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Abstract

Secure multiparty computation allows two or more parties to compute a function without
leaking unnecessary information about their inputs to other parties. In traditional secure
multiparty computation protocols, the function is represented as a circuit and each gate
of the circuit is securely computed. The mixed mode model is a generalization where only
some gates are computed securely, and other gates are computed in a local, unsecured
manner. There are computations where mixed mode protocols are known to be just as
secure and much more efficient, and so it is natural to ask if it is possible to automatically
construct optimized mixed mode secure protocols for a given function.

Previous results describe powerful compilation techniques to transform circuits into effi-
cient mixed mode protocols, but the results are only secure against very restricted (passive)
adversaries. These passively secure protocols can be secured against active adversaries us-
ing extensions of classic secure multiparty computation compilation techniques. However,
this comes with a significant loss of concrete efficiency, which negates the mixed mode
efficiency advantages.

In this thesis, we describe novel techniques that can efficiently compile mixed mode two
party protocols from passive to active security. The techniques exploit structural properties
of the underlying circuits to reduce the overhead of compilation without compromising the
security. The gain in efficiency varies based on the circuit that is being compiled, and
although for some circuits the techniques will yield no gains, for others the resulting secure
protocols have exponentially lower computation and communication cost.
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Chapter 1

Introduction

Secure multiparty computation (SMC) protocols allow multiple parties to securely com-
pute a function over their combined inputs. Traditional SMC constructions [21, 7] take
a circuit representation of a function and guarantee security by securely computing each
gate. Conceptually this can be viewed as computing a circuit in a single secure block,
and we call these single mode protocols. Mixed mode SMC is a generalization where
a protocol is split over many circuits, some of which are computed securely and some
of which are computed locally by each party without any secure overhead. For certain
functions [12, 1, 3, 17], mixed mode implementations exist that are equally as secure and
significantly more efficient than single mode implementations.

For passively secure protocols, there are known methods [12, 16] to automatically com-
pile a functionality into an optimized mixed mode implementation. These optimized
passively secure protocols can be made actively secure using standard passive-to-active
compilation techniques [7, 8], but the efficiency of the original optimizations is lost [12].
Our contributions are optimizations that exploit properties of the compiled actively se-
cure protocols to improve their efficiency without losing security. In conjunction with
prior results [12, 16] this provides the first known method to automatically transform a
functionality circuit into an optimized actively secure mixed mode protocol.

For specific functionalities, there are previously known extremely efficient actively se-
cure mixed mode protocols, like Aggarwal et al.’s two party median protocol [1]. However,
their optimizations and associated security proofs were constructed manually. Our results
can be applied to generic protocols and are robust enough to automatically recreate Aggar-
wal et al.’s protocol, with the security of the resulting optimized protocol following directly
from the security of each optimization.
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The remainder of this thesis is structured as follows: Chapter 2 covers the background
and prior work that our results build on. We begin in Section 2.1 with a description
of SMT formulas, which are the building blocks of our optimizations. In Section 2.2 –
2.4 we define secure multiparty computations and the precise structure of mixed mode
protocols. In Section 2.5 we describe the prior results on compiling programs to optimized
passively secure mixed mode protocols. In Section 2.6 we describe how standard passive-
to-active compilation techniques [7, 8] can add active security at the cost of efficiency. In
Section 2.7 we note other related work. In Chapter 3 we describe an example protocol
that is particularly inefficient when compiled from passive to active security, and show
how our optimizations can remove this inefficiency. In Chapter 4 we describe each of our
optimizations in depth, and walk through an application of them to the example protocol.
In Chapter 5 we demonstrate how our optimizations recreate Aggarwal et al.’s optimized
median protocol. We conclude with Chapter 6.
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Chapter 2

Background

2.1 SMT Formulas

A satisfiability formula is a logic formula consisting of boolean variables joined by boolean
gates, and a satisfiability solver returns whether or not there is any possible assignment
to the variables in the formula that would cause the formula to evaluate to true. A
satisfiability modulo theories (SMT) formula is a satisfiability formula where the variables
are allowed to be non-boolean. The worst case computational complexity of an SMT
solver depends on what types of formulas are allowed — the satisfiability of unqualified
formulas over boolean variables is famously NP-Complete, whereas the satisfiability of
integer polynomials (Diophantine equations) is famously undecidable. Nevertheless, solvers
exist for a wide range of input types, such as Microsoft’s Z3 [6]. As such throughout this
work we will assume the existence of a SMT solver with the following properties, all of
which Z3 satisfies:

1. Valid inputs are formulas over reals, integers or boolean typed variables, joined by
standard boolean and arithmetic gates including inequalities, and with arbitrary
universal and existential qualifiers.

2. For certain inputs, the solver may fail to return anything.

3. When the solver returns, it returns a correct proof of either satisfiability or unsatis-
fiability.
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2.2 Secure Multiparty Computation

A secure multiparty computation protocol computes a function while securing any infor-
mation about a party’s input that cannot be inferred from the other parties’ inputs and
the output of the function, even when some other parties are controlled by an adversary.
We limit our attention to the two party case where at most one party is adversarially
controlled. We call the parties A and B, and when referring to a generic party p let ¬p
denote the other party.

In the semi-honest security model, adversarially controlled parties must still correctly
follow the protocol, but may perform additional computations on the messages received
in an attempt to extract additional information. In the malicious model, adversarially
controlled parties may deviate arbitrarily from the protocol. A protocol that is secure in
the semi-honest model is said to be passively secure, whereas one that is secure in the
malicious model is said to be actively secure.

Security is defined in reference to an ideal world where both parties send their inputs to
a trusted third party, who calculates the function and sends back the outputs. A protocol is
secure if no information is leaked beyond what would leak in an ideal world execution. We
say a protocol securely computes a function if for every non-uniform probabilistic polytime
adversary A, there exists a non-uniform probabilistic polytime “simulator” S such that
regardless of which party is corrupted, the joint output of protocol execution between the
honest party and A is computationally indistinguishable from the joint output of ideal
world execution between the honest party and S.

For both models there are many different provably secure constructions based on a
variety of cryptographic assumptions [21, 7, 10, 5, 20]. Some constructions also allow for
the computation of reactive functionalities [8, 4]. Reactive functionalities are modeled as
trusted parties who are interacted with over many rounds, where some global state is stored
between rounds and at each round the function computed can depend on the state and
that round’s inputs.

2.3 Computation Model

As is standard for SMC, we focus on circuit representations of programs. Our results are
not limited to solely arithmetic or boolean circuits, so here we allow “circuit” to refer to
mixed arithmetic boolean circuits.
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Each circuit contains a series of wires (also referred to as variables) connected by gates.
Each wire carries either a boolean or numerical value, and gates compute standard boolean
and arithmetic operations, including functional blocks like comparisons. Each wire has a
unique label, and wires are partitioned into input, intermediate, and output sets. In the
SMC context, each input wire is owned by one party, and all other wires are owned by one
or both parties.

We specify circuits as programs written in a simple pseudocode, as in Program 2.1.
Programs are in single assignment form without loops or branching, exactly like a circuit.
For readability we allow conditional assignment, which corresponds to an assignment that
combines values masked by the conditional expression. For example, the conditional as-
signment of z in Program 2.1 corresponds to the assignment z = s ∗ (x+ y) +¬s ∗ (x− y),
with boolean wires implicitly being converted to 0 and 1 in arithmetic gates.

Program 2.1: Example circuit

/* Inputs: Boolean s, integers w, x, y */

/* Outputs: Integer r */

z =

{
x + y if s

x− y if ¬s
r = w ∗ z

For any circuit C there is an integrity function I(C). Every wire in C corresponds to
an input wire of I(C), and I(C) outputs a single boolean checking if every wire in C was
calculated correctly. In order for a party to show that they computed C correctly without
leaking their inputs, they can use a reactive SMC protocol (or any zero knowledge proof
implementation) to show that their inputs cause I(C) to output true.

It is straightforward to compile any circuit to its integrity function. Each assignment
corresponds to an equality expression, all of which are joined together by conjunction.
Conditional assignments become disjunctions with a clause for each case representing the
conjunction of the assignment equality and the conditional expression. Hence for Pro-
gram 2.1, the corresponding integrity function is

(
(s ∧ (z == x + y)) ∨ (¬s ∧ (z == x− y))

)
∧
(
r == w ∗ z

)
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2.4 Mixed Mode Model

In a mixed mode secure two party computation, a single protocol is split into alternating
rounds of secured and local (unsecured) computation. Local rounds represent computa-
tions performed locally, and parties may compute different functions in a given local round.
Secure rounds represent a joint computation between parties that must be performed se-
curely, and can be thought of as an execution of a normal SMC protocol.

We define a two party n-round mixed mode protocol Π as
{LA

1 ,LB
1 }, S1, {LA

2 ,LB
2 }, S2, . . . , {LA

n ,LB
n }, Sn , where Si are circuits to be computed

by SMC and Lp
i are circuits to be computed locally. Each input wire for all Lp

i must be
owned by party p. Wire labels can be shared between rounds, in that inputs and outputs
from any prior round can be used as input wires for subsequent rounds. The execution of
Π by party p is the consecutive execution Lp

1, S1, Lp
2, S2, . . . , Lp

n, Sn, where Lp
i rounds are

computed solely by party p, and Si rounds are computed jointly through SMC.

Optionally, we allow protocols to have input requirements, represented by preconditions
that the inputs must satisfy. This is a circuit over the input set of the protocol, with a
single boolean output that is true if and only if all preconditions are met. For a protocol
Π this circuit is denoted P(Π).

