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Abstract

The thesis introduces two single-photon experiments with the lattice of spin-orbit ar-
rays. The basic background knowledge has been introduced in Chapter 1. Chapters 2− 4
describe the detailed techniques used in these two experiments.

In the first work, we implement a remote state preparation protocol on our single-
photon orbital angular momentum (OAM) lattice state via hybrid-entanglement. Remote
state preparation is a variant of quantum state teleportation where the sender knows the
transmitted state. It is known to require fewer classical resources and exhibit a nontrivial
trade-off between the entanglement and classical communication compared with quantum
teleportation. Here we propose a state preparation scheme between two spatially sep-
arated photons sharing a hybrid-entangled polarization-OAM state. By sending one of
the polarization-entangled photon pairs through Lattice of Optical Vortex prism pairs,
we generate a two-dimensional lattice of spin-orbit coupled single-photons. We show that
the measurement taken by an electron-multiplying intensified CCD camera on the trans-
formed photons can be remotely prepared by the polarization projection of the other. Our
protocol could have a significant impact on long-distance quantum communication with
higher channel capacity and lead to more efficient and compatible quantum information
processing techniques.

The second experiment investigates the single-photon Talbot Effect in spin-orbit ar-
rays. The Talbot Effect is a near-field diffraction effect, that occurs with the propagation
of periodically structured waves. It has enabled several unique applications in optical
metrology, image processing, data transmission, and matter-wave interferometry. We ob-
serve that upon propagation, the wavefronts of the single photons manifest self-imaging
whereby the OAM lattice intensity profile is recovered. Furthermore, we show that the
intensity distribution at each fractional Talbot distance is indicative of the periodic helical
phase structure corresponding to a lattice of OAM states. This phenomenon is a significant
addition to the toolbox of orbital angular momentum and spin-orbit techniques that are
becoming increasingly important in optical implementations of quantum information.
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Chapter 1

Introduction

1.1 Quantum bit—representation and operation

The quantum bit or qubit is the basic unit of quantum information, analogous to the bit
for classcial information. It can be realized using any quantum physical system with two
orthogonal states. For example, horizontal and vertical polarization of a photon, spin-up
and spin-down of an electron or two energy levels of an atom. It can be described as a two
component vector regardless of the physical implementation.

1.1.1 Mathematical representation

A bit is in either the state 0 or 1. A qubit state can be in the |0〉 or |1〉, but can also be
in a superposition state which can be represented mathematically as a linear combination
of two states:

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex coefficients. These coefficients here are referred to as amplitudes
and computational basis |0〉 and |1〉 are called “ket” and refer to the two computational
basis states. The probability for measuring the outcomes 0 and 1 are given by |α|2 and
|β|2 where

|α|2 + |β|2 = 1. (1.2)

Qubits are often represented on the Bloch Sphere. The coefficients here are normalized
to one meaning it is a pure state that can be represented on the surface of the Bloch Sphere
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Figure 1.1: Single qubit represented in Bloch sphere

as shown in Fig. 1.1. This three-dimensional geometric representation helps visualize the
useful information for the state of a single qubit [89, 69].

We can also rewrite Eq. (1.1) to explicitly enforce normalization:

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiψ sin

θ

2
|1〉
)

(1.3)

where θ, ψ and γ are real numbers. Since the factor eiγ has no observable effects, it can
be dropped and only two real parameters θ and ψ are left constituting the direction of the
vectors (states) in unit three dimensional sphere shown in Fig. 1.1.

We can generalize to n-qubits systems with the form

|ψ〉 =
11...1∑
i=00...0

cx|x〉 (1.4)
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where cx are complex number and
∑
|cx|2 = 1. Therefore, the quantum state of an n-qubits

system is specified by 2n amplitudes in an exponentially growing Hilbert space.

The measurement outcomes depend distinctly on different properties of the qubit state
to experimental verify and manipulate them.

1.1.2 Operation on qubits

Any quantum operations can be expressed as a sequence of one-qubit and two-qubit quan-
tum gates [8].

For one-qubits, they may perform any single-qubit unitary operators through rotations
of the Bloch sphere. Many properties of operators can be expressed in terms of their rep-
resentative matrices. For example, the Identity operator which is often denoted as I keeps
the state unchanged. Its matrix representation, irrespective of the choice of basis states,
has the format where the diagonal elements are all unity and the off-diagonal elements are
all zero. Rotations around the x,y,z axis can be generated through Pauli matrices σx, σy,
σy. These are 2 by 2 matrices that are very useful in quantum information field. Their
matrices and corresponding notations are shown in Eq. (1.5):

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
. (1.5)

Apart from Pauli matrices, the Hadamard gate is also a useful quantum gate. It is
equal to a rotation of the sphere about y axis by 90 degrees followed by a rotation about x
axis by 180 degrees. It maps the basis states |0〉 and |1〉 to (|0〉+|1〉)/

√
2 and (|0〉−|1〉)/

√
2

where the measurements on both basis state |0〉 and |1〉 have equal probability.

There are also two-qubit gates such as Swap gate and Controlled-NOT gate. Particu-
larly, C-NOT gate perfom the NOT operation on the second qubit only when the first qubit
is |1〉, otherwise leaves it unchanged. This operator can realize all unitary transformation
combined with one-qubit gates.

1.2 Quantum information processing

Quantum information processing is the study of the information processing protocols ac-
complished using quantum mechanics systems. Quantum information has been known to
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have the possibility to perform certain tasks believed to be too difficult or even impos-
sible using classical ones. In communication, quantum information enables the secrete
information transmission protected by physically guaranteed eavesdropper detection. In
computation, it enables efficient simulations of quantum mechanical systems, exponential
speedup for unstructured search.

