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Abstract

The field of quantum information has been a fast growing field of research in the
last few decades. The reason for this development is the potentially immense power of
quantum computers, capable of solving hard problems in a fraction of the time it would
take a classical computer. Quantum annealers are a type of quantum computer that seek
to solve computational problems by finding the ground state of a quantum system. This
type of quantum computer has been implemented on a large scale using superconducting
flux quantum bits, but the computational power is limited. One potential improvement
to help in this context is the implementation of multi-body interactions between quantum
bits. Many-body interactions would be useful in allowing quantum annealers to solve more
complex problems that are relevant in various areas of quantum information and science
and implementing quantum error correction.

We present a superconducting device that implements a strong and tunable in sign
and magnitude three-body interaction between superconducting flux quantum bits. The
circuit design proposed has vanishing two-body interactions and robustness against noise
and parameter variations. This circuit behaves as an ideal computational basis ZZZ coupler
in a simulated three-qubit quantum annealing experiment. These properties are confirmed
by calculations based on the Born-Oppenheimer approximation, a two-level spin model for
the coupling circuit, and full numerical diagonalization.

The proposed circuit is based on already available technology and therefore could be
readily implemented in the next generation of quantum annealing hardware. This work
will be relevant for advanced quantum annealing protocols and future developments of
high-order many-body interactions in quantum computers and simulators.
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Chapter 1

Introduction

1.1 The Quest for a Quantum Computer

The era of digital computing revolutionized modern science. While the scientists of the
pre-digital period did push the boundaries of science, they were limited by the sheer diffi-
culty of the theoretical calculations when investigating increasingly complex systems. The
development of the first computing infrastructure permitted the scientific community to
explore problems that did not have analytical solutions and required immense numerical
calculations to solve. Because of this, the progress in all fields of science grew by leaps
and bounds, and with it the power of the computers also grew in turn [1]. With this in-
crease of computational power, along with the development of communication technology,
came the development of the Internet. The Internet represented an important opportunity
for the scientific community through enabling global instant communication and knowl-
edge sharing. However, some hard problems with many real-world applications, remain
extremely difficult to solve on computers because of the immense computational resources
required [2]. A few examples of such hard problems are: prime factorization, the traveling
salesman, graph coloring, the knapsack and satisfiability problems [3] and matrix perma-
nent calculation [4]. Additionally, the constant progression in computer performance that
was experienced from the 1960’s to the 2010’s has begun to show signs of slowing down
and saturation in recent years [5]. The main reason for this slow-down is the physical
limitations of the electrical circuitry making the miniaturization of these components in-
creasingly difficult. The curiosity of the scientific community and the complexity of the
problems posed by this community are, however, not slowing down but growing. The natu-
ral tendency of humanity to seek an understanding and mastery of nature has led us to this
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point and we are beginning to see this tendency push against the current computational
paradigm, push to go beyond the paradigm of classical computing.

The first stirrings of a new computation paradigm were felt in the early 1980’s, when
the first proposals to use quantum effects to improve classical computation were made
by Feynman [6] and Benioff [7]. Feynman’s proposal sought to solve a persistent prob-
lem in modern science, the intractability of simulating even moderately sized quantum
systems such as atoms and molecules. This important problem is due to the exponential
growth, with the size of the system, of the classical computational resources required to
accurately simulate the quantum system. Feynman proposed to use controllable quan-
tum systems onto which would be encoded the quantum systems of interest. This would
circumvent the exponential growth in computational resources by substituting classical
computational resources with quantum systems that can naturally encode the quantum
variables. These types of quantum simulators are capable of simulating large and complex
many-body quantum systems with ease and thus would have wide ranging applications in
the fields of physics, chemistry and biology [8, 9].On the other hand, Benioff and others
proposed to build quantum Turing machines and therefore to use quantum properties in a
more conventional computing architecture based on quantum logical circuits and quantum
bits (qubits). With the development of the standard circuit model of quantum computing
by Deutsch in 1989 [10], the circuit model would become the main avenue explored by
quantum computation scientists. In the following decades, powerful quantum algorithms
were developed, capable of solving provably hard problems for classical computers, like
prime factorization [11] and the unstructured database search [12], with an huge increase
in efficiency over classical algorithms. The physical requirements for the implementation
of a quantum computer were consolidated by DiVincenzo into criteria on the scalability,
coherence lifetimes, ability to initialize and measure the physical qubits, ability to transfer
quantum information between qubits at different locations and requirements on the set of
universal quantum gates to implement [13]. There were also important developments in the
field of quantum communication and cryptography, where scientist build communication
protocols that are safe from any potential eavesdropper [14].

A distinct quantum computation model developed in parallel to the circuit model.
This model of quantum computation was based on encoding the solution to combinatorial
problems to the lowest energy state of a quantum system [15, 16, 17]. This approach
to solve combinatorial problems was adapted from a classical algorithm called simulated
annealing where one optimizes a cost function using random simulated thermal fluctuations
and hopping over barriers in the cost function. In the quantum counterpart called simulated
quantum annealing, one uses simulated quantum fluctuations and tunneling, as opposed
to thermal fluctuations and hopping, to overcome barriers in the optimization of the cost
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function. The quantum computation model that evolved from this work is called adiabatic
quantum computation. In adiabatic quantum computation, the goal is to find the solution
to a computational problem by finding the ground state of a quantum system. In order
to do so, one initializes the computational qubits in the trivial ground state of an initial
Hamiltonian and slowly transforms this Hamiltonian to the final Hamiltonian, the ground
state of which encodes the solution. This method of computation employs the adiabatic
theorem of quantum mechanics [18]. This theorem states that if a system is in an eigenstate
of a Hamiltonian and the Hamiltonian is changed slowly compared to the energy gap
between eigenstates, the system will stay in the eigenstate of the instantaneous Hamiltonian
of the system at every point in time. This model of quantum computation has been proven
to be computationally equivalent to the circuit model of quantum computation [19] and
therefore can solve all the problems and run all the algorithms that a circuit model quantum
computer can. However, to be equivalent, the design of the adiabatic quantum computer
needs to follow important requirements. These requirements include exotic interactions
between qubits such as multi-body interactions (see subsection below), but are otherwise
beyond the scope of this thesis, see Refs. [19, 18] for details.

Physical implementation of quantum bits, in the context of the circuit model, has been
achieved using nuclear and electron spin resonance, photons, trapped ions, cold atoms,
quantum dots and superconducting electronic circuits. Early experiments were focused on
isolating the quantum behavior of these systems from the environment. All the experi-
mental efforts lead to the implementation of small scale quantum algorithms and simu-
lations [20]. Circuit model quantum computers have gone through the embryonic proto-
typical stage of development and are now being implemented with a few tens of qubits.
Superconducting circuits have been the main thrust in the field of quantum computing
implementations largely due to the large knowledge pool acquired in the field of classical
microwave integrated electronics [21, 22, 23, 24], to the fact that they can easily be manu-
factured and designed into a large variety fo devices and their good prospects for building
large scale machines [25]. In this present thesis, we will focus on superconducting electronic
circuits for quantum computing, in the context of quantum annealing.

1.2 Quantum annealing

Quantum annealing is a model of quantum computation that is based on the adiabatic
quantum computation model. These two models are distinct in that, in quantum anneal-
ing, one deals with open quantum systems and thus the condition of adiabaticity is not
strictly held. In quantum annealing, as in adiabatic quantum computation, one initializes
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a physical system in the trivial ground state of the so-called initial Hamiltonian, then one
slowly transforms the initial Hamiltonian to the final problem Hamiltonian. The quantum
annealing protocol follows the time dependent Hamiltonian

Hanneal (s) = A (s)Hinitial +B (s)Hproblem, (1.1)

where Hinitial and Hproblem are the time-independent initial and problem Hamiltonians,
respectively, and where A (s) and B (s) are time-dependent parameters that are varied
during the schedule such that B (0) = 0 and A (1) = 0, where s = t/T is the dimensionless
annealing parameter that goes from 0 at the beginning of the annealing and to 1 at the
end, with T the total annealing time.

The current paradigm being investigated for quantum annealing is the transverse field
Ising Hamiltonian [18]. The Ising problem Hamiltonian in Eq. (1.2) that encodes the
computational problem belongs to the complexity class StoqMA [18] and can encode NP-
complete problems such as satisfiability problems1 (SAT) [134] in the form of quadratic
unconstrained binary optimization problems [26]. The transverse field Ising Hamiltonian
is written for a system of N spins as

Hanneal (s) = A (s)
N∑
i=1

∆i σ
x
i +B (s)

 N∑
i=1

hi σ
z
i +

N∑
i,j=1
i 6=j

Jij σ
z
iσ

z
j

 , (1.2)

where ∆i, hi and Jij are the transverse field on each spin, the energy bias on each spin
and the spin-spin coupling strength, respectively, and where σz,x

i are the Pauli matrices for
spin i. The Pauli matrices are used throughout the field of quantum information and are
defined as follows

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (1.3)

Along with the identity operator

σI =

[
1 0
0 1

]
, (1.4)

1The computational question being asked in a SAT problem is whether an expression of Boolean
variables can be made to evaluate to True with a certain assignment of Boolean variables. The NP-
completeness of these problems means that any computational problem that is in the computational class
NP can be solved by an algorithm that solves the SAT problem.
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the Pauli matrices form a complete basis in the space of 2× 2 matrices.

As discussed above, there exist many physical implementations of qubits or quantum
spins. The transverse field model of quantum annealing has been physically implemented
using a system of superconducting flux qubits by the D-Wave company. The progress of the
D-Wave company on implementing a quantum annealer on chip, started in the early 2000’s
with a single qubit and few qubit experiments [27, 28, 29, 30, 31], has now reached the
large scale. The most recent device developed by the company has around 2000 flux qubits
playing the role of the spins in the Ising problem and 6000 tunable two-qubit couplers
mediating the desired spin-spin interactions [32].

Solving various combinatorial problems and simulating exotic quantum systems with
this machine as well as benchmarking the quantum annealer against the best classical
solvers has evolved into a thriving field of research [33, 34]. The consensus on whether
quantum annealing has a general computational advantage versus the best classical com-
puters is still an open question. However, the D-Wave machine has been found to perform
well and even outperform classical solvers at very specific problems [35, 32, 36]. The re-
search does point to some factors that are currently limiting the computational power of
the D-Wave quantum annealer, one of which is the embedding overhead incurred due to
the limited connectivity between qubits and due to the lack of multi-qubit interactions.
Embedding here refers to the encoding of the computational problem, constructed on an
arbitrary graph with arbitrary connections, to the physical device graph. Embedding ar-
bitrary problems on a quantum annealer requires first a reduction of the problem to the
fundamental problem and graph of the annealer. The fundamental problem and graph of
the annealer is defined by Hproblem and is limited by the physical connectivity of the qubits
in the device. For example, the D-Wave machine has a problem Hamiltonian of the Ising
type as in Eq. 1.2, but more importantly this machine has a physical connectivity of 6, that
means, each physical qubit is directly connected and interacts with at most 5 of it’s nearest
neighbors (in the physical device, the sum over the two-qubit interactions Jij in Eq. 1.2 is
limited by the device’s connectivity.) [32]. The problems that require larger connectivity
can be mapped onto the quantum annealer by using chains of physical qubits to encode
one logical qubit (a qubit that encodes a problem variable) [37, 38]. This method of en-
coding arbitrary problems on the annealer comes at the cost of a significant decrease of the
number of possible logical qubits in the problem. Therefore, when one encounters a large
discrepancy between the connectivity of the problem one wants to solve and the physical
connectivity of the annealer, embedding this problem engenders large computational costs
and limits the problem size that can be solved on the machine.

Related to the problem of connectivity is multi-body interactions. A quantum annealer
with multi-body interactions could lead to improvements in implementing error correction
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codes [39, 40] and in implementing quantum simulations of complex systems [41, 42].
Embedding these types of problems in a quantum annealer with only two-qubit interactions
also presents significant computational cost in the form of ancillary qubit gadgets in order
to be simulated [43, 44].

The field of quantum annealing is at an exploratory point, work around the first large
scale machines has shown promise and has shown a potential path forward to increase the
computational value of quantum annealing. The avenues being explored for improved quan-
tum annealing include increasing the connectivity between the qubits [? 45], implementing
non-stoquastic interactions between qubits (interactions such as XX) [46, 47, 48, 49], im-
plementing error correction codes [50], using qubits with longer coherence times [51, 52],
controlled cooling [53], adaptive annealing schedules [54, 55, 56] and implementing multi-
qubit interactions [43, 57]. In the present thesis, we will focus on implementing multi-qubit
interactions with superconducting flux qubits for quantum annealing.

This thesis is organized as follows. Chapter 2 is an introduction to superconductiv-
ity and superconducting circuits. We will discuss the properties of superconductivity that
make quantum bits possible, the basic circuit elements that form the building blocks super-
conducting quantum bits and we will discuss how to isolate the qubits from their environ-
ments. In chapter 3 we will discuss the concept of mediated tunable interactions between
superconducting flux qubits. We will study how two-qubit interactions are implemented in
the current state of the art quantum annealers by analyzing two superconducting coupling
circuits and introducing the methods to characterize such circuits. In chapter 4 we will
discuss the main proposal of this thesis: a superconducting circuit capable of mediating
three-qubit interactions between flux qubits. The proposed circuit is analyzed using the
Born-Oppenheimer approximation, a spin model and full numerical calculations. Chapter
5 includes a summary of the work and concluding remarks.
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Chapter 2

Superconducting Quantum Circuits

2.1 Superconductivity

Ever since the discovery of superconductivity by Kamerlingh Onnes in 1911 [58], super-
conductivity has been an active area of physics research. Shortly after the discovery, the
early development of the phenomenological understanding of superconductivity laid the
ground work for the more complete theories that were developed in the later half of the
20th century. The first developments were made by the London brothers in 1935. They
proposed a phenomenological electromagnetic explanation of the resistance-less propaga-
tion of current and the magnetic field expulsion in a superconductor [59]. This was later
followed by the work of Ginzburg and Landau on a theory of phase transitions in the 1950s.
The work of Ginzburg and Landau culminated in their explanation of superconductivity
as a phase transition with a complex order parameter, which we call the Ginzburg-Landau
(GL) theory of superconductivity [60]. The next developments were the microscopic theory
of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) in 1957 [61] and
the discovery of the Josephson effect in 1962 [62], which we will discuss below. All these
important developments have enabled scientists and engineers today to construct novel
superconducting electronic devices as well as to develop new theories.

In the last century, scientists and engineers have developed the theory and technique
of superconductivity for building strong superconducting magnets for various applications
from particle accelerators to magnetic resonance imagery, as well as low-loss wires and
transmission lines, to name a few large scale applications. On the smaller scale, researchers
and designers have built various superconducting electronic components such as amplifiers,
sensors and detectors. Finally, through the development of superconducting electronics

7



design and fabrication, scientists have studied various types of superconducting resonators
and superconducting qubits. These superconducting circuits are built using Josephson
junctions along with regular circuit elements (capacitances and inductances) and, as we
will see below, these circuits have a strongly anharmonic energy spectrum that enables
specific levels to be isolated and addressed for computational tasks. When two energy
levels are well-isolated we can encode in them bits of information. We assign the value
“0” to one of the levels and the value “1” to the other, as in classical bits. However,
these quantum bits (qubits) correspond to quantum states and these states have useful
quantum properties such as the ability to exist in coherent superposition between the state
“0” and “1”, the ability to be entangled (perfectly correlated) with other states and the
ability to tunnel through energy barriers. Superconducting qubits have been shown to
be a promising candidate for the implementation of quantum computing because of their
inherent versatility in design and well developed fabrication methods.