In the mixed mode model, we desire the overall protocol execution to be secure if only
the secure rounds Si are performed as SMC. For passively secure mixed mode protocols,
one can achieve identical security to that of the single round case, as the adversary is
not allowed to deviate from the protocol in any local round. However for actively secure
mixed mode protocols we allow a slight weakening of the security definition. The standard
security definitions [8] only allow an adversary to abort before input is sent or after output is
received, whereas here an adversary can abort between rounds of the protocol. We consider
selective aborts to be unavoidable in any practical definition of mixed mode active security
for two parties, and instead require only that no information is leaked about the honest
party’s inputs beyond what would leak in a complete protocol execution.

We use an extension of the above pseudocode to specific mixed mode protocols. Inputs
are specified for each party, including preconditions if present, and owners are specified
for each output. Local rounds are labelled by which party runs them, and secure rounds
are labelled by whether they should be passively or actively secure, and whether reactive
functionality is required. Empty rounds are omitted. Our pseudocode assumes that each
secure round output is owned by both parties, but our optimizations generalize to protocols
where this is not the case.

Note that in Program 2.2 LA
1 , LB

1 , LA
2 and S2 are implicitly empty.
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Program 2.2: Example mixed mode protocol

/* A’s input is boolean s */

/* B’s inputs are integers w, x, y s.t. y > x */

/* Output r owned by B */

passively secure round S1

z =

{
x + y if s

x− y if ¬s
local round LB2

r = w ∗ z

2.5 Mixed Mode Passive Security via Knowledge In-

ference

Suppose we have access to some passively secure SMC implementation that allows two
parties to securely compute any circuit. Then the trivial “mixed mode” passively secure
protocol is one with an empty local round and a single secured round that contains the
entire protocol. Kerschbaum showed that it is possible to automatically split a single
round protocol into a many round mixed mode protocol that is still passively secure [12].
As local rounds can be computed with no security overhead, this resulted in dramatic
concrete efficiency improvements for the protocols he considered.

In essence, this optimization is based on the observation that in the semi-honest model,
by definition, any information that can be inferred from computation on a party’s input
and output does not need to be secured by the other party. As such, it is possible to detect
when intermediate wire values can always be deduced by the input and output wires a
party receives, and then split the computation of these deducible values into local rounds.
Program 3.3 below provides an example of this compilation technique.

Rastogi et al. formalized this optimization in terms of knowledge inference [16]. They
define the knowledge inference problem as detecting when an intermediate variable y can
always be determined from input and output sets I and O by some function f(I, O), and
the constructive knowledge inference problem as constructing f should it exist. Further,
they showed that one can find explicit solutions for both problems given an SMT solver.

Using the above optimizations, one can automatically transform a two party function-
ality into an optimized passively secure mixed mode protocol.
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2.6 Mixed Mode Active Security

We now describe an inefficient transformation from passive mixed mode security to active
mixed mode security. The construction mimics seminal SMC techniques [7, 8] to compile
a passively secure protocol into an actively secure protocol, where upfront commitments
are implemented as inputs passed to a reactive functionality, and zero knowledge proofs of
correctness are implemented as secure computations of the appropriate integrity functions.
Our optimizations use this construction as a baseline, and identify situations where the
concrete cost can be reduced without losing security.

Following other active security definitions [8], we begin by noting what an active ad-
versary can do that a passive adversary cannot, which is:

• Abort the protocol between rounds

• Substitute inputs between rounds

• Deviate from protocol in secure round computation

• Deviate from protocol in local round computation

As noted above, we define active security in the mixed mode model to allow between-
round abortion (note that abortion before or after execution, as well as input substitution
before execution, are already allowed by active security definitions [8]). Hence to convert
a passively secure mixed mode protocol into an actively secure one, we must secure the
protocol against the remaining three types of adversarial behaviour.

We assume we have access to an actively secure SMC implementation that supports
reactive functionalities. This ensures that deviations in secure rounds are detected and lead
to abortion without any insecure information leakage. To handle input substitution, we
require that both parties send all inputs during an additional secure round C, at the start
of the protocol. The reactive property allows each input to be sent only once and reused
between rounds, and as inputs are sent before any computation happens, this ensures that
no adaptive input substitution can occur. As such, C functions as a commitment to every
party’s inputs.

Finally, we require a mechanism to ensure that local rounds are always performed
correctly. To do this we add additional secure integrity rounds Ii between Li and Si. Each
Ii checks that the previous local rounds were performed correctly by securely computing
I(LA

i )∧I(LB
i ). If either integrity function outputs false then computation is aborted. For

8



Local Computation
By A

LA
1 LA

2
. . . LA

n A’s output

Secure
Computation

C I0 I1 S1 I2 S2 . . . In Sn

Local Computation
By B

LB
1 LB

2
. . . LB

n B’s output

Figure 2.1: Actively Secure Mixed Mode Construction

protocols with input requirements, we add a round I0 after C that computes P(Π) and
aborts on failure.

As this construction captures all types of adversarial behaviour in the malicious model,
these augmentations transform any passively secure mixed mode protocol into an actively
secure mixed mode protocol. 1 See Figure 2.1 for a diagram of the construction. C, L, I
and S are commitment, local, integrity, and secure rounds respectively.

With respect to concrete efficiency we pay a heavy price when going from passive to
active security. The potential of mixed mode protocols comes from “unsecuring” the local
rounds, and yet each local round has a corresponding secure integrity function computation
that in general requires as many gates as the local computation itself, negating mixed
mode efficiency gains. However, this is a useful starting point for further optimization.
Our results show that for protocols with certain properties, we can reduce the overhead of
this construction without compromising security.

2.7 Related Work

Our work is related to mixed mode secure computations and passive-to-active security pro-
tocol transformations. Efficient passively secure mixed mode protocols for specific function-
alities are known in a variety of domains, such as numerical problems [1], graph problems [3]
and matroid problems [17]. There exist optimizing compilers to convert data queries [18]
and general programs [12, 16] to passively secure mixed mode protocols (see Section 2.5),
as well as many libraries to conveniently implement them [15, 9]. For active security, there
exist relatively fewer efficient specific mixed mode protocols [1, 17]. The unoptimized
passive-to-active Goldreich compiler [8] for single mode protocols can be adapted to the

1We focus only on deterministic functionalities here. For randomized functionalities, we augment C to
output sufficient random bits for each party, and check that they are used correctly in the Ii rounds.
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mixed mode case (see Section 2.6), but we know of no optimized passive-to-active mixed
mode compilation results before this work.

10



Chapter 3

Motivating Example: Binary
Classification Tree

To build intuition about our optimizations we will show how they apply to a classification
tree protocol. In the variant we consider, A has a vector of inputs of length l and wants to
learn the classification label for her input. B has a binary tree of depth l+1, where internal
nodes are thresholds and leaves are distinct classification labels that are public information
known in advance to both parties. B traverses the tree from root to leaf through up to
l rounds of comparison. At each round, B traverses to the left or right child based on
the result of comparing A’s current input to B’s current node’s threshold. When a leaf is
reached B learns the classification result and shares it with A. This variant differs from
other protocols in that both parties learn the result of the classification, and it is publicly
known which label corresponds to which leaf in B’s tree. These properties are critical in
enabling the following optimizations.

Although our optimizations apply to arbitrary tree shapes, for simplicity we will build
an optimized secure protocol for the full depth 2 tree in Figure 3.1, beginning with the two
party functionality of Program 3.1.

A secure “single mode” implementation can be constructed by transforming Program 3.1
into a circuit, as in Program 3.2.

When a binary classification circuit like Program 3.2 is securely evaluated using an
SMC implementation, the number of secure gate evaluations grows exponentially with tree
depth as circuits do not support conditional evaluation. That is, there are secure gate
evaluations for each node in the tree, regardless of the path taken from root to leaf.

11



t0

t1

v1 v2

t2

v3 v4v

x2

x1

Figure 3.1: Depth 2 Binary Classification Tree

However, the previous results described in Section 2.5 can compile Program 3.1 into
the secure mixed mode protocol Program 3.3. This compilation reveals the comparison
results at each depth to both parties, which is secure because both can deduce the path
taken through the tree from the public classification label they receive as output.

Program 3.3 has secure gate evaluations linear in the depth of tree, which is exponen-
tially better than a single mode secure version of Program 3.2, but is only passively secure.
To obtain active security, we apply the construction in Section 2.6 to create Program 3.4.
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Program 3.1: Binary Classification Tree Functionality

/* A’s inputs are reals x1, x2 */

/* B’s inputs are reals t0, t1, t2, v1, v2, v3, v4 */

/* Trusted third party T computes the following */

C1 = x1 ≤ t0
if C1 then

N = t1
else

N = t2
C2 = x2 ≤ N
if C1 ∧ C2 then

v = v1
else if C1 ∧ ¬C2 then

v = v2
else if ¬C1 ∧ C2 then

v = v3
else

v = v4
/* T sends v to A and B */

Program 3.2: Binary Classification Tree Secure Circuit

/* A’s inputs are reals x1, x2 */

/* B’s inputs are reals t0, t1, t2, v1, v2, v3, v4 */

/* Output v owned by both parties */

secure round
C1 = x1 ≤ t0

N =

{
t1 if C1

t2 if ¬C1

C2 = x2 ≤ N

v =


v1 if C1 ∧ C2

v2 if C1 ∧ ¬C2

v3 if ¬C1 ∧ C2

v4 if ¬C1 ∧ ¬C2

13



Program 3.3: Passively Secure Binary Classification Tree Protocol

/* A’s inputs are reals x1, x2 */

/* B’s inputs are reals t0, t1, t2, v1, v2, v3, v4 */

/* Output v owned by both parties */

passively secure round S1
C1 = x1 ≤ t0

local round LB2
N =

{
t1 if C1

t2 if ¬C1

passively secure round S2
C2 = x2 ≤ N

local round LB3

R =


v1 if C1 ∧ C2

v2 if C1 ∧ ¬C2

v3 if ¬C1 ∧ C2

v4 if ¬C1 ∧ ¬C2

passively secure round S3
/* B shares R with A */

v = R

14



Program 3.4: Actively Secure Binary Classification Tree Protocol
(Unoptimized)

