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Abstract

In this thesis, we propose a novel polarimetric system design framework that com-
putationally evaluates a design to solve an optical problem. It does this by explicitly
formulating the logical connections and dependencies in the design of the components in
a polarimetric system (i.e the components chosen affect the choice of their parameters;
the parameters of each component affects the measurements, and the system design re-
quirements and constraints affect them all) in a Bayesian network. With this Bayesian
network formulation, for the first time, prior knowledge of components, system component
parameters, and measurement processes can be explicitly modelled in conjunction with
system design requirements and constraints in a unified way for the design of polarimetric
systems. With this prior knowledge of system processes, component behaviour, and de-
sign requirements and constraints, we can design polarimetric systems to achieve design
objectives while reducing the effects of stochastic and deterministic error.

We demonstrate these capabilities in this thesis by first designing a single linear po-
lariser, polarisation angle estimation system to produce a desired and measurable angular
sensitivity given prior knowledge of component behaviour and prior knowledge of stochas-
tic and deterministic error sources. Using the Computational Polarimetry Framework, we
were able to estimate ideal linear polariser orientations under various orthodox and un-
orthodox design conditions to achieve minimal and desired levels of measurable angular
sensitivities. An unintentional consequence of this system was producing stable parameter
configurations where the system performance is optimal over tens of degrees.

Next, we used the Computational Polarimetry Framework to estimate the optical ac-
tivity of a sample using spirally polarised beams and a spatial detector array. The com-
putational optical rotary dispersion (CORD) system incorporated prior knowledge of the
beam polarisation distribution, the measurement system, and the measurement process to
arrive at an inference model to estimate a sample’s optical activity. This system was able
to estimate accurate optical activities under synthetic conditions with varying amounts of
stochastic error to a lower detectable limit of two millidegrees. The system was able to
estimate more accurate angular changes caused by a polarisation rotator in comparison to
the state of art linear polarisation orientation (LPO) scanning systems with only a single
measurement. Finally, it was demonstrated to provide an accurate estimate of Sucrose
optical activity over the LPO system to a tenth of a degree.

Due to the probabilistic and Bayesian foundation of this framework, it is flexible enough
to accommodate a range of system prior models for expected system behaviour. However,
there can be cases where the distribution of a particular parameter in the framework is
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unknown or needs to be known. Future directions for this framework can be to estimate
the distribution of a system component parameter for a known component. Given prior
information of all the the immediate parent and dependant parameters of that system com-
ponent, we can use their logical dependencies and the properties of Bayesian networks to
infer their distributions. This framework has the additional benefits of being generalisable
to model the behaviour of other optical processes.
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Chapter 1

Introduction

Polarisation is the vectorial description of how light is vibrating at any given point in
space and moment in time. Examples of the ways light can vibrate are given in Figure 1.1.
Light polarisation can change through the anisotropic absorption or retardation of the
electromagnetic wave’s orthogonal components when interacting with anisotropic materials
or materials with inhomogeneous distributions of matter [52]. By keeping track of how light
changes as it passes through these materials, scientists can infer material structure and
composition. Using light polarisation for material analysis has proven effective for probing
the structural makeup of cells [5, 38], determining skin cellular activity and structure [19,
20, 28], characterising aerosols [31], assessing food quality [49], and performing thin film
analysis [47]

Devices that measure the change in light polarisation are called polarimeters and can
be classified into two types of devices: 1) those that estimate the polarisation of light, and
2) those that estimate the polarising properties of a material. These polarimeters each
arrange their components in a particular way, take an intensity measurement, and go on
to another configuration to take another measurement. After the measurements have been
captured, optical polarisation or polarisation properties are estimated.

The choice of component parameters in the design of these systems is an active field
of study and is focused on choosing component parameters that minimise the influence
of error on the estimates of light polarisation or polarisation properties. This error can
be stochastic or deterministic. Stochastic error is typically the result of noise from the
measuring device while converting light intensity to machine readable values [15], while
deterministic error comes from predictable deviations in measured intensity, like beam
wander [27, 46] or parameter temperature dependence [53]. Parameter choices to minimise
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z

~Ex

~Ey

~E

(a) Elliptical polarisation

z

~Ex

~Ey

~E

(b) Linear polarisation

z

~Ex

~Ey

~E

(c) Circular polarisation

Figure 1.1: Examples of light polarisations. ~E is the travelling electromagnetic wave. ~Ex
is the amplitude of the wave in the horizontal direction, represented by the blue arrows
and ~Ey is the amplitude of the electromagnetic wave in the vertical direction, represented
by the red arrows. The grey panel contains a trace of the path of the electromagnetic wave
projected on the ~Ex and ~Ey plane. z is the direction of wave propagation in space or time.
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the effects of stochastic error sources are the most widely discussed and optimised for [2,
8, 11, 15, 32, 40, 41, 54, 53, 57]. An additional benefit, that is not as coveted as it
should be, in performing component optimisation is that the number of measurements
needed to estimate the light polarisation or polarisation properties are kept to a minimum.
As shown by Tyo et al. [57], Layden et al. [26], and Goudail et al. [15], increasing the
number of measurements will make the measurements more resistant to stochastic error,
however, it is not desirable due to the fact that increasing the number of measurements
increases the time for acquisition, thereby limiting any applications in monitoring dynamic
systems, like in monitoring birefringence changes of bio-materials undergoing varying levels
of mechanical stress [60]. An alternative to performing component optimisation is to
separate the intensity signal from the noise through temporal modulation [7, 25]. This
method does increase the overall cost and complexity of the system and is therefore not
desirable either if designing systems in low-resource settings [13].

The optimisation of component configuration parameters take into account prior knowl-
edge of the stochastic error sources [8], however, design requirements and constraints and
deterministic error from experimental uncertainty are unaccounted for in design metrics.
Therefore to perform full system optimisation, it is unclear as to how to incorporate all this
prior knowledge and additional project information into a single unifying metric to design
optimal systems. From a system design perspective, having a unified design framework to
infer and model polarimetric system configurations and parameters based on prior knowl-
edge of model performance, of stochastic and deterministic error sources, and of project
requirements would be ideal as a single optimisation procedure can occur to arrive at a
final design that accounts for all the trade-offs between the aforementioned parameters.

Utilising prior knowledge is a necessary tool in Bayesian techniques for parameter es-
timation or general inference. A Bayesian network is a formalism that applies a sense of
logical dependence between parameters and state in a directed graphical structure and a
set of rules to model the random variables in the graph [36, 37]. These networks have
been applied to system design frameworks in the past for inference of component health
and their monitoring [30], and electrical hardware design [50]. The logical dependence of
Bayesian networks is what allows us to incorporate the design requirements and constraints
into the framework providing a single unifying metric that contains prior information of
component behaviour and error.

Therefore, to create a unified design framework for polarimetric systems, we propose a
Computational Polarimetry Framework that presents a joint probability distribution over
a set of parameters representing the measurements, system component parameters, compo-
nents, and system requirements and constraints. The logical dependencies between them
are modelled using a Bayesian network. With this network model, given prior knowledge,
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the joint distribution can be a metric that is optimised over any set of parameters to achieve
the best system for a given purpose. The proposed framework can be written with the
joint probability function in Eq. 1.1.

P (I,Q, C,D) (1.1)

where I is the set of measurements, Q is the set of vectors describing the system component
parameters in C, C is the set of variables representing the system components, and D is
the set of project requirements and constraints. A brief description of each parameter is
given below

Measurements (I) represents the set of measurements received from the photodetector
or spatial detector array. These measurements can be random variables, random
vectors, or be sets of random variables and random vectors.

Set of Component Parameters (Q) represents the set of parameters that describe each
component in the system, including any samples being measured. These parameters
are random vectors.

Set of Components (C) represents the set of components in the system.

Project Requirements and Constraints (D) represents the set of hyper-parameters
quantitatively describing the requirements and constraints placed on the design of
the polarimetric system.

These parameters are modelled through a Bayesian network and utilise its properties
to produce a metric on which full systems design can occur. In addition, the metric can
be used to produce inference models for sample parameter estimation by exploiting the
graphical structure of the network and the inclusion of prior knowledge of component
behaviour and error sources.

1.1 Contributions

This PhD thesis contributes a novel unifying framework for the design of polarimetric
systems. The framework utilises Bayesian networks to mimic the logical design process of
polarimetric optical systems resulting in a singular metric that can be optimised for full
system design that includes prior knowledge of component behaviour, error sources, as well
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as design requirements and constraints. In addition, through the use of this framework,
inference models can be set up that utilise prior knowledge of components behaviour and
prior knowledge of stochastic error sources for sample parameter estimation. This is the
first unified polarimetric system design framework and the first polarimetric design tool
that incorporates design requirements and constraints.

The framework will be used in the design of two systems to replicate two design sce-
narios:

Design Problem 1: Designing a single linear polariser optical system to estimate the
angle of linear polarisation for material differentiation tasks. The design requirement
is that the system will detect the smallest angular difference possible given a de-
tector contaminated with stochastic error and a linear polariser holder with spaced
graduations, representing a source of deterministic error.

Design Problem 2: Designing an optical polarimetry system that uses heterogeneously
polarised beams to infer the optical activity of a sample using a spatial detector
array. The spatial detector array is contaminated with stochastic error and measures
a discrete set of polarisation states simultaneously.

1.2 Outline

This thesis is outlined as such:

• Chapter 2 provides background information about polarisation, sample modelling,
polarisation measurement systems, sources of error, heterogeneously polarised beams,
and Bayesian networks.

• Chapter 3 reviews work relating to the design of optimal polarimetric systems.

• Chapter 4 introduces the Computational Polarimetry Framework.

• Chapter 5 demonstrates the Computational Polarimetry Framework in the design of
a single linear polariser optical system to estimate the angle of linear polarisation.

• Chapter 6 demonstrates the use of the Computational Polarimetry Framework in the
design of a system to infer optical activity.

• Chapter 7 discusses future work to expand upon this framework and concludes this
thesis.
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Chapter 2

Theoretical Background

Polarised light has been well modelled and studied through the 20th and 21st century. In
this chapter, we will present the tools and models designed to study the polarisation of
light and how it interacts with materials. In addition, we will introduce how polarimetric
systems are modelled along with special types of heterogeneously polarised beams. Finally,
we will introduce Bayesian networks, outline and demonstrate two of their properties for
modelling logical dependencies.

2.1 Polarised Light

In this section, we will introduce the mathematical formulation of polarised light and the
generalised Polarisation ellipse along with its degenerate states. After, a more in-depth
introduction to Stokes Parameters will be given.

2.1.1 Polarisation Ellipse

Ignoring diffraction, light can be described as an oscillating, monochromatic electromag-
netic (EM) planar wave emitting from a point source with some wavelength λ and angular
frequency ω. For the scope of this thesis, the polarisation of non-monochromatic waves
will not be described.

If the EM wave is imagined to be travelling in some arbitrary direction through a
homogeneous, isotropic medium, r = r(x, y, z), then the electric wave’s amplitude can be
described as

6



E(r, t) = Eo cos (ωt− k · r + δi) (2.1)

where Eo = Eo(x, y, z) is the maximum amplitude, δi is some phase delay in the wave,
and k is the wave vector, where ‖ k ‖= 2π

λ
. The wave is assumed to be travelling in three-

space (x, y, z), allowing for eq. 2.1 to be decomposed into a scalar representation in three
orthogonal directions

Ex(r, t) = Eox cos (ωt− k · r + δx) (2.2)

Ey(r, t) = Eoy cos (ωt− k · r + δy) (2.3)

Ez(r, t) = Eoz cos (ωt− k · r + δz) (2.4)

where Eox, Eoy, and Eoz are the maximum amplitudes in each of the three orthogonal direc-
tions. The term polarisation is actually this vectorial nature of the wave and polarimetry
is the measurement of this vectorial nature. For the rest of this thesis, it is assumed that
there will be no change in the wave’s propagation direction. The propagation direction will
be along the z axis and since EM waves are defined as transverse waves in free space, there
will only be vibration in the x and y directions for the electric waves, thereby reducing the
amplitude equations from eq. 2.2, 2.3, 2.4 to eq. 2.5 and eq. 2.6.

Ex(z, t) = Eox cos (ωt− kz + δx) (2.5)

Ey(z, t) = Eoy cos (ωt− kz + δy) (2.6)

The term ωt−kz can be called the propagator and be represented by τ . Using τ , eq. 2.5
and 2.6 can be rephrased as eq. 2.7 and 2.8 to make the proceeding formulation easier.

Ex(z, t) = Eox cos (τ + δx) (2.7)

Ey(z, t) = Eoy cos (τ + δy) (2.8)

These two equations can be combined to form the equation of an ellipse. The term
(z, t) will be dropped for the following equations in this section.

E2
x

E2
ox

+
E2
y

E2
oy

− 2
Ex
Eox

Ey
Eoy

cos δ = sin2 δ (2.9)
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where the phase delay difference, δ, is defined as δ = δy− δx. This derivation demonstrates
that the wave generally propagates as an ellipse. This behaviour is coined the optical
ellipse while eq. 2.9 is the polarisation ellipse.

Special (Degenerate) forms of the polarisation ellipse can occur, leading to these po-
larisations: i) Eoy or Eox is 0, ii) δ is 0 or π, iii) δ is π

2
or 3π

2
, and iv) Eoy = Eox = Eo

and δ = π
2

or δ = 3π
2

. These special cases are important in describing polarimetric states.
Polarisations that occur that do not fall in these cases are referred to generally as elliptical
polarisations.

1. In eq. 2.7 and eq. 2.8, when Eoy is zero, Ey is also zero leaving only the Ex component.
The resulting vectorial description describes a horizontally polarised wave. Similarly,
if Eox is zero, this describes a vertically polarised wave.

2. With a phase delay difference of 0 or π, the polarisation ellipse in eq. 2.9 reduces to

E2
x

E2
ox

+
E2
y

E2
oy

± 2
Ex
Eox

Ey
Eoy

= 0(
Ex
Eox
± Ey
Eoy

)
= 0 (2.10)

which has a solution of

Ex = ±
(
Eox
Eoy

)
Ey (2.11)

The solution in eq. 2.11 shows that there is a linear relation between the orthogonal
components. This describes a linearly polarised wave. In the case where δ = 0, there
is a negative linear relation and conversely when δ = π, the linear relation is positive.
If the maximum amplitudes are equal, i.e., Eox = Eoy, then this describes a ±45◦

linearly polarised wave.

3. For the third case, when there is a phase delay difference of δ = π
2

or 3π
2

, the polar-
isation ellipse reduces to being the general description of the non-rotated ellipse in
eq. 2.12. In this case, unlike case two, it is not apparent whether the phase delay
difference is δ = π

2
or 3π

2
. This is still termed as a elliptical polarisation.

E2
x

E2
ox

+
E2
y

E2
oy

= 1 (2.12)
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4. In the final case, when the maximum amplitudes are the same and the phase delay
differences are the same as case three, the polarisation ellipse and eq. 2.12 reduces to

E2
x + E2

y = E2
o (2.13)

Depending on the phase delay difference, the resulting waves can be either right-
handed circularly polarised (RHCP) or left-handed circularly polarised (LHCP).
When δ = π

2
, the wave is RHCP and when δ = 3π

2
, the wave is LHCP. The polari-

sations are named as such because if an observer places their thumb in the direction
of k, the light wave will travel radially around their thumb. If the wave travels in
the direction of the fingers on their right hand, then the wave is right-hand circularly
polarised and conversely named if the wave follows the fingers on their left hand.
Unfortunately, again, like in case three, from the equation alone, the phase difference
is ambiguous. In all the special cases, the phase difference is only clear in case two.