We must begin by outlining the fundamental concepts of superconducting devices. The
scope of this thesis does not permit us to do an exhaustive review of this field, however,
one can read a more complete review of superconducting devices here [63, 25].

What distinguishes most commonly a superconductor from a regular conductor is the
fact that electrons inside the former propagate as current without dissipation, that is,
without resistance. To give an intuitive picture of this, let us consider two metal rings,
one a normal conductor and one a superconductor. If one induced circulating current
in the normal conductor ring, the current will quickly be dissipated due to collisions of
electrons with atoms. Astonishingly, if one induces the same circulating current in the
superconducting ring, this current will keep circulating effectively indefinitely without being
attenuated by collisions. This fascinating property of superconductivity can be understood
with the help of the BSC theory [61], or microscopic theory of superconductivity.

Superconductivity is a phase of matter which appears when the temperature of a solid
and the strength of an imposed external magnetic field are below a certain critical point.
Below this critical point, the solid undergoes a phase transition from normal conductor
to superconductor. In the superconducting phase, the conducting electrons inside a solid
interact with the lattice vibrations, or phonons, of the solid in such a way as to make two
electrons with opposing momenta mutually attract. These now paired electrons are called
Cooper pairs and they have fundamentally different properties than solitary electron. The
Cooper pairs act as bosons while the solitary electrons are fermions. This distinction is
important because identical fermions cannot occupy the same quantum state while bosons
have a tendency to condense together at low temperature and form a collective ground
state; it is this property of the bosonic Cooper pairs that makes superconductivity possible.
The group of Cooper pairs behaves as a collective and because of this the breaking of one
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pair does not change the behavior of the collective. This has the result of leaving the
collective of Cooper pairs protected from small energy fluctuations such as electron-atom
collisions, thus the collective of pairs flows through the material unobstructed and without
dissipation as a super-current. This super-current is sustained as long as the temperature
and magnetic field are below their critical points.

The behavior of a superconductor in a magnetic field is also very different from that
of a normal conductor. Consider the following situation of an external magnetic field on
a conductor. If the conductor is in its normal state the magnetic field will completely
penetrate inside the solid. If this conductor is then cooled such that it enters the super-
conducting phase, the magnetic field will be completely expelled from the solid. More
accurately, the external magnetic field will penetrate the surface of the solid, but be expo-
nentially suppressed with a characteristic depth called the London penetration depth λL,
and this depth is material specific. This magnetic field suppression will occur regardless
of whether the magnetic field is applied before or after the superconducting transition or
of the time-dependence of the field, if the magnitude of the external field is lower than the
critical field of the superconductor. This phenomena is called the Meissner effect [64]. This
expulsion of the magnetic field is caused by the formation of super-currents at the surface
of the superconductor inducing a self magnetic field to cancel the external field. The free
energy of the superconductor is minimized when the magnetic field in the bulk of the solid
is zero, this is in sharp contrast to a simple “perfect conductor” for which the free energy is
minimized for a constant internal field and thus only a time-varying magnetic field would
be expelled due to induction. The above description of superconductors is appropriate for
conventional superconductors of so-called type-I. There exists other types of superconduc-
tors, such as conventional type-II and non-conventional superconductors that behave in a
similar manner, but with important distinctions [65].

The collective nature of the Cooper pairs lends itself to a collective description of the
immense number of electrons involved. The group of Cooper pairs can be described by one
collective wave function written as

Ψcol (r) = |Ψcol (r)| eiϕ(r), (2.1)

where |Ψcol (r)| and ϕ (r) are the amplitude and the phase of the collective wave function
for the Cooper pairs, respectively. These two quantities are, in general, dependent on the
position vector r in the superconductor. The amplitude of the wave-function |Ψcol (r)| cor-
responds to the density of superconducting Cooper pairs at the position r in the solid [65].
The above wave function is also related to the complex order parameter describing the
phase transition in the GL theory of superconductivity [60]. Indeed, one can show that the
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Γ

Φ

Figure 2.1: Superconducting ring threaded by an external flux. The dashed line at the
center of the ring cross-section is the integrating path, as in the text.

GL theory predicts that the current Isc (r) inside the superconductor is constrained by

Isc (r) =
e

me

|Ψcol (r)|2 [~∇ϕ (r)− 2eA (r)] , (2.2)

where e and me are the electron charge and mass, respectively, where ~ = h/2π with h the
Plank constant, and where A (r) is the magnetic vector potential.

An other important consequence of this collective wave-function is the quantization
of the flux in a superconductor. Consider a superconducting ring as in figure 2.1 with
a contour Γ going around the ring and deep inside the bulk of the superconductor, such
that the magnetic field and circulating currents vanish. If we integrate Eq. (2.2) along this
contour, we get∮

Γ

Isc (r) · dr =
2e2

me

|Ψcol|2
[
~
2e

∮
Γ

∇ϕ (r) · dr −
∮

Γ

A (r) · dr
]
, (2.3)

Where we have assumed that |Ψcol (r)|2 ≈ |Ψcol|2, which is justified because the integration
path is deep in the bulk of the solid, where the variation in the density of Cooper pairs is
negligible [65]. In order for the wave function to have a uniquely defined value of its phase
all along the contour, the first integral on the right-hand-side of Eq. (2.3) must be integer
valued, thus

nfluxoid =
1

2π

∮
Γ

∇ϕ (r) · dr, (2.4)

where nfluxoid is called the fluxoid number. The second integral on the right-hand-side of
Eq.(2.3) is simply the definition of the magnetic flux threading the contour Γ. The integral
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on the left-hand-side of Eq.(2.3) is negligible because Γ is deep inside the superconductor
where the current is vanishing. Finally, This leads to the quantization of the total flux
threading the contour to an integer number of flux quanta

ΦΓ = nfluxoid Φ0, (2.5)

where ΦΓ is the total flux threading the contour Γ and Φ0 = h/2|e| is the flux quantum.

2.2 Superconducting circuits

We now briefly introduce the electronics concepts that we will need in the rest of the thesis.
The Kirchoff circuit laws for the current, that the sum of currents entering a node of the
circuit is equal to the sum of currents exiting that node, and voltage, that the sum of all
voltage drop along a loop in the circuit must be equal to zero, are just as important in the
context of superconducting circuits as in normal-conductor electronics [66]. The electronic
components most important to superconducting electronics are the inductor and the ca-
pacitor and the Josephson junction. The latter is not used in normal-conductor electronics
and will be introduced in the next subsection. The capacitor and the inductor are readily
found in normal-conductor electronics, but here their behavior can be understood in terms
of the phase of superconducting collective of Cooper pairs and or the number of Cooper
pairs on the superconductor.

To see this, let us consider a generalization of the concept of magnetic flux through a
loop to a magnetic flux on a branch of the circuit as the integral of the voltage difference
across this branch in time [67, 68, 66]

ΦB (t) =

∫ t

−∞
VB (t′) dt′, (2.6)

where ΦB (t) is the branch flux and VB (t′) is the branch voltage drop, defined by the space
integral of the electric field along the branch. We can equivalently write this relation in
terms of the magnetic flux quantum as

φ0 γB (t) =

∫ t

−∞
VB (t′) dt′, (2.7)

where γB is the superconducting phase difference across the branch and where φ0 = Φ0/2π
is the reduced flux quantum. If we consider an inductive branch of total inductance L, the
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current flowing through L is then

IL (t) =
φ0

L
γL (t) , (2.8)

where IL is the current flowing through the branch. Now, for a capacitive branch, the
current flowing through a branch of total capacitance C is found by differentiating Eq. (2.6)
twice

IC (t) = C
dVC (t)

dt
= Cφ0

d2γC (t)

dt2
, (2.9)

where γC is the superconducting phase across the branch. Next, let us observe that we can
just as well write the current flowing through a branch in terms of the total charge qB (t)
on the branch

IB (t) =
dqB (t)

dt
, (2.10)

and from this, we re-write Eq. (2.8) in terms of the charge as

dγL (t)

dt
=
φ0

L
γL (t) , (2.11)

and we re-write Eq. (2.9) in terms of the charge as

qC (t) = Cφ0
dγC (t)

dt
. (2.12)

We have seen that the phase and the charge can both be used to represent capacitances and
inductances in electronic circuits. In what follows we will omit the explicit dependence on
time of the charge and phase. Let us now discuss third component, the Josephson junction.

2.2.1 Josephson Effect

In 1962, Josephson predicted that if two superconductors were separated by a thin barrier,
there would be a current flowing through this barrier without dissipation due to quantum
tunneling of Cooper pairs [62]. Josephson’s predictions were experimentally proven in 1963
[69] in a superconducting-insulator-superconducting junction (where the insulator plays the
role of thin barrier). This element is typically known as a Josephson junction (JJ) and can
be fabricated in various ways.

The JJ can be understood by two simple current-to-phase and voltage-to-phase rela-
tions, the Josephson relations [70]. The Josephson tunneling current flowing through a JJ
is related to the difference between the phases of the two superconductors as

IJ = Ic sin γ, (2.13)
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(a)

(b)

Figure 2.2: Josephson junction circuit schematics. (a) Boxed cross circuit schematic symbol
of a Josephson junction. (b) The circuit schematic representation of the RCSJ model of a
Josephson junction, that is a resistively and capacitively shunted ideal junction.

where γ = ϕ2 − ϕ1 is the phase difference between the two superconductors across the
junction and Ic is the critical current of the junction. The critical current is a device-
specific constant that dictates the magnitude under which the current flowing through the
JJ creates zero voltage drop across the junction.

The voltage across the junction is related to the rate of change of the phase difference
as

VJ = φ0
dγ

dt
. (2.14)

From Eq. (2.13), we see that the JJ can be treated as a non-linear inductance circuit
element when compared to Eq. (2.8). The JJ circuit element is represented by a cross
or a boxed cross in circuit schematics, as in panel (a) of figure 2.2. A useful model for
this circuit element is the resistively and capacitively shunted ideal JJ model (the RCSJ
model)1, as in panel (b) of figure 2.2. We can write the total current flowing through the
JJ as a sum of three contributions, the first from the Josephson tunnel current, the second
from the charging current of the capacitor and finally from the dissipative current of the
resistance, the last two given by the standard current-voltage relations for the capacitor

1The simple cross circuit symbol typically represents an ideal Josephson junction, while the boxed cross
symbol represents a shorthand for the RCSJ description of the junction.
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and the resistance. The total current flowing through a RCSJ is

Ib = Ic sin γ + C
dVJ

dt
+
VJ

R
, (2.15)

where C and R are the capacitance and resistance shunting the JJ, respectively, VJ is the
voltage across the junction and Ib is the external bias current through the junction.

For the operation regime discussed in this thesis (both in the low-current and low-
temperature limit), the JJ can be considered a dissipationless circuit element and thus the
1/R contribution to the current is negligible. The current flowing through the junction
can thus be re-written, by using (2.14), as

Ib = Ic sin γ + Cφ0 γ̈, (2.16)

where we have used the shorthand γ̈ ≡ d2γ/dt2 .

2.2.2 Circuit quantization

We now introduce the main concepts of circuit quantization. Circuit quantization is
a method that describes electrical circuits in terms of quantum operators and energy
scales [66]. With this description, one can determine the extent to which a certain circuit
will have its behavior dominated by quantum fluctuations. With the quantization of a cir-
cuit, one can analyze the energy spectrum of the circuit and if this spectrum is sufficiently
anharmonic, one can define a qubit subspace to encode the quantum information. The
quantum properties of these superconducting circuits can be analyzed straightforwardly
by first going to the Hamiltonian description of these circuits.

Let us determine the Hamiltonian description of the Josephson junction with zero
current bias using the capacitively shunted junction model. We start from the current
equation (2.16) and write the Lagrangian of the JJ as

LJ = T − U

=
Cφ2

0

2
γ̇2 + Icφ0 cos γ, (2.17)

where the kinetic energy is the energy stored in the capacitance which is given by T =
CV 2/2 and the potential is the energy stored in the junction [68, 66] given by U =

∫
IJVJdt.

We can verify that Lagrangian (2.17) properly describes the dynamics of the JJ by noting
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that the Euler-Lagrange equation for this Lagrangian in terms of the coordinate γ and its
velocity γ̇

d

dt

(
∂LJ

∂γ̇

)
=
∂LJ

∂γ
→ Cφ2

0 γ̈ = −Icφ0 sin γ (2.18)

is equivalent to the current equation (2.16).

The Hamiltonian of the JJ is then related to the Lagrangian by a Legendre transform
as

HJ = γ̇ p− LJ, (2.19)

where we have defined the conjugate momentum as

p =
∂ LJ

∂γ̇
= Cφ2

0 γ̇. (2.20)

Using Eqs. (2.17–2.20), the Hamiltonian for the unbiased JJ is then written as

HJ =
EC

2~2
p2 − EJ cos γ, (2.21)

where we have defined new energy scales: the charging energy EC = 4e2/C and the Joseph-
son energy EJ = Icφ0.

The quantization of the Hamiltonian is done by replacing the phase γ and conjugate
momentum p with quantum operators that obey the standard commutation relation [γ̂, p̂] =
i~. From Eqs. (2.12) and (2.20), the momentum operator p̂ can also be viewed as the charge
operator q̂. The charge operator represents the number of charges, which in the case of
superconductors is the number of Cooper pairs, that have gone through the branch, this
can be written as q̂ = ~n̂, where n̂ is the Cooper pair number operator. The Cooper pair
number operator has the following representation in the basis of charge (Cooper pairs)
states

n̂ =
∑
n

n |n〉ch 〈n|ch , (2.22)

where |n〉 are charge states and n is the number of charges in that state. It can be shown
that the charge basis and the phase basis are related by the following transformations

|γ〉ph =
1√
2π

∑
n

e−inγ |n〉ch (2.23)

and

|n〉ch =
1√
2π

∫ 2π

0

dγ einγ |γ〉ph , (2.24)
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where |γ〉ph and |n〉ch are phase and charge states, respectively. This can be understood

by recognizing that both the charge and phase states are eigenstates of ĤJ. Furthermore,
we can see that the effect of the charge operator in the phase basis is equivalent to the
derivative with respect to the phase

n̂ = −i
∂̂

∂γ
. (2.25)

We can then conveniently write the JJ Hamiltonian in the phase basis with this definition
as

ĤJ = −EC

2

(
∂̂

∂γ

)2

− EJ cos γ̂. (2.26)

2.3 Superconducting Interferometers

An important circuit to introduce at this stage is the superconducting quantum interfer-
ometry device (SQUID). The phase of the quantum collective wave-function of the Cooper
pairs inside such a superconducting interferometer is found to be the basis of the interfer-
ence. These devices produce interference patterns in the electrical current similar to the
patterns that appear in the single electron double slit experiment [70], which can only be
explained by the quantum mechanical wave-particle duality of the electron (the electron
behaves both a wave and a particle). This implies that the SQUIDs are indeed quantum.
The quantum world is typically limited to the smallest systems such as single atoms, elec-
trons or photons. At larger scales, the quantum effects are dominated by classical effects.
The fact that a macroscopic number of electrons (all the electrons in the superconducting
phase of the device) can behave as one effective quantum dual wave-particle and that its
quantum nature can be experimentally observed is a remarkable feature of superconducting
quantum devices. These SQUIDs are most often used as ultra-sensitive magnetometers and
flux-based measurement of qubits. In this thesis we will focus on the qubit-like behavior
of these circuits and their ability to act as flux transformers.

2.3.1 RF-SQUID

The radio frequency SQUID or rf-SQUID is made up of a superconducting ring interrupted
by a single JJ, as pictured in figure 2.3.
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Figure 2.3: Circuit schematic of an RF-SQUID, with loop inductance. The circulating
current, junction phase and external flux positive directions are indicated.

