding to the
dimming level signals d2 and d7), are not shown in the bottom plot.
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respectively. The bottom time series show the dynamically changing dimming levels of the
luminaires.

This experiment demonstrates that the smart lighting system succeeds at illuminating
the occupied work stations according to the users’ preferences, while not illuminating the
unoccupied ones. By examining the experimental data, we also confirm that the system
reacts to changes in target illuminance within 350 milliseconds, and fully adapts to them
in ∼1.65 seconds.

Note that sometimes it is impossible to achieve the exact target illuminance on a sensor
due to physical limitations. For instance, in Figure 4.4, the illuminance levels at unoccupied
desks are sometimes higher than the target value of 0 lux. The unoccupied desk gets
some unintended illumination, when a neighboring desk’s target illuminance value is high.
However, it should be pointed out that the control algorithm always tries to minimize any
over-illumination, due to the formulation of the optimization problem’s objective function.

4.2.4 Using Portable Sensing Modules

In this section, the integration of portable sensing modules into the smart lighting system
is experimentally evaluated. Specifically, we investigate whether the process of integrating
sensing modules into the system is unobtrusive. Also, we test how accurately the system
maintains the desired target illuminance levels on all sensors throughout the experiment.

In this experiment, the system is set to maintain a constant illuminance of 400 lux on
all four work stations. Two portable sensing modules are placed in the office at arbitrar-
ily chosen locations and heights, as shown in Figure 4.5. First, we integrate one of the
portable sensing modules into the system and set a new illuminance preference on it every
∼10 seconds. Then, we repeat the same for the second portable sensing module. Finally,
both sensing modules are disconnected from the system one after the other. Throughout
the experiment the following time series are recorded:

1. Dimming levels on luminaires at the moment when they are set;

2. Illuminance readings from both “per-desk” and portable sensing modules when they
are received by the central controller, i.e., every ∼100 milliseconds;

3. Illuminance preferences on the portable sensing modules at the moment when they
are set, as well as the time of their connection/disconnection.
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Figure 4.6 illustrates the results of this experiment. The top plot shows the actual
illuminance levels on all sensing modules and target illuminance settings on the portable
modules, represented by solid and dashed lines, respectively. The bottom plot shows the
luminaires’ dimming levels with the circles corresponding to moments when the dimming
levels are set.

Figure 4.5: Experimental setup for evaluating the integration of portable sensing modules
into the smart lighting system. Two portable sensing modules are mounted on the top of
tripods.

After accepting the connection request from a sensing module, the smart lighting system
runs an automated calibration process to integrate this module, which is indicated by grey
regions in Figure 4.6. For our system with eight luminaires, this process takes around
11 seconds. Note that on the bottom plot, as expected, we see sequential spikes in the
luminaires’ dimming levels during the calibration process. At the same time, the top plot
demonstrates that the calibration causes only slight fluctuations in illuminance levels on
the sensors. These slight fluctuations, while being sufficient for estimating the illuminance
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Figure 4.6: Experiment for connection, operation, and disconnection of the additional
sensing modules. Grey regions on the plots correspond to an automated calibration process
to integrate the additional sensing modules. (Note that the preferred target illuminance
can be set on the sensing modules only after they have been integrated into the system.)
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gains matrix, are nearly invisible to an eye.

This experiment also confirms that the smart lighting system successfully achieves and
maintains the desired illuminance levels on both “per-desk” and portable sensing modules.
Note that when the illuminance on one of the sensing modules changes due to either the
varying user preferences or the module being disconnected from the system, illuminance
levels on the rest of the modules remain mostly undisturbed.

4.2.5 The Effect of Error in the Estimated Illuminance Gains
Matrix on the System’s Performance

Previous sections of this chapter evaluate the performance of the smart lighting system with
a carefully estimated illuminance gains matrix. In particular, Section 4.2.2 demonstrates
that the system fully adapts to abrupt changes in environmental illuminance after one
iteration of the control algorithm, provided that Ã ≈ A(t). However, in practice, an
estimated illuminance gains matrix is subject to error due to several factors including
inaccurate calibration, accident sensor movements, and decrease in bulbs’ luminous flux
with temperature. While Section 2.4.5 discusses the effect of this error on the convergence
of luminaires’ dimming levels from a theoretical point of view, this section evaluates it
empirically. Specifically, we run a set of experiments to investigate the performance of the
system when the estimated illuminance gains matrix Ã has various degrees of inaccuracy.

