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Abstract 

Current prosthetic control systems explored in the literature that use pattern recognition can 

perform a limited number of pre-assigned functions, as they must be trained using muscle signals 

for every movement the user wants to perform. The goal of this study was to explore the 

development of a prosthetic control system that can classify both trained and novel gestures, for 

applications in commercial prosthetic arms. The first objective of this study was to evaluate the 

feasibility of three different algorithms in classifying raw sEMG data for both trained isometric 

gestures, and for novel isometric gestures that were not included in the training data set. The 

algorithms used were; a feedforward multi-layer perceptron (FFMLP), a stacked sparse 

autoencoder (SSAE), and a convolution neural network (CNN). The second objective is to evaluate 

the algorithms’ abilities to classify novel isometric gestures that were not included in the training 

data set, and to determine the effect of different gesture combinations on the classification 

accuracy. The third objective was to predict the binary (flexed/extended) digit positions without 

training the network using kinematic data from the participants hand. 

A g-tec USB Biosignal Amplifier was used to collect data from eight differential sEMG channels 

from 10 able-bodied participants. These participants performed 14 gestures including rest, that 

involved a variety of discrete finger flexion/extension tasks. Forty seconds of data were collected 

for each gesture at 1200 Hz from eight bipolar sEMG channels. These 14 gestures were then 

organized into 20 unique gesture combinations, where each combination consisted of a different 

sub-set of gestures used for training, and another sub-set used as the novel gestures, which were 

only used to test the algorithms’ predictive capabilities. Participants were asked to perform the 

gestures in such a way where each digit was either fully flexed or fully extended to the best of their 

abilities. In this way the digit positions for each gesture could be labelled with a value of zero or 



iv 

 

one depending on its binary positions. Therefore, the algorithms used could be provided with both 

input data (sEMG) and output labels without needing to record joint kinematics. The post 

processing analysis of the outputs for each algorithm was conducted using two different methods, 

these being all-or-nothing gesture classification (ANGC) and weighted digit gesture classification 

(WDGC). All 20 combinations were tested using the FFMLP, SSAE, and CNN using Matlab. 

For both analysis methods, the CNN outperformed the FFMLP and SSAE. Statistical analysis was 

not provided for the performance of novel gestures using ANGC method, as the data was highly 

skewed, and did not fall on a normal distribution due to the large number of zero valued 

classification results for most of the novel gestures. The FFMLP and SSAE showed no significant 

difference from one another for the trained ANGC method, but the FFMLP showed statistically 

higher performance than the SSAE for trained and novel WDGC results.  

The results indicate that the CNN was able to classify most digits with reasonable accuracy, and 

the performance varied between participants. The results also indicate that for some participants, 

this may be suitable for prosthetic control applications. The FFMLP and SSAE were largely unable 

to classify novel digit positions and obtained significantly lower performance accuracies for novel 

gestures for both analysis methods when compared to the CNN. Therefore, the FFMLP and SSAE 

algorithms do not seem to be suitable for prosthetic control applications using the proposed raw 

data input, and the output architecture.  
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1. Introduction 

The prosthetic control systems that will be explored in the literature review of this thesis 

investigated the classification of trained gestures from sEMG signals collected from the forearms 

of participants, but did not investigate these algorithms’ ability to classify novel gestures. The first 

commercially available pattern recognition prosthetic control system follows a similar trajectory, 

where the system must be provided with the corresponding sEMG data for any function, or gesture 

that the user wants the hand to perform, within the limited number of gestures. Theoretically, for 

such a system to be able to replicate every possible movement of the human hand using a 

conventional discrete classification method, the system would need to be trained on every single 

movement of the human hand. As a result, any signal patterns that correspond to a gesture or 

motion that the system has not been trained to recognize will be misclassified as one of the gestures 

within the trained model.  

The goal of this thesis study was to investigate whether a myoelectric control algorithm could be 

developed that can classify both trained and novel gestures. (1) The first objective of this study is 

to evaluate the feasibility of three different algorithms in classifying raw sEMG data. These 

algorithms are a feed-forward multi layer perceptron (FFMLP), a stacked sparse autoencoder 

(SSAE), and a convolution neural network (CNN). Except for a notch and bandpass filter, the data 

has not been pre-processed. (2) The second objective is to evaluate the algorithms’ abilities to 

classify novel isometric gestures that are not included in the training data set, and to determine the 

effect of different gesture combinations on the classification accuracy for trained and novel 

gestures. As will be discussed in section 2.3, prior research has demonstrated that a few select 

synergies can account for a high percentage of variability in both trained and novel gestures, which 
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provides justification for the development of algorithms that can be used to extract common signal 

features from sEMG data, and therefore classify both trained and novel gestures [1]. “Muscle 

synergies are robust and generalizable enough to predict the EMG patterns in individual muscles 

for new gestures” [1]. (3) The third objective is to predict binary digit positions without training 

the network with kinematic data from the participants hand, due to the real-world constraints that 

amputees would face in not being able to measure the kinematics of their ipsilateral hand from 

where the sEMG signals are recorded. 
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2. Literature Review 

2.1. A Brief History of Modern Prosthetics  

The loss of one or more hands is a traumatic experience that affects both function and social 

interactions. Despite the progress the field has made, especially through the 20th century, 

developing a complete functional replacement for the natural human hand still proves to be a 

difficult challenge from both engineering and clinical perspectives [4]. The earliest mechanical 

arm, called the Ballif arm, was invented in 1812, and was controlled with other upper arm 

movements [5].  The system known as the Dorrance split hook, released in 1909, became the most 

common functional solution for upper-limb amputees. After WWII, there was a surge in research 

programs to improve prosthetic technology, then another surge in the 1950s after the Thalidomide 

crisis [6]. The Thalidomide crisis from 1957 to 1961, occurred as a result of the drug thalidomide, 

which was released in the US, Europe and Japan. The drug was used to treat morning sickness in 

pregnant women, and after being on the market for years was eventually tied to a large number of 

birth defects, including limb absences [7].  

The first myoelectric prosthesis was developed in Munich, and was initially not a portable system, 

but was instead tethered to a building power supply. This arm used vacuum tubes for the control 

system and had basic open and close functionality. Later iterations incorporated batteries into the 

prosthetic [5]. The first clinically viable myoelectric prosthesis was developed by Russian experts 

in the 1960s, and since then, the innovations of upper extremity myoelectric prosthetic control 

schemes have been incremental [8]. 

 There is still much improvement to be made as it relates to prosthetic controls, and as a result, 

much attention in the academic community has been focused on improving prosthetic control 
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systems using pattern recognition algorithms. One of the earliest applications of pattern 

recognition for sEMG classification was explored in Hudgins et al. from 1993, which employed 

an artificial neural network to classify sEMG signals collected from surface EMG electrodes [9].  

2.2. What is Myoelectric Control? 

Surface Electromyography or sEMG signals are the sum of trains of action potentials, which are 

generated by active motor units [10].  These signals are recorded as electrical potentials along 

skeletal muscles, and in the case of sEMG, are measured using electrodes placed on the surface 

of the skin. This type of biosignal is used in both diagnostic applications, for conditions such as 

neuromuscular diseases, and in control applications for peripheral systems such as computers 

and robotics [11]. An example of a visual representation of these sEMG signals in the time 

domain can be seen in Figure 2.1, which is a figure showing recorded sEMG signals from [12].

 

 

Figure 2.1, this figure depicts a subsection of sEMG signals recorded from the myo armband from a study in 

[12], The y-axis shows the amplitude of each signal on each of the 8 sEMG channels, and the x-axis is time. 
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In the United States, 57% of total amputees are arm amputees, with 80% of these patients using a 

prosthesis of some kind, and 30-50% using myoelectric systems [13]. In order to provide these 

prosthetic users with higher degrees of functionality beyond basic binary or state machine control 

systems, such as the ability to control multiple DoF at the same time, more complex and robust 

control methods must be developed [14].  

Oskoei and Hu describe three categories that existing myoelectric control systems can be divided 

into. First generation control is a basic on/off system with no speed variability. Second generation 

systems include proportional control, threshold manipulation, signal simplification and adjustment 

of muscle contraction rate. The third generation involves the application of microprocessors that 

allow for an infinite range of adjustments of myoelectric characteristics. Programmable 

microprocessor technology allows for the implementation of advanced signal processing methods, 

as well as the implementation of machine learning algorithms. This 3rd generation control system 

has allowed for the development of pattern recognition control schemes [8]. 

There are two groups of myoelectric control schemes, pattern recognition and non-pattern 

recognition. Non-pattern recognition-based controllers are mainly threshold or state machine 

systems, meaning that their responses or outputs to control a device are all predetermined. In 

pattern recognition-based control, classifiers are used to identify predefined classes of functions 

from myoelectric signal patterns [8]. This literature review and by extension this thesis, focuses 

on pattern recognition-based controls.  

2.3. Muscle Synergies 

In order to better understand what these pattern recognition algorithms are learning, it is important 

to understand the concept of muscle synergies. Muscle synergies are described as the complex 
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interaction between multiple muscles, which are initiated by an individuals higher-level control 

inputs. According to [3] “muscle synergies are influential in myoelectric control schemes due to 

sEMG inputs encoding muscle activation timing, shape and intensity”. According to [15], several 

studies have suggested that the CNS may simplify control by activating a small number of modules 

formulated as muscle synergies, or activation profiles across a set of muscles, the linear 

combination of which can generate diverse motor patterns. There are two main approaches for 

developing muscle synergy-based control systems, these being pattern recognition and motor 

learning. Pattern recognition systems decode muscle activity for intuitive control systems, by 

associating complex patterns of sEMG signals with specific outputs. Motor learning-based control 

systems consist of specific mapping functions that relate sEMG inputs to system outputs. A user 

learns to operate this system by receiving feedback signals while interacting with the control 

system. As stated earlier, the focus of this report will be on the use of pattern recognition, in the 

case of muscle synergies this is largely due to the fact that motor learning methods “have yet to be 

validated as a viable simultaneous control scheme for any myoelectric applications” [3]. [1] 

describes how a few muscle synergies can be used as a predictive framework that can account for 

up to 90% of the variance in sEMG signals generated by individual muscles using iEMG. This 

study did not focus on classifying new gestures but did address the fact that multiple synergies can 

predict the variance in the activation of individual muscles in both trained and untrained hand 

postures.  

2.4. State-of-the-art Commercial myoelectric prosthetics 

2.4.1. Current prosthetics 

Myoelectric prosthetics have made significant strides since the 20th century with the introduction 

of multiple multi-articulating mechatronic devices. [16] discusses six state-of-the-art 
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commercially available prosthetic hand technologies. Devices such as the i-Limb and Vincent hand 

have six powered DoFs, and therefore offer a greater number of possible movements that the user 

can control, when compared to single DoF prosthetic devices. Myoelectric devices like the 

Bebionic 3 by Ottobock, which is capable of five motorized DoFs, offers 14 different functions 

available for amputees [17], which are possible due to the sophisticated electromechanical design 

of these prosthetics. Despite the robotic sophistication of these 21st century prosthetic devices, 

their control systems are still limited, and most of these arms are not controlled through a means 

that are intuitive or natural [18]. Many commercial prosthetics use a sequential control strategy. 

This type of control strategy uses a signal such as co-contraction to switch to different 

preprogrammed grasp patterns. Another type of control strategy, referred to as movement trigger, 

involves patterns of muscle contraction signals which correspond to different grasp patterns [18].  

The i-Limb Quantum, a commercially available prosthetic developed by Ossur. employs a method 

called “Gesture Control”, which involves switching gestures using a specific movement of the 

users arm. This switching action is initiated by recording signals from sensors such as gyroscopes, 

accelerometers, and magnetometers built into the hand, to switch through functions. Alternatively, 

the i-Limb also uses “Grip Chips”, with are Bluetooth enabled tags attached to specific objects, 

that activate certain movements when the prosthesis is brought into proximity of the chips. Neither 

of these alternative methods are intuitive, as they are not comparable to the means that amputees 

used to control their natural limbs before their amputations [18]. The control system for most 

modern prosthetics, until recently, were largely non-pattern recognition systems as discussed 

previously. While pattern recognition controls have been the focus of academic research for 

several decades, this is only beginning to change for commercial prosthetics. 
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2.4.2. Current Commercial Pattern Recognition Systems 

Coapt released the first commercially available pattern recognition prosthetic controller in the form 

of the Complete Control system. This prosthetic sEMG controller employs pattern recognition 

algorithms to provide amputees with a more intuitive means of controlling their myoelectric 

prosthesis [18]. The algorithm used in the complete control system is an LDA, which is a linear 

classifier [19]. The Coapt Complete Control system is a major improvement in clinical prosthetic 

control, but is still limited to preprogrammed classes, where each class must be provided with three 

seconds of corresponding sEMG data for the algorithm to learn the associated signal sEMG signal 

patterns related to each class [20]. According to [18], users of the Complete Control system can 

typically control three to six grasp patterns. So, while this type of pattern recognition system is 

beginning to see functional clinical applications, it is still limited in the number of different 

functions it can provide prosthetic users.  

2.5. Architecture of an EMG Pattern Recognition System 

2.5.1. Conventional Pattern Recognition Control 

A conventional myoelectric pattern recognition control system consists of several stages 

responsible for taking raw sEMG data and transforming it into a viable control signal for a 

peripheral device, such as rehabilitation robots, wheelchairs [21] or prosthetic arms [14]. EMG 

signals are first amplified, filtered and digitized in order to be used with a programmable 

microprocessor-based system. The modified signal data is then segmented, and the necessary 

features can then be extracted from the segmented signal using a variety of time domain, frequency 

domain, time-frequency domain, and feature projection techniques. Based on these extracted 

features, a classifier is then trained to recognize patterns in the signals and assigns them to 

predetermined categories [8]. Processes for data segmentation, feature extraction and classification 
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will be discussed in greater detail. Based on the label outputs generated by the classifier, the 

controller generates output commands for the external systems, such as a prosthetic limb. If the 

system is a closed loop, any low-level feedback signals will be sent into the controller for 

processing, such as position feedback of joints or torque feedback. High level feedback signals can 

be sent as sensory feedback signals to the user’s nervous system [8]. 

These types of algorithms represent a major shift towards prosthetics that are more intuitive to 

control, and more closely match the performance capabilities of natural limbs when these 

algorithms are paired with prosthetic devices such as the commercially available devices discussed 

in section 2.4.1. These algorithms are still limited in the performance they provide, as each of their 

possible control outputs, or classes, must each be provided with associated training data, as with 

the Coapt system discussed in section 2.4.2. Despite these advances, it is still not possible for 

amputees to initiate simultaneous control of individual fingers of the prosthesis, and instead control 

individual or combinations of finger movements based on predetermined gesture classes [18].  

2.1. Feature Extraction Methods 

Feature extraction should be used to increase information density of the EMG signals, retaining 

information that allows a classifier to identify different contraction patterns, while eliminating 

irrelevant data [22].  There are three major categories of features, time-domain, frequency domain, 

and time-frequency domain. Two different types of features are described by [3], these being 

synergy features and EMG features. Synergy feature methods extract data simultaneously from 

multiple EMG channels which provides cross-channel information about muscle synergies. EMG 

feature methods on the other hand extract structural characteristics about a single channel EMG 

signal.  
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2.1.1. Synergy Feature Projection Techniques 

Feature projection methods transform multichannel inputs into lower dimensional sub spaces, and 

usually follow some type of EMG feature extraction. These techniques represent linear mixtures 

of sEMG signals which are associated with muscle synergies. Methods such as Principle 

Component Analysis, Independent Component Analysis, Non-Negative Matrix Factorization, 

Linear Discriminant Analysis, Clustering, Nonlinear Projections and Spatial Filtering are all 

methods used to reduce the dimensionality of incoming data. The method of projecting multi-

channel information into lower dimensions inevitably results in a loss of data [3]. 