We start the circuit analysis by looking at the total flux threading the loop of the
SQUID. The total flux is

Φtot = LgIcir + Φx, (2.27)

with Lg the geometric inductance of the loop, Icir the circulating current in the loop and
Φx the external flux threading the loop.

The quantization of the fluxoid in a superconducting loop results in the following con-
straint on the phase across the junction

γ + γk = −2π
Φtot

Φ0

γ = −
(
Lg + Lk

)
Icir

φ0

− 2π
Φx

Φ0

γ = −LIcir

φ0

− 2πfx, (2.28)

where γk = LkIcir is the superconducting phase difference along the loop due to the kinetic
inductance of the superconductor, L = Lg + Lk is the total inductance of the loop and
where fx = Φx/Φ0.

Replacing the circulating current with the current flowing through the junction, we
have that the equation of motion for the circuit is

Ic sin γ + Cφ0 γ̈ = −φ0

L
(γ + 2πfx) (2.29)
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One can readily see that this equation of motion corresponds to the Euler-Lagrange
equation for the following Lagrangian

LrfSQUID =
Cφ2

0

2
γ̇2 + Icφ0 cos γ − φ2

0

2L
(γ − 2πfx)2 . (2.30)

The Hamiltonian is then

ĤrfSQUID =
EC

2~2
p̂2 − EJ cos γ̂ +

EL

2
(γ̂ − 2πfx)2 , (2.31)

where we have introduced a third energy scale, EL = φ2
0/L – the inductive energy.

We can thus understand the RF-SQUID as a hypothetical particle of mass E−1
C moving

on the potential

Ûrf = −EJ cos γ̂ +
EL

2
(γ̂ − 2πfx)2 . (2.32)

It is important to discuss briefly two operating regimes of the rf-SQUID. The first operating
regime is when the ratio β = EJ/EL � 1. Here, the rf-SQUID potential is mono-stable
resembles that of a harmonic oscillator (a parabolic potential). The low-energy states
of the rf-SQUID, which are the smallest eigenvalues of the Hamiltonian Eq. (2.31), are
also harmonic oscillator-like states centered on the minimum point of the potential at a
specific value of the phase or circulating current, as in panel (b) of figure 2.4. By changing
the external flux threading the loop, one can change the value of the circulating current
corresponding to the low-energy states and even make it zero near fx = 0.5. The second
operating regime is when β � 1. In this case, the potential is multi-stable and near
fx = 0.5 the potential has a bi-stable double-well shape where the low-energy states are
now harmonic oscillator-like states in the two wells, as in panel (a) of figure 2.4. In the
double-well potential regime, the two lowest energy states in each well of the rf-SQUID are
coupled by the tunneling through the barrier. These two states are also localized on two
values of circulating current in the ring ±Ip know as the persistent current states. Thus,
the two lowest energy states of the rf-SQUID can be used as a type of flux qubit when
operated in the regime where β � 1.

2.3.2 DC-SQUID

The direct current SQUID or DC-SQUID is composed of two JJs connected in parallel as
in figure 2.5.
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Figure 2.4: Potential of the RF-SQUID from Eq. (2.32) with EL = 300.0 GHz and fx = 0.5.
Changing the Josephson energy to be in the (a) bi-stable and (b) mono-stable regimes. The
dashed lines in both plots represent the first two energy levels of the RF-SQUID.

Figure 2.5: Circuit schematic of a DC-SQUID with symmetric junctions and no geomet-
ric or self-inductance. The current, junction phases and bias flux positive directions are
indicated.
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Let us consider the circuit equations of a DC-SQUID with negligible self-inductance.
The fluxoid quantization condition along the loop imposes

γ1 − γ2 = −2 π
ΦDC

Φ0

= −2π (fx + LIcir)

≈ −2πfx, (2.33)

where ΦDC is the total flux threading the loop and where we have taken the assumption of
negligible self flux. This last equation enables us to eliminate one of the phases as a degree
of freedom of the problem, thus reducing the complexity of the problem from two to one
variable.

The bias current flowing through the junctions is

IB = I1 + I2

= Ic1 sin γ1 + C1φ0 γ̈1 + Ic2 sin γ2 + C2φ0 γ̈2, (2.34)

where Ii is the current flowing in arm i of the SQUID.

Now, taking for simplicity a symmetric DC-SQUID where Ic1 = Ic2 = Ic and C1 =
C2 = C, the equation of motion is

IB = Ic sin γ1 + Ic sin (γ1 + 2πfx) + 2Cφ0 γ̈1

= 2Ic cos (πfx) sin (γ1 + πfx) + 2Cφ0 γ̈1 . (2.35)

We now see an important feature of the DC-SQUID (in the simplest case studied here, for
the symmetric and small inductance DC-SQUID), it can be understood as a tunable JJ
with a critical current dependent on the external flux threading its loop, this current can
be varied from zero to Ĩc = 2Ic|cos (πfx)|.

We have now introduced sufficient concepts to understand that these SQUIDs act as
flux-current transformers. By threading flux through these loops the circulating or critical
current is varied which is going to be important for analysis in the coming chapters.

2.4 Superconducting Flux Qubits

Superconducting flux qubits can be made in a few variants such as the RF-SQUID type
[71, 29] that we discussed above, the persistent current qubit [72, 73] or the capacitively
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Figure 2.6: Capacitively shunted flux qubit circuit, comprised of a superconducting loop
interrupted by three Josephson junctions. The third junction is drawn smaller than the
other two (which are identical) to indicate its physically smaller size, this also results in a
smaller capacitance. The positive direction of the circulating current and the external flux
bias are indicated. The arrows next to the phases indicate the direction of positive phase
drop.

shunted flux qubit [74]. These all have their qubit subspace (two quantum states used
for computation) made of distinct circulating current or flux states in their loop. The
circulating current in the loop of the qubit is distinct, often of opposite sign, when the
qubit is in the ground or first excited states, or combinations of the energy eigenvalues.
The distinct magnetic flux generated by these two states enables the measurement of these
qubits. In this thesis, we will be focusing on the capacitively shunted flux qubit (CSFQ)
because of the state of the art coherence times [74] and the recent efforts in coherent
quantum annealing [51].

The circuit of the CSFQ is shown in figure 2.6, it is composed of a single superconducting
loop of negligible self inductance interrupted by 3 JJs. Two of the JJs are nominally
identical, with critical current Ic and capacitance C, while the third is smaller by a factor
α, thus the critical current is αIc and the junction capacitance is similarly αC. The smaller
junction is also shunted by a large capacitor2 of capacitance Csh.

Following the steps laid out above to quantize the circuit, we write the current equations

2The large shunting capacitor is included to minimize the sensitivity of the circuit to charge fluctuations
[74].
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of this circuit as

Icir = Ic sin γ1 + Cφ0 γ̈1,

Icir = Ic sin γ2 + Cφ0 γ̈2 (2.36)

and
Icir = αIc sin γ3 + (αC + Csh)φ0 γ̈3. (2.37)

The fluxoid quantization condition, with negligible self flux contribution, is written as

γ1 − γ2 + γ3 ≈ −2πfx . (2.38)

We can eliminate one variable from the problem and write the Lagrangian as

Lcsfq = T − U

=
Cφ2

0

2
γ̇2

1 +
Cφ2

0

2
γ̇2

2 +
C3φ

2
0

2
(γ̇2 − γ̇1)2

+ Icφ0 cos γ1 + Icφ0 cos γ2 + αIcφ0 cos (γ2 − γ1 − 2πfx) , (2.39)

with C3 = αC + Csh.

The Hamiltonian can now be written in terms of new variables γ+ = 1
2

(γ1 + γ2) and
γ− = 1

2
(γ1 − γ2) as

Ĥcsfq =
1

2~2

(
EC+ p̂

2
+ + EC− p̂

2
−
)

+ EJ [−2 cos γ̂+ cos γ̂− − α cos (2 γ̂− − 2πfx)] , (2.40)

where the p̂δ = −i~ ∂̂
∂γδ

for δ ∈ {+,−} are the conjugate momenta associated with the new
phase variables. The charging energies are renormalized to

EC+ =
2e2

C
,

EC− =
e2(

C + α + 1
2

) . (2.41)

This Hamiltonian can be reduced to a qubit Hamiltonian by noticing that the two lowest
energy levels, the ground and first excited state, have distinct values of circulating currents
and are well separated from the higher energy states due to the large anharmonicity of the
spectrum [74]. Taking the two persistent current states as the qubit basis, the qubit
Hamiltonian is

Ĥcsfq ≈ −
~
2

[ε (fx) σ̂z + ∆ (fx) σ̂x] . (2.42)
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In the above Hamiltonian, ~ε (fx) /2 = Φ0 (2πfx − 1/2) [Ip1 (fx)− Ip0 (fx)] /2 is the flux
dependent energy bias related to the persistent current in the 1 state, Ip1 (fx), and in the
0 state, Ip0 (fx), of the qubit and ∆ (fx) is the flux-dependent tunneling between the two
qubit states. The fact that these quantities are, in general, dependent on the external flux
threading the loop means that there is significant contribution to the low-energy spectrum
by the higher states (second excited state and above) of the circuit. Because of this,
the complete Hamiltonian should be diagonalized at every flux bias point to extract the
parameters of the two-level Hamiltonian [74].

Superconducting qubits can also be designed with different circuits and in different
regimes such that one has other quantum operators, such as the charge or the phase, being
a well-defined basis of computation. The most used other qubit types are the charge qubit
and the phase qubit, more information can be found here [25].

2.5 Quantum Coherence and Decoherence

One of the most important distinctions between classical and quantum systems is that the
state of a quantum system can be in a coherent superposition of many states [75].

To describe quantum states and their coherence in a more general manner, it is in-
structive to briefly introduce here the concept of the density matrix. The state |Ψi〉 of a
two-level system can be described by the following density matrix

ρ ≡ |Ψi〉 〈Ψi|

=

[
ρ00 ρ01

ρ10 ρ11

]
. (2.43)

The diagonal matrix elements ρ00 and ρ11 of (2.43) represent the probability of finding the
system in state |0〉 or |1〉, respectively, while the off-diagonal elements represent the phase
relation between the two quantum states. Thus these off-diagonal elements characterize
the coherent superposition between the states [14].

The concept of coherence in quantum systems is a deep and fundamental question
rooted in the interpretation one has of quantum mechanics itself. However, in the scope of
this present thesis, it can be summarized as the phase correlations between the different
parts of the wave function corresponding to the different superposed states of the quantum
system. In the language of density matrices, this means that the density matrix describ-
ing the system has non-vanishing off-diagonal elements. When this phase relation is lost,
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the off-diagonal matrix elements decay and the state is no longer in superposition and is
essentially reduced to a statistical mixture of states [75]. Quantum coherence is needed
for the implementation of quantum computing and furthermore, needs to be long lived
in the physical implementation. Unfortunately, real quantum systems and including su-
perconducting qubits interact with their environment uncontrollably creating irreversible
loss of information and of coherence. This undesirable process is called decoherence and
it manifests itself on a time scale referred to as the (de)coherence time. This time scale is
directly related to the available time one has to use the system in a quantum computation.

The concept of noise can be described in the following way: considering a system cou-
pled to the environment, the uncontrollable degrees of freedom of the environment interact
in a random way with the degrees of freedom of the system resulting in the appearance of
random components in the degrees of freedom of the system. In a flux qubit for example,
this can manifest itself as a random component in the bias and tunneling terms in the
qubit Hamiltonian [76]. We can write the noisy qubit Hamiltonian as

Ĥqb′ = −~
2

[(ε+ δε) σ̂z + (∆ + δ∆) σ̂x] , (2.44)

where ~ε/2 = Ip (2πfx − π) with Ip the persistent current of the qubit and ∆ is the tun-
neling between the two qubit states. In the above, the δε and δ∆ are uncontrollable time-
dependent quantum operators of the environment that couple to the bias and tunneling
energy of the qubit, coming from the interaction with the environment.

Taking the Block-Redfield model to understand the effect of noise on the dynamics
of a system leads to two important decay rates (or time scales), the energy relaxation
rate Γ1 and the decoherence rate Γ2 = 1

2
Γ1 + Γφ, where Γφ is the pure dephasing rate.

The first rate describes how the diagonal matrix elements of the system’s density matrix
decay. These matrix elements decay through the energy exchange between the environment
and the system either by spontaneous excitation or relaxation of the two level system:
Γ1 = Γ1→0 + Γ0→1. The decoherence rate describes how the quantum information held by
the off-diagonal matrix elements of the system’s density matrix decays [77]. This decay is
a combination of the energy relaxation rate and the pure dephasing rate. The latter is the
rate at which the phase relation between the two states of the system in a superposition
state is lost. The pure dephasing rate can be calculated in the following way: consider the
qubit Hamiltonian written in the energy eigen basis

Ĥqb = −~
2

[ω01 + ζ (t)] σ̂z , (2.45)

where ω01 =
√
ε2 + ∆2 is the qubit energy gap and ζ (t) is a time-dependent noisy param-

eter.
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When the qubit is initialized in a superposition state, free evolution induces an added
phase of the form φ(t) = 〈ω01〉 t + δφ (t), where we see the contribution from the static,
〈ω01〉, and noisy, δφ (t) = ∂ω01

∂ζ

∫ t
0
ζ (t′) dt′, part of the Hamiltonian. Here, δφ (t) is the

phase diffusion coming from the fluctuations of the transition frequency due to the ζ noise
[76]. It is relevant to consider the rate at which this accumulated phase decays during a
typical evolution or experiment, the dephasing rate:

〈
eiδφ(t)

〉
= exp

[
−τ 2

∑
ζ

(
∂ω01

∂ζ

)2 ∫ ∞
0

dω Sζ (ω) g (ω, τ)

]
. (2.46)

Here we have assumed Gaussian noise processes. In the above, Sζ (ω), τ and g (ω, τ) are
the power spectral density (PSD) of the noisy environment, the free evolution time of the
quantum state and the filter function of the particular experiment3, respectively [76]. In
the Bloch-Redfield picture, the noise has a short correlation time and is taken to be weak.
This assumption holds when, for example, the dominant noise process has a constant PSD
S (ω) = S(0), which is the case for white noise. White noise gives an exponential dephasing
rate dependent on the PSD at zero frequency [77],〈

eiδφ(t)
〉

= e−
1
2
Sζ(0)τ , (2.47)

This rate drifts from exponential decay when the noise correlation time increases, while
staying singular at zero frequency. Such is the case of low frequency 1

ω
noise. The integral

in (2.46) is not well behaved around ω ≈ 0 for Sζ(ω) = A
|ω| . One can include proper low

and high frequency cutoffs to this integral (taken from the experimental time scales) to get
a Gaussian decay rate (up to a small logarithmic correction) for the dephasing [77]. Thus,
one can uncover significant information on the nature of the noise from the general shapes
of these decays.

2.5.1 Sources of Decoherence

Since the quantum behavior of these circuits is brought on by the collective behavior of a
macroscopic number of Cooper pairs, decoupling the environment degrees of freedom from
this macroscopic system is inherently difficult. It is then relevant to discuss the various
sources of noise fluctuations and energy loss in superconducting qubits.

3The dependence on the experimental protocol of (2.46) is a useful property used in noise spectroscopy
experiments to uncover important details on the nature of the noisy environment. By choosing the experi-
mental protocol and thus the filter function, one can probe specific frequency ranges of the noise spectrum
[76].