As we push conventional fabrication of computer further and further into the micro-
scopic world, quantum effects begin to appear. This led to different information processing
methods no longer relying on classical physics. Many techniques on controlling single quan-
tum systems have been developed since the goal of complete control of a single quantum
system was proposed in the 1970s [29, 55, 100]. We are currently developing tools for better
manipulation of single quantum systems and extending it to more complex systems.

Significant advances have made in different fields during the past few decades such as
quantum simulation [73], quantum algorithm [113, 47] and quantum communication [13, 34,
83]. Small-scale quantum computers that allow dozens of operations done in a few quantum
bits have already been demonstrated. Realistic long-distance quantum communication and
quantum cryptography have been experimentally achieved and employed in real world.

We are still in the early days of quantum information. It provides us a better under-
standing of quantum mechanics and tools to sharpen our intuition about its underlying
theory. It also enables the development of new applications of quantum information and
builds controllable quantum devices that benefit us.

1.3 Entanglement

1.3.1 Fundamental concept and application

The phenomenon that the existence of global states of a composite system which can not be
expressed as a product of the individual subsystems is known as entanglement [53]. Entan-
glement is of the center of quantum information protocols. This property makes quantum
information processing promising and powerful but also brings many challenges. Quantum
entanglement enables joint measurement of separate systems to show a stronger correla-
tion than classically allowable. These strong than classical correlations are quantified by
violations of Bell’s inequality. Since the first experimental demonstration of entanglement
in 1972 with photons [42], entanglement in different optical degrees of freedom (DOFs)
have been studied [68, 67, 54, 78] and have been experimentally verified in many different
physical systems.
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Considering a two-qubits entangled state:

|ψ+〉AB =
1√
2

(|0〉A|1〉B − |1〉A|0〉B) , (1.6)

we describe two spatially separated parties Alice and Bob, they hold qubit A and B re-
spectively. When either of the parties does a measurement on the qubit, they will find the
two possible results occur with an equal possibility of 1/2. However, if they measure the
same observers simultaneously, they get anti-correlated outcomes.

Quantum entanglement is a precious resource for quantum communication enabling new
methods for quantum information transmission. The utilization of non-locality of shared
entangled states can prepare a state on the remote receiver’s quantum system without
sending the original state physically. It can also provide exponential enhancements for
pure state quantum computing [59].

1.3.2 Generation of entangled photon state

Entangled photon pairs can be generated using cascade decays in atomic systems [5] or via
parametric processes involving resonant fluorescence where two pump photons create an
entangled state between photon pairs. The most popular method for generating entangled
photons is via spontaneous parameter down-conversion in crystals via nonlinear optics [24].

In the spontaneous down-conversion (SPDC) process, photons from a pump beam decay
into pairs of photons designated as signal and idler in a nonlinear crystal. The strongly
correlated two-photon pairs are under the restriction of conservation of energy (frequency):

ω1 + ω2 = ωp, or ~k1 + ~k2 = ~kp (1.7)

The two down-converted photons generated using SPDC can either be energy degenerate
where both ‘daughter’ photons are of the same energy(frequency) or it be non-degenerate.
SPDC is a process for generating the signal and idler photons from the higher-frequency
pump by quantum vacuum fields with a phase relationship between input and output fields.

There are two main ways which can be referred to as type I and type II phase matching
to do the SPDC process. We are using the type II SPDC process for generating the signal
and idler photons having perpendicular polarizations.
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1.4 Encoding quantum information into photons

Photons are the optimal information carriers due to the lack of interaction with external
environment and reliable techniques for generation and manipulation.

Photon-based quantum information can be encoded in the degrees of freedom of light.
These can be spin-angular momentum (polarization) orbital angular momentum (spatial
distribution), propagation (path encoding) [81], time-bin and time-frequency [11] etc. Here
we focus on spin and orbital angular momentum degrees of freedom.

1.4.1 Encoding in polarization

Spin is associated with polarization degrees of freedom. Polarization encoding offers
straightforward methods for preparing, manipulating and measuring quantum information.
The spin-orbit momentum component of photons can interact with anisotropic transparent
systems like birefringent crystals which are widely employed for polarization control [41].

The polarization state of photon is usually represented in horizontal |H〉 and vertical
bases |V 〉 written as |ψ〉 = α|H〉+ β|V 〉. Diagonal (|D〉), anti-diagonal (|A〉), left circular
(|L〉) and right circular (|R〉) are other common bases where these states are defined:

|D/A〉 =
1√
2

(|H〉 ± |V 〉) |L/R〉 =
1√
2

(|H〉 ± i|V 〉) (1.8)

where D, A, L, R stands for diagonal, anti-diagonal, left circular, and right circular, re-
spectively.

Polarization has played a central role in quantum information, ranging from quantum
simulation [106, 82] to quantum computation [33, 101, 10, 28] and quantum communication
[76, 19, 119]. However, the polarization of one photon is limited to a two-level system. One
solution for this is to couple the polarization to other degrees of freedom such as orbital
angular momentum which is what we do in Chapter three to give the potential for a
higher-dimensional Hilbert space.

1.4.2 Encoding in orbital angular momentum

Orbital angular momentum

Orbital angular momentum (OAM) of light arises from the spatially varying amplitude and
phase distribution [2, 1]. It can be divided into internal and external components. The
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internal of OAM is related to twisted wavefronts which are independent of the origin. The
external one is origin-dependent given Le = r×P where P is the momentum of a beam of
light.