/* A’s inputs are reals x1, x2 */

/* B’s inputs are reals t0, t1, t2, v1, v2, v3, v4 */

/* Output v owned by both parties */

reactive actively secure round C
A passes inputs x1, x2
B passes inputs t0, t1, t2, v1, v2, v3, v4

reactive actively secure round S1
C1 = x1 ≤ t0

local round LB2
N =

{
t1 if C1

t2 if ¬C1

reactive actively secure round I2
abort if not (C1 ∧ (N == t1)) ∨ (¬C1 ∧ (N == t2))

reactive actively secure round S2
C2 = x2 ≤ N

local round LB3

R =


v1 if C1 ∧ C2

v2 if C1 ∧ ¬C2

v3 if ¬C1 ∧ C2

v4 if ¬C1 ∧ ¬C2

reactive actively secure round I3

abort if not

(C1 ∧ C2 ∧ (R == v1)) ∨
(C1 ∧ ¬C2 ∧ (R == v2)) ∨
(¬C1 ∧ C2 ∧ (R == v3)) ∨
(¬C1 ∧ ¬C2 ∧ (R == v4))

reactive actively secure round S3
/* B shares R with A */

v = R

15



Although Program 3.4 is actively secure, each node of the tree corresponds to a vari-
able sent to C and a secure gate evaluation in an Ii round. The number of nodes grows
exponentially as tree depth increases, and so the corresponding secure computation cost is
exponential in the tree depth, negating the savings of Program 3.3. As a motivating exam-
ple of our optimizations, we will demonstrate how they can remove this overhead without
losing active security. For each optimization, we examine the actively secure protocol and
explain where its inefficiencies are. We then formally define how a compiler could perform
the optimization, and compile the actively secure protocol into a more efficient version.

While single mode actively secure implementations like Program 3.2 require the to-
tal number of secure gate operations to grow exponentially as the depth of the input
tree increases, our fully optimized protocols have secure gate evaluations linear in tree
depth, which corresponds to an exponential decrease in computation and communication
complexity. We implemented the single mode protocols and our optimized mixed mode
protocols using the actively secure authenticated garbled circuit scheme [20] provided in
the EMP-toolkit [19] library.1 The concrete runtime improvements are shown in Figure
3.2.

The mixed mode protocols have a linear increase in the number of rounds of communica-
tion, and in higher latency environments this has an associated runtime cost. Despite this,
the asymptotic improvement results in concretely faster protocols for higher tree depths,
as Figure 3.3 demonstrates.

We stress that these improvements can be deduced automatically using our compilation
techniques, and that no additional security proof is required for the resulting protocols.

1Experiments were performed on a single machine running 64-bit Ubuntu 16.04.5 LTS with 16 GB of
RAM and an Intel Core i7-3517U processor. Networking was simulated, and each data point is the mean
of 15 trials.
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Chapter 4

Optimization Techniques

In general, assuming we choose the most efficient reactive actively secure SMC implemen-
tation for the secure rounds of a given protocol, the optimizable overhead of the active
construction in Section 2.6 comes from the secure round C and the complexity of the in-
tegrity rounds Ii. For C, although the exact overhead will depend on the implementation,
we suppose that each input passed into C has some cost as secure state must be estab-
lished. For protocols where not all inputs are relevant to every execution, we will show
circumstances where this can be avoided. Although standard circuit optimization methods
are applicable to the Ii circuits, we will also identify situations where inequivalent simpler
circuits provide the same level of security.

We formalize three specific optimizations based on SMT formulas, such that any com-
piler with an SMT solver can automatically optimize an actively secure implementation
of a protocol. We precisely describe an algorithm for each optimization, though we leave
implementing the algorithms in a compiler to future work. In Section 4.1 we show how the
information flow from secure rounds can simplify the integrity functions in later rounds.
In Section 4.2, we show how inputs can be removed from C, reducing the cost of establish-
ing secure state. In Section 4.3 we show how these removed inputs can enable integrity
functions to be further simplified.

4.1 Known Boolean Splitting

In this optimization, we will show how the flow of information about boolean variables in
a protocol can simplify integrity round circuits. For example, consider Program 3.4. B’s
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integrity function for the first non-empty local round is

I(LB
2 ) = (C1 ∧ (N == t1)) ∨ (¬C1 ∧ (N == t2))

This captures two different computations of the next threshold N that occur depending
on the value of C1, and can be viewed as a proof that B either performed the “C1 is
true” computation correctly or the “C1 is false” computation correctly, without leaking
which computation occurred. However, A also receives the value of C1 during S1, and
hence already knows which of the computations should have been performed. Therefore
intuitively it is sufficient to check that N == t1 if C1 is true, and that N == t2 if C2

is false. This implies that rather than securely computing I(LB
2 ) it is secure to compute

something simpler, given that the value of C1 is known to A.

We generalize and formalize this intuition as follows: Suppose for party p at some round
i, I(Lp

i ) contains a boolean variable x. Let I(Lp
i )〈x := >〉 and I(Lp

i )〈x := ⊥〉 be I(Lp
i )

with x substituted with true and false respectively. If we can guarantee that ¬p knows x
before execution of Si, then we can secure Lp

i in Ii by computing one of the substituted
circuits, rather than I(Lp

i ).

Let the known boolean split for a local round Lp
i be the tuple (x, f, I>, I⊥), where x is

a boolean variable in I(Lp
i ), f is a circuit computing x using variables contained in ¬p’s

subprotocol C, . . . ,L¬pi , and I> and I⊥ are (potentially optimized) circuits that compute
I(Lp

i )〈x := >〉 and I(Lp
i )〈x := ⊥〉 respectively.

Given a known boolean split, we optimize our actively secure construction as follows:
Instead of calculating I(Lp

i ) in Ii, A and B prepare two versions of Ii, one that computes
I> for when x is true and another that computes I⊥ for when x is false. During protocol
execution, both parties calculate x (¬p uses f and x is always known to p) and continue
to the appropriate secure round. If parties disagree on x then the protocol aborts.

4.1.1 Compilation Algorithm

There are three parts required to implement this optimization: determining if a variable
is known by both parties, simplifying the substituted circuits, and ensuring both parties
know which circuit to use at runtime.

The simplest heuristic for known booleans is to consider a boolean wire known if both
parties own it. However, consider the case where A owns a boolean x and B owns some
boolean y = ¬x. B doesn’t own x, but B clearly knows its value as B can calculate x = ¬y.
Hence to be complete, we should consider a boolean variable known if parties can calculate
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it as a function of the variables that they own. This problem was studied under the name
constructive knowledge inference [16], where it was shown that given a two party protocol,
one can use SMT solvers to determine if a party can construct a formula for a variable
they do not own out of variables they do own.

To construct I> and I⊥, we substitute x with the values true and false respectively and
use circuit simplification techniques like those built into Z3 [6]. For programs where the
resulting I circuits are purely boolean, standard boolean algebra techniques apply [11, 14].

To store each circuit for runtime lookup, we create two tables. X is indexed by names
of variables and stores how each party can compute that variable’s value at runtime. T
is indexed by values of variables and stores which integrity circuit should be used for the
given runtime values.

Specifically, we describe the following procedure for each local round Li:

1. Create tables X and T . X is initially empty and has columns labelled A and B that
for each known boolean will track how that party can calculate it at runtime. T
tracks the appropriate integrity function for each party given known boolean values,
and is initialized with I(LA

i ) in a column labelled A and I(LB
i ) in a column labelled

B.

2. For each party p and each boolean variable x in I(Lp
i ) that is not already in X, we

must determine if x is known by ¬p.

If x is owned by ¬p, set f = x. Otherwise, we use a constructive knowledge in-
ference procedure [16]. The protocol we use as input is the subprotocol for ¬p up
to Ii, where each wire owned by ¬p is considered an output. Specifically, this is
C, I0,L¬p1 , I1,S1, . . . ,L¬pi . Set f to whatever the constructive knowledge inference
procedure returns. If f is empty (because x is not knowable by ¬p, or because of
failures in the underlying SMT solver calls), proceed to the next variable.

If f is not empty, add a row for x to X, with the trivial circuit x for p and circuit f
for ¬p, and continue to the next step.

3. Add a new column to T labelled x. Each row R in T has a circuit IA and IB.
Compute IA> and IA⊥ by simplifying IA〈x := >〉 and IA〈x := ⊥〉 respectively, and
compute IB> and IB⊥ similarly. Replace R with two rows, one with entries > in column
x, IA> in column A and IB> in column B, and one with entries ⊥ in column x, IA⊥ in
column A and IB⊥ in column B.
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4. Using X and T , make the following modifications to the protocol. For each party
p and variable x with a non-trivial f in X, add an assignment to Li where x is
computed using f . For each row in T , replace the normal Ii = I(LA

i ) ∧ I(LB
i ) with

a new Ii = IA ∧ IB. At runtime, both parties use their values of the variables in X
to branch the appropriate Ii.

4.1.2 Example Compilation

We demonstrate this optimization on Program 3.4, beginning with L2 as L1 is empty. T
is initialized to

A B
> (C1 ∧ (N == t1)) ∨ (¬C1 ∧ (N == t2))

As A has no local rounds in this protocol A’s integrity function is empty, i.e. it always
evaluates to true. I(LB

2 ) contains a single boolean variable C1. It is trivially known to A
as it is also owned by A, so X is updated with the trivial functions

Variable A B
C1 C1 C1

T currently has one row. The first function simplification is

I(LB
2 ) = (C1 ∧ (N == t1)) ∨ (¬C1 ∧ (N == t2))

I(LB
2 )〈C1 := >〉 = (> ∧ (N == t1)) ∨ (¬> ∧ (N == t2))

= (> ∧ (N == t1)) ∨ (⊥ ∧ (N == t2))

= (> ∧ (N == t1)) ∨ ⊥
= > ∧ (N == t1)

IB> = N == t1

which matches our intuition for what should be checked when C1 is true. The calculation
of IB⊥ = N == t2 follows symmetrically. Hence T is updated to

C1 A B
> > N == t1
⊥ > N == t2

22



C1 is the only boolean variable and so this is the final value of T for L2.