2.1.2. Alternatives to Discrete Gesture Classification 

In order to develop a control system that allows for the manipulation of individual fingers, some 

papers have proposed classifying finger joint positions [23][14][24]. These papers have 

investigated the use of this labelling method to classify the joint angles of the hand for isometric 

gestures that the algorithms were trained with. One obvious limitation for this method for 

prosthetic control applications is in the simple fact that amputees no longer possess a hand that can 

be used simultaneously to construct these joint angle labels that correspond to certain EMG 

patterns. To circumvent this problem, one study proposed using bilateral movements to provide 

both the sEMG data and joint labels for amputees. The data collection protocol involved placing 

the sEMG electrodes on the amputees residual limb, while a sensor glove, used to record joint 

angles, was worn on their contralateral hand. The participant performed bilateral isometric 

contractions to provide both the sEMG data and corresponding labels. This method achieved good 

results, with classification accuracies of 86% on average across 7 gestures [23].  Another paper by 

Hioki and Kawasaki discusses a similar methodology of mapping sEMG signals to joint angles on 

the hands of able-bodied participants. Because this study used able-bodied participants with intact 
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limbs, the joint angles were recorded using a Cyberglove on the ipsilateral hand with respect to 

the arm on which the four sEMG channels were mounted [14], as opposed to measuring 

contralateral joint angles as was the case with [23].  

These strategies for measuring joint angles have limitations, as they require additional hardware 

in order to label the sEMG data with the corresponding joint angles, which makes the training 

process more complicated and tedious for amputees when considering this method for commercial 

prosthetic applications. A glove with integrated sensors is not the only explored method for 

recording joint angles. A study by Au et al uses a camera system to track joint angles in the 

shoulder and elbow of a participant, while simultaneously recording the corresponding surface 

EMG data [25]. This method could be applied in a similar manner to the previous paper that 

mapped finger joint angles and would eliminate the need for the user to don an extra piece of 

hardware, like a Cyberglove, in order to measure and record joint angles. However, this method 

still requires an external apparatus to develop the training labels, and camera systems depend on 

sufficient brightness, distance and unobstructed line of site [11]. 

A method by Jiang et al describes an alternative method that does not require any additional 

hardware systems to label the data. This method involved labelling the data depending on whether 

each digit in a particular gesture was flexed or extended [26]. This method provided the inspiration 

for the output architecture used in the study conducted for this thesis.  

2.2. Data Segmentation 

Data segmentation involves separating incoming data into frames based on a determined window 

length. The sum of the length of a data segment and the processing time for the system should be 

less than 300 ms, as a time delay any longer than this is noticeable by the user. There is a trade-off 



12 

 

between segment length and time delay, as shorter segments can result in greater bias and variance 

in the signal, but a longer segment results in greater delay. In order to reduce this delay to 128ms 

or even 32 ms without a substantial decrease in performance, a continuous segmentation method 

should be adopted. “In continuous segmentation, a dense stream of decisions is produced using 

overlapped segments. Continuous segmentation relies on both transient and steady-state 

myoelectric data. Post-processing methods are designed to manage excessive classified output, 

and improve system performance” [8].  

Transient signals on their own are less viable for use in myoelectric control, as these signals are 

generated by muscle contractions initiated from a resting state [8]. This means that for a user to 

switch between classes, they must first relax their muscles, thereby increasing the time it will take 

a user to switch between movements. Most errors in classification for steady state signals appear 

during transitions between classes. Therefore, it is recommended that data sets from these 

transition states be eliminated to improve controller accuracy [8].  

In data segmentation there are two methods for windowing data, adjacent windowing and 

overlapping windowing. Adjacent windowing has the sEMG recordings being separated into 

neighbouring and disjointed frames of data. For overlapping windowing, the system generates 

more frames of data, with the new generated segments containing both new signal values, as well 

as signals values from the previous segment of data. The amount of overlap determines the 

composition of the new frame in relation to new data points versus data from the previous frame. 

A smaller segment shift increment produces a semi-redundant set of class decisions that results in 

improved response time and accuracy [8].  
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Englehart discusses utilizing post-classification processing methods to improve classification 

accuracy. In [2], majority voting is used to reduce classification error. The method compared a 

current classifier decision to the decisions of the past 500 ms.  Most errors the system made after 

post-processing with majority voting occurred during the transitional states. Considering this, it 

may also be beneficial to train a classifier to recognize data from transitional regions and produce 

a state of inactivity for a controlled device, such as a prosthetic arm, when the signals indicate a 

transition. Alternatively, Hargrove used majority voting as well, and compared a classifier output 

with the previous eight and the next eight decision, which compares a decision to classifications 

made both ahead and behind it by 256 ms [27]. 

2.3. Classification Methods 

As mentioned in section 2.2, pattern recognition algorithms have been the focus of prosthetics 

control research for decades. Most forms if statistical and learning classifiers have been applied to 

myoelectric control [22]. Techniques such as feed forward multi-layer perceptrons, autoencoders, 

convolution neural networks, Bayesian classifiers, fuzzy logic, linear discriminant analysis, 

support vector machines, hidden Markov model and k nearest neighbours have all been applied to 

classify sEMG signals for gesture recognition applications [28].  

According to Scheme et al, the most popular classifiers are Linear Discriminant Analysis, Support 

Vector Machine, and hidden Markov Model. The advantage of the LDA is the simplicity of the 

algorithm and ease of training [22], which is evident when considering that the LDA is the 

algorithm of choice for the first commercially available myoelectric pattern recognition system as 

discussed in section 2.4.2. 
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2.4. Barriers to Robustness of EMG Control 

 Higher performance capabilities of classification algorithms are often observed in a controlled lab 

environment, but these same ideal conditions do not exist in the real world. Several factors can 

result in substantial performance degradation for many pattern recognition-based control schemes. 

These factors include electrode shift, variation in force, variation in limb position or posture and 

changes in the sEMG signals [22]. 

Scheme and Englehart observed that a 1cm shift of four electrodes placed around the forearm 

resulted in a 5-20% increase classification error if the shift was distal, and 40% if the shift occurred 

rotationally. The use of wider electrodes, as well as placing larger gaps between electrodes 

improved robustness, but not to the same effect as incorporating data from shift positions into 

training data set. Daily training sessions may be necessary whenever the prosthesis is donned in 

order to account for slightly different electrode positions day to day. Over time, the accumulation 

of training data from slightly shifted electrode positions may result in a more robust control system 

that can account for slight shifts [22]. The number of electrodes has also been shown to impact the 

performance of sEMG classification algorithms. As demonstrated in a study by Hargrove et al, a 

16-channel array of equally spaced electrodes was applied, and symmetrical sets of 2, 4, 8 and 16 

channels were compared to optimal sets of the same size. In this experiment, six different features 

were performed with six healthy male subjects. The time domain features of the collected sEMG 

recordings were used to train an LDA classifier. This study demonstrated that the improvement in 

performance begins to diminish after four channels [27].  

Hargrove et al also describe the ideal electrode placement locations when using a reduced set of 

channels. The authors state that surface electrodes placed over the extensors/supinator, flexor carpi 

ulnaris, and flexor digitorum subliminus provide good classification accuracy [27]. While some 
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studies such as [29] and [30] use fewer sEMG channels of four and two electrodes respectively. 

Other studies such as [12] and [31] used eight evenly spaced electrodes around the forearm for the 

classification of sEMG signals for CNN classification applications. Therefore, the use of eight 

evenly spaced bipolar channels was adopted for the study proposed in this thesis. 

According to Ives et al, the upper limit of the sEMG frequency range is 400-500 Hz. For sEMG 

sampling, in order to avoid aliasing, the sampling rate must be at least a factor of two larger than 

the maximum frequency. In the case of sEMG signals, this means that the sampling rate of the 

sEMG sensors must be at least 800-1000 Hz [32]. 

Limb position, or posture, will also impact the real-world performance of a pattern recognition 

algorithm. This can be due to involuntary muscle contractions that manifest when the limb is held 

at certain positions, and can result in increased classification errors between 3.8-18% [33]. For 

prosthetic users, the effect of limb posture can be due to the mounting of an upper-limb prosthesis 

to a user’s residual limb via a socket, which depending on the posture of the residual limb, can 

apply pressure to different muscle groups in the forearm. This compression can displace muscles 

and alter the sEMG signal, as well as result in mechanical stimulation of the muscle [22]. 

Topographical force maps (TFMs) could be used as an extra dimension for training, which may 

help a system to compensate for posture changes by measuring the change in pressure on contact 

points inside of the socket. TFM uses the mechanical response of soft tissue during muscle 

contractions in order to measure neural activity. In the case of upper limb prosthetic devices, the 

inside of a socket would be lined with an array of force resistive sensors to measure the pressure 

that soft tissue places on the inside of the prosthetic socket [34]. “The socket and residuum are not 

rigidly connected, so placing a heavy weight in the prosthetic hand would shift the weight 

distribution across the surface if the limb and would unload some sensors while increasing load on 
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other sensors” [34]. Adding accelerometers can also make classifiers more robust against limb 

posture changes [3], however, the collection of the necessary training data to account for the 

various limb positions will still fall to the user [22].  

Amplitude cancellation occurs when positive and negative phases of separate motor units overlap, 

causing deconstructive interference which results in a loss of information. This resulting loss of 

information means that sEMG in situations where amplitude cancellation occurs, will not be able 

to accurately estimate the motor unit activity [10]. Muscle synergy features can make a system 

more robust towards amplitude cancellation [3].  

Some EMG signal changes over time are the result of both short and long-term variations in the 

recording environment. These changes can be the result of external interference, shifting 

electrodes, changes in electrode impedance, and muscle fatigue. Some of these signal changes can 

be removed using filtering and shielding techniques to eliminate external interference, but intrinsic 

sources of variation are more difficult to remove [22]. Creating a pattern recognition system that 

can adapt to these changes is not trivial, as the system must know what phenomena it needs to 

compensate for, and how to compensate for them. To date, there has yet to be a stable unsupervised 

solution developed [22].  

Variation in the level of contraction initiated by the user can cause problems in reliability for 

pattern-recognition based classifiers, as pattern recognition systems work by clustering patterns of 

EMG signals. Therefore, muscle contractions with varying degrees of intensity can be different 

enough from one another to result in misclassification of a movement. This was tested in an 

experiment where 11 subjects were told to perform motions at 20% to 80% of the strongest 

contractions, they could comfortably generate for nine motion classes, and one inactive class. 
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Using a time domain feature set with an LDA classifier, the system was trained using the force 

levels described. The classifier was tested using all force levels in order to determine the 

performance of the pattern recognition system to classify levels of contractions it had not 

previously encountered. The error for these types of contractions was greater than 32%. One means 

of counteracting the degradation in performance is to train a classifier at every force level. This 

method was then tested at all force levels and produced a classification error of 17%. The second 

method tested was an attempt to reduce the amount of training data that a user would have to 

generate and involved training the system on only the lowest 20% and highest 80% contraction 

levels. The performance from this training set was only slightly worse, at 19% error [22]. 

2.5. Classification Methods for the Proposed Study 

Classification methods are used to take preprocessed data points and transform them into control 

signals. Classifiers that use supervised learning must be provided with both input information, and 

the desired outputs. Some classifiers will use this information to generate discrete output values, 

corresponding to predefined classes or categories. Other classifiers can generate a continuous 

output, which makes them suitable as both discrete classifiers and as classifiers for proportional 

control applications. The classifiers discussed in this section will be the focus of this study. The 

applications of these algorithms in sEMG signal detection applications will be explored in greater 

detail to provide a deeper background on their relevance for the classification of sEMG signals as 

it relates to this thesis. 

The classifiers chosen for this thesis study are different types of artificial neural networks. These 

being a feed-forward multi-layer perceptron, a stacked-sparse autoencoder, and a convolution 

neural network. ANNs have proven to be effective and robust in real-time myoelectric control 

schemes [3], and the specific algorithms as will be discussed in section 2.5 have been explored in 
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previous studies involving sEMG signal classification, with promising results. ANNs are 

applicable for simultaneous control compared to algorithms like LDAs or SVMs, as they are 

capable of supporting dual association, and do not need to train separate classes in order to 

classify simultaneous movements for multiple DOFs [3]. Another reason for this choice of 

classifier is that ANNs can be used to produce discrete on/off outputs, as well as continuous 

variable output signals for proportional control. 

 

2.5.1. Feed Forward Multi-Layer Perceptron (FFMLP)  

 

An FFMLP is made up of a series of interconnected nodes, or neurons, and multiple nodes can be 

connected to form a network [11].  Each node is a computational unit that produces an output using 

a function called an activation function from the sum of inputs. These multi-layer networks can be 

trained to approximate a given function based on predefined input and output data. This works by 

adjusting the weighted connections between neurons within the network, until the error between 

the actual outputs, and the desired outputs is below a desired threshold [35]. This iterative weight 

adjustment process is referred to as backpropagation [11]. There have been several studies that 

focused on the applications of MLPs, also referred to as artificial neural networks, for the 

 

Figure 2.2, This figure depicts a single node or neuron from an neural network, with 3 

inputs and one output [11]. 
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classification of gestures from sEMG signals collected from a subjects forearm [11][14] 

[36][30][37][29]. 

2.5.1.1. Relevant Studies for MLPs in sEMG signal classification 

One study used an artificial neural network with wavelet transform features in order to classify the 

movement of individual fingers using sEMG. This experiment used both two sEMG channels and 

four sEMG channels to collect data at a sampling frequency of 2000 Hz from 10 healthy subjects. 

These volunteers performed six different finger motions, with the end goal to detect the movement 

of the extension and flexion of the index finger, middle finger and thumb for each subject. The 

neural network design used for this experiment contained three layers, with 36 nodes in the hidden 

layer. The actions for each digit were represented by two output nodes, one for flexion and one for 

extensions with a total of six output nodes, while the input layer consists of 20 nodes. The 

performance for each motion using two sEMG channels was below 80%, but the use of four 

channels resulted in a performance for each motion of over 80% [26]. It would have been beneficial 

for the researchers to explore the ability of the proposed system to generalize for unseen digit 

position combinations, given that the proposed architecture has the capability of producing novel 

combinations of binary finger positions. Also, the authors provided no further description of the 

logic rules to handle the continuous outputs of a neural network, nor how a rest gesture would be 

classified with the proposed output architecture. [30] used two sEMG electrodes to record sEMG 

signals from the forearms of each participant at 1000 Hz. A multi-dimensional input which 

consisted of a multitude of feature extraction algorithms was passed to the input of the artificial 

neural networks that were tested. The authors used Mean Absolute Value, Root Mean Square, 

Mean Frequency, Zero Crossing, Slope Sign Change, and Standard Deviation for the classification 

of four different movements, which consist of open, close, index flexion, and middle/ring finger 
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flexion. For the classifier, the authors used a feedforward artificial neural network with a 

Levenberg-Marquard algorithm, and hidden layer with 10 hidden units. The researchers obtained 

an average classification accuracy of 83.5%. In this study, only two recording sites were used to 

collect sEMG data. The authors could have explored the use of a higher number of channels to 

improve classification accuracy. As demonstrated in other studies such as [27], the performance 

improves when using a higher number of collection sites. 

A study by Au and Kirsch sought to predict shoulder and elbow kinematics from sEMG signals. 

The experiment used the sEMG signals from six shoulder and elbow muscles to predict three 

shoulder movements. In order to track the movement of the shoulder an elbow, the trunk, upper 

arm and forearm were tracked using nine LED markers. The collected sEMG signals from six 

different muscle groups were filtered at 20-200Hz, then sampled at 500Hz. The data was collected 

from six able-bodied subjects, and two individuals with C5 Tetraplegia. The ANN was trained 

using backpropagation, with the sum of squared errors (SSE) between the actual values and the 

predicted values being applied to determine when to cease training. There were two hidden layers, 

with 20 nodes each that contained a tansig activation function. The architecture of the hidden layers 

was determined empirically, testing two and three layers, with between 1-200 hidden units per 

layer. The output layer consisted of four nodes with linear transfer functions. The system produced 

an error rate of 14.2% for joint angle of the shoulder elevation/depression task [25]. While the 

authors demonstrate that joint angle can be classified from sEMG data, it would have been useful 

for the researchers to explore other classifier algorithms, as in [12], where both SSAE and CNN 

were compared for the classification of sEMG signals. 
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2.5.2. Convolution Neural Network (CNN) 

A convolution neural network is a neural network that is composed of one or more convolution 

layers, followed by one or more layers whose connectivity is similar to that of a standard 

multilayered network. The structure of a convolution neural network is designed to be used for 2D 

input images, or some other type of 2 dimensional inputs. CNNs can be beneficial as they are 

easier to train than fully connected networks like MLPs with the same number of hidden nodes, 

and have fewer parameters [38]. In recent years CNNs have become a greater interest to academic 

researchers seeking higher performance pattern recognition classifiers that can classify raw sEMG 

data without the need for a manual feature extraction pre-processing. Papers such as [12][39][40] 

use a variety of CNN architecture for the classification of discrete gestures. 