This evaluation consists of a calibration phase (phase 1) and an operation phase (phase 2).

In phase 1, we obtain matrices Ã of various degrees of error ε by using different levels of
light sensor occlusion during the calibration process. To quantify the level of sensor occlu-
sion, we first make the system achieve exactly 400 lux on all unoccluded sensors. Next,
after partially covering the sensors (as shown in Figure 4.7), we measure their illuminance
levels, note a decrease in illuminance due to the occlusion,9 and run the calibration. Once
the calibration is completed, we uncover the light sensors, which makes the estimated il-
luminance gains from luminaires on the sensors inaccurate. As shown in Figure 4.8, the
level of sensor occlusion during the calibration increases from experiment D1 to D5, which
results in increasingly inaccurate matrices Ã.10

In phase 1, we obtained matrices Ã of different degrees of estimation error. In phase 2,
we evaluate the lighting system’s performance with these (inaccurately estimated) matrices,

9Larger deviations from 400 lux on the illuminance sensors correspond to more severe occlusions and,
consequently, higher estimation errors in the matrix Ã.

10Estimated illuminance gains matrices Ã obtained in experiments D1-D5 are presented in Appendix B.
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(a) (b)

Figure 4.7: Illuminance sensors are partially occluded during the phase 1 (calibration
phase) of the experiments to obtain the illuminance gains matrix estimates of various
degrees of inaccuracy.

(a) Exp. D1
(phase 1)

(b) Exp. D2
(phase 1)

(c) Exp. D3
(phase 1)

(d) Exp. D4
(phase 1)

(e) Exp. D5
(phase 1)

Figure 4.8: Light sensor readings resulting from different levels of sensor occlusion, where
illuminance on all unoccluded sensors is set to 400 lux.
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by setting the system to maintain constant heterogeneous illuminance levels on the four
light sensors, namely, 175 lux, 200 lux, 225 lux and 250 lux. As the laboratory’s central
lighting is turned on and off, the following parameters with corresponding timestamps are
recorded11:

1. Dimming levels on luminaires at the moment when they are set;

2. Illuminance readings from the four sensing modules when they are received by the
central controller, i.e., every ∼100 milliseconds;

3. Timestamps for the central light turn on/turn off events.

The results of these experiments are shown in Figure 4.9. White and yellow regions
correspond to the laboratory’s main light being off and on, respectively. The left-hand-side
time series show the illuminance signals on the four sensing modules. The right-hand-side
time series show dimming levels on the luminaires, with the circles corresponding to the
moments when dimming levels are set.

This evaluation demonstrates that as the error in the estimated illuminance gains matrix
Ã increases, the system requires more iterations to converge. However, as long as matrix Ã
is sufficiently accurate, as in the experiments D1-D3, the dimming levels converge quickly
and target illuminance is achieved on all sensors within a few iterations of the control
algorithm. Once the error in matrix Ã becomes significant, as in the experiment D4,
dimming levels on some of the luminaires converge slowly. Finally, the system does not
converge at all when the error in the illuminance gains matrix estimate is too large, as in
the experiment D5. Overall, the experiments presented in this section empirically verify
the conclusions in Section 2.4.5, namely:

1. The convergence occurs quickly when the estimated illuminance gains are greater
than the estimation errors: Ã� ε(t) (as demonstrated in the experiments D1-D3);

2. The smaller ε(t) is relatively to Ã, the faster convergence occurs (as demonstrated in
the experiments D1-D4);

3. The system does not converge if Ã ≈ ε(t), (as demonstrated in the experiment D5).

11Phase 2 of this evaluation is the same as the experiment discussed in Section 4.2.2, except that it uses
matrices Ã of different degrees of inaccuracy.
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(a) System performance in Experiment D1 (phase 2).