Figure 1.2: Intensity distribution of Laguerre-Gaussian modes

Light beams with an azimuthal phase carry an OAM that is independent of its spin [2].
The OAM carried by such optical vortices is described using phase factor eilφ where the
angle φ here is the angular coordinate in the plane that is transverse to the propagation
direction. l here can take any positive or negative integers. Correspondingly, each single
photon can carry a quantized value of L = lh̄.

Currently, the most common form of beams with helical phase fronts is the so-called
Laguerre-Gaussian mode (LG mode). LG modes are circularly symmetric and exhibit a
cylindrical symmetry described by the Laguerre polynomials. The figure Fig. 1.2 shows
intensity distribution of such mode. The cylindrical LG modes have an explicit phase
factor which makes them a natural candidate for describing beams carrying OAM.

There are several techniques for generating and controlling the OAM. The widely em-
ployed tools are using meta-materials, cylindrical lens pairs [132], diffraction gratings [48]
or Spatial Light modular (SLM) [25, 26]. SLMs can manipulate the intensity and the phase
profile of the beam point by point which may have applications such as holography based
optical tweezer [92, 32].
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The use of OAM in quantum information enables encoding large amounts of informa-
tion on a single photon. It breaks the limitation of quantum information encoding based
on two-dimensional spin angular momentum associated with polarization of photons. Us-
ing OAM of photons, we can create multi-dimensional entanglement using spatial mode
carrying OAM which has great potential for a higher (theoretically can be infinite) discrete
quantum space encoded in a single photon [85, 91, 118, 39]. It is a method, in addition to
multi-particle entanglement [125, 136], to extend the usual two-dimensional spin angular
momentum quantum systems to a larger Hilbert space.

Talbot Effect with orbital angular momentum arrays

OAM can also be prepared in arrays. Generation of periodic OAM arrays coupled with spin
angular momentum have been realized using linear optical components [107], nematic liquid
crystal [7]. Potential application would be the use of a lattice beam structure to increase
the bandwidth of data transfer using OAM modes [71, 139]. Furthermore, matching the
lattice constant (period) to the characteristic length scale of the target materials could
extend the OAM number selection rules across the region which is proportional to the area
of the fully structured wave front [4, 51].

The periodic structure of the OAM lattice enables the Talbot Effect. The Talbot Effect
is a near-field diffraction phenomenon whereby periodic phase and amplitude modulations
are self-imaged due to free-space propagation. Replicas of periodic transverse intensity
profile reappear after a specific propagation distance known as Talbot distance. The Talbot
Effect was first observed by Henry Fox Talbot in 1836 [116]. He showed that the periodic
structure repeats its pattern along the propagation direction at z = nzT where n is an
integer and zT is the Talbot distance by which the self-images reappear:

zT =
2a2

λ
. (1.9)

The parameter a is the lattice constant of the periodic structured beam and λ is the
wavelength. As shown in Eq. (1.9), Talbot distance is proportional to a2 and is inversely
proportional to the wavelength. Due to these characteristics, the Talbot Effect can be
used in spectral reconstruction. Previous work on spectrometers utilize Talbot Effect by
measuring the field intensity as a function of propagation distance have been reported
[127, 102].

Fresnel diffraction of a transmission grating results in the replicas of periodic transverse
intensity profile reappear after certain propagation interval [129]. These periodic pattern
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of self-images are observable right behind the grating. Talbot Effect has been demon-
strated in various research fields involving single photon [115, 30], x-rays [99], matter-waves
[27, 31, 135, 98], exciton polaritons [43] and Bose-Einstein condensates [79]. The Talbot
effect has been found plenty of applications in optical metrology [104], imaging process-
ing [126], lithography [56, 114, 72] and data transmission [6]. We consider the Talbot
effect manifested in single-photon OAM arrays and the details for our work is described in
Chapter 6.

1.4.3 Polarization-OAM Hybrid-entanglement

Hybrid-entanglement is the quantum state entanglement distributed between different de-
grees of freedoms. Polarization and orbital angular momentum (OAM) are two degrees
of freedom of photons for quantum information encoding. Suppose we have a two-photon
system Alice (A) and Bob (B), we can create a hybrid-entangled state by combining the
two degrees of freedoms for example polarization and OAM together:

|ψhybrid〉AB =
1√
2

(|L, 0〉A|H,+1〉B + |R, 0〉A|H,−1〉B) (1.10)

where L, R, H represent three polarization and ±1, 0 stands for OAM degrees of freedoms.
This allows for more complex entangled photons states [61, 40] suggesting the various pos-
sibilities for quantum correlations encoded in an advanced way spreading among different
degrees of freedoms.

Hybrid entanglement is a fascinating resource compared to the normal entanglement
and can be employed for the improved versions of quantum information processing proto-
cols. More compatible and efficient quantum communication protocols can also be possible
for utilizing these resources.

1.5 Quantum communication protocols

Quantum communication is a quantum information transmission task between two distinct
observers realized by two-level physical systems storing quantum information represented
by entangled states of qubits [17, 111, 34]. Teleportation and remote state preparation are
two major quantum communication protocols.
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1.5.1 Teleportation

Quantum teleportation has been a crucial example for quantum communication since it
was proposed [13]. It is a task for transporting a quantum state from one place to another.

In quantum teleportation scheme, the sender doesn’t know the state |ψ〉 of the qubit to
be communicated. Quantum mechanics doesn’t allow it to determine the state as it only
has a single copy of the state |ψ〉. However, quantum teleportation utilizing the entangled
EPR state shared between two parties and two classical bits of classical communication
instead of sending |ψ〉 directly to recover the initial copy |ψ〉 on its remote receiver.