CNNs have different types of layers that are utilized in their architecture to perform different 

operations on the outputs of the previous layers. An example of a convolution network used in 

sEMG application is shown in Figure 2.3,  [12].  

 

 

Figure 2.3, this figure depicts the CNN used in [12], which was trained to classify sEMG signals based 

on discrete target outputs. This figure provides a visual representation of how CNNs have been applied 

in sEMG signal processing. 
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2.5.2.1. Convolution Layer 

The convolution layer as mentioned above is often the first layer in a CNN. The convolution 

operation occurs when a kernel, or 2-dimensional tensor, is convolved with an input image. In the 

case of most sEMG applications, the input is usually a 2-dimensional tensor. The output of this 

convolution layer is a 3-dimensional tensor, with the 3rd dimensions size dependant on the number 

of kernels applied to the input tensor in the convolution layer. The size of the kernels as well as 

the stride, or the number of units by which each kernel is shifted over the image is determined by 

the designer [41]. 

2.5.2.2. Pooling Layer 

The pooling layer serves as a means of dimensionality reduction within the CNN. This layer 

operates by taking the input to the pooling layer and dividing it into sub-regions. A dimensionality 

reduction operation is then performed on each subregion, either a max pooling function or an 

average pooling function, which is determined by the designer. The output from each of these sub-

regions is therefore a single value, while the total output of the pooling layer is a 3-dimensional 

tensor. In the case of the CNNs explored for sEMG signals processing applications, the pooling 

layer is used after convolution layers, and is first superseded by a  ReLu layer and a Batch 

Normalization layer that also follows the convolution layer [41]. 

2.5.2.3. ReLu Layer 

ReLu layer is used to reduce the training time for CNNs. This layer takes any input values less 

than zero and sets them equal to zero. This way, the backpropagation algorithm is only passed 

positive values, which reduces training time by introducing sparsity into the network [42], and 

solves the problem of vanishing gradient [41]. The problem of vanishing gradient is when the error 

propagated through layers becomes smaller the further it is propagated through the network.  
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2.5.2.4. Batch Normalization 

Batch Normalization is used to improve training by stabilising the distribution of inputs in a mini-

batch, to the layer, and are a common component in many modern deep learning models [43]. The 

most widely accepted explanation of BN is that it reduces internal covariate shift, which is 

described as “the change in the distribution of layer inputs caused by updates to the preceding 

layers” [43]. Batch normalization is implemented in an additional layer which controls the mean 

and variance of the distribution of inputs to the layer. 

2.5.2.5. Fully Connected Layer 

Fully connected layer has a similar architecture to the FFMLP described in section 2.5.1, where 

each input to the fully connected layer from the previous layer has connections to all the activation 

functions in the following layer, hence the name, fully connected layer. These often follow a 

convolution layer, and as per the studies in which CNNs, are used between the final convolution 

layer of a network, and the network outputs [41]. 

2.5.2.6. Dropout Layer 

This type of layer is only active during training but is not present during the prediction process. 

Because this type of network randomly eliminates certain connection with a set probability, it 

forces the network to evenly distribute weighting over multiple connections, rather than weighting 

one connection heavily and lower on others. This is therefore used to prevent overfitting in CNNs 

[41]. For a more in-depth explanation of the architecture of convolution neural networks, please 

see [41]. 
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2.5.2.7. Relevant Studies for CNNs in sEMG signal classification 

In recent years, convolution neural networks have been applied to the processing and classification 

of sEMG signals for applications in prosthetic control. One study [40] used a convolution neural 

network to classify hand gestures through the application of a high density sEMG electrode 

interface and the instantaneous sEMG patterns collect from this interface. The method used did 

not require any time window data segmentation, nor did it require manual feature extraction. The 

CNN was passed raw sEMG signals from the high-density electrodes and was trained with the 

instantaneous raw signals in relation to their corresponding gestures or movements. The 

researchers conducted this study with the use of 128 sEMG channels sampled at 1000 Hz. 18 

healthy subjects were instructed to perform eight hand gestures, with each gesture being recorded 

10 times. The results showed that 89.3% performance accuracy from a single instantaneous set of 

sEMG recordings from the HD array. Accuracies of 99% and 99.5% were achieved through the 

use of majority voting, in which 150 decision samples were used, equating to 150 ms of data [40]. 

The system in Geng et al achieved exceptional performance, however, the greatest limitation to its 

implementation as a clinical control methodology for upper limb myoelectric prosthetics is the use 

of high density sEMG. Using high density (HD) sEMG in a prosthetic socket while maintaining 

consistent skin contact for all channels may prove to be a major barrier for clinical and commercial 

use. Low-density (LD) sEMG has been historically used for research in prosthetic control 

applications due to its greater clinical applicability. Low density refers to 16 sEMG channels or 

less [39]. 

Another study by Rehman et al used a lower density, eight channel sEMG input with a time delay 

input. This study used the Myo armband to collect sEMG data from participants and used 150 ms 

windows of data from each of the armbands eight channels to classify seven different hand and 
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wrist postures. The Myo armband collects data at a sampling rate of 200 Hz per channel. This data 

was used to train a CNN with a single convolution layer. The average within-session error for this 

CNN across all participants was 2.4%, indicating a very high classification accuracy. For the 

between session performance, the CNN 6.2% error rate, which indicates that the proposed 

architecture for this paper was able to classify signals from multiple sessions that occurred on 

separate days [12].  

Not all applications of CNNs have used raw data as an input to the network.  Systems such as the 

one proposed in Allard et al proposed using frequency features with a CNN to classify discrete 

hand gestures from sEMG signals. The authors demonstrated the ability for their proposed CNN 

to be able to classify seven different hand and wrist gestures with an accuracy of 97.9% across six 

days. The algorithm was evaluated with three tests. The first evaluation was used to test gesture 

accuracy in real-time, and participants were asked to hold a random gesture for 10 seconds. The 

gesture was considered correctly classified if no more than 2 false consecutive, or 4 false non-

consecutive classifications were made within the 10 second period. The authors do not discuss 

how these cut-offs for max time period, or max false classifications were selected. The second 

tests involved users controlling a robotic hand, which they were required to control with wrist and 

arm movements while holding an object in the hand. In this test all participants were able to hold 

the object in the hand for the required 120 seconds. Lastly, they were tested on a picking and 

placing task. The picking and placing task was compared to the speed and accuracy of someone 

controlling the same robotic arm with a joy-stick controller. The time required to perform this task 

with a joystick was 1minute 33 seconds, and 1 minute 45 seconds for the myo-control. This study 

demonstrated the use of a CNN, and therefore demonstrates that this type of algorithm is can be 

robust enough for prosthetic control applications [44]. It may have provided a clearer picture of 
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performance if the authors had selected real time tests that were in line with the standardized tests 

such as the Southampton Hand Assessment Procedure [45].  

2.5.3. Stacked Sparse Auto-Encoder Neural Network 

An auto-encoder is a type of artificial neural network algorithm that is trained using unsupervised 

learning. While a regular feed forward MLP utilizes supervised learning to train input data in 

relation to a predefined set of outputs, an auto-encoder uses only the input training data and 

backpropagation to assign the correct weights to the connections. The auto-encoder, using a 

backpropagation algorithm, is designed to reconstruct the original inputs from a compressed or 

simplified representation of these inputs. The dimensionality reduction can be achieved by 

reducing the number of nodes in the hidden layers [41]. Different types of autoencoder neural 

networks have been applied to sEMG signal processing [23][29][47], and will be explored in  more 

detail in this section. 

 

 

Figure 2.4, This figure from Andrew Ng [41], depicts a 

shallow feedforward autoencoder 



27 

 

A stacked-sparse autoencoder is a type of semi-supervised deep learning neural network algorithm. 

The stacked methodology is discussed in [46], which discusses using a stacked sparse autoencoder 

to classify sEMG features from static hand gestures. A stacked autoencoder with reference to the 

methodology used in [46], is a feedforward neural network where each layer is trained as the 

encoded layer of an autoencoder. The autoencoders are trained sequentially, from the input layer 

to the output. When each of the autoencoders are trained, the layers are stacked, where the output 

of the previous encoding layer connects to the input of the following encoding layer. This stacked 

network can then be fine tuned with backpropagation training, which is the supervised portion of 

the training process.  

The sparsity function is explained in [46][48]. The sparsity function described in [48] encourages 

each neuron in the hidden layer of the autoencoder to only fire or generate a high output in response 

to a small subset of training examples. This has the effect of introducing sparsity into the network, 

as most neurons will have a low output for most inputs. This means that each neuron can learn a 

particular feature of the input training set. One benefit of this sparsity function can be that even 

without a compressed hidden layer size relative to the input layer size, the network can still learn 

a compressed representation of the input data if such a representation exists within the data [41].  

2.5.3.1. Relevant Studies for Autoencoders in sEMG signal classification 

Papers such as [47] have used an autoencoder to classify sEMG gestures for wrist control 

functions. In Jiang et al, the autoencoder was used to classify sEMG features for the simultaneous 

and proportional positioning of two wrist DoFs. The DoFs of interest for this study were 

ulnar/radial deviation, and wrist flexion/extension, and the RMS values were collected from each 

of the eight channels in 100ms non-overlapping windows. This algorithm was trained with an 

entirely unsupervised process, with no kinematic labels recorded. An autoencoder for each DoF 
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was used, and contained eight input units and two hidden units, with each hidden unit representing 

a single DoF for the wrist. The seven participants were evaluated based on completion rate, 

completion time, overshoots, throughput, speed, and path efficiency. Completion rate did not show 

a statistically significant difference from the state of the art, completion time was lower for the AE 

method when compared to the state of the art, and speed of completion was also higher for the AE 

method. Path efficiency was also better for the AE method, and is likely due to the fact that the 

AE method allowed for simultaneously control of the two DoFs, while the state of the art method 

does not allow for simultaneous control [47]. Studies such as [46] used supervised fine tuning to 

train the stacked autoencoders after the initial unsupervised training processes. This second 

supervised training strategy could have been applied to the methods proposed in [47] to further 

improve classification accuracy of the AE for wrist position classification. 

Further evolution of the use of a sparse auto-encoder comes from [46] for the classification of 11 

discrete hand gestures. This autoencoder architecture was used with both sEMG and iEMG signals 

separately and was evaluated across multiple days. Six iEMG and six sEMG electrodes were used 

to collect data from each participant. Four-time domain features were extracted from  an 

overlapping window of 200 ms from each EMG channel. These features were mean absolute value, 

waveform length, zero crossing and slope-sign change. The AE network had two autoencoders, 

with hidden layers of 24 and 12 respectively. These AEs were trained the SCG, and the SoftMax 

output layer was trained with supervised feedforward training, and then stacked with the AE 

encoding layers, which was then fine-tuned. The SSAE demonstrated higher performance than the 

LDA for both able-bodied and amputee subjects, obtaining within day error rates of 3.55% and 

11.25% respectively. As in [12], the authors should have compared the use of both raw data and 

manually extracted features to explore the feature extraction capabilities of the proposed 
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classifiers. This would provide greater insight for other researchers into the feature extraction 

limits of the autoencoder applied in this study, and whether manual feature extraction was 

necessary when using autoencoders. 

Both these previous papers demonstrate the applications of autoencoders for sEMG signal 

classification, however, both papers use manually extracted signal features to pass to the network 

for classification. A paper by Rehman et al compares the application of both a convolution neural 

network and a stacked sparse auto-encoder with raw data classification, and an SSAE trained on 

manually extracted sEMG features. For the feature based SSAE, two auto encoders were used, 

with 32 and 16 nodes in their hidden layers respectively. The SSAE for raw sEMG data contained 

two autoencoders with hidden layers of 100 and 50 nodes. The outputs for each of these networks 

was a SoftMax layer, with seven total outputs. The gestures used to train the autoencoders were a 

combination of hand and wrist gestures, as well as a rest gesture. For the raw SSAE, the average 

within session error was 25.18% across seven participants, and the feature-based SSAE achieved 

produced an error rate of 10.98% [12]. Although this performance is low when compared to the 

feature based SSAE, it indicates that the raw SSAE was able to extract some meaningful data from 

the raw sEMG signals and classify discrete gestures.  

For a more in-depth description of the auto-encoders and their variations please see the following 

resources [41]. 

2.5.4. Summary of Contributions 

Conventional classification systems like the Coapt system discussed in section 2.4.2 need to be 

trained on every possible movement the user would want to perform. This limits the number of 

functions that the user can perform with the prosthesis, as each function needs to be provided with 
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corresponding training data in order for the system to be able to classify the desired gesture as 

discussed in section 2.5.1, as retraining a wide variety of movements to replicate the intricacies of 

the human hand would be impractical each time. The goal of the proposed system for this thesis, 

as discussed in section 1, is to classify both trained and novel gestures. A system that can classify 

both trained and novel gestures has the potential to reduce the burden of future prosthetic devices 

on amputees by reducing the volume of training data that the prosthesis requires, while increasing 

the number of functions the system can perform. Improvements in ease of use for these prosthetics 

has the potential to reduce the rejection rates of these prosthetics devices, as complexity of control 

has been attributed to the rejection of upper-limb prosthetics devices as discussed in [49].  
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3. Methodology 

3.1. Ethics Clearance 

This study received approval by the Office of Research Ethics at the University of Waterloo (ID#: 

32002) 

Before the apparatus set-up could begin, each participant was provided with a health screening 

form to ensure that they met the required criteria. Each participant provided informed consent 

before the experiment began. The experimenter was always present to answer any question the 

participant may have had. If the participant met all the screening criteria and signed the consent 

form, the experimental set-up began.  

3.2. Participants 

Data was collected from 10 [26] able-bodied participants between the ages of 24 to 41. Eight 

subjects were dominant with their right hand, and two were left hand dominant. Participants were 

recruited from the University of Waterloo campus and consisted of students and faculty. 

Participants were required to be able-bodied, were screened for any allergies or sensitivities to 

gels, alcohol or adhesive electrodes, and were required to be between the ages of 18-55. The lower 

limit of 18 and the upper limit of 55 were chosen to focus solely on adult participants, excluding 

senior and underaged participants.  

3.3. Data Acquisition 

3.3.1. Data Collection Equipment 

Data collection was performed by collecting SEMG data from eight differential SEMG channels 

using the g-tec USB Biosignal Amplifier. The eight channels were spaced evenly around the 

subjects’ forearm, 1/3 the total distance between the wrist and the elbow, which was measured by 
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the experimenter using a measuring tape. The hardware used for data collection consisted of 16 

disposable electrodes, with greater details outlined in section 3.4.1, connected to a single 16 

channel driver interface called a GAMMAbox (Figure 3.1).  The GAMMAbox was connected to 

a g-tec USB Biosignal Amplifier (Figure 3.2). The g-tec USB Biosignal Amplifier was connected 

to a desktop PC via a USB cable. The g-tec system records data at a rate of 1200 Hz. The raw 

sEMG data was also processed using a digital bandpass filter in MATLAB between 20 and 500 

Hz [30], and a 60 Hz notch filter to remove power line noise.  

 

 

Figure 3.1, g-tec 16 Channel g.GAMMAbox, depicting 2 of the 16 electrodes connected to the 

device 
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3.4. Experimental Procedure 

3.4.1. Electrode and Equipment Set-up 

Electrode preparation took approximately 15-20 minutes. The electrode sites on the participants 

skin were cleansed with 70% ethanol wipes, followed by the application of conductive gel to the 

participants skin around the forearm electrode sites, reference site, and ground site. For some 

participants, it was necessary to remove excess hair from the electrode sites with a razer before the 

alcohol and gel were applied in order to improve electrode adhesion and reduce discomfort when 

removing the electrodes upon concluding the experiment.  

Eight bipolar electrode channels were used, where each channel was constructed using two 

disposable surface EMG electrodes, one such pair is outlined in blue in Figure 3.3. The signals 

from each pair of channels were subtracted from one another to give a differential output. Taking 

 

Figure 3.2, g-tec g.USBamp USB Biosignal Amplifier 
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the difference between two electrodes removes the common noise between electrodes, resulting in 

an improved SNR [50]. 

The 16 recording sites were placed in two concentric rings of eight electrodes each around the 

forearm of the participant, where the center point between the two rings was approximately 1/3 

down the length of the users forearm from the elbow, which was measured by the experimenter, 

Figure 3.3. One reference electrode was placed on an electrically neutral location on the olecranon, 

and a ground electrode was placed approximately 1/3 down the forearm from the wrist, on the 

ventral side of the forearm, Figure 3.3. The electrode leads connected to the g-tec GAMMABox 

were then connected to each of the adhesive electrodes placed around the users forearm.  

