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Abstract

The exploration/exploitation dilemma is a fundamental but often computationally in-
tractable problem in reinforcement learning. The dilemma also impacts data efficiency
which can be pivotal when the interactions between the agent and the environment are
constrained. Traditional optimal control theory has some notion of objective criterion, such
as regret, maximizing which results in optimal exploration and exploitation. This approach
has been successful in multi-armed bandit problem but becomes impractical and mostly
intractable to compute for multi-state problems. For complex problems with large state
space when function approximation is applied, exploration/exploitation during each inter-
action is in practice generally decided in an ad hoc approach with heavy parameter tuning,
such as ε-greedy. Inspired by different research communities, optimal learning strives to
find the optimal balance between exploration and exploitation by applying principles from
optimal control theory.

The contribution of this thesis consists of two parts: 1. to establish a theoretical frame-
work of optimal learning based on reinforcement learning in a stochastic (non-Markovian)
decision process and through the lens of optimal learning unify the Bayesian (model-based)
reinforcement learning and the partially observable reinforcement learning. 2. to improve
existing reinforcement learning algorithms in the optimal learning view and the improved
algorithms will be referred to as approximate optimal learning algorithms.

Three classes of approximate optimal learning algorithms are proposed drawing from
the following principles respectively:
(1) Approximate Bayesian inference explicitly by training a recurrent neural network en-
tangled with a feed forward neural network;
(2) Approximate Bayesian inference implicitly by training and sampling from a pool of
prediction neural networks as dynamics models;
(3) Use memory based recurrent neural network to extract features from observations.
Empirical evidence is provided to show the improvement of the proposed algorithms.
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Chapter 1

Introduction

1.1 Learning

Learning is defined as the interactions between an environment and an agent (con-
troller). The interactions include the state: a random variable produced by the environ-
ment and observed by the agent, the action: a random variable produced by the agent
which may affect the environment, the reward, generated from the environment passed to
the agent as a result of the current state and action. Additionally, observation is defined
in partially observable reinforcement learning as a random variable which is a function of
the state. The goal of learning is to find a policy

Figure (1.1) illustrates the interactions in learning using a flow diagram. There are
two flow paths from environment to agent in learning. One is information flow which in
the form of observations/states and rewards, contains some information about the model
dynamics of the environment and the other is reward flow in the form of rewards. There
is one control flow path from agent to environment through actions. To obtain optimal
policy, actions have to be chosen to gather statistically sufficient amount of information
about the model through information flow, where sufficient amount of information is the
least amount of information about the model to obtain optimal policies . To generate the
most expected total rewards, actions have to be selected solely for large immediate rewards
from reward flow. Therefore, the purpose of the control flow results in the trade-off between
benefiting the information flow or the reward flow. In practice, a specific action during
each interaction is selected generally for a mixture of immediate reward and gathering of
model information to gain long-term reward. Quantifying this long-term reward exactly
in the same metric as the immediate reward is generally computationally intractable for
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Figure 1.1: Flow graphs of learning

multi-state problems, which results in the exploration/exploitation dilemma as otherwise
the optimal action is simply the one with the largest immediate reward plus long term
reward.

The learning framework in most of the reinforcement learning study is based on the
assumption that the environment can be modelled as a Markov decision process (MDP)
and the optimal action selection policy reduces to the problem of solving the following
Bellman equation [1]:

V ∗(s) = max
a
{
∑
s′,r

P (s′, r|s, a) [r + γV ∗(s′)]} (1.1)

where V ∗(s) is an optimal value function of state s, a is action, r is reward, s′ is the next
following state, P (s′, r|s, a) is the transition probability function and γ is the discount
factor. Detailed specification of the notations used in the thesis is provide on the next
page.
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1.2 Redefinition of Decision Processes

In recent years Partially observable Markov decision process (POMDP) as a more compli-
cated formulation, has been widely studied to solve non-stationary (or partially observable)i

learning problems [11]. In this thesis a general form of sequential decision-making process,
named Stochastic decision process (SDP) is defined below to facilitate discussion on non-
Markov decision process with MDP and POMDP formulated as special instances in such
framework. A policy π of an agent is an action selection strategy based on the states in an
SDP or the observations in a POMDP.

Stochastic decision process (SDP) An SDP is defined as a tuple 〈S,A, P, P0〉, where
S is the state space and A is the action space. The state sn+1 ∈ S and reward rn+1 ∈ Rii at
time step (n + 1) follow the probability distribution P (sn+1, rn+1|s0, s1, · · · , sn, an) where
an ∈ A with initial state s0 ∈ S, s0 ∼ P0(s0). A policy π(an|s0, s1, · · · , sn) for an SDP
is typically defined as a probabilistic distribution over actions conditioned on all the past
states (or a function of past states for a deterministic policy).

MDP 〈S,A, P, P0〉 is an SDP with the Markovian property:

P (sn+1, rn+1|s0, s1, · · · , sn, an) = P (sn+1, rn+1|sn, an)

A policy π(an|sn) for an MDP is thus simplified as a probabilistic distribution of only the
current state. A stationary MDP is an MDP such that Pt(s, r) = Pt+1(s, r) for any t, s and
r while in a non-stationary MDP there is no such constraint.

POMDP 〈S,A,O, P, P0〉 is an MDP with the addition of an observation space O and
probability distribution Ω, where an observation at time step t ot ∈ O, ot ∼ Ω(ot|st, at).
The agent is given the state s in an MDP setting where in POMDP the agent cannot access
the state but instead the observation is provided. A policy π(an|ln, on) for a POMDP ,
where ln is a latent variable defined as a function of the previous observation on−1 and the
agent’s previous latent variable ln−1, is a function of the agent’s current latent variable and
observation.

N.B. The notation above draws mainly from Ghavamzadeh et al. [6] and Sutton and
Barto [16].

iThe equivalence between the two can be found in most introductory books on stochastic processes or
Markov processes.

iithe set of real numbers
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Figure 1.2: Problem space and classes of reinforcement learning algorithms

1.3 Optimal Learning

This thesis attempts to identify the trend in RL research community that more and more
research is conducted towards non-Markovian decision processes or SDPs as is defined pre-
viously. This trend is likely to have been driven by tackling the exploration/exploitation
dilemma or data efficiency as a result of it in RL community. e.g. from MDP to POMDP,
from RL to Bayesian model based RL, from simple single state prediction neural network to
recurrent neural network, etc. Instead of patching up the existing algorithms in an MDP-
based RL formulation to suit non-Markovian models, this thesis formulates problems in
the more general SDPs and constructs optimal learning algorithms which perform optimal
exploration and exploitation and thus achieves maximum data efficiency. Though the com-
putation of such optimal learning algorithms is mostly intractable, analysis of these theoret-
ical algorithms complements comprehensive understanding of the exploration/exploitation
dilemma which would rather be difficult to deal with in an MDP formulation. The optimal
learning algorithms will later in the thesis direct the construction of approximate optimal
learning algorithms which are RL algorithms with generally improved data efficiency in
SDP formulations. The relation between the two problem formulations based on different
decision processes and among different classes of algorithms is illustrated in Figure 1.2

Optimal learning is a pattern of interactions which maximizes the expected total re-
ward for all the interactions incurred throughout the entire duration of learning [4].
Reinforcement learning is concerned with how agents ought to take actions in an envi-
ronment so as to maximize some notion of cumulative reward [19].
Optimal learning can be understood as a subset of reinforcement learning emphasized on
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(often theoretically) obtaining optimal policies by performing optimal exploration/exploitation.
RL research has been done largely on tasks with effortless access to infinite amount of train-
ing data such as computer games, board games (which can be simulated on computers),
etc. For problems with constrained interactions with the environment, data efficient RL
or OL is in demand. As an example, RL in robotics must take into consideration the
worn-out cost of a test robot and testing a new drug might end a patient’s life. The reason
that OL gains little interest in learning is that OL algorithms are in general intractable
to compute. Even for the single state RL problem known as multi-armed bandit, it was
not until 27 years later since its formulation by Robbins [13] that a closed form optimal
solution named Gittins [7] index was given. Nowadays, almost all the challenging RL prob-
lems to solve is computationally intractable if formulated as OL problems and what makes
it worse is that even an approximate OL framework is barely available. This thesis was
originated as an attempt to give a general-form approximate OL algorithm evolved from
a model based RL framework under Bayesian inference with another two approximate OL
algorithms proposed along the study.

A brief history of optimal learning Optimal learning has been studied over a few
decades and dated back to as early as 1947 in Wald [17]’s initial work of sequential analysis.
Over the years, optimal learning has been studied under different names such as ”adap-
tive control process”, ”dual control” in the control literature. The initial work on model
based Bayesian Reinforcement Learning was published under the topic dual control [5]. The
central problem is formulated as a sequential decision process under uncertainty and an
agent is an algorithm which at each step takes an action in the uncertain environment and
changes the state of the environment.

The rest of the thesis starts in Chapter 2 by looking at the exploration/exploitation
dilemma, which has perplexed researchers for decades without a computationally tractable
solution in general. The trade-off between data and computation efficiency is also high-
lighted in that chapter under OL frameworks which will be useful later for constructing
approximate OL algorithms. Chapter 3 compares variations of non-Markovian RL formu-
lations: POMDP, Bayesian RL and SDP based RL and an informal proof by reduction is
provided for proving the uniform optimality of RL algorithms among these RL variations.
Chapter 4 reviews the Bayesian statistics in the context of RL and provides a road map to
approximate Bayesian inference explicitly and implicitly using neural networks. Approxi-
mate Bayesian inference will serve at the main tool to construct and analyze approximate
OL algorithms in Chapter 5. Chapter 5 provides details on implementing three classes of
approximate OL algorithms under three different RL frameworks and empirical evaluation
is shown to align with theoretical analysis. Chapter 6 then sums up the thesis and gives
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take-aways.
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Chapter 2

Exploration/Exploitation Dilemma
and Data/Computation efficiency

2.1 Exploration/exploitation dilemma

Exploration refers to the actions through which the agent aims to infer information
about the environment dynamics and if such information is processed correctly it can
obtain the most expected long term rewards.

Exploitation refers to the actions selected to maximize the expected immediate rewards
in one episode for episodic tasks (or in the limit for continuous tasks) by making use of
the present information about the model.