For L3, I(LB
3 ) contains the boolean variables C1 and C2. The optimization proceeds

symmetrically for C1, resulting in the following table for T :

C1 A B
> > (C2 ∧ (R == v1)) ∨ (¬C2 ∧ (R == v2))
⊥ > (C2 ∧ (R == v3)) ∨ (¬C2 ∧ (R == v4))

The remaining boolean variable C2 is also trivially known to both parties, and so X is
updated to

Variable A B
C1 C1 C1

C2 C2 C2

and after routine simplification the final value of T is

C2 C1 A B
> > > R == v1
> ⊥ > R == v2
⊥ > > R == v3
⊥ ⊥ > R == v4

Using the above tables, Program 3.4 is optimized into Program 4.1. The number
of secure gate operations in the integrity rounds has been significantly reduced, but the
amount of secure state established by C is still exponential in the depth of the tree. Next
we will show how this too can be optimized.

4.2 Removing Initial Input Commitments

In this optimization we show how to detect circumstances where providing inputs to C
adds no extra security. When a party passes an input to C, it functions as a commitment
to that input, which has a concrete cost as some secure state must be established by the
reactive SMC implementation. If an input will be used in a later secure round then there
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Program 4.1: Actively Secure Binary Classification Tree Protocol
(After known boolean splitting)

/* A’s inputs are reals x1, x2 */

/* B’s inputs are reals t0, t1, t2, v1, v2, v3, v4 */

/* Output v owned by both parties */

reactive actively secure round C
A passes inputs x1, x2
B passes inputs t0, t1, t2, v1, v2, v3, v4

reactive actively secure round S1
C1 = x1 ≤ t0

local round LB2
N =

{
t1 if C1

t2 if ¬C1

reactive actively secure round I2{
abort if not (N == t1) if C1

abort if not (N == t2) if ¬C1

reactive actively secure round S2
C2 = x2 ≤ N

local round LB3

R =


v1 if C1 ∧ C2

v2 if C1 ∧ ¬C2

v3 if ¬C1 ∧ C2

v4 if ¬C1 ∧ ¬C2

reactive actively secure round I3
abort if not (R == v1) if C1 ∧ C2

abort if not (R == v2) if C1 ∧ ¬C2

abort if not (R == v3) if ¬C1 ∧ C2

abort if not (R == v4) if ¬C1 ∧ ¬C2

reactive actively secure round S3
/* B shares R with A */

v = R
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is no additional cost to providing it earlier in C, but in certain protocols not every input is
used in every execution.

For example, consider the depth 2 binary classification tree in Figure 3.1. If x1 ≤ t0,
then execution traverses to the left, and so the entire right subtree of t2, v3, and v4 will
never be used in the execution. Furthermore, in Program 4.1, these values are passed to
C without ever being used in a subsequent S or I round. Ideally, there would be a way to
remove these commitments without compromising security.

Generally speaking, commitments are required for the security of a protocol. In our
example, if B does not provide t1 and t2 in advance, then a corrupted B could choose t1
and t2 after it already knows C1, which manipulates the next threshold value N . That
is, a corrupted B could choose t1 and t2 such that N equals any function of C1, which
is adversarial behaviour. However, our binary classification protocol has an interesting
property. Before any computation occurs, B can already manipulate N to be any function
of C1. To see this, consider that any function f from boolean to real is defined by two
values f(>) and f(⊥). As N is set to t1 when C1 is true and t2 when C2 is false, by setting
t1 = f(>) and t2 = f(⊥), B can ensure N = f(C1) before learning C1’s value. Hence no
behaviour is prevented by requiring B to commit to t1 and t2 in S0, and so intuitively these
commitments are not required for security. Similarly, in L3, B can set R = f(C1, C2) for
any f by setting v1 = f(>,>), v2 = f(>,⊥), v3 = f(⊥,>), and v4 = f(⊥,⊥), and so no
behaviour is prevented by requiring commitments to v1, v2, v3, and v4.

We call variables free when they are not passed to C. To prove that a protocol with
free variables is secure, we can construct a simulator between the “ideal world” where all
variables are sent in C and the “real world” where free variables are sent only when needed.
Standard hybrid arguments [8] allow us to model each reactive SMC round as interactions
with a trusted third party T . As is standard in simulation arguments [13] it is sufficient
to suppose one party is controlled by some deterministic adversary in the real world, and
consider how to simulate that adversary’s behaviour in the ideal world.

We can automatically determine if all adversaries are simulatable by building an SMT
formula that represents simulatability. In our example, the resulting formula captures the
idea that there is a single setting of t1 such that for all possible branches of computation, the
computation of all secure rounds will have the same value in both worlds. The satisfiability
of the formula implies that a simulator exists, which proves that it is secure to remove the
commitment to t1. We can iteratively construct these formulas to test whether it is secure
to free each of the input variables in Program 4.1. As all are satisfiable, it is secure to
remove all commitments from C for this protocol.
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4.2.1 Compilation Algorithm

In our simulator arguments, we treat each secure round in the protocol as an interaction
between A, B and a trusted third party T . T receives inputs from A and B and sends
them the output of the secure round. T is reactive, that is, they store the variables they
receive between rounds. Hence, each variable is passed to T only once in a given protocol
execution. T only receives variables that are owned by a single party (either that party’s
inputs, or variables that are computed in local rounds) as the variables that are owned by
both parties must have been computed by T in a secure round.

Note that the interactions between T and the other parties may depend on the runtime
values of specific variables. This can happen as a result of known boolean splitting, which
can affect which variables are sent to T in a given secure round, or due to an adversarially
controlled party choosing an input variable as a function of values received at runtime.
Hence different runtime values of certain variables will cause different branches of compu-
tation to occur. Each branch of computation is uniquely determined by a context C, which
is a set of assignments to boolean variables.

Note that C contains only boolean variables. If an adversary receives an integer or a
real valued x, and is then allowed to choose the value of an input variable y, then this
cannot be secure. Intuitively, there are infinitely many possible values of x and so an
adversary can choose infinitely many values for y, and no simulator can simulate all of
these cases. Hence y must be committed to before x is received. We will capture this in
our procedure by failing if an input variable is provided to the adversarial party after a
non-boolean output has been received from T .

We now discuss the mechanics of simulating an adversarially controlled party p. Sup-
pose we have two protocols P and Q, where P is known to be secure and Q is of questionable
security. We require that P and Q differ only in which variables are passed to C, that is,
which variables require initial input commitments. In essence, we will consider P and Q
to be run in two “worlds”. Following standard nomenclature, we refer to P ’s world as
the ideal world as P is known to be secure, and Q’s world as the real world. We will use
simulatability to investigate whether or not Q is also secure.

A simulator S for a party p performs the role of p in an execution of P . That is, S
sends inputs to a trusted third party T and receives outputs as if S were p itself. There is
an honest ¬p also interacting with T , but those interactions are invisible to S. As part of
its definition, S can interact with p in an execution of Q. That is, for any secure round, S
can receive inputs from p as if it were T , and send outputs to p to see how it behaves. By
interacting with p in fake executions of Q, S aims to ensure that any execution of P with
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S and ¬p will have identical output in each secure round to any execution of Q with p and
¬p. If this is possible, then Q is secure against an adversarially controlled p, as there is
nothing p can do in Q that cannot be done in the guaranteed secure protocol P .

The overall structure of a simulatability capturing SMT formula comes from the fol-
lowing intuition:

• p’s interactions in Q can be simulated in P if p is simulatable in all possible branches
of P and Q.

• A single branch is simulatable if there is identical output between all secure rounds.

• Two Si rounds are equivalent if all outputs are equal in both protocols and all outputs
are computed following the protocol, that is, the inputs and outputs of the round
satisfy the round’s integrity function.

• Two Ii rounds are equivalent if both output true.

Hence we can build an SMT formula representing the simulatability of a protocol by
building a formula for each branch consisting of formulas for each round, and taking the
conjunction over all branch formulas. The variables in the formula have the following
structure:

• The honest party ¬p has consistent inputs that it uses between both protocols. There
is one formula variable for each input.

• The adversarial party p’s inputs are only consistent given the context C, as it can
choose different values for inputs based on the assignments in the context. Hence for
each input there is a formula variable corresponding to each context C.

• As the secure round outputs can depend on the adversarially chosen inputs, each
secure round output has a formula variable for each context C.

• All of the above variables are universally quantified as they are provided by parties
besides S.

• There is one formula variable for each input S passes to T . These are existentially
quantified, as S must choose one assignment to each that satisfies any value provided
by the other parties.
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The above does not discuss how to simulate an adversary that aborts or passes inputs
that cause integrity rounds to fail. Although we omit these cases in our procedure below,
both behaviours can be covered with simple modifications. Aborts are captured by a
boolean variable for each round that specifies whether the adversary aborts. Failures can
be handled by extending the definition of round equivalence to capture that two executions
must fail at the same round. That is, two branches are equivalent not only if they have
identical output at every round, but also if both fail at the first round, or are identical
in the first round but both fail at the second round, etc. Each of these cases can be
captured by a formula and each formula can be joined by disjunction, but this complicates
the formulas significantly and detracts from the intuition behind the process. As such,
we limit our procedure to capture the simulatability of adversaries that do not cause a
protocol to abort early. A procedure that handles aborting adversaries can be found in
Appendix A.

We provide the following procedure to create an SMT formula. The formula has three
parts. U contains universally quantified variables, E contains existentially quantified vari-
ables, and F is a boolean valued circuit over these variables. This represents a formula
with the form “for all assignments to variables in U , does there exist an assignment to
variables in E such that F evaluates to true”? The procedure has a recursive inner part,
which can branch into many different calls that return different values for U , E, and F .
These will be merged into one formula by the outer procedure, which has inputs p, P , and
Q. The inner procedure has the following inputs:

• U , the set of universally quantified variables.