 

 

Figure 3.3, electrode placement 
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3.4.2. Gesture Tasks and Data Collection 

Each participant was required to perform 14 isometric contraction tasks involving their dominant 

hand. These contractions are shown in Figure 3.4. Participants were instructed to perform the 

gestures by either fully flexing or extending each finger depending on the gesture. Because of this, 

a total of 16 gestures plus rest can be performed with the four fingers. 14 gestures including rest 

were used, as three gestures were determined to be uncomfortable during pilot testing. These 

movements were chosen so that a variety of flexion/extensions positions of the four fingers were 

captured. The focus of this study was on recognizing the movement of the four fingers of the 

human hand, and therefore movements of the thumb and wrist were omitted to simplify the 

proposed system. Should this system prove effective for classifying trained and novel discrete digit 

positions, the classification of additional DoFs from the thumb and wrist would be added in future 

research. The participants were instructed to hold their thumb and wrist in a constant position for 

all contractions. The contractions were to be held at an intensity that the user could maintain for 

an extended period without discomfort or tremors in their hand. 

 

 

Figure 3.4, 14 gestures collected for this study. The rest gesture is outlined in red. 
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There were two rounds of data collection where each round consisted of the same 14 gestures. 

Twenty seconds of data [31] was collected for each gesture in each round. The order in which the 

gestures were presented to the participant was randomized by the collection interface. In total, nine 

minutes and 20 seconds of data was collected from each subject. The number of collection rounds 

used in data collection varies in other studies, from as few as one in [31], and as many as 6 in [51].  

The length of the data collection periods for each isometric contraction employed in other studies 

also varies widely, with some studies using only three seconds per round [2], and others such as 

[31], collecting 20 seconds per round.  

For the proposed study, in between each 20 second isometric contraction, the participant was given 

a 10 second break [52]. After the first round, each participant was given a 10-minute break. The 

10-minute inter-round relaxation period was chosen from pilot testing and was determined with 

anecdotal and qualitative reporting of the degree of discomfort felt by the pilot subject, and the 

rest time required by said pilot test subject to recover. No fatigue was reported by any participants 

at the end of the collection rounds. A total of 672,000 sEMG samples per channel were collected, 

for a total of 5,376,000 samples across all eight channels for each participant. 

Since the algorithms featured in the study are relevant for the development of commercial 

prosthetic arm control systems, the data collection procedure should mirror the procedure used in 

comparable commercially available prosthetic devices, while still providing the algorithms with a 

suitable volume of data for training and testing. For example, the Coapt Complete Control system 

uses two sets of data collection for each gesture, each lasting three seconds [20]. One study by 

Englehart et al, used two rounds of collection for each gesture with five seconds of data collected 

per gesture to provide both training and testing data for an LDA gesture classifier [2]. Considering 

these parameters of two rounds of collection for isometric hand gestures is seen in both academic 
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research, and commercial prosthetics, this indicates that it is suitable for the proposed experiment, 

which is meant to serve as both an academic study, and the foundation for the development of 

control algorithms with industry facing applications.  

3.4.3. Data Collection Interface 

A MATLAB interface was used to record the data for each of the 14 gestures. The MATLAB 

interface prompted the participant to perform the correct gesture with an image of the 

corresponding gesture. The experimenter was present during data collection to provide additional 

guidance when needed. The interface prompted the user when they were required to relax or 

perform an isometric contraction. A green progression bar at the bottom of the screen, as shown 

in (Figure 3.5) indicated the non-recording period, where the participant could relax. A red 

progression bar (Figure 3.6) indicated when the participant was required to perform the displayed 

isometric contraction, or rest gesture. A count-down timer was also displayed on screen (Figure 

3.5 and Figure 3.6) along with the progression bar during the rest period and during the active 

period, so that the participant knew when to start and stop a contraction.  

 

 

Figure 3.5, relax period before isometric contraction 
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3.4.4. Data Segmentation and Preprocessing 

The machine learning algorithms that were implemented in this study were a Stacked Sparse Auto-

Encoder (SSAE), a Feed Forward Multi-Layer Perceptron (FFMLP) network, and a Convolution 

Neural Network (CNN). These networks were constructed using the Deep Learning Toolbox in 

MATLAB 2018b which provided an acceptable degree of customization for the networks in this 

study, with a very shallow learning curve. MATLAB was also used for the development of 

artificial neural networks in studies such as [53].  

As described in [2], the method with which data is segmented or tiled is dependent on the features 

used for classification. For instance, methods such as Short-Term Fourier Transform (STFT) 

utilize a fixed tiling or window size, whereas the Wavelet Transform (WT) uses variable tiling, 

which changes the aspect ratio of the cells in order to ensure that the frequency resolution is 

proportional to the median frequency. The studies outlined in section 2.5 used a fixed window size, 

therefore the segmentation pre-processing also used a fixed window, which was determined 

through pilot data testing.   

 

Figure 3.6, Isometric Contraction Period 
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The use of automated feature extraction to isolate useful information from raw sEMG data 

effectively turns the feature extraction sub system into a “black box”. In other words, it is not clear 

exactly what features the algorithms are extracting from the signal and using for classification. 

Therefore, certain aspects of data segmentation such as the optimal degree of overlap between 

windows and the size of the windows were determined using pilot data testing. The window step 

sizes, and window size were determined through pilot data testing for this study. Majority voting 

was also considered for output post-processing as explored by [2]. However, although this has 

been proven to reduce the variation in the output decision stream, improving the applicability for 

prosthetic control, this does not allow us to evaluate the raw output of the algorithms to determine 

the network classification accuracy without post-processing. Therefore, majority voting will not 

be used in data post processing but can be applied in the future to improve the decision accuracy 

of the output decision stream for prosthetic control applications. 

3.4.4.1. Data Segmentation for Deep MLP and SSAE 

It was determined through testing that a window size of 25ms was suitable for the MLP and 

Autoencoders, which results a 240x1 input vector to both networks.  Step sizes between 1ms and 

25 ms were tested to determine the optimal step size. The step used to generate the input data was 

5 ms.  The windows were tested from 10-200 ms. Larger window sizes were tested using pilot 

data, but larger window sizes demonstrated increasingly poor performance. Pilot results for 

different tested window sizes from subject 08 for gesture combination 14 can be seen in Table 7.2 

in section 8.  

3.4.4.2. Data Segmentation for CNN 

The raw data from the g-tec USB Bio Signal Amplifier is processed using MATLAB. The data 

was first segmented into windows of dimension 240x8 samples. The window is 200 ms of data 
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(240 data points) from each of the eight differential SEMG channels. The window step size is five 

ms, or a six data point step per channel. The dimension for these windows and the step was 

determined through pilot data testing. 

3.4.5. SEMG Data Classification 

3.4.5.1. Output Architecture and Labelling 

The three algorithms tested for this study all utilized the same output design. This design was 

inspired by several studies [26][25]. Au et al was focused on using EMG signals to classify 

shoulder movements using a feedforward MLP with an output design where each output node 

represented the angle of a single DoF in the shoulder/arm. The study by Jiang et al. used an output 

design, where each digit activity was represented using two output nodes each. One output node 

represented the flexion state of a digit, and the other represented the extension state of the digit, 

for eight outputs in total [26].  A different architecture was adopted compared to the two previously 

discussed studies [26][25]. The output in this study uses two nodes per digit. The ‘Active’ node 

represents the finger position output, where one is digit extension, and zero is digit flexion. The 

second node is the ‘Rest’ node, with a label of one indicating that there is no activity for this digit. 

The rest node is necessary for each digit, as the ‘Active’ node is always in some active state, either 

zero, or one. Without an additional output in the form of the ‘Rest’ node to tell a digit in a prosthesis 

to do nothing, the digit will only be taking commands from the active node. In other words, these 

‘active’ nodes produce a constant stream of decisions, and there needs to be some way of gating 

the output. This was achieved in this algorithm through the inclusion of a ‘Rest’ node for each 

digit. This output design is as vital as classification accuracy for the system to be usable for 

prosthetic control [2]. The diagram in Figure 3.7 depicts the outputs for the open hand gesture, 

where all four fingers are extended. 
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The architecture used in this study allows the rest state to be classified separately from the active 

state. Whereas with the architecture proposed in [25], the classification of a rest state would be 

directly dependant on the state of the flexion and extension nodes. This ability to gate the active 

node output with the rest node output is beneficial for prosthetic control. If a user wants to initiate 

a movement with their prosthetic hand, and the classifier outputs a rest command, it is easy for the 

user to perform the gesture again. Alternatively, if the user wants their prosthesis to hold a resting 

or neutral position while their prosthetic arm is holding an object, and the resulting classification 

is an active motion, the prosthetic may drop the object [44]. An architecture with a rest node that 

overrides the active node reduces that likelihood that the latter scenario will occur, as the system 

can be made to override any active node outputs, if the rest node output is also high. 

 

The values produced by each output node in the network are not necessarily binary values, but 

instead are continuous. Therefore, to transform each of the raw outputs from the network into a 

binary value, a threshold was applied at the output for each node, where an output below 0.5 

constituted a zero, and any value above 0.5 was a one, seen in Figure 3.7. This output architecture 

allowed the network to classify sEMG signals from gestures that the system had not been trained 

 

Figure 3.7, depicted here is the output architecture used across all three types of networks investigated in this study 
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on, as the network theoretically has the potential to produce novel combinations of finger 

movements in response to novel patterns of sEMG signals.  

3.4.5.2. Gesture Combinations 

The objective of this study was to determine if the networks could correctly classify gestures it 

had never been trained on before, and therefore not all gestures were included in the training data 

gesture combination. With a total of 14 gestures including rest, the number of possible 

training/testing configurations is 214 unique gesture combinations. Therefore, it would have been 

impractical to test all the possible gesture combinations. This is because each gesture occupies one 

of two states, these being the novel gestures or untrained gestures. Trained gestures were used to 

train and test the network, whereas novel gestures were only used to test the network.  

The gestures combinations that were used can be described as ‘balanced’ gestures combinations. 

This means the gesture combinations all contained an equal number of flexion and extension states 

for each finger in the training subset within each combination. For example, there were a total of 

six unique gestures that had the index finger in a flexion position, and seven where the index was 

extended. In any distribution of these combinations between novel and trained gestures, there must 

be an equal number of gestures with the index extended and index flexed in the training set. This 

method was used to reduce the chance that the trained network might be biased towards either 

flexion or extension labels for a given digit. Each gesture combination contains six gestures plus 

rest for training and testing, and the seven other gestures for testing only. This number of gestures 

was determined as the minimum in accordance with other papers such as [12] which trained six 

gestures plus a rest. Therefore, a total of 20 gesture combinations were tested for each participant 

and algorithm, and the composition of these gesture combinations can be seen in Table 7.1 in 

section 8. 
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3.4.5.3. Feed-Forward Multi-Layer Perceptron 

The number of hidden layers tested varied between 1-5 hidden layers in the network, and 10-100 

nodes for each hidden layer. The optimal number of layers, as well as the number of nodes per 

layer was determined through pilot data testing. The type of activation function for the layers was 

also determined through testing, where the two functions tested were a Sigmoid Function and a 

Hyperbolic Tangent Sigmoid Function (HTSF). The HTSF performed better than the network 

using Sigmoid.  

For training, resilient back propagation was confirmed to have the best performance when 

compared to scaled conjugate gradient, which was used in [25], and gradient descent, which was 

compared to resilient back propagation in [54]. Compared to gradient descent, resilient back 

propagation is beneficial as it is less susceptible to local minima, as only the sign of the error 

gradient is considered when adjusting the weights, while gradient descent considers the sign and 

value of this gradient error. [54] states that resilient back propagation can reach a convergence 

faster than gradient descent, making it more applicable for applications in commercial prosthetics, 

where longer training times can interfere with a users’ operation of their prosthesis. 

A detailed description of the Deep MLP architecture used can be seen in Table 2.1. All other 

parameters were left in the default settings for the ‘feedforwardnet’ function in MATLAB 2018b. 
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3.4.5.4. Stacked Sparse Auto-Encoder 

The time delay input for the Stacked Sparse Autoencoder (SSAE) is identical to the input vector 

used in the FFMLP. The initial process of training each layer in the SSAE was performed without 

the need to provide the network with corresponding labels for training data, and was unsupervised 

[55].  Each layer was trained as a shallow autoencoder, with the inputs and outputs of each 

autoencoder being equal to the outputs of the previously trained encoder layer. The trained encoder 

layers of each autoencoder were then stacked into a feedforward MLP, and fine tuned using 

backpropagation [12].  

The stacked sparse autoencoder used in this study had the same number of layers and the same 

number of hidden nodes per layer as the FFMLP constructed for this study, discussed in the 

previous section. This method was chosen to compare the semi-supervised method of the SSAE 

Table 3.1, this table depicts the architecture, input window size, and training/testing data distribution for the FFMLP. 

Feed-Forward Deep Multi-Layer Perceptron 

Parameter Value 

Training Algorithm Resilient Backpropagation 

Outputs 8 nodes 

Hidden Layer Activation Function Hyperbolic Tangent Sigmoid 

Hidden Layer Architecture 1. 100 nodes 

2. 60 nodes 

3. 40 nodes 

Output Activation Function Logarithmic Sigmoid 

Input Size (milliseconds, samples) 25ms, 240 samples 

Number of Epochs 500 

Number of Validation Checks 10 

Data Distribution Training: 70% 

Validation: 15% 

Testing: 15% [30] 
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with the supervised training of the MLP, within the constraints of MATLABs Deep Learning 

Toolbox. A detailed description of the SSAE used for this study can be seen in Table 2.2 and Table 

2.3. The other parameters used, including the L2 Regularization, Sparsity Regularization, and 

sparsity Proportion were all applied in accordance with [12]. 

 

Table 3.2, this table shows the network architecture and hyperparameters used for the individual autoencoders. Each 

encoder layer number depicted in the table below is the hidden layer size for each of the four autoencoders, and the 

input/output sizes are the number of inputs/outputs that were used to train each of the respective encoder layers. 

Layer-wise Autoencoder 

Parameter Value 

Training Algorithm Scaled Conjugate Gradient 

 Encoder Activation Function Logarithmic Sigmoid [12] 

Encoder Layers 100 nodes 

60 nodes 

40 nodes 

8 nodes 

Decoder Activation Function Pure line function [12] 

Input/Output Sizes  Autoencoder 1: 240 

Autoencoder 2: 100 

Autoencoder 3: 60 

Autoencoder 4: 40 

Number of Epochs  500 [12] 

L2 Regularization 0.0001 [12] 

Sparsity Regularization 0.01 [12]  

Sparsity Proportion 0.5 [12] 

Data Distribution Training: 70% 
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3.4.5.5. Convolution Neural Net Architecture 

Papers such as [40] and [31] focus on the applications of CNNs for the classification of EMG 

signals based on discrete gesture classes. However, for this type of algorithm to be able to classify 

every combination of discrete flexed/extended finger position, it would require each combination 

to be manually programmed into the network as an output label. Within the limits of the authors 

literature review, it did not appear that any paper had been published which uses the proposed 

output architecture in a CNN, nor had one been developed to test new untrained gestures. 

The number of fully connected layers was taken from [40], though smaller fully connected layer 

architectures were also tested, but did not improve performance. Both 32 filters and 64 filters both 

of size 3x3 from [12] and [40] respectively were both tested. From the tests performed, there was 

no significant difference between the two filter sizes, so 32 filters were used in both layers to 

reduce the training time. After each convolution layer, a ReLu layer, batch normalization layer, 

Table 3.3, the architecture for the stacked autoencoder. The hidden layers of the stacked network are the trained encoder 

layers depicted in the previous table. While the training process for the individual autoencoders was unsupervised, the 

training process for the stacked autoencoder was supervised. Therefore, the training/testing data distribution 

hyperparameters are provided in this table as well. 

Stacked Sparse Autoencoder 

Parameter Value 

Training Algorithm Scaled Conjugate Gradient 

Outputs 8 nodes 

Hidden Layer Activation Function Logarithmic Sigmoid 

Hidden Layer Architecture 1. 100 nodes 

2. 60 nodes 

3. 40 nodes 

Output Activation Function Logarithmic Sigmoid 

Input Size (milliseconds, samples) 25ms, 240 samples 

Number of Epochs for stacked training (supervised) 500 [12] 

Data Distribution Training: 70% 

Testing: 15%  
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and max pooling layer are included in accordance with [12]. The fully connected layers were 

derived from [14], though as mentioned previously, a simpler set of fully-connected layers was 

tested with not significant improvements in performance.  

