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Abstract

Entropic segregation of chain ends to the surface of a monodisperse polymer melt and its effect

on surface tension is examined using self-consistent field theory (SCFT). In order to assess the

dependence on chain stiffness, the SCFT is solved for worm-like chains. Our focus is still on

relatively flexible polymers, where the persistence length of the polymer, `p, is comparable to the

width of the surface profile, ξ, but still much smaller than the total contour length of the polymer,

`c. Even this small degree of rigidity causes a substantial increase in the level of segregation, relative

to that of totally flexible Gaussian chains. Nevertheless, the long-range depletion that balances the

surface excess still exhibits the same universal shape derived for Gaussian chains. Furthermore,

the excess continues to reduce the surface tension by one unit of kBT per chain end, which results

in the usual N−1 reduction in surface tension observed by experiments. This enhanced segregation

will also extend to polydisperse melts, causing the molecular-weight distribution at the surface

to shift towards smaller Nn relative to the bulk. This provides a partial explanation for recent

quantitive differences between experiments and SCFT calculations for flexible polymers.
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I. INTRODUCTION

Silberberg1 has cleverly argued that the surface of a polymer melt behaves like a reflecting

boundary. This, in turn, implies that the probability distributions of the individual segments

of the polymer are uniform all the way from the bulk right up to the surface. It also implies

that the surface tension should be independent of molecular weight or rather the degree

of polymerization, N . However, simulations,2–6 self-consistent field theory (SCFT),7–10 and

experiments11 all find an excess of chain ends at the surface. Furthermore, SCFT7–10 and

experiments12–18 report an N -dependence in the surface tension. Other deviations from

Silberberg’s hypothesis have also been detected by simulations.19,20

The deviations can be attributed to the fact that the Silberberg argument is based on

a couple of simplifying assumptions, an off-lattice model in which the energy of a polymer

configuration is unaffected when folded about a plane and an infinitely-sharp surface profile.

Previous predictions of entropic segregation either represented polymers on a lattice,6 used

a bead-spring model where folding causes a change in energy,5,9 or involved a surface profile

of finite width.7 It has been shown that the finite width of the surface profile generally

provides the dominant contribution to the segregation.21,22 Excluded-volume interactions

will also affect the energy of folding a polymer configuration and could, therefore, contribute

to entropic segregation. However, simulations23 have shown that this effect is relatively

minor, presumably because hard-core interactions are, to a good approximation, screened

in polymer melts.24

Because the number of chain ends has to be conserved on the molecular length scale

(i.e., two per molecule), the excess at the surface is balanced by depletion of equivalent

magnitude extending into the melt a distance of order aN1/2, the end-to-end length of

a polymer. An analytical approximation9 for flexible Gaussian chains predicts that the

compensating depletion takes the form

δφe(z) ≈ A

N1/2
B
( z

aN1/2

)
, (1)

involving the universal function

B(ζ) =

√
6

π
exp

(
−3

2
ζ2
)

− 1

π

∫ ∞
−∞

dkζ
(e−x − 1)2eikζζ

e−x + x− 1
, (2)
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where x = k2ζ/6. The amplitude of the effect, A, is dependent upon the microscopic details

of the system. The segregation also causes a reduction in surface tension,9

γen
aρ0kBT

≈ Γ∞ −
2A

N
, (3)

from the infinite molecular-weight limit, Γ∞, that is proportional to A. This proportionality

results because each chain end that segregates to the surface reduces the free energy by one

unit of kBT .10,25

Experiments11 have claimed to observe the entropic segregation using neutron reflectivity

on polystyrene chains with deuterated ends. However, this claim is not entirely conclusive,

because deuterium labeling is know to create enthalpic interactions strong enough to mask

entropic effects.26,27 Nevertheless, the segregation has also been detected in polydisperse

melts,32 where it causes a shift in the molecular-weight distribution towards smaller Nn

at the surface relative to the bulk, due to the fact that shorter polymers have more ends

per unit volume.21,23,28–31 In this case, the experiments measured the shift in Nn using