(b) System performance in Experiment D2 (phase 2).

(c) System performance in Experiment D3 (phase 2).

(d) System performance in Experiment D4 (phase 2).

(e) System performance in Experiment D5 (phase 2).

Figure 4.9: Performance of the smart lighting system using matrices Ã of various degrees
of estimation error.
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4.3 Reduction in Energy Consumption

The main motivation behind the smart lighting system is a reduction in energy consump-
tion. To evaluate the proposed system’s energy saving potential, we estimate its average
daily energy consumption through extensive simulations using 7 months of collected illu-
minance and occupancy data. We also run the same simulations for several other common
lighting systems and then compare different systems’ energy efficiency. Section 4.3.1 de-
scribes the simulation procedure, and Section 4.3.2 discusses results.

4.3.1 Simulation Description

The goal of this part of system evaluation is to estimate how much energy the proposed
system can save through daylight harvesting and occupancy sensing. To evaluate the
system’s energy efficiency, we simulate its power consumption under dynamically changing
daylight illuminance and occupancy conditions.

The power consumption of each luminaire is a function of its dimming level, and for our
luminaires, this relationship is modeled by Equation 2.4. Recall that, according to the sys-
tem’s theoretical model, at every time t the optimal dimming vector d(t) can be computed
by solving the optimization problem 2.16, which is rewritten below for convenience:

minimize
d

sum{d}

subject to E(t) + A(t)d ≥ h

0 ≤ d ≤ 1

Thus, to obtain a vector d, the simulation requires the knowledge of the daylight
contribution E(t),12 target illuminance vector h and illuminance gains matrix A(t) at
every moment in time t. Next, we discuss assumptions about each of these variables made
in the simulation.

First of all, the same office as our experimental testbed described in Section 3.1 is
considered. Section 4.1 has demonstrated that six 1300 lumen-rated luminaires provide
sufficient installed light capacity to illuminate all four work stations of our experimental
testbed. Therefore, a lighting system with six luminaires (M = 6) and four work stations
(N = 4) is considered. We also approximate the time-varying illuminance gains matrix

A(t) by the constant estimated matrix Ã ∈ R4×6 presented in Section 4.1.

12For this simulation, we assume that daylight is the only source of environmental illumination.
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Two target illuminance requirements are imposed depending on whether a work station
is occupied. For the occupied work stations we require at least 450 lux on light sensors,
whereas unoccupied work stations do not have to be illuminated.13 We can write this as

hi =

{
450 if oi = 1
0 if oi = 0

(4.1)

where hi and oi are a target illuminance and an occupancy status of a sensing module
i, respectively. Thus, the target illumination at time t is determined solely from the time-
varying occupancy signal o(t).

With these assumptions, the only pieces of information required by the simulation to
compute time-varying optimal dimming levels (and the corresponding power consump-
tion) are occupancy and daylight signals from each sensing module. Since N = 4, for each
simulation we need o(t) ∈ R4×1 and E(t) ∈ R4×1. To mimic these dynamically chang-
ing occupancy and daylight signals we used the 7 months of collected illuminance and
occupancy data, discussed next.

Recall that our experimental testbed has no windows. Therefore, the daylight illumi-
nance data was collected from three other offices, each with a large window, during the
7-month period from October 1, 2018, to May 1, 2019, in Waterloo, Canada. Each of
the offices had two sensing modules, similar to the one illustrated in Figure 3.5, installed
at two distinct work surfaces. These sensing modules logged illuminance measurements
every minute. Occupancy data used in the simulation was collected by SPOT personal
thermal comfort devices developed and deployed by Rabbani et al. [43]. The dataset con-
tains 7-month long occupancy signals collected from 20 distinct work stations that belong
to graduate students, faculty members or administrative staff also at the University of
Waterloo.14 Since the sampling frequency of the occupancy signals in the dataset is 30 sec-
onds, we had to downsample them to 1 minute to match the illuminance signal’s frequency.
Thus, to sum up, our illuminance dataset consists of six 7-month long daylight illuminance
signals collected from three different offices, and our occupancy dataset consists of twenty
7-month long occupancy signals collected from different work stations. Next, we have

13Note that since unoccupied work stations do not have to be illuminated, the illuminance constraints
for them are trivial and always satisfied: Ri ≥ 0.