In theory, an action can be selected for the purpose of both exploration and exploitation.
But there is always a trade-off between the two as one has to give up on one to benefit
the other. The ultimate goal of reinforcement learning is, through interactions with the
environment, to obtain a policy which results in the most amount of expected rewards in
one episode for episodic tasks or in the limit for continuous tasks. To achieve this goal
in theory, it is sufficient for general RL algorithms to obtain implicitly (model free RL)
or explicitly (model based RL) statistically sufficient information about the model in the
limit of infinite number of interactions. In practice, the asymptotic convergence guarantee
adapts effectively to algorithms with large number of interactions such as Atari games,
Go, etc. However, in many problems such as drug test, robot control, etc., intermediate
rewards under a sub-optimal policy are far more important than an optimal policy trained
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from a large amount of interactions [3]. Therefore, an OL algorithm is often in demand to
solve the problems above as an optimal policy deduced from an OL algorithm must balance
the optimal trade-off between exploration and exploitation and consequently achieve the
optimal data efficiency. But OL algorithms only exist in theory for most problems with a
large state space and are generally intractable to compute in practice.

There has been research on explicitly quantifying the value of an action (at certain
state) with respect to obtaining more information about the model and obtaining more
immediate rewards. UCB(upper confidence bound) and Thompson sampling were proposed
to address the exploration/exploitation dilemma quantitatively for multi-armed bandit
problems. Their effectiveness can be well explained and understood in an MDP-based RL
with Bayesian Prior being the parameters of Dirichlet distributions. For multi-state RL
problems, it is often computationally intractable to compute the value functions.

Data efficiency is closely related to exploration/exploitation dilemma and describes the
amount of training data required to obtain an optimal policy in the context of RL. In prac-
tice, the concept of data efficiency is extended RL algorithms that obtain only suboptimal
policies. This extension adds to the complication of data efficiency analysis as the following
situation has to be addressed where some RL agent can learn a suboptimal policy with
little training data while another RL agent might be able to obtain a better policy with
more data. Intuitively, we want to quantify the ‘true’ data efficiency for policies of different
optimality, and it should be in such form as the value function of a policy divided by the
amount of training data required to learn such policy. Unfortunately, there is no closed
form criterion that both captures the essence of data efficiency and is computationally
feasible for problems of large state space especially when function approximation is ap-
plied. Perfect exploration obtains sufficient amount of information of the model dynamics
for reasoning an optimal policy and perfect exploitation results in the best effort expected
total rewards based on the limited information about the model dynamics learned from
the previous exploration. Improving data efficiency is about quantitatively balancing out
exploration and exploitation to obtain the most expected total rewards with a limited
number of interactions (or in a finite horizon).

In theory, optimal learning has some closed form notion of criterion (such as regret in
bandit problems) maximizing which results in optimal data efficiency. As will be shown
in the next chapter, Bayesian model based RL is equivalent to an optimal learning for-
mulation. A closer look at the Bayesian model based RL algorithm suggests that the
quantitative evaluation of exploration/exploitation for each action at a time can be dealt
with by quantifying the uncertainty of the model dynamics and then computing the ex-
pected future rewards conditioned on the uncertainty in the model. Under such reasoning,
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pure exploration corresponds to infinite uncertainty in the state value so the agent will
take a random action and pure exploitation means there is no uncertainty in the perceived
model dynamics so the agent has learned the true model and will strictly follow the optimal
policy deduced from the model.

Here I give a ‘hello world’ example optimal learning algorithm which is also referred
to as Bayesian model based RL algorithm to solve the classic stationary two-armed bandit
problem and analyze the exploration/exploitation dilemma as well as the data efficiency.

Stationary two-armed bandit problem is formulated as two slot machines corre-
sponding to two actions a ∈ {a1, a2} where a1, a2 means choosing the slot machine 1 and
2 respectively and an agent has some probability of hitting the jackpot of the selected slot
machine. ‘Stationary’ specifies the slot machines are fixed so the state in the problem is
trivial and does not change over time. During interactions, the agent selects an action and
the corresponding slot machine generates rewards r ∈ {1, 0} according to a Bernoulli dis-
tribution with an unknown but fixed probability p1, p2 (p1, p2 are generated from a uniform
distribution U(0, 1) before the experiment starts) for each slot machine (a1, a2) respectively.
The goal of an optimal learning agent is to maximize the expected total rewards within a
specified number of interactions (finite horizon).

N.B. Obviously, once the value of p1, p2 are known, the optimal action is to simply
choose the slot machine with larger p. Therefore, the agent needs to (1) explore and
choose both actions in order to infer the true parameters p1, p2; (2) exploit the information
gained from exploration and always choose the action with larger pi, i = 1, 2. Though
the values of p1, p2 are totally unknown, there is a priori knowledge about them in the
problem described above, for they are uniformly generated at the start. The uncertainty
in the belief of the value of p1, p2 complicates the analysis as in fact one needs to compare
two random variables p1, p2 with their uncertainty in consideration.

Bayesian model based reinforcement learning In Bayesian statistics, the belief
about the parameters p1, p2 has to be constantly updated. This belief is also referred to as
Prior/Posterior before/after updating. The belief describes the probability distributions
of the random variables p1, p2 after every interaction. Here, Beta(α1, β1) and Beta(α2, β2)
distributions are used to encode our belief about p1 and p2 and α1, β1, α2, β2 are hyper-
parameters which parametrize the distributions of the random variables. The usage of the
Beta distribution has some mathematical evidence, e.g. the mean of a Beta distribution
coincides with the sample mean.

9



the probability density function of Beta(α, β) is

f(p;α, β) =
Γ(α + β)pα−1(1− p)β−1

Γ(α)Γ(β)

mean =

∫
p

Γ(α + β)pα−1(1− p)β−1

Γ(α)Γ(β)
pdp

=

∫
p

(α + β)αΓ(α + β)pα(1− p)β−1

(α + β)αΓ(α)Γ(β)
dp

=

∫
p

αΓ(α + β + 1)pα(1− p)β−1

(α + β)Γ(α + 1)Γ(β)
dp

=
α

α + β

∫
p

Γ(α + β + 1)pα(1− p)β−1

Γ(α + 1)Γ(β)
dp

=
α

α + β
× 1 =

α

α + β

where Γ(x) = (x− 1)!, x ∈ N+

The initial values of hyper-parameters are all 1’s making Beta(1, 1) a uniform distribu-
tion, which intuitively corresponds to the fact that before any training incurred the agent
has absolutely no knowledge about the parameters p1, p2 except that they are generated
uniformly. During the training, the hyper-parameters are updated every interaction and
the distribution would be skewed to the true value of p1, p2 if learned properly. The agent
then chooses the optimal action based on the belief of the model, which is a distribution of
the true parameters of model dynamics. The uncertainty in the belief distribution instructs
the agent to perform optimal exploration at each interaction.

Start with α1 = 1, β1 = 1, α2 = 1, β2 = 1 and denote the estimates of p1, p2 as P1, P2, two
random variables following probability distributionsBeta(α1, β1), Beta(α2, β2) respectively.
During the initial interaction, the agent has equal probability of choosing action a1 or a2

as Beta(1, 1) is a uniform distribution. The belief will be updated based on the reward
received after that action is taken using Bayesian inference. Since Beta distribution belongs
to the conjugate distribution family, the Posterior also follows Beta distribution as is proved
in Equation 2.1.

10



Figure 2.1: Beta(α, β) distribution of p1 after certain number of choosing action a1

Let f(p1;α1, β1) be the probability density function of Beta(α1, β1) distribution, R a ran-
dom variable of the rewards and A a random variable of actions, it follows:

Prob(P1 = p1|R = 1, A = a1) =
Prior(P1 = p1)Prob(R = 1|P1 = p1)∫
p′
Prob(P1 = p′)Prob(R = 1|P1 = p′1)

dp′1 (2.1)

=
f(p1;α1, β1)p1∫

p′1
f(p′1;α1, β1)p′1dp

′
1

(2.2)

Note the denominator is the mean of Beta(α1, β1) distribution which is α1

α1+β1

=

Γ(α1+β1)p
α1−1
1 p1(1−p1)β1−1

Γ(α1)Γ(β1)

α1

α1+β1

(2.3)

=
Γ(α1 + β1 + 1)pα1

1 (1− p1)β1

Γ(α1 + 1)Γ(β1)
(2.4)

= f(p1;α1 + 1, β1) (2.5)

similarly

Prob(P1 = p1|R = 0) = f(p1;α1, β1 + 1) (2.6)

If the reward is 1 after taking action a1, α1 will be incremented by 1 with β1 remaining
the same and vice versa if the reward is 0 with α2, β2 remaining the same. Figure 2.1 is
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the distribution belief of p1 (probability density function of P1) after choosing a1 a certain
number of times with the true parameter p1 = 0.25. Let ∆P be a random variable of the
difference between P1 and P2 that ∆P = P1 − P2. At an arbitrary time step, one induced
policy π can be defined as: (A is a random variable of action)

π(A = a1) = Prob(∆P > 0) = g(α1, β1, α2, β2) (2.7)

π(A = a2) = 1− π(A = a1) = g(α2, β2, α1, β1) (2.8)

g(α, β, α′, β′) is a function mapping to the quantity of Prob(∆P > 0). Let

h =
B(a+ c, b+ d)

B(a, b)B(c, d)

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

is the normalization term for Beta distribution that

f(p;x, y) =
pα−1(1− p)β−1

B(x, y)

A recursive method to calculate g(p;α, β, α′, β′) is shown by Cook [2]:

g(α1 + 1, β1, α2, β2) = g(α1, β1, α2, β2) + h(α1, β1, α2, β2)/a

g(α1, β1 + 1, α2, β2) = g(α1, β1, α2, β2)− h(α1, β1, α2, β2)/b

g(α1, β1, α2 + 1, β2) = g(α1, β1, α2, β2)− h(α1, β1, α2, β2)/c

g(α1, β1, α2, β2 + 1) = g(α1, β1, α2, β2) + h(α1, β1, α2, β2)/d

with

g(α1, β1, α1, β1) =
1

2

It can be proved that the agent obtains the most expected total rewards with policy π
defined in Equation 2.7 and 2.8 assuming P1 and P2 follow Beta distributions. If instead
sampling is used to estimate the probability of Prob(∆P ) > 0, this approach becomes
Thompson sampling. This optimal learning algorithm can be obviously extended to prob-
lems with large discrete action and reward space using Dirichlet distribution to model the
probability of obtaining a specific reward for each action. In general, this approach can be
applied to any RL problems when the transition function P (r, s′|s, a) can be parameterized
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by independent parameters or in other words all the elements in the generalized transition
matrix are independent. Let pai,j be the corresponding probability of transition from state
i to j when taking action a. A generalized transition matrix for reward r is of the following
form.

P (r) =



p1
1,1 p1

1,2 · · · p1
1,|S|

p2
1,1 p2

1,2 · · · p2
1,|S|

...
...

...
...

p
|A|
1,1 p

|A|
1,2 · · · p

|A|
1,|S|

p1
2,1 p1

2,2 · · · p1
2,|S|

p2
2,1 p2

2,2 · · · p2
2,|S|

...
...

...
...

p
|A|
2,1 p

|A|
2,2 · · · p

|A|
2,|S|

...
...