MALDI time-of-flight spectrometry, which does not require any labeling. Although the

shift was in qualitative agreement with SCFT, the effect was considerably stronger than

predicted. Two possible explanations were given. It was suggested that the shift may

have been enhanced by enthalpic effects.12,33 Even without labeling, the interactions of

end segments will generally differ somewhat from those of middle segments.34 The other

suggestion was that the difference could be related to chain stiffness not captured by the

SCFT calculations, which were based on freely-jointed chains. Chain stiffness penalizes

the folding of polymer chains, which violates the Silberberg assumptions and thus could

contribute to the entropic segregation.21

Here, we extend the previous SCFT for entropic segregation and its effect on surface

tension to semiflexible worm-like chains.35 Still, our study focuses on relatively flexible poly-

mers, where the persistence length, `p, is comparable to the width of the surface, ξ, but still

much smaller than the total contour length of the polymer, `c. The coefficients A and Γ∞

are calculated from results for the long-chain limit, and then the accuracy of Eq. (1) for

the compensating depletion and Eq. (3) for the molecular-weight dependence of the surface

tension are tested for polymers of finite length.
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II. THEORY

We consider a monodisperse melt of n polymers, each containing N segments of length b,

giving a total contour length of `c = bN . The configuration of the α’th molecule is specified

by the space curve rα(s), where the backbone parameter runs from s = 0 to 1. The polymers

are modeled as worm-like chains,35,36 for which the energy of a polymer configuration is given

by
E

kBT
=

κ

2N

∫ 1

0

ds |u′α(s)|2 , (4)

where

uα(s) ≡ r′α(s)/lc (5)

is a unit vector tangent to the chain. The parameter κ is a dimensionless bending modulus,

which controls the persistence length, `p = bκ. In a bulk melt, the average end-to-end length

of a worm-like chain is35–37

R0 =
√

2`p(`c − `p[1− exp(−`c/`p)]) . (6)

For long chains of `c � `p, this expression reduces to R0 ≈ a
√
N , where the statistical

segment length is a =
√

2`pb. Note that we follow the convention where segments are defined

to have a specified volume, ρ−10 , such that the total volume of the melt is V = nN/ρ0.

Using this model, we examine a flat surface of area A located at z = 0. To make

the problem tractable, the molecular interactions are represented by a static field, w(z),

which depends only on the coordinate z normal to the surface. Within this mean-field

approximation, the polymer concentration relative to the bulk is

φ(z) =
V

2Q

∫ 1

−1
duz

∫ 1

0

dsG(z, uz, s)G(z,−uz, 1− s) , (7)

where

Q =
A
2

∫ 1

−1
duz

∫
dz G(z, uz, s)G(z,−uz, 1− s) (8)

is a single-chain partition function. Note that the integration in Eq. (8) is independent of

s.

The above expressions involve the propagator, G(z, uz, s), which is the partition function

for a chain fragment of sN segments with one end constrained such that the projections

of rα(s) and uα(s) onto the z-axis are z and uz, respectively. It satisfies the differential
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equation
∂G

∂s
=

lc
2lp

∂

∂uz

[
(1− u2z)

∂G

∂uz

]
− lcuz

∂G

∂z
− wG , (9)

with the initial condition G(z, uz, 0) = 1.36,37 The equation is solved with reflecting boundary

conditions, using the numerical algorithm described in Ref. 38. We ensure that the grid

sizes used in the algorithm are sufficiently small and that the boundaries at negative and

positive z are sufficiently far from the surface (i.e., z = 0) such that numerical inaccuracies

are irrelevant on the scale of our plots.

Generally, one needs to specify the interaction energy of the melt, which is typically

written as

U [φ] =

∫
drf(φ) , (10)

where f(φ) is the energy density relative to the bulk (i.e., f(1) = 0). In SCFT, the field

is normally adjusted to satisfy the self-consistent condition, w(z) = Nf ′(φ(z))/ρ0kBT . As

such, the problem of evaluating the surface segregation is coupled to the calculation of the

surface profile, φ(z). Past studies7,8 have used a simple choice for U [φ] that results in some

unphysical behaviors, which we will discuss later. Rather than dealing with the complication

of a more realistic U [φ],39–41 we take the alternative approach of adjusting w(z) in order to

create a specified concentration profile.9,10,21 We specifically choose the sigmoidal profile,