Figure 1.3: Description of teleportation scheme

Here we give an example of quantum teleportation using a photon polarization system
as shown in Fig. 1.3. Let’s say photon 2 and photon 3 share an entangled state and Alice has
an unknown state |ψ1〉. The task is to teleport this unknown qubit to Bob, consequently,
Bob’s photon is reshaped to |ψ1〉. So the whole teleportation scheme entails three photons.

In this scheme, the initial entangled states shared by two photons 2 and 3 enables
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the quantum channels between these two remote parties Alice and Bob. Typically they
share one of the Bell states for example: |Ψ−〉23 = 1√

2
(|H〉2|V 〉3 − |V 〉2|H〉3). Suppose the

photon 1 to be teleported is initially in a state |ψ〉1 = α|H〉+ β|V 〉. Photon 2 and photon
3 are then sent to Alice and Bob respectively. Alice then does a joint Bell measurement
on her two particles photon 1 and photon 2 while photon 2 is entangled with photon 3 on
Bob side which can be represented as the product of |ψ〉1 and |Ψ−〉23:

|ψ〉1|Ψ−〉23 =
1

2
|Ψ−〉12 (α|H〉3 + β|V 〉3)

+
1

2
|Ψ+〉12 (−α|H〉3 + β|V 〉3)

+
1

2
|Φ−〉12 (−β|H〉3 + α|V 〉3)

+
1

2
|Φ+〉12 (β|H〉3 + α|V 〉3)

(1.11)

After that Alice can project the states of photon 1 and photon 2 onto one of the four
states and then Bob can reshape to the corresponding state of photon 3 immediately. For
example, if Alice project the state on |Ψ−〉12, then the state of photon 3 at Bob place will
be immediately reduced to the state α|H〉3 +β|V 〉3 which is exactly the state of the initial
photon 1 on Alice side to be teleported.

1.5.2 Remote state preparation protocol

Remote state preparation (RSP) is a variant of quantum teleportation in which the sender
has the complete knowledge of the state to be communicated to its remote receiver [97, 15].

Allowing the sender’s knowledge of the transmitted state gives many advantages over
the teleportation scheme. To communicate any state in a two-dimensional Hilbert space
using quantum state teleportation, one EPR state shared by two parties and two classical
bits from a sender are necessary [17]. The task of remotely preparing a specific state can be
accomplished with less resources than in the case of teleportation. A maximally entangled
state as a shared resource and a single classical bit [74, 95, 70] is sufficient. It is also shown
that the knowledge of the prepared state in remote state preparation protocol enables
trade-off between entanglement and classical communication resources [15, 16]. Besides
quantum teleportation, remote state preparation does not need to perform full Bell-state
analysis which currently still be challenging for optical implementation [97].

Two distant parties are involved in remote state preparation protocol, a sender who
gives the description of the prepared state |ψ〉 and the receiver who ideally ends upholding
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Figure 1.4: Scheme for remote state preparation. Alice and Bob share a quantum state ρ
and Alice is able to prepare a state |ψ〉 in the plane orthogonal to the direction β. Alice then
performs the local measurement and sends the result to Bob through the classical channel. The
state |ψ〉′, which is envisaged by Alice, will be generated on Bob’s side after proper correction
through decoding channel.

that state based on several resources. The resources can be classical communication,
entanglement and shared randomness. It is a process of generating the desired state by a
remote observer who merely does a specific measurement locally on his system.

The scheme for the remote state preparation is shown in Fig. 1.4. The sender (Alice)
and the receiver (Bob) share a quantum state ρ with various correlations. And Alice uses
this shared state to remotely prepare the state |ψ〉 on the Bob side in the plane that is
orthogonal to the direction β which is announced by Bob. Alice has the full knowledge
about the |ψ〉 state to be prepared. The state preparation on Bob’s side is initialized when
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Alice performs a local measurement. Alice’s measurement outcome α = ±1 is then sent
to Bob as one classical bit of information along the direction of the state she wants to
prepare. Bob will do a state correction based on the value of the received classical bit to
obtain the state |ψ〉′. For example, if α = −1, Bob applies a π− rotation about β to his
system and when α = 1, Bob applies no correction. The efficiency of the process can be
evaluated using a pay-off function P (|ψ〉′, |ψ〉) that is related to the prepared state fidelity.

Take photon polarization as a reference, we consider the two-photon maximally entan-
gled state:

|Φ+〉 =
1√
2

(|HtHr〉+ |VtVr〉) =
1√
2

(|DtDr〉+ |AtAr〉) (1.12)

where the subscripts r represents remotely prepared photons and t represents the trig-
gering photon. |H〉 and |V 〉 stands for horizontal and vertical polarization states, |D〉 =
1√
2
(|H〉+ |V 〉) and |A〉 = 1√

2
(|H〉− |V 〉) stands for diagonal and anti-diagonal polarization

respectively. Measuring the trigger photon in diagonal basis (|Dt〉) prepares the other one
in the diagonal state (|Dr〉).

To remotely prepare an arbitrary pure state |ψr(θ, φ)〉 which can be written in |D〉 and
|A〉 basis as well: |ψr(θ, φ)〉 = cos θ|D〉+ sin θeiφ|A〉. The sender can act on the triggering
photon and with a quarter wave plate and a half wave plate. Thus, the two photon
state |Φ+〉 = 1√

2
(|Dtψr(θ, φ)〉 + |Atψr(θ, φ)〉 and when the triggering photon is measured

in diagonal |Dt〉, the other remotely prepared photon is in the state |ψr(θ, φ)〉. Thus, by
projecting the trigger photon into arbitrary polarization with a quarter wave plate and a
half wave plate before the polarized beam splitter, we can prepare the other photon into
the desired state.
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Chapter 2

Source of entangled photons

2.1 Introduction

Both of our experiments need triggered single photons. Especially for the remote state
preparation experiment, high quality polarization entangled photon pairs are necessary.
In this chapter, I will include a detailed description of how our Sagnac source works, the
technique to get high-fidelity polarization entanglement, and the tomography method.