• E, the set of existentially quantified variables.

• FQ, the formula representing the successful completion of p’s execution of Q

• F P , the formula representing the successful completion of S’s execution of P

• C, a set of assignments to boolean variables that occur throughout a branch of
execution.

• n, a boolean flag which tracks whether a non-boolean output has been received.

• S, which tracks the current secure round in both protocols.

create formula(p, P,Q) is defined as:
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1. Call create formula’({}, {},>,>, {},⊥, C), and aggregate each returned (U ′, E ′, F ′)
into sets (U∗, E∗, F ∗). (If any call returns ⊥, abort procedure.)

2. Let U =
⋃

U ′∈U∗ U
′.

3. Let E =
⋃

E′∈E∗ E
′.

4. Let F =
∧

F ′∈F ∗ F
′.

5. Return (U,E, F ).

where create formula’(U,E, FQ, F P , C, n, S) is:

1. If S = ∅, return (U,E, (FQ ⇒ F P )).

2. Let IPp be the set of variables used in round S in P that are owned solely by p and
are not already present in E. If n is true and IPp is non-empty, return ⊥. Otherwise,
for each x in IPp , add a new variable x′C in E.

3. Let IQp be the set of variables used in round S in Q that are owned solely by p and
are not already present in U . For each x in IQp , add a new variable xC in U .

4. Let I¬p be the set of variables used in round S in either P or Q that are owned solely
by ¬p and are not already present in U . For each x in I¬p, add a new variable x to
U .

5. If S is a secure round Si:

(a) By our restrictions on the forms of P and Q, S has the same outputs in both
protocols. Let S be the circuit computed by S, and let O be the set of its
outputs.

(b) For every variable x in O, add a variable xC to U .

(c) Let Op be the subset of O that is owned by p. If Op contains any non-boolean
variables, set n to >.

(d) Let IP and IQ be the integrity formula I(S).

6. If S is a secure round Ii:

(a) Let IP be the circuit computed by I in P and IQ be the circuit computed by
I in Q.
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7. In IP , every variable x that is solely owned by p exists in E with the form x′C .
Replace all such x with the matching x′C form in IP .

8. In IQ, every variable x that is solely owned by p exists in U with the form xC .
Replace all such x with the matching xC form in IQ.

9. Update F P to F P ∧ IP .

10. Update FQ to FQ ∧ IQ.

11. Let S ′ be the secure round that follows S. If S is the final secure round, then set
S ′ = ∅.

12. If Op contains boolean variables, then let X be the set of assignments to all boolean
variables in Op. For each X ′ in X

(a) Let C ′ = C ∪X ′.

(b) Call create formula’(U,E, F P , FQ, C ′, n, S ′)

13. Otherwise, call create formula’(U,E, F P , FQ, C, n, S ′)

With the above method to create SMT formulas, we describe the following method for
securely removing commitments from a protocol P . It considers every input as a candidate
for freeing, which is a simple approach that results in many potentially inefficient calls to
the SMT solver. We conjecture that there are heuristics that improve the efficiency of this
process.

1. Let P ′ = P .

2. For each variable x passed in C in P :

(a) Create protocol Q′ by removing x from C in P ′.

(b) Let FA be create formula(A,P ′, Q′) and FB be create formula(B,P ′, Q′).

(c) If either call fails, continue to the next variable.

(d) Otherwise, use the SMT solver to check FA and FB.

(e) If both are satisfiable, Q′ is secure, so let P ′ = Q′.

(f) Otherwise, continue to the next variable.

3. Output P ′ as the optimized secure P .
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Program 4.2: P : Depth 1 Binary Classification Tree Protocol, With Commits

/* A’s input is real x1, B’s inputs are reals t0, v1, v2 */

/* Output v owned by both parties */

reactive actively secure round C
A passes input x1
B passes inputs t0, v1, v2

reactive actively secure round S1
C1 = x1 ≤ t0

local round LB2
R =

{
v1 if C1

v2 if ¬C1

reactive actively secure round I2{
abort if not (R == v1) if C1

abort if not (R == v2) if ¬C1

reactive actively secure round S2
/* B shares R with A */

v = R

Program 4.3: Q: Depth 1 Binary Classification Tree Protocol, Without Commits

/* A’s input is real x1, B’s inputs are reals t0, v1, v2 */

/* Output v owned by both parties */

/* C is empty */

reactive actively secure round S1
C1 = x1 ≤ t0

local round LB2
R =

{
v1 if C1

v2 if ¬C1

reactive actively secure round I2{
abort if not (R == v1) if C1

abort if not (R == v2) if ¬C1

reactive actively secure round S2
/* B shares R with A */

v = R
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4.2.2 Example Compilation

The above procedure is sufficient to free each variable in Program 4.1 one by one. Showing
the details of each step of this process is considerably tedious and the intuition is best
demonstrated by a simpler example. We will walk through the procedure that compares
a shorter binary classification tree protocol P where all variables are committed to (Pro-
gram 4.2) directly to a protocol Q where no variables are committed to (Program 4.3). We
begin by examining the simulatability of party B.

• create formula(B,P,Q) calls create formula’({}, {},>,>, {},⊥, C).

• The variables that B passes into C in P are t0, v1, v2. Hence E = {t′0, v′1, v′2} without
superscript as C is empty.

• B passes in no inputs to C in Q, so nothing is added to U .

• A passes in x1 in P , so it is added to U .

• S is C which is neither a S or I round, hence F P and FQ are not updated.

• create formula’ is called with S ′ = S1. C is still empty and so all C superscripts
will be empty in this call.

• In P , B passes no new inputs in S1, so nothing is added to E.

• In Q, B passes in t0, so t0 is added to U .

• In P , A passes no new inputs. In Q, A passes in x1 but it is already in U so nothing
is added.

• S1 computes the comparison C1 between A’s value x1 and B’s threshold t0. Hence
O is {C1} which is added to U , and I(S) = C1 == x1 ≤ t0.

• By variable substitution, IP = C1 == x1 ≤ t′0.

• By variable substitution, IQ = C1 == x1 ≤ t0 (t0 is replaced with tC0 , but C is
empty.)

• F P is updated to > ∧ (C1 == x1 ≤ t′0) and FQ is updated to > ∧ (C1 == x1 ≤ t0),
which trivially simplify to (C1 == x1 ≤ t′0) and (C1 == x1 ≤ t0). Individually,
F P and FQ capture that C1 was computed successfully in both protocols. FQ ⇒
F P captures that whenever C1 is computed successfully in Q it is also computed
identically in P , and hence that S1 is equivalent in both protocols.
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• The next secure round S ′ is I2.

• OB contains C1, and the set of assignments is {C1 = >, C1 = ⊥}. Hence cre-
ate formula’ is called twice, once with C = {C1 = >} and once with C = {C1 = ⊥}.
We will show the {C1 = >} call and generate the {C1 = ⊥} output symmetrically.

• In P , the classification label R is passed as input to I2 by B, so R′{C1=>} is added
to E.

• In Q, when C1 = >, the label v1 is passed as input along with R. Hence R{C1=>}

and v
{C1=>}
1 are added to U .

• A passes no inputs to I2 and so U is not updated.

• As C1 = >, I = R == v1.

• By variable substitution, IP = R′{C1=>} == v′1.

• By variable substitution, IQ = R{C1=>} == v
{C1=>}
1 .

• F P is updated to (C1 == x1 ≤ t′0) ∧ (R′{C1=>} == v′1).

• FQ is updated to (C1 == x1 ≤ t0) ∧ (R{C1=>} == v
{C1=>}
1 )

• create formula’ is called with S ′ is set to S2, which adds v{C1=>} to U , and updates
F P and FQ with (v{C1=>} == R′{C1=>}) and (v{C1=>} == R{C1=>}) respectively.

As S2 is the last round, create formula’ returns on next call.

Hence the {C1 = >} branch outputs

U ={x1, t0, C1, R
{C1=>}, v

{C1=>}
1 , v{C1=>}}

E ={t′0, v′1, v′2, R′{C1=>}}
F =((C1 == x1 ≤ t0) ∧ (R{C1=>} == v

{C1=>}
1 ) ∧ (v{C1=>} == R{C1=>}))⇒

((C1 == x1 ≤ t′0) ∧ (R′
{C1=>} == v′1) ∧ (v{C1=>} == R′{C1=>}))
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Symmetrically, the {C1 = ⊥} branch outputs

U ={x1, t0, C1, R
{C1=⊥}, v

{C1=⊥}
2 , v{C1=⊥}}

E ={t′0, v′1, v′2, R′{C1=⊥}}
F =((C1 == x1 ≤ t0) ∧ (R{C1=⊥} == v

{C1=⊥}
2 ) ∧ (v{C1=⊥} == R{C1=⊥}))⇒

((C1 == x1 ≤ t′0) ∧ (R′
{C1=⊥} == v′2) ∧ (v{C1=⊥} == R′{C1=⊥}))

After aggregation, the final output of create formula(B,P,Q) is

∀x1, t0, C1, R
{C1=>}, R{C1=⊥}, v

{C1=>}
1 , v

{C1=⊥}
2 , v{C1=>}, v{C1=⊥}

∃t′0, v′1, v′2, R′{C1=>}, R′
{C1=⊥}

(((C1 == x1 ≤ t0) ∧ (R{C1=>} == v
{C1=>}
1 ) ∧ (v{C1=>} == R{C1=>}))⇒

((C1 == x1 ≤ t′0) ∧ (R′
{C1=>} == v′1) ∧ (v{C1=>} == R′{C1=>})))