The two options for outputs in the MATLAB Deep Learning Toolbox are; a Regression layer, or 

a Softmax Layer. The regression layer was selected as the output as it allows for outputs to be 

active simultaneous. A detailed description of this CNN can be seen in Table 2.4. 
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These networks were chosen for their demonstrated ability in other studies [40][12][25], to be used 

for automated feature extraction from raw sEMG data as discussed in section 2.5. For the CNN, 

other parameters were also tested including the size of the fully connected layers, introducing 

dropout into the fully connected layers, the number of kernels or filters in the convolution layers, 

and varying the batch size were also tested. 

Table 3.4, this table depicts the final architecture, input window size, and training/testing data distribution for the 

Convolution Neural Network 

Convolution Neural Network 

Parameter Value 

Training Algorithm SGDM (Stochastic Gradient Descent with 

Momentum) 

Outputs 8 nodes 

Hidden Layer Architecture 1. Convolution Layer 1 (32, 3x3 filters) 

2. ReLu Layer 

3. Batch normalization 

4. Max Pooling Layer 1 

5. Convolution Layer 2 (32, 3x3 filters) 

6. ReLu Layer 

7. Batch Normalization 

8. Pooling Layer 2 

9. Fully Connected Layers 

a. 516 nodes 

b. 516 nodes 

c. 128 nodes 

d. 8 nodes 

10. Regression Layer 

Input Size (milliseconds, samples) 200ms, 240x8 samples 

Batch Size 256 

L2 Regularization 0.0001 

Momentum 0.95 

Segmentation 70% Training, 15% Testing 
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3.5. Performance Evaluation 

Performance validation methods varied in the papers explored depending on the output 

architecture of the networks used to classify SEMG signals. Networks with continuous outputs 

such as the one in [25], used root mean squared error (RMSE) as a measure of performance. In 

[40], the performance is determined based on the percentage of correct gesture decisions made by 

the network during testing [28].  

3.5.1. All-or-Nothing Gesture Classification 

Two different gesture classification analysis methods were applied to the classifier decisions for 

each algorithm. The All-or-Nothing Gesture Classification method (ANGC) works by reviewing 

all classification decisions for a given input window of raw sEMG data. If a single digit is 

misclassified with respect to the target digit positions for said input, then the entire gesture is 

misclassified, regardless of whether the other digits in the gesture were correctly classified. This 

method was meant to be comparable to the discrete label classification method often applied in 

machine learning classification problems. However, this ANGC method ignores whether the 

classification of the other digit positions was correct with respect to the target gesture, and 

therefore, is not truly representative of the actual performance of the classifier in predicting finger 

positions from the isometric gesture that the sEMG signals are representative of. Therefore, a 

second analysis method was envisioned that more accurately represents the applicability of the 

classifier for use in prosthetic control. 

3.5.2. Weighted Digit Gesture Classification 

The second method, referred to as Weighted Digit Gesture Classification (WDGC), takes the 

weighted sum of all correct digit classifications, where each digit is weighted based on its relative 

importance for manipulation tasks with a trans-radial prosthesis. This second classification 
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analysis method is more representative of the actual classification accuracy and usefulness of these 

algorithms for applications in prosthetic control and provides a more complete picture of the 

classification accuracy of a given algorithm. Weightings for each digit are multiplied by one or 

zero depending on whether the digit was correctly classified or not.  

The weighting for each digit was determined based on whether a digit for a given gesture was 

involved in grasping or manipulation for a given gesture. If a digit was used for grasping or 

manipulation for a given gesture, then a vote would be assigned a value of one for the digit, for 

the gesture in question, otherwise the digit was assigned a value of zero. These values for each 

digit are summed across all gestures, then the weighting of each is determined based on the 

summed value for this gesture divided by the sum of the total number of values for all gestures 

and digits used in the analysis. The value of each digit for each gesture, as well as the final relative 

weighting for each digit is shown in section 8, Table 7.3. These weightings are 39.39%, 24.24% 

for the index and middle fingers, and 18.18% for both the ring and little fingers. These gestures 

were selected from the gestures available for the Bebionic 3 prosthesis developed by Ottobock.   

The images of the 13 grip patterns used to determine the relative weights are depicted in Figure 

8.1 in the Appendix in section 8, and a description of these grip patterns can be found in the 

Bebionic User Guide [17]. The results of the WDGC analysis method not only serves as a more 

realistic means of determining how effectively a classifier can recognize common sEMG patterns 

for particular movements across trained and novel gestures, but it also demonstrates why the 

method of classifying finger positions is superior to methods that only classify discrete gestures. 

This is because even if the algorithm misclassifies a gesture, at least with the CNN, the system can 

still be used for manipulation tasks, as often no more than 1 digit was misclassified as will be 
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discussed in section 4. This would make a prosthesis much more forgiving if the user makes an 

error in initiating a control signal with sEMG.  

3.6. Statistical Analysis of Results 

ANOVA mixed effects model was used to evaluate the effects of multiple variables on the 

collected results. The variables considered were the subject, gesture combination, and the 

algorithm used. The subject was considered a random factor, as was the gesture combination. The 

gesture combination was a random factor, as only 20 out of 16,384 possible combinations were 

tested for the purpose of this study. The algorithm was the fixed factor. The tests determine whether 

the gesture combination and the subject influenced the performance produced by each algorithm. 

The significance of performance between the algorithms were evaluated with a Tukey test. This 

methodology was applied to the results from ANGC and WDGC analysis methods for both trained 

and untrained gestures. One-way ANOVA was used to evaluate the significance of the 

performance differences between the selected classification algorithms. 
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4. Results 

This section outlines the results for all three algorithms for the classification of individual digits, 

as well as the performance for both the ANGC and WDGC performance analysis methods. This 

section is divided into sub sections based on the algorithm in question, and each sub section is 

further divided into sections for digit, ANGC or WDGC results. The average performance across 

all combinations and participants, the performance for GC 14 across all participants, and the 

performance of the top performing participant for GC 14 will all be presented. GC 14 was chosen 

as this was the best performing gesture combination for the CNN for untrained gestures. The 

statistical results for the influence of participants and gesture combinations are discussed last. The 

graphs and figures for the performance of certain individual participants for each algorithm are 

included in the Appendi. 

4.1. Participant Data 

 

Table 4.1, participant demographics 

Mean Reported 

Age 

Male Female Lefthanded Righthanded 

27.7 years 8 2 2 8 
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4.2. FFMLP Results 

4.2.1. FFMLP Performance for Digit Classification 

 

 

The FFMLP was able to predict the discrete position of individual fingers, shown in Figure 4.1 

across all participants and gesture combinations for trained gestures with reasonable accuracy. The 

FFMLP was able to achieve performance of greater than 80% for each of the four digits. The 

middle and ring fingers were the top performing digits for novel gestures. For the classification of 

 

Figure 4.1, this figure depicts the FFMLPs classification accuracy for the 

discrete position of each finger for trained gestures 
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Figure 4.2, this figure depicts the FFMLPs classification accuracy for the 

discrete position of each finger for novel gestures 

 

45.764

62.203 61.195 57.962

0.000

20.000

40.000

60.000

80.000

100.000

A
cc

u
ra

cy
 (

%
)

Digits

FFMLP Novel Digit Performance

Index Middle Ring Little



54 

 

finger positions from novel gestures in Figure 4.2, the index finger achieved sub 50% performance, 

and the other digits achieved low classification.  

4.2.2. FFMLP Performance with ANGC Method 

 

 

Figure 4.3, this figure depicts the FFMLPs classification performance for trained gesture 

combination 16 averages across all participants using the ANGC method 
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  Target Outputs  
 

 1 2 4 9 10 11  

P
re

d
ic

te
d
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u
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u

ts
 

1 55.04 1.63 6.60 6.13 5.05 9.93 1111 

2 2.25 77.42 3.78 2.61 3.63 2.86 0000 

4 6.58 3.75 60.33 3.05 4.04 6.57 1100 

9 5.42 1.66 2.20 52.52 8.28 10.66 0011 

10 5.28 3.70 4.47 8.19 62.92 3.38 1001 

11 7.21 1.88 7.14 9.73 1.28 48.83 0110 

13 0.45 2.43 0.26 2.86 3.51 0.77 0111 

6 0.51 1.90 2.23 0.65 0.26 1.80 0100 

13 4.70 0.40 1.20 5.85 0.70 5.22 0111 

3 0.73 2.16 1.74 0.28 2.15 0.39 1000 

7 2.73 0.29 0.37 3.66 4.12 0.78 1011 

12 3.07 0.45 3.34 0.64 3.02 0.74 1101 

5 5.53 0.49 5.76 1.41 0.58 5.53 1110 

N 0.49 1.82 0.56 2.37 0.43 2.50 0010 

N 0.00 0.01 0.00 0.03 0.01 0.03 0101 

N 0.01 0.01 0.02 0.01 0.01 0.02 1010 

  1111 0000 1100 0011 1001 0110  
Figure 4.4, the confusion matrix for gesture combination C14 for the active 

nodes in the FFMLP output averaged across all participants for trained gesture 

classification. The base-10 numbers along the top and left sides correspond to 

the gestures in Figure 3.4. The binary numbers on the right side and bottom of 

the matrix represent the position of each finger in the gesture, with 1 referring 

to finger extended, and 0 being finger flexed. Reading from left to right, the 

order is index, middle, ring and little finger. The green cells contain the 

classification accuracy for correctly classified gestures in accordance with the 

ANGC method. The other cells represent the percentage of times that one or 

more digits have been misclassified. 
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Using the ANGC method, the FFMLP demonstrated an ability to classify trained gestures, whose 

performance was significantly different from random chance. This can be seen in Figure 4.3, which 

shows the performance for each gesture in the top performing gesture combination, GC 14. For 

trained gestures we can observe that there were many instances where multiple digits were 

simultaneously misclassified, (Figure 4.4) though with fewer overall misclassifications when 

compared to the novel gestures. For instance, with target gesture 11, both the index and little 

fingers were misclassified 9.93%. For target gesture 1, the multi digit misclassifications occurred 

with ring/little fingers, index/middle, and middle/ring at rates of 6.58%, 5.42%, and 5.42% 

respectively.  

  Target Outputs  
 

 3 5 6 7 8 12 13  

P
re

d
ic

te
d

 O
u

tp
u

ts
 

3 4.18 0.79 1.34 0.92 2.28 2.77 0.44 1000 

5 1.98 5.60 6.02 2.29 0.49 4.83 5.45 1110 

6 1.60 1.08 3.16 1.14 0.59 2.12 0.89 0100 

7 0.72 2.03 0.86 3.69 4.38 1.72 2.17 1011 

8 1.68 0.93 0.94 2.39 4.77 1.52 1.28 0001 

12 4.60 2.54 3.39 1.76 1.44 3.93 1.39 1101 

13 1.21 5.87 2.00 4.30 0.99 2.19 7.10 0111 

2 14.22 2.54 5.47 3.14 7.36 5.89 2.40 0000 

9 5.81 11.52 5.93 35.07 24.21 8.33 20.40 0011 

11 4.06 23.62 17.88 14.08 2.51 10.02 19.61 0110 

10 19.57 7.94 5.74 13.80 41.53 16.42 5.50 1001 

4 33.28 11.22 37.30 7.92 4.50 29.84 6.60 1100 

1 5.50 22.46 8.28 7.14 3.33 9.01 24.85 1111 

N 1.55 1.82 1.65 2.31 1.59 1.38 1.88 0010 

N 0.02 0.03 0.02 0.03 0.01 0.03 0.03 0101 

N 0.02 0.01 0.00 0.02 0.00 0.02 0.01 1010 

  1000 1110 0100 1011 0001 1101 0111  
Figure 4.5, the confusion matrix for gesture combination C14 for the active nodes in the 

FFMLP output averaged across all participants for novel gesture classification.  
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The highest novel gesture classification performance achieved by the FFMLP was for subject 03, 

GC 7, gesture 9, which was 25.5%. While this novel gesture performed better than random chance, 

it is not sufficient for prosthetic control applications.  

From Figure 4.5, which depicts the FFMLP output decisions for novel gestures, we can see that 

when a novel gesture was misclassified as per the ANGC method, it appears that the index, middle 

and little fingers contributed to the majority of misclassifications. For target output for gesture 3, 

only one digit was misclassified. 33.28% misclassification was due to the middle finger, 19.57% 

due to the little finger, and 14.22% was due to the index finger misclassification.  

What can also be observed is that the classifications of the active nodes account for all 

misclassifications for the novel gestures, meaning any misclassification of the rest nodes directly 

overlapped with the misclassification of the active nodes.  

The classification results for the subject 8 are shown in Figure 8.3, in Appendi 8.1. For the 

performance subject 08 with GC 14, a high volume of the misclassifications resulted from multiple 

digits being simultaneously misclassified, as with the average performance across all participants 

discussed previously. For example, the index/little fingers were misclassified for gesture 1 23.35% 

of the time. Gesture 11 also had a majority of the misclassifications for this gesture result from 

simultaneous digit position errors as well, with index and little being misclassified simultaneously 

at a rate of 26.69%.  
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4.2.3. FFMLP Performance for Gestures with WDGC Method 

 

 

Both trained and novel gestures performance from the WDGC method demonstrated a significant 

improvement in performance over the trained and novel gesture performance from the ANGC 

Figure 4.6, this figure depicts the FFMLPs classification performance for trained gesture 

combination 14 averages across all participants using the WDGC method 
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method. The average performance for trained gestures in gesture combination 14 for the WDGC 

method can be seen in Figure 4.6. The results for novel gesture classification using WDGC method 

can be seen in Figure 4.7.   

The confusion matrices for this combination in Figure 8.3 and Figure 8.4 show the degree to which 

these gestures were misclassified, as well as the specific digits that contributed to 

misclassifications.  

The performance for trained and novel gestures in GC 14 for subject 8 is shown in Figure 8.5 and 

Figure 8.6. The top performing trained gesture in this combination, gesture three, had a 

performance of 79.75%. This gesture corresponds to index extended. For trained gesture 7, the 

performance was the lowest for subject 8, GC 14 for WDGC method. The source of this low 

classification rate becomes apparent when reviewing Figure 8.4. Because the index finger has the 

highest weighting, 39.39%, any misclassification of the index finger has a greater impact on the 

WDGC performance than the misclassification of any other finger. Therefore, it can be concluded 

that the reason for the low performance of gesture 7 is because the index finger was involved in 

most misclassifications for this gesture. For example, the index finger was involved in 37.81%, 

and the index and little fingers together were involved in 25.58% of misclassifications. Most of 

the misclassifications for gesture 3 were due to the little finger being misclassified 67.75% of the 

time, and the middle finger being misclassified 23.31% of the time. This resulted in a higher overall 

performance of 79.75%, as the middle and little fingers were determined to be less critical for 

prosthetic use when compared to the index. 
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4.3. SSAE Results 

4.3.1. SSAE Performance for Digit Classification 

 

 

Figure 4.8 and Figure 4.9 show the overall average classification accuracy for each of the four 

digits for trained and novel gestures respectively. The index finger was the lowest performing digit 

for trained gestures, with a position classification accuracy of 78.7%. As with the FFMLP, the 

 

Figure 4.8, this figure depicts the SSAE classification accuracy for the discrete 

position of each finger for trained gestures 
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Figure 4.9, this figure depicts the SSAEs classification accuracy for the discrete 

position of each finger for novel gestures 
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index finger for the novel gesture classification results generated by the SSAE were below 50% 

for novel gestures. 