...
...

p1
|S|,1 p1

|S|,2 · · · p1
|S|,|S|

p2
|S|,1 p2

|S|,2 · · · p2
|S|,|S|

...
...

...
...

p
|A|
|S|,1 p

|A|
|S|,2 · · · p

|A|
|S|,|S|



(r)

All the pi,j’s are assumed to be mutually independent and the problem to be solved is a
stationary Markov decision process with finite sets of states, actions and rewards. Then
for each (state, next state, action) triplet,

{pki,j(r)|r ∈ R,R is a discrete set of rewards}

is a set of parameters to specify the probability distribution of obtaining reward r through-
out interactions. This set of parameters can be hyper-parametrized using a Dirichlet dis-
tribution with |R| number of hyper-parameters. The collection of hyper-parameters for all
the parameters in P can thus serve as the belief in an optimal learning algorithm. The
optimal learning algorithm for stationary two-armed bandit falls under such diagram with
(where subscript 0 represents the only default state):

P (r = 0) =

[
p1

0,0(r = 0)
p2

0,0(r = 0)

]
, P (r = 1) =

[
p1

0,0(r = 1)
p2

0,0(r = 1)

]
(2.9)

Therefore, the algorithm would need two sets of hyper-parameters to describe the two
Dirichlet distributions for both actions in {a1, a2} (with same default state). Each set
of hyper-parameters has cardinality 2 with Beta distribution being the special case of
Dirichlet distribution when there are two different rewards).
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Figure 2.2: A model based reinforcement learning framework (Dyna)

From my knowledge no non-recurrent solution is known by applying Bayesian optimal
learning algorithm above to single state two armed bandit problem due to the compu-
tation of g(α, β, α′, β′). For multi-state problems, the Bayesian approach with Dirichlet
distribution as belief model would require |S|2|A||R| (R is reward set) hyper-parameters
and the belief update rule is overly complicated and often computationally intractable.
What makes it even worse is that no general approximate OL algorithm is available . The
following chapter will give three different but equivalent theoretically optimal learning for-
mulations and approximate optimal learning algorithms under such frameworks will be
constructed and analyzed thereafter.

Brief introduction to model based reinforcement learning There has been an
increasing amount of research in data efficient reinforcement learning and among which
model based reinforcement learning has succeeded in several benchmark problems such as
inverted pendulum. Figure 2.2 is the architecture of a model based RL algorithm named
Dyna [15]. In general, a model based RL agent learns a policy and in addition a dynamics
model (also from the real interactions) which represents some knowledge learned from the
past interactions about the true environment. At each time step, the agent learns from the
real interactions with the true environment and simulated interactions generated from the
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perceived model dynamics (or possibly learn from the model dynamics directly, e.g., learn
from transition matrices directly for problems with small state space by value function
sweeping). Updating the dynamics model and learning indirectly from the learned model
is generally referred to as planning, which often requires a large amount of computation
power and becomes the bottleneck of model-based RL. From the information flow diagram
of Figure 1.1, learning from the dynamics model is redundant as the model itself is learned
from the real interactions. However, in a reinforcement learning context, such redundancy
is important as the learning algorithm is not perfect at each interaction. The agent needs
to ‘look back’ at a later time and might learn something different since the ‘context’ for
the agent has changed after it has learned something new in between.

With appropriate control over the balance between learning directly from real interac-
tions and indirectly from its learnt dynamics model, more computation power allocated
to the planning can mostly result in better data efficiency (with respect to the amount of
real interactions needed). This has brought up another dilemma in reinforcement learning,
namely, computation efficiency vs. data efficiency.
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2.2 Data efficiency/computation efficiency dilemma

Due to the limited computational resources in practice, exact computation of optimal
learning is in general computationally intractable for multi-state problems. As an example
planning till convergence in Bayesian model based RL such as computing g(α, β, α′, β′) in
the example problem in the previous section is not always possible and the quality of a
learned policy can therefore be traded for the amount of assigned computation resources
and better policies generally require more computation when other conditions are fixed.

Computation efficiency describes the amount of computation power required to learn
or derive an optimal policy in reinforcement learning formulation. Like data efficiency,
computation efficiency extends to learning a suboptimal policy, but the definition is not
clear in RL formulation as there is no agreed metric to evaluate the quality of a suboptimal
policy with respect to the amount of computation resources in use. Intuitively, Compu-
tation efficiency can be quantified as the optimality of a policy divided by the amount of
computational resources supplied. There is so far no general notation to relate an optimal
learning algorithm to its practical computational complexity. It makes sense as OL tra-
ditionally aims primarily at finding the optimal solution regardless of the computational
complexity. Nevertheless, OL formulation facilitates the understanding of how computa-
tion efficiency relates to data efficiency with unlimited computation able to achieve optimal
data efficiency. In practice, computational complexity is important because model-based
reinforcement learning has to trade off between data efficiency and computational effi-
ciency when planning becomes the bottleneck. Approximate optimal learning is proposed
to direct the approximation of computing an optimal policy to sacrifice minimum data
efficiency. Later I will show that in fact, the difficulty of planning in Bayesian model based
RL relates to the computational intractability of an OL formulation. e.g. the optimal
learning algorithm for stationary two-armed bandit problem has to compute g(α, β, α′, β′),
which corresponds to the planning in a Bayesian model based RL.

In general, data efficiency can be traded with computation efficiency in a Bayesian
model based reinforcement learning framework, since more computation on planning can
complement the lack of training data. Similar to exploration/exploitation, an approximate
algorithm with sub-optimal data efficiency is often better than algorithms with optimal
data efficiency which however requires tremendous computational power. To rewind, the
main purpose of model based reinforcement learning is to improve data efficiency partly
due to exploration/exploitation dilemma, but this unfortunately leads to another dilemma
of data vs. computation efficiency.
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Approximate optimal learning Exact optimal learning algorithm is generally more
difficult to derive and implement compared to general RL algorithm. As is shown pre-
viously, even for the simple stationary two-armed bandit problem, there is no obvious
non-recurrent solution. In practice, an approximate optimal learning solution is often suf-
ficient for our demand. Interestingly, the idea of approximate optimal learning collides
with the Bayesian model based reinforcement learning in many aspects as will be shown in
the next chapter that they are equivalent. The following is an example of approximating
an optimal learning algorithm, in this case to approximate Bayesian reinforcement learning
algorithm by sampling.

Continue with the previous stationary single state two-armed bandit problem to derive
an approximate optimal learning algorithm. The optimal policy at each time step is given
in Equation 2.7, 2.8. Now we want to obtain an ‘approximately optimal policy’ π′ as

π′(A = a1) ≈ π(A = a1) = Prob(∆P > 0) = g(α1, β1, α2, β2)

Instead of computing the exact probability of Prob(∆P > 0) inevitably in a recurrent
approach, we will approximate Prob(∆P > 0) = Prob(P1 − P2 > 0) = Prob(P1 > P2)
using Monte Carlo method. Given the assumption that P1 and P2 follow Beta distributions,
one can sample p1, p2 from the corresponding Beta distribution with the maintained hyper-
parameters α1, β1, α2, β2. The algorithm is given below with the sampling technique often
referred to as Thompson sampling in model-based reinforcement learning literature.

Algorithm 1: Approximate optimal learning by sampling
(equivalent to a Bayesian model-based RL with Thompson sampling)

Result: Compute π′

1 Input: state = 0, action(A) ∈ {a1, a2}, reward ∈ {0, 1}
2 Initialize α1 = β1 = α2 = β2 = 1;
3 while max{α1, β1, α2, β2} does not reach some threshold do
4 if A = a1 then
5 α1 ← α1 + reward, β1 ← β1 + (1− reward);
6 else
7 α2 ← α2 + reward, β2 ← β2 + (1− reward);
8 end
9 Sample (p1, p2) from Beta(α1, β1) and Beta(α2, β2) respectively n times ;

10 Record the number of times that p1 > p2 as m ;
11 π′(A = a1) = m

n
;

12 π′(A = a2) = 1− π′(A = a1);

13 end
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This algorithm can be viewed as a model-based reinforcement learning and the plan-
ning is performed in a Bayesian approach with α1, β1, α2, β2 representing the dynamics
model. At each time step, the agent updates the dynamics model by incrementing one of
α1, β1, α2, β2 by 1 and learn the approximate optimal policy by approximate P1 > P2 by
sampling.

Note that the above approximate OL algorithm with Thompson sampling cannot scale
to problems with large state space especially when function approximation is used because
there is no efficient approach to combine the sampled parameters of the transition dynam-
ics. Theoretically, one needs to solve the policy evaluation equation for each set of sampled
model parameters which is itself an instance of RL problem with known transition dynam-
ics. Then the value function can be updated by averaging the resulting value functions
for each set of sampled transition parameters. Computing the aggregated value function
quickly becomes impractical as the number of states increase.
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Chapter 3

Optimal learning theory

Reinforcement learning gives no efficiently computable solution to the exploration/exploitation
dilemma for problems with large state space. In the picture of optimal learning, explo-
ration/exploitation problem is automatically embodied into the problem formulation as
data efficiency is now part of the consideration of choosing an optimal action during each
interaction. In fact, the uniform optimality of three different optimal learning formulations
is proved hereby: (1) POMDP (2) SDP-based RL and (3) Bayesian model based RL. The
proof is given by cyclic reduction and the constructed algorithms use ‘ ′ ’ to differentiate
descriptions from the original algorithm with the notation {original environment: E, orig-
inal state: s, original action: a, original reward: r, original observation: o}, {transformed
environment: E ′, transformed state: s′, transformed action: a′, transformed reward: r′,
transformed observation: o′}
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3.1 POMDP reduces to SDP-based RL

Proof 3.1.1 (POMDP ⇒ SDP-based RL) Given a problem formulated as a POMDP
〈SE,AE,OE, PE, PE

0 〉 and an optimal algorithm to solve the problem denoted by ALG1,
from the original environment E form a new environment E′ with the new state′ produced
by E′ being the old observation produced by E and everything else is derived accordingly.
Note that additional uncertainty is added to the reward rt as it depends on the ‘true’
past states instead of observations and there is possible information loss in the generated
observations from states. Construct a reinforcement learning algorithm (Algorithm 2) in
a SDP 〈SE′(= OE),AE′(= AE), PE′ , PE′

0 〉 denoted by ALG2 with the environment being
E′.