14Note that the actual occupancy traces, collected by the SPOT devices, were 4-month long. Therefore,
to match their length to the length of the illuminance traces, we extended them to 7 months as follows.
First, with the assumption that occupancy patterns for each workday/weekend are independent, we con-
catenated each 4-month long occupancy signal with itself, while forcing consistency of time of a day and
day of a week. Next, we trimmed these signals at 7 months.
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to select occupancy and illuminance signals from these datasets and combine them in a
meaningful way to get the desired vectors o(t) ∈ R4×1 and E(t) ∈ R4×1.

The occupancy status of different work stations is independent. Therefore, we can
use any 4 occupancy signals in the simulation. On the other hand, daylight illuminance
at different parts of the same office is strongly correlated. Thus, we can only use the
daylight data collected from the same office in the same simulation. Since we only have two
illuminance signals collected per office (while there are four work stations in the testbed),
each daylight signal is used to mimic the daylight illuminance on two sensing modules from
neighboring work stations, as shown in Figure 4.10. In addition, to avoid using identical
traces in the same simulation and make the simulation more “realistic”, we apply 5% of
random noise to each daylight signal, when it is used.

Figure 4.10: Two daylight traces EA and EA, collected from the same office, are used
to mimic environmental illuminance on the four work stations (E1, E2, E3, E4) in the
simulation. Note that the signals E1 and E2/E3 and E4 are slightly different due to the
random noise.

After choosing the illuminance and occupancy signals for the simulation, these signals
are combined by matching their timestamps. As a result, we get a 7-month long combined
(t,E(t),o(t)) signal with a frequency ∆t of 1 minute, which can be readily consumed by the
simulation. Examples of combined sensor signals for a single day are shown in Figure 4.11.

By solving the optimization problem 2.16 for a time snapshot t of the (t,E(t),o(t))
signal, we can estimate the amount of energy consumed by luminaires in each 1-minute
interval.15 If we repeat this calculation for the entire 7 months of data, we can estimate
the average daily energy consumption of the simulated system. Thus, by supplying a
(t,E(t),o(t)) signal to the simulation as an input, we get the average daily energy use as
an output.

15Specifically, we first compute an optimal dimming level vector d(t) at time t by solving the optimization

problem 2.16 that consumes E(t), o(t) and Ã. Next, vector d(t) is used to find the luminaires’ power
consumption P (t) using Equation 2.4. Finally, energy use during a time step ∆t is estimated as P (t)∆t.
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(a) Combined signals for December 5, 2018.

(b) Combined signals for March 12, 2019.

(c) Combined signals for April 13, 2019.

Figure 4.11: Examples of combined daylight illuminance and occupancy signals for two
different workdays (a, b) and a weekend (c).
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Luminaire type Occupancy detection Daylight harvesting

Incandescent Yes/No No
CFL Yes/No No
LED Yes/No Yes/No

Table 4.1: Lighting system configurations for which the average daily energy consumption
has been estimated through simulations, based on 7 months of collected illuminance and
occupancy data.

To further assess the energy efficiency of the smart lighting system, we compare it to
several other lighting system configurations. Specifically, as presented in Table 4.1, we
consider the lighting systems using light-emitting diode (LED), compact fluorescent light
(CFL) and incandescent luminaires, with/without an occupancy detection capability, and
with/without a daylight harvesting capability.16 Assuming the same office layout as our
experimental testbed, we run simulations to calculate how much energy these systems
consume on average per day, based on the same (t,E(t),o(t)) signals.