In this section, polarisation was formulated mathematically along with the resulting
polarisation ellipse. This ellipse will degenerate to some special cases under certain cir-
cumstances.

The polarisation ellipse described here has some limitations. This ellipse will be traced
out during such a short duration that it cannot be easily observed thereby making the
polarisation of the light wave difficult to determine. In addition, this method assumes the
light waves are entirely polarised, which could not be the case. This motivates the search
for a formulation of the polarisation ellipse in terms of observables. This was a task taken
on by Gabriel Stokes in 1852 [13].

To formulate the polarisation in terms of observables, both of the orthogonal waves in
eq. 2.5 and 2.6 can be imagined to be at the spatial position z = 0, leaving only time as
the wave propagator.

Ex(t) = Eox cos (ωt+ δx) (2.14)

Ey(t) = Eoy cos (ωt+ δy) (2.15)

This leads to eq. 2.9, but now with only a time dependence.

E2
x(t)

E2
ox

+
E2
y(t)

E2
oy

− 2
Ex(t)

Eox

Ey(t)

Eoy
cos δ = sin2 δ (2.16)
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To make this observable, the time average (〈· · · 〉) of the instantaneous amplitude term
can be taken.

〈E2
x(t)〉
E2
ox

+
〈E2

y(t)〉
E2
oy

− 2
〈Ex(t)
Eox

Ey(t)〉
Eoy

cos δ = sin2 δ (2.17)

where the time average is

〈Ei(t)Ej(t)〉 = lim
T→∞

1

T

∫ T

0

Ei(t)Ej(t)dt (2.18)

Each time average is evaluated, using eq. 2.14 and 2.15 in eq. 2.18. Due to the period-
icity of the monochromatic radiation, only the average over a single oscillation needs to be
taken

〈E2
x(t)〉 =

1

2
E2
ox (2.19)

〈E2
y(t)〉 =

1

2
E2
ox (2.20)

〈Ex(t)Ey(t)〉 =
1

2
EoxEoy cos δ (2.21)

and to make the waves observable, eq. 2.17 is multiplied by by 4E2
oxE

2
oy and E2

ox + E2
oy is

added to both sides of the equation to produce

(
E2
ox + E2

oy

)2 −
(
E2
ox − E2

oy

)2 −
(
2E2

oxE
2
oy cos δ

)2
=
(
2E2

oxE
2
oy sin δ

)2
(2.22)

Each of the square terms is recognized as the Stokes parameters of the light wave. The
parameters are all observable intensities.

S0 = E2
ox + E2

oy (2.23)

S1 = E2
ox − E2

oy (2.24)

S2 = 2EoxEoy cos δ (2.25)

S3 = 2EoxEoy sin δ (2.26)

And if the derivation is done using the phasor representation,

Ex = Eoxe
iωteiδx (2.27)
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Ey = Eoye
iωteiδy (2.28)

the Stokes parameters take the form of

S0 = ExE
∗
x + EyE

∗
y (2.29)

S1 = ExE
∗
x − EyE∗y (2.30)

S2 = ExE
∗
y + EyE

∗
x (2.31)

S3 = i(ExE
∗
y − EyE∗x) (2.32)

Eq. 2.23, eq. 2.29 and the first term in eq. 2.22 are recognized as the full intensity of
the light wave. Rearranging eq. 2.22 shows that the squared sum of S1−3 is equal to the
square of the full intensity of the light wave, S0, shown in eq 2.33.

S2
0 = S2

1 + S2
2 + S2

3 (2.33)

The sum in eq 2.33 is true under the assumption that the wave is perfectly polarised.
In the case of partial polarisation, it can be shown in eq. 2.34 that the relation in eq. 2.34
holds.

S2
0 ≥ S2

1 + S2
2 + S2

3 (2.34)

A metric can then be defined to describe the degree of polarisation, P , using eq. 2.33
and eq. 2.34

P =
Ipol
Itot

=
(S2

1 + S2
2 + S2

3)
1
2

S0

0 ≤ P ≤ 1 (2.35)

2.1.2 Stokes Vectors

The four Stokes parameters can be expressed in terms of a vector with each element being
a Stokes parameter. The use of a vector representation allows other mathematical tools to
be used later on.

S =


S0

S1

S2

S3

 =


E2
ox + E2

oy

E2
ox − E2

oy

2EoxEoy cos δ
2EoxEoy sin δ

 (2.36)
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Each of the special (degenerate) cases of the polarisation ellipse can be represented
using this observable representation from eq. 2.36. Each representation is scaled by the
intensity of the light wave, Fo.

Horizontally Polarised Light

In horizontally polarised light, Eoy = 0, eq. 2.36 reduces to

S = Fo


1
1
0
0

 (2.37)

where Fo = E2
ox.

Vertically Polarised Light

In vertically polarised light, Eox = 0, eq. 2.36 reduces to

S = Fo


1
−1
0
0

 (2.38)

where Fo = E2
oy.

+45◦ Polarised Light

In +45◦ polarised light, Eoy = Eox = Eo and δ = 0, so eq. 2.36 reduces to

S = Fo


1
0
1
0

 (2.39)

where Fo = 2E2
o
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−45◦ Polarised Light

In −45◦ polarised light, Eoy = Eox = Eo and δ = π, so eq. 2.36 reduces to

S = Fo


1
0
−1
0

 (2.40)

where Fo = 2E2
o .

Right-hand Circularly Polarised Light

In RHCP light, Eoy = Eox = Eo and δ = π
2
, so eq. 2.36 reduces to

S = Fo


1
0
0
1

 (2.41)

where Fo = 2E2
o .

Left-hand Circularly Polarised Light

In LHCP light, Eoy = Eox = Eo and δ = 3π
2

, so eq. 2.36 reduces to

S = Fo


1
0
0
−1

 (2.42)

where Fo = 2E2
o .

2.1.3 Mueller Matrices

Polarimetry is the measurement of the polarisation state of light or how the polarisation
state of light changes as it interacts with matter. The mathematical characterisation of
this matter and how it changes a wave’s polarisation is described using Mueller matrices.
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Mueller matrices are four-by-four real matrices (i.e. M ∈ R4×4) that map an incoming
light beam’s Stokes vector to an outgoing light beam’s Stokes vector, demonstrated in
eq. 2.43, mimicking the interaction of the polarized light wave with matter: i) as it changes
the amplitudes of components of the light wave, ii) as the phases change between the
orthogonal components, iii) as it changes the direction of the orthogonal field components
(i.e., rotates the Stokes Vector), and iv) as energy transfers from polarised to unpolarised
states.This tool offers the ability, under certain constraints [18], to theoretically observe
the change in light polarisation for a wide range of possible input Stokes vectors.

S ′ = MS (2.43)
S ′0
S ′1
S ′2
S ′3

 =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33



S0

S1

S2

S3

 (2.44)

The size of the Mueller matrix requires there to be 16 measurements taken with different
input and output Stokes vectors to determine the effect of the material on the polarisation
of a light wave. There is no guarantee that it will result in a well posed system [12].
However, work has been done to determine the best input Stokes vectors for the optimal
estimation of a Mueller matrix [1, 26].

In the modelling of polarimetric systems, components such as polarisers, which force the
light polarisation into a particular type of polarisation, retarders, which cause a phase delay
between two orthogonal components, and rotators, which cause a transfer the energy from
one orthogonal field component to the other, have idealised Mueller matrices. Examples
of these components are shown in Eq. 2.45, 2.46, and 2.47.

Horizontal Linear Polariser

1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (2.45)

Rotator (for some angle φ) 
1 0 0 0
0 cos 2φ sin 2φ 0
0 − sin 2φ cos 2φ 0
0 0 0 1

 (2.46)
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Retarder (for some trasmission axis θ and some retardance δ)
1 0 0 0
0 cos2 2θ + sin2 2θ cos δ sin 2θ cos 2θ(1− cos δ) − sin 2θ sin δ
0 sin 2θ cos 2θ(1− cos δ) sin2 2θ + cos2 2θ cos δ cos 2θ sin δ
0 sin 2θ sin δ − cos 2θ sin δ cos δ

 (2.47)

2.2 Polarimetric Systems

In this section, we outline the general components in a polarimetric system and their
associated mathematical system models.

2.2.1 System Components

Generally, a polarimetric system can be composed of five parts. These five parts are:

Light source (LS) The Light Source (LS) produces a temporally incoherent or coherent
light beam. This light beam can be conditioned to have any spatial intensity distri-
bution and can be diverging, converging, or collimated. Unless stated otherwise, we
will be using coherent, collimated beams in our systems in this thesis.

Polarisation State Generator (PSG) The Polarisation State Generator (PSG) pro-
vides the light beam from the LS with a polarisation profile that can be homogeneous
across the entire beam or be heterogeneous across the beam. In the former case, the
Stokes vector across the beam profile can be constant, while in the latter, the Stokes
vector is a function of space across the beam profile.

Sample (S) The Sample (S) changes the polarisation of the beam in some way.

Polarisation State Analyser (PSA) The Polarisation State Analyser (PSA) polarises
the beam from S in such a way that the resulting Stokes vector contains information
representative of the way that S changed the beam polarisation that was set by the
PSG.

Detector (D) The Detector (D) measures the optical energy (typically the S0 Stokes
parameter) and converts the energy into machine and human readable quantities.

For a Stokes polarimetry system, there is no PSG, however for a Mueller matrix po-
larimetry system, there is a PSG. The components mentioned in this section, along with
their optomechanics, are the components described in C.
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Figure 2.1: General Polarimetric System design consisting of an Light source (LS), Po-
larisation state generator (PSG), Sample (S), Polarisation state analyser (PSA), and the
Detector (D).

2.2.2 System Model

The mathematical modelling of Polarimeters is done in two ways depending on what kind of
system it is: a Stokes polarimetry system [41] or a Mueller matrix polarimetry system [53].
For either case, multiple system configurations are necessary. The following models apply
only to a system with a polarisation insensitive (measures S0 only) detector.

For a Stokes polarimetry system, each configuration has a PSA whose Stokes vector is
A =

[
a0 a1 a2 a3

]
. The A vectors can be stacked row-wise into a matrix, W, called the

measurement matrix. The intensity measured on the detector from all configurations can
be neatly described then as

F = WSF0 (2.48)

where F is a vector of N measurements, W is the N × 4 measurement matrix, S is the
Stokes vector being measured, and F0 is the beam intensity from the light source. From
here, if N = 4 and W is a non-singular matrix, S can be estimated by

S =
1

F0

W−1F (2.49)

however, if N 6= 4, then

S =
1

F0

W+F (2.50)
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where W+ is the Moore-Penrose inverse of the measurement matrix.

For a Mueller matrix polarimetry system, along with A, there is also the Stokes vec-
tor for the PSG, G =

[
g0 g1 g2 g3

]
. This system also has a measurement matrix

as well, however, it is described differently. For the N measurements being taken, let
Ai =

[
ai0 ai1 ai2 ai3

]
and Gi =

[
gi0 gi1 gi2 gi3

]
be the analyser and generator for

the ith measurement where i = 0, 1, · · · , N − 1, respectively. The Wi row in the measure-
ment matrix is

Wi =
[
ai0Gi ai1Gi ai2Gi ai3Gi

]
(2.51)

with this, the system can be modelled as

F = WMF0 (2.52)

where F is a vector of N measurements, W is a N × 16 measurement matrix, M is a
vectorised Mueller matrix, and F0 is the beam intensity from the light source. To estimate
M , we can follow the same procedure as the Stokes polarimetry system where if N = 16
and W is non-singular, then

M =
1

F0

W−1F (2.53)

however, if N 6= 16, then

M =
1

F0

W+F (2.54)

where W+ is the Moore-Penrose inverse of the measurement matrix.

2.3 Error

2.3.1 Stochastic Error

The detector plays an important role in the detection of polarimetric information as meth-
ods for Stokes vector estimation and Mueller matrix estimation relying heavily upon in-
tensity quantities. Goudail and Tyo have published several papers on system designs to

17



minimise the effect of additive Gaussian noise, signal-dependant Poisson shot noise, and
mixed Poisson-Gaussian noise on polarimetry [2, 8, 40, 54, 57]. Each of these noise mod-
els comes from fundamental properties of the measurement systems: additive Gaussian
is from thermal noise in the semiconducting material and other circuit parameters and
Poisson shot noise is from the combination of the stochastic arrival of photons and the
stochastic conversion of photons into current [43].

We will mainly be concerned with additive Gaussian stochastic error in this thesis and
model it as

f = F + η (2.55)

where F is the ideal measure EM wave intensity received from the light source on the
detector, and η is stochastic noise sampled from a zero-mean Gaussian with standard
deviation σf (η ∼ N (0, σ2

f )) under the assumption that enough photons are incident on
the detector that we can assume the error to be Gaussian distributed [43].

2.3.2 Deterministic Error

Polarimetry systems rely upon setting up PSGs and PSAs in different configurations to
detect the Stokes vectors of light [13]. However, these systems work optimally when the
components are arranged perfectly relative to each other, and do not affect the direction
of light propagation.

Research has been done to determine the optimal combinations of PSG and PSAs
such that error in the arrangement do not have a significant affect on the estimation of the
Stokes parameters [41, 53, 57]. However, there are some effects that cannot be corrected for
through arrangement because they are a result of the components themselves. For example,
beam wander is a result of rotating retarding elements [46]. Additional computational work
has to be done to centre the beam [27].

2.4 Heterogeneously Polarised Beams

Homogeneously polarised light maintains a constant polarisation across the entire beam
profile. In contrast, Heterogeneously polarised light has many polarisations across the
entire beam profile.
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(a) Spirally Polarised
Beam

(b) Radially polarised SPB (c) Azimuthally polarised
SPB

Figure 2.2: Examples of Radial and Azimuthal SPB polarisation profiles. The centre of
the beam profile is marked with a black dot and the extent of its detectable intensity is
the larger circle. The arrows represent the polarisations across the beam profile.

Relative to homogeneously polarised beams, heterogeneously polarised beams offer the
ability to send multiple light polarisations into a sample to determine its polarising proper-
ties. If a homogeneously polarised beam is used for this purpose, it would have to modulate
to several different type of polarisations to provide the same amount of information. Het-
erogeneously polarised beams have been utilised for this exact purpose recently [9, 10, 44].
In this section, I will review a type of heterogeneously polarised beam: Spirally polarised
beams [4, 9, 10, 24, 34, 35, 39, 62, 44, 51].

2.4.1 Spirally Polarised beams

Heterogeneously polarised beams provide a spatial distribution of polarisation states over
the profile of the beam. Spirally polarised beams (SPB) are a particular subset of hetero-
geneous polarised beams where there is an axially symmetric linear polarisation profile.
The appeal of using SPBs is that they provide a constant polarisation profile as they travel
through space and all linear polarisation states are present across the beam [10]. Two com-
monly seen versions of SPBs are shown in Figure 2.2: azimuthally and radially polarised
beams. Creative methods for generating SPBs have been theorised and demonstrated in
the past and will be reviewed here.