Algorithm 2: ALG2 with ALG1 as sub-routine

Result: Select an action
1 t = 1;
2 Initialize l′0 (latent variable) as in ALG1;
3 Input: s′1, s

′
2, · · · , s′t (equivalently = o1, o2, · · · , ot), a′t, r′t;

4 while E′ is at non-terminal state do
5 Update l′t the same as in ALG1 with (ot = s′t, lt−1 = l′t−1, at = a′t, rt = r′t);
6 Select action the same way as in ALG1 using (s′t, l

′
t, a
′
t, r
′
t);

7 t=t+1;

8 end

Aside from the randomness in true reward function conditioned on true states

rn+1 ∼
∫
sn+1

PE(sn+1, rn+1|sn, an)dsn+1

there is additional uncertainty due to partial observations in POMDP 〈SE,AE,OE, PE, PE
0 〉.

r′n+1 =

∫
sn+1∈SE

PE(sn+1, rn+1|ln, on(= Ω(sn, an)), an)dsn+1 (3.1)

≈
∫
sn+1

PE(sn+1, rn+1|sn(≈ i(ln, on)), an)dsn+1 (3.2)

i‘≈’ here is a lenient notation for statistically information sufficiency
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The uncertainty is inevitably inherited by E ′ from the view of its ‘fake’ states. But since
ALG1 is optimal with the additional reward uncertainty in consideration, ALG2 must be
optimal. As is suggested in the Equation 3.2 the additional uncertainty is addressed by the
latent variable ln in ALG1. Because ALG1 is arbitrary, optimality in POMDP results
in the optimality in SDP-based RL. The insight for the proof above is from the equivalence
between non-stationary MDP and partially observable MDP.
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3.2 SDP-based RL reduces to Bayesian model based

RL

Proof 3.2.1 (SDP-based RL ⇒ Bayesian model based RL) Given a problem formu-
lated as SDP-based RL 〈SE,AE, PE, PE

0 〉 and an optimal algorithm to solve the problem
denoted by ALG2, find a Bayesian inference rule BayesInf, of which with the Prior at
any time step, any past states can be generated (a tight bound would be a Bayesian in-
ference rule that passes the least amount of information but still makes optimal action
selection). The existence of such Bayesian inference rule is obvious as one can simply
store/memorize all the previous states encountered. Definite (small) size of Bayesian belief
(Prior/Posterior) is in general necessary to derive differentiable policies regardless of us-
ing tabular method or function approximation. The Bayesian belief of definite size however
makes either the corresponding Bayesian belief update rule intractable or policy deriva-
tion and policy improvement overly complicated. Then from the original environment E
form a new environment E′ which gives out only current state with everything else derived
accordingly. N.B. the reward function

RE′(rn+1|sn, an) ≈
∫
sn+1∈SE

PE(sn+1, rn+1|s0, s1, · · · , sn, an)dsn+1 (3.3)

is relaxedii to additionally depend on past states (this will add uncertainty in the resulting
reward in the view of only current state). Construct a (most likely model-based) RL algo-
rithm ALG3 (Algorithm 3) in a MDP 〈SE′(= SE),AE′(= AE′), PE′ , PE′

0 (= PE
0 )〉 based on

ALG2. Similarly, optimality in SDP-based RL leads to the optimality in Bayesian model
based RL.

It is not obvious how ALG3 addresses the additional uncertainty in PE′ and RE′ with-
out access to the past states. Since a MDP-based RL algorithm is in general unable to derive
an optimal policy without accessing the past states which evolves according to a stochastic
decision process, it must be BayesInf that eradicates the additional uncertainty by encod-
ing the useful (statistically sufficient) information about all the past states in the Prior. As
a result, Bayesian model-based reinforcement learning mainly encodes into Bayesian belief
the additional uncertainty of the environment dynamics PE′(sn+1, rn+1|sn, an), namely the
model. Planning is necessary in model-based reinforcement learning and it consists of
two parts:
(1) update the model (or the Bayesian belief)
(2) derive and improve the policy of the agent

iiThis relaxation is stronger than the reward defined in MDP
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Algorithm 3: ALG3 with ALG2 as sub-routine

Result: Select an action
1 t = 1;
2 Initialize Prior by BayesInf ;
3 Input: s′t (no access to previous states at any time step),a′t, r

′
t

4 while E′ is at non-terminal state do
5 if t 6= 1 then
6 Generate all the past states s1, s2, · · · , st−1 using BayesInf ;
7 end
8 Compute the Posterior from (Prior, s′t, a

′
t, r
′
t) by ALG2;

9 Prior ← Posterior;
10 Let st = s′t;
11 Select an action using ALG2 from (s1, s2, · · · , st, a′t, r′t);
12 t=t+1;

13 end

As a comparison between Bayesian model based RL and Bayesian model based RL, what
planning does in Bayesian model based RL corresponds to line 5 and 7. Most of model-based
RL study focuses on parametric model, but the planning of which is difficultiii and often
intractable for even slightly complicated problems because ‘planning occurs in information
space’, quoted from LaValle [10], where an information state can be interpreted as the
observed state augmented with Bayesian belief. To circumvent massive computation spent
on updating the model, conjugate families of probability distribution have been proposed to
model the uncertainty in the model of the environment [14]. But the fundamental compu-
tational complexity is still there and it simply shifts the burden from updating the model
to reasoning about the model and improving the policy. In chapter 4 an algorithm on ap-
proximate Bayesian model-based RL is given which paves the way for solving complicated
problems practically by performing planning implicitly.

iiiMulti-armed bandit problem is one of the ‘simplest’ problems that uses parametric model to quantify
the uncertainty in the reward function (with only one state)
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3.3 Bayesian model based RL reduces to POMDP

Proof 3.3.1 (Bayesian model-based RL ⇒ POMDP) Given a problem formulated as
MDP-based RL and a Bayesian inference system BayesInf with definite size of Bayesian
belief, with which an optimal algorithm to solve the problem is denoted by ALG3, a
Bayesian model based RL, then from the original environment E form a new environment
E′ which generates observations o′t ∈ S being states in E and everything else is defined
accordingly. Construct an algorithm ALG1 (Algorithm 4) in this POMDP with ALG3 as
subroutine. To stretch the proof, the Bayesian belief (Prior) of BayesInf can be thought as
latent variable lt in a POMDP and the value of it at time step t (Posterior) is updated from
its previous value (Prior) following Bayesian belief update rule in BayesInf. If ALG3
is an equivalent Bayesian model-based RL, line 5 in Algorithm 4 would corresponds to the
update of the model as part of planning and policy derivation and improvement correspond
to line 8. Similarly, the optimality in Bayesian model based RL results in the optimality in

Algorithm 4: ALG1 with ALG3 as sub-routine

Result: Select an action
1 Input: o′t(= st) (no access to previous states at any time step),a′t, r

′
t;

2 t = 1;
3 Initialize latent variable l0 as the Prior from BayesInf ;
4 while E′ is at non-terminal state do
5 Compute the Posterior from (Prior lt−1, o

′
t, a
′
t, r
′
t) using BayesInf ;

6 Prior← Posterior;
7 lt ← Prior;
8 Select action using ALG3 with (o′t, lt, a

′
t, r
′
t);

9 t=t+1;

10 end

POMDP. The uncertainty in the model can be statistically efficiently specified by Bayesian
belief, which if taken as a latent variable in a POMDP is sufficient to derive an optimal
policy. However, updating latent variable and utilizing such information to improve the
policy is as difficult as planning in a Bayesian approach in model-based RL. The intuition
is that the Bayesian belief in Bayesian model based RL can be interpreted as the latent
variable in POMDP.

This completes the proof of the three equivalent optimal learning formulations by cyclic
reduction. The reasoning in this chapter is not a formal mathematical proof but instead
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given to solely address the trend in reinforcement learning community that more and
more research has been working its way through towards optimal learning by relaxing
the problem formulation to a broader class of problems. The driving force is to tackle
the exploration/exploitation dilemma which has perplexed RL researchers for a long time.
Examples can be from MDP to POMDP, from traditional RL to Bayesian model-based
RL, from simple single state prediction neural network to recurrent neural network, etc.
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Chapter 4

Approximate Bayesian inference

4.1 Overview of Bayesian inference

The probabilistic distribution of (st+1, rt+1) given (st, at) (s, r, a are state, reward, action
respectively) after observing

Xt = {(s0, a0), (s1, a1), · · · , (st−1, at−1)}, Yt = {(s1, r1), (s2, r2), · · · , (st, rt)}

with t = 1, 2, · · · , is:

Prob(st+1, rt+1|st, at, Xt, Yt) (4.1)

Let Pred be the true prediction model given (st, at, p
M) and pM is the hyper-parameter to

specify a model M , which corresponds to a generalized transition matrix in an RL setting.

=

∫
pM
Prob(pM |Xt, Yt)Pred(st+1, rt+1|st, at, pM)dpM (4.2)

Define a random variable θt which is statistically sufficient of (Xt, Yt) to predict pM . In
other words, the following equation is satisfied: Prob(pM |Xt, Yt) = Prob(pM |θt)

=

∫
pM
Prob(pM |θt)Pred(st+1, rt+1|st, at, pM)dpM (4.3)
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Suppose Prob(pM |θt) can be computed by the same probability density function f(pM ; iθt)
parameterized by θt.

=

∫
pM
f(pM ; θt)Pred(st+1, rt+1|st, at, pM)dpM (4.4)

In general θt is a function of (Xt, Yt) with:

θ = Θ(Xt, Yt) (4.5)

In the context of reinforcement learning, Pred(ss+1, rt+1|st, at, pM) is usually referred
to as the transition function and denoted p(ss+1, rt+1|st, at; pM), where pM is the parameter
to specify the environment dynamics.

Equation (4.4) =

∫
pM
f(pM ; θt)p(st+1, rt+1|st, at; pM)dpM (4.6)

θt is the belief about the environment dynamics or the hyper-parameter describing the
probability distribution of parameters of transition functions, e.g., θt can be the means
and the co-variance matrices of Gaussian distributions of parameters in pM which specifies
a model. Θt is a function of all the past state-action-state-reward tuples (st, at, st+1, rt+1)
and can be trivially set to memorize all the past tuples. In general, an ideal Θ∗(Xt, Yt)
function is one that makes θt statistically sufficient of Xt, Yt, e.g., trivially memorizing all
the past observations.

Bayesian inference can be seen as an incremental formulation of equation (4.4) with
θ0 representing a priori knowledge about the model. θt corresponds to the Bayesian belief
(Prior/Posterior) in Bayesian statistics.

Assume θt can be updated from θt−1 by a function g with

θt = g(θt−1, st−1, at−1, st, rt) (4.7)

such that the statistical sufficiency condition still holds

Prob(pM |Xt, Yt) = Prob(pM |θt) (4.8)

Claim: The update rule or the function g for θt must have the property

f(pM ; θt) ∝ f(pM ; θt−1)p(st, rt|st−1, at−1; pM),∀pM (4.9)

i‘;’ is used when there is an explicit relation, namely f , between pM and θt.