2.2 Layout of the Sagnac source

Our entangled single-photon source is built based on a Sagnac interferometer with two
counter-propagating paths on a closed-loop. The set-up of our source is shown in Fig. 2.1.
Sagnac interferometer has been largely employed in entangled single-photon sources [38,
66, 65]. The Sagnac entangled single-photon source used in our project was based on the
work described in [124].

A 404.4nm Toptica iWave continuous-wave diode laser pump creates correlated pho-
ton pairs via a type II SPDC process [52]. By tuning of temperature, the 10 mm long
periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, degenerated
photon pairs (signal and idler) have been generated which enables entangled state with
phase matching conditions satisfied.

In Fig. 2.1, we show the set-up for the source. After passing through an optical isolator,
the laser is directed to the first half-wave plate (HWP) for setting the polarization of the
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Figure 2.1: Sagnac single-photon source. The highly correlated entangled photon pairs are gen-
erated via a type II SPDC process by pumping the diagonally polarized 404.5 nm laser through
the Sagnac interferometer. The horizontally polarized photons follow the transmitted path, gen-
erating pairs of vertical signal and horizontal idler. The vertically polarized photons follow the
reflected path generating pairs of horizontal signal and vertical idler photons.

incoming beam. The light is then directed to a dichroic mirror set at 45 degrees which
lets 404.5 nm laser go through while reflecting the down-converted near-infrared photon.
The next optical element the laser will encounter is a polarized beam splitter (PBS) which
creates two distinguished paths around the Sagnac triangle with two mirrors along the
paths. The nonlinear crystal PPKTP is put at the heart of the triangle closed loop. The
crystal is set for the type II phase matching, generating the horizontally polarized signal
photon and vertically polarized idler photon.

In the Sagnac triangle, The horizontally polarized photons will go through the trans-
mitted path and generate pairs of the vertical signal and horizontal idler photons while the
vertically polarized light does the opposite generating pairs of horizontal signal and vertical
idler photons. Suppose the incoming light is horizontal, it will transmit through the PBS
and takes a clockwise path around the Sagnac triangle. After the type II crystal, horizontal
signal and vertical idler photons both at the wavelength of 809 nm are generated. Then
photons will pass through the HWP set at 45 degrees, switching their polarization to a
vertical signal and a horizontal idler, which will be separated by the PBS again. The ver-
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tical signal is reflected when it returns PBS and be reflected again by the dichroic mirror.
It is then coupled to the single-mode fiber denoted as Bob’s side after an infrared filter
filtering out the pump laser. The horizontal idler photon passes through a phase setting
tilted QWP and the infrared filter then couples to Alice’s side. Similarly, if the polariza-
tion of the incoming laser is vertical, it will be reflected anti-clockwise by an HWP (45
degrees) which changes its polarization to horizontal before reaching the nonlinear crystal.
It then down converts to a horizontal signal photon and a vertical photon going to Bob and
Alice respectively. Since these two photons are indistinguishable, pumping with the equal
coherent superposition of horizontal and vertical will create an entangled photon state.
Therefore, the diagonally polarized laser should be pumped by setting the first HWP at
22.5 degrees.

To create high fidelity degenerate photons and facilitate the efficient SPDC process, we
set the temperature of nonlinear PPKTP crystal to be 75 degrees Celsius. By temperature
tuning the type II crystal, we can fine-tune the phase-matching condition. Meeting the
phase-matching condition means that the signal and idler photons are created in phase
with the pump, giving the best efficiency for SPDC process.

The most common forms of photon entanglement are the four polarization entangled
Bell states:

|Φ±〉 =
1√
2

(|H〉|H〉 ± |V 〉|V 〉) , |Ψ±〉 =
1√
2

(|H〉|V 〉 ± |V 〉|H〉) (2.1)

These are super-positions of two-qubit polarization state. For instance, the |Φ+〉 state
which is what we used in our experiment, both photons should be in the same polarization
degrees of freedom. By measuring the first photon, the state of the second photon will also
be fixed according to the correlations of two photons.

After pumping the diagonally polarized light into the Sagnac interferometer as dis-
cussed, we produced the state |ψ〉 = |Hi〉|Vs〉 + eiφ|Vi〉|Hs〉 [133, 38]. The phase here can
be adjusted by tilting a tilted QWP on Alice’s side to get the |Ψ+〉 bell state. The outputs
of photon pairs are then coupled to two single-mode fibers to send them to two parts of
the experiments.

By flipping the polarization of Bob using fiber controller, we create the target state
|Φ+〉 in polarization degree of freedom between two spatially separated parties described
in the following formula:

|Φ+〉 =
1√
2

(|HAlice〉|HBob〉+ |VAlice〉|VBob〉) (2.2)

16



To make sure the Sagnac entangled photons source works as we expected, we need to
guarantee the alignment of the source is in a good condition before taking data. To aligh
the source, we apply the alignment procedures referred to as Hiking Boot and Stiletto in
Lydia Vermeyden’s Msc thesis [123]. A fidelity of over 97% can be achieved using these
techniques.

2.3 Reconstructing the state with quantum state to-

mography

2.3.1 Introduction to quantum state tomography

Quantum tomography is a method to reconstruct the complete quantum state from a
series of experimental measurements on different bases. Quantum state tomography was
first introduced by Fano in 1957 [36]. We use the maximum likelihood tomography method
to characterize the two-qubit state |Φ+〉 of polarization entanglement.