Nguyen et al. [34] utilised q-plates to generate SPBs. Briefly, q-plates are liquid crys-
tal molecules imprinted between two glass plates and the orientation of the molecules is
controlled with a variable voltage supply. A q-plate can be tuned to convert any input
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polarisation into a radially and azimuthally polarised beam. Passily et al. [35] used an inter-
ferometric methods to produce SPBs. They combined beams of two orthogonal transverse
electromagnetic modes (TEM), the TEM01 and TEM10 Hermite-Gaussian Modes, to pro-
duce a radially polarised beam. This can later be translated to an azimuthal polarisation
through the use of a half-wave retarder. Brown and Beckley [4] discuss the use of stress
engineered optics to produce SPBs. Applying forces to the edges of an optically trans-
missive element will produce a smooth birefringence pattern. The centre of the stressed
element attains a azimuthally-independant half-wave retardation profile. This element can
be rotated to produce an azimuthally or radially polarised SPBs. Lai et al. [24] were able
to create SPBs by etching an α-BBO crystal to depths in a stepwise fashion. This etched
crystal is then placed between two quarter-wave retarders which are then followed by two
half-wave retarders to produce radially or azimuthally polarised beams. Radwell et al. [39]
utilised Fresnel principles to generate a spirally polarised beam through the back reflec-
tions of light against a cone. This method exploits the geometric phase shift that occurs in
beams during total internal refraction. It so happens that using a glass cone surrounded
by air acts as a quarter-wave retarder with a spatially varying fast-axis. This allows the
conversion of a circularly polarised beam into a SPB. McEldowney et al. [29] use a liquid
polymer that has been baked and photoaligned with UV light. The photoalignment is
azimuthally varying about the centre of the polymer plate that is thick enough to act as a
half-wave retarder. The spatially varying fast axis of a half-wave retarder acts as a spatially
varying rotator. With the input of a linearly polarised light at any arbitrary angle, a SPB
is produced. This liquid polymer plate is sold by Thorlabs as a Vortex half-wave retarder
(Thorlabs WPV10L-633) and what is used in this thesis to generate SPBs.

2.5 Bayesian Networks

Bayesian networks were conceived by Judea Pearl in 1985 [36] to formalise the objectives
of connected models of knowledge and then solidified them as a field of study in his book
Probabilistic Reasoning in Intelligent Systems in 1988 [37].

Bayesian networks are defined as being directed acyclic graphs (DAG) with directed
edge structure. A DAG D = (U , E) is defined by a set of nodes U = {X1, · · · , Xn} and
a set of directed edges E . A property of DAGs is if you start at any node, you cannot
trace a path along the directed edges back to that same node. An example of a DAG is in
Figure 2.3.

Bayesian networks use the directed edge structure of DAGs to signify logical depen-
dencies and causalities in evidential updating of information meant to model the joint
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Figure 2.3: An example of a directed acyclic graph (D = (U , E)) representing a Bayesian
network mapping the of the joint probability on the set of nodes U . The set of directed
edges, E , dictate the logical causality of evidential information.

probability of all the nodes in the DAG. The acyclic structure of D is important here
because the update in knowledge of a node in D should not be then used to update itself.
A DAG also has an ordering d to the nodes in U , which we will use to reflect the ordering
of the polarimetric system design.

Highlighted below are two properties of Bayesian networks:

d-separation
This definition is quoted from Pearl [37]. If X , Y , and Z are three disjoint (non-
intersecting) subsets of nodes in D, then Z is said to d-separate X from Y if there is
no path from a node in X and a node in Y along which the following two conditions
hold

1. every node with converging arrows is in Z or has descendants in Z
2. every other node is outside Z

The implications here are if you have a path from X to Y converging through Z (i.e.
X → Z ← Y), Z d-separates the two sets. The path from X to Y is blocked, until
information is learned about Z. Another way to look at it is that until Z is learned,
X to Y are independent, but when Z is learned, they become mutually dependant.

Markov Property
Given a DAG D and a joint probability distribution of all the nodes in D, any node
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in D is conditionally dependant on only its direct parents (i.e. for any node Xi, its
probability is P (Xi = xi|ΠΠΠXi) where the set ΠΠΠXi is the minimal set of connected
parents of Xi).

The combination of these two properties allows us to structure a Bayesian network and
use Bayesian techniques for polarising parameter inference and system design evaluation.
To demonstrate the use of a Bayesian network for modelling joint probabilities let’s model
the Bayesian network in Figure 2.3. This DAG D = (U , E), defines the joint probability of
P (X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, X6 = x6). Using the Markov property we
can define the joint probability as

P (X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, X6 = x6) =
∏
i

P (Xi = xi|ΠΠΠXi) (2.56)

P (X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, X6 = x6) =

P (X1 = x1)P (X2 = x2|X1 = x1)

P (X3 = x3|X2 = x2, X4 = x4, X6 = x6)P (X4 = x4|X5 = x5)P (X5 = x5)P (X6 = x6)
(2.57)

From this graph,X2 d-separates X1 and X6 and X3 blocks X4 and X5 from X1, X2,
and X6. Taking X2 for example, if we learn its outcome, then we can infer X1 and X6.

2.6 Summary

In this chapter, we have reviewed the theory for modelling polarised light, modelling the
polarisation effects of components, models of stochastic error, heterogeneously polarised
beams, and Bayesian networks. With this information, the reader will now know enough to
understand the theory used in this thesis to describe the novel Computational Polarimetry
Framework and using it in the following two chapters.
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Chapter 3

Literature Review

In this chapter, we will introduce the state of art methods for polarimetric system design.
These methods focus primarily on optimising the choice of Stoke vector to reduce the
variance in intensity measurements received from the detector. We review them in the
context of full polarimetric system design.

3.1 Polarimetry System Optimisation

The typical design methodologies for polarimetry systems revolve around choosing the
best PSA configurations or the best PSG/PSA configurations to estimate accurate Stokes
vector of a beam or a sample’s Mueller matrices. For Stokes polarimetry, PSA designs are
chosen that reduce the effects of stochastic and deterministic error on the estimate of the
Stokes vector. For the Mueller matrix polarimetry, the PSA designs are chosen that not
only reduce the effects of stochastic and deterministic error on the estimate of the Mueller
matrix, but also on the choice of Stokes vectors from the PSG to optimally estimate the
matrix.

For Mueller matrix polarimetry, the optimal choice of Stokes vector to estimate the
Mueller matrix has been shown to be those that create Platonic solids in the Poincaré
sphere [3, 26]. Platonic solids can be phrased simply as solids that sit inside a sphere with
the maximum volume possible. Azzam was the first to show that the optimal estimation
of a Mueller matrix with four Stokes vectors is done with any four linearly independent
Stokes vectors that form the largest volume tetrahedron possible in the Poincaré Sphere [3].
Layden et al. went on to show that the optimal estimate of a Mueller matrix, such that
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there is the smallest possible amount of error from random sources, can be done with
any number of Stokes vectors, so long as they form Platonic solids inside the Poincaré
Sphere [26]. Anna and Goudail went on to show that the increase in the number of
measurements decreases the variance in the estimate of the Mueller matrix [2]. In addition
to choosing the optimal probing Stokes vectors, the choice of the PSA can be used to
reduce the effects of stochastic and deterministic error.

For a system to be resilient to stochastic error, the sensitivity of W+ to small changes in
measurement intensity that can be attributed to the stochastic error sources in Section 2.3.1
must be minimised. There have been several metrics devised on how to choose the optimal
configurations of the PSA and PSG such that the inverse of the measurement matrix is not
sensitive to minor stochastic variations. For Stokes polarimeters with 4 measurements, the
optimisation procedures focus on minimising the condition number of the measurement
matrix [1, 56]. The condition number is calculated as

CN(W) = ||W||||W−1|| (3.1)

where CN(W) is the condition number of W, and || · || is either the L1 or L∞ matrix norm.
For PSAs with more than four measurements, the optimisation of the measurement matrix
revolves around the reduction of figures of merit that are functions of the measurement
matrix’s singular values [41, 42]. Sabatke et al. proposed two figures of merit: The
reciprocal absolute determinant (RAD) and the equally weighted variance (EWV).

RAD =
∏
j

1

µj
(3.2)

EWV =
∑
j

1

µ2
j

(3.3)

where µj is the jth singular value of the measurement matrix. Zallat took a different
approach to determining the optimal measurement matrix configuration by recognising
that the detector cannot detect small changes in intensity, therefore, instrument compo-
nents should be chosen that produce large intensity changes to reflect small polarisation
changes [61]. The modulation efficiency factor metric was introduced for each row of the
measurement matrix. If we define Q = W+, then the modulation efficiency factor is

ζi =

(∑
j

q2
ij

)− 1
2

(3.4)
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where qij is the matrix element of Q in the ith row and jth column. The mean system
efficiency is the average of all the modulation efficiencies of W+.

Deterministic error sources can affect the measurement matrix and cause some error
in the estimate of the Stokes vector or Mueller matrix. Ambirajan and Look were wary
of deterministic error from experimental component setup and opted to choose a logic-
based route to reduce error by proposing an optimal configuration of components with
whole angles rather than half angles [1]. Sabatke et al. address deterministic error briefly
as a nice consequence of using their figures of merit for determining a rotating-retarder
fixed-polariser (RRFP) configuration where the chosen parameters are stables to within
2.5 degrees for the orientation angle and 4 degrees of the retarder rotation [41]. Tyo
did an analysis of deterministic error on the estimation of Stokes vectors and Mueller
matrices with a rotating retarder. He noticed that there is a trade-off in the reduction
of deterministic error in Mueller matrices and the reduction of the condition number of
measurement matrices in rotating retarder systems. The trade-off exists due to the fact
that the trajectory of the polarisation around the Poincaré sphere is greater for larger
retardances, which leads to a smaller condition number, however a variation from that
retardance can therefore lead to a larger estimation error [55, 57]. Tyo also discovered
that, by increasing the number of measurements, the error in the produced Stokes vector
from deterministic error in the measurement matrix can be reduced [57]. Twietmeyer and
Chipman devised an error metric on the trace of the covariance matrix of the Mueller
matrix error from known error sources [53].

The metrics and methods mentioned have proven effective enough to produce accurate
polarimetry systems based off of them, but these methods have several disadvantages:

1. Primarily, optimisation methods weigh more towards the reduction of stochastic er-
ror.

2. Save for Zallat [61], the methods do not take into account the detectability of polar-
isation changes.

3. The methods focus on the reduction of error through the design of the system com-
ponents and do not use any no prior models to enhance system estimates after the
measurements have been taken.

4. Optimisation methods focus on the optimisations of null intensity systems only.

5. These methods only focus on system parameter optimisation to reduce noise, but
do not provide further methods to optimise for parameter estimation or optimise
computational algorithms for parameter estimation.
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Building on the last point, these methods provide methods to optimise the component
parameters for reducing the variance in the estimates, but that is only a small part of the
full design of application based polarimetric systems. Design requirements and constraints
need to be considered for component and component parameter choice. As well, inference
models need to be developed and evaluated with potential design trade-offs given prior
knowledge of component behaviour and error. These methods cannot provide a metric
that offers a complete picture of polarimetric system design.

3.2 Summary

In this chapter, we review polarimetric design metrics for system optimisation and identify
the shortcomings of their methods. Primarily, these metrics focus on the reduction on the
effects of stochastic error on measurements and do not take into account overall system
requirements and constraints, prior knowledge of component behaviour to enhance the
measurements, and are not flexible to optimise any system other than a null intensity
polarimetry system. The result of this is that while they are useful tools, they do not
provide a guiding framework or metric for full polarimetric system design.
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Chapter 4

Computational Polarimetry

In this chapter, we will describe the formulation of the Computational Polarimetry Frame-
work and relate it to the design of polarimetric systems from a systems design perspective.
We will first explore the meaning of each of the sets in Eq. 1.1 and their place in polari-
metric system design, then we will formulate the Computational Polarimetry Framework
as a Bayesian network, and finally outline the design procedure.

4.1 Framework Parameters

4.1.1 Design Parameters (D)

In the design of systems to achieve a particular objective, there are a subset of objectives
that need to be reached during the design process. These sub-objectives are split into
two groups: requirements and constraints. Requirements are design sub-objectives that
can be adhered to within a certain margin, while Constraints have to be adhered to. The
set D is defined for each system design at the outset. It can be split into two subsets of
random variables, such that D = {DR,DC} where DR are the random variables for the
requirements and DC are the random variables for the constraints.

The design requirements and constraints can affect all or some of the other parameters
in the Computational Polarimetry Framework.
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4.1.2 System Components (C)

The set of system components (C) is a set of random components such that

C = {c0, c1, · · · , cj, · · · , cJ−2, cJ−1} (4.1)

where cj is the jth random system component. These components include all the com-
ponents outlined in Section 2.2.1 as well as their optomechanical housings. The space of
possible components is a discrete space given the physical realisability of each component.

4.1.3 System Component Parameters (Q)

The set of system component parameters (Q) is a set of random vectors describing the
parameters for each component in the set of system components, C. This implies that if
there are J system component, then there are J system component parameters such that:

Q =
{
q

0
, q

1
, · · · , q

j
, · · · , q

J−2
, q
J−1

}
(4.2)

where q
j

is a random vector of component parameters for the jth random system compo-

nent. The components with the corresponding component parameters can be combined to
describe Mueller matrices.

Most polarimetric systems are reference based systems and require at least one config-
uration to measure the reference beam or sample and at least one more to measure with
either the beam of interest or with a sample of interest. In that case there can be many
possible configurations of certain system parameters, and Q is the complete set of unique
system parameters. This implies that the q

j
random vectors can all be of different sizes.

4.1.4 Measurements (I)

The measurements achieved by photodetectors or spatial detector arrays in this framework
are represented by the set I. The set is composed of N random variables such that

I = {f0, f1, · · · , fi, · · · , fN−2, fN−1} (4.3)

where fi is a random variable representing the measurement from the ith component con-
figuration.

28



Table 4.1: Polarimetric system logical design parameter dependancies
Parameter Dependant upon

I Q,D
Q C,D
C D

4.2 Bayesian Network

The Computational Polarimetry Framework is a joint probability between all the param-
eters involved in the design of a polarimetric systems. Each of the parameters in the joint
probability are directly influenced by a subset of the other parameters; this is summarised
in Table 4.1. It can be seen from the dependencies in Table 4.1, that the parameters are
sequential and dependant upon only the previous parameter (save for the D parameter,
which can influence them all, but is not influenced by any of them). With this knowledge of
dependencies, we can formulate the joint probability as a Bayesian network. This network
is defined as a directed acyclic graph, D = (U , E), where E is the set of edges and U is a set
of nodes. Each node is a set of random variables or vectors representing the parameters of
the joint probability, defined as

U = {D, C,Q, I} (4.4)

The graph is visualised in Figure 4.1. The arrows represent the conditional dependence
of the random variables at the tip of the arrow to the ones at the base of the arrow.
However, it should be noted that not all elements in the the set D directly influence all
the components, component parameters, and measurements.

With the graph formulated and the dependencies visualised, we can use the properties
of the Bayesian network, outlined by Pearl [37], to formulate the joint probability in Eq. 1.1
as shown in Figure 4.1.

P (I,Q, C,D) = P (D)P (C|D)P (Q|C,D)P (I|Q,D) (4.5)

Each term in the framework can be qualitatively explained as:

Term 1: P (D)
The prior probability on the design requirements and constraints limit the search
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Figure 4.1: Graphical conceptualisation of the conditional dependencies in the Computa-
tional Polarimetry Framework. The set of components (C), the set of system component
parameters, (Q), the measurement set (I), and the set of design requirements and con-
straints (D) have the dependencies of C on D, Q on C and D, I on Q and D.

space for the random variables being inferred in the Computational Polarimetry
Framework.

Term 2: P (C|D)
The likelihood of component choice given the design requirements and constraints.
An example of requirements and constraints that can affect choice of components
can be size constraints, or budgetary requirements.

Term 3: P (Q|C,D)
The probability of system component parameters occurring given the set of compo-
nents and design requirements and constraints. An example can be the probability
of angular orientation of a polariser given an optomechanical device that has uncer-
tainty in its orientation due to the graduation of angles. Another example can the
probability of retardance given a retarder that has uncertainty based on the envi-
ronmental temperature with the environment temperature constrained to a range of
operation.