φ(z) =
1

2

[
1 + tanh

(
2z

ξ

)]
, (11)

characteristic of simulations,42,43 where the width of the surface, ξ, is used as our unit

of length. The field is determined with the same Anderson mixing algorithm44 used

previously.10,21

As usual, the SCFT is unaffected by an additive constant to the field, and so for conve-

nience we set w(z) = 0 in the bulk. With this choice, G(z, uz, s) → 1 as z → ∞, and thus

Eq. (7) requires Q = V in order that φ(z) → 1 as z → ∞. Given this requirement, the

dimensionless concentration of chain ends relative to the bulk is

φe(z) =
1

2

∫ 1

−1
duzG(z, uz, 1) , (12)

and the surface tension is45

γen = −ρ0kBT
N

∫
dz w(z)φ(z) . (13)
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Because our calculation creates the surface by constraining the polymer concentration in-

stead of using molecular interactions, it only provides the entropic contribution to the sur-

face tension, γen. This is also true of calculations that use constraining walls to create the

surface.28,30,46 The enthalpic contribution is given by γint = U [φ]/A. Although γint contains

no explicit N -dependence, it does produce an implicit N -dependence due to variations in

φ(z), which are, in principle, determined by minimizing the total tension, γ = γint + γen,

with respect to φ(z). Nevertheless, we will illustrate later that γen alone provides the correct

N -dependence to leading order (i.e., to order N−1).

The analytical Eqs. (1) and (3) are derived from an expansion about the long-chain

limit.9 The propagator for this limit, G∞(z, uz), is obtained by integrating Eq. (9) until it

becomes independent of s, or in other words until both sides of the equation equal zero.47

The field is then adjusted as before, but using the simpler expression

φ(z) =
V

2Q

∫ 1

−1
duzG∞(z, uz)G∞(z,−uz) , (14)

where

Q =
A
2

∫ 1

−1
duz

∫
dz G∞(z, uz)G∞(z,−uz) . (15)

Once the propagator, G∞(z, uz), and the corresponding field, w∞(z), have been determined,

the coefficients in Eqs. (1) and (3) are given by

A =
1

a

∫
dz[φe,∞(z)− φ(z)] , (16)

where

φe,∞(z) =
1

2

∫ 1

−1
duz G∞(z, uz) (17)

is the concentration of ends relative to the bulk, and

Γ∞ = − b

alc

∫
dz w∞(z)φ(z) . (18)

III. RESULTS

We begin by considering the long-chain limit (i.e., `c → ∞). Figure 1(a) compares the

distribution of chain ends, φe,∞(z), to the overall polymer concentration, φ(z), for several

different persistence lengths, `p. In all cases, there is an excess of chain ends near the surface

6
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FIG. 1: (a) Concentration of chain ends, φe,∞(z), and (b) self-consistent field, w∞(z), calculated

in the long-chain limit (i.e., `c → ∞) for different persistence lengths, `p. The `p = 0 curves are

given by Eqs. (19) and (20). The dashed curve in (a) denotes the total polymer concentration,

φ(z).

[i.e., φe,∞(z) > φ(z)]. For flexible Gaussian chains (i.e., `p = 0), the distribution obeys the

simple expression7,21

φe,∞(z) =
√
φ(z) . (19)

As the polymers become more rigid, φe,∞(z) extends further from the surface. Figure 1(b)

shows the field, w∞(z), required to enforce the surface profile, φ(z). It involves a shallow

well that pulls the polymers toward z = 0 followed by a barrier that prevents them from

invading the z < 0 region. The field for flexible Gaussian chains, which is given by48

w∞(z) =
a2N∇2

√
φ(z)

6
√
φ(z)

, (20)

needs to counteract the loss of configurational entropy,48

∆Sconf = −kBa
2ρ0

24

∫
dr
|∇φ|2

φ
, (21)

which acts to oppose gradients in φ(z). This free energy penalty diminishes as the polymers

become more rigid, which, in turn, explains the reduction in the field strength with increasing

7
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FIG. 2: (a) Dimensionless surface excess of chain ends, A, and (b) dimensionless surface tension,

Γ∞, as a function of persistence length, `p, calculated in the long-chain limit. The dashed lines

denote the Gaussian-chain predictions in Eqs. (22) and (23).