∧
(((C1 == x1 ≤ t0) ∧ (R{C1=⊥} == v

{C1=⊥}
2 ) ∧ (v{C1=⊥} == R{C1=⊥}))⇒

((C1 == x1 ≤ t′0) ∧ (R′
{C1=⊥} == v′2) ∧ (v{C1=⊥} == R′{C1=⊥})))

This formula is indeed satisfiable. With the exception of v′1 and v′2, every primed variable
in E has an equivalent non-primed variable in U with the same label C. This implies that
a simulator S can directly copy the value of these variables from the simulated execution
of Q to their execution of P with T . This corresponds to a partial assignment of the
primed variables in E to their non-primed versions in U , e.g. setting t′0 = t0. After partial
assignment and routine boolean formula simplification, the remaining formula is

∀v{C1=>}
1 , v

{C1=⊥}
2 , R{C1=>}, R{C1=⊥}

∃v′1, v′2
((R{C1=>} == v

{C1=>}
1 )⇒ (R{C1=>} == v′1))

∧
((R{C1=⊥} == v

{C1=⊥}
2 )⇒ (R{C1=⊥} == v′2))

This formula contains the essential difference between P and Q, which is that in Q, v1
and v2 can be chosen as a function of C1. Clearly, it is satisfiable with v′1 = v

{C1=>}
1 and
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v′2 = v
{C1=⊥}
2 . This captures that S can force equivalency by simulating a C1 = > execution

and a C1 = ⊥ execution of P to extract v
{C1=>}
1 and v

{C1=⊥}
2 , and then providing those to

T as v′1 and v′2 respectively. Indeed, given any satisfying assignment to a returned formula,
the corresponding simulator proceeds by simulating each execution branch that exists in
any variable label in the assignment. This suggests that any SMT solver that returns a
satisfying assignment as proof of satisfiability could be used to programmatically create
the appropriate simulator, although we do not describe the details of such a procedure
here.

The equivalent create formula call for party A returns a formula that is trivially
satisfiable, as each variable in E has a corresponding variable in U . As both formulas are
satisfiable, Q is secure.

Program 4.4 shows the result of this optimization on Program 4.1. One variable from
Program 4.1 is freed at each step of the compilation, and the security of the resulting
protocols follows very similarly to the example above. As all variables have been freed, C
is removed entirely. This brings the overall asymptotic complexity of the actively secure
classification protocols down to match that of the passively secure protocols, i.e. they are
both linear in tree depth. The remaining structural difference between passively secure
Program 4.4 and actively secure Program 3.3 is in the integrity rounds, which can be
further optimized by our next technique.

4.3 Integrity Function Reduction

In this optimization, we exploit free variables to enable simpler integrity functions to be
used without affecting security. As a motivation, consider an execution of Program 4.4
and suppose the first comparison resulted in C1 == >. An honest B would set the next
threshold N to t1, which is checked by the corresponding integrity function I2 = N == t1.
However as t1 is free, an adversarial B can simultaneously choose both N and t1. As
such, an adversary has only two options — they can choose to send an arbitrary but equal
value for N and t1 and continue the protocol, or they can send different values, causing
I2 to evaluate false and the protocol to abort. As an unrestricted adversary can also
abort arbitrarily and choose N arbitrarily, intuitively I2 is not preventing any adversarial
behaviour and can be removed entirely.

More generally, the purpose of integrity rounds is to validate that newly provided
inputs have been generated following the protocol. As such, integrity rounds check that
certain restrictions over the possible values of a party’s variables are being met, e.g. that
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Program 4.4: Actively Secure Binary Classification Tree Protocol
(After known boolean splitting, commitments removed)

/* A’s inputs are numbers x1, x2 */

/* B’s inputs are numbers t0, t1, t2, v1, v2, v3, v4 */

/* Output v owned by both parties */

reactive actively secure round S1
C1 = x1 ≤ t0

local round LB2
N =

{
t1 if C1

t2 if ¬C1

reactive actively secure round I2{
abort if not (N == t1) if C1

abort if not (N == t2) if ¬C1

reactive actively secure round S2
C2 = x2 ≤ N

local round LB3

R =


v1 if C1 ∧ C2

v2 if C1 ∧ ¬C2

v3 if ¬C1 ∧ C2

v4 if ¬C1 ∧ ¬C2

reactive actively secure round I3
abort if not (R == v1) if C1 ∧ C2

abort if not (R == v2) if C1 ∧ ¬C2

abort if not (R == v3) if ¬C1 ∧ C2

abort if not (R == v4) if ¬C1 ∧ ¬C2

reactive actively secure round S3
/* B shares R with A */

v = R
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N == t1. However, we have no guarantee that the integrity functions generated by our
compilation are the simplest functions that check these restrictions. Given an integrity
function I, if an adversary can use inputs satisfying a simpler integrity function I ′ to
ensure that I is always satisfied, then I ′ is a secure replacement for I. In the above
example, N == t1 can be trivially satisfied by the adversary and so N == t1 can be
replaced with an empty function, but in general more nuanced simplifications may exist.
Given a candidate simplified integrity function, we can check if it is secure to use this
function using the same simulatability SMT formula construction described in Section 4.2.
We describe some formula simplification methods below.

4.3.1 Compilation Algorithm

Our procedure for simplifying integrity functions is the following:

1. Let P ′ = P .

2. For each integrity circuit I in any integrity round in P :

(a) Create candidate I ′ from I.

(b) Let Q′ be a copy of P ′ that uses I ′ instead of I.

(c) Let FA be create formula(A,P ′, Q′) and FB be create formula(B,P ′, Q′).

(d) If either call fails, continue to the next round.

(e) Otherwise, use the SMT solver to check FA and FB.

(f) If both are satisfiable, Q′ is secure, so let P ′ = Q′.

3. Output P ′ as the optimized secure P .

This procedure does not specify how a candidate I ′ should be created from I. In
general, any process can be used, as any insecure candidate I ′ will be caught by the
unsatisfiability of the resulting create formula output. Hence a simple heuristic is to
always try the empty formula I ′ = >. Of course, this is likely to fail for most integrity
rounds, as in general there is a meaningful restriction on inputs that needs to be checked.
How to optimally simplify an integrity function is an open problem, but we present some
partial results here.

For any integrity round I, we call a variable x loose if it is possible for I to be the only
secure round in the protocol execution that uses x as input. If we can simplify I such that
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it does not use x then it is possible that no secure state is established for x, which reduces
the concrete cost of execution. Our simplification procedures remove all loose variables
from all I rounds, thereby reducing the cost of establishing secure state.

Our simplification procedures do not reduce integrity rounds in isolation. Suppose we
have two integrity rounds I1 and I2 that both contain a loose variable x owned by party
A, and let IA1 and IA2 be the circuits checking the integrity of A’s variables in I1 and I2
respectively. If there exists I ′A1 that does not depend on x such that when it is satisfied
an adversary can always generate a value for x that satisfies IA1 , then I ′A1 can be used.
Similarly, if such an I ′A2 can be found then it can be used as well, removing x entirely from
I1 and I2. However, there is no guarantee that the values for x produced by the adversary
in each simulated round will agree with each other, and if they can be inconsistent then
the simplified integrity rounds will result in unsatisfiable formulas. Hence to simplify I2,
we simplify the circuit IA1 ∧ IA2 , rather than just IA2 . This guarantees that the simplified
circuit will be consistent with the simplified IA1 used in the reduced I1 round.

We provide two simplification procedures for restricted classes of protocols. The first is
for protocols where all integrity functions are pure boolean circuits, that is, all variables are
boolean valued. The second is for protocols where all integrity functions check inequalities
over real numbers. Hence our I ′ candidate creation process is as follows:

1. On input Ij, define CA and CB as

CA =

j∧
i=0

IAi

CB =

j∧
i=0

IBi

where Ipi is the circuit checking party p’s input integrity in round Ii in the branch
of execution corresponding to Ij.

2. For p in {A,B}, if Cp is a pure boolean circuit, or consists only of conjunctions of
real number inequalities, simplify it using the appropriate procedure below to create
C ′p. Otherwise, set C ′p = >.

3. Output I ′j as an integrity round that checks C ′A ∧ C ′B.

We now discuss our pure boolean circuit simplification procedure. Suppose we have
some pure boolean circuit C with loose variable x. Consider the modified circuit C ′ =
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C〈x := >〉 ∨ C〈x := ⊥〉. C ′ is satisfiable if and only if C is satisfiable, and C ′ does not
contain x, so this makes C ′ a suitable candidate circuit. Hence we can reduce C as follows:

1. For all loose variables x in C:

(a) Let C ′ = C〈x := >〉 ∨ C〈x := ⊥〉.
(b) Optionally, use boolean formula simplification techniques to simplify C ′.

(c) Let C = C ′.

2. Return C.

In the worst case C ′ will have twice as many gates as C, but in practice boolean algebra
techniques [11, 14] may simplify C ′ significantly. Hence this simplification allows a protocol
designer to balance the concrete cost of a commitment with the concrete cost of secure
gate evaluations.

Finally, we present our simplification procedure for real inequalities. When C consists of
conjunctions of inequalities over real numbers, we have an efficient procedure that removes
loose variables without increasing the number of gates in the circuit. The intuition is
simple. Given some loose variable x, if x == y then an adversary can trivially pass y as
the value for x. If we require w < x < y then as long as w < y, there is always some real
value between w and y that an adversary can pass for x. We can iteratively remove loose
variables from inequalities based on this intuition.

Any conjunction of inequalities like

(a == b) ∧ (c ≥ a) ∧ (d < e)

has an associated graph representation like

a b

c

d e
==

≤

<

Specifically, inequalities can be transformed into graphs with the following structure:
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• There is one node for every variable in the inequalities.

• There is an equals edge x
==←→ y if x == y is present in the inequalities.

• There is a less-than-or-equals edge x
≤−→ y if x ≤ y or y ≥ x is present in the

inequalities.