Term 4: P (I|Q,D)
The measurements produced from the components of the system can occur with
a measure of uncertainty from the detector component parameters and other sys-
tem component parameters in the system. As well, the measurements themselves
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Figure 4.2: The design procedure utilising the Computational Polarimetry Framework.
Prior knowledge of component behaviour and error sources will be incorporated in to the
framework used throughout the design procedure.

are produced from the underlying physics parametrised by the polarimetry system
component parameters in Q.

4.2.1 Formulation for Polarimetry Systems

For a polarimetry system design problem, we will formulate the Bayesian network following
the procedure shown in Figure 4.2.

First the design problem will be stated and requirements and constraints will be recog-
nised. Then the parameters outlined in this chapter will be defined. The joint probability
with those parameters will be defined right after. Once that is done so, logical independence
and dependence assumptions are performed between parameter sets or within parameters
themselves. Once the logical structure has been assumed, the Bayesian network can be
constructed as a DAG D = (U , E) with all the parameters, defined or otherwise, as nodes
in U connected by directed edges E . Properties of Bayesian networks can now be utilised
to develop the inference model of parameters in the network given knowledge of the other
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nodes. The measurement set, in particular, is defined using knowledge of all the other
nodes and the underlying physics of how optical energy travels through polarimetry sys-
tems. This is also where probabilistic models can be formulated or probabilistic tables can
be defined. With the inference model complete, optimisation algorithms can be used to
estimate system parameters.

4.3 Summary

In this chapter, we have outlined the formulation of the Computational Polarimetry Frame-
work. The framework was formulated as a Bayesian network in a directed acyclic graph
that followed the logical design structure of polarimetric systems incorporating a set of
design requirements and constraints in addition to the set of components, their component
parameters, and the resulting measurements.

With the Computational Polarimetry Framework, we can create an inference model to
estimate different types of parameters in a polarimetric system for specific purposes. The
remainder of this thesis will be using this framework to infer parameters of a polarimetric
system. The first system will be a demonstration of using the framework to infer a system
component parameter given other system information and design requirements, and the
second system will demonstrate the use of the framework to computationally estimate a
sample parameter from a novel system configuration.
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Chapter 5

Computational Polarimetry in Action

Objects can be differentiated based on their dielectric properties by the angle of linear
polarisation of natural illumination reflected from their surfaces for the purposes of saliency
analysis in robotic vision [16], remote sensing [48], and in material identification tasks [59].
In this chapter, we demonstrate the Computational Polarimetry Framework to optimise
the design of a system to estimate the angle of linear polarisation for this purpose.

The Computational Polarimetry Framework designs a joint probability that not only
incorporates problem design requirements, but also prior information of component be-
haviour and prior information of both stochastic and deterministic error sources using
a Bayesian network. We optimise the system under different experimental conditions in
simulation against the design requirements.

5.1 Background

The angle of light polarisation can be measured simply using a linear polariser. The angle
of the linear polariser affects the measurement of the beam following Malus’ Law outlined
in Eq. 5.1.

F1 = Fo cos2(α) (5.1)

where α is the angle of the linear polariser’s transmission axis relative to the horizontal. If a
beam with a polarisation angle of φ encounters the polariser, the subsequent measurement
will be described by Eq. 5.2.
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F2 = Fo cos2(α + φ) (5.2)

The smallest angle to be detected is theoretically an infinitesimally small amount,
however, with commercially available detectors, there is stochastic error (noise) from the
measurement process of the detector. This noise defines a difference in measurements
that can be confidently said to come from two different measurements. As a result, there
is subsequently a lower limit placed on the minimum possible angular sensitivity from a
linear polariser placed at some angle α. In addition, since the second derivative exists for
cos2(α+φ) with respect to some α, a difference in measurement can correspond to different
φ values.

To combat the influence of noise, prior knowledge of the noise statistics can be used
to identify the minimal detectable measurement difference (∆f) by defining a level of
confidence and using a two-tailed z-table

∆f = 2(1.96)σf (5.3)

where σf is the standard deviation of the detector converting measurements to machine
readable values. We are assuming that there are enough photons incident upon the detec-
tor that we can assume an additive Gaussian error distribution [43]. With this we can find
the linear polariser orientation that gives the smallest angular sensitivity for the small-
est detectable measurement amount. While seemingly straight forward, the experimental
implementation and construction of the polarimetric system can have uncertainties that
inhibit the perfect construction. For example, the linear polariser could be in an optome-
chanical housing that can only achieve a certain angle with a certain precision due to project
cost constraints that make purchasing a motorised mount prohibitive. In addition, there is
a trade-off in the design between the measurement difference and angular sensitivity which
can be relaxed depending on the required angular sensitivity of the system.

5.2 Design Problem

We will define our design objective as designing a polarimetric system that is capable
of estimating the polarisation angle from two photodetector measurements. This system
will be composed of a light source that emits light at some measurement value (Fo) and
polarisation angle (φ), a linear polariser at some angle (α), and a photodetector. The
system should be able to estimate small polarisation changes, therefore having a high
angular sensitivity.
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Figure 5.1: The system design of the single linear polariser angle estimator system. The
components are the light source (LS) with component parameters Fo and φ, a rotated
linear polariser (LP) rotated by α from the horizontal with component parameter α, and
a detector (D) with component parameter ∆f . A summary of the parameters for each
measurement are summarised in the table under the setup. The parameter that changes
between each measurement is the angle of linear polarisation φ.

5.2.1 System Design

The system is shown in Figure 5.1. This system is similar to a Stokes polarimetry system
with a light source, a PSA, and a detector. In this system, what we are measuring is the
angle of light polarisation from the light source.

The light source’s polarisation SLS can be modelled as having a rotated linear polari-
sation of
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SLS =


1

cos 2φ
− sin 2φ

0

Fo (5.4)

The measurement matrix of the rotated linear polariser, the PSA, is modelled as

W = W =
[
1 cos 2α − sin 2α 0

]
(5.5)

resulting in the detector measurement being

F = Fo cos2 (α + φ) (5.6)

The detector is modelled as producing continuous measurements, f , with infinite well
capacity. The measurements are modelled as

f = F + η (5.7)

where F is the ideal measure on the detector, and η is stochastic noise sampled from a
zero-mean Gaussian with standard deviation σf (η ∼ N (0, σ2

f )).

5.2.2 Requirements and Constraints

The only requirement of this system is that the angular sensitivity be as high as possible.
We can quantify this requirement as ∆φR and set it equal to zero. We will incorporate
this into the set of design requirements (D).

5.2.3 Computational Polarimetry Framework

With the design problem outlined above, we can start building the graphical model with
parameters. First we will outline the model parameters and then provide models for each
node. Then we will build an inference model of the linear polariser angle.

36



Table 5.1: System components and their parameters.
Component Parameters

Light Source
Beam measurement (F0)
Polarisation angle (φ1)
Polarisation angle (φ2)

Linear Polariser Polariser Angle (α)
Photodetector Detectable measurement difference (∆f) (Eq. 5.3)

Model Parameters

The set of design requirements is defined as

D = {DR = {∆φR = 0}} (5.8)

The components of the system are chosen already and are defined as

C = {c0 = Light Source, c1 = Linear Polariser, c2 = Photodetector} (5.9)

The components will need to perform two measurements under two configurations. The
first measurement will be used as a reference to determine the beam measurement when the
beam is completely horizontal, while the second will be a beam with a polarisation angle.
We define the parameters for each component and the configurations in Table 5.1 where
φ1, is the angle of polarisation for the first measurement and φ2 is the angle of polarisation
for the second measurement. These parameters are random variables, however, some will
be fixed to values for us to infer α and ∆φ. The fixed variables are defined in Eq. 5.10.

Q =
{
q

0
= [Fo = Fo, φ1 = 0, φ2 = ∆φ], q

1
= [α], q

2
= [∆f = ∆f ]

}
(5.10)

In this system, there will be two measurements f1 and f2, where f1 is the reference
beam and f2 is the rotated beam. The reference beam can be modelled ideally as using
Eq. 5.1 and f2 they will be defined using Eq. 5.2.

I =
{
f1 = Fo cos2(α), f2 = Fo cos2(α + φ)

}
(5.11)
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Figure 5.2: Bayesian network for the parameters and assumptions outlined in Section 5.2.3
and 5.2.3.

Assumptions

We will include the following assumptions before we model the joint probability as a
Bayesian network following the procedure for the Computational Polarimetry Framework.
The assumptions are as follows:

1. The ∆φR design requirement effects the component parameters of the light source
only, since it is the only random vector of component parameters with the angle of
polarisation, φ.

2. The system component parameters are conditionally dependant on their associated
components only.

With these assumptions and the parameters defined above, we can construct a DAG.

Bayesian Network

Using the assumptions and parameters defined above, we can now construct a Bayesian
network as a DAG D = (U , E) where U is the set of parameters defined in this system,
and E are the edges. The graph has some ordering d such that it can be constructed in
the form of Figure 5.2.

With the network defined, we can formulate the joint probability in Eq. 1.1 as
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P (I = I,Q = Q, C = C,D = D) =

P (∆φR = 0)P (c0 = c0)P (c1 = c1)P (c2 = c2)

P (Fo = Fo, φ1 = 0, φ2 = ∆φ|c0 = c0,∆φR = 0)P (α|c1 = c1)P (∆f = ∆f |c2 = c2)

P (f1 = F1, f2 = F2|Fo = Fo, φ1 = 0, φ2 = ∆φ, α,∆f = ∆f)

(5.12)

where F1 is defined by Eq. 5.1, and F2 is defined by Eq. 5.2.

Probabilistic Models

With the joint probability being modelled as the product of prior probabilities and likeli-
hoods, we will now define the probabilistic models we will use to define some of the terms.
Terms that have fully defined random variables for this system will not be discussed and
their product will be later interpreted as a constant during the inference process. We will
now define each term in Eq. 5.12 to then use in a computational algorithm to infer α and
∆φ.

Term 1: P (Fo = Fo, φ1 = 0, φ2 = ∆φ|c0 = c0,∆φR = 0)
We will assume that the component parameters for c0 and its configurations are all
uncorrelated and independent. And we will assume that only the φ2 parameter is
dependant on ∆φR = 0. With these assumptions the term becomes

P (Fo = Fo, φ1 = 0, φ2 = ∆φ|c0 = c0,∆φR = 0) =

P (Fo = Fo|c0 = c0)P (φ1 = 0|c0 = c0)P (φ2 = ∆φ|c0 = c0,∆φR = 0) (5.13)

With the first two terms being constants with respect to the random variables α and
∆φ, we need to define a model for P (φ2 = ∆φ|c0 = c0,∆φR = 0) as part of the
inference framework. To do this, we will also assume that all ∆φ values are possible
given the light source, c0, however, with the design requirement, the highest chance
should be ∆φ = ∆φR. With these assumptions, we can assert that the likelihood of
the parameter ∆φ given the component and the design requirement can be modelled
as a Gaussian distribution with mean at ∆φR and a tolerance factor σ∆φ.
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P (φ2 = ∆φ|c0 = c0,∆φR = 0) = A1 exp−1

2

(
∆φ−∆φR

σ∆φ

)2

(5.14)

= A1 exp−1

2

(
∆φ

σ∆φ

)2

(5.15)

where A1 is a normalisation constant.

Term 2: P (α|c1 = c1)
Given the component c1, the choice of α could be restricted to a specific set of α
values for a defined precision. We can assert the likelihood of α given the component
c1 as

P (α|c1 = c1) =
∑
all k

gk(α)

Z
(5.16)

where Z is a normalisation factor, and the function gk(·) is defined as

gk(α) = exp−1

2

(
α− αk
σα

)2

(5.17)

where αk is a possible angular value (graduation) given the component c1, and σα
represents the precision of the component. We can rationalise this assertion by
assuming our confidence in the angle of the polarisation holder is symmetric and
we are the most confident when the polariser angle is on the angle graduation of
the polarisation holder, therefore modelling the likelihood as a Gaussian distribution
supports those assumptions.

Term 3: P (f1 = F1, f2 = F2|Fo = Fo, φ1 = 0, φ2 = ∆φ, α,∆f = ∆f)
This term defines the likelihood of the measurements occurring given the defined
system parameters. With the given definitions of F1 and F2 in Eq. 5.1 and 5.2,
respectively, and the purpose of our system, we will assert the model for this term
as a Gaussian distribution:

P (f1 = F1, f2 = F2|Fo = Fo, φ1 = 0, φ2 = ∆φ, α,∆f = ∆f) =

A2 exp−1

2

(
(|F0 cos2(α + ∆φ)− F0 cos2(α)|)−∆f

σ∆f

)2

(5.18)
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where A2 is a normalisation constant and σ∆f is a tolerance factor. We assume a
Gaussian distribution because we want the difference between the measurements to
be as close to the smallest recognisable difference possible, but since the possible set
of angles from the polarisation holder is limited (resulting in a source of deterministic
error), we need to be able to relax the adherence to this difference to accommodate
for that with σ∆f .

With the assumed and asserted models, the joint probability in Eq. 5.12 becomes

P (I = I,Q = Q, C = C,D = D) =

β

[
A1 exp−1

2

(
∆φ

σ∆φ

)2
][∑

all k

1

Z
exp−1

2

(
α− αk
σα

)2
]

[
A2 exp−1

2

(
(|F0 cos2(α + ∆φ)− F0 cos2(α)|)−∆f

σf

)2
]

(5.19)

where β is the product of all the probabilities that are constant and do not contain the
random variables α and ∆φ. With Eq. 5.19, we can formulate an optimisation function to
determine the optimal α and ∆φ values as then

∆̂φ, α̂ = arg max
α,∆f

Γ(α,∆φ) (5.20)

where

Γ(α,∆φ) = A1A2

[
exp−1

2

(
∆φ

σ∆φ

)2
][∑

all k

1

Z
exp−1

2

(
α− αk
σα

)2
]

[
exp−1

2

(
(|F0 cos2(α + ∆φ)− F0 cos2(α)|)−∆f

σf

)2
]

(5.21)

5.3 Experimental Setup

To demonstrate the Computational Polarimetry Framework in this design problem, we will
infer the α and ∆φ parameters that maximise the joint probability in Eq. 5.19 and the
optimisation problem in Eq. 5.21.
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We will perform the optimisation using a global basinhopping approach [58] to maximise
the function in Eq. 5.21. Basinhopping is a stochastic global optimisation algorithm that
performs local optimisation at every stochastic jump. In these experiments we use the
Broyden, Fletcher, Goldfarb, and Shanno bounded local optimisation method that uses
first derivatives [63]. We choose a stochastic global approach rather than a gradient based
approach for the fact that the deterministic error from our system can produce multiple
local extreme to occur in our Γ(α,∆φ) function (This is seen to occur in Experiment 4
in Figure 5.4). Gradient based approaches would be caught in the local extrama for each
graduation. This is implemented and done through the Scipy package in Python [21]. We
will define the domain of the two random variables as

∆φ ∈ [0, 180) ◦ (5.22)

α ∈ [0, 180) ◦ (5.23)

and let αk be defined as

αk = k∆α (5.24)

where k = 0, 1, · · · , K − 2, K − 1 where K = floor
[

2π
∆α

]
.

To demonstrate the effectiveness of this framework in designing polarimetric systems
under different conditions, we will estimate the two parameters, α and ∆φ under eight
different experimental conditions. Each experiment will change the beam measurement
(i.e. Fo), noise (i.e. σf ), precision (i.e. σα), and graduations (i.e. ∆α) conditions. The
parameter combinations are in Table 5.2. In addition, the ideal component case will be
simulated ( i.e. ∆α → 0) and then the case with no noise will be simulated (i.e. σf → 0,
therefore ∆f → 0). Each experiment is described and given purpose below:

Experiment 1: The noise free (σf → 0), infinite angle case (∆α → 0), it is expected
that α = π

4
and ∆φ → 0 [6]. This experiment will determine if the Computational

Polarimetry Framework can perform similar system optimisation to the prior art.