25



One source of decoherence comes from the thermal fluctuations of the electronic equip-
ment that is at room temperature that comes in contact with the circuits at cryogenic
temperatures. This electronic equipment is required for manipulation and readout of the
devices, but the signals they send to them carry with them a noise component from thermal
fluctuations [25]. This noise affects the device by varying the voltage, current or magnetic
flux driving it causing charge (variations in the number of charges on a superconducting
island) and flux noise (variations in the amount of magnetic flux threading a superconduct-
ing loop) and potentially inducing transitions in the levels and loss of coherence. Through
the use of proper filters and attenuators, this source of noise can be maintained at negligible
levels [76, 74, 51].

General energy loss to the environment, be it by dielectric loss or quasi-particle (un-
paired electrons) tunneling or general dissipative processes, during the operation of the
device can also lead to loss of quantum information [78, 79]. The device itself can have
sources of noise ubiquitously present in the form of clandestine defects trapped in the ox-
ides on the surface of the superconducting circuits. These trapped two-level systems are
charged and thus have a dipole moment capable of interacting with qubit electromagnetic
fields. When these impurities fluctuate randomly, they create charge fluctuations [80] and
magnetic flux variations, which in turn induce fluctuations [81, 82, 23] in the qubits degrees
of freedom. The latter has been found to have significant effect on superconducting flux
qubits and SQUIDs [83, 84, 85]. It is believed that this noise is intrinsic to the device, that
it is coming from impurities spins and clusters of spins on the fabricated sample randomly
reversing their orientation and cause flux variations, that it is dependent on the geometry
of the device and dependent on temperature [81, 86, 87, 88].
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Chapter 3

Mediated Inductive Coupling

3.1 Direct and indirect interactions

In nature, everything is interconnected and interdependent, there are countless interactions
between the smallest sub-atomic particles and between the largest clusters of galaxies. This
interaction, interconnectedness or interdependence between systems can also be called the
coupling of these systems together. As scientists seeking to understand nature, we are often
pushed by the complexity of these interconnections to study the component parts of nature
in their isolation. However, to draw the most accurate conclusions, especially in the context
of quantum systems, we must consider these component parts in their interconnectedness.
As discussed in section 2.5, the interaction between a quantum system and uncontrollable
quantum systems in the environment is very important for the implementation of physical
quantum computers. Additionally, in interacting systems we can see emergent phenomena
that are not present in the component parts. A particularly relevant example of this is
superconductivity. As we discussed in section 2.1, superconductivity is governed by the
attractive interaction between pairs of conducting electrons, something that is not observed
in a pair of isolated electrons. It is only through considering the inter-electron interactions
and the electron-phonon interactions that this attraction appears. We can refer to this
important physical concept as an indirect or mediated interaction, i.e. in this case the
attractive electron-electron interaction is mediated by the phonons.

Some of the earliest mediated interactions to be investigated were magnetic spin cou-
pling between nuclei mediated by the hyperfine interaction between the nuclear magnetic
moment and the magnetic field created by the surrounding electrons; these mediated in-
teractions explained broadening observed in nuclear magnetic resonances [89, 90]. These
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mediated spin couplings are now being used to couple quantum dot and nuclear spin qubits
for quantum computing [14, 20]. In fact, mediated interactions are a fundamental part of
quantum computing implementations, where we have photon-photon coupling mediated by
photon-atom interactions for photonic qubits and ion-ion coupling mediated by ion-phonon
interactions in ion trap quantum computers [14, 20]. The coupling of qubits has also been
investigated when mediated by a spin or chain of spins [91, 92, 93].

In the context of superconducting qubits, in both the circuit model and quantum an-
nealing, qubit-qubit interactions have also been investigated through various mediators,
such as distributed microwave resonators in the context of circuit quantum electrody-
namics [94, 95], lumped LC-oscillators [96, 97], Josephson junctions [98, 99, 100], flux
qubits [101, 102] and SQUID-type loops [103, 104, 105, 106, 28, 107, 108, 51]. In general,
the mediator in these types of interactions is designed to have a large excitation energy
(or otherwise a much higher oscillation frequency) than the coupled qubits such that the
mediator does not change energy state during the qubit dynamics. When the mediators
can be designed such that they have sufficient non-linear properties and that these proper-
ties are controllable by an external parameter (such as flux, current or voltage), then the
mediated interaction strength can also controlled, in both sign and magnitude.

In the rest of the chapter, we will be discussing mediated controllable interactions in the
context of quantum annealing with flux qubits. The standard circuit being used to mediate
qubit-qubit coupling in the D-Wave annealers is based on the rf-SQUID [105, 28, 109].
These coupling circuits are capable of mediating positive and negative qubit-qubit inductive
interactions in the computational basis (ZZ coupling) of flux qubits and are also capable
of turning the coupling to zero. This tunability is done by threading a static control flux
through the SQUID loop(s).

3.2 Two-qubit Tunable Inductive Coupler

3.2.1 rf-SQUID Coupler

One of the first study of tunable inductive coupling was done using the rf-SQUID circuit
as the mediator [105]. The type of interaction mediated by the rf-SQUID is fundamental
to the implementation of tunable qubit-qubit coupling in quantum annealing.

Let us analyze a basic coupled system using this circuit as the mediator and extract the
mediated interaction. Consider the circuit in figure 3.1 of two rf-SQUID flux qubits coupled
to a third rf-SQUID coupler through a mutual inductance M . For simplicity, we restrict
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Figure 3.1: Three rf-SQUIDs inductively coupled to each other through mutual inductances. The
middle RF-SQUID is operated as a mediator or coupler while rf-SQUIDs 1 and 3 are operated
as qubits.

ourselves to rf-SQUID 1 and 2 as the qubits, but these could be swapped with CSFQs or
other flux qubit types and the derivation below would be unchanged. The Hamiltonian for
these three coupled rf-SQUIDs can be written as

Ĥ3rf =
3∑
i=1

EC i

2
p̂2
i −

3∑
i=1

EJ i cos γ̂i +
φ2

0

2
~γT L−1 ~γ . (3.1)

In Eq. (3.1), ~γ = [γ̂1 − 2πfx 1, γ̂2 − 2πfx 2, γ̂3 − 2πfx 3] is a vector of the three RF-SQUID
phases and

L =

 L1 −M 0
−M L2 −M

0 −M L3

 (3.2)

is the inductive matrix of the system containing the coupling through the mutual induc-
tance1 M and the self inductance of each rf-SQUID Li. The direct inductive coupling
between L1 and L3 has been taken to be zero.

The Hamiltonian of the coupled system can be re-written in a more suggestive form

Ĥcoupled = Ĥrf 1 + Ĥrf 3 + Ĥc, (3.3)

1The direct coupling between two inductive loops in this configuration is anti-ferromagnetic, the mag-
netic moment of each neighboring loop tends to anti-align, hence the negative sign for M .
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with

Ĥc =
EC 2

2~2
p̂2

2 − EJ 2 cos γ̂2 +
EL c

2

(
γ̂2 − f̂c

)2

. (3.4)

In Eq. (3.3), we have renamed the Hamiltonian of rf-SQUID 2 as the coupler Hamiltonian,
have renormalized the inductive energy as

EL c = φ2
0

(
L2 −

M2

L1

− M2

L3

)−1

(3.5)

and have included the inductive interactions in the qubit-dependent flux threading the
coupler loop

f̂c = 2πfx2 − δφ̂q, (3.6)

δφ̂q =
M

L1

(γ̂1 − 2πfx1) +
M

L3

(γ̂3 − 2πfx3) . (3.7)

Finally, the rf-SQUID qubits are treated as isolated and their Hamiltonians are as in
Eq. (2.31).

With the form of Hamiltonian in Eq. (3.3), the effective interaction mediated by the
coupler circuit can be readily determined by taking the Born-Oppenheimer (BO) approx-
imation [110, 111, 105, 108]. In the context of superconducting circuits, this is done by
taking the assumption that the coupler has a much higher excitation energy (energy gap
between ground and first excited state) than the qubits, and thus the coupler degree of
freedom evolves on a faster time-scale. One can then separate the fast coupler degree of
freedom from the slow qubit degrees of freedom. The large difference in time-scales means
that the fast coupler degree of freedom only “sees” the qubit degrees of freedom as slowly
varying or quasi-static parameters. The fast coupler degree of freedom is then said to
evolve adiabatically with respect to the qubits. This enables us to write the full system
wave-function of state i in the following product form

Ψi
coupled (γ̂c, γ̂q) = ψic (γ̂c; γq) χiq (γ̂q) , (3.8)

where ψic (γ̂c; γq) is a coupler wave-function that depends parametrically on the qubit vari-
ables γq, and χiq (γ̂q) is a qubit wave-function associated with the coupler wave-function.

Let us take the following definition for the coupler wave-function[
Ĥc (γ̂c; γq)− E(n)

c (γq)
]
ψ(n)i

c (γ̂c; γq) = 0, (3.9)
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where E
(n)
c (γq) is the quantum eigen-energy of the nth coupler eigenstate. We can thus

write the full wave-function as an expansion in terms of the coupler eigenstates (which
form a complete basis)

Ψi
coupled (γ̂c, γ̂q) =

∑
n

ψ(n) i
c (γ̂c; γq) χ(n) i

q (γ̂q) . (3.10)

The simplest form of the Born-Oppenheimer approximation is based on the assumption
that, because of the large excitation energy difference between the coupler and the qubits,
the coupler will stay in its ground state and will not get excited by the qubit dynamics [105,
108, 51]. This means that the sum in Eq. (3.10) can be truncated to n = 0, the ground
state. With this, the complete wave-function becomes

Ψi
coupled (γ̂c, γ̂q) ≈ ψ(0) i

c (γ̂c; γq) χ(0) i
q (γ̂q) . (3.11)

We need to solve the time-independent Schrödinger equation for this system to find the
energy eigenstates. We thus write(

Ĥcoupled − Ei
coupled

)
Ψi

coupled (γ̂c, γ̂q) = 0(
Ĥrf 1 + Ĥrf 3 + Ĥc − Ei

coupled

)
ψ(0) i

c (γ̂c; γq) χ(0) i
q (γ̂q) = 0. (3.12)

Now, if we multiply each side of Eq. (3.12) by ψ
(0) i
c (γ̂c; γq)∗ and integrate over the

coupler variable while treating the qubit operators as parameters, we get∫
dγc ψ

(0) i
c (γc; γq)∗

(
Ĥrf 1 + Ĥrf 3 + Ĥc − Ei

coupled

)
ψ(0) i

c (γc; γq) χ(0) i
q (γq) = 0〈

ψ(0) i
c

∣∣∣(Ĥrf 1 + Ĥrf 3 + Ĥc − Ei
coupled

)∣∣∣ψ(0) i
c

〉
χ(0) i

q (γq) = 0, (3.13)

where we have defined
∫

dγc ψ
(0) i
c (γc; γq)∗ ψ

(0) i
c (γc; γq) =

〈
ψ

(0) i
c

∣∣∣ψ(0) i
c

〉
. The terms in Eq.

(3.13) can be simplified due to our assumption that the qubits evolve adiabatically with
respect to the coupler ground state. The integral of the Hamiltonian for qubit j ∈ {1, 3}
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on the coupler ground state becomes〈
ψ(0) i

c

∣∣∣Ĥrf j

∣∣∣ψ(0) i
c

〉
=

〈
ψ(0) i

c

∣∣∣∣(−EC j

2
∂̂2
γj

+ Ûrf j

)∣∣∣∣ψ(0) i
c

〉
= −EC j

2

〈
ψ(0) i

c

∣∣∣∂̂2
γj

∣∣∣ψ(0) i
c

〉
+
〈
ψ(0) i

c

∣∣∣Ûrf j

∣∣∣ψ(0) i
c

〉
= −EC j

2

(〈
ψ(0) i

c

∣∣∣∂2
γj
ψ(0) i

c

〉
+
〈
ψ(0) i

c

∣∣∣∂γjψ(0) i
c

〉
∂̂γj

+
〈
ψ(0) i

c

∣∣ψ(0) i
c

〉
∂̂2
γj

)
+
〈
ψ(0) i

c

∣∣ψ(0) i
c

〉
Ûrf j

≈ −EC j

2
∂̂2
γj

+ Ûrf j, (3.14)

where we used the product rule on the momentum operator ∂̂2
γj

=
(
∂̂/∂γj

)2

, we defined∣∣∣∂2
γj
ψ

(0) i
c

〉
= ∂̂2

γj
ψ

(0) i
c (γc; γq), similarly for the first derivative case, and where we used〈

ψ
(0) i
c

∣∣∣ψ(0) i
c

〉
= 1 and

〈
ψ

(0) i
c

∣∣∣∂γjψ(0) i
c

〉
= 0, which comes from the wave-function being a

real eigenfunction of the coupler Hamiltonian. The assumption on the integral taken in

Eq. (3.14), that
〈
ψ

(0) i
c

∣∣∣∂2
γj
ψ

(0) i
c

〉
≈ 0, is related to the assumption of adiabatic evolution of

the qubits with respect to the coupler ground state. This assumption is valid in the limit
regime where the coupler energy gap is much larger than the qubit energy gaps. If the
coupler energy gap is comparable to the qubit gap or if the coupler is highly non-linear,
however, this integral, which is related to the effect of the momentum operator on the
ground state of the coupler, becomes important. With the parameters considered in this
thesis, we are within the regime of applicability of the assumptions taken in Eq. (3.14).

Finally, by definition, we have〈
ψ(0) i

c (γc; γq)
∣∣ Ĥc

∣∣ψ(0) i
c (γc; γq)

〉
= E(0)

c (γq) . (3.15)

Thus, because the coupler Hamiltonian in Eq. (3.3) is qubit-dependent, the coupler
ground state energy forms the potential energy surface along which the qubits evolve. Now,
replacing the qubit parameters with their operators again, the total effective Hamiltonian,
now only dependent on qubit variables, can be written as

Ĥeff ≈ Ĥrf 1 + Ĥrf 3 + Ê∗c

(
f̂c

)
, (3.16)
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where Ê∗c

(
f̂c

)
is the qubit-dependent ground state energy surface of Hc with the qubit

treated as operators.

The effective interactions can then be calculated by perturbatively expanding the qubit-
dependent coupler ground state up to second order in the qubit dependent flux offset δφ̂q,
around the point fc = 2πfx2. Here we assume that we are in the weak coupling regime.
The expansion is written up to second order as

Ê∗c

(
f̂c

)
≈E(0)

c (2πfx 2) +
(
f̂c − 2πfx 2

) d

dfx 2

E(0)
c (2πfx 2)

+
1

2

(
f̂c − 2πfx 2

)2 d2

df 2
x 2

E(0)
c (2πfx 2) . (3.17)

This expansion can then be written, with new definitions, as

Ê∗c

(
f̂c

)
≈ E(0)

c (2πfx 2)−
Mφ0

〈
Îc

〉
L1

(γ̂1 − 2πfx1)−
Mφ0

〈
Îc

〉
L3

(γ̂3 − 2πfx3)

+
M2φ2

0

2L2
1 Leff

(γ̂1 − 2πfx1)2 +
M2φ2

0

2L2
3 Leff

(γ̂3 − 2πfx3)2

− M2φ2
0

L1L3 Leff

(γ̂1 − 2πfx1) (γ̂3 − 2πfx3) . (3.18)

In the above, we have defined

L−1
eff ≡

1

φ2
0

d2

df 2
x 2

E(0)
c (2πfx 2) (3.19)

and 〈
Îc

〉
≡ 1

φ0

d

dfx 2

E(0)
c (2πfx 2) , (3.20)

as the effective quantum inductance of the coupler and the ground state expectation value
of the coupler circulating current, respectively [51]. Due to the non-linearity of the RF-
SQUID current-flux response, this effective quantum inductance can be either positive or
negative depending on the flux threading the coupler circuit. The quantum inductance is
similar to the quantum capacitance defined for capacitive coupling circuits [112] and is a
typical metric to define the mediated coupling of a circuit. In passing, we note that we have
the following relation between the expectation of the current and the effective quantum
inductance

L−1
eff =

1

φ0

d
〈
Îc

〉
dfx 2

. (3.21)
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The effective 2-qubit interaction is thus given by the last term in Eq. (3.18). It is im-
portant to note that the other terms in this expansion also affect the effective Hamiltonian.
They represent a coupler-dependent renormalization of the qubit Hamiltonians. The first
order term represents an offset flux in the qubit loop dependent on the coupler circulating
current and the second order term represents a renormalization of the qubit inductance
dependent on the coupler effective inductance.