`p.

Figure 2(a) shows the integrated excess of chain ends, A, defined in Eq. (16). For

persistence lengths, `p, comparable to the width of the surface profile, ξ, there is about a

40% increase relative to the dashed line for flexible Gaussian chains,21

A =
ξ ln 2

2a
, (22)

which is obtained by inserting Eqs. (11) and (19) into Eq. (16). Figure 2(b) shows the

dimensionless surface tension, Γ∞, defined in Eq. (3) and calculated from Eq. (18). The

dashed line denotes the Gaussian-chain approximation,21

Γ∞ =
a

12ξ
, (23)

obtained by inserting Eqs. (11) and (20) into Eq. (18). In all cases, the tension is smaller

than that of flexible Gaussian chains of equal segment length. Note that the quantities,

A and Γ∞, in Fig. 2 will appear later as coefficients in the analytical expressions for the

compensating depletion, Eq. (1), and surface tension, Eq. (3), of finite chains.
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FIG. 3: Concentration of chain ends, φe(z), calculated for persistence lengths of (a) `p = ξ/2 and

(b) `p = 2ξ. As the contour length, `c, increases, the profiles converge to the long-chain limit,

φe,∞(z), from Fig. 1(a). The dashed curves denote the total polymer concentration, φ(z).

We now turn our attention to polymers of finite size. Figure 3 compares the distribution

of chain ends, φe(z), to the total polymer concentration, φ(z), for a range of chain lengths,

`c. As required, φe(z) converges to the infinite-chain limit, φe,∞(z), but rather slowly. Finite-

chain effects are still significant even for our longest polymers of `c = 512ξ. One important

qualitative difference of finite chains is that δφe(z) ≡ φe(z) − φ(z) switches from positive

(i.e., an excess of ends) for z <∼ 0 to negative (i.e., a depletion of ends) for z >∼ 0. This is

because the excess of ends at the surface has to come from somewhere, and consequently a

compensating depletion occurs just beyond the surface. As illustrated in Fig. 3, the depletion

becomes smaller in amplitude and extends further into the melt for longer polymers. The

depletion eventually vanishes as `c →∞, simply because ends from larger polymers can be

extracted from ever deeper into the melt.

As shown previously for flexible chains,9,10,23 Fig. 4 illustrates that the amplitude of the

depletion decreases as R−10 while the range increases as R0. Furthermore, Fig. 4 illustrates

that, as the polymers increase in size, the depletion approaches the analytical result in Eq.
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FIG. 4: Long-range depletion of chain ends, δφe(z) ≡ φe(z)− φ(z) < 0, scaled with respect to the

average end-to-end length, aN1/2, plotted for persistence lengths of (a) `p = ξ/2 and (b) `p = 2ξ.

As the contour length, `c, increases, the profiles converge to the universal shape in Eq. (1).

(1), involving the universal shape, B(z/aN1/2), with an amplitude given by the same A plot-

ted in Fig. 1(a). Although the persistence length does not affect the shape of the depletion,

it does have a sizeable effect on the amplitude. Indeed, the amplitude is approximately 50%

larger for `p = 2ξ than for `p = ξ/2.

We conclude by examining the effect of finite chain length on the surface tension. Fig-

ure 5(a) plots the entropic contribution to the surface tension, γen, as a function of chain

length, `c = bN . The symbols represent numerical SCFT calculations, while the lines denote

the analytical approximation in Eq. (3). This confirms the N−1 dependence observed in

experiments for high molecular-weight polymers.12–18 Just as in experiments, the decrease

in tension becomes more gradual for shorter polymers. In fact, the empirical fit to N−2/3

obtained by experiments14–17,49,50 for oligomers is accurately reproduced by our shortest four

polymers, as illustrated in Fig. 5(b). However, as we will explain later, this is not the true

power-law behavior of small molecules.
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FIG. 5: Reduction in surface tension, γen, for three different persistence lengths, `p, plotted versus

(a) `−1c ∝ N−1 and (b) `
−2/3
c ∝ N−2/3. The lines in (a) denote the analytical approximation in

Eq. (3), while the lines in (b) are fits to the four shortest polymers.