Experiment 2 and 3: Observes the change in system parameters to a change in the light
source parameters. The expectation is that the design and sample parameters will
change to estimate a larger ∆φ value from Experiment 2 to 3.

Experiment 4: Observe the system parameter response to a change in the angular step
size of the linear polariser from Experiment 2. The expectation is that by increasing
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Table 5.2: Parameter sets for System Design Experiments. The − symbol represents that
parameter being either excluded or moot during the experiment. The→ symbol represents
there only being an infinitesimally small amount of deterministic or stochastic error.

Experiment No. Fo σf σ∆f σα(◦) ∆α(◦) ∆φR(◦)

1 210 → 0 1 − → 0 -
2 210 1 1 1 2 -
3 28 1 1 1 2 -
4 210 1 1 1 5 -
5 210 2 1 1 2 -
6 212 1 1 − → 0 0.01
7 212 1 1 1 2 1
8 212 2 1 − → 0 1

the step size of the linear polariser, we change the α parameter to be a multiple of 5
rather than 2 in comparison to Experiment 2.

Experiment 5: Observes the change in system parameters when the detector noise in-
creases. The resulting change in the effective signal to noise ratio should decrease
the ∆φ valuefrom Experiment 2.

Experiment 6,7, and 8: Observes the change in system parameter performance when
design requirements change. The resulting systems should all produce parameters
that adhere as close to the design requirements as possible.

We can assess the accuracy of the Computational Polarimetry Framework for each ex-
periment by generating 216 samples for a reference beam (f1) and 216 for a beam rotated at
the estimated angle ∆φ (f2) and plotting the histogram (probability distribution function)
of each of those sets. We will define the histogram from f1 as Hf1 [fb] and the histogram
from f2 as Hf2 [fb] where fb is the histogram bin centre. We will be assuming this is all
captured on a continuous detector. The performance of the framework’s estimates will be
quantitatively assessed by calculating the probability of error using Eq. 5.25. The higher
the error, the less distinguishable the two measurement distributions are implying that the
system is not capable of producing distinguishable measurements from the detector and
the less desirable of a system it will be.

P (ε) =
∑

all bins

1f1Hf1 [fb] + 1f2Hf2 [fb] (5.25)
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Table 5.3: Results of the Computational Polarimetry Framework. High P (ε) implies mini-
mal separation between the measurement sets. Experiment 1 has a high P (ε) value imply-
ing large overlap between the measurement sets. Experiment 7 has the lowest P (ε) value
implying that the two measurement sets are the most separable.

Experiment No. α̂(◦) ∆̂φ(◦) P (ε)

1 45.0 0 1.0
2 134.00 0.22 0.0510
3 134.00 0.88 0.0682
4 135.00 0.22 0.0506
5 112.00 0.62 0.0545
6 135.33 0.05 0.0628
7 178.00 1.07 0.1611
8 176.62 1.12 0.0527

where

1f1 =

{
1, Hf1 [fb] ≤ Hf2 [fb]

0, otherwise
(5.26)

1f2 =

{
1, Hf2 [fb] ≤ Hf1 [fb]

0, otherwise
(5.27)

5.4 Results and Analysis

Figure 5.3 shows the histograms for all eight experiments along with the P (ε) and the
estimated parameter are tabulated in Table 5.3. Observations from each experiment are
discussed below.

Experiment 1: This experiments validates that the Computational Polarimetry Frame-
work mimics the parameter choice in literature for a similar system [6]. It is of note
here that the metrics in Table 5.3 show this to be very bad configuration, and so
does the corresponding histogram. However, since there is no noise and the detector
is continuous, there is no need for the two measurements to be any further apart to
be detectable.
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Experiment 2 and 3: We see that by decreasing the measurement of the beam from the
light source, there is an increase in the smallest detectable ∆φ value, as expected.
This demonstrates that the Computational Polarimetry Framework is an adaptive
model that performs what Zallat’s metric was intended to assess [61].

Experiment 4: By increasing the angular step, we see there has been a change to the α̂
design parameter to accommodate for the uncertainty in the polariser holder gradu-
ations relative to Experiment 2.

Experiment 5: With the increase in detector noise we see an in crease in the ∆φ value
in comparison to Experiment 2. This is due to the fact that a two-fold increase in
possible fluctuation does not create a 4 fold decrease in signal. The Computational
Polarimetry Framework as able to optimise the system to arrive at this value, but it
is also able to simultaneously choose the appropriate α design parameter to not only
achieve the smallest ∆φ value, but also adhere to the prior knowledge of the detector
measurement process to produce confidently different measurements.

Experiment 6,7, and 8: With a design requirement for angular sensitivity specified, the
inference model was able to optimise the system parameters to adhere to it. In
experiment 7 however, the design requirements were met, but when uncertainty in
the angular graduation was introduced, the probability of error increased.

5.5 Discussions and Future Work

In this chapter, we presented a framework to infer system parameters that adhere to design
requirements to design a single linear polariser angle estimation system. In this section, we
discuss the stability of the estimated parameters and discuss the uniqueness of the results.

5.5.1 System Stability

The stability of a measurement to system error has been explored by Sabatke et al. [41],
Tyo [55, 57] and Twietmeyer [53]. Analysis is done by observing the change in the condition
number of the measurement matrix to small changes in parameters and by observing Stokes
or Mueller reconstruction error with small changes. We can look at the stability of every
configuration by observing the Γ(·) function for each of our configurations. These function
plots are shown in Figure 5.4 with α ∈ [0, 180)◦] and ∆φ ∈ [0, 1.5)◦]. The higher the value
on the plot, the better that parameter is for maximising the joint probability function for
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the system. In the proposed framework, there is some stability in the α position to achieve
a minimum ∆φ. In all the experiments, stability in the desired sensitivity is in the tens of
degrees. Further study should be done to explicitly incorporate system stability into the
Computational Polarimetry Framework to design stable polarimetric systems.

In Experiment 7 and 8, system stability actually decreases when the linear polariser
graduation is removed (∆α→ 0) while there is little change between experiment 2 and 5.
This is due to the fact that 7 and 8 need to adhere to the sensitivity requirement and there
are fewer possible values for that requirement to be met at.

5.5.2 Uniqueness

From the same plots in Figure 5.4, each the functions contains several optimum values
along the α axis. This reflects the observation by Tyo [55] and Ambirajan and Look [1]
where there can be many optimal configurations to minimise the system optimisation
metrics in polarimetry. However, in the computational optical polarimetry framework, we
explicitly adhere to the design requirement and find an optimum value that minimises the
∆φ value. This is related to the intrinsic logical connections made in the Bayesian network
formulation to mimic the logical choice that Ambirajan and Look took in their system
component parameter choice [1].

5.6 Summary

In this chapter, we demonstrated the capability of the framework to be used in the de-
sign of a known system under various component conditions and design requirements. It
was capable of achieving known system parameter configurations with no intentional di-
rect intervention from the designer and design systems under stochastic error from the
measurement process and deterministic error from spaced graduations on linear polariser
optomechanics. In addition, due to the explicit incorporation of design requirement, unique
optimal configurations can be achieved.
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Chapter 6

Computational Optical Rotary
Dispersion

In this chapter, we use the Computational Polarimetry Framework to develop an inference
model to estimate the optical activity of a sample given an novel system that utilises
SPBs and spatial detector arrays. The Computational Polarimetry Framework utilises
prior knowledge of the system in a Bayesian network to develop the inference model. We
simulate the performance of the inference model and validate the performance in the lab.

6.1 Background

Optical rotary dispersion (ORD) measures the amount of linear polarisation rotation over
a range of wavelengths. This is utilised for concentration estimation, and material identi-
fication [6, 52].

Current methods for optical rotary dispersion are based off of null intensity methods
where either two orthogonal polarisation states are measured or where all possible polar-
isations are scanned through. With only two orthogonally polarised measurements, noise
can have a large impact on the estimation of optical activity and significantly reduce the
accuracy of ORD systems demonstrated in Castaglioni et al. [6]. Sweeping through the
possible orientations of linear polarisation provides prior information about the optical
system to produce more accurate ORD estimates, however, the system requires additional
complex components like electro-mechanical optical choppers, and lock-in amplifiers to de-
couple the signal from any contamination, requiring not only more measurements, but in
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increasing system complexity and cost [7, 25]. Reduction in system complexity and the
number of measurements is a design goal for polarimetric systems so that faster and more
portable systems can be developed for looking at dynamic systems [60] and in low-resource
settings [17].

A way to reduce system complexity is through the use of heterogeneously polarised
beams, like SPBs. SPBs are capable of probing a sample with multiple linear polarisation
states simultaneously. This is similar to scanning through all linear polarisation states, like
in the prior art, however, it happens as a function of space rather than time. This results
in the removal of electromechanical components that reduce system complexity and cost.

Sande et al. have demonstrated the use of SPBs for sample parameter estimation [9, 10,
44]. They chose to use three measurements from the beam corresponding to three Stokes
vectors whose measurement matrix condition number was minimal. This was to reduce
the impact of stochastic noise variation in the estimation of sample properties. While
successful, this did not take full advantage of all the measurements captured and also did
not take into account prior information of the detector characteristic to computationally
estimate the sample parameters or apply it the field of ORD estimation.

Using the Computational Polarimetry Framework, we propose and demonstrate the
novel Computational Optical Rotary Dispersion (CORD) system. The CORD system
utilises an SPB in combination with an inference model developed using the Computa-
tional Polarimetry Framework for ORD estimation. With the Framework the inference
model utilises prior knowledge of component behaviour and spatial relations of the mea-
surements. This results in a system that is not only compact, and less complex than
scanning polarimetry systems, but is as accurate as commercial lab based optical activity
systems while being a fraction of the size and cost.

6.2 Design Problem

We will define our design objective as designing a polarimetric system that is capable of
inferring the optical activity of a sample using a SPB. This system will be composed of a
light source, a linear polariser and vortex half-wave retarder (VHWP) PSG (this will be
used to generate the SPB), an optically active sample, a fixed linear polariser PSA, and a
spatial detector array.
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6.2.1 System Design

The arrangement of components in the CORD system is illustrated in Figure 6.1. The
PSG of the system is composed of a horizontal (or vertical) linear polariser and a half-
wave retarder with a continuous fast axis as a function of the azimuth. This produces
a beam with a heterogeneously polarised beam profile composed of spatially distributed
linear polarisations. The Stokes vector incident on a single spatial detector array can be
imagined as a rotated linear polarisation, S ′(α)

S ′(α(x, y)) = Mrot(α(x, y))S (6.1)

where α(x, y) is the rotation amount, as a function of the spatial detector arrays Cartesian
position from the centre of the beam, and Mrot is described by a Mueller matrix

Mrot(α(x, y)) =


1 0 0 0
0 cos 2α(x, y) sin 2α(x, y) 0
0 − sin 2α(x, y) cos 2α(x, y) 0
0 0 0 1

 (6.2)

If we assume that the sample being measured is only optically active, then the sample
can be modelled as a rotation matrix as well, where the beam polarisation is rotated by φ.
The output Stokes parameter So(α(x, y), φ) is then modelled as

So(α(x, y), φ) = Ms(φ)S ′(α(x, y)) (6.3)

where Ms(φ) is the Mueller matrix of the optically active sample.

With a PSA of a vertical linear polariser crossed relative to the linear polariser in the
PSG 1, the resulting system model is

Msys(α(x, y), φ) = Msys(α(x, y), φ) =
[
1 −1 0 0

]
Ms(φ)S ′(α(x, y)) (6.4)

The intensity sampled by a detector at a certain position from the centre of the beam
can be modelled then as

F (α(x, y), φ) = cos2 (α(x, y) + φ)Fo (6.5)

1The system can work in the parallel configuration as well.
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Figure 6.1: Schematic of optical system for the CORD system. LS is the light source, OF
is a laser-line optical filter, LP is a linear polariser, VHWP is vortex half-wave plate, S is
the sample, and D is a spatial detector array. Inset are pictures of the beam profile after
each component past the VHWP: (A) the intensity profile and the polarisation distribution
after the VHWP; (B) the intensity and rotated polarisation distribution after S; (C) the
polarisation and intensity distribution after the LP; (Ref) the intensity and polarisation
distribution for no optically active sample.
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where Fo is the intensity of the light source.

The function in Eq. 6.5 is minimised when α = kπ−φ and maximised when α = k π
2
−φ,

where k is the number of 180 degree rotations the SPB undergoes as a function of its
azimuth. 2

After scanning through all linear polarisation orientations, finding the maxima and
minima is the principle that linear orientation scanning ORD systems typically operate
to determine the optical activity of the sample. While this technique sequentially scans
through polarisation as a function of time, the CORD system scans the linear polarisations
as a function of space. With this prior knowledge of the CORD system, for any given optical
activity, we can predict the locations of the maxima and minima. We show the calculation
of the location of the minima below

x′ = ρ cos(kπ − φ) (6.6)

y′ = ρ sin(kπ − φ)

where x′ and y′ are the Cartesian locations of the minima caused by the angular rotation,
and ρ is some radius. Conversely, given the location of the minima, we can determine the
optical activity, φ as

φ = kπ − arctan

(
y′

x′

)
(6.7)

However, due to noise, finding the minimum is not a trivial task. While prior art dealt
with stochastic error through optimal choice of measurements, or the addition of complex
timing mechanics, we will demonstrate that this can be done computationally instead
with a single measurement. In the next section we will define the CORD system in the
Computational Polarimetry Framework and utilise its properties to develop an inference
model to estimate the optical activity.

6.2.2 Requirements and Constraints

We want to have a novel system that is less complex and costly in comparison to the
existing state of art for ORD. With the market variability of component cost, we will focus

2For this thesis, we will assume k = 1 in formulation to match the WPV10L-633 Thorlabs Optic used
in the Real Experiments in Section 6.3.3.
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on component complexity as being a constraint in the design of the novel CORD system.
While complexity is a qualitative descriptor, in the ORD application we can give it a
quantitative value by defining it as the number of electro-mechanical and electro-optical
components in our system design. We will describe the constraint with the random variable
CT . Since we want our system to not be complex at all, we will say that CT = 0.

To calculate the complexity of our CORD system, we will define a function fC(C) that,
given a set of components C, produces a scalar value representing the complexity of the
set. Since the function takes a set of random variables as its parameter, the output of the
function will also be a random variable. The range will be assumed to be f(C) ∈ [0,∞).
It is defined as

fC(C) =
J−1∑
j=0

1(cj) (6.8)

where

1(cj) =

{
1 if cj is electro-mechanical or electro-optical

0 otherwise
(6.9)

for the simplicity, we will assume the output of the function fC(C) is continuous.

In addition, we want the system to be constrained in its size and be smaller than the
state of art. We will define the random variable LT for this constraint. We can compare
this to the JASCO 815 spectropolarimeter with its 1150 mm system width. Since this
might be exaggerated due to its additional features, we will instead use its significantly
smaller depth dimension as our size constraint. The depth of the system is 576 mm [?].
Similar to the previous complexity constraint, we will define a function that will calculate
the length of the system based off the system component. We will define this function as
fL(C)

fL(C) =
J−1∑
j=0

`(cj) (6.10)

where
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`(cj) = Width of the component

+ Minimum point-to-point distance between cj to cj+1 (6.11)

with the range being defined to fL(C) ∈ [0,∞). We will set LT = 576mm for our system
design.