We now replace Eq. (3.18) and Eq. (3.14) into Eq. (3.16) as, we omit the first constant
term in Eq. (3.18) because it has a trivial effect on the qubit dynamics and finally write
the effective qubit Hamiltonian as

Heff ≈
∑
i∈{1,3}

[
ECi

2
p̂2
i − EJi cos γ̂i +

ELi

2
(γ̂i − 2πfxi)

2 −
Mφ0

〈
Îc

〉
Li

(γ̂i − 2πfxi)

+
M2φ2

0

2L2
i Leff

(γ̂i − 2πfxi)
2

]
− M2φ2

0

L1L3 Leff

(γ̂1 − 2πfx1) (γ̂3 − 2πfx3) . (3.22)

The tunable interactions mediated by an rf-SQUID is directly related to the fact that
the flux-current response of the RF-SQUID is non-linear. In figure 3.2, we see that the
expectation value of the current in the coupler, the derivative of which is proportional to
the coupling strength, has regions where a negative, positive and a zero slope are possible.
Thus, an important parameter to consider for these types of couplers is the degree of
non-linearity. The degree of non-linearity can be defined as

β ≡ EJ2

ELc

=
Ic2L̃2

φ0

, (3.23)

where L̃2 = L2 − M2

L1
− M2

L3
.

This parameter can be understood as the ratio of Josephson-to-linear inductance in the
Hamiltonian (2.32) and when β > 1, the potential becomes by-stable, there appears two
localized flux states. Thus, when this parameter is much larger than unity, the coupler
becomes qubit-like and the excitation energy decreases rapidly, and thus cannot be con-
sidered as a passive mediator anymore because the coupler will be excited to its higher
energy states. Furthermore, the tunability of the coupler is negatively affected by a larger
β. Figure 3.2 compares the current expectation values for couplers with β ≈ 1 and cou-
plers with larger β. It is clear from figure 3.2 that large β “inearizes” the current-flux
relation and affects tunability negatively. This makes turning off the interaction (J12 = 0)
impossible for large β (the point of zero slope of the current-flux relation vanishes). This
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Figure 3.2: The expectation value of the circulating current in the loop of an RF-SQUID
coupler with respect to the external flux threading its loop with EL = 467.0 GHz and
EC = 18.4 GHz, at various values of the Josephson energy or β.

point makes the coupler very sensitive to fabrication variations in the junction size (the
junction size controls the critical current), if one wants to have optimal tunability. The
operating regime typically used to get strong mediated interactions while having no or very
small by-stability is 1 & β. Figure 3.3 shows the potential energy of an rf-SQUID in this
ideal regime of β ≈ 1, that is of quartic shape (we can see the beginning of a double well
shape). This shape of potential gives rise to appreciable quantum fluctuations in the phase
degree of freedom [113] which contribute to the coupling. Experimental demonstration of
this circuit as a two-qubit coupler has been made in the monostable regime of β < 1 [28]
and in the quartic regime or the regime of small bi-stability where β ≈ 1 [51].

3.2.2 Split-Junction rf-SQUID Coupler

We have seen that the rf-SQUID circuit can be used as a tunable coupler. Next, we will
introduce a slight modification to the rf-SQUID circuit to improve the coupling properties.
This circuit is shown in figure 3.4 and is typically called a split-junction rf-SQUID, tunable
rf-SQUID [113] or compound-Josephson-junction rf-SQUID [109]. This modification can
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Figure 3.3: The potential energy of an RF-SQUID with respect to the superconducting
phase with EL = 297.2 GHz and EC = 38.7 GHz and fx = 0.5.

be understood as simply replacing the single junction in the rf-SQUID by a DC-SQUID2,
which we have determined to act as a tunable junction. Thus, this circuit is simply an
rf-SQUID with a tunable critical current.

If we consider a symmetric DC-SQUID with negligible self inductance replacing the
single junction in the rf-SQUID, we have the flux threading the main loop and the top part
of the secondary loop

Φms1 = ImLm + Φx m + Φx s (3.24)

and the flux threading the main loop and the bottom part of the secondary loop

Φms2 = ImLm + Φx m (3.25)

with Im the circulating current in the main loop and Φx m (Φx s) the external flux in the
main (secondary DC-SQUID loop) loop and Lm is the total inductance of the main loop;
the subscripts identifying the loops are defined as “m” for the main loop and “s” for the
secondary loop.

2It is interesting to note here that the DC-SQUID itself can act as a tunable inductive 2-qubit coupler,
see [103, 105, 114] for details.
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Figure 3.4: Compound-junction RF-SQUID coupler circuit representation. The current,
junction phases and bias flux positive directions are indicated.

The fluxoid quantization along the main loop and the top part of the secondary loop
imposes

γ1 = −2π
Φms1

Φ0

= −ImLm

φ0

− 2 πfx m − 2πfx s (3.26)

while along the main loop and the bottom part of the secondary loop we have

γ2 = −2 π
Φms2

Φ0

= −ImLm

φ0

− 2 πfx m. (3.27)

From these fluxoid quantization conditions, we can eliminate a degree of freedom from the
problem because γ2 = γ1 + 2πfx s.

Thus, we finally have that the equation of motion for the circuit is

− φ0

Lm

[γ1 + 2 π (fx s + fx m)] = Im

= 2 [Ic cos (πfx s) sin (γ1 + πfx s) + C φ0 γ̈1] (3.28)
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where we used the current flowing through the DC-SQUID in Eq. (2.35) for the circulating
current in the main loop Im.

After a few manipulations, the Hamiltonian can then be written as

Ĥcjj ≈
EC

~2
p̂2

1 − 2EJ cos (πfx s) cos (γ̂1 + πfx s) +
EL

2
[γ̂1 + 2π (fx s + fx m)]2 , (3.29)

with EL =
φ20
Lm

the inductive energy and EJ = φ0 Ic the base Josephson energy.

We can now discuss the behavior of this circuit as a 2-qubit coupler, as discussed above
for the single-junction rf-SQUID. Following the steps outlined above to determine the
effective coupling mediated by the rf-SQUID for the circuit in figure 3.4, we find a similar
expression for the compound-junction coupler with an additional parameter dependence,
the external flux threading the small loop3. The mediated interactions will depend on the
following

L−1
eff ≡

1

φ2
0

d2

df 2
x 2m

E(0)
c (fx 2m, fx 2s) (3.30)

and 〈
Îc

〉
≡ 1

φ0

d

dfx 2m

E(0)
c (fx 2m, fx 2s) , (3.31)

where E
(0)
c (fx 2m, fx 2s) is the ground-state energy of the coupler circuit in figure 3.4, de-

pendent on the external frustration in the two loops of the coupler circuit fx 2m and fx 2s.

The additional control parameter makes it possible to operate the coupler in such a way
that the expectation value of the current circulating in the large loop is zero (at fx 2m = 0
and at fx 2m = 0.5) as in figure 3.2.2. This minimizes the cross-talk effect of the coupler
offset flux into the qubits due to terms proportional to (3.31). Furthermore, the coupling
strength mediated by this coupler is tunable in sign and magnitude by threading flux into
the small loop and keeping the flux in the large loop at one of the two points mentioned
above, see figure 3.2.2 where we see the slope of the current-flux trace change sign and go
through zero at the fx 2m = 0.5 flux point. Additionally, due to the control over the critical
current in this circuit, this coupler can cancel its mediated interaction (coupling strength
cannot be tuned to zero) when β > 1 by changing the flux in the small DC-SQUID loop.
This point makes this circuit robust to fabrication variations in the junction sizes (the
junction size controls the critical current of the junction)[105].

3We do not, however, take the perturbative expansion with respect to this additional parameter. The
perturbative expansion is done with respect to the qubit offset fluxes threading the large loop.
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Figure 3.5: The expectation value of the circulating current in the loop of a compound-
junction RF-SQUID-type coupler with respect to the external flux threading its large loop,
at various values of the external flux threading its small loop. The parameters of the SQUID
are EL = 467.0 GHz, EJ = 208.6 GHz and EC = 18.4 GHz; the change in the flux in the
small loop effectively changes the non-linearity parameter β.

3.3 Born-Oppenheimer Inversion Method for Extract-

ing Coupling Strength

The derivation of the effective Hamiltonian of a coupler circuit can be simplified further
and generalized. To achieve this, we approximate the qubits as a classical spin. In this
case, the circulating current operator of the qubits becomes

Îcir i ≈ |Ip| σ̂z i , (3.32)

with |Ip| the persistent current of the qubit.

This simplification means that in the expansion (3.18), the terms proportional to even
powers of Îcir i will simplify to identity, while the odd powers will simplify to single qubit
or 2-qubit coupling terms. We are thus left with an expansion of the form

Ê(0)
c

(
f̂c

)
= E0 Î + h1 σ̂z 1 + h2 σ̂z 2 + J12 σ̂z 1σ̂z 2 , (3.33)

where E0, hi and J12 are the energy offset, the energy bias and the 2-qubit coupling
strength, respectively, mediated by the coupler circuit.
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This simple formula can be used to numerically determine the coupling coefficients in a
computationally efficient manner. We take the qubit-dependent coupler Hamiltonian and
replace the qubit operators by the eigenvalues of the operator (3.32), that is (−1) |Ip i| or
(1) |Ip i|. By mapping the ground state energy of the coupler Hamiltonian for all 4 spin
configurations to the coupling coefficients, one has

E
(0)
c ( 1, 1)

E
(0)
c ( 1,−1)

E
(0)
c (−1, 1)

E
(0)
c (−1,−1)

 = S


E0

h1

h2

J1 2

 (3.34)

with4

S = [1, i, j, i j ]→


{i = 1, j = 1}
{i = −1, j = 1}
{i = 1, j = −1}
{i = −1, j = −1}

 (3.35)

=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (3.36)

The coupling coefficients are found by inverting the set of equations (3.34). We note that
this method to extract the coupling coefficients is different than the on used in Ref. [115],
where they analyze the spectrum of the full qubit subspace instead of the coupler ground
state. Our method is a numerically efficient way to extract the coupling strength of complex
qubit-coupler circuits, without the need to diagonalize the entire coupled system.

The 2-qubit coupling strength mediated by a compound-junction rf-SQUID coupler,
extracted by the inversion method just described, is displayed in figure 3.3. In figure 3.3,
we see the sign and magnitude tunability of the coupling strength while changing both
fluxes in the coupler.

To summarize, the derivation of the effective mediated interactions by using the BO
approximation can be simplified to the following steps:

• Write the qubit-dependent coupler Hamiltonian while keeping the qubit Hamiltonian
bare.

4We note in passing that matrix (3.35) is the 4 × 4 Hadamard matrix [115].
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Figure 3.6: The 2-qubit coupling strength mediated by a compound-junction RF-SQUID
coupler, with EL = 467.0 GHz, EJ = 208.6 GHz and EC = 18.4 GHz, versus the flux
threading the large loop, at various values of the flux threading the small loop.

• Take the Born-Oppenheimer approximation and assume that the coupler stays in the
ground state. Replace the qubit-dependent coupler Hamiltonian by its ground state
energy.

• Numerically diagonalize the qubit-dependent coupler Hamiltonian by treating the
qubit operators as binary offset flux parameters.

• Map the ground state energy of the coupler Hamiltonian for all qubit offset flux
configurations to the coupling coefficients.

• Solve the set of equations to determine the coupling coefficients.

This general method can be adapted to extract the coupling strength of any coupler circuit,
for which the interaction is diagonal in the computational basis, that can be described by
the Born-Oppenheimer approximation, and for which the effect of the qubits on the coupler
can be approximated by binary variables. That is, the coupler must have an excitation
energy much larger than that of the qubits and the qubit spectrum must be sufficiently
anharmonic to justify the definition of two well-defined computational states corresponding
to the circulating current. This method could also be expanded to charge qubits, but this
is beyond the scope of this thesis.
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Chapter 4

Three-body Inductive Coupler for
Quantum Annealing

The mediated interactions that we investigated in the last chapter were all two-body in-
teractions. However, many-body interactions can arise as mediated interactions from fun-
damental two-body couplings in various physical systems [116, 117]. As mentioned in
the introductory chapter, in quantum information, many-body interactions are relevant
for quantum error correction [39, 40], complexity theory [118], quantum thermodynamics
[119], quantum chemistry [120], and quantum simulations [41, 42]. The implementation of
suitable high-order many-body interactions for quantum information comes with unique
challenges, due to the fact that these interactions have to be of comparable strength with
and controlled independently from lower-order interactions.

The implementation of many-body interactions has been considered in various phys-
ical systems for quantum information including ion traps [121], atoms in optical lat-
tices [122, 123], and cold polar molecules [124]. In superconducting circuits, high-order
effective interactions between qubits can be made strong, due to the fact that the under-
lying two-body interactions are strong. High-order interactions have been analyzed for
several types of superconducting qubits and coupler circuits [125, 108, 126, 127]. Recently,
there has been increased interest in many-qubit couplers for quantum annealers based on
superconducting qubits. Proposals for engineered couplers for superconducting qubits suit-
able for quantum annealing include a three-body coupler circuit based on galvanic coupling
[128] and four-body coupler circuits based on a single-loop interferometer device [57] or
a more complex circuit with a symmetric susceptibility used to cancel effectively lower-
order interactions [129]. Other proposals rely on the use of ancilla qubits to reproduce
the low-energy spectrum of many-body interactions, in the regime where the qubits have a
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Hamiltonian with negligible transverse terms in the basis of the interaction [43]. However,
designing circuits that implement many-body interactions and have other desirable fea-
tures, including large tunable interaction strength, independence of the biasing conditions
for the coupled qubits, cancellation of lower-order interactions, low design complexity, and
robustness to noise and parameter variations, is a challenging problem.

We propose and analyze a superconducting quantum circuit used to implement a three-
body interaction between three superconducting flux qubits. Flux-type qubits are promis-
ing candidates for both quantum annealing [29, 51] and gate-based quantum comput-
ing [74]. The three-body coupler design that we propose is a relatively low-complexity
circuit that combines strong tunable interactions of the order of 1 GHz, comparable to the
qubit energy scales, effective cancellation of two-body terms, and robustness to noise and
parameter variations.

4.1 Coupling circuit

Our proposed coupler device consists of two superconducting Josephson circuits, labeled
“c1” and “c2” (see Fig. 4.1). Each of these circuits has a main superconducting loop,
interrupted by two Josephson junctions, which form a secondary loop. This circuit is
referred to in other contexts as a tunable rf-SQUID [113] or a compound Josephson junction
rf-SQUID [109]. The tunable rf-SQUID has the important property that the susceptibility,
which is the relative change in current in the main loop due to a change in flux, can be
controlled, in both sign and magnitude, by the magnetic fluxes applied to its two loops. In
chapter 3, we analyzed the properties of this circuit as a two-qubit tunable coupler and have
seen that it can be operated either in the monostable [105, 28] or quantum bistable (where
the quantum fluctuations from tunneling through a small barrier in a quartic potential) [51]
regimes, while mediating a tunable interaction between two flux qubits.