4.3.2. SSAE Performance with ANGC Method 

 

 

Figure 4.10, this figure depicts the SSAEs classification accuracy for the discrete position 

of each finger for trained gestures 
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  Target Outputs  

 
 1 2 4 9 10 11  

P
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d
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d

 O
u

tp
u

ts
 

1 45.85 1.73 7.27 7.69 4.96 11.63 1111 

2 2.61 76.29 4.97 2.46 3.78 2.23 0000 

4 8.14 6.02 57.12 2.81 5.58 7.91 1100 

9 7.78 1.79 2.13 46.92 10.67 12.18 0011 

10 5.92 3.76 5.50 10.08 58.99 4.11 1001 

11 7.93 1.98 8.03 11.43 2.02 42.73 0110 

13 0.79 1.84 0.36 2.28 3.02 0.63 0111 

6 0.56 1.87 1.99 0.35 0.23 1.26 0100 

13 7.68 0.28 0.94 7.98 0.74 8.29 0111 

3 0.48 1.68 1.43 0.26 1.38 0.19 1000 

7 3.12 0.48 0.52 4.18 4.41 1.09 1011 

12 3.44 0.75 3.45 0.62 3.16 0.68 1101 

5 5.09 0.56 5.85 1.24 0.62 5.14 1110 

N 0.60 0.98 0.41 1.71 0.43 1.92 0010 

N 0.01 0.00 0.00 0.00 0.00 0.00 0101 

N 0.01 0.00 0.01 0.00 0.02 0.00 1010 

 
 1111 0000 1100 0011 1001 0110  

Figure 4.11, the confusion matrix for GC 14 for the active nodes in the SSAE for 

trained gestures across all participants 
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The trained gesture classification performance with the ANGC method, as expected, exceeded the 

performance of the untrained gestures and is comparable to the trained gesture classification 

performance of the FFMLP. However, when conducting one-way ANOVA to compare the 

performance of the SSAE and FFMLP, the FFMLP appeared to have a significantly higher 

performance than the SSAE for the trained ANGC results, as indicated with a p-value of 0.001. 

The confusion matrices in Figure 4.11 and Figure 4.12 demonstrate that for the SSAE, when a 

particular gesture was considered misclassified through the ANGC method, more than one digit 

was frequently misclassified, which is comparable to the FFMLP. For the SSAE, the confusion 

matrix for the highest performing untrained gesture combination averaged across all participants 

reveals that when a misclassification occurred, the index and little finger positions were more 

frequently misclassified simultaneously, compared to the misclassifications of the other two digits. 

  Target Outputs  
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ts
 

3 3.93 0.42 1.20 0.34 1.53 1.82 0.33 1000 

5 1.71 6.53 6.83 1.64 0.54 5.61 4.31 1110 

6 1.18 0.95 2.18 0.51 0.26 1.03 0.76 0100 

7 1.14 2.18 0.97 4.28 4.39 2.53 2.87 1011 

8 1.35 0.68 0.76 2.20 3.79 1.13 1.06 0001 

12 4.16 2.09 2.96 1.46 1.60 3.67 1.82 1101 

13 0.96 8.23 2.10 7.00 1.80 2.42 10.69 0111 

2 23.00 2.43 4.75 2.59 6.66 5.05 2.55 0000 

9 2.74 10.58 5.51 35.31 25.59 7.97 18.79 0011 

11 2.87 25.03 15.22 12.80 2.90 9.18 16.13 0110 

10 14.81 8.03 8.98 15.43 41.04 20.04 7.18 1001 

4 35.42 12.60 38.74 5.79 4.99 26.77 6.69 1100 

1 6.15 18.98 8.83 8.99 4.03 12.05 25.37 1111 

N 0.57 1.25 0.97 1.66 0.88 0.72 1.44 0010 

N 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.01 0.00 0.01 0.01 0.00 0.01 0.00 1010 

 
 1000 1110 0100 1011 0001 1101 0111  

Figure 4.12, the confusion matrix for GC 14 for the active nodes in the SSAE for novel 

gestures across all participants 
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The top performing participant for gesture combination 14 was subject 7. The performance for 

subject 7 for trained gestures for GC 14 is shown in Figure 4.3. Subject 7 data had improved 

performance with the SSAE when compared to the mean performance for gesture combinations 

14. 

4.3.3. SSAE Performance with WDGC Method 

 

 

Figure 4.13, this graph depicts the SSAEs trained gesture classification accuracy for the 

WDGC method for GC 14 across all participants 
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As with the WDGC performance for the FFMLP, the results for the SSAE showed considerable 

improvements over the ANGC method. The average performance for GC 14 for both trained and 

novel gestures can be seen in Figure 4.13 and Figure 4.14. For the trained WDGC method, there 

was a significant difference between the performance of the FFMLP and SSAE with a p-value of 

0.000. The performance between these two algorithms was not significantly different for the novel 

WDGC results, with a p-value of 0.875. 

The data collected from subject 7 had the highest classification accuracy for SSAE WDGC method 

for GC 14. The performance for each gesture in this combination for subject 7 is shown in Figure 

8.10 and Figure 8.11 for trained and novel gestures respectively. The top performing trained 

gesture in this combination, gesture 2, hand closed, had a performance of 75.66%. For the WDGC 

results for the trained gestures, the average performance for subject 7, gesture combination 14 was 

85.18%. Aside from rest, the highest performing WDGC trained gesture was gesture 4, with a 

classification accuracy of 90.09%. Gesture 4 corresponds with index and middle extended.  

 

Figure 4.14, this graph depicts the SSAEs novel gesture classification accuracy for the 

WDGC method for GC 14 across all participants 
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4.4. CNN Results 

4.4.1. CNN Performance for Gestures Digit Classification 

 

 

The digit classification performance for trained gestures was very high, with the CNN generating 

digit classification accuracies above 99% for all digits for trained gestures as shown in Figure 4.15. 

For novel gestures, the relative ranking of digit classification performance is similar across all 

algorithms, with the ring and middle fingers achieving the highest performance, followed by the 

 

Figure 4.15, this graph shows the digit classification accuracy for trained gestures 

across all gesture combinations and participants 
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Figure 4.16, this graph shows the digit classification accuracy for novel gestures 

for across all gesture combinations and participants 
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little and index fingers. However, the CNN obtained higher classification accuracies for all digits 

when compared to the FFMLP and SSAE except for the index finger. The index finger 

performance for novel gestures was on average less than 50% as shown in Figure 4.16. 

4.4.2. CNN Performance for Gestures with ANGC Method 

 

 

 

Figure 4.17, this graph shows the classification performance for all trained gestures in GC 

14 across all participants for the ANGC method 
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Figure 4.18, this graph shows the classification performance for all novel gestures in 

GC 14 across all participants for the ANGC method 
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  Target Outputs  
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1 98.32 0.00 0.08 0.03 0.00 0.06 1111 

2 0.08 99.77 0.11 0.15 0.00 0.14 0000 

4 0.14 0.01 98.88 0.03 0.00 0.07 1100 

9 0.03 0.00 0.00 98.17 0.02 0.11 0011 

10 0.03 0.01 0.00 0.13 99.45 0.00 1001 

11 0.08 0.02 0.00 0.09 0.00 98.32 0110 

13 0.00 0.07 0.00 0.36 0.39 0.00 0111 

6 0.00 0.01 0.04 0.03 0.00 0.18 0100 

13 0.38 0.00 0.00 0.23 0.00 0.81 0111 

3 0.11 0.13 0.02 0.00 0.02 0.00 1000 

7 0.18 0.00 0.00 0.62 0.13 0.00 1011 

12 0.49 0.00 0.68 0.00 0.00 0.00 1101 

5 0.14 0.00 0.19 0.00 0.00 0.22 1110 

N 0.03 0.00 0.00 0.16 0.00 0.09 0010 

N 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.00 0.00 0.00 0.00 0.00 0.00 1010 

  1111 0000 1100 0011 1001 0110  
Figure 4.19, the confusion matrix for GC 14 for the active nodes in the SSAE for 

trained gestures across all participants 
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Figure 4.17 and Figure 4.18 show the average performance for the top gesture combination, GC 

14 across all participants for trained and novel gestures respectively for the ANGC analysis 

method. While the novel gesture performance shows that some gestures performed better than 

random chance, the performance is still low and not suitable for prosthetic control as it relates to 
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  Target Outputs  
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3 17.75 0.06 0.97 0.16 2.51 7.00 0.30 1000 

5 0.01 16.46 5.23 0.66 0.00 1.08 2.63 1110 

6 0.20 0.63 7.46 0.09 0.06 0.12 0.24 0100 

7 2.11 0.52 0.18 4.35 0.72 1.28 1.06 1011 

8 3.56 0.06 0.00 4.14 25.64 0.48 0.14 0001 

12 4.87 8.61 1.37 0.97 0.02 17.37 0.67 1101 

13 0.00 5.39 0.01 3.37 0.00 0.34 30.05 0111 

2 23.92 0.19 0.11 0.23 6.39 0.22 0.24 0000 

9 0.00 1.00 0.01 47.28 14.81 5.04 17.93 0011 

11 0.01 42.80 21.21 10.93 0.00 2.10 22.67 0110 

10 14.70 2.10 1.12 18.64 49.64 21.86 1.07 1001 

4 26.97 9.43 61.86 4.27 0.03 38.11 1.71 1100 

1 5.89 12.63 0.46 1.18 0.00 4.59 18.65 1111 

N 0.00 0.12 0.01 3.72 0.18 0.43 2.65 0010 

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1010 

  1000 1110 0100 1011 0001 1101 0111  
Figure 4.20, the confusion matrix for GC 14 for the active nodes in the SSAE for novel 

gestures across all participants 
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classifying novel gestures but is suitable for classifying trained gestures. The CNN achieved a high 

classification accuracy for trained gestures, with almost no misclassifications. All ANGC gestures 

achieved classification accuracies of 98% or above across all participants for GC 14. The CNN 

outperformed both the FFMLP and SSAE for ANGC trained results, with p-values of 0.000 for 

both CNN-FFMLP, and CNN-SSAE. 

Subject 9 data was the highest performing with the CNN, and Figure 8.14 in Appendix 8.5 for 

trained gestures in GC 14, subject 09, shows that with the exception of gestures 9 and 11, all trained 

gestures were classified with 100% accuracy. 

The average performance for novel gestures across all participants was low, however Figure 8.13 

shows that the CNN was able to predict some gestures with higher performance using the ANGC 

method for some participants. Novel gesture 8 was correctly classified 93.23% of the time, with 

only the index finger being misclassified 4.04% of the time. This gesture corresponds to index, 

ring and little finger extended. Figure 8.12 depicts the trained gesture performance for subject 9. 

Promising classification accuracies were generated by other subjects and gesture combinations as 

well. The CNN for subject 9, GC 9 classified untrained gestures 1 and 2 with accuracies of 83.4% 

and 80.5% respectively. The CNN trained on data from GC 7, subject 4 was able to classify 

untrained gesture ‘1’ with 71% accuracy, and ‘9’ with 51% accuracy, which corresponds to open 

hand, and ring/little extended. The CNN for subject 3, GC 7 classified untrained gesture 10 with 

an accuracy of 80.5%, and a CNN for GC 4 classified untrained gesture 10 with 88.2% accuracy. 

Gesture 10 is index/little extended. These results indicate that for certain gestures and subjects, the 

network can generalize relationships that correspond to individual finger positions for all digits 

simultaneously.  
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When reviewing the misclassification rates for each novel gesture in GC 14 from Figure 4.20, we 

can see that for most misclassifications, only a single digit was incorrectly classified. The index 

finger appears to be responsible for the majority of misclassification events for the novel gestures. 

There were some instances where multiple digits were misclassified, for instance 10.93% of 

misclassifications were due to the incorrect prediction of both index, middle, and little finger 

positions for gesture 7. However, 47.28% of misclassifications for gesture 7 were due to index 

finger alone. 

For GC 14, the data from subject 9 demonstrates improved results with respect to the mean for GC 

14, and one novel gesture produced high performance in accordance with the ANGC rules at an 

accuracy of 93.23%.  
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4.4.3. CNN Performance with WDGC Method 

 

The WDGC method provides a more accurate insight into the potential usefulness of a classifier 

for applications in prosthetic control. For the trained gestures processed via the WDGC method, 

the performance is similar to the performance of trained gestures for the ANGC method but 

demonstrates higher performance than the trained WDGC results for the FFMLP and SSAE. The 

 

Figure 4.21 this graph shows the classification performance for all novel gestures in GC 14 

across all participants for the WDGC method 
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Figure 4.22, this graph shows the classification performance for all novel gestures in GC 14 

across all participants for the WDGC method 
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p-value for the CNN in comparison to both the FFMLP and SSAE novel and trained WDGC results 

was 0.000. 

The performance for new gestures for the WDGC method for GC 14 is shown in Figure 4.22. The 

performance shows some improvement when compared to the performance for GC 14 with the 

FFMLP and SSAE. Like the SSAE and FFMLP WDGC results, the reason for the low performance 

for untrained gestures averages across all participants is likely due to the misclassification of the 

index finger, due to its relatively high weighting.  

Figure 8.17 shows the novel classification performance for WDGC for the subject with the top 

performing data, subject 9. Here we can see a higher performance, with only 2 of the 7 novel 

gestures having produced a classification accuracy of less than 80%, and the highest performance 

of 97.76% produced by gesture 5. The matrices in Figure 8.14 and Figure 8.15 in Appendi 8.6, 

show the performance for subject 9 for trained and novel gestures respectively. For subject 9, the 

index finger was responsible for a lower number of misclassifications when compared to the 

average results for GC 14 previously discussed in section 4.4.2. For gesture 13, the index finger 

was misclassified 18.65%, the little finger was misclassified at a rate of 22.67%, and the middle 

finger at 17.93%. For gesture 13, 64.99% of misclassifications were the result of little finger, while 

the index finger was only misclassified 2.45%. For gesture 12, the middle and index fingers were 

responsible for 74.48% and 0.14% of the classification errors respectively. 

What this tells us that the trained CNN model is more useful for prosthetic control for subject 9 

when compared to the average across all participants, as the misclassification of the little or ring 

fingers would have a less detrimental impact on the systems usefulness for the users due to the 

lower weighting of these digits. 
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4.4.4. Gesture Combinations 

Statistical analysis results indicate that there is a statistically significant difference between the 

performance of gesture combinations. For trained ANGC, trained WDGC and novel WDGC the 

p-values were 0.023, 0.016, and 0.003 respectively, indicating that the performance differences 

between different gesture combination is significant between at least two combinations for all 

analysis methods. Therefore, the null hypothesis can be rejected, and it can be stated that the 

different gesture combinations produce significantly different classification results. 

4.4.5. Participants 

The performance was also dependant on the participant. For trained ANGC, trained WDGC and 

novel WDGC the  p-values were 0.021, 0.02, and 0.019 respectively. Possible explanations for the 

impact of the participant on the performance beyond random variability will be discussed in the 

next section. This indicated that the performance differences between subjects is significant 

between at least two subjects. Therefore, the null hypothesis can be rejected, and it can be stated 

that the different subjects do achieve significantly different classification results. 
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5. Discussion 

5.1. Summary of Key Findings 

From the results, we have determined the following: 

1. The SSAE, FFMLP and CNN all produced low classifications accuracies for novel gestures 

based on the ANGC method, though there were some instances of high classification 

accuracy for select subjects and gestures for the CNN. 

2. The SSAE, FFMLP and CNN all produced acceptable results for the classification of 

sEMG signals from trained gestures for the ANGC method.  

3. The SSAE, FFMLP and CNN produced acceptable results for the classification of trained 

and for the WDGC analysis method, that may indicate suitability for prosthetic control for 

trained gesture classification. Across all participants the CNN demonstrates the strongest 

performance, and may be applicable for prosthetic control in classifying both trained and 

novel finger positions for some participants. 

4. There is no statistically significant difference in performance between the SSAE and 

FFMLP for trained ANGC and novel WDGC results. The FFMLP produced statistically 

significant results when compared to the SSAE for the trained WDGC.  

5. The CNN results are significantly different from the SSAE and FFMLP for trained ANGC 

and, both trained and novel WDGC methods. 

6. The classification accuracy differences between subjects are statistically significant 

between at least two participants. The classification accuracy differences between gesture 

combinations are statistically significant between at least two combinations. 
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The discussion is broken into two parts. The first part is divided into sub-sections that focus on 

each neural network algorithm. The second part of the discussion identifies possible sources of 

error, considerations for methodological improvements based on the possible sources of error and 

discusses future research directions that will build off of the results of this study.  

5.2. Feed Forward Multi-Layer Perceptron 

The FFMLP has, in other research demonstrated promising applications in classifying isometric 

gestures and other movements from both raw and post processed sEMG signals as discussed in 

section 2.5.1. The question that was posed in this thesis was whether this algorithm could 

generalize relationships from raw, sEMG data that correspond to the discrete positions of 

individual fingers, and classify trained and novel gestures, as well as trained and novel digits 

positions.  