27



Proof:

Base case: Use a priori knowledge to initialize θ0.
Inductive case: Assume θn−1 is statistically sufficient of )Xt−1, Yt−1) for predicting st, rt

f(pM ; θt) = Prob(pM |θt) (4.10)

= Prob(pM |Xt, Yt) statistical sufficiency condition (4.11)

=
Prob(pM , Xt, Yt)

Prob(Xt, Yt)
=
Prob(pM , st, rt, st−1, at−1, Xt−1, Yt−1)

Prob(st, rt, st−1, at−1, Xt−1, Yt−1)
(4.12)

=
Prob(pM |st−1, at−1, Xt−1, Yt−1)Prob(st, rt|pM , st−1, at−1, Xt−1, Yt−1)

Prob(st, rt|st−1, at−1, Xt−1, Yt−1)
(4.13)

Since pM is independent of (st−1, at−1)

Prob(pM |st−1, at−1, Xt−1, Yt−1) = Prob(pM |Xt−1, Yt−1) (4.14)

Because θt−1 is inductively assumed statistically sufficient

Prob(pM |Xt−1, Yt−1) = f(pM ; θt−1) (4.15)

Prob(st, rt|pM , st−1, at−1, Xt−1, Yt−1) = Prob(st, rt|pM , st−1, at−1) (4.16)

= p(st, rt|st−1, at−1; pM) (4.17)

From Equation (4.6)

Prob(st, rt|st−1, at−1, Xt−1, Yt−1) =

∫
qM
f(qM ; θt)p(st+1, rt+1|st, at; qM)dqM (4.18)

Therefore,

f(pM ; θt) =
f(pM ; θt−1)p(st, rt|st−1, at−1, p

M)∫
qM
f(qM ; θt)p(st, rt|st−1, at−1; qM)dqM

, ∀pM (4.19)

∝ f(pM ; θt−1)p(st, rt|st−1, at−1; pM),∀pM (4.20)

Note the update of θt can be expensive since it must ensure Equation (4.19) holds
for all possible pM . Even for problems of finite S and A sets each generalized transition
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matrix pM contains O(|S|2|A|) parameters. Conjugate family of probability distributions
is widely used to simplify the update rule for θt as it ensures Prob(pM ; θt) belongs to the
same distribution family parameterized by θt. To predict the next state-reward, one still
needs to compute the integration in Equation (4.6). Often in practice the state and reward
space is too large to compute exact Bayesian inference. In fact, one of Equation (4.6)
and (4.19) is mostly always computationally intractable. The question here is Can we
approximate the computation of Bayesian inference using neural networks? This question
will be answered later in this chapter.

Conjugate distribution family .

Equation 4.19 is not a trivial update as it is assumed implicitly that the probabilistic
distribution of pM belongs to conjugate distribution family. A general update rule of
Equation 4.19 is:

f ′(pM ; θt) ∝ f(pM ; θt−1)p(st, rt|st−1, at−1; pM) (4.21)

f ′ and f are not necessarily the same in general. But the assumption that pM follows a
probability distribution in conjugate distribution family ensures that f ′ and f are the same
at every time step. Example distributions in conjugate distribution family include Normal
distribution, Beta distribution, Dirichlet distribution, etc. Beta distribution and Dirichlet
distribution are the most popular as the update rule for θt takes only O(1) time. This
gives some evidence to justify the usage of function approximation, as a neural network
can be trained to approximate such function f .

For Bayesian adaptive reinforcement learning, one can parameterize the distribution of
transition matrices pM following Dirichlet distributions. As an example (without spec-
ifying rewards), suppose the environment has n states (denoted as i = 1, 2, . . . , n), and
assume the current state is at 1. Then For each action a ∈ A , there is a sequence of hyper-
parameters {αa1,i}. The probability distribution for (pM)a1,i is, where k is the normalization
factor:

kΠn
i=1((pM)a1,i)

αa1,i−1, i ∈ {1, 2, · · · , n}
The update rule for hyper-parameters of distributions in a conjugate family is incrementa-
tion For example, when the next state is 5(n > 5), the update rule for the hyper-parameters
is as follows:

αai,j = αai,j + 1 if (i− 1)(j − 5) = 0 (4.22)

αai,j remains the same if (i− 1)(j − 5) 6= 0 (4.23)

one also needs to update the normalization factor k.

29



4.2 Approximate Bayesian inference

The previous chapter presented three equivalent optimal learning formulations. The analy-
sis in this section is mainly done in a Bayesian model based RL formulation with emphasis
on planning. That is, to update the model or the belief of the distribution of the parameters
of transition functions:

θt =g(θt−1, st−1, at−1, st, rt) (4.24)

such that

f(pM ; θt) =
f(pM ; θt−1)p(st, rt|st−1, at−1, p

M)∫
qM
f(qM ; θt)p(st, rt|st−1, at−1; qM)dqM

,∀pM (4.25)

If the planning is done by learning from the simulated interactions generated by the learned
model, the agent must be able to predict the next state-reward tuple:

Prob(st+1, rt+1|st, at, Xt, Yt) =

∫
pM
f(pM ; θt)p(st+1, rt+1|st, at; pM)dpM (4.26)

As an inspiration, UCB and Thompson sampling are two successful examples of approxi-
mate Bayesian inference for single state ‘model-based’ RL problems [16] and planning occurs
in information space. Define information state to be (θ, s) where θ is belief state with
Bayesian belief (Prior/Posterior) being a suitable candidate, and st is now renamed as
physical state to differentiate from the belief state. For multi-state RL problems, plan-
ning in information space is notoriously difficult as it reduces to another Bellman equation.

V ∗(s, θ) = max
a
{
∑
s′,r

P (s′, r|s, a; θ) [r + γV ∗(s′, θ′)]} (4.27)

where

θ′ = g(θ, s, a, s′, r) (4.28)

Note that the transition model P (s′, r|s, a; θ) is known here as θ fully describes the model
dynamics perceived. However, previous section has shown the exact computation of
Bayesian inference is in general computationally intractable. This thesis seeks to apply
function approximation to the Bayesian inference in various approaches and pave the way
for approximate optimal planning. Equation (4.27) also shows the connection between
Bayesian RL and POMDP as θt can be viewed as the latent variable.

N.B. for RL problems with large state space, value functions are approximated by
neural networks, which, denoted by RL-Net for the rest of the chapter, are essentially
supervised prediction models trained with semi-gradient back propagation [16].
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4.2.1 Bayes-Net and FR-Net

The insight to compute an approximate solution of the Bellman equation in information
space (Equation 4.27) is to make use of neural networks as function approximators in
an end-to-end manner so that intermediate computations such as integration in Equa-
tion (4.26) can be done implicitly by neural networks. The functions to approximate for
Bayesian inference are two functions correlated by ∀pM : Equation (4.26) and Equation
(4.24) (which satisfies Equation (4.25)). Using multiple neural networks to approximate
correlated functions inevitably introduces the entanglement between neural networks and
co-training is proposed to address such problem. Based on co-training, meta-co-training
for a class of RL problems with varying model dynamics is proposed for training neural
networks to perform approximate Bayesian inference.

In Bayesian model based RL, we want to include the belief state θt as input to the
value function neural network RL-Net so that the RL-Net has information state as its
input and is able to do planning directly from the model belief instead of simulation
interactions. Or equivalently as shown in Proof 3.3.1 once the latent variable is known
in POMDP formulation, an agent can make optimal decision. The update of θn can be
approximated by a Bayes-Net in Figure (4.2) at left, which is a recurrent neural network
(RNN), due to its structural similarity to Bayesian inference that the Posterior becomes
the Prior in the next round. Bayes-Net cannot be trained directly since θt as intermediate
result is unknown. However, an indirect training method named co-training is proposed
to train a FR-Net shown in Figure (4.2) at left, which consists of Bayes-Net as a part
and additionally an FN-Net with a belief path between the two networks. FN-Net is a
feed-forward neural network (FFN) that models p(st+1, rt+1|st, at; θt) and the belief path
connects the output (θt) of the Bayes-Net to be part of the input to the FN-Net. FR-Net
can be further simplified to a single RNN as shown in the figure.

The FN-Net and the Bayes-Net in a FR-Net are entangled and cannot be trained
separately. The reason lies in that while FN-Net and Bayes-Net are being trained to
model Equation (4.26) and (4.24) that satisfies (4.25) respectively, they must agree on a
belief path ‘protocol’ which intuitively corresponds to the type of probability distribution
family, i.e., f(pM ; θt). FN-Net and Bayes-Net can be trained together in order to agree on a
‘protocol’ during training and this approach is named co-training. To co-train FR-Net on
different θ-tracesii, different dynamics models must be trained on and neural networks are
capable of generalization from finitely many θ-traces to their neighbours. The approach to
do co-training on many dynamics models is named meta-co-training. Meta-co-training is
necessary as training on a single problem has no guarantee of learning anything useful as the

iia θ-trace for a specific dynamics model is {θ0, θ1, · · · , θi, · · · } that converges to θ∗
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FN-Net can over-fit the model dynamics without using any knowledge of θ. Nevertheless,
evidence shows simple Bayesian inference rule can be learned on a single problem by simply
adding a negative activity regularization term for the output layer (θ) of Bayes-Net to the
loss function.

As is shown in Figure (4.1), a LSTM recurrent neural network: Bayes-Net is trained on
a 4×4 maze problem to learn to perform Bayesian belief update. Below is the belief vector
generated by the Bayes-Net after training on 1000 epochs of 1000 random transitions. The
Bayes-Net learned to update the belief in a way similar to the update of hyper-parameters
of a Dirichlet distribution where some hyper-parameters are incremented by 1 at each time
step.

The reason for FR-Net being able to meta-co-train a Bayes-Net to predict θt is that to
make accurate prediction on the next state-reward pair (st+1, rt+1) from (st, at) under an
arbitrary dynamics model, the best knowledge about the dynamics model must be known
and Bayes-Net can only communicate to FN-Net such information through belief path.
Thus, the states on the belief path, which represent the best knowledge of the model, can
be interpreted as the Bayesian belief θt of the model or the latent variable lt in a POMDP.
At the stage of RL when the belief state along with physical state is trained on the RL-Net,
the RL-Net has to conform to the ‘protocol’ p(st+1, rt+1|st, at; θt) used on the belief path
as well. This ‘agreement’ is one way when RL-Net is trained with frozen Bayes-Net and
can be sped up by pre-training RL-Net with FR-Net. Active Bayes-Net throughout the
training of RL agents can be used to ‘negotiate’ the ‘protocol’ and in addition to adapt to
non-stationary dynamics model.

4.2.2 Sample from a pool of neural networks

As is discussed in chapter 2, Thompson sampling cannot scale for complex transition
dynamics (multi-state) as there is no efficient way to compute the solution value functions
of many policy evaluation equations each corresponding to a sampled pM .