To achieve a strong three-body interaction, we employ the tunable rf-SQUID in the
following way. We make the interaction between two qubits, each coupled to the rf-SQUID
main loop, dependent on the state of a third qubit, coupled to the secondary loop, thereby
generating an effective three-qubit interaction. However, in this coupler circuit based
on only one tunable rf-SQUID, two-body interactions cannot be canceled or generally
controlled independently from three-body interactions. To cancel the two-body interactions
between qubits 1 and 2, we combine two rf-SQUIDs (circuits “c1” and “c2” in Fig. 4.1)
in such a way that the sign of the flux coming from “q1” in the main loop of “c1” is of
opposite sign from the one in “c2”, by adding a twist in the main loop of “c2”. To cancel
the two-body interactions between qubits 1 and 3, and 2 and 3, we bias “c1” and “c2”
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Figure 4.1: Circuit schematic of the coupler - qubits system. The two tunable rf-SQUID
circuits forming the coupler (“c1” and “c2”) are coupled to the three tunable capacitively
shunted flux qubits (“q1”, “q2”, and “q3”) by mutual inductances. Each loop of these
circuits is subjected to a flux bias, as indicated. Josephson junctions are indicated by
crosses; arrows indicate the orientation of the relative phase. Capacitances and inductances
of the secondary loops of the qubits are not shown. See text for additional details.

at their main loop symmetry point, where the susceptibility to flux in the secondary loop
is suppressed. Thus, the sum of the two-body interactions vanishes due to symmetry of
the coupling and susceptibilities, with the susceptibilities controlled by the flux biasing
conditions.

We next consider the full circuit representation of the coupler device and the qubits.
In what follows, we consider the case of a tunable rf-SQUID with significant inductance
in the secondary loop, as opposed to the treatment in the last chapter. Additionally, we
assume a symmetrical tunable rf-SQUID circuit, this means that both Josephson junctions
are identical, both branches of the secondary loop are identical. Finally, we consider the
case of a non-negligible shunting capacitance across the terminals of the secondary loop
coming from realistic stray capacitance between the long wires of the device (see appendix
B.1 for derivation of un-shunted case, for symmetric and asymmetric parameters).

44



For the qubit circuit, we use capacitively shunted flux qubits (CSFQ) [74], which are
considered in recent efforts related to coherent quantum annealing [51]. However, the
analysis applies straightforwardly to other flux qubit variants. Quantizing the qubit circuit
in Fig.4.1, we find that the Hamiltonian of the tunable capacitively shunted flux qubit is

Hqi = Tq i

(
{pq

i k}k∈{1,5}
)

+ UJ
q i

(
{γq

i k}k∈{1,5}
)

+ UL
q i

(
{γq

i k}k∈{1,5}
)
, (4.1)

where γq
i k and for k ∈

{
1, 5
}

are the phase degrees of freedom. These represent the phase
across junction k for k ∈

{
1, 4
}

and the phase across the main loop inductance of the qubit
for k = 5. The conjugate momenta to these degrees of freedom are the pq

i k for k ∈
{

1, 5
}

.
The kinetic energy in the qubit is

Tq i

(
{pq

i k}k∈{1,5}
)

=
1

2φ2
0 αCq

pq
i

T C−1
q pq

i , (4.2)

where pq
i

T = [pq
i 1, p

q
i 2, p

q
i 3, p

q
i 4, p

q
i 5] and where Cq is the capacitance matrix for the qubit,

written as

Cq =


1
α

0 0 0 0
0 1

α
0 0 0

0 0 1 +
Csh

q

αCq
0

Csh
q

αCq

0 0 0 1 0

0 0
Csh

q

αCq
0

Csh
q

αCq
.

 (4.3)

In Eqs. (4.2) and (4.3), Cq is the junction capacitance of the two large junctions (1 and 2
in this case), α < 1 is the dimensionless ratio of the junction areas of the small (junctions
3 and 4 in this case) and large junctions and Csh

q is the shunting capacitance of the qubits.
The Josephson potential energy is

UJ
q i

(
{γq

i k}k∈{1,5}
)

= −φ0I
J
q (cos γq

i 1 + cos γq
i 2 + α cos γq

i 3 + α cos γq
i 4) , (4.4)

where IJ
q is the critical current of the large junctions of the qubit (junction 1 and 2). The

inductive potential energy is

UL
q i

(
{γq

i k}k∈{1,5}
)

=
φ2

0

2Ls
q

γq
i

T L−1
q γq

i , (4.5)

where

Lq =


Lm
q

Ls
q

0 0

0 1
2

0
0 0 1

2

 , (4.6)
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is the inductive matrix of the qubits, with Lm
q the main loop inductance and Ls

q = Ls1
q +Ls2

q

is the secondary loop inductance, with Ls1
q = Ls2

q = Ls
q/2 the inductance of each branch of

the secondary loop. Finally,

γq
i =

 γq
i 5

γq
i 1 − γ

q
i 2 − γ

q
i 4 − γ

q
i 5 − 2πfm

q i − πf s
q i

γq
i 1 − γ

q
i 2 − γ

q
i 3 − γ

q
i 5 − 2πfm

q i + πf s
q i

 , (4.7)

is the vector of phases across each inductance of the circuit, after accounting for the
fluxoid quantization conditions, with, fm

qi and f s
qi the external flux biases in the main and

the secondary loop, respectively.

From the quantization of the coupler circuit in Fig. 4.1, we readily find that the Hamil-
tonian of the symmetric tunable-rf-SQUID with capacitive shunting is

Hci = Tci (p
c
i1, p

c
i2, p

c
i3) + UJ

ci (γ
c
i1, γ

c
i2) + UL

ci (γ
c
i1, γ

c
i2, γ

c
i3) , (4.8)

where the degrees of freedom are the γc
ij for j ∈ {1, 2, 3} representing the phase across

junction j for j ∈ {1, 2} and the phase across the main loop inductance for j = 3. The pc
ij

represent the canonical conjugate momenta to the degrees of freedom γc
ij for j ∈ {1, 2, 3}.

In Eq. (4.8), the kinetic energy is

Tc i (p
c
i1, p

c
i2, p

c
i3) =

1

2φ2
0Cc

pc
i
T C−1

c pc
i , (4.9)

where pc
i
T = [pc

i 1, p
c
i 2, p

c
i 3] and where Cc is the capacitance matrix for the qubit, written

as

Cc =

1 + Csh
c

Cc
0 Csh

c

Cc

0 1 0
Csh

c

Cc
0 Csh

c

Cc
,

 (4.10)

with Cc the junction capacitance of the two coupler junctions and Csh
c is the shunting

capacitance of the couplers. The Josephson potential is

UJ
c i (γ

c
i1, γ

c
i2) = −φ0I

J
c (cos γc

i 1 + cos γc
i 2) , (4.11)

where IJ
c is the critical current of the junctions of the coupler. The inductive potential is

UL
c i (γ

c
i1, γ

c
i2, γ

c
i3) =

φ2
0

2Ls
c

γc
i

T L−1
c γc

i , (4.12)
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where

Lc =

Lm
c

Ls
c

0 0

0 1
2

0
0 0 1

2

 , (4.13)

is the inductive matrix of the couplers, with Lm
c the main loop inductance and Ls

c = Ls1
c +Ls2

c

is the secondary loop inductance, with Ls1
c = Ls2

c = Ls
c/2 the inductance of each branch of

the secondary loop. Finally,

γc
i =

 γq
i 3

−γc
i 1 − γc

i 3 − 2πfm
c i + πf s

c i

−γc
i 2 − γc

i 3 − 2πfm
c i − πf s

c i

 , (4.14)

is the vector of phases across each inductance of the circuit, after accounting for the
fluxoid quantization conditions, with, fm

c i and f s
c i the external flux biases in the main and

the secondary loop, respectively.

With this, the complete Hamiltonian of the qubits and coupler system is

H =
3∑
i=1

Hq i +
2∑
j=1

Hc j +Hint, (4.15)

where the inductive interaction Hamiltonian is

Hint =
φ2

0

2Ls
q

γT
(
L−1 − L−1

0

)
γ, (4.16)

where L is the full inductance matrix of the system, including all the mutual inductances,
L0 is the inductance matrix of the uncoupled system and γ is a vector formed of the phases
across all self-inductances in the system.

Finally, in what follows, we take identical qubits and identical rf-SQUIDs with the
following values of the circuit parameters: for qubits i (i ∈ {1, 2, 3}), IJ

q = 221.0 nA and
Cq = 4.5 fF, α = 0.46, Csh

qi = 40.0 fF, Lm
q i = 250.0 pH, Ls1

q i = Ls2
q i = 10.0 pH, and for

coupler j (j ∈ {1, 2}) IJ
c = 600.0 nA and Cc = 12.0 fF, Csh

cj = 10.0 fF, Lm
c i = 550.0 pH,

Ls1
c i = Ls2

c i = 85.0 pH, and mutual inductances of Mi j = −50.0 pH for i, j ∈ {1, 2} and
M s1

3 j = M s2
3 j = −25.0 pH for j ∈ {1, 2}.
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4.2 Born-Oppenheimer approximation analysis

We first discuss the properties of the coupler using the Born-Oppenheimer approximation,
which validates the intuitive picture for the three-body coupler based on rf-SQUID sus-
ceptibility. Since the tunable rf-SQUID circuits are designed to have a significantly larger
energy gap between the ground and excited states (typical gap of 15 GHz) than the qubits
(typical gap of 4 GHz), it is reasonable to apply the Born-Oppenheimer approximation
[111, 105, 108]. This is done by replacing H with the effective qubit Hamiltonian

Heff ≈
3∑
i=1

Hq i + Ẽ(0)
c

({
fβc j + δfβq

}
β∈{m,s}
j∈{1,2}

)
, (4.17)

where Ẽ
(0)
c is the quantum ground state energy of

H̃c =
2∑
j=1

Hc j +Hint. (4.18)

Here, Ẽ
(0)
c is an operator, dependent on the effective qubit flux shifts δfm

q =
∑2

i=1 IiMi j

and δf s
q = I3M3 j, with Ii = ϕm

q i/L
m
q i φ0 the circulating current operator of qubit i, Lm

q i the
self-inductance of the main loop of qubit i and Mi j the mutual inductance between qubit
i and coupler j, for j ∈ {1, 2}.

The analysis of the Born-Oppenheimer approximation is simplified if we project Ẽ
(0)
c

onto the subspace formed by the two lowest energy states of each qubit, which is appropriate
because of the large anharmonicity in the spectrum of the CSFQ [74, 51]. The state of each

qubit i is represented by the binary current variable Ĩi = Ip i si, where si = ±1 and Ip i is
the persistent current of qubit i. The persistent current is the average of the magnitudes
of the eigenvalues of the current operator represented in the basis of the two lowest energy
states of each qubit. In terms of the binary qubit parameters, the energy is written as

Ẽ(0)
c (s1, s2, s3) = Ã0 +

3∑
i=1

h̃i si +
3∑

i, j=1
i 6=j

J̃ij sisj + J̃123 s1s2s3, (4.19)

where Ã0 is an energy offset, h̃i are single qubit biases arising from screening currents in
the coupler, J̃ij are two-body interactions, and J̃123 is the 3-local coupling strength. We
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determine these coefficients by solving the linear system of equations given by

Ẽ
(0)
c (−1,−1,−1)

Ẽ
(0)
c (−1,−1, 1)

Ẽ
(0)
c (−1, 1,−1)

Ẽ
(0)
c (−1, 1, 1)

Ẽ
(0)
c ( 1,−1,−1)

Ẽ
(0)
c ( 1,−1, 1)

Ẽ
(0)
c ( 1, 1,−1)

Ẽ
(0)
c ( 1, 1, 1)


= S



Ã0

h̃1

h̃2

h̃3

J̃1 2

J̃1 3

J̃2 3

J̃123


, (4.20)

with

S =



1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 −1 1 1 −1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1
1 1 1 1 1 1 1 1


. (4.21)

Coefficients Ã0, h̃i, J̃ij, and J̃123 are found by inverting the system of equations (4.20). To

calculate Ẽ
(0)
c (s1, s2, s3) for each triplet of si = ±1, we numerically diagonalize H̃c, using

a representation in terms of the harmonic oscillator states for the quadratic part of the
Hamiltonian.

The three-body coupling strength J̃123 is shown in Fig. 4.2 versus f s
c 1, with f s

c 1 = −f s
c 2.

With this biasing condition, all two-body terms cancel, in agreement with the qualitative
picture presented above.

4.3 Spin model analysis

We discuss next a useful model for the coupler, in which each of the two tunable rf-
SQUIDS is modeled as a two-level system (see Fig. 4.3). The two-level approximation is
reasonable due to the large energy gap between the first and second excited states. This
model, in which both qubits and the coupling circuits are treated as spins, allows to obtain
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Figure 4.2: Three-body coupling strength extracted by Born-Oppenheimer method in the
circuit model (solid line), perturbation theory in the spin model (dashed line), and numer-
ical calculations of the full circuit (dotted line) versus the external magnetic flux threading
loop c1 s. The inset shows a wider scan of the magnetic flux, where the three-body coupling
is extracted by the Born-Oppenheimer method only. The flux biases are fm

c 1 = fm
c 2 = 1/2,

f s
c 1 = −f s

c 2, fm
q i = 1/2 and f s

q i = 0 for i ∈ {1, 2, 3}.

perturbative analytical expressions for the effective mediated interactions, giving additional
insight into the valid parameter range of the coupler and on the required conditions for
cancellation of two-body interactions.

In this spin model, the full Hamiltonian is

H̄ = H̄Q + H̄C + H̄int, (4.22)

where

H̄Q =
3∑
i=1

[
∆̄Q,i

2
σxQ,i +

ε̄Q,i
2
σzQ,i

]
, (4.23)

H̄C =
2∑
j=1

[
∆̄C,j

2
σxC,j +

ε̄C,j
2
σzC,j

]
(4.24)

and

H̄int =
2∑
i=1

2∑
j=1

J̄i,Cj σ
z
Q,i σ

z
C,j +

2∑
j=1

J̄3,Cj σ
z
Q,3 σ

x
C,j (4.25)
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Figure 4.3: Spin-model schematic of the coupler plus qubits system. The circles and
squares represent the qubit and coupler spins, respectively. The dashed lines represent
bare two-body interactions.

are the Hamiltonians for the qubits, coupler, and the interaction between them, respec-
tively. Note that we use capital letters Q and C to denote qubits and coupling circuits in
the spin model and spin model parameters are differentiated from the rest by an over-bar.
Here ∆̄ and ε̄ are the tunneling and bias of the respective device, and the coupling between
the ith qubit and the jth coupler is denoted by J̄i,Cj = Mi j Ip i Ip j. We determine the rele-
vant model parameters ε̄αi and ∆̄αi for α ∈ {Q,C}, based on the properties of the lowest
two energy eigenstates of each qubit/coupler unit.

To obtain the correspondence between the circuit parameters and the spin parameters,
we numerically diagonalize the circuit Hamiltonian of each isolated qubit or coupler at
each bias point. Then, we take the two lowest energy states as the spin subspace of each
device.