The density matrix is used for describing the statistical state of a quantum system. It
is a general representation for both pure and mixed state, where the mixed state can be
defined as a statistical ensemble of pure states. In the case of single-qubit where the density
matrix could be written as the linear combination of four Pauli matrices (identity matrix
denoted as σI plus σx, σy and σz). The two-qubit case can be thought of taking two copies
of the single-qubit Hilbert space each representing one of the qubits in the pair. There-
fore, the matrix can be spanned by 16 two-qubit Pauli matrices σm⊗ σn(m,n = I, x, y, z).
Any two-qubit density matrix can be written based on these 16 matrices. However, this
representation cannot be adapted to experimental use since we cannot perform all those
measurements in the experiment to determine the density matrix. Here we use the max-
imum estimation to find the density matrix that is compatible with the measurement we
can do in the lab. We can get characterize a physical density matrix with the form:

ρ =
T †T

tr(T †T )
(2.3)

where T is a square matrix and its Hermitian conjugate is T †. From Eq. (2.3), the density
matrix is guaranteed to be normalized and positive definite. Since we have 16 independent
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real parameters, we can parameterize the matrix T to be:

T (t1, ...., t16) =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

 (2.4)

with ti is real. And if we plug it in the Eq. (2.3), we get the explicit form for the physical
density matrix in terms of T (~ti):

ρ =
T (~ti)

†T (~ti)

tr(T (~ti)†T (~ti))
(2.5)

where ~ti = (t1, ...., t16).

Since our experimental data need to consists of 16 coincidence measurements, nv and
with the expectation values 〈nv〉 = N〈ψv|ρ|ψv〉 where N is a normalization constant. In
terms of the parametrization of the physical density matrix, ρp, the expected number of
coincidences can be expressed

〈nv(~ti)〉 = N〈ψv|ρp(~ti)|ψv〉. (2.6)

We need a measurement to describe how close our agreement is between the experimental
data and reconstructed state. Suppose the coincidence measurements are independent and
the presentation of the probability measurement is a Poisson distribution with the mean
of nv, the likelihood function that ρp can produce a set of 16 measurements is:

L(~ti) =
16∑
v=1

〈nv(~ti)〉nvexp(−〈nv(~ti)〉) (2.7)

which is what we are trying to maximize, where the maximum will provide us the most
likely set of parameters ~ti = (t1, ...., t16). We can get the then reconstruct a valid physical
matrix using Eq. (2.5) to give the most likely state.

2.3.2 Experimental realization of QST

To reconstruct the state generated by the Sagnac interferometer, and quantify how close it
is with the target state between Alice and Bob as described in Eq. (2.2). The experimental
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Figure 2.2: Tomography set-up for entangled photons. When a diagonally polarized laser is
pumped in the Sagnac photon source, signal photons are coupled to a single-mode fiber to Bob’s
side while idler photons are coupled to a single-mode fiber to Alice’s side. We then do the
polarization measurements on both sides for coincidence counts.

set-up for doing state tomography is shown in Fig. 2.2. A quarter-wave plate, a half-
wave plate, and a polarization beam splitter are used to make an arbitrary polarization
measurement.

We have a pair of wave plates (HWP and QWP) set in each polarization analyzer
which projects the prepared state onto the tomographic basis after the PBS. These two
sets of wave plate pairs are all motorized and connected to Newport XPS controller which
can be controlled by a computer. One photon-counting module is set on each side of
the coincidence measurements for full state tomography on the transmitted photons. The
coincidence we measure is the event when both detectors detect a certain number of photons
within a time window of 3 ns. The “bat ear” and a tilted quarter-wave plate are used for
polarization control.

2.3.3 Analysis of the state fidelity

In quantum information theory, the closeness of two quantum states, usually between
the measured state and the expected state can be described by the fidelity F with the
definition:

F(ρ1, ρ2) = {tr[(√ρ1ρ2
√
ρ1)

1/2]}2 (2.8)
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Figure 2.3: Outcome of maximally likelihood tomography. The density matrix is described
numerically and the 3D drawing with real part (left) and imaginary (right) part are shown as
well. The Mathematica code we use in state tomography is written by previous students Rainer
Kaltenbaek and Robert Prevedel in 2010.

where ρ1 is the reconstructed matrix from experimental measurement, and ρ2 is the ex-
pected |Φ+〉〈Φ+| density matrix. When ρ1 = ρ2 we have F = 1 and if ρ1 is orthogonal
to ρ2 then F = 0. The density matrix is shown both numerically and graphically. The
reconstructed matrix’s real part (left) and imaginary (right) part is shown in the 3D im-
ages as well. We can see the coincidences of |HH〉 and |V V 〉 are nearly 50% and for other
coincidences of different polarization combinations are almost zero. As shown in Fig. 2.3,
the fidelity was 97.1% with the Bell state |φ+〉.

Error analysis of the reconstructed density matrices is also necessary. The technique
we are using is Monte Carlo simulation, where additional numerically simulated data is
used to provide a statistical distribution over the derived quantity. In our case, the two
polarization encoded qubits are generated within the ensemble that follows the Poissonian
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distribution, and other ensembles can be used to calculate the density matrix using the
maximum likelihood technique. In order to define the error, 36 new measurements results
are numerically generated, each drawn randomly from the Poissonian distribution with the
mean equal to the original ones. These 36 numerically generated results are then fed to
the maximum likelihood technique to generate a new density matrix from which we can
calculate the tangle which is a measure of the quantum-coherence properties of a quantum
state [3]. Thus after one run of this process, a new density matrix and a distribution of
tangle are generated which helps determine the error of the original tangle. Additional sets
of the simulated data must be generated until the quantity of interest converge to a single
value (fluctuation meet the requirement).
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Chapter 3

Generation of lattice of spin-orbit
coupled state

3.1 Introduction

Spin-orbit coupling enables generation and manipulation of light carrying orbital angular
momentum as it utilizes the efficient and well-developed polarization degree of freedom
to extend the Hilbert space to a higher dimension. In this chapter, I will introduce an
intuitive technique that both of our experiments are based on to generate a lattice of
spin-orbit coupled state.