Instead of sampling pM ’s and computing the solutions of the corresponding policy
evaluation equations, I propose to sample the transition function p(st+1, rt+1|st, at; pM)
directly as a black box neural network corresponding to a pM . Consequently, transitions
of a sampled model are forward passes of that black box neural network and simulated
transitions of different models can be used for planning. Compared to sampling parameters
pM ’s of transition functions, sampling transition functions directly cuts off unnecessary
intermediate computations of computing the solution of policy evaluation equations by
learning/planning on simulated transitions.
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Figure 4.1: The belief generated by the Bayes-Net for t = 2, 3
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Figure 4.2: Approximate Bayesian inference.

Each neural network p(st+1, rt+1|st, at; pM) corresponding to a specific pM can be trained
as a supervised prediction neural network to converge to a P-Netiii in which the weights of
the neural network correspond to a pM . For prediction, we aim to perform integration in
Equation (4.26) implicitly by maintaining a pool of prediction neural networks P-Nets and
generating simulated interactions by different P-Nets in the pool so that later the agent
can learn to update value functions indirectly from the simulated interactions instead of
the parameters of model dynamics. The P-Net pool collectively represent/encode the belief
θ of the dynamics model and capture the uncertainty in the perceived knowledge about
the environment. To facilitate later analysis, model-based GPI is introduced as an
extension to generalized policy iteration(GPI) [16] which consists of policy evaluation and
policy improvement. model-based policy evaluation becomes:

(a.)V π
t+1(s; θ) =

∑
s′,r

p(s′, r|s, a; θ) [r + γV π
t (s′; θ)] (4.29)

The value function is updated for the same policy π with the same belief θ of dynamics
model. The policy improvement stays the same and the update for the belief of the model
θ′ is added.

(b.)π′(s) = arg max
a

∑
s′,r

P (s′, r|s, a; θ) [r + γV π(s′; θ)] (4.30)

(c.) θt = g(θt−1, st−1, at−1, st, rt) (4.31)

such that

f(pM ; θt) ∝ f(pM ; θt−1)p(st, rt|st−1, at−1; pM),∀pM (4.32)

iiiwith input (st, at) and output (st+1, rt+1)
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Here is the road map to make θ implicit during the entire learning.

(a.b.) The transition function P (s′, r|s, a; θ) hyper-parameterized by θ can be approx-
imated by samples of transition functions of p(s′, r|s, a; pM) where pM follows f(·; θ), i.e.,
a pool of P-Nets, and the policy evaluation can be done by training RL-Net on simulated
interactions generated from multiple transition functions sampled from the P-Net pool. As
a consequence, V π implicitly depends on θ since the training data for policy evaluation is
generated from the P-Net pool in which the distribution of pM depends on θ.

(c.) θ can be updated by training the P-Net pool with transitions from the true model
(the real environment). As more training data is accumulated, the accuracy of the P-Nets
in the pool improves, which implicates the P-Net pool becomes more certain about the
model and θ skews to the true belief.

Ha and Schmidhuber [8] has proposed to learn a world model, which can be seen as a
single P-Net, and train an RL agent with simulated data generated by the world model
to improve data efficiency. However, the bias within the world model from the actual dy-
namics model can lead to poor performance in the real environment. Mixing the simulated
data (planning) and real data (online training) from the true environment reduces such
bias but the problem of balancing online training and planning leads to the same explo-
ration/exploitation dilemma. From RL to OL, the P-Net pool provides a general approach
to address the uncertainty in the perceived knowledge of the dynamics model by sampling
the P-Net networks. In addition, since the training data for P-Net pool is from the on-
line interaction, P-Net networks are more focused on the predictions for the states visited
more frequently by agent’s executing (behaviour) policy. Therefore, P-Net networks do
not have to learn a complete ‘world model’ but a model good enough for predicting the
states frequently encountered under current behaviour policy, which additionally improves
data efficiency.

Training of P-Net pool By check-pointing the weights of P-Nets, training of P-Net
pool can be paralleled with that of RL-Net and computation resources can be distributed
freely between the two training processes depending on the training goal. We propose
to train the P-Net pool using evolutionary methods as the meta-training algorithm and
the training of individual networks in the P-Net pool can also be paralleled as they are
independent of each other. To improve the diversity of the population in P-Net pool, we
suggest constructing P-Net networks of a variety of different architectures and train them
on re-organized/perturbed data.

The P-Net pool is proposed to address the uncertainty in the deduced model during
learning. Since P-Net pool is an approximate method to do implicit Bayesian inference,
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there is uncertainty in the P-Net pool:
(δ1) finite P-Net pool space;
(δ2) non-convergent P-Net networks;
(δ3) inherent uncertainty of the P-Net networks trained with limited sampled observations
from the environment.

δ1 and δ2 can be addressed by complementing the planning with learning from real
interactions and the amount of planning can be quantified by δ1 + δ2. The δ3 quantifies
the inevitable uncertainty of the dynamics model deduced from limited past interactions
with the environment and is embodied into the imperfection of P-Nets prediction and
the diversity of the P-Net pool. If an infinite P-Net pool space is available and each
P-Net is trained till convergence, δ1 + δ2 will be zero and no learning from real data is
needed. Meanwhile perfect exploration/exploitation will be addressed automatically by
the δ3 in the P-Net pool implicitly. Therefore, only δ1 and δ2 are related to optimal
exploration/exploitation rate.

In a typical RL algorithm with ε-greedy directing the exploration/exploitation rate, the
ε must be non-zero and tuned empirically to the best performance. In practice finite and
preferably small P-Net pool is used and δ1 must be set in an ad hoc approach and is inversely
proportionate to the size of the P-Net pool space. δ2 can be related to the loss/accuracy
changes of the P-Nets during training. The loss function here is in canonical form such as
cross-entropy-like loss function so that the relationship between the change of loss function
and δ2 can be established. Bookkeeping the accuracy/loss of each state-action pair can
improve the computation of δ2 further. Though the exploration/exploitation dilemma is
not completely solved in closed form because of δ1, a clear explanation of the source of δ1

is given and such knowledge is transferrable to other problems as it is the size of P-Net
pool that decides δ1.
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Chapter 5

Approximate optimal learning
algorithms and empirical evaluation

The approximate OL algorithms are constructed based on double deep Q learning and tab-
ular Q learning for evaluation purpose and can be easily extended to most of other RL algo-
rithms. The problems evaluated in the paper are mainly a class of randomly generated 8×8
maze problems as described in the following. The python implementation and evaluation al-
gorithms are in https://github.com/songhobby/Approximate-Optimal-Learning.git

Randomly generated maze problems A maze consists of 64 states on an 8×8 square.
There are 4 good states (which also serve as terminal states) and 4 bad states selected
uniformly out of 64 total states and a set of fix-valued rewards are given randomly to the
8 special states. Action space A = {up, down, left, right} and model dynamics is defined
as follows for each state-action pair:
(1) select a main resulting direction uniformly from A;
(2) the probability of moving to direction d ∈ A ∪ {still}i follows a Dirichlet distribution
with concentration parameters being 1 except for the main resulting direction as decided
in (1) which is set to 4.

The algorithm for generating a random maze is provided as appendix in Appendix 6.1.

istill means the agent fails to move and stays at the same state
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Figure 5.1: Architecture of Deep Q learning algorithm with information state (S learning)

5.1 Deep Q learning with information state (S learn-

ing)

The structure of the algorithm is pictured in Figure 5.1. S learning falls under the for-
mulation of both POMDP and Bayesian model-based RL (directly learn from the model
dynamics). On one hand θ can be seen as the latent variable being updated by the Bayes-
Net with new observation. On the other hand, θ can be interpreted as the Prior from which
the Bayes-Net computes the Posterior with real interaction data with the environment.

S value is defined as the value function of information state (s, θ) and Bayes-Net is pre-
trained in a FR-Net. Memory based Recurrent neural network (RNN) such as Long short
term memory (LSTM), Gated recurrent unit (GRU) can be built into the Bayes-Net to learn
long term information about the dynamics model and FR-Net is traditional Feed forward
neural network (FFN). To prevent Bayes-Net from learning nothing as the FN-Net can
over-fit the dynamics model to predict next state-reward pair with no useful information
of θ from belief path, Bayes-Net is meta-co-trained on many maze problems with varying
parameters in the class to ensure useful information is communicated through the belief
path. The method to generate a random maze problem is described at the beginning of
this chapter. The Bayes-Net is then frozen during RL training on deep Q net (extends
to other RL algorithms such as actor-critic RL). Active Bayes-Net can also be used for
non-stationary RL problems as Bayes-Net can adapt the belief to model current dynamics
by co-train the Bayes-net and RL-Net with online interactions. To further improve data
efficiency, RL-Net and Bayes-Net can be trained together to agree on the distribution
family protocol and the learned parameters of the RL-Net can serve as initialization during
training on a specific problem. Evidence of improvement by pre-trained initialization is
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(a) Without meta-co-training (b) With meta-co-training

Figure 5.2: Deep Q learning with information state (S learning) averaged over 100 runs of
randomly generated maze problems with/without meta-co-training

shown in Figures 5.2. Hyper-parameters ε and the temperature of Softmax action selection
are both tuned to be optimal in the range of [0, 0.1], [1, 10]. Bayes-Net consists of two
stacked LSTM cells, and the deep Q nets used are the same for all experiments with the
belief θ being zero vector for vanilla deep Q networks for comparison purpose.

The policy learned by S learning is no worse than original RL algorithm as the belief
state is additional information to the agent in a MDP formulation other than physical
state. Therefore, computational resource can be freely traded for the quality of the learned
policy with increased computation directed to FR-Net training.

In general using a mixture of ε-greedy and Softmax can achieve decent balance of
exploration/eploitation as ε-greedy maintains a fixed amount of exploration and Softmax
becomes greedy after only a few interactions. Figures (5.3) show the evidence that the use
of Bayes-Net has similar performance to a vanilla double deep Q learning algorithm with a
tuned mixture of ε-greedy and Softmax. Hyper-parameters ε (range [0, 0.1], step size 0.01)
and the temperature (range [1, 10], integer) of Softmax action selection are both tuned to
earliest convergence for all experiments. Bayes-Net is a single layer LSTM and is trained
on about 1000 randomly generated maze problems with 4000 interactions for each problem
within only 3 hours to outperform naive guess which uses the knowledge of how mazes are
generated. The deep Q nets used are the same for all experiments with the belief θ zeroed
for vanilla deep Q learning algorithm as comparison. Each experiment was run for about
6 hours on a single core 4.0GHz CPU and a Nvidia GTX-1060(6G memory) GPU.