The excitation energy at each bias point is defined as the difference between the ground
state energy and the first excited state energy, written as

E01
α i (f

m
α i, f

s
α i) = E1

α i (f
m
α i, f

s
α i)− E0

α i (f
m
α i, f

s
α i) . (4.26)

For any qubit or coupler, the energy bias spin parameter ε̄α i, is taken to be

ε̄α i =

√
E01
α i (f

m
α i, f

s
α i)

2 − ∆̄α i (fm
α i, f

s
α i)

2. (4.27)

For any qubit or coupler, the transverse field spin parameter ∆̄α i is taken to be

∆̄α i = E01
α i (f

s
α i, 0.5) . (4.28)
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For any qubit - coupler pair, the direct 2-body interaction strength spin parameter J̄i α j is

J̄i α j = Mi α j I
q
p i

(
fm

q i, f
s
q i

)
Ic

p j

(
fm

c j, f
s
c j

)
. (4.29)

The persistent current in the devices, Iαp i, is defined as

Iαp i =
1

2
|Iα0 i (fm

α i, f
s
α i)|+ |Iα1 i (fm

α i, f
s
α i)|, (4.30)

where Iαn i for n ∈ {0, 1} are the eigenvalues of the current operator of the device in the
energy basis of the ground and first excited states of the device.

The derivation of an effective Hamiltonian begins with the assumption of weak inter-
action; specifically, we assume 〈0| H̄int |0〉c /ω0,1 � 1, where ω0,1 is the coupler excitation
energy and |0〉c represents the ground state of the coupler. The time evolution operator in
the interaction picture is

Ū(t, 0) = T exp

[
−i

~

∫ t

0

H̄int (t′) dt′
]
, (4.31)

where T specifies the time ordering. The effective coupling between the qubits can be
found by projecting the full time evolution operator onto the ground state of the coupler,
|0〉c. The effective propagator is given by

Ūeff(t, 0) ≡ 〈0| Ū(t, 0) |0〉c

= T exp

[
−i

~

∫ t

0

H̄eff (t′) dt′
]
. (4.32)

The effective qubit Hamiltonian is found by expanding Ūeff(t, 0) perturbatively up to third
order [99].

H̄eff ≈
∑
i

1

2

[(
∆̄Q,i + ∆̄′Q,i

)
σxQ,i +

(
ε̄Q,i + ε̄′Q,i

)
σzQ,i

]
+ J̄12 σ

z
Q,1 σ

z
Q,2 + J̄13 σ

z
Q,1 σ

z
Q,3 + J̄23 σ

z
Q,2 σ

z
Q,3

+ J̄123 σ
z
Q,1 σ

z
Q,2 σ

z
Q,3. (4.33)
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In Eq. (4.33),

ε̄′Q,1 =
2∑
j

J̄1,Cj 〈0|σzC,j |0〉c , (4.34)

ε̄′Q,2 =
2∑
j

J̄2,Cj 〈0|σzC,j |0〉c , (4.35)

ε̄′Q,3 =
2∑
j

J̄3,Cj 〈0|σxC,j |0〉c (4.36)

are the qubit bias corrections induced by the coupler,

∆̄′Q,1 = −∆̄Q1 J̄1,C1 J̄1,C2

2

∑
n

〈0|σzC1 |n〉c 〈n|σzC2 |0〉c
ω2

0,n

, (4.37)

∆̄′Q,2 = −∆̄Q2 J̄2,C1 J̄2,C2

2

∑
n

〈0|σzC1 |n〉c 〈n|σzC2 |0〉c
ω2

0,n

, (4.38)

∆̄′Q,3 = −∆̄Q3 J̄3,C1 J̄3,C2

2

∑
n

〈0|σxC1 |n〉c 〈n|σxC2 |0〉c
ω2

0,n

, (4.39)

represent the qubit detuning shifts induced by the coupler,

J̄12 = −
∑
n

〈0|σzC1 |n〉c 〈n|σzC2 |0〉c
ωn,0

(
J̄1,C1 J̄2,C2 + J̄2,C1 J̄1,C2

)
, (4.40)

J̄13 = −J̄1,C1 J̄3,C2

∑
n

〈0|σzC1 |n〉c 〈n|σxC2 |0〉c
ωn,0

− J̄3,C1 J̄1,C2

∑
n

〈0|σxC1 |n〉c 〈n|σzC2 |0〉c
ωn,0

,

(4.41)

J̄23 = −J̄2,C1 J̄3,C2

∑
n

〈0|σzC1 |n〉c 〈n|σxC2 |0〉c
ωn,0

− J̄3,C1 J̄2,C2

∑
n

〈0|σxC1 |n〉c 〈n|σzC2 |0〉c
ωn,0

,

(4.42)

are the effective two-qubit interactions mediated by the coupler, here, |0〉c and |n〉c are
coupler energy eigenstates, and finally

J̄123 =
2∑
i=1

2∑
j=1

2∑
k=1

J̄1,Ci J̄2,Cj J̄3,Ck

∑
n

∑
m

〈0|σzC,i |n〉c 〈n|σzC,j |m〉c 〈m|σxC,k |0〉c
ω0,n ω0,m

, (4.43)
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is the effective three-qubit interaction mediated by the coupler. Figure 4.2 shows J̄123 versus
f s

c j. The spin model predicts the cancellation of the two-body term J̄12, and similarly of
the other two-body interactions, for correct choice of bias conditions. These cancellation
conditions are in agreement with our intuitive picture based on symmetries of coupling and
susceptibilities.

4.4 Full numerical analysis

To validate the above approximate treatments, we numerically compute the eigenstates
of the complete Hamiltonian (4.15). We represent each non-periodic (periodic) degree of
freedom of the Hamiltonian in a basis formed of harmonic oscillator (Fourier) states (see
appendix A). Due to the complexity of the complete circuit, we proceed hierarchically by
first diagonalizing each device separately. Then, keeping only the low-energy eigenstates of
each device, we introduce the coupling between all devices and diagonalize the combined
system in this low-energy basis to calculate the energy spectrum [130]. The two-body
and three-body interactions are determined based on energy gaps at anti-crossing in the
numerically calculated spectrum.

To determine the strength of the three-body interaction mediated by the coupler based
on circuit simulations, the following approach is used. Qubit flux biasing parameters are
chosen to have ∆̄Q1 = ∆̄Q2 and ∆̄Q3 = ∆̄Q1 + ∆̄Q2. For this bias condition, the spectrum
of the complete circuit Hamiltonian Eq. (4.15) has an avoided-level crossing between the
4th and 5th energy levels, |↑↑↓〉 and |↓↓↑〉 where the ↑ or ↓ refers to the current state of
one of the three qubits. The avoided level crossing arises due to the ZZZ interaction. This
coupling results in a mutual repulsion between the levels. Calculating the minimum spacing
between these two avoided levels gives 2 |J123|. Figure 4.4 illustrates this procedure.

An alternative method to calculate the coupling relies on choosing biasing conditions
for the qubits such that ∆̄Q1 = ∆̄Q2 = ∆̄Q3 and ε̄Q1 = ε̄Q2 = ε̄Q3 = 0. If the coupler is
biased such that it is mediating a pure three-body interaction, that is ε̄′Qi = 0 and J̄ij = 0,
the 8-lowest energy levels of the circuit will form two four-fold degenerate subspaces. These
two subspacces correspond to even and odd parity of the qubit currents states, i.e. the
even states are |↑↑↑〉 , |↑↓↓〉 , |↓↓↑〉 and |↓↑↓〉 and the odd states are |↓↓↓〉 , |↑↑↓〉 , |↓↑↑〉
and |↑↓↑〉. These two subspaces are coupled by the ZZZ operator. Calculating the energy
separation between these two subspaces gives 2 |J123|. This method was used to extract
the coupling strength in Fig. 2 in the main text.

The three-body interaction strength J̄123 calculated based on the spin model is in ex-
cellent agreement with numerical results for the full circuit model for |f s

c j| > 0.31, as
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(a) (b)

Figure 4.4: Energy spectrum of the complete circuit Hamiltonian, relative to the ground
state energy. (a) When the three-body coupling is turned on, an avoided level crossing
between level 4 and 5 corresponding to 2 |J123| appears around ∆Q3 ≈ ∆Q1 + ∆Q2 (dotted
line and circle). (b) When the three-body coupling is turned off, levels 4 and 5 simply
cross each other around ∆Q3 ≈ ∆Q1 + ∆Q2 (dotted line and circle). The conditions of
∆Q3 ≈ ∆Q1 + ∆Q2 happen at different flux values with and without coupling because of a
re-normalization of the qubit energy levels due to the coupling.
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shown in Fig. 4.2. The disagreement for small values of |f s
c j| is due to the increase in

the ratio J̄i,Cj/ω0,1, arising from both a decreasing energy gap of the rf-squids and the
increase in the qubit-rf-SQUID coupling. We also find good qualitative agreement between
the Born-Oppenheimer method and the numerical calculations. However, the pronounced
quantitative disagreement for |f s

c j| < 0.31 between the two methods can be attributed to
the breakdown of the Born-Oppenheimer approximation in the region of decreasing energy
gap of the rf-SQUID [108]. In the region of |f s

c j| > 0.31, the disagreement may be explained
by the treatment of the qubits as classical variables.

4.5 Robustness of the coupler to noise and fabrication

variations

An important feature for a superconducting coupler is robustness to low-frequency flux
noise [83]. To analyze the coupler’s sensitivity to flux noise, we simulate a noisy environ-
ment. We assume Gaussian flux noise with the power spectral density Aβc i/ω

γ [81], where ω
is the angular frequency. We use parameters Am

c j = 14.57 µΦ0/
√

Hz, As
c j = 8.15 µΦ0/

√
Hz,

and γ = 0.9 is an exponent derived from experiments [84, 74, 51]. The simulated flux noise
environment for loop β in device α i induces fluctuations in flux bias with a normal distri-
bution with variance given by

δΦβ
α i =

∫ ωhi

ωlo

dω
Aβα i
ω0.9

, (4.44)

where ωhi = 10 GHz is the high-frequency cut-off, ωlo = 2π/Tf is the low-frequency cut-off,
where Tf is the total experiment time which we have taken to be 1 µs. We have determined
the value of the Aβα i by measuring the width-over-length ratio of the superconducting
wires making up realistic computer assisted designs of the devices, and scaling this ratio
with respect to established experimental values [74, 51, 84]. We impose this noisy flux
environment on the coupler flux biases at the bias point where we get large three-body
coupling and a cancellation of all two-body couplings (fm

c 1 = fm
c 2 = 0.5 and f s

c 1 = −f s
c 2 =

0.3) and observe a standard deviation in J̃123 of at most 0.002 GHz around the nominal
value of 1 GHz as well as a standard deviation of at most 0.007 GHz around the nominal
cancellation point for J̃12, J̃13 and J̃23 (see SI for full table, including all coefficients). The
spread in single qubit energy bias terms h̃i induced by the coupler circulating currents
is comparable with fluctuations induced by flux noise intrinsic to the qubit loops. As a
result, we do not expect the coupler to induce significant dephasing of the qubit. These
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small uncertainties in the couplings correspond to a high precision of parameters in a
quantum annealing Hamiltonian, ensuring that the correct solution is found at the end of
the computation [131].

We determine the variations in the coupling and bias parameters induced by flux noise
in the coupler loops. We model the spread in coupling and bias parameters when the system
is subjected to this realistic noisy environment. The standard deviation of the parameter
due to noise on the 4 loops of the coupling circuit and the qubit loops are reported in table
4.1.

Table 4.1: Annealing parameter standard deviations due to uncorrelated flux noise in all
coupler loops.

Parameter Nominal value (GHz) Standard deviation (GHz)

h̃1 0.000 0.102

h̃2 0.000 0.092

h̃3 0.000 0.007

J̃12 0.000 0.012

J̃13 0.000 0.014

J̃23 0.000 0.016

J̃123 0.915 0.003

Besides robustness to flux noise, the coupler should be functional when variations in
fabrication parameters are taken into account. To validate robustness to errors, we analyze
the effect on the coupling strength and on the ability to cancel the two-body interactions
when introducing variations in the mutual inductances between the coupler and the qubits,
the self inductances of the coupler and the Josephson junctions in the coupler circuit (see
appendix B.2).

The mutual inductances between the qubits and SQUIDs and the self-inductances of the
SQUIDs were sampled randomly from a normal distribution with a 95% confidence interval
within 3% of their nominal value. The coupling strengths Jij and J123 were calculated with
the Born-Oppenheimer method at the same bias point (fm

c 1 = fm
c 2 = 0.5 and f s

c 1 = −f s
c 2 =

0.3) for all random instances. This was repeated for 100 random instances.
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All the Josephson junction critical currents in the rf-SQUIDs were sampled randomly
from a normal distribution with a 95% confidence interval within 3% of their nominal value.
For each random instance, the coupling strengths Jij and J123 were calculated with the
Born-Oppenheimer method at the same bias point (fm

c 1 = fm
c 2 = 0.5 and f s

c 1 = −f s
c 2 = 0.3).

The asymmetry in the junctions affects the cancellation of the two-body interactions. New
bias conditions where all two-body interactions are suppressed to within 10 MHz and
where the three-body interaction is tunable were found by local optimization by rejection
sampling around the nominal bias point.

We extracted the effective qubit Hamiltonian over a normal distribution of parameter
variations, with standard deviation of 3% of the nominal values. We find that inductance
variations in the secondary loop have a negligible effect on the two- and three- body
coupling strengths. On the other hand, main loop self inductance and junction asymmetry
significantly affects the values of the J̃ij. However, cancellation conditions for two-body
terms, to within 10 MHz, can be recovered by suitable compensations of the bias fluxes.

4.6 Quantum annealing simulations

(a) (b)

Figure 4.5: Low-energy spectrum versus annealing parameter s. (a) Spectrum of the 8
levels of an ideal 3-spin Hamiltonian implementing Eq. (4.45). (b) Spectrum of the lowest
8 qubit-like levels of the circuit Hamiltonian (4.15) when biased to implement a linear
annealing schedule as in (4.45).
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When implementing this coupler in a quantum annealing context, an important metric
is the extent to which the coupler emulates the spectrum of an ideal spin Hamiltonian.
In quantum annealing [18], one seeks to prepare the ground state of a Hamiltonian that
encodes the solution to a computational problem. The solution is found by initializing the
computation in the ground state of a trivial Hamiltonian, then adiabatically deforming to
the Hamiltonian of interest. We consider an annealing schedule with an initial Hamiltonian
given by the standard transverse field Hamiltonian and a final Hamiltonian given by a
three-body interaction:

Hanneal(s) = (1− s)
3∑
i

∆i

2
σxi + s J123 σ

z
1σ

z
2σ

z
3, (4.45)

where s is the annealing parameter, changing from 0 to 1.

The full circuit annealing simulation is done in the following way. We start by diagonal-
izing the individual qubits to determine the relation between f s

q i and f s
c i, and (1− s) ∆i

in the annealing Hamiltonian. To account for the effect of the coupler on the qubits, we
re-normalize the qubit inductance with a term proportional to the coupler susceptibility,
as is discussed for the two-qubit coupler case in section 3.2 and in Refs. [105, 109, 51]. This
re-normalization is

Lm
q i → Lm

q i −
2∑
j=1

M2
ij

∂ 〈0c| Ii |0c〉
∂fm

c j

, (4.46)

for i ∈ {1, 2}, and

Lm
q 3 → Lm

q 3 −
2∑
j=1

M2
3j

∂ 〈0c| I3 |0c〉
∂f s

c j

. (4.47)

We next determine the persistent current of these re-normalized qubits. These persistent
currents are then used to determine the relation between f s

q i and f s
c i, and s J123 in the

annealing Hamiltonian. We use the Born-Oppenheimer method described in Eq. (6) in
the main text, with the qubit persistent currents just calculated. This procedure is then
repeated for all values of s.