• There is a less-than edge x
<−→ y if x < y or y > x is present in the inequalities.

Suppose we have a graph G = (V,E) formed by the above process, and let L be the
subset of nodes corresponding to loose variables. Then we can remove all free nodes from
G through the following process.

1. While there exist equals edges x
==←→ y where x ∈ L, merge x into y, that is:

(a) For each outgoing edge e = (x, z) add edge e′ = (y, z) with same type as e.

(b) For each incoming edge e = (z, x) add edge e′ = (z, y) with same type as e.

(c) Delete x and all its edges.

2. While there exist nodes x ∈ L:

(a) Let O be the nodes outgoing from x, that is {y | (x, y) ∈ E}.
(b) For each z ∈ O and each incoming edge e = (y, x), create a new edge e′ = (y, z).

If (y, x) and (x, z) are both are less-than-or-equals edges, then e′ is as well.
Otherwise, e′ is a less-than edge.

(c) If this creates an edge of the form x
<−→ x, fail. (This implies the original inequal-

ities were unsatisfiable, which does not occur for integrity functions created by
our compilation process.)

(d) Delete x and all its edges.

3. Delete any self edges of the form x
≤−→ x.

4. Delete any duplicate edges from G.

5. Delete any connected components that only contain nodes from L.

6. Delete any nodes that have no edges.
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The reduced inequality graph is converted back to a formula by creating a clause for
each edge and taking the conjunction over them.

As an example, consider the following integrity function

(f1 == c1) ∧ (f1 < c2) ∧ (c2 < f2) ∧ (f2 < c3) ∧ (f2 < c4)

where f1 and f2 are loose variables and c1, c2, c3 and c4 are not.

This is transformed into the following graph.

c1 f1 c2 f2 c3

c4

== < < <

<

First, equals edges are removed by merging f1 with c1.

c1 c2 f2 c3

c4

< < <

<

Next, f2 is removed and its less-than edges are transferred to c2.

c1 c2 c3

c4

< <

<
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The resulting graph is transformed back into the inequality function

(c1 < c2) ∧ (c2 < c3) ∧ (c2 < c4)

This process ensures that as long as the reduced function is satisfied, there is a satisfiable
assignment to f1 and f2 in the original function, which makes the reduced function a
good candidate for I ′. As we will show below, the inequality reduction procedure handles
the integrity functions of median computation and is sufficient to automatically recreate
Aggarwal et al.’s actively secure two party median protocol [1].

We conjecture that our boolean reduction procedure and inequality reduction procedure
are guaranteed to produce I ′ formulas that can be securely used instead of I. If this is
true, our procedure would not need to check the satisfiability of the simulatability formulas
when these procedures are used. We leave proving this to future work, along with finding
secure simplification procedures for other classes of integrity formulas.

Program 4.5: Actively Secure Binary Classification Tree Protocol
(With all optimizations applied)

/* A’s inputs are reals x1, x2 */

/* B’s inputs are reals t0, t1, t2, v1, v2, v3, v4 */

/* Output v owned by both parties */

actively secure round S1
C1 = x1 ≤ t0

local round LB2
N =

{
t1 if C1

t2 if ¬C1

actively secure round S2
C2 = x2 ≤ N

local round LB3

R =


v1 if C1 ∧ C2

v2 if C1 ∧ ¬C2

v3 if ¬C1 ∧ C2

v4 if ¬C1 ∧ ¬C2

actively secure round S3
/* B shares R with A */

v = R
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4.3.2 Example Compilation

Consider running this procedure on Program 4.4. At I2, the integrity function is N == ti
where i ∈ {1, 2}. ti is loose as neither are used in any other secure round, and N is not as
it is definitely used in S2. Hence the inequality reduction procedure merges ti to N leaving
a single node without edges. This node is removed, leaving the empty function. I3 is
removed symmetrically and hence all reduced integrity functions are empty. The resulting
protocol without integrity functions is Program 4.5. Note that as no inputs are reused
between secure rounds in Program 4.5, the reactive functionality required in Program 4.4
is no longer required.

Although our procedure would generate Program 4.4 by removing one integrity function
at a time, for simplicity we will show the generated SMT formula when all are removed
simultaneously. That is, we consider an execution of create formula where P is Pro-
gram 4.4 and Q is Program 4.5, beginning with party B.

Consider the create formula’ call corresponding to the branch {C1 == >, C2 == >}.
Omitting the context superscripts for clarity, the generated formula is

∀t0, N,R, x1, x2, C1, C2, v

∃t′0, t′1, N ′, v′1, R′
((C1 == x1 <= t0) ∧ (C2 == x2 <= N) ∧ (v == R))

⇒
((C1 == x1 <= t′0) ∧ (N ′ == t′1) ∧ (C2 == x2 <= N ′) ∧ (R′ == v′1) ∧ (v == R′))

This is trivially satisfiable with t′0 = t0, t′1 = N ′ = N , and v′1 = R′ = R, which
corresponds to a simulator that extracts the thresholds that the adversary passes in Q and
uses them to trivially satisfy the integrity functions in P . The adversary can do this for
each branch of the computation, and so the full formula representing the conjunction over
all branches is satisfiable symmetrically. This shows the simulatability of party B, and as
there is no difference between P and Q for party A, Program 4.5 securely computes the
binary classification tree protocol.

Program 4.5 is our fully optimized protocol. It differs from the passively secure Pro-
gram 3.3 only in that the secure rounds must be computed using actively secure SMC. In
essence, this demonstrates that for this specific protocol our optimizations remove all the
inefficiencies generated by Goldreich compilation. If we apply our optimizations to binary
classification tree protocols of increasing tree depth, the resulting protocols have exponen-
tially fewer secure gate evaluations than the single mode actively secure protocol for the
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same tree depth. We do note that each additional tree depth adds one round of secure
computation, so as constant round complexity SMC protocols exist [2, 20] the mixed mode
protocols have a linear increase in the rounds of communication compared to any single
mode protocol for the same tree depth.
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Chapter 5

Compilation Example: Median
Computation

Aggarwal et al. contributed a mixed mode protocol [1] for calculating the median element
over two parties’ input sets. This protocol is a well-known example of an optimized actively
secure mixed mode protocol. At each round, both parties calculate the medians over their
own input sets, securely compare them, and discard half of their inputs based on the
comparison result. To achieve active security, Aggarwal et al. showed that it is sufficient
to have a reactive functionality track the maximum and minimum values of each party’s
comparison inputs and check only that new inputs respect these bounds. We show here
that our optimizations can automatically recreate their optimized protocol.

Program 5.1 is the instantiation of their protocol with four elements per party. It is
passively secure, as proved manually by Aggarwal et al. and automatically deduced by
the passively secure compilation techniques described in 2.5. We begin by applying the
unoptimized actively secure construction of Section 2.6 to create Program 5.2.

We apply our optimizations in order to create Program 5.2. Firstly, as C1 and C2 are
known to both parties, known boolean splitting simplifies all integrity functions. Next,
all inputs are trivially freed from C. The simulatability formula is trivially satisfiable as
all inputs are immediately passed into I0, and hence they cannot be maliciously chosen
as a function of runtime information. Although the integrity functions cannot be fully
simplified away as in Program 4.5, they can be simplified significantly by our inequality
reduction procedure.

The reduction proceeds very similarly for both parties in each branch, so we demon-
strate it only for party A when C1 and C2 are both true. The circuit corresponding to I0
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Program 5.1: Passively Secure Median Computation

/* A’s inputs are reals s.t. a1 < a2 < a3 < a4 */

/* B’s inputs are reals s.t. b1 < b2 < b3 < b4 */

/* Output r owned by both parties */

passively secure round S1
C1 = a2 ≤ b2

local round LA2
MA

2 =

{
a3 if C1

a1 if ¬C1

local round LB2
MB

2 =

{
b1 if C1

b3 if ¬C1

passively secure round S2
C2 = MA

2 ≤MB
2

local round LA3

MA
3 =


a4 if C1 ∧ C2

a3 if C1 ∧ ¬C2

a2 if ¬C1 ∧ C2

a1 if ¬C1 ∧ ¬C2

local round LB3

MB
3 =


b1 if C1 ∧ C2

b2 if C1 ∧ ¬C2

b3 if ¬C1 ∧ C2

b4 if ¬C1 ∧ ¬C2

passively secure round S3
v = min(MA

3 ,MB
3 )
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Program 5.2: Actively Secure Median Computation (Unoptimized)

reactive actively secure round C
A passes inputs a1, a2, a3, a4
B passes inputs b1, b2, b3, b4

reactive actively secure round I0
abort if not (a1 < a2)∧(a2 < a3)∧(a3 < a4)∧(b1 < b2)∧(b2 < b3)∧(b3 < b4)

reactive actively secure round S1
C1 = a2 ≤ b2

local round LA2
MA

2 =

{
a3 if C1

a1 if ¬C1

local round LB2
MB

2 =

{
b1 if C1

b3 if ¬C1

reactive actively secure round I2
abort if not(
(C1∧(MA

2 == a3))∨(¬C1∧(MA
2 == a1))

)
∧
(
(C1∧(MB

2 == b1))∨(¬C1∧(MB
2 == b3))

)
reactive actively secure round S2

C2 = MA
2 ≤MB

2

local round LA3

MA
3 =


a4 if C1 ∧ C2

a3 if C1 ∧ ¬C2

a2 if ¬C1 ∧ C2

a1 if ¬C1 ∧ ¬C2

local round LB3

MB
3 =


b1 if C1 ∧ C2

b2 if C1 ∧ ¬C2

b3 if ¬C1 ∧ C2

b4 if ¬C1 ∧ ¬C2

reactive actively secure round I3
abort if not(
(C1 ∧ C2 ∧ (MA

3 == a4)) ∨ (C1 ∧ ¬C2 ∧ (MA
3 == a3)) ∨

(¬C1 ∧ C2 ∧ (MA
3 == a2)) ∨ (¬C1 ∧ ¬C2 ∧ (MA

3 == a1))
)
∧(

(C1 ∧ C2 ∧ (MB
3 == b1)) ∨ (C1 ∧ ¬C2 ∧ (MB

3 == b2)) ∨
(¬C1 ∧ C2 ∧ (MB

3 == b3)) ∨ (¬C1 ∧ ¬C2 ∧ (MB
3 == b4))

)
reactive actively secure round S3

v = min(MA
3 ,MB

3 )
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is IA0 = (a1 < a2) ∧ (a2 < a3) ∧ (a3 < a4). All variables are loose except a2 which will be
definitely used in S1. Hence all other variables are removed leaving a2 edges. Hence a2 is
removed as well, which results in an empty formula >. I1 is empty, and the circuit corre-
sponding to I2 is IA0 ∧IA2 = (a1 < a2)∧ (a2 < a3)∧ (a3 < a4)∧ (MA

2 == a3). All variables
are loose except a2 which has already been used in S1 and MA

2 which will definitely be
used in S2. The reduction procedure merges a3 into MA

2 and discards everything except
a2 < MA

2 . Similarly, the circuit corresponding to I3 is reduced to MA
2 < MA

3 .