With the constraints and the way to extract them from the set defined, we will incorpo-
rate them into the design constraint set DC in the computational polarimetry framework.

6.2.3 Computational Polarimetry Framework

With the design outlined above, we can start to build the inference model with parameters.
First we will define the parameters and define the fixed values, and then we will provide
models that we can use in the inference of the sample optical activity.

Model Parameters

Our set of design constraints is defined as

D = {DC = {CT = 0, LT = 576mm}} (6.12)

The components in the system are defined as

C = {c0 = Light Source, c1 = Horizontal Linear Polariser, c2 = Vortex Half-wave Retarder,

c3 = Sample, c4 = Vertical Linear Polariser, c5 = Spatial Detector Array} (6.13)

The definition of the set of system component parameters is a little bit more difficult
than in the design problem of Chapter 5. While the design parameters of components
c0−1,3−5 are not random variables and in a single configuration, the component parameters
for the VHWP vary across the entire spatial domain of measurements. We will define the
parameter set for c2 as

(q
2
)i = [α(x, y) = α(x, y)] (6.14)
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where α(x, y) is the defined rotation at some index (x, y), (x, y) are members of a set that
describe the spatial locations of all N measurements relative to the centre of the beam,
and j is the ith row of the system component parameter random vector.

Q =
{
q

0
= [Fo = Fo], q1

= [], q
2

= [q
2
], q

3
= [φ], q

4
= [], q

5
= [σf = σf ]

}
(6.15)

where q
2

= [q
2
] is defined in Eq. 6.14, and σf is the standard deviation of the noise from

the detector 3. The system component parameter random vectors q
1

and q
4

are undefined
because we are assuming that their orientation is perfectly defined and are not random.

These system parameters will produce a set of measurements I defined as

I = {f0, f1, f2, · · · , fi, · · · , fN−2, fN−1} (6.16)

Each measurement is produced independently by the varying rotation angle of the
VHWP centred about the beam centre and since we are using a VHWP element, there is
some spatial relation in the measurement intensities being measured on the spatial detector
array. We will take advantage of that spatial relation and perform a transform of the set
of measurements into the Zernike domain. This is done through the calculation of the
Zernike moments for all the radial and azimuthal modes. The procedure for calculating
the Zernike moments is in the next section.

Zernike Moments

The measured intensities are indexed on a Cartesian grid, however, they can be decomposed
as the sum of weighted Zernike polynomials that form a complete orthogonal basis over a
circle of unit radius [23, 33]. A Zernike polynomial of order (n,m) is composed of a radial
polynomial (Rnm(ρ)) and a complex phase term such that it is defined as

Vnm(ρ, θ) = Rnm(ρ) exp(jmθ), ρ ≤ 1 (6.17)

where Rnm(ρ) is defined as

Rnm(ρ) =

(n−|m|)/2∑
s=0

(−1)2 (n− s)!

s!
(
n+|m|

2
− s
)

!
(
n−|m|

2
− s
)

!
ρn−2s (6.18)

3We are assuming the same noise model as in Eq. 5.7
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where n is a positive integer or zero, m is an integer subject to the constraints, n− |m| is
even, and |m| ≤ n.

For a spatial distribution of measurements defined as F (ρ(x, y), α(x, y)), the two di-
mensional Zernike moment is defined as

Znm =
n+ 1

π

∑
all ρ

∑
all θ

V ∗nm(ρ, θ)F (ρ(x, y), α(x, y)) (6.19)

where ∗ symbol represents the complex conjugate. An interesting property of Zernike
moments is if we have a some intensity distribution in polar coordinates, F (ρ, α), and it is
rotated from a reference, F r(ρ, α), by φ the Zernike moments of F will be the the Zernike
moments of F r but with a complex phase factor. This is shown in Eq. 6.20 and 6.21

F (ρ, θ) = F r(ρ, θ + φ) (6.20)

Znm = Zr
nm exp(jmφ) (6.21)

With the Zernike moments for an intensity distribution defined, we can redefine I as a
set of random Zernike moments

I = {Z00, Z11, Z1−1 · · · , Znm, · · · } (6.22)

Assumptions

With the parameters defined, we can now define our assumptions that will assist in mod-
elling the joint probability for this polarimetric system as a Bayesian network. In the
CORD system there is only one assumption:

1. The system component parameters are conditionally dependant on their associated
components only.

2. The set of components are conditionally dependant on the CT and LT constraints.

With this assumption, we can now construct the DAG representing the Bayesian net-
work.
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Figure 6.2: Bayesian network for the CORD system using the parameters and assumptions
outlined in Section 6.2.3 and 6.2.3.

Bayesian Network

Using the assumptions and parameters defined above, we can now construct a Bayesian
network as a DAG D = (U , E) where U is the set of parameters defined in this system,
and E are the edges. The graph has some ordering d such that it can be constructed in
the form of Figure 6.2.

With the network defined, we can formulate the joint probability in Eq. 1.1 as

P (I = I,Q = Q, C = C,D = D) =

P (C = C|CT = 0, LT = 587mm)

P (Fo = Fo|c0 = c0)P (q
2

= q
2
|c2 = c2)P (φ|c3 = c3)P (σf = σf |c5 = c5)

P (I = I|Fo = Fo, q2
= q

2
, φ, σf = σf ) (6.23)
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Probabilistic Models

With the joint probability being modelled as the product of prior probabilities and likeli-
hoods, we will now define the probabilistic models we will use for some of the terms. Terms
that have fully defined random variables for this system will not be discussed and their
product will be later interpreted as a constant during the inference process. With this sys-
tem being the first to introduce constraints, we will define P (C = C|CT = 0, LT = 587mm),
as well. We will now define each term in Eq. 6.23 to then use in a computational algorithm
to infer the system parameters.

Term 1: P (C = C|CT = 0, LT = 587mm) This likelihood term defines the probability of
the components given the constraints. In the set of components we defined, we
will be able to satisfy the complexity and size constraints (and will touch upon this
again in the lab experiments in Section 6.3), however, if the set of components are
unknown, we can assert the distribution of P (C|CT , LT ) to be uniformly distributed
and with the functions fC(·) and fL(·), we can assume conditional independence of
the cost of the system on the size constraint, and the size of the system on the cost
constraint. As a result, we can simplify the likelihood and therefore P (C|CT , LT ) =
P (fC(C)|CT )P (fL(C)|LT ). We will assert the distributions to be defined as follows:

P (fC(C)|CT ) =

{
1
CT

if fC(C) ≤ CT

0 otherwise
(6.24)

P (fL(C)|LT ) =

{
1
LT

if fL(C) ≤ LT

0 otherwise
(6.25)

And with these asserted distributions, should we wish to change the defined set of
components and define them as random design variables, we can assess our choices
and incorporate them in the design process.

Term 2: P (φ|c3 = c3) This prior can provide limits on the possible values of φ to be
inferred. We will assert that there are no limits on φ and it is uniformly distributed
over the range of [0, 2π).

Term 3: P (I = I|Fo = Fo, q2
= q

2
, φ, σf = σf ) This likelihood term dictates the proba-

bility of the set of measurements occurring given the system configuration. Make
note that from Figure 6.2, we know the outcomes of all nodes in the network, save
for q

3
= φ, which is the parameter we are designing this system to infer. With this,
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we can use the d-separation property of Bayesian networks and can infer the prob-
ability of q

3
= φ occurring, given the information of all the other nodes. We can

simplify this likelihood to P (I|φ) to make the next steps in the formulation easier to
see and logically know the component parameters that produced the measurements.
Using d-separation, we can use Baye’s theorem to model the posterior as

P (I|φ) ∝ P (φ|I)P (I) (6.26)

We will dedicate the remainder of this section to the definition of the likelihood term
P (φ|I) and prior term P (I).

The likelihood and prior term defined above logically state that an estimate of the
optical activity can be obtained from the set of Zernike moments that inherently describe
the intensity distribution of the measurements and their spatial relation. To formulate the
two terms, we will follow the method of Kim and Kim [23] for angular estimation using
Zernike moments to come up with an estimate of the optical activity.

Referring back to Eq. 6.21, the magnitudes of the rotated Zernike moments (||Znm||)
and the reference Zerike moments (||Zr

nm||) are the same. Therefore to estimate the angle
of rotation from a pair of Zr

nm and Znm moments:

Φnm ≡ arg

(
Znm
Zr
nm

)
= mφ (6.27)

where 0 ≤ Φnm ≤ 2mπ. It should be noticed that there is going to be ambiguity in the
angles calculated due to the range of Φnm. Similar to Kim and Kim [23], we will incorporate
a correction factor such that

Φnm = Ωnm + 2πKm, Km ∈ {0, 1, 2, · · · ,m− 1} (6.28)

where Ωnm is the true rotation and 2πKm is a correction factor. With this ambiguity cor-
rection, there will be m solutions for Φnm. However, due to stochastic noise from a spatial
detector array, the calculation of Φnm is contaminated. Kim and Kim assumed the estimate
of Φnm is contaminated with additive zero-mean Gaussian noise due to the measurements
also being contaminated with additive zero-mean Gaussian noise and modelled it as

Φnm = mφ+ η (6.29)
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where η ∼ N (0, σ2). An estimate of φ can be found as

φ̂nm =
Ωnm

m
+

2π

m
Km (6.30)

Since we are estimating an optical activity from each Zernike moment using the method
of Kim and Kim [23], we can model the posterior instead as

P (I|φ) =
∑

all Znm

P (φ|Znm)P (Znm) (6.31)

with this new formulation of the P (φ|Znm) likelihood and the assumed additive noise model
on the angular estimated, it can be modelled as

P (φ|Znm) = A1 exp

−1

2

(
φ− φ̂nm

σ

)2
 (6.32)

where A1 is a normalisation constant, σ is representative of the noise from the detector
harming the angular estimate. The prior term can be defined as the normalised Zernike
moments implying that the stronger the moment, the more likely the occurrence of the
estimate. The prior term, P (Znm), can be asserted then

P (Znm) =
||Znm||∑

all m,n ||Znm||
(6.33)

With this, we can define the joint probability as

P (I = I,Q = Q, C = C,D = D) = β
∑

all Znm

A1 exp

−1

2

(
φ− φ̂nm

σ

)2
[ ||Znm||∑

all Znm
||Znm||

]
(6.34)

where β is a constant representing the product of all the probabilities in the model. With
the final framework of the inference determined in Eq. 6.34, we can formulate the estimation
of the optical activity, φ as the value that maximises the joint probability. The inference
of φ is formulated then as the following optimisation problem
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Figure 6.3: The measurement procedure using the CORD system. First a reference beams
is captured without an optically active sample. Then a measurement beam is captured with
an optically active sample. The set of Zernike moments for each of the beams is produced
and used to produce a set of angular estimates. The angular estimates are evaluated using
the Computational Polarimetry Framework and an accurate estimate is inferred given prior
knowledge of the measurement system.

φ̂ = arg max
φ

Γ(φ) (6.35)

= arg max
φ

∑
all Znm

A1 exp

−(φ− φ̂nm
σ

)2
[ ||Znm||∑

all Znm
||Znm||

] (6.36)

6.2.4 Measurement Procedure

With the CORD system components defined and the inference model derived for the es-
timating the sample optical activity, we can now define a procedure for the system. A
flowchart of the procedure is shown in Figure 6.3. To use the CORD system for inferring
sample optical activity, first a reference measurement set must be captured. This reference
is the intensity distribution F r(α(x, y), φ) in Eq. 6.5, except where φ = 0. The reference
beam has travelled through all the components in the CORD system, except there is no
optically active sample. This intensity distribution is saved for later use. Next, the opti-
cally active sample is placed in the system and another intensity distribution is captured.
This is the measured intensity distribution F (α(x, y), φ) for some value φ.

Once the reference and the measured intensity distribution have been captured, their
Zernike moments are calculated, and optical activity estimates from the ratio of the Zernike
moments are produced for each (n,m) index. These are put into the joint probability model
and evaluated. The best angular estimate will produce the highest probability.
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6.3 Experimental Setup

To demonstrate the effectiveness of this system for inferring the optical activity of a sam-
ple, we will perform simulated and real experiments. The simulated experiments will
empirically demonstrate the performance of the CORD system to:

1. Infer the optical activity of a sample to limits similar to commercial ORD devices.

2. Infer the optical activity under varying levels of noise.

The real experiments will estimate the rotation in the intensity distribution from a
polarisation rotator and from a sucrose solution. We will first explain the procedure for
parameter inference, then setup the simulated and real experiments.

6.3.1 Inference Procedure

The inference of φ is formulated as the optimisation problem in Eq. 6.36 and done using
the procedure outlined in Section 6.2.4. We practically implement the inference procedure
by using the first 35 Zernike moments to model the intensity distributions, similar to Kim
and Kim [23]. The σ parameter was set to 0.001◦. A grid search optimisation was done to
select φ̂ over 1 million points spanning [0, 2π)

6.3.2 Simulated Experiments

In the simulated experiments, a reference intensity distribution is generated using the
intensity model proposed by Gori [14]

Fo(ρ) = AJ1 (βρ) exp

(
− ρ

2

w2
0

)
(6.37)

where A is a constant, J1(·) is a first order Bessel function, w0 is width of a Gaussian
envelope, and β is a transverse scaling of the Bessel function. For the purposes of this
experiment, we will use the following parameters presented in Table 6.1. An example of
the spatial intensity distribution is in inset A in Figure 6.1.

The rotated intensity distribution is determined by the angular scaling factor in Eq. 6.5
such that

F (ρ(x, y), α(x, y), φ) = cos2 (α(x, y) + φ)Fo(ρ(x, y)) (6.38)
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Table 6.1: Parameter values for CORD Synthetic Experiments
Parameter Value

A 1 Watt
w0 M/6
β 1

Optical Activity Estimation

ORD systems typically measure the optical activity of samples to a millidegree [6]. We
will investigate the lower limit of angular estimation of the CORD system by simulating
the following rotations (φ) and inferring them:

1. 0.001◦

2. 0.002◦

3. 0.003◦

4. 0.004◦

5. 0.005◦

6. 0.006◦

7. 0.007◦

8. 0.008◦

The intensity distribution from each of the rotations will be sampled on a 512 × 512
Cartesian detector array (i.e M = 512). Zero-mean additive Gaussian noise (i.e. v ∼
N (0, σ2)) will be added for each intensity distribution to mimic various Signal-to-Noise
Ratio (SNR) values (SNR =20 log

(
1
σ

)
). The following SNRs will be used:

1. 80 dB

2. 40 dB

3. 30 dB

4. 20 dB

The level of noise contamination can be visually observed in Figure 6.4 with the refer-
ence beam.

The measurement procedure for the CORD system relies upon the measurement of a
reference beam. With the reference beam being captured by the same spatial detector
array as the measured beam, it will be contaminated with the same amount of noise and
have a similar SNR. We will explore the impact of this on the inference of the optical
activity by using a noise-free reference and a noise-contaminated reference for each of the
angular rotations.

Each estimate of the angle from 0.001-0.008 degrees in the simulations under each of the
noise conditions will be performed twenty times with different noise patterns. The results
presented will be the mean and standard deviation of the angular estimates. Statistical
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(a) Reference Intensity Distribution (b) SNR 80 dB

(c) SNR 60 dB (d) SNR 40 dB

(e) SNR 20 dB

Figure 6.4: Examples of the intensity distribution after having gone through the CORD
system and being contaminated with various noise amounts. The intenstiy distribution is
measured in watts, showing values from 0 watts (black) to 1 watt (white) with the axes
representing the locations of the spatial detector array measuring the intensities. (a) shows
the reference intensity distribution without rotation (referred to here on as ref). (b) Ref
with a SNR of 80 dB. (c) Ref with 60 dB. (d) Ref with 40 dB. (e) Ref with 20 dB.
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significance tests will be performed for each angle at each SNR value for each reference type.
Statistical significance will be tested with a two-tailed student t-test of unequal variance
looking for a p < 0.05 value. The test is done using the Scipy package in Python [21].