To make the comparison fair, we consider the lighting systems with equal installed
light capacities. Thus, we assume that all systems use six 1300 lumen-rated luminaires of a
corresponding type which, as discussed in Section 4.1, is sufficient to achieve the illuminance
of 450 lux on all work stations. Typical 1300 lumen-rated CFL and incandescent bulbs
consume 27 W [13] and 85 W [21], respectively. For the LED-based systems, the luminaire
model proposed in Section 2.2 and the constant illuminance gains matrix presented in
Section 4.1 are assumed. In addition, note that the systems with an occupancy detection
and/or daylight harvesting capability consume additional power for sensing, computing
and communicating. In our system implementation, the main control module (Raspberry
Pi 3 Model B+) consumes 2.2 W , and each sensing module (Onion Omega 2) consumes
1.0 W . Therefore, the total power consumption of the system’s microcomputers is 6.2 W ,
which translates into the additional daily energy consumption of 0.1488 kWh. This number
is added to the total daily energy consumption of these systems.

Lastly, in our evaluation, only the occupancy-aware daylight harvesting system is able
exploit the desk-level occupancy information. The systems with only the occupancy de-

16Note that daylight harvesting is only considered for LED-based systems. Daylight harvesting for
systems using CFL and incandescent bulbs would require the knowledge of respective luminaire models
and appropriate control algorithms, which is out of the scope of this work. Thus, CFL and incandescent
bulbs are assumed to be controlled in a binary (on/off) fashion in this evaluation.
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tection (but not the illuminance sensing/daylight harvesting) capability, while being aware
which desks are occupied, do not have sufficient information to determine how much light
needs to be delivered to the individual occupied spaces (and which bulbs need to be
on/off).17 Therefore, we assume that these systems have only an office-level occupancy
detection capability, and thus they have to turn all six bulbs fully on if at least one desk is
occupied. Furthermore, for the occupancy-unaware systems, it is assumed that the first-
to-arrive occupant turns on the light in the morning, the last-to-leave occupant turns it off
in the evening, and the light stays on during the time in between.

4.3.2 Simulation Results

For each lighting system configuration from Table 4.1 we run 90 simulations using randomly
combined daylight and occupancy traces. Specifically, to generate a combined (t,E(t),o(t))
signal for the simulation, we randomly pick four occupancy signals (out of the twenty
available) and two daylight signals collected from the same office (out of the six available),
and combine them, as described in Section 4.3.1.

Figure 4.12 shows the average daily energy consumption of different lighting systems,
based on the simulations. The error bars show 95 % confidence intervals. As expected, the
systems using incandescent bulbs consume roughly 3 times more energy than the systems
using CFL bulbs that, in turn, consume 2-3 times more energy than LED-based lighting
systems. Office-level occupancy detection decreases the average daily energy consumption
of the incandescent bulb-based and CFL-based systems by 15% and 8.5%, respectively. At
the same time, the LED lighting system with the office-level occupancy detection capability
on average consumes slightly more energy than the basic18 one. This is because our im-
plementation of occupancy sensing requires an additional constant power of 6.2 W . Thus,
the more efficient a system’s luminaires are, the less rewarding the occupancy detection is.

Note that the average daily energy consumption of the LED lighting systems with
either a daylight harvesting or an office-level occupancy detection capability alone is not
significantly different from the average consumption of the basic LED lighting system
(0.87 kWh vs. 0.78 kWh vs. 0.85 kWh, respectively). At the same time, the LED
lighting system that utilizes the combination of daylight harvesting and per-desk occupancy
detection on average consumes 0.51 kWh of energy per day, which is a 40% reduction
compared to the basic LED lighting system.

17Although, in general, it is possible to divide the space into smaller lighting control zones, this approach
is impractical for smaller offices, such as our experimental testbed.

18“Basic lighting systems” refers to systems with neither occupancy detection nor daylight harvesting
capability.
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Figure 4.12: 95% confidence intervals for the average daily energy consumption of differ-
ent lighting system configurations. INC: incandescent bulbs, CFL: CFL bulbs, LED:
LED bulbs, basic: “basic” lighting system with neither occupancy detection nor daylight
harvesting, daylight: daylight harvesting, occup-ol: office-level occupancy detection,
occup-dl: desk-level occupancy detection.