S learning starts to outperform vanilla deep Q learning only after a few hundred (100 ∼
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(a) Optimal ε-greedy (b) Optimal temperature for Softmax

(c) Optimal ε-greedy & Softmax

Figure 5.3: Deep Q learning with information state (S learning) averaged over 100 runs of
randomly generated maze problems.

40



300) episodes. This is an example of trading computation power for data efficiency as
Bayes-Net was pre-trained. That S learning performs no better than vanilla deep Q learning
at the very beginning suggests it is difficult for the Bayes-Net to infer the model dynamics
without enough training data. This is an example of trading data efficiency for computation
efficiency since the Bayes-Net was only trained to slightly outperform naive guess. Better
Bayes-Net with more computation power towards pre-training is expected to result in
fewer episodes needed for S learning to outperform vanilla deep Q learning in experiments.
Intuitively, Bayesian inference under larger uncertainty is more difficult to approximate
and the Bayes-Net tend to just give no information rather than wrong information about
the model dynamics.

S learning may find its application in solving similar tasks repetitively such as manu-
facturing robotics with varied hardware to perform the same task. Data efficiency is also
a significant gain in S learning that Bayes-Net can be trained on simulated models by per-
turbing the parameters of the original problem so that a decent Bayes-Net can be obtained
and later used to train a real agent with increased data-efficiency. In general, S learning
provides the flexibility to trade computation power for data efficiency.
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Figure 5.4: Architecture of model-based tabular Q learning by sampling neural networks
(P-Net) of model dynamics

5.2 Model based reinforcement learning with P-Net

pool sampling

The general architecture of the Model based Q learning with P-Net pool sampling algorithm
to implicitly perform Bayesian inference is shown in Figure 5.4. The evolutionary method
in use to train the P-Net pool follows principles by White [18] and obey the hypothesis
‘Good genetic algorithms combine building blocks to form better solutions’. The genetic
algorithm trains all the P-Nets in the pool with data from online interactions and maintains
a fixed population of parent P-Nets to sample from and a fixed population of child P-Nets
as candidates. The parent P-Net that has the lowest training accuracy for a few consecutive
runs will be replaced by a child P-Net if the training accuracy of it is higher than the worst
parent and a new born child will then be created by two existing two parents in the pool
with crossover and mutation performed on the layers of the weights of neural networks.

As is shown in Figure 5.5, model-based tabular Q learning with P-Net pool outperforms
the tabular Q learning by 10% of cumulative rewards in the first 200 episodes while a
frequentist model in Chapter 8 by Sutton and Barto [16] showed no significant improvement
in the first 200 episodes.

The design and training details of tabular Q learning with P-Net pool The P-
Nets used for the evaluation of Figure 5.5 predict only the next state instead of (next state,
reward) pair. The reward is hard encoded by taking the average for a (current state, action)
pair to accelerate the training of the P-Net pool. The genetic algorithm to train the P-Net
pool maintains a population of 10 active P-Nets of the same architecturel but different
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Figure 5.5: Model based tabular Q learning with different sampling techniques (averaged
over 100 randomly generated maze problems.

weights and a child P-Net is reproduced by two P-Nets (parents) selected according to
Boltzmann distribution. The reproduction process imitates the animal reproduction that
the weights of the P-Nets resembles DNA and the weights are ‘cut’ into small blocks
and selected randomly from either ‘father’ or ‘mother’ with the weights of an arbitrary
layer of the newborn initialized randomly as ‘mutation’. The python implementation used
for evaluation of the evolution algorithm is provide in Appendix 6.2. The planning is
performed by one sweeping update of Q functions using Bellman equation. The experiment
evaluated took about 3 days to run on a single-core single-thread 4.5GHz GPU and a Nvidia
1060 (6G memory) GPU for sequential implementation given in the code repository and
a parallel implementation can be done within one hour for 100 runs. N.B., we suggest
paying attention to the information flow when constructing complicated neural networks
to ensure all the necessary information is available to do the desired computation.
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As a model-based RL, planning in the algorithm occurs in the form of interactions
between the training of the P-Net pool and the improvement of value function trained
with sampled P-Nets as dynamics models. The interaction is a symbiosis relationship that
the training data passed to the P-Nets is affected by the improved policy, while the policy
learned by any RL algorithm is improved based on the value function updated in planning
with simulated data from sampled P-Nets. The P-Nets and the reinforcement learning
agent influence each other throughout the entire training stage. This online interaction
directs the training of P-Nets to focus on frequently visited states and therefore improves
data efficiency. To effectively balance the learning from simulated data and from real online
interactions, the percentage of planning can be determined by δ1 + δ2 as explained in the
previous chapter.

Another way to understand the effectiveness of applying P-Net pool sampling is that
if a pool of prediction models are able to precisely predict the next state collectively, then
the perfect model must be learned and the corresponding policy must be optimal. Above
is a strong argument as a statistically information sufficient model is enough to learn an
optimal policy (see 4.6).

Model based reinforcement learning with P-Net pool sampling gives an approach to
do approximate Bayesian inference implicitly for a single RL problem and the explo-
ration/exploitation can therefore be resolved automatically. The fineness of approximation
affects data efficiency with better approximation resulting in better data efficiency and
computation resources can be traded for data efficiency by simply increasing the P-Net
pool size , the expressiveness of P-Net pool or number of epochs for the training of P-Nets.
The planning algorithm in model based RL with P-Net pool sampling remains unchanged
for problems in continuous state-action space and most model free RL algorithms can be
transformed into a model based RL with P-Net pool sampling since planning only requires
simulated transitions.
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Figure 5.6: Architecture of P-Net for reinforcement learning problems based on visual
input (such as video games)

P-Net pool for video games an architecture of P-Net for video games is proposed and
shown in Figure 5.6.

The state vector vt encodes the information for the next state in a compact form and
the distribution of the state vector is normalized to follow a fixed probability distribution.
Sampling v’s from the fixed probability distribution corresponds to sampling states from
the distribution of recently visited states under current policy. Therefore, trajectory sam-
pling [16] can be paralleled by sampling v’s independently in parallel and reverse the CNN to
generate simulated transitions for planning in model based RL with P-Net pool sampling.
In comparison, the conventional trajectory sampling is done by sampling states sequen-
tially resulting from an initial state. This approach in general cannot take the advantage
of distributed computing infrastructure and makes the model based RL with P-Net pool
sampling even more appealing.
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Figure 5.7: Architecture of a general stochastic decision process based reinforcement learn-
ing algorithm

5.3 Stochastic decision process (SDP) based reinforce-

ment learning

Reinforcement learning with RNN as feature extractor has been studied to improve the RL
on partially observable problems under POMDP, e.g., Hausknecht and Stone [9] trained a
deep recurrent Q network to play Atari games. The success of deep recurrent Q learning
is an empirical evidence of the equivalent formulations between POMDP and SDP based
RL when the Deep recurrent Q learning is viewed as an SDP based RL as shown in Figure
5.7 to solve problems in POMDP.

There is other evidence to show the equivalent formulations between SDP-based RL
and Bayesian model-based RL that the weakness in deep recurrent Q learning can be well
explained in theory under the formulation of Bayesian model based RL. A SDP based
RL can be seen as a degraded version of S learning with simplified FR-Net and without
meta-co-training on a class of problems.ii In SDP-based RL, feature extractor (FX-Net)
aims to extract h which under Bayesian model based RL corresponds to θ with the state-
action pair passed into FX-Net. Extracting the state-action pair passed into FX-Net
is trivial to learn but inferring the belief θ is nearly impossible. Compared with the
vanilla deep Q learning, it is θ that contributes to the extra information deduced from
past observations in POMDP, which corresponds to the belief of the dynamics model using
Bayesian interpretation. Without meta-co-training for the FX-Net (which corresponds to

iifor Atari games, each class corresponds to games with varied parameters of a specific game such as
Pong.
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FR-Net), there is no guarantee that FX-Net can learn this extra information and as a
result h either contains no extra information other than trivial information passed into
the network or contains some non-consistent information that the RL-Net considers noise
which it tends to ignore. To motivate FX-Net to extract the extra information about the
model, memory based RNN is used to provide a path across different time steps for RL-
Net to identify such extra information with the gained reward as a measure. A negative
regularization term of h can be added to the loss function to encourage activation of
h. Even though, identifying the extra information is as difficult as learning to perform
Bayesian inference from a single problem and there is inevitable bias in learning Bayesian
inference from a single problem. Consequently, there is inevitable bias in the extracted
extra information that RL-Net tends to ignore at the beginning of the training and FX-Net
tends to whiten this extra information which is deemed as noise by RL-Net.

We recommend using a separate neural network to extract the extra information among
different states and pass the current state directly to the RL-Net to avoid the overheard
of trivially extracting the information of current state and action, which are already given
as input. Earlier experiment on Atari games using SDP based RL with states as direct
input and a negative activation regularization term for h showed some improvement and
comprehensive experiments are in progress.
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Chapter 6

Summary

This thesis attempts to identify the trend in reinforcement learning research moving to-
wards optimal learning motivated by issues as exploration/exploitation dilemma, data
efficiency, partially observable MDP etc. Three equivalent optimal learning (RL learning
with optimal control principles) frameworks are proposed and corresponding approximate
OL algorithms are constructed. Empirical experiments were conducted to show improve-
ments.
(1) S-learning co-trains a Bayes-Net entangled with another feed forward neural network
on a class of reinforcement learning problems to approximate Bayesian inference. This
Bayes-Net provides extra information (belief state) and a reinforcement learning algorithm
can then be transformed to an optimal learning algorithm by augmenting the physical state
with the belief state as the new input.
(2) model-based reinforcement learning with models sampled from a pool of neural net-
works (P-Nets) makes it possible to perform theoretical analysis. There is empirical evi-
dence shown in chapter 5.2 that sampling from a P-Net pool can achieve a decent balance
of exploration/exploitation that can otherwise only be achieved by hard tuning in an ad
hoc approach.
(3) a more direct optimal learning algorithm is to train a reinforcement learning based on
a stochastic decision process instead of a Markov decision process. However, this approach
does not work well in practice since it is hard for a RL agent to identify what information
should be ‘memorized’ and considered useful, as is explained on the weakness of recurrent
deep Q learning algorithm in the last chapter.
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APPENDICES

6.1 Algorithm to generate a random 8× 8 maze

’’’ Construct a simple maze MDP

Grid world layout:

-----------------------------------------

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

-----------------------------------------

| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

-----------------------------------------

...

-----------------------------------------

| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

4 Goal states

4 Bad states

Game ends when the any goal state is reached

4 actions (up-0, down-1, left-2, right-3).’’’