To evaluate the accuracy of the angular estimates in the simulation, we will use a
relative error metric between the average angle estimated and the actual angle:

e =
|φ̂− φ|
φ

(6.39)

6.3.3 Real Experiments

In these experiments, we used a Avantes HAL light source, collimated into a 632.8 nm
laserline filter (Thorlabs FL632.8-3), with a 633nm vortex half-wave retarder (Thorlabs
WPV10L-633) to produce a SPB. The beam will pass through a sample and then a static
Glan-Taylor (Thorlabs GL10) polarising prism (acting as the analyser). The intensity
distribution is measured on a FLIR GS3-U3-23S6M-C CMOS Camera. The measurements
will be reported in electrons (e−) and the detector has a maximum well depth of 34078
e−. The reference and sample measurement are captured with the same set of camera
parameters in the FLIR FlyCap2 Application. The CORD and LPO method will each
perform 10 estimates of optical activity and average the results. The reported values with
be the average and the standard deviation.

As mentioned previously, we have two constraints for the complexity and size of our
system. The system needed to have a complexity of zero (CT = 0) and a size less than
587mm (LT = 587mm). With the system shown in Figure 6.5, we do adhere to our design
constraints and achieve a complexity of zero and a system size of of less than 587mm at
roughly 300mm in length.

Experiment 1: Half-wave retarder plate

The first experiment will involve estimating the amount of angular rotation caused by an
angled half-wave retarder plate (Thorlabs WPH10E-633). This experiment will determine
the CORD systems capabilities of estimating the angular rotation under purposeful condi-
tions. A reference beam will first be measured with the half-wave retarder plate fast axis
aligned at zero degrees. Beams will then be measured with the half-axes aligned with the
following angles (the resulting rotation from the rotator will be in brackets):
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Figure 6.5: The laboratory setup for the CORD system. LS: Avantes HAL light source, OF:
632.8 nm laserline filter (Thorlabs FL632.8-3), VHWP: 633nm vortex half-wave retarder
(Thorlabs WPV10L-633), LP: Glan-Taylor (Thorlabs GL10), and D: FLIR GS3-U3-23S6M-
C. The Sample (S) is the 1.2M Sucrose solution. This system is approximately 300mm (one
foot) in length.

1. 10◦ (20◦)

2. 20◦ (40◦)

3. 30◦ (60◦)

4. 40◦ (80◦)

Experiment 2: Sucrose Solution

The second experiment will be done with a cuvette of 1.2 M sucrose solution (Alfa Aesar,
MA) in a quartz cuvette (Thorlabs CV10Q3500) with a 1 cm path length. The reference
beam for this experiment will be a measured with a sample of deionized water in a similar
quartz cuvette. The expected optical activity from this solution is 2.3433◦ [45].

The CORDS system will be compared against the linear polarisation orientation (LPO)
scanning method for measuring ORD which is done by using a rotating analyser and
determining the ORD by estimating the angle where peak intensity occurs. The LPO
system will be mimicked using a Glan-Taylor polarising prism attached to a Thorlabs
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K10CR1 motorised rotator. The prism will be rotated at a speed of 0.5◦/s with the
camera capturing at 30 frames per second thereby mimicking an angular resolution of 1
arc minute (1/60th of a degree) per frame. A single detector pixel location will be chosen
from the frame and the intensity of that location through time will produce the measured
signal for the LPO system. The pixel location for all frames was chosen to be the location
with the highest value in the first frame captured.

6.4 Results and Analysis

6.4.1 Simulated Experiments

The results from the simulated experiments are summarised in Tables 6.2, 6.3, 6.4, 6.5,
6.6, 6.7,.

From that results in Table 6.2, 6.3, it can be seen that with a noise-free reference,
the CORD system is capable of estimating the angle from optical activity to within a
millidegree at an SNR of 80 dB, with similar performance at 60 and 40 dB. However, at 20
dB, the system loses accuracy. In addition, at no SNR is the system capable of estimating
0.001◦ accurately, having relative errors from 1677% to 23%. From the results in Table
6.4, 6.5, it can be seen that even with a reference image captured at the same SNR as the
rotated intensity, the CORD system can estimate angles down to the millidegree for the
SNR of 80, 60, and 40 dB. Similar to the noise-free reference case, the CORD algorithm
does not perform well at 20 dB.

The results for both reference types show statistical significance for all the results at 80
and 60 dB and no statistical significance at 20 dB. This, combined with the results from
the angular SNR tests show that at 80 and 60 dB, a 0.001◦ angular resolution is achievable.
However, shown in Tables 6.6 and 6.7, statistical significance is not achieved between some
angles and the one adjacent. In Table 6.6 statistical significance is maintained for all
angles below 0.002 degrees, however, from 0.003 degrees onward, statistical significance
is not maintained for all angles between them and the adjacent angle. This occurs with
0.003, 0.004, 0.006, and 0.007 degrees. And in Table 6.7 statistical significance does not
occur between an angle and either of its adjacent angles for any of the angles simulated,
save for 0.003 degrees. This leads us to conclude that at 40 dB SNR, the angular resolution
drops from one to two millidegrees regardless of the type of reference captured. However,
with a two millidegree level of resolution, we can detect differences of roughly 3 mmol

L
. In

comparison to systems that measure glucose in blood for diabetics, which report at 0.1 mmol
L

resolution in a range of 4 to 11 mmol
L

, this system shows potential for that application.
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From the results of this experiment, we have demonstrated that the CORD system,
based off the Computational Polarimetry Framework, is capable of inferring the sample
activity accurately to a at least two millidegrees with both an ideal reference intensity dis-
tribution and a reference distribution captured by the same detector under the same noise
conditions. However, when the standard deviation of the noise is one-tenth of the signal,
the system looses accuracy. Given the simulated performance, this system is capable of
performing ORD on the level of accuracy seen in JASCO J-700/800 instruments (JASCO,
OK)(surveyed in Castiglioni et al. [6]) of 0.002(◦).

In addition, it should be pointed out that for a circle inscribed in a 512× 512 square,
the highest angular resolution between two adjacent squares is tan−1(1/256) = 0.2238◦.
With the results shown from the simulated experiments, the CORD system is capable of
estimating angles to 1/100th the accuracy of a strictly geometric method.
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Table 6.2: Angular Estimates and Error for simulated experiments with a noise free reference. σφ̂ is the
standard deviation of the angular estimations.
SNR (dB)

0.001◦ 0.002◦ 0.003◦ 0.004◦

φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%)

80 1.3500e-1 1.6957e-1 86.500e1 1.9800 0.0000 9.9990e-1 2.9880 8.8182e-2 3.9990e-1 3.9600 7.7650e-16 9.9990e-1
60 3.2400e-1 3.8857e-1 6.7600e1 1.9980 1.9636e-1 9.9900e-2 2.9880 1.7452e-1 3.9990e-1 3.9960 1.6693e-1 9.9900e-2
40 1.2330 9.8306e-1 2.3300e1 2.1330 1.1862 6.6501 2.8170 1.3759 6.0999 4.0590 1.3452 1.4751
20 1.2303e1 8.1467 1.1303e3 1.2096e1 8.3872 5.0480e2 1.1853e1 8.6481 2.9510e2 1.1826e1 8.9312 1.9565e2

Table 6.3: Angular Estimates and Error for simulated experiments with a noise free reference. σφ̂ is the
standard deviation of the angular estimations.
SNR (dB)

0.005◦ 0.006◦ 0.007◦ 0.008◦

φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%)

80 5.0400 0.0000 8.0010e-1 5.9850 7.7942e-2 2.4990e-1 7.0110 3.9230e-2 1.5724e-1 7.9380 5.4000e-2 7.7490e-1
60 4.9860 1.7171e-1 2.7990e-1 5.9760 1.6693e-1 3.9990e-1 6.9840 1.6693e-1 2.2847e-1 7.9740 1.5167e-1 3.2490e-1
40 5.0400 1.5231 8.0010e-1 5.9580 1.6798 6.9990e-1 6.8580 1.8575 2.0285 8.2890 9.7012e-1 3.6126
20 1.1700e1 9.2526 1.3400e2 1.0989e1 9.8339 8.3150e1 1.1979e1 9.7489 7.1129e1 1.2312e1 9.8584 5.3900e1

Table 6.4: Angular Estimates and Error for simulated experiments with a noisy reference. σφ̂ is the standard
deviation of the angular estimations.

SNR(dB)
0.001◦ 0.002◦ 0.003◦ 0.004◦

φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%)

80 1.2600e-1 1.7171e-1 8.7400e1 1.9800 0.0000 9.9990e-1 2.9790 8.9549e-2 6.9990e-1 3.9600 7.7650e-16 9.9990e-1
60 2.5200e-1 4.3870e-1 7.4800e1 1.9620 2.1222e-1 1.8999 2.9970 1.9113e-1 9.9900e-2 3.9870 2.0739e-1 3.2490e-1
40 1.2600 1.4196 2.6000e1 2.1690 1.6155 8.4501 2.6280 1.5962 1.2400e1 4.0950 1.8566 2.3751
20 1.7775e1 1.2462e1 1.6775e3 1.7406e1 1.2523e1 7.7030e2 1.6965e1 1.2763e1 4.6550e2 1.6605e1 1.2920e1 3.1513e2

Table 6.5: Angular Estimates and Error for simulated experiments with a noisy reference. σφ̂ is the standard
deviation of the angular estimations.

SNR (dB)
0.005◦ 0.006◦ 0.007◦ 0.008◦

φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%) φ̂× 10−3 σ
φ̂

× 10−3 e(%)

80 5.0400 0.0000 8.0010e-1 5.9760 7.2000e-2 3.9990e-1 7.0110 3.9230e-2 1.5724e-1 7.9470 6.4273e-2 6.6240e-1
60 4.9950 1.8771e-1 9.9900e-2 6.0030 2.1506e-1 5.0100e-2 6.9750 1.8771e-1 3.5704e-1 8.0100 1.8445e-1 1.2510e-1
40 5.2200 1.7618 4.4001 5.8320 2.2757 2.7999 7.2090 2.0762 2.9858e 8.1720 2.2463 2.1501
20 1.6380e1 1.3044e1 2.2760e2 1.5741e1 1.3484e1 1.6235e2 1.6137e1 1.3157e1 1.3053e2 1.6074e1 1.3267e1 1.0093e2
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Table 6.6: Table of Statistical Significance for the noise-free reference case at 40 dB. . This
table compares the distribution of the angular estimate of the rows by the distribution of
the angular estimates of the columns and shows whether the distributions are statistically
significant according to the two tailed student t-test of unequal variance.. × represents a
comparisons of an angular distributions with its own distribution. * represents a statistical
significance with p < 0.05. - represents p ≥ 0.05. Statistical significance is maintained for
all angles below 0.002 degrees, however, from 0.003 degrees onward, statistical significance
is not maintained for all angles between them and the adjacent angle. This occurs with
0.003, 0.004, 0.006, and 0.007 degrees.

Angles (◦) 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

0.001 × * * * * * * *
0.002 * × * * * * * *
0.003 * * × - * * * *
0.004 * * - × * * * *
0.005 * * * * × * * *
0.006 * * * * * × - *
0.007 * * * * * - × -
0.008 * * * * * * - ×

6.4.2 Real Experiments

The results from the real experiments are summarised in Tables 6.8, and 6.9.

Experiment 1: Half-wave retarder plate

Table 6.8 shows that, in comparison to the LPO method for ORD, the CORD system
provides a more accurate measurement of the rotation caused by half-wave retarder with
very small amounts of standard deviation around each estimate. However, while better in
comparison to the LPO method, it does not compete with the accuracy of commercially
available ORD systems like during the simulations.

Experiment 2: Sucrose Solution

In Figure 6.6, we show the measured and reference beams for this experiment. It is not
readily visible the rotation caused by the Sucrose solution however, using the procedure
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Table 6.7: Table of Statistical Significance for the noisy reference case at 40 dB. This
table compares the distribution of the angular estimate of the rows by the distribution of
the angular estimates of the columns and shows whether the distributions are statistically
significant according to the two tailed student t-test of unequal variance. × represents
a comparisons of an angular distributions with its own distribution. * represents a sta-
tistical significance with p < 0.05. - represents p ≥ 0.05. While using a noisy reference
intensity distribution, statistical significance does not occur between an angle and either
of its adjacent angles for any of the angles simulated, save for 0.003 degrees.

Angles (◦) 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

0.001 × - * * * * * *
0.002 - × - * * * * *
0.003 * - × * * * * *
0.004 * * * × - * * *
0.005 * * * - × - * *
0.006 * * * * - × - *
0.007 * * * * * - × -
0.008 * * * * * * - ×

outlined in Section 6.3.1, we were able to estimate a rotation from these two intensity
distributions.

In Table 6.9, the CORD system estimates the optical activity as accurately of LPO,
however the CORD system produces more consistent angular estimates of optical activity
in comparison over the LPO system. Similar to the previous experiment, the CORD system
is not as accurate as in the simulations, however, it is very stable estimating the optical
activity. Both estimates of the sample result in a 0.1 degree error in the optical activity
estimate. If we converted this back to Sucrose concentrations, this would result in a roughly
600 mmol

L
concentration error.

As a sanity check to see that the algorithm is estimating the angular rotation correctly,
we show the angular estimation procedure using measurements from the 1.2M Sucrose
solution using the measured and reference beams shown in Figure 6.6. In the formulation
of our inference model, we assumed that the Zernike moments of the reference and rotated
measurement distributions are the same, however in Figure 6.7 there is some difference.
While the system is quite confident in its estimation of the optical activity from Table 6.9,
it appears that the changes in the Zernike moment significantly affect the accuracy of the
sucrose optical activity estimate.
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(a) Reference Intensity distribution captured
with a cuvette of Deionised Water

(b) Intensity distribution captured with a cu-
vette of 1.2M Sucrose solution

Figure 6.6: Intensity distributions captured reported in e− for the purpose of estimating
the optical activity of 1.2M Sucrose Solution. White represents the full well capacity of
a detector in the array with black representing no electrons being measured. The axes
represent the locations of the detectors on the array. It is not readily visible the rotation
caused by the Sucrose. However, using the procedure outlined in Section 6.3.1, we were
able to estimate the rotation from these two intensity distributions.

Table 6.8: Results of the CORD system in estimating the rotation caused by the half-wave
rotator. Std is the standard deviation of that estimation process. Bold numbering belongs
to the system that produced the better estimate. The CORD system produce a closer
estimates of the polarisation in comparison to the LPO across all angles.

Angle(◦) CORD(◦) Std. of CORD(◦) LPO(◦) Std. of LPO(◦)

20 20.5468 7.1910e-4 19.0617 7.2284e-2
40 39.9623 1.4962e-3 38.7867 5.2068e-2
60 59.8619 8.8932e-4 61.4950 1.0463e-1
80 79.8080 2.0425e-3 80.7817 1.6707e-1
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Table 6.9: Results for the CORD system to estimate the optical activity of a sucrose
solution. Std is the standard deviation of that estimation process. Bold numbering belongs
to the system that produced the better estimate. Unlike the previous experiment, the
CORD and LPO systems produce similar estimates, however, the CORD system produces
more consistent estimates of the optical activity.