3.2 Optical spin-orbit coupling

Optical spin-orbit coupling is an efficient and powerful way to manipulate the phase and
the transverse polarization of the beam via Pancharatnam-Berry phases [105] arising in
polarization control. It provides a convenient way to generate and interference orbit angular
momentum of single photons with polarization. This is the most widely employed internal
degree of freedom to control the quantum state.

The spin is associated with the polarization degree of freedom in the photon system
which is independent of the position. Polarization degree of freedom is easy to prepare,
control and measure but limited to the two-dimensional system. OAM is associated with
the optical wave front induce the revolution of the photon particle around the beam axis.
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OAM of photons is a crucial resource for quantum application as it breaks the limitations
of quantum information encoding techniques based on the two-dimensional spin angular
momentum. Spin and orbital angular momentum seem to be completely separate and no
research on spin-induced OAM has taken place for a long time since Allen’s paper start
the field of OAM [2].

The spin-orbit optical interaction occurs in some appropriately patterned birefringent
materials or dichroic media such as “q-plate” [80], spatial light modulator [84], metasurface
[137, 77, 62] and Lattice of Optical Vortices (LOV) prism pairs [107]. These enable the
spin-orbit quantum transformation of photon states in both polarization space and OAM
space. Thus we can prepare the signal photons initially in polarization degrees of freedom
to the OAM to explore new possibilities and then transfer the OAM back to the spin space
for convenient analysis. There are also works on encoding qubits combining two degrees of
freedom through the spin-orbit coupling, trying to encode as much information as possible
into one single photon by exploiting different degrees of freedom.

We couple the polarization and OAM using the Lattice of Optical Vortex prism pairs.
The following section will give a detailed introduction of the technique we based on [107].

3.3 Lattice of Optical Vortex prism pair

In both experiments demonstrated in Chapter five and Chapter six, we generate a lattice
of spin-orbit single-photon states through pairs of linear optical components— Lattice of
Optical Vortex prism pairs [107]. This novel technique for generating spin-orbit states uses
coherent averaging and spatial control methods to prepare a multiplexing beam consisting
of a lattice of OAM states coupled to a two-level system. It gives a two-dimensional control
of the length scale of the single lattice cell and also enables customization over azimuthal
quantum number l.

3.3.1 Theoretical deduction of LOV prism pairs operator

For the beam carrying OAM, the most important thing is the axis about which the OAM
is quantized. The lattice of the OAM beam generated using LOV prism pairs has a two-
dimensional array of such axes which are parallel to each other. Here we show what happens
within each lattice cell.

The Eq. (3.1) gives the spin-orbit coupling operator [90]:

Û = ei
πr
2rc

[cos(φ)σ̂x+sin(φ)σ̂y ], (3.1)
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expressed in Cartesian coordinates. Here σx,y are Pauli operators and rc is the length of the
smallest radial distance where the polarization degrees of freedom undergo a π rotation.
When the radius is not rc, other rotation angle will occur producing the spin-orbit state :

|ψSO〉 =
e−

r2

2

√
π

[cos(
πr

2rc
)|L〉+ sin(

πr

2rc
)|R〉], (3.2)

We apply the Suzuki-Trotter expansion to the coupling operator Eq. (3.1) to switch from
radial coordinate to Cartesian ones. By proper estimation of this coupling operator, it
can be interpreted as a sequence of N perpendicular N -independent linear gradients [107].
In terms of photons, the N independent gradients unit can be produced with the help of
optical birefringent prisms pairs which can be described as a combination of two operators
defined as Ûx and Ûy

Ûx = ei
π
a
(x−x0)σ̂x , Ûy = ei

π
a
(y−y0)σ̂y , (3.3)

where the origin of the gradients at (x0, y0). This equation also shows that if we shift the
prism by a distance d along x- or y-axis, there will be a phase shift of dπ

2rc
occur around the

corresponding axis.

The input photons carrying the spin angular momentum only and thus given any po-
larization input state, N sets of such linear gradients units can prepare a lattice of optical
spin-orbit state:

|ψNLOV〉 = (ÛxÛy)
N |ψin(pol)〉 (3.4)

When we set N = 2, it will produce a two dimensional lattice of spin-orbit state with
the quantum number of l = ±1. The birefringence ∆n and incline angle θ determine the
lattice constant (spacing) a which is two times of the smallest radial distance rc, as shown
in Eq. (3.5):

a = 2rc = λ(∆n tan(θ))−1 (3.5)

where λ is the wavelength.

After the spin-orbit lattice state is generated after LOV prism pairs, we then post-select
on one polarization to yield the distinguishable intensity pattern that can be detected by
our single-photon camera. It has been shown that the two coupled states are correlated
and post-selection on one degree of freedom will determine the other and reach maximum
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Figure 3.1: Simulated intensity profile of input photons in six polarization bases. The simulation
is based on the LOV prism operation code written by Sacha Schwarz in 2018 as shown in Appendix
A. The beam waist is set to be 25/3 mm (approximately 3.28a) which is what we generated in
the lab.
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correlation when rc = 1.82σ⊥[90]. Finally what we measure is a transverse two-dimensional
intensity distribution profile:

I(PInput,PFilter) = |〈PFilter|(ÛxÛy)2|PInput〉|2 (3.6)

In our scheme, we apply the N = 2 sets of linear gradients unit preparing the spin-orbit
arrays described in Eq. (3.4) and fix the post-selection polarization to be right circularly
polarized |R〉. Fig. 3.1 shows the simulation for the intensity distribution outcome with
six polarization bases of incoming photons: left circular polarization (|L〉), right circu-
lar polarization (|R〉), horizontal polarization (|H〉), vertical polarization (|V 〉), diagonal
polarization (|D〉) and anti-diagonal polarization (|A〉). We can see from the figure that
when sending the left circular photons (|L〉) through N = 2 sets of LOV prisms while
post-selection on right circular polarization, we get the “ring” like state while getting the
opposite “anti-ring” state by sending right circular photons (|R〉).