.
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Recall that there is an extra energy cost associated with lighting systems’ sensing and
actuation being wireless. Specifically, as mentioned above, 1.0 W of power is consumed
by each wireless sensing module. Also, as discussed in Section 2.2, each PAR38 Philips
Hue bulb has a standby power consumption of 1.18 W , which does not directly contribute
to the bulb’s luminous output. Thus, if one is willing to give up the system’s flexibility
and the ease of installation and deployment, more energy can be saved by using a wired
implementation of sensing and actuation, discussed in Sections 3.2.5 and 3.3.1, respectively.

Figure 4.13 demonstrates a total energy consumption comparison between different
LED lighting systems with the wired and wireless implementation of sensing and actua-
tion. It should be pointed out that the average daily energy consumption of a fully wired
implementation of the smart lighting system is only 0.24 kWh. This is less than a half of
what a fully wireless implementation of the smart lighting system consumes and less than
a third of what the basic LED lighting system consumes. The smart lighting system with
wired actuation (and wireless sensing) consumes 0.34 kWh and the same system with wired
sensing (and wireless actuation) consumes 0.41 kWh, which is respectively a 33% and a
20% reduction in the average daily energy consumption, compared to the fully wireless
implementation. Note that even though the wired implementation of sensing and actua-
tion leads to further reduction in energy consumption, it can potentially impose significant
installation and deployment efforts, along with the associated costs.
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Figure 4.13: 95% confidence intervals for the average daily energy consumption of different
LED lighting system configurations. LED: LED bulbs, basic: “basic” lighting system
with neither occupancy detection nor daylight harvesting, daylight: daylight harvesting,
occup-ol: office-level occupancy detection, occup-dl: desk-level occupancy detection,
wired-s: wired sensing, wired-a: wired actuation. (Sensing and actuation are wireless,
unless stated otherwise.)
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Chapter 5

Conclusions

5.1 Meeting Design Goals

In this work, we have presented a power-efficient smart lighting control system designed
and implemented with the following goals in mind:

• G1 Saving energy

• G2 Personalized lighting comfort

• G3 System robustness to modeling errors

• G4 Fast system responsiveness

• G5 Plug-and-play deployment

In this section, we discuss how each of these goals is met.

To achieve energy savings (goal G1), the smart lighting system attempts to minimize
unnecessary office over-illumination by taking full advantage of the available daylight and
non-occupancy of work stations. Thus, the system uses artificial lighting only to compen-
sate for insufficient daylight. Our evaluation has demonstrated that the smart lighting
system reduces energy consumption by about 40%, when compared to a conventional sys-
tem requiring all luminaires to be fully lit whenever the office is occupied.

Personalized lighting comfort (goal G2) is achieved by allowing each user to express
individual lighting preference at their work station to the system via a “per-desk” sensing
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module. The system, in turn, is able to maintain heterogeneous illumination in the office,
while quickly responding to dynamically changing illuminance preferences of the occupants,
as demonstrated by experiments.

The smart lighting system is robust (goal G3) to inaccurate calibration, accidental
sensor movements, decreases in a bulb’s luminous flux and other inaccuracies of the model,
thanks to the proposed iterative control algorithm. It has been demonstrated both mathe-
matically and empirically that the system is able to satisfy occupants’ lighting preferences
(goal G2), unless the estimated model substantially deviates from the “real” unknown

model (i.e., Ã ≈ ε(t)).

A concurrent implementation of the controller and sensing modules significantly con-
tributes to the system’s responsiveness (goal G4). As demonstrated by extensive evalua-
tions, the system reacts to changes in environmental illuminance, such as daylight, within
at most 2 seconds. At the same time, it reacts to changes in occupancy in 350 milliseconds,
which is achieved by early termination of an ongoing iteration of the control loop.

Wireless communication between all components of the system makes its installation
and deployment easy, rapid and cost-effective (goal G5). All that needs to be done to
deploy the system is replacing currently installed bulbs by off-the-shelf wireless Philips
Hue bulbs, putting a wireless sensing module on each work station, plugging the control
module, and clicking a “start” button.

In addition, the proposed automated calibration method, which allows us to unobtru-
sively estimate an illuminance contribution on every light sensor from every luminaire,
further contributes to the system’s plug-and-play design. With this method, new sys-
tem components, such as additional luminaires and sensing modules, can be seamlessly
connected and disconnected, even while the system is in use.