The results indicate that raw data may not be effective for the FFMLP to be used in the 

classification of either trained or novel discrete finger positions, as it relates to the ANGC 

classification method. The instructions given to direct participants to perform the gestures, and the 

labelling method used for the sEMG data may be the greatest limitation in this case. It is possible 

that inconsistent performance of the intensity of flexion extension for digits across gestures, 

combined with the labelling method involving binary labelling of digit positions and the use of 

raw sEMG data lead to low performance. The use of raw data is more likely to be the problem, as 

studies such as [25], have demonstrated that a similar binary labelling method and output 

architecture can be used to classify discrete digit positions using wavelet transform of the signal 

for trained gestures. Due to the use of different input features between the network proposed in 

this thesis, and the system used in [25], it is difficult to determine if the differences in performance 

between these output architectures would be significant. The trained results from the classification 
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of individual fingers, and the results of trained gestures from GC 14 indicate that the FFMLP may 

be suitable for classification of digit positions from raw data for trained gestures.  

We can see from Table 7.4 in Appendix 8.2, which depicts the raw FFMLP outputs for novel 

gesture 5, GC 14, that the mean decisions for all digits were close to the extend/flexion threshold 

of 0.5, indicating poor differentiation of digit positions across different gestures, and a poor ability 

to isolate digit-specific sEMG signal features. 

5.3. Stacked-Sparse Auto-Encoder 

In using the same number of layers as the FFMLP discussed in the previous section, the stacked 

autoencoder was used to evaluate how a different method of training a network with the same 

number of parameters might improve performance. Because training each layer as an autoencoder 

forces the network to create a compressed representation of the previous layers’ outputs, it was 

hypothesised that the network might be able to isolate the signal features that are related to the 

positions of the individual fingers. However as discussed in section 4, there was either no 

significant difference between the FFMLP and SSAE, or the FFMLP produced significantly better 

results than the SSAE.  

5.4. Convolution Neural Network 

The CNN demonstrated the highest performance capabilities compared to the SSAE and FFMLP 

when classifying both trained and novel sEMG signals for the WDGC results, as well as trained 

gestures for the ANGC results. As discussed in section 4, there were certain instances where the 

CNN was able to classify select gestures for some participants with acceptable accuracy, but 

overall the performance was not significant. On average, the CNN misclassified at least 1 digit for 

most novel gestures. For many misclassifications, this was the index finger, which is, according 
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the weights derived from the commercial prostheses grasp patterns, is the most important digit in 

the daily life of trans-radial prosthesis users. Table 7.5 in Appendix 8.6 shows that the raw output 

values for the index finger active node are very close to the threshold of 0.5 used to produce the 

binary output to represent each discrete digit position. This indicates that the network may not 

have been able to assign any definitive signal feature to the position of the index finger, or that the 

index finger position may have been related to multiple contradictory features.  

This is evident when reviewing the raw classification outputs of other digits within the same 

gesture. For the middle finger, the subset of raw outputs shown are classified close to the target, 

with the lowest value in the samples presented in Table 7.5 in Appendix 8.6 is 0.8953. The target 

for this digit for gesture 5 is one (digit extended). All other node outputs, including the rest nodes, 

show a similar pattern, where the raw classification output was close to the value of the target, and 

therefore, after being passed through the threshold filter, were correctly classified.  

This indicated that the CNN may be relating the position of the index finger to signal patterns 

associated with other digits. For instance, this problem could arise if the CNN is determining 

through the training process that the index finger should be flexed when the ring or little fingers 

are flexed and extended in other conditions.   

As for subject 9, the incorrectly classified digit was most often the little finger. This digit was 

misclassified nearly half the time, indicating that overall, the system was unable to extract 

meaningful relationships from the raw data that could be used to reliably classify. Instead the 

network achieved performance similar to random guess of finger position.  

There is considerable difference in performance between the trained and novel gestures. It is 

possible that the CNN was overfitting to the trained gestures. Changing the size of the fully-
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connected layers, introducing dropout layers into the fully-connected layers, and varying the batch 

size were also tested to improve generalization, with no significant improvements as described in 

section 3.4.5.5. Considering that the CNN was able to produce reasonable classification accuracies 

for most digits on average with the exception of the index finger, it is more likely that some other 

underlying problem such as the network relating certain features to the positions of multiple digits, 

or the labelling method coupled with inconsistent flexion/extension of digits between gestures, 

was affecting the performance. Due to the ‘black box’ nature of deep learning algorithms, it is not 

clear what features the CNN was extracting from the raw sEMG signals, but it is possible that the 

CNN could have extracted muscle synergies or patterns of muscle signals that manifest across 

multiple gesture. 

5.4.1. Gesture Combinations 

The gesture combinations had a statistically significant influence on performance across all 

networks for the WDGC method, as well as trained gestures using the ANGC method. Therefore, 

it may be possible that certain combinations of gestures may be more optimal for use in training 

to allow the network to classify new gestures with these same learned properties. It is also possible 

that there is a more balanced distribution of gestures between training and novel subsets that are 

alike in the intensity of flexion/extension for each digit, leading to similar signal properties 

between trained and novel gestures. 

5.4.2. Between Participants 

At least two participants produced classification results that were significantly different from one 

another. This may simply due to random variability or may be the related to how consistently 

participants performed flexion/extension tasks across all gestures. Those that performed the 
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flexion/extension tasks for each digit consistently across all isometric gesture may have produced 

better performance than those who were less consistent.  

5.4.3. WDGC Method 

For the WDGC method, we can see that the reason for the sub 60% performance in most cases is 

due to the misclassification of only the index finger. While only one finger is misclassified in these 

scenarios, the index finger is weighted very highly in accordance with the parameters described in 

section 3, and as a result, misclassification of the index finger results in significantly reduced 

performance for a given gesture, despite the fact that the other digits were classified correctly. The 

WDGC method can be viewed as a classification accuracy analysis method that serves as a more 

effective indicator of the usefulness of the system for real-world prosthetic control applications, 

when compared to the ANGC method. 

5.4.4. ANGC Method 

The ANGC method demonstrated unsuitable classification performance accuracies for novel 

gestures for all networks, though there were select instances for the CNN where the ANGC 

produced high classification accuracies that would be suitable for prosthetic control for novel 

gestures. The ANGC method is more comparable to the discrete gesture classification method that 

is conventionally used in other sEMG classification studies. However, the ANGC method of 

analysis is not as suitable when classifying individual digits, as it ignores correct outputs for all 

other digits, should a single digit be misclassified. Therefore, The ANGC method is not an 

effective measure for the true performance of the network as it relates to the systems ability to 

generalize and classify novel sEMG data to predict individual digit positions.  
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Regarding other studies conducted using a CNN to classify trained gestures, the ANGC method 

performed well on average for gesture combination 14. For example, overall the average 

performance for GC 14 was 98.63% across all gestures and participants. Studies such as [12], 

which used a CNN to classify seven trained gestures using eight differential sEMG channels, 

showed a within-session classification accuracy of 97.74%. Therefore, the performance of the 

CNN proposed in this thesis demonstrates a marginal improvement in comparison the performance 

of the CNN architecture used in [12].  

As discussed in section 2.5.2.7, the study in [40] used high density sEMG channels to classify 

instantaneous sEMG signals, and the CNN used in [40] achieved a performance of 89.3% before 

majority voting was applied, for the classification of eight isometric gestures. The proposed 

CNN used in this thesis outperformed the classification of the algorithm used in Geng et al 

before the use of majority voting but underperformed slightly in comparison to the post majority 

voting performance of 99.5%. Overall it can be stated that the proposed CNN in this thesis offers 

improved functionality over the CNNs used in these previous studies, because of the comparable 

ability of the CNN used in this thesis to classify novel gestures, coupled with the ability to 

classify the discrete digit positions from novel gestures to some degree. 

5.5. Methodological Considerations and Future Development 

The main source of error in the methodology was likely the binary digit labelling coupled with 

inconsistent performance of digit flexion/extension tasks across gestures.. During the experiment, 

the participants were asked to either fully extend or fully flex digits, and it is possible that a lack 

of consistent force and/or positioning for each finger between isometric gestures may have been 

responsible for the classification errors. This is because there was no external apparatus such as a 

data glove, optical tracking system, or force gauge, used to ensure that the sEMG signals 
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consistently corresponded to the exact flexion/extension state of a digit. For example, in one 

gesture, a finger may have been fully extended, but for another gesture, this same finger may have 

only been extended with 70% force of the previous gesture. This digit for both gestures would 

have been assigned the same label of ‘1’ to represent an extended digit, despite the activations of 

this digit not being consistent between these gestures [22]. This problem has been documented to 

affect the performance of sEMG signal classification, as discussed in section 2.4. 

To circumvent this limitation in the future, transfer learning could be used. A paper by [31] 

described using transfer learning in a CNN to train a general EMG model, then fine tune this model 

for particular users. This method could be employed such a way where the initial model would be 

trained with data collected from a large set of able-bodied subjects, with their joint kinematics 

being recorded simultaneously with the sEMG recordings. The classifier would then be trained on 

this data from all able-bodied participants and can be fine tuned on a per user basis. The fine-

tuning process would have the user perform a few gestures with discrete finger positions similar 

to those performed for this study, without capturing the hand kinematics, and the same labelling 

method as proposed and explored in this thesis could be used to provide supervised training targets 

for the users sEMG data.  

During the data collection experiment, care was taken to ensure that the electrode locations 

between participants were similar, though it is possible that inconsistency in electrode positions 

between participants may account for differences in classification accuracy between participants. 

Using an electrode array design similar to the Myo armband used in studies like [12], would make 

consistent electrode placement more reliable between participants.  
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To explain the reason why the majority of misclassification were due to only one digit for the 

CNN, it is possible that the training process for the CNN is relating certain signal features to the 

positions of multiple digits, which therefore results in high classification for trained gestures, but 

lower classification for novel gestures. A possible solution for this issue for the CNN, would be to 

explore algorithms that introduce sparsity into the weights of the fully connected layers of the 

network. More specifically this type of algorithm would ensure that each feature extracted from 

the raw sEMG is related to the position of one or two digits, and any features related to multiple 

digits are penalized. This method could make the classification of digits entirely independent from 

one another, and in theory would improve the networks generalization capabilities to digit 

positions from novel gestures.  

It will also be important to investigate the use of training sets that include more gestures, and 

therefore include fewer gestures in the novel sub-sets. This could assist in determining if there is 

an ideal number of gestures that should be included in training, and to evaluate the point at which 

increasing the number of training gestures has diminishing improvements in performance of novel 

gestures or has adverse effects on novel classification performance.  

Frequency domain features have been demonstrated to be effective for the classification of discrete 

gestures using CNNs [44]. The application of both phase and power spectrum features extracted 

from the raw sEMG data to determine if these features are more effective in classifying novel 

gestures can also be investigated. The use of a separate neural networks for each DOF can also be 

explored, as this has been demonstrated to produce better results than single network for multiple 

DOFs [3].  
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The MATLAB toolbox for neural networks has limitations regarding what activation functions 

and backpropagation algorithms can be used with different types of network architectures. For 

example, the Tanh function that is available to use with feedforward FFMLPs, but not for 

autoencoders. Therefore, future development will be conducted using tools better suited for 

building networks that require a high degree of customizability such as Python and the related 

machine learning toolboxes like Tensorflow.  
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6. Conclusions  

The objectives of this study were as follows: 

1. Evaluate the performance FFMLP, SSAE and CNN with classifying isometric hand 

gestures from raw sEMG data for trained gestures and novel gestures. 

2. Evaluate whether the gesture combinations had an impact on the classification 

performance. 

3. Classify digit positions without training the network with kinematic data from the 

participants hand. 

The classification accuracy for novel finger positions for the CNN was statistically significant for 

3 of the 4 digits. The FFMLP and SSAE do not appear to be well suited for applications in novel 

and trained gesture classification when used with raw sEMG data, the proposed output 

architecture, and labelling methodology applied in this study.  

The results indicate that the gesture combination plays a role in classification accuracy, which may 

indicate that certain gesture combinations are more effective at providing a wide enough range of 

information to allow a classifier to predict the positions of individual digits from both trained and 

novel gestures. The statistical results also indicate that there was a significant difference in 

performance between subjects, which may be due to degree of consistency when performing the 

isometric hand gestures, and therefore should be more carefully controlled in future experiments. 

The results for certain participants for the WDGC method indicate that the CNN proposed in this 

study may have applications in predicting finger positions from novel sEMG patterns for prosthetic 

control applications, though there are some significant classification problems that need to be 

resolved before this can be seen as an applicable system for prosthetic control. Based on the 



86 

 

findings of this study, CNNs warrant further investigation for applications in the classification of 

novel patterns of sEMG signals to predict digit positions.  
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8. Appendices 

 

 

 

 

 

Table 8.1, Gesture Combinations used to train CNNs. C14 is in bold 

because it was the best performing gesture combination over all (See 

Section IIIA). 

  Gesture Numbers 

Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C1 U U U U T T T T U T T U U T 

C2 U U U T U T T U T T T U U T 

C3 U U U T T U U T T T T U U T 

C4 U U U T T T T T T U U U U T 

C5 U U T U U T T U U T T U T T 

C6 U U T U T U U T U T T U T T 

C7 U U T U T T T T U U U U T T 

C8 U U T T U U U U T T T U T T 

C9 U U T T U T T U T U U U T T 

C10 U U T T T U U T T U U U T T 

C11 T T U U U T T U U T T U U T 

C12 T T U U T U U T U T T U U T 

C13 T T U U T T T T U U U U U T 

C14 T T U T U U U U T T T U U T 

C15 T T U T U T T U T U U U U T 

C16 T T U T T U U T T U U U U T 

C17 T T T U U U U U U T T U T T 

C18 T T T U U T T U U U U U T T 

C19 T T T U T U U T U U U U T T 

C20 T T T T U U U U T U U U T T 
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Table 8.2, this table shows data for GC 14 for pilot data used to determine window size. On 

average across both trained and untrained gestures, 25 millisecond window achieved the best 

performance. 

 Trained Gestures for GC 14, Pilot Data  

Window  

Size 
1 2 4 9 10 11 14 Mean 

25 ms 47.29 85.49 87.24 75.56 82.74 34.53 99.33 73.17 

50 ms 42.40 81.55 84.56 50.50 75.71 30.97 98.50 66.31 

100 ms 42.56 74.25 80.85 55.27 71.99 25.08 97.66 63.95 

200 ms 19.36 65.80 69.32 18.94 57.08 3.77 97.15 47.35 

 Novel Gesture for GC 14, Pilot Data  

Window 

Size 
3 5 6 7 8 12 13 Mean 

25 ms 8.48 6.45 2.75 0.65 2.15 8.18 14.86 6.22 

50 ms 2.89 1.30 0.93 2.30 2.45 2.92 21.91 4.96 

100 ms 11.96 4.19 1.34 0.99 1.94 3.90 17.77 6.01 

200 ms 2.30 0.39 0.11 1.04 3.48 4.04 40.40 7.40 

 

Table 8.3, This figure depicts the importance. If a digit is used for grasping or interacting in a 

certain gesture, then it is assigned a value of 1, otherwise a digit is given a value of 0. 

For instance, in ‘index point’, only the index finger is used to interact with objects, so it is given a 

value of 1, all other digits are given a value of ‘0’. For the active index however, the index, but 

the other digits are used to hold the object being used (like a squirt bottle or electric drill), 

therefore, all digits received a value of 1. 