# Transition function: |A| x |S| x |S’| array

import numpy as np

MAZE_SIDE_LENGTH=8

FAVOR_FACTOR=4

ACTION_SIZE=4
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UP=0

DOWN=1

LEFT=2

RIGHT=3

def multi_nomial_prob_generator(action):

alpha=[1]*(ACTION_SIZE+1)

alpha[np.random.randint(ACTION_SIZE)]=FAVOR_FACTOR

return np.random.dirichlet(alpha)

def look_around(state):

return [state-MAZE_SIDE_LENGTH,state+MAZE_SIDE_LENGTH,

state-1,state+1,state]

def naive_pred(state,action):

if(action==UP):

s_n = state - 8

elif(action==DOWN):

s_n = state + 8

elif(action==LEFT):

s_n = state - 1

elif(action==RIGHT):

s_n = state + 1

else:

raise Exception(’Unknown Action’)

if(s_n < 0 or s_n > 63):

s_n = state

elif(state % 8 == 7 and s_n % 8 == 1):

s_n = state

elif(state % 8 == 1 and s_n % 8 == 7):

s_n = state

return s_n

def maze_generator():

T = np.zeros([ACTION_SIZE,MAZE_SIDE_LENGTH**2,MAZE_SIDE_LENGTH**2])

# 0

for action_i in range(ACTION_SIZE):
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prob=multi_nomial_prob_generator(action_i)

T[action_i][0][1]=prob[RIGHT]

T[action_i][0][MAZE_SIDE_LENGTH]=prob[DOWN]

T[action_i][0][0]=1-prob[RIGHT]-prob[DOWN]

# 7

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

T[action_i][MAZE_SIDE_LENGTH-1][MAZE_SIDE_LENGTH-2]=prob[LEFT]

T[action_i][MAZE_SIDE_LENGTH-1][2*MAZE_SIDE_LENGTH-1]=prob[DOWN]

T[action_i][MAZE_SIDE_LENGTH-1][MAZE_SIDE_LENGTH-1]=\

1-prob[LEFT]-prob[DOWN]

# 56

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

T[action_i][MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH]\

[MAZE_SIDE_LENGTH**2-2*MAZE_SIDE_LENGTH]=prob[UP]

T[action_i][MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH]\

[MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH+1]=prob[RIGHT]

T[action_i][MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH]\

[MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH]=1-prob[UP]-prob[RIGHT]

# 63

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

T[action_i][MAZE_SIDE_LENGTH**2-1]\

[MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH-1]=prob[UP]

T[action_i][MAZE_SIDE_LENGTH**2-1]\

[MAZE_SIDE_LENGTH**2-2]=prob[LEFT]

T[action_i][MAZE_SIDE_LENGTH**2-1]\

[MAZE_SIDE_LENGTH**2-1]=1-prob[UP]-prob[LEFT]

# 1-6

for state_i in range(1,MAZE_SIDE_LENGTH-1):

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

la=look_around(state_i)

for la_i in range(ACTION_SIZE):
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if(la[la_i] >= 0):

T[action_i][state_i][la[la_i]]=prob[la_i]

T[action_i][state_i][state_i] = prob[UP]+prob[-1]

# 57-62

for state_i in range(MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH+1,

MAZE_SIDE_LENGTH**2-1):

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

la=look_around(state_i)

for la_i in range(ACTION_SIZE):

if(la[la_i] <= MAZE_SIDE_LENGTH**2-1):

T[action_i][state_i][la[la_i]]=prob[la_i]

T[action_i][state_i][state_i] = prob[DOWN]+prob[-1]

# (8,56,8)

for state_i in range(MAZE_SIDE_LENGTH,

MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH,

MAZE_SIDE_LENGTH):

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

la=look_around(state_i)

for la_i in range(ACTION_SIZE):

if(la[la_i] % MAZE_SIDE_LENGTH != (MAZE_SIDE_LENGTH-1)):

T[action_i][state_i][la[la_i]]=prob[la_i]

T[action_i][state_i][state_i] = prob[LEFT]+prob[-1]

# (15,63,8)

for state_i in range(2*MAZE_SIDE_LENGTH-1,

MAZE_SIDE_LENGTH**2-1,

MAZE_SIDE_LENGTH):

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

la=look_around(state_i)

for la_i in range(ACTION_SIZE):

if(la[la_i] % MAZE_SIDE_LENGTH != 0):

T[action_i][state_i][la[la_i]]=prob[la_i]

T[action_i][state_i][state_i] = prob[RIGHT]+prob[-1]
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# for the rest of the states

for start_i in range(MAZE_SIDE_LENGTH+1,

MAZE_SIDE_LENGTH**2-MAZE_SIDE_LENGTH+1,

MAZE_SIDE_LENGTH):

for state_i in range(start_i,start_i+MAZE_SIDE_LENGTH-2):

for action_i in range(ACTION_SIZE):

prob=multi_nomial_prob_generator(action_i)

la=look_around(state_i)

for la_i in range(ACTION_SIZE):

T[action_i][state_i][la[la_i]]=prob[la_i]

T[action_i][state_i][state_i] = prob[-1]

# Reward function: |A| x |S| array

R = -1 * np.ones([ACTION_SIZE,MAZE_SIDE_LENGTH**2]);

spec=np.random.permutation(np.arange(1,MAZE_SIDE_LENGTH**2))[:8]

# set rewards

# goal states

R[:,spec[0]] = 100

R[:,spec[1]] = 100

R[:,spec[2]] = 200

R[:,spec[3]] = 200

E = spec[0:4]

# bad states

R[:,spec[4]] = -10

R[:,spec[5]] = -10

R[:,spec[6]] = -20

R[:,spec[7]] = -20

return [T,R,E]

6.2 Evolutionary algorithm used to train the P-Net

pool

class Universe(object):

# World = animal,environment,theories
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def __init__(self,parallel,life,nStates,nActions,

forbidden_fruit=10,adult=100,blank_paper_ad=2,

Temperature1=2,Temperature2=1,granularity=4):

self.parallel = parallel

self.life = life

self.nStates = nStates

self.nActions = nActions

self.time = forbidden_fruit

self.adult = adult

self.blank_paper_ad = blank_paper_ad

self.Temperature1=Temperature1

self.Temperature2=Temperature2

self.granularity = granularity

def bigBang(self,rnnType,num_layers,fsi,fai,fh):

self.worlds={}

self.children={}

self.prototype=BayesHypo(rnnType,num_layers,fsi,fai,fh).to(device)

for i in range(self.parallel):

model = BayesHypo(rnnType,num_layers,fsi,fai,fh).to(device)

model.optimizer=model.optimizer(model.parameters())

self.worlds[model]=-1

for i in range(self.life):

model = BayesHypo(rnnType,num_layers,fsi,fai,fh).to(device)

model.optimizer=model.optimizer(model.parameters())

self.children[model]=-1

def world(self,Temp=1):

lookup = self.worlds.keys()

losses = -np.array(list(self.worlds.values()))

prob = np.exp((losses - max(losses))/Temp)

prob = prob / np.sum(prob)

ret = np.random.choice(list(lookup),p=prob)

# if(np.random.rand(1) < 0.0001):

# print("world {} loss {}".format(id(self.worlds[ret]),self.worlds[ret]))

return ret
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def develop(self,memory,batch_size,stablizer=0.1):

def drama_life(model,memory):

transitions = memory.sample(batch_size)

batch = TransitionC(*zip(*transitions))

state_batch,action_batch,\

next_s_batch,reward_batch,done_batch=\

[torch.cat(x).to(device) for x in batch]

state_p,reward_p,done_p=model(one_hot(state_batch,self.nStates),

one_hot(action_batch,self.nActions))

loss = nn.CrossEntropyLoss()(state_p,next_s_batch)

# +\

# nn.MSELoss()(reward_p,reward_batch)+\

# nn.BCEWithLogitsLoss()(done_p.squeeze(-1),done_batch.float())

model.optimizer.zero_grad()

loss.backward()

model.optimizer.step()

return loss.detach().item()

self.time-=1

weed_out =[None,-np.inf]

join_in =[None,np.inf]

for model,loss in self.worlds.items():

actual_loss = drama_life(model,memory)

if(self.worlds[model] == -1):

self.worlds[model]=actual_loss

else:

self.worlds[model]=loss+stablizer*(actual_loss-loss)

if(self.worlds[model] > weed_out[1]):

weed_out = [model,loss]

for i in range(self.blank_paper_ad):

for model,loss in self.children.items():

actual_loss = drama_life(model,memory)

if(self.children[model] == -1):

self.children[model]=actual_loss

else:

self.children[model]=loss+stablizer*(actual_loss-loss)

if(i == self.blank_paper_ad-1 and
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self.children[model] < join_in[1]):

join_in = [model,loss]

if(self.time < 0 and weed_out[1] >= join_in[1]):

self.time = self.adult

del self.worlds[weed_out[0]]

self.worlds[join_in[0]]=join_in[1]

del self.children[join_in[0]]

print("\tweed_out {} {}".format(id(weed_out[0]),weed_out[1]))

print("\tjoin_in {} {}".format(id(join_in[0]),join_in[1]))

self.reproduce(self.Temperature1)

elif(self.time < 0):

print("\tweed_out {} {}".format(id(weed_out[0]),weed_out[1]))

print("\tjoin_in {} {}".format(id(join_in[0]),join_in[1]))

self.nirvana(self.Temperature2)

self.time = self.adult

return weed_out[1]

def nirvana(self,Temperature):

print("\tExtinction")

for model in list(self.children.keys()):

del self.children[model]

del model

for i in range(self.life):

self.reproduce(self.Temperature2)

print("\tReborn")

def reproduce(self,Temperature):

print("\tReproduce")

lookup=list(self.worlds.keys())

prob=np.array(list(self.worlds.values()))/float(Temperature)

prob=np.exp(prob - max(prob))

prob=prob / np.sum(prob)

parents=np.random.choice(lookup,2,replace=False,p=prob)

print("\tParents {} {}".format(id(parents[0]),id(parents[1])))

new_born = BayesHypo(parents[0].rnnType,

parents[0].num_layers,

parents[0].fsi,
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parents[0].fai,

parents[0].fh).to(device)

new_born.optimizer=new_born.optimizer(new_born.parameters())

cut = np.random.choice(len(list(self.prototype.parameters())),

size=random.randint(1,self.granularity),

replace=False)

print("\tDNA dissection {}".format(cut))

father,mother = np.random.choice(parents,2,replace=False)

DNA = OrderedDict()

dominant = father

mutation = np.random.randint(len(list(self.prototype.parameters())))

print("\tMutation {}".format(mutation))

for i,key in enumerate(father.state_dict().keys()):

if(i == mutation):

DNA[key] = self.prototype.state_dict()[key].clone()

else:

DNA[key] = dominant.state_dict()[key].clone()

if(i in cut):

if(dominant is father):

dominant = mother

else:

dominant = father

new_born.load_state_dict(DNA)

self.children[new_born] = -1

print("\tEnd of Reproduction")
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