5.2 Limitations and Future Work

Our work suffers from a few limitations. During the system modeling phase, we made
several simplifying approximations. First, we did not model the effect of temperature on
the luminaires’ power consumption, assuming the power vs. dimming level relationship of
the fully heated bulb. We also relaxed the luminaire model by linearizing it. These two
approximations can potentially cause an error in a bulb’s power consumption estimation.
Another limitation is related to the estimation of the illuminance gains matrix, which is
prone to an inherent time-varying error. Note that, in most cases, all these modeling errors
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result in a slightly sub-optimal (in terms of power consumption) dimming level setting on
luminaires, while not affecting occupants’ comfort, due to the adaptive control algorithm.

The question of light sensor placement was not considered in detail in this study. Our
work proposed placing light sensors on the top surface of a computer monitor, on an
adjacent wall, or on the edge of a shelf to avoid sensor occlusion and alleviate shadowing.
However, the question of sensor placement when none of these are available (for example,
in a conference room), remains open. Also, our system measures illuminance near work
surfaces and not directly on them. However, in practice, this is likely not an issue because
users can readjust the desired illuminance levels to compensate for the sensor placement
errors.

Another inherent limitation is a considerable standby power consumption of PAR38
Philips Hue bulbs. Even though the system is implemented with the PAR38 Philips Hue
bulbs, other luminaires can be used too, provided that their dimming levels can be con-
trolled, and the relationship between their power and dimming level is close to linear (which
is the case for LED bulbs).

In future work, in addition to controlling luminaires, we could also consider controlling
the daylight that enters the room. Such ability to curb the daylight would allow us to use
an optimization that imposes both the lower and the upper bound on the illuminance of the
sensors, not only the former as in the present study. Furthermore, to improve the system’s
ease of use, we could implement a graphical user interface (GUI) that would allow users to
easily and intuitively set their illuminance preferences, as well as keep track of the levels
of illumination at their work stations. Finally, we could also investigate power-efficient
control strategies for lighting systems using luminaires with non-linear power vs. dimming
level relationship.
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Appendix A

Effect of Temperature on the PAR38
Philips Hue Bulb’s Performance

The luminous power output of LED bulbs depends on their temperature [25]. To investigate
this, we conducted the following experiment for the PAR38 Philips Hue bulbs. By turning
the bulb fully on at time t0 = 0, at which point it is at the room temperature, we measured
how illuminance on an illuminance sensor, which is located 1 meter away from the bulb,
changes over time as the bulb get warmer. All other sources of light were turned off during
this experiment, and there was no daylight. Our findings are shown in Figure A.1, from
which one can see that, over 35 minutes, the luminaire lost about 5.8% of its luminous
output.

On the other hand, the bulb’s dimming level dj, being a measure of relative luminous
output, is time-independent. To confirm this, we ran an experiment similar to the previous
one, but this time every ∼10 minutes we measured illuminance on the sensor, as the bulb’s
brightness control value bj was varied from “off” to 255, and calculated corresponding
dimming levels using Equation 2.1. The results of this experiment, shown on Figure A.2,
demonstrate that the dimming level vs. brightness control value relationship does not
change, as the luminaire warms up.
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Figure A.1: The reduction in luminous power output of a fully lit PAR38 Philips Hue bulb,
as a it heats up. At time t0 = 0 the luminaire is at the room temperature. (Note that the
vertical axis does not originate at 0.)

Figure A.2: This experiment demonstrates that the dimming level vs. brightness control
value relationship does not change, as a PAR38 Philips Hue luminaire heats up. At time
t0 = 0 the luminaire is at the room temperature.
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Appendix B

Estimates of Matrix A

Presented in this Appendix are the estimated illuminance gains matrices Ã from experi-
ments D1-D5, discussed in Section 4.2.5.

(a) Estimated matrix for Experiment D1. (b) Estimated matrix for Experiment D2.

(c) Estimated matrix for Experiment D3. (d) Estimated matrix for Experiment D4.

(e) Estimated matrix for Experiment D5.

Figure B.1: Estimated illuminance gains matrices for experiments D1-D5.
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