IV. DISCUSSION

The SCFT for Gaussian chains relies on the assumption that the field, w(z), changes

slowly on the scale of the segment length, a. However, polymer surfaces are relatively

narrow, and consequently even flexible polymers generally do not satisfy this criterion at a

surface. Therefore, it becomes necessary to use a less coarse-grained model such as that of

worm-like chains. Although the introduction of small degrees of chain stiffness, on the scale

of the surface profile, does not change the shape of the long-range depletion plotted in Fig.

4, it does have a substantial effect on the level of surface segregation in Fig. 1(a) and the

amplitude of the depletion in Fig. 2(a).

The shift in the molecular-weight distribution at the surface of polydisperse melts ob-

served by Hill et al.32 is a direct consequence of the segregation of chains ends. Thus, it

follows that our predicted increase in the entropic segregation accounts for a significant por-

tion of the discrepancy between the experimental measurements and the SCFT for flexible
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chains.51 The remaining discrepancy could very well be attributed to small differences in the

interactions of end segments relative to middle segments.34 If known, this enthalpic effect

could readily be included in the SCFT calculation. It would, to a good approximation,

simply alter the values of A and Γ∞.7,30,46

Figure 5 suggests that surface tension increases with persistent length, while Fig. 2(b)

illustrates that the tension is lower than that of flexible Gaussian chains (denoted by the

dashed line). It is important to realize that the generalization from Gaussian to worm-like

chains introduces an additional length scale; there are two independent lengths, `p and b,

rather than just a =
√

2`pb. Consequently, the tension is affected by both the persistence

length and the cross-sectional area of the polymer, 1/bρ0, which is controlled by b given

the convention of defining segments based on a common volume, ρ−10 . At constant `p and

`c, the surface tension depends linearly on the number of molecules per unit area, which is

inversely proportional to the cross-sectional area. This simple dependence is scaled out of

the results in Fig. 5, and thus the comparison is effectively between polymers of the same

cross-sectional area. On the other hand, the conclusion that the tension is lower relative to

Gaussian chains applies when comparing molecules with equal statistical segment lengths.

The N−2/3 dependence suggested by Fig. 5(b) is not, in fact, the true scaling behavior

of short molecules. Once `c <∼ `p, the degrees of freedom of each molecule are effectively

reduced to five, three for its center of mass and two for its orientation. Furthermore, the

orientation becomes random at the surface as the size of the molecule becomes comparable

to the width of the surface (i.e., R0
<∼ ξ). Thus, the entropic contribution to the surface

tension of short polymers reduces to that of translational entropy, which implies

γen
bρ0kBT

≈ 1

`c

∫
dz φ(z) lnφ(z) = −0.4112

ξ

`c
. (24)

This again results in an N−1 dependence, but with a smaller amplitude relative to the long-

chain limit in Eq. (3). Interestingly, there are recent experiments18 that show a crossover

from one N−1 power-law at large N to another at small N . However, the convergence of

our SCFT results in Fig. 5 to Eq. (24) occurs around `c ≈ ξ, which is well beyond the

point where we can ignore the N -dependence of φ(z). Nevertheless, these SCFT results do

emphasize the danger in accepting the previous empirical evidence for N−2/3 scaling.14–17,49,50

At small N , the enthalpic part of the surface tension, γint = U [φ]/A, contributes to the

N -dependence of the total surface tension, γ = γint + γen, as a result of variations in φ(z).
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Provided N is not too small, we can assume the profile changes affinely with N (i.e., its

shape remains approximately constant while the width, ξ, varies). Given this assumption,

γint
aρ0kBT

=
c1ξ

a
, (25)

where c1 is a constant determined by the shape of the polymer profile. If we also assume

Gaussian chains, then Eqs. (3), (19) and (20) imply

γen
aρ0kBT

=
c2a

ξ
− 2c3ξ

aN
, (26)

where c2 and c3 are again constants determined by the shape of φ(z). Minimization of