 Digits  

 Index Middle Ring Little Grip Pattern 

Im
p

o
rt

a
n

ce
 (

1
/0

) 

1 1 1 1 Power Grip 

1 0 0 0 Precision Open 

1 1 1 1 Hook Grip 

1 0 0 0 Precision Closed 

1 1 0 0 Tripod Grip 

1 1 1 1 Open Palm 

1 0 0 0 Index Point 

1 1 1 1 Mouse Grip 

1 1 1 1 Finger Adduction 

1 0 0 0 Pinch Grip 

1 1 0 0 Column 

1 0 0 0 Key Grip 

0 0 0 0 Relaxed 

1 1 1 1 Active Index 

 13 8 6 6 Total Sum 

   39.39 24.24 18.18 18.18 Relative Importance (%) 
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Figure 8.1, this figure depicts the 13 gestures available for use with the Bebionic V3 hand prosthesis developed by Ottobock. The 

“rest” gesture was omitted as it is not actively used for grasping or manipulation tasks 
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8.1. FFMLP ANGC  

 

 

 

Figure 8.2, this figure depicts the MLPs classification performance for trained gesture 

combination 14 for subject 8 
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1 55.88 1.33 1.00 3.67 0.25 26.69 1111 

2 2.00 89.82 0.50 0.58 0.08 1.17 0000 

4 0.00 1.50 88.16 0.17 3.67 3.25 1100 

9 4.17 0.83 0.08 78.90 7.01 8.76 0011 

10 0.00 0.08 3.84 2.67 84.65 1.42 1001 

11 23.35 1.50 1.58 4.67 0.42 42.37 0110 

13 0.08 0.67 0.00 0.67 0.58 0.17 0111 

6 0.33 0.83 1.42 0.08 0.00 0.92 0100 

13 9.09 1.08 0.08 6.92 0.67 7.01 0111 

3 0.00 0.50 0.67 0.00 1.17 0.17 1000 

7 0.25 0.00 0.00 0.83 0.58 0.08 1011 

12 0.00 0.00 0.92 0.08 0.75 0.17 1101 

5 4.09 0.42 1.75 0.08 0.08 7.01 1110 

N 0.75 1.42 0.00 0.67 0.08 0.83 0010 

N 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.00 0.00 0.00 0.00 0.00 0.00 1010 

 
 1111 0000 1100 0011 1001 0110  

Figure 8.3, the confusion matrix for Subject 08, GC 14 for the active nodes in the 

MLP for trained gesture classification.  
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8.2. FFMLP WDGC  

 

  Target Outputs  
 

 3 5 6 7 8 12 13  

P
re

d
ic

te
d

 O
u

tp
u

ts
 

3 4.74 0.20 0.89 0.35 1.81 1.64 0.05 1000 

5 0.00 6.25 5.53 2.78 0.16 4.92 6.30 1110 

6 0.01 1.39 2.88 0.98 0.13 1.48 0.90 0100 

7 0.01 0.13 0.05 0.75 0.48 0.13 0.19 1011 

8 0.08 0.13 0.08 0.55 1.43 0.13 0.11 0001 

12 3.39 0.20 1.15 0.36 0.94 4.27 0.15 1101 

13 0.01 6.58 0.41 7.44 0.71 0.49 6.59 0111 

2 0.61 2.36 0.71 1.73 1.31 0.23 1.34 0000 

9 0.06 7.03 0.31 37.81 11.17 0.88 7.59 0011 

11 0.01 39.55 9.71 25.58 0.70 10.96 43.20 0110 

10 67.75 1.55 5.62 7.09 74.76 16.19 0.71 1001 

4 23.31 4.28 70.03 3.04 5.47 57.49 1.85 1100 

1 0.00 29.14 2.41 9.28 0.74 0.95 29.94 1111 

N 0.00 1.19 0.23 2.21 0.20 0.28 1.04 0010 

N 0.00 0.03 0.00 0.05 0.00 0.01 0.03 0101 

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1010 

  1000 1110 0100 1011 0001 1101 0111  
Figure 8.4, the confusion matrix for Subject 08, GC 14 for the active nodes in the MLP 

output for novel gesture classification.  

 

Figure 8.5, this figure depicts the MLPs classification performance for novel gesture 

combination 14 for subject 8 using the WDGC method 
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Figure 8.6, this figure depicts the MLPs classification performance for novel gesture 

combination 14 for subject 8 using the WDGC method 
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 Table 8.4, This table depicts the raw output of the MLP novel gesture 5 from combination 14, before the threshold was 

applied, for each of the eight output nodes. Gesture 5 corresponds to index, middle, ring extended. In an ideal output, the 

index middle and ring fingers should produce values closer to one, and the little finger, as well as all rest nodes, should 

produce values close to zero.  

 Subject 01/GC 14/Novel Gesture 5 

Target 

Output 1 1 1 0 0 0 0 0 

Output 

Nodes Index Middle Ring Little I Res M Rest R Rest L Rest 

R
a

w
 C

N
N

 O
u

tp
u

ts
 S

a
m

p
le

s 

0.6367 0.6320 0.3506 0.4258 0.0000 0.0000 0.0000 0.0000 

0.3787 0.2813 0.5284 0.5610 0.0000 0.0000 0.0000 0.0000 

0.1845 0.3945 0.4018 0.2415 0.0000 0.0000 0.0000 0.0000 

0.8847 0.9561 0.8747 0.7313 0.0000 0.0000 0.0000 0.0000 

0.5848 0.6159 0.2974 0.3260 0.0000 0.0000 0.0000 0.0000 

0.1871 0.5312 0.8492 0.5750 0.0000 0.0000 0.0000 0.0000 

0.6418 0.8764 0.8553 0.5991 0.0000 0.0000 0.0000 0.0000 

0.2556 0.5601 0.7977 0.4973 0.0000 0.0000 0.0000 0.0000 

0.2975 0.5140 0.5951 0.3976 0.0000 0.0000 0.0000 0.0000 

0.6007 0.5450 0.6661 0.6801 0.0000 0.0000 0.0000 0.0000 

0.0702 0.4141 0.9871 0.4393 0.0000 0.0000 0.0000 0.0000 

0.8282 0.8478 0.1273 0.1286 0.0000 0.0000 0.0000 0.0000 

0.7896 0.8742 0.7503 0.6290 0.0000 0.0000 0.0000 0.0000 

0.5117 0.6269 0.4781 0.4010 0.0000 0.0000 0.0000 0.0000 

0.5463 0.2997 0.4971 0.6531 0.0000 0.0000 0.0000 0.0000 

0.5891 0.2228 0.4117 0.7091 0.0000 0.0000 0.0000 0.0000 

0.5166 0.6765 0.4818 0.3060 0.0000 0.0000 0.0000 0.0000 

0.1959 0.4260 0.2072 0.1279 0.0000 0.0000 0.0000 0.0000 

0.7971 0.6593 0.6360 0.7040 0.0000 0.0000 0.0000 0.0000 

0.3465 0.4637 0.6130 0.5041 0.0000 0.0000 0.0000 0.0000 

0.5421 0.1931 0.4545 0.8143 0.0000 0.0000 0.0000 0.0000 

0.1048 0.3854 0.4161 0.2369 0.0000 0.0000 0.0000 0.0000 

Average 0.4768 0.5453 0.5580 0.4858 0.0000 0.0000 0.0000 0.0000 
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8.3. SSAE ANGC  

 

 

 

 

Figure 8.7, this figure depicts the SSAEs classification accuracy for the discrete position 

of each finger for novel gestures 
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  Target Outputs  
 

 1 2 4 9 10 11  

P
re

d
ic

te
d

 O
u

tp
u

ts
 

1 48.59 0.50 12.63 2.13 6.63 10.32 1111 

2 1.25 88.24 2.31 1.69 3.81 0.13 0000 

4 13.26 2.19 70.79 0.25 1.56 2.31 1100 

9 4.57 0.44 0.06 60.48 14.20 3.50 0011 

10 5.75 2.38 2.13 18.20 56.79 0.75 1001 

11 8.44 0.50 0.50 2.44 0.31 75.05 0110 

13 0.44 2.19 0.06 3.19 3.75 0.00 0111 

6 0.38 0.56 0.56 0.06 0.00 0.31 0100 

13 3.69 0.06 0.06 2.81 0.25 3.50 0111 

3 0.38 1.63 0.94 0.06 0.81 0.06 1000 

7 3.50 0.19 0.38 7.94 7.88 1.06 1011 

12 5.69 0.25 5.50 0.19 3.75 0.25 1101 

5 3.88 0.13 3.94 0.00 0.13 2.25 1110 

N 0.13 0.75 0.13 0.56 0.13 0.50 0010 

N 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.06 0.00 0.00 0.00 0.00 0.00 1010 

  1111 0000 1100 0011 1001 0110  
Figure 8.8, the confusion matrix for GC 14 for the active nodes in the SSAE for 

trained gesture for subject 7 
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8.4. SSAE WDGC 

 

  Target Outputs  
 

 3 5 6 7 8 12 13  

P
re

d
ic

te
d

 O
u

tp
u

ts
 

3 3.50 0.08 0.50 0.14 0.70 1.79 0.70 1000 

5 1.31 3.29 4.47 0.41 0.04 2.78 4.12 1110 

6 1.36 0.15 1.68 0.05 0.00 0.40 0.35 0100 

7 0.19 1.58 0.21 5.60 6.08 3.59 5.49 1011 

8 0.10 0.11 0.10 2.39 6.57 0.60 0.64 0001 

12 5.52 0.75 3.19 0.34 0.43 10.22 4.19 1101 

13 0.01 6.63 0.14 5.87 0.58 1.08 5.13 0111 

2 10.79 0.24 2.93 1.36 5.20 2.53 1.98 0000 

9 0.08 3.95 0.10 54.38 28.38 2.61 9.88 0011 

11 0.36 60.75 1.59 11.04 0.43 2.21 14.98 0110 

10 1.65 1.73 0.99 12.15 49.64 12.10 9.66 1001 

4 69.11 2.09 75.38 0.41 0.38 30.93 9.81 1100 

1 6.00 18.49 8.71 4.48 1.38 29.08 32.73 1111 

N 0.01 0.18 0.03 1.38 0.21 0.09 0.35 0010 

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1010 

  1000 1110 0100 1011 0001 1101 0111  
Figure 8.9, the confusion matrix for GC 14 for the active nodes in the SSAE for novel 

gesture for subject 7 

 

Figure 8.10, this figure depicts the SSAEs classification performance for trained gestures, gesture 

combination 14 for subject 7 using the WDGC method 
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8.5. CNN ANGC  

 

 

Figure 8.11, this figure depicts the SSAEs classification performance for novel gestures, 

gesture combination 14 for subject 7 using the WDGC method 
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Figure 8.12, this figure depicts the CNNs classification performance for trained 

gestures, gesture combination 14 for subject 9 using the ANGC method 
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Figure 8.13, this figure depicts the CNNs classification performance for novel gestures, 

gesture combination 14 for subject 9 using the ANGC method 
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  Target Outputs  

 
 1 2 4 9 10 11  

P
re

d
ic

te
d

 O
u

tp
u

ts
 

1 100.00 0.00 0.00 0.00 0.00 0.00 1111 

2 0.00 100.00 0.00 0.00 0.00 0.00 0000 

4 0.00 0.00 100.00 0.00 0.00 0.00 1100 

9 0.00 0.00 0.00 99.75 0.00 0.00 0011 

10 0.00 0.00 0.00 0.00 100.00 0.00 1001 

11 0.00 0.00 0.00 0.00 0.00 98.91 0110 

13 0.00 0.00 0.00 0.17 0.00 0.00 0111 

6 0.00 0.00 0.00 0.00 0.00 0.00 0100 

13 0.00 0.00 0.00 0.00 0.00 0.08 0111 

3 0.00 0.00 0.00 0.00 0.00 0.00 1000 

7 0.00 0.00 0.00 0.00 0.00 0.00 1011 

12 0.00 0.00 0.00 0.00 0.00 0.00 1101 

5 0.00 0.00 0.00 0.00 0.00 1.01 1110 

N 0.00 0.00 0.00 0.08 0.00 0.00 0010 

N 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.00 0.00 0.00 0.00 0.00 0.00 1010 

 
 1111 0000 1100 0011 1001 0110  

Figure 8.14, the confusion matrix for GC 14 for the active nodes in the CNN for 

trained gestures for subject 9 
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8.6. CNN WDGC  

 

  Target Outputs  

 
 3 5 6 7 8 12 13  

P
re

d
ic

te
d

 O
u

tp
u

ts
 

3 28.04 0.00 0.00 0.00 0.00 23.16 0.00 1000 

5 0.00 29.62 10.60 0.00 0.00 0.00 0.78 1110 

6 0.00 0.00 3.11 0.00 0.00 0.03 0.00 0100 

7 0.00 0.13 0.00 17.39 0.00 0.00 0.00 1011 

8 0.00 0.19 0.00 0.39 93.23 0.03 0.00 0001 

12 4.23 0.34 0.21 0.75 0.00 0.13 0.00 1101 

13 0.00 0.97 0.06 0.00 0.00 0.00 21.47 0111 

2 0.11 0.06 0.00 0.00 0.00 0.08 0.00 0000 

9 0.00 0.08 0.00 1.22 2.02 0.00 9.07 0011 

11 0.00 17.81 2.97 0.00 0.00 0.00 64.99 0110 

10 0.55 0.72 0.00 79.89 4.74 74.48 0.00 1001 

4 67.06 0.41 80.60 0.00 0.00 2.10 0.00 1100 

1 0.00 49.55 2.45 0.35 0.00 0.00 1.67 1111 

N 0.00 0.14 0.00 0.00 0.00 0.00 2.02 0010 

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0101 

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1010 

 
 1000 1110 0100 1011 0001 1101 0111  

Figure 8.15, the confusion matrix for GC 14 for the active nodes in the SSAE for novel 

gestures for subject 9 

 

Figure 8.16, this figure depicts the CNNs classification performance for novel gestures, 

gesture combination 14 for subject 9 using the WDGC method 
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Figure 8.17, this figure depicts the CNNs classification performance for novel gestures, 

gesture combination 14 for subject 9 using the WDGC method 
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 Table 8.5, This table depicts the raw output of the CNN novel gesture 5 from combination 14, before the 

threshold was applied, for each of the 8 nodes from. Gesture 5 corresponds to index, middle, ring extended. In 

an ideal output, the index middle and ring fingers should produce values closer to one, and the little finger, as 

well as all rest nodes, should produce values close to zero. This data is from subject 1 and appears to be more 

indicative of the average novel gesture 5 performance across all subjects, where the index finger is responsible 

for many misclassifications. 

 Subject 01/GC 14/ Novel Gesture 5 

Target 

Outputs 1 1 1 0 0 0 0 0 

Output 

Node Index Middle Ring Little I Rest M Rest R Rest L Rest 

R
a

w
 C

N
N

 O
u

tp
u

ts
 S

a
m

p
le

s 

0.5178 0.8953 0.8955 0.0258 0.0152 -0.0153 -0.0150 -0.0151 

0.4934 0.9299 0.9305 0.0211 -0.0015 -0.0019 -0.0015 -0.0015 

0.5072 0.9112 0.9115 0.0315 -0.0157 -0.0158 -0.0155 -0.0159 

0.4909 0.9013 0.9012 0.0273 0.0012 0.0013 0.0014 0.0013 

0.5038 0.9196 0.9199 0.0254 -0.0122 -0.0120 -0.0124 -0.0127 

0.4995 0.9498 0.9496 0.0308 0.0068 0.0070 0.0066 0.0066 

0.4804 0.9759 0.9754 -0.0446 0.0085 0.0087 0.0086 0.0089 

0.4596 0.9707 0.9704 -0.0396 0.0049 0.0049 0.0052 0.0051 

0.4564 0.9778 0.9772 -0.0295 -0.0074 -0.0073 -0.0070 -0.0074 

0.4245 0.9985 0.9982 -0.0461 0.0027 0.0026 0.0029 0.0028 

0.4298 0.9662 0.9660 -0.0436 0.0014 0.0013 0.0012 0.0012 

0.4318 0.9726 0.9726 -0.0522 0.0120 0.0121 0.0119 0.0118 

0.4367 0.9500 0.9499 -0.0306 0.0076 0.0076 0.0076 0.0077 

0.4422 1.0046 1.0046 -0.0390 0.0094 0.0091 0.0093 0.0093 

0.4278 0.9906 0.9902 -0.0306 0.0081 0.0077 0.0079 0.0077 

0.4332 0.9860 0.9860 -0.0346 0.0106 0.0103 0.0105 0.0107 

0.4532 0.9868 0.9861 -0.0209 -0.0066 -0.0067 -0.0067 -0.0066 

0.4377 1.0227 1.0222 -0.0387 0.0100 0.0098 0.0099 0.0098 

0.4409 1.0034 1.0035 -0.0273 0.0178 0.0176 0.0176 0.0177 

0.4631 1.0239 1.0238 -0.0597 0.0176 0.0174 0.0172 0.0173 

0.4748 0.9707 0.9704 0.0228 0.0109 0.0109 0.0109 0.0109 

0.4768 1.0425 1.0423 -0.0385 0.0223 0.0226 0.0226 0.0226 

Average 0.4628 0.9705 0.9703 -0.0178 0.0042 0.0042 0.0042 0.0042 
 



104 

 

8.7. Ethics Approval Confirmation 
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