Solution Optical Activity(◦) CORD(◦) Std of CORD(◦) LPO(◦) Std of LPO(◦)

1.2 M Sucrose Solution 2.3433 2.4416 5.9181e-4 2.2417 1.4850

6.5 Discussion

In the CORD system, we demonstrated the use of the Computational Polarimetry Frame-
work to infer the derived parameters of optical activity accurately through computational
means, to a degree of accuracy better than the LPO ORD systems with only a single
measurement. The framework accounts for prior knowledge of measurement characteris-
tics, system characteristics, and was able to incorporate spatial relations between pixel
intensities from the spatial detector array. This system was able to, during simulation,
provide accurate estimates of optical activity on the same level of accuracy as commercial
lab devices, however, in estimating the optical activity of the sucrose solution, it was not
capable of the same level of accuracy.

Some general considerations with the CORD system and the chosen component con-
figuration for the Computational Polarimetry Framework are discussed here in relation to
optical activity estimation.

6.5.1 Reference Beam

The CORD system relies upon the prior knowledge of a continuously varying polarisation
orientation over the azimuth of the beam to estimate the rotation caused by an optically
active sample. This does not imply that the system relies upon the beam intensity profile
matching that of Gori [14]. The choice of beam intensity profile is simply limited to
having a an axially-symmetric non-zero value around a centroid. This implies that flat top
intensities, Gaussian modes, or Bessel modes can be used in this system.

6.5.2 Dispersion

While demonstrating the ability for the system to estimate the optical activity from a
transparent solution, it is assumed that the system will decompose the beam into its
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spectral parts in order to create a full dispersion plot in a single capture. Using a diffraction
grating, this is possible, however, in contrast to a typical diffractive spectroscopy setup,
the CORD system requires a spatial array of detectors to correspond to each wavelength.
To map the dispersion of the sample using this setup, such a system would have to:

1. Provide enough separation between two wavelengths such that each intensity distri-
bution can be isolated and decomposed

2. Provide the same spectral spread for each intensity distribution

3. Be able to provide that separation over a reasonable detector array width while still
accommodating the desired spectral range

The first and second consideration can be addressed through the choice of illumination
source. The illumination source must have spectral lines with a full width half max that
produces a spread of less than a detector on the detector array, or a consistent full-width
half max across all spectral peaks. The third consideration can be addressed by splitting
the beam into various diffraction gratings with the detectors at different positions in the
1st diffracted mode.

The design of systems to disperse the beam in accordance with the considerations men-
tioned can be formulated in the Computational Polarimetry Framework as requirements
or constraints on the components or their parameters.

6.5.3 Heterogeneously Polarised Beams

For the purposes of the CORD system, we only discuss the use of a vortex half-wave retarder
that is effective at 632.8 nm. This highlights one of the limitations of using this optic since it
only works as designed at a particular wavelength. Generating broadband heterogeneously
polarised beams is an active area of research demonstrating positive results [39]. The
CORD system is a wavelength agnostic method for estimating the optical activity, allowing
it to be used in conjunction with broadband heterogeneous beams.

In addition, the heterogeneously polarised beam discussed in this system is an az-
imuthally polarised SPB. It is worth noting that the polarisations in the heterogeneous
beam need not be exclusively linear and trace a complete path around the equator of
the Poincaré Sphere. This can be shown using the model described by Eq. 6.4 where in-
stead of S being a linear polarisation, it is an arbitrary elliptical polarisation, the intensity
distribution in Eq. 6.5 becomes
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F =

(
1

2
− 1

2
(S1 cos 2 (α + φ) + S2 sin 2 (α + φ))

)
Fo (6.40)

where S1 and S2 are the second and third Stokes parameters. Then differentiating with
respect to θ, we can find that an extrema exists when

θ =
arctan

(
S2

S1

)
2

− φ (6.41)

This will simplify to the case outlined in the Section 6.2.1 if S2 = 0.

6.6 Summary

In this chapter, we have introduced, discussed, and demonstrated the use of the Compu-
tational Polarimetry Framework for the computational inference of optical activity in the
novel CORD system. In simulation, the system produces estimates of optical activity as
accurate as lab-based ORD estimation systems with potential for blood glucose monitor-
ing. This system demonstrated being able to produce estimates of polarisation rotation
caused by a half-wave retarder and a sample of sucrose that are similar to, if not better
than, the LPO method for ORD using only a less complex, less costly and smaller system
using a single measurement.
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Chapter 7

Conclusion

With the Computational Polarimetry Framework presented in this thesis, we were capable
of designing polarimetric systems for the inference of system component parameters and
sample parameters under design requirements and constraints. In this chapter, we will
discuss future directions and applications for this work.

7.1 Future Framework Developments

7.1.1 Unknown Parameter Models

In the two design problems we have discussed, we had all the terms in the inference model
defined, however, in some cases, the distribution for an node in the network maybe be
unknown. We can utilise the inherent Markov Blanket property of Bayesian networks (this
is a result of d-separation and the local Markov property) [36], to estimate the distribution
of that node. The Markov blanket property states that for any node Xi there will be some
subset S that shields Xi from the influence of all the other nodes in the graph.

We can show this with an example where if we have a DAG D = (U , E) where U =
{X1, X2, X3, X4, X5} , shown in Figure 7.1, we can state that for node X3, the Markov
blanket is the entire set U . With this, and the outlined dependencies in the graph, we can
formulate the joint probability of D as
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Figure 7.1: Bayesian graph of a DAG in a Markov Blanket.

P (X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5) =

P (x1)P (x2)P (x3|x2, x1)P (x4|x3)P (x5|x3) (7.1)

the distribution of P (x3|x2, x1) is unknown, however, should the rest of the terms be known,
the distribution can be inferred [22]. This would be a likely scenario in situations where
black-box polarimetry or imaging components are used in the full polarimetry system where
the distribution of parameters in those component are unknown but need to be estimated
for sample parameter inference.

7.1.2 Component Choice

During the design problems proposed, we have had the basic structure of the polarimetric
system given with only the parameters of the components needing to be estimated. This is
common practice with other polarimetric system optimisation [1, 11, 15, 40, 41, 53, 56, 57].
In some design scenarios however, there are requirements and constraints on the choice of
components and these components are chosen from a discrete set, rather than being pre-
chosen.

With there being flexibility in the component choice, the component choices can change
the possible system parameter configurations. For example, a PSA configuration consisting
of a dual rotating retarder has two sets of system parameters that concern the angular ori-
entation and retardance of the components, while a PSA configuration of a fixed polariser
and rotating retarder has two different sets of system parameters. The demonstration of
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this framework to be used with different component configurations with design require-
ments and constraints will be an important next step in demonstrating this frameworks
effectiveness as a complete and unifying tool for polarimetric system design and polarimet-
ric system parameter inference.

7.2 Future Applications of the Framework

7.2.1 Whole Sample Parameter Inference

In this thesis, we proposed two design problems that focused on the estimation of polar-
isation angle and sample optical acitivity. However, samples can have many polarising
properties that can affect the polarisation of light in more ways than rotating its orien-
tation [13]. These sample properties are summarised in a Mueller matrix of that sample
making the estimation of a Mueller matrix important.

From Section 2.2.2, we know that to estimate a Mueller matrix, several measurements
are needed to estimate the Mueller matrix of a sample and the alignment of those measure-
ments are important for estimation accuracy [46]. Using the Computational Polarimetry
Framework, a measurement alignment constraint can be put into place and components
and their parameters can be chosen to ensure alignment. In addition, the Computational
Polarimetry Framework can be also used to evaluate computational algorithms for beam
alignment given a particular component setup.

7.2.2 General Optical System Design

The Computational Polarimetry Framework is designed for the system design of polari-
metric systems, however, there are possibilities for this framework to be used imaging, and
interferometric applications. The components in the system and their parameters can be
generalised into using optical diffraction or ray tracing models and have them be included
into the model’s C and Q set parameters. With this change and prior models of a sample’s
optical properties, inference models can be set up to infer sample properties and design
optical systems under certain requirements and constraints across different system types.
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7.3 Conclusion

In conclusion, we have demonstrated a computational polarimetry system design framework
that utilises Bayesian networks to infer system properties for optimal system design and
create inference model for sample properties. The framework is the first of its kind to
formulate polarimetry system design as an all encompassing probabilistic framework that
incorporate system design requirements and constraints.

The framework’s effectiveness was demonstrated in inferring the ideal system parameter
to design a polarimetric system to determine the angle of light polarisation that satisfy
design requirements and address component limitations. In this case, the framework had to
optimise system parameters for not only stochastic error from the detector, but also from
deterministic error from the optomechanical components. In addition, it ensured that the
linear polariser would produce a detectable change in intensity for a small angular change.
This was all due to the model being able to incorporate prior system knowledge about
component behaviour into the inference of system parameters. It was also able to arrive
at expected component configurations under ideal conditions.

We then demonstrated the framework’s ability to infer sample optical activity with a
spatial detector array and an SPB. In this case, we demonstrated that the unifying system
design framework is flexible enough to compute system parameters utilising novel polari-
metric measurement methods and still produce accurate estimations of sample parameters
over the state of art methods using fewer measurements and exploiting prior knowledge of
system components.

The Framework has the potential to be improved upon and extended for whole sample
inference applications, and general optical system designs and with it change the way in
which scientists design polarimetry systems.
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[40] Stéphane Roussel, Matthieu Boffety, and François Goudail. Polarimetric precision of
micropolarizer grid-based camera in the presence of additive and poisson shot noise.
Optics Express, 26(23):29968, oct 2018.

[41] D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S.
Phipps. Optimization of retardance for a complete stokes polarimeter. Optics Letters,
25(11):802, jun 2000.

[42] Derek S. Sabatke, Ann M. Locke, Michael R. Descour, William C. Sweatt, John P.
Garcia, Eustace L. Dereniak, Shanalyn A. Kemme, and Gary S. Phipps. Figures of

85



merit for complete stokes polarimeter optimization. In David B. Chenault, Michael J.
Duggin, Walter G. Egan, and Dennis H. Goldstein, editors, Polarization Analysis,
Measurement, and Remote Sensing III. SPIE, nov 2000.

[43] Bahaa E. A. Saleh and Malvin Carl Teich. Fundamentals of Photonics (Wiley Series
in Pure and Applied Optics). John Wiley & Sons, 1991.

[44] J. C. G. De Sande, G. Piquero, M. Santarsiero, Roma Tre, and Via V. Volterra.
Polarimetry with non uniformly polarized beams. In Trends in Electromagnetic Co-
herence, 2nd Joensuu Conference on Coherence and Random Polarization, 2018.

[45] Sigma-Aldrich. Sucrose. Online; accessed April 2019.

[46] Matthew H. Smith, Jacob B. Woodruff, and James D. Howe. Beam wander considera-
tions in imaging polarimetry. In Dennis H. Goldstein and David B. Chenault, editors,
Polarization: Measurement, Analysis, and Remote Sensing II. SPIE, oct 1999.

[47] JB Theeten and DE Aspnes. Ellipsometry in thin film analysis. Annual Review of
Materials Science, 11(1):97–122, 1981.

[48] Vimal Thilak, Charles D. Creusere, and David G. Voelz. Passive polarimetric imagery
based material classification for remote sensing applications. In 2008 IEEE Southwest
Symposium on Image Analysis and Interpretation. IEEE, mar 2008.

[49] Pavel Tománek, Jan Mikláš, Hamed Mohamed Abubaker, and Lubomı́r Grmela. Opti-
cal sensing of polarization states changes in meat due to the ageing. In AIP Conference
Proceedings, volume 1288, pages 127–131. AIP, 2010.

[50] Hakki Mert Torun, Madhavan Swaminathan, Anto Kavungal Davis, and Mohamed
Lamine Faycal Bellaredj. A global bayesian optimization algorithm and its application
to integrated system design. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 26(4):792–802, apr 2018.

[51] Santosh Tripathi and Kimani C. Toussaint. Rapid mueller matrix polarimetry based on
parallelized polarization state generation and detection. Optics Express, 17(24):21396,
nov 2009.

[52] Valery V. Tuchin. Polarized light interaction with tissues. Journal of Biomedical
Optics, 21(7):071114, apr 2016.

[53] K. M. Twietmeyer and R. A. Chipman. Optimization of mueller matrix polarimeters
in the presence of error sources. Optics Express, 16(15):11589, jul 2008.

86



[54] J. S. Tyo. Optimum linear combination strategy for an n-channel polarization-sensitive
imaging or vision system. Journal of the Optical Society of America A, 15(2):359, feb
1998.

[55] J. Scott Tyo. Considerations in polarimeter design. In David B. Chenault, Michael J.
Duggin, Walter G. Egan, and Dennis H. Goldstein, editors, Polarization Analysis,
Measurement, and Remote Sensing III. SPIE, nov 2000.

[56] J. Scott Tyo. Noise equalization in stokes parameter images obtained by use of
variable-retardance polarimeters. Optics Letters, 25(16):1198, aug 2000.

[57] J. Scott Tyo. Design of optimal polarimeters: maximization of signal-to-noise ratio
and minimization of systematic error. Applied Optics, 41(4):619, feb 2002.

[58] David J. Wales and Jonathan P. K. Doye. Global optimization by basin-hopping and
the lowest energy structures of lennard-jones clusters containing up to 110 atoms. The
Journal of Physical Chemistry A, 101(28):5111–5116, jul 1997.

[59] L.B. Wolff. Polarization-based material classification from specular reflection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(11):1059–1071, 1990.

[60] Xianyu Wu, Mark Pankow, Hsiao-Ying Shadow Huang, and Kara Peters. High-speed
polarized light microscopy for in situ, dynamic measurement of birefringence proper-
ties. Measurement Science and Technology, 29(1):015203, dec 2017.

[61] J Zallat, Aı̈nouz S, and M Ph Stoll. Optimal configurations for imaging polarimeters:
impact of image noise and systematic errors. Journal of Optics A: Pure and Applied
Optics, 8(9):807–814, jul 2006.

[62] Qiwen Zhan. Cylindrical vector beams: from mathematical concepts to applications.
Advances in Optics and Photonics, 1(1):1, jan 2009.

[63] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans.
Math. Softw., 23(4):550–560, December 1997.

87


	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Contributions
	Outline

	Theoretical Background
	Polarised Light
	Polarisation Ellipse
	Stokes Vectors
	Mueller Matrices

	Polarimetric Systems
	System Components
	System Model

	Error
	Stochastic Error
	Deterministic Error

	Heterogeneously Polarised Beams
	Spirally Polarised beams

	Bayesian Networks
	Summary

	Literature Review
	Polarimetry System Optimisation
	Summary

	Computational Polarimetry
	Framework Parameters
	Design Parameters (D)
	System Components (C)
	System Component Parameters (Q)
	Measurements (I)

	Bayesian Network
	Formulation for Polarimetry Systems

	Summary

	Computational Polarimetry in Action
	Background
	Design Problem
	System Design
	Requirements and Constraints
	Computational Polarimetry Framework

	Experimental Setup
	Results and Analysis
	Discussions and Future Work
	System Stability
	Uniqueness

	Summary

	Computational Optical Rotary Dispersion
	Background
	Design Problem
	System Design
	Requirements and Constraints
	Computational Polarimetry Framework
	Measurement Procedure

	Experimental Setup
	Inference Procedure
	Simulated Experiments
	Real Experiments

	Results and Analysis
	Simulated Experiments
	Real Experiments

	Discussion
	Reference Beam
	Dispersion
	Heterogeneously Polarised Beams

	Summary

	Conclusion
	Future Framework Developments
	Unknown Parameter Models
	Component Choice

	Future Applications of the Framework
	Whole Sample Parameter Inference
	General Optical System Design

	Conclusion

	References