The satisfiability of the corresponding simulatability formulas captures that a simulator
S for A can do the following. By passing C1 = > and C2 = > to party A, S receives a2,
MA

2 , and MA
3 such that a2 < MA

2 < MA
3 . S can choose a′1 less than a2 and set a′2 = a2,

a′3 = MA
2 , a′4 = MA

3 , and of course M ′A
2 = MA

2 and M ′A
3 = MA

3 . By providing these to T , S
is guaranteed to satisfy the ideal world integrity formulas a′1 < a′2 < a′3 < a′4, M

′A
2 == a′3

and M ′A
3 == a′4 that arise during this branch of execution. The simulatability of each

other branch, and of the whole protocol execution for A and B, follows symmetrically.

In summary, unlike the fully optimized binary classification protocol Program 4.5, the
optimized median protocol contains some reduced integrity functions that must be checked
before S2 and S3. They have been optimized significantly to just the conjunction of two
comparisons. The optimized integrity functions check that at each round, the next partial
median Mp

i is correctly bounded by partial medians from previous rounds. This can be
viewed as a reactive functionality that tracks an updating upper and lower bound for
each party. Each subsequent Mp

i updates the bounds for party p, and an honest party
will always send partial medians that respect these bounds. Hence the integrity functions
detect whether a party has deviated from the protocol by sending an Mp

i that does not
correspond with their respective bounds. This is exactly the strategy for achieving active
security that is proposed by Aggarwal et al. in [1]. As such, our optimizations automatically
recreate their optimized actively secure protocol.
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Program 5.3: Actively Secure Median Computation (Optimized)

/* A’s inputs are reals s.t. a1 < a2 < a3 < a4 */

/* B’s inputs are reals s.t. b1 < b2 < b3 < b4 */

/* Output r owned by both parties */

reactive actively secure round S1
C1 = a2 ≤ b2

local round LA2
MA

2 =

{
a3 if C1

a1 if ¬C1

local round LB2
MB

2 =

{
b1 if C1

b3 if ¬C1

reactive actively secure round I2{
abort if not (a2 < MA

2 ) ∧ (MB
2 < b2) if C1

abort if not (MA
2 < a2) ∧ (b2 < MB

2 ) if ¬C1

reactive actively secure round S2
C2 = MA

2 ≤MB
2

local round LA3

MA
3 =


a4 if C1 ∧ C2

a3 if C1 ∧ ¬C2

a2 if ¬C1 ∧ C2

a1 if ¬C1 ∧ ¬C2

local round LB3

MB
3 =


b1 if C1 ∧ C2

b2 if C1 ∧ ¬C2

b3 if ¬C1 ∧ C2

b4 if ¬C1 ∧ ¬C2

reactive actively secure round I3
abort if not (MA

2 < MA
3 ) ∧ (MB

3 == MB
2 ) if C1 ∧ C2

abort if not (MA
3 == MA

2 ) ∧ (MB
3 == b2) if C1 ∧ ¬C2

abort if not (MA
3 == a2) ∧ (MB

3 == MB
2 ) if ¬C1 ∧ C2

abort if not (MA
3 == MA

2 ) ∧ (MB
2 < MB

3 ) if ¬C1 ∧ ¬C2

reactive actively secure round S3
v = min(MA

3 ,MB
3 )
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Chapter 6

Conclusion

In this thesis, we have shown that it is feasible to compile circuits for two party func-
tionalities into efficient mixed mode two party protocols that are actively secure. Our
results build on the efficient passively secure mixed mode protocol compilation techniques
of Kerschbaum [12] and Rastogi et al. [16] by applying novel optimization techniques to
an inefficient passive-to-active Goldreich compilation [8]. Following the prior work on pas-
sively secure compilation techniques [16], we formalize our optimizations as computational
problems that can be solved with SMT solvers like Z3 [6]. Our compilation process is
robust enough to generate Aggarwal et al.’s extremely efficient actively secure protocol for
calculation of the median element [1]. Furthermore, our compilation process generates ex-
tremely asymptotically efficient protocols for a variant of classification using binary trees.
Compared to single mode binary classification tree protocols, the optimized mixed mode
protocols have an exponential decrease in computation and communication cost with a
linear increase in rounds of communication. We measured a corresponding concrete de-
crease in protocol runtime, which confirms the practical effectiveness of our optimizations.
We believe this represents an important step in the study of automatic optimizations for
actively secure computation protocols, and that implementing these optimizations in a
compiler would be valuable future work.
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Appendix A

Simulatability Formulas For Aborting
Adversaries

Here we describe how to capture the simulatability of arbitrary adversaries, i.e. adversaries
that can cause execution to abort early. The overall structure of the resulting SMT formulas
comes from the following intuition:

• Secure rounds can be equivalent in success, or equivalent in failure.

• Two Si rounds are equivalent in failure if the adversary aborts in both.

• Two Si rounds are equivalent in success if all outputs are equal in both protocols, all
outputs match the integrity function, and neither protocol is aborted.

• Two Ii rounds are equivalent in failure if both output false, or if the adversary aborts
in both. (The honest party will only see T abort in either case.)

• Two Ii rounds are equivalent in success if both output true and neither protocol is
aborted.

• A single branch of protocol execution is simulatable if both protocols are equivalent
in success at every round, or if they are equivalent in failure the first round, or if
they are equivalent in success in the first round and identical in success at the second
round, etc. That is, they are equivalent in success up to some specific round, and
then both fail.
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We augment create formula’ from Section 4.2 to handle the potential for failure. In
addition to the standard procedure there is as additional boolean variable for each secure
round representing whether the adversary aborts and another representing whether the
simulator aborts. The procedure has the following inputs:

• U , the set of universally quantified variables.

• E, the set of existentially quantified variables.

• F , the formula representing equivalence up the current round.

• B, the formula representing equivalent success up to the current round.

• n, a boolean flag which tracks whether a non-boolean output has been received.

• S, which tracks the current secure round in both protocols.

create formula” is called from create formula(p, P,Q) defined in Section 4.2, and
is defined as create formula”(U,E, F,B,C, n, S):

1. If S = ∅, set F = F ∨B and return (U,E, F ).

2. Let IPp be the set of variables used in round S in P that are owned solely by p and
are not already present in E. If n is true and IPp is non-empty, return ⊥. Otherwise,
for each x in IPp , add a new variable x′C in E.

3. Add a boolean variable a′CS to E, representing whether S aborts this round in P .

4. Let IQp be the set of variables used in round S in Q that are owned solely by p and
are not already present in U . For each x in IQp , add a new variable xC in U .

5. Add a boolean variable aCS to U , representing whether p aborts this round in Q.

6. Let I¬p be the set of variables used in round S in either P or Q that are owned solely
by ¬p and are not already present in U . For each x in I¬p, add a new variable x to
U .

7. If S is a secure round Si:

(a) By our restrictions on the forms of P and Q, S has the same outputs in both
protocols. Let S be the circuit computed by S, and let O be the set of its
outputs.

56



(b) For every variable x in O, add a variable xC to U .

(c) Let Op be the subset of O that is owned by p. If Op contains any non-boolean
variables, set n to >.

(d) Let IP be the integrity formula I(S). Every variable x in IP that is an input
owned by p exists in E in the form x′C . Replace all such x with the matching
x′C form in IP .

(e) Let IQ be the integrity formula I(S). Every variable x in IQ that is an input
owned by p exists in E in the form xC . Replace all such x with the matching
xC form in IQ.

(f) Update F F to F ∨ (B ∧ a′CS ∧ aCS ).

(g) Update B to B ∧ ¬a′CS ∧ IP ∧ ¬aCS ∧ IQ.

8. If S is a secure round Ii:

(a) Let IP be the circuit computed by I in P and IQ be the circuit computed by
I in Q.

(b) Every variable x in IP that is an input owned by p exists in E in the form x′C .
Replace all such x with the matching x′C form in IP .

(c) Every variable x in IQ that is an input owned by p exists in U in the form xC .
Replace all such x with the matching xC form in IQ.

(d) Update F to F ∨ (B ∧ (a′CS ∨ ¬IP ) ∧ (aCS ∨ ¬IQ)).

(e) Update B to B ∧ ¬a′CS ∧ IP ∧ ¬aCS ∧ IQ.

9. Let S ′ be the secure round that follows S. If S is the final secure round, then set
S ′ = ∅.

10. If Op contains boolean variables, then let X be the set of assignments to all boolean
variables in Op. For each X ′ in X

(a) Let C ′ = C ∪X ′.

(b) Call create formula”(U,E, F,B,C ′, n, S ′)

11. Otherwise, call create formula”(U,E, F,B,C, n, S ′)
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