γ = γint + γen with respect to ξ gives

ξ = ξ∞

(
1 +

c3
c1N

)
(27)

to order N−1, where ξ∞ = a
√
c2/c1 is the width for infinitely-large polymers. Note that the

broadening of the surface for finite polymers is consistent with simulation.42 In any case, the

resulting equilibrium tension is given by

γ

aρ0kBT
= 2Γ∞ −

2A

N
(28)

to order N−1, where Γ∞ = c2a/ξ∞ and A = c3ξ∞/a are the same constants in Eq. (3). Thus,

the tension of infinitely-long polymers is split equally between enthalpy and entropy. This

precise balance happens because γint ∝ ξ and γen ∝ ξ−1 in the infinite-chain limit, and thus

the result is specific to Gaussian chains. More importantly, the 2A/N correction is exactly

the same as that of γen in Eq. (3). This just relies on the fact that γint and γen for infinite

chains are increasing and decreasing functions of ξ, respectively, and thus the conclusion

that γen provides the leading-order molecular-weight dependence holds more generally.

The enthalpic contribution to the tension, γint, will, nevertheless, become important at

small N . First of all, the higher-order (e.g., N−2) corrections to γ will be affected by

variations in the width, ξ. Second of all, our assumption that φ(z) changes affinely will

breakdown at some point. For instance, a vapor phase will eventually occur,52 and thus φ(z)

will no longer vary between 0 and 1. Therefore, we cannot comment on the N -dependence of

the total surface tension, γ, beyond the N−1 correction for long chains, without considering

U [φ].
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Including U [φ] not only allows predictions at small N , it also allows one to relate ξ to

the fundamental parameters of the molecular interactions and the polymer molecules. Wu

et al.7 did so using an energy density of

f(φ) = −νρ
2
0

2
(φ− 1)2 , (29)

where the excluded-volume parameter, ν, is directly related to the bulk compressibility.

Naturally, the simple parabolic penalty for deviations from bulk density will be quantita-

tively inaccurate when φ(z) drops to zero, but there are also some qualitative failings.10 The

underlying problem is that the quadratic approximation causes the melt to behave like a

gas, filling all available space. As a consequence, Ref. 7 had to impose a wall at z = 0 in

order to create their surface. Although this produced a reasonable looking surface profile

for continuous Gaussian chains, it results in a discontinuous profile for discrete chains.8 The

shortcomings are also evident from the fact that Wu et al. predicted a narrowing of the

surface profile for decreasing N , which contradicts the common-sense behavior predicted in

Eq. (27) and observed in simulations.42 Of course, the problem can be remedied by using a

more realistic U [φ] from, for example, density functional theory,39–41 but that is beyond the

scope of this paper.

V. SUMMARY

We have examined the effect of chain stiffness on the entropic segregation of chain ends

to a polymer surface and the resulting consequence on surface tension. This was done by

applying SCFT to a melt of worm-like chains. To avoid specifying the molecular interactions,

U [φ], we simply constrained the surface to a sigmoidal concentration profile, φ(z), where the

width, ξ, was treated as a system parameter. Although this only allowed us to evaluate the

entropic contribution to surface tension, γen, this was, nevertheless, sufficient to obtain the

dominant (i.e., N−1) molecular-weight dependence for the total surface tension, γ.

The focus of this study was on persistence lengths, `p, comparable to ξ but small relative

to the overall contour length of the polymer, `c = bN . For these relatively flexible polymers,

the universal behavior of the compensating depletion in Eq. (1) and the resulting reduction

in surface tension in Eq. (3) derived for Gaussian chains still holds. The finite stiffness

does, however, cause a sizeable increase in the amplitude A and a modest decrease in the
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http://dx.doi.org/10.1063/1.5064549


coefficient Γ∞, relative to the Gaussian-chain predictions in Eqs. (22) and (23), respectively.

Interestingly, the molecular-weight dependence of the surface tension for our shortest chains

is consistent with the empirical fit from experiments to an N−2/3 power-law. However, we

emphasize that this behavior is not a true scaling relationship.

Our results have direct implications for polydisperse melts, where short polymers segre-

gate to the surface because they have more ends per unit volume. As a consequence, the

molecular-weight distribution is shifted towards a smaller average polymerization, Nn, rela-

tive to the bulk distribution. Our finding that chain stiffness significantly enhances entropic

segregation helps account for the larger shifts measured in experiments relative to previous

SCFT predictions based on flexible polymers.32
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