Figure 4.5 shows the energy levels of the Hamiltonian (4.45) and of the complete circuit,
including the three body coupler, where we have used ∆i = 1.22 GHz and J123 = 0.8 GHz.
We find excellent agreement between the energy spectra in the two cases, and in particular
the physical system correctly preserves the degeneracy of the ideal spin Hamiltonian. We
also have that the lowest 8 qubit-like energy levels of the complete circuit are well separated
from the higher levels (gap of approximately 8 GHz).
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4.7 Extension to more qubits

We now briefly discuss the application of our proposed coupler to the situation of more
than three qubits. When building a quantum annealer with this coupler, one needs to
decide on the fundamental architecture or graph of the device. This means that one must
decide how many of these three-body couplers are to be included in the annealer and how
they will be connected to the qubits. we include here a brief discussion on how this coupler
could be included in an annealer.

It is important to mention that it is possible to propagate flux signals from qubits
through intermediate flux transformers or couplers [133]. This concept could be used to
connect many qubits to a single three-body coupler and thus control which qubit would in-
teract with the three-body coupler by using the intermediate flux transformers as switches.
To visualize this, let us first simplify the proposed coupler circuit in the form of Fig. 4.6a,
where the circuits are replaced by boxes or circles and the direct inductive connections
are indicated by straight lines. The extension of this coupler to more qubits is pictured in
Fig. 4.6b, where 6 qubits are coupled to one three-qubit coupler in such a way that one can
have more flexible coupling between the qubits by turning off the tree-couplers connecting
the qubits that are to be left out of the interaction. One can just as easily extend this
scheme further with more three-body couplers and more qubits, all that is needed is to
add a tree-coupler as a switch in between the three-body coupler and the qubits.

60



(a) (b)

C1 C2
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q1 q2
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q1 q2
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tc tc
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Figure 4.6: (a) Simplified coupler schematic. The circles represent the qubits (“q1”, “q2”,
“q3”), the rectangular boxes represent the couplers (“C1”, “C2”) and the straight lines
indicate the direct inductive coupling. (b) Extension of proposed three-body coupler to
many qubits. The introduction of circular tree-couplers (“tc”) make the connection and
switching between other qubits possible.
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Chapter 5

Conclusion

When starting this research project, we had as a goal to develop a superconducting circuit
capable of mediating three-body interactions between flux qubits. In this thesis, we have
proposed and analyzed such a circuit based on a rf-SQUID. We have seen that our pro-
posed circuit is capable of mediating strong and tunable in sign and magnitude three-qubit
interaction between three capacitively shunted flux qubits. The analysis in this thesis has
shown that this interaction is of the ZZZ form and has a strength of the same order as
the qubit energies, of order 1 GHz. Furthermore, this coupling is symmetrically tunable
from negative to positive through zero coupling, that is, both signs have equal maximum
coupling magnitude. The symmetric sign of the coupling is a useful property that is absent
in the standard tunable rf-SQUID two-qubit couplers used in quantum annealing. Addi-
tionally, the circuit developed is also capable of being operated as a tunable three-qubit
coupler while in the regime where all two-body interactions vanish. This last condition is
very important for practical implementation because it minimizes the need for additional
compensatory circuitry to be included on chip. Being able to operate the coupling circuit
in this regime enabled us to readily reproduce the low-energy spectrum of quantum an-
nealing Hamiltonian with three body interactions and zero two-body interactions. Finally,
we determined that this circuit was also robust to realistic flux noise and can be readily
compensated to adapt to realistic fabrication variations.

The methods used in this work, analytical derivation of circuit Hamiltonians using
standard circuit quantization, the Born-Oppenheimer approximation, the spin model and
the full numerical simulations, enabled us to properly analyze and optimize the coupling
circuit. The development of an efficient method to extract the coupling coefficient based on
the Born-Oppenheimer approximation proved to be a great approximation to the circuit
as well as a very useful treatment for computationally efficient results. The spin model
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also proved to be a good approximation in the regime of weak coupling and developed our
understanding of the conditions of cancellation of the two-body terms. In the regime of
strong coupling, strong non-linearity and small coupler energy gap, however, full numerical
simulations, with hierarchical diagonalization, were important for the most accurate picture
of the interaction.

The analysis presented in this work will be relevant in designing the next generation
of quantum annealing hardware, which will have increased embedding efficiency for hard
problems that include multi-body terms, quantum annealing error correction and that will
have capabilities to simulate increasingly complex quantum systems.
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[124] H. P. Büchler, A. Micheli, and P. Zoller, “Three-body interactions with cold polar
molecules,” Nature Physics, vol. 3, no. 10, pp. 726–731, 2007.

[125] Y.-X. Chen and S.-W. Li, “Quantum refrigerator driven by current noise,” EPL
(Europhysics Letters), vol. 97, no. 4, p. 40003, 2012.

[126] S. Y. Cho and M. D. Kim, “Macroscopic many-qubit interactions in superconducting
flux qubits,” Physical Review B, vol. 77, no. 21, p. 212506, 2008.
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Appendix A

Numerical Diagonalization

In order to find the eigenvalues of a Hamiltonian numerically, we need to write it in terms
of a known basis. It is convenient to use the harmonic oscillator basis in situations where
the potential is non periodic and to use the Fourier basis for periodic potentials. We chose
a distinct basis for each degree of freedom in the problem.

A.1 Non-periodic potential

As a simple example of a non-periodic potential and of the harmonic oscillator basis, let
us use the Hamiltonian of the rf-SQUID, Eq. 2.31. Collecting the harmonic oscillator like
terms together, we construct creation and annihilation operators. The Hamiltonian can be
rewritten as

Ĥ = Ĥho + Ĥl + Ĥnl, (A.1)

where

Ĥho =
EC

2

(
p̂

~

)2

+
EL

2
γ̂2 (A.2)

=
√
ECEL

(
â†â+

1

2

)
, (A.3)

Ĥl =
EL

2

(
4π2f 2

x − 4πfx γ̂
)

(A.4)

= −
√

2πE
1
4
CE

3
4
L (a† + a)fx + 2π2ELf

2
x (A.5)
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and

Ĥnl = −EJ cos γ̂ (A.6)

= −EJ cos

(
1√
2

(
EC

EL

) 1
4 [
a† + a

])
, (A.7)

and finally we have defined

γ̂ =
1√
2

(
EC

EL

) 1
4 (
â† + â

)
(A.8)

p̂ =
i~√

2

(
EL

EC

) 1
4 (
â† − â

)
(A.9)

We can now replace the creation and annihilation operators with their matrix represen-
tations, truncated to a maximal number of states Nho, and diagonalize the Hamiltonian.
The matrix representation for these operators is

â =



0
√

1

0
√

2

0
√

3

. . . . . .

0
√
Nho − 1

0


(A.10)

and

â†â =



1

2

3

. . .

Nho − 1


(A.11)

and we can write the non-linear terms in a complex exponential form and use the following
identity [148]

〈i| eir(â†+â) |j〉 =
e
−r2
2

√
i!j!

Min[i,j]∑
m=0

(
i

m

)(
j

m

)
m! (ir)i+j−2m (A.12)
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A.2 Periodic potential

As a simple example of a periodic potential and the Fourier or charge basis, let us use the
Hamiltonian of the Josephson junction, Eq. 2.26. Writing this Hamiltonian in the charge
basis we get

HJ =
EC

2
n̂2 − EJ

2

(
eiγ̂ + e−iγ̂

)
. (A.13)

Using the following basis transformation

|γ〉ph =
1√
2π

∑
n

e−inγ |n〉ch , (A.14)

where |γ〉ph and |n〉ch are phase and charge states, respectively, we can find the matrix rep-
resentation, truncated to a maximal number of states Nch, of the diagonal charge operator

n̂ =



−Nch

− (Nch − 1)

. . .

0

. . .

Nch − 1

Nch


, (A.15)

and the off-diagonal shift operator

eiγ̂ =



0

1 0

1 0

. . . . . .

1 0

1 0


. (A.16)
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Appendix B

Derivation of tunable rf-SQUID
Hamiltonian

B.1 Symmetric case

The total flux threading the tunable rf-SQUID circuit, as in Fig. 4.1, along the contour
comprised of the main loop and the right part of the secondary loop (identified with the
index 1) is

Φms1 =
Ls

2
I1 + LmI3 + Φx

m +
Φx

s

2
, (B.1)

the total flux threading the contour comprised of the main loop and the left part of the
secondary loop (identified with the index 2) is

Φms2 =
Ls

2
I2 + LmI3 + Φx

m −
Φx

s

2
, (B.2)

and the total flux threading the contour comprised of both parts of the secondary loop is

Φs =
Ls

2
(I1 − I2) + Φx

s , (B.3)

where Φx
m is the external flux treading the main loop and Φx

s is the external flux threading
the secondary loop, Ls is the geometrical inductance of the secondary loop and Lm is the
total inductance of the main loop. Finally, the Ii for i ∈ {1, 2, 3} are the currents flowing
through each branch.
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In Eqs. (B.1–B.3), it is clear that we have only two independent contours in this circuit,
we have that Φms1 − Φms2 = Φs. Because of this, we only have two independent external
fluxes to consider, Φx

m + Φx
s/2 and Φx

m − Φx
s/2.

The currents in the three branches are related to each other by the Kirchoff current
law that reads I3 = I1 + I2. This last current conservation relation can be inserted into
Eq. (B.1) and Eq. (B.2) to give

Φms1 =
Ls

2
I1 + Lm (I1 + I2) + Φx

m +
Φx

s

2
(B.4)

and

Φms2 =
Ls

2
I2 + Lm (I1 + I2) + Φx

m −
Φx

s

2
. (B.5)

The fluxoid quantization in a superconductor further constrains the problem such that the
total phase along each contour (loop) is equal to an integer number, which we take to be
zero. Thus, we have

γ1 = −2πΦms1

Φ0

(B.6)

and

γ2 = −2πΦms2

Φ0

, (B.7)

with γi the superconducting phase difference across Josephson junction i. These two fluxoid
conditions can be written as

γ1 = −
[
I1Ls

2φ0

+
(I1 + I2)Lm

φ0

+ 2πfx
m + πfx

s

]
(B.8)

and

γ2 = −
[
I2Ls

2φ0

+
(I1 + I2)Lm

φ0

+ 2πfx
m − πfx

s

]
, (B.9)

were we defined the external magnetic flux in units of the reduced magnetic flux quantum
2πfx

α = Φx
α/φ0 for α ∈ {s, m}.

Equations (B.1–B.9) enable us to reduce the number of degrees of freedom of the
problem to two and to write the currents running along branch 1 and 2 in terms of the
junction phases only

I1 =
−φ0

Ls

(
Lm + Ls

4

) [Lm (γ1 − γ2 + 2πfx
s ) +

Ls

2
(γ1 + 2πfx

m + πfx
s )

]
(B.10)
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and

I2 =
−φ0

Ls

(
Lm + Ls

4

) [−Lm (γ1 − γ2 + 2πfx
s ) +

Ls

2
(γ2 + 2πfx

m − πfx
s )

]
. (B.11)

The current in branch 1 and 2 is also limited by the standard equation of motion for
each Josephson junction. This means that the total current flowing through the branches
is also

I1 = Ic sin γ1 + φ0C γ̈1 (B.12)

and
I2 = Ic sin γ2 + φ0C γ̈2, (B.13)

where Ic and C are the critical current and the capacitance of junction each junction,
respectively. We can then write the complete equations of motion for branch 1 and 2 as

Ic sin γ1 + φ0C γ̈1 =
−φ0

LsLm′

[
Lm (γ1 − γ2 + 2πfx

s ) +
Ls

2
(γ1 + 2πfx

m + πfx
s )

]
(B.14)

and

Ic sin γ2 + φ0C γ̈2 =
−φ0

LsLm′

[
−Lm (γ1 − γ2 + 2πfx

s ) +
Ls

2
(γ2 + 2πfx

m − πfx
s )

]
, (B.15)

where we have defined the effective main loop inductance Lm′ = Lm + Ls/4.

It will be more convenient to transform these equations of motion for branch 1 and 2
into the equations of motion for the loops in the circuit. By taking the sum of Eqs. (B.14–
B.15), we get

Ic (sin γ1 + sin γ2) + φ0C (γ̈1 + γ̈2) =
−φ0

2Lm′
(γ1 + γ2 + 4πfx

m) , (B.16)

and taking the difference we get

Ic (sin γ1 − sin γ2) + φ0C (γ̈1 − γ̈2) =
−2φ0

Ls

(γ1 − γ2 + 2πfx
s ) . (B.17)

We readily find that the Hamiltonian of the symmetric tunable-rf-SQUID is

H = T (p1, p2) + UJ (γ1, γ2) + UL (γ1, γ2) , (B.18)
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with the kinetic energy, written in terms of the canonical conjugate momenta pi for i ∈
{1, 2},

T (p1, p2) =
1

2φ2
0C

(
p2

1 + p2
2

)
, (B.19)

the Josephson potential

UJ (γ1, γ2) = −φ0Ic (cos γ1 + cos γ2) , (B.20)

and the inductive potential

UL (γ1, γ2) =
φ2

0

2Ls

(γ1 − γ2 + 2πfx
s )2 +

φ2
0

8Lm′
(γ1 + γ2 + 4πfx

m)2 . (B.21)

B.2 Asymmetric case

Following a similar derivation as for the symmetric case, we now introduce asymmetry
coefficients for the circuit parameters. The various parameters are defined as follows

α =
Ic1 − Ic2

Ic1 + Ic2

=
Ic1 − Ic2

Ic

, (B.22)

µ =
C1 − C2

C1 − C2

=
C1 − C2

C
, (B.23)

δ =
fx

s1 − fx
s2

fx
s1 + fx

s2

=
fx

s1 − fx
s2

fx
s

, (B.24)

and

η =
Ls1 − Ls2

Ls1 + Ls2

=
Ls1 − Ls2

Ls

. (B.25)
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In typical circuit designs, these asymmetry coefficients are made to be as small as
possible. In what follows, we will take the assumption that the coefficients in Eqs. (B.22–
B.25) represent a small perturbation to the energy scales and therefore will only keep terms
up to first order in these coefficients. With these new definitions, the equations of motion
are

Ic [(1 + α) sin γ1 + (1− α) sin γ2]

+ φ0C [(1 + µ) γ̈1 + (1− µ) γ̈2] =
−φ0

Lm′
[γ1 + γ2 + 2π (2fx

m + δfx
s )]

− ηφ0

Lm′
(γ1 − γ2 + 2πfx

s ) , (B.26)

and

Ic [(1 + α) sin γ1 − (1− α) sin γ2]

+ φ0C [(1 + µ) γ̈1 − (1− µ) γ̈2] =
−4φ0

Ls

(γ1 − γ2 + 2πfx
s )

+
ηφ0

Lm′
(γ1 + γ2 + 4πfx

m) . (B.27)

We can then readily find that the Hamiltonian for the asymmetric tunable rf-SQUID
is

H = T (p1, p2) + UJ (γ1, γ2) + UL (γ1, γ2) , (B.28)

with the kinetic energy, written in terms of the canonical conjugate momenta pi = ∂L/∂γ̇i
for i ∈ {1, 2}, written as

T (p1, p2) =
1

2φ2
0C

[
p2

1 (1− µ) + p2
2 (1 + µ)

]
, (B.29)

the Josephson potential

UJ (γ1, γ2) = −φ0Ic [(1 + α) cos γ1 + (1− α) cos γ2] , (B.30)

and the inductive potential

UL (γ1, γ2) =
φ2

0

Ls

(γ1 − γ2 + 2πfx
s )2 +

φ2
0

4Lm′
[γ1 + γ2 + 2π (2fx

m + δfx
s )]2

+
ηφ2

0

4Lm′
(γ1 + γ2 + 4πfx

m) (γ1 − γ2 + 2πfx
s ) . (B.31)
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