Figure 3.2: Simulated intensity profile N = 2, 4, 6 sets of Lattices of Optical Vortex prism pair.
The simulation is based on the LOV prism operation code written by Sacha Schwarz in 2018 as
shown in Appendix A. The beam waist is set to be 25/3 mm (approximately 3.28a) which is what
we generated in the lab.
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Let’s consider the “ring” like state produced by the left circular polarization beam.
Suppose we input left circular photons |L〉 into the N sets of LOV prism pairs. Even if
N does not change the phase profile, the number of well-defined rings in each lattice cell
increases as we put more prism pairs. In any cell of the arrays, the number of rings is
half of the number of LOV prism pairs applied to the initial circularly polarized beam.
Thus, N provides control over the mean radial quantum number in the lattice cell. We
apply N = 2, N = 4, N = 6 prism configuration individually, Fig. 3.2 shows the simulated
intensity distribution patterns “ring” and “anti-ring” states for the |L〉 and |R〉 polarization
inputs respectively.

3.3.2 Experimental realization

By the preparation of the lattice of spin-orbit state using LOV prism pairs and then fil-
tering the polarization state that is coupled with OAM, we generated a lattice of OAM
states. This state coherently couples OAM degrees of freedom of photons with a more easily
manipulated spin degree of freedom, offering the possibility for high-dimensional entangle-
ment encoding arbitrary large quanta in principle. The measured structured phase profile
reveals the coupling of the polarization degree of freedom to the OAM and is determined
by the polarization input to the LOV prism pairs.

One LOV prism pair consists of two perpendicular optical birefringent wedges. The
optical axis of the first one is along the prism incline and the second one with an optical axis
offset by 45 degrees to give the product operation ÛxÛy. The optical axes are represented
using the ordinary refractive index n0 and extraordinary refractive index ne. We use two
sets of such LOV pairs followed by the polarization filter fixed on |R〉 as shown in Fig. 3.3.
The polarization filter is made up of a quarter-wave plate and a polarizing beam splitter.

With the above configuration, we generate a two-dimensional array of OAM states
induced by its initial polarization degree of freedom. We can write out the state in each
lattice cell as |ψout〉 = 〈R|(ÛxÛy)2|ψin(pol)〉 when |ψin(pol)〉 state is sent through such setup.
The generated lattice constant is determined by the wavelength of the single-photon beam
as well as the physical property of the prisms. The photons sent to the LOV prisms are
generated from the Sagnac interferometer discussed in Chapter two and are of 810.8 nm
wavelength. The prisms used in the LOV pair are made to order by Dmitry Pushin’s group.
They are made of quartz wedges (bi-refringence of around 0.0091) with a wedge angle θ of
2 degrees and the diameter is 2.54 cm. We can customize the parameters of the prisms to
control the lattice constant “a” according to the lattice constant equation Eq. (3.5).

Higher-order OAM structure can be achieved by increasing the above set-up including
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Figure 3.3: N = 2 sets of lattices of Optical Vortex

N = 2 sets of LOV prism pairs and a polarization filter. Below gives one method for
increasing the angular quantum number to m with our LOV prisms:

〈R|
(

(ÛxÛy)
2|R〉〈R|

)m−1
(ÛxÛy)

2|ψin(pol)〉 (3.7)

where |R〉〈R| is the operator for polarization filter set in |R〉. It can be experimentally
realized by repeating the unit consisting of a sequence of the N = 2 LOV prism pairs
followed by a polarization filter shown in Fig. 3.3. This enables coupling polarization state
to higher OAM values giving the potential for higher-dimensional quantum space encoded
in a single photon.
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Chapter 4

EMICCD camera

4.1 Introduction

Modern Intensified CCD cameras can detect single photons and can be triggered in the
nanosecond regime. This enables tons of applications in quantum experiments, especially
for those involving the spatial modes of photons. In our experiments shown in Chapter
5 and Chapter 6, hybrid-entanglement has been generated. The high-quality intensified
CCD camera enables us to observe the quantum entanglement in real-time.

The equipment we use for single-photon detection is the Princeton Instrument PI −MAXr

electron-multiplying intensified CCD (emICCD) camera platform.

The present chapter includes a brief introduction of the techniques used in the emICCD
camera and its principle of operation for detecting the ultra-weak light such as single
photons. Our work on the configuration of controlling software and post-processing to
optimize the measurement quality for our purpose will also be discussed.

4.2 Operating principle

The incident photons will first pass through the intensifier input window and hit the photo-
cathode doing the photon-electron transformation and the be electronically magnified when
traveling in the image intensifier tube. The image from the image intensifier will be trans-
lated to the input of CCD and read out to the internal controller for digitization. The data
is then routed to the host computer for processing and display.
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4.2.1 Electron-Multiplying gain and Intensifier gain

Figure 4.1: emICCD major components

With the advanced emICCD technique, intelligently utilizing the advantages of an
intensifier and an electron-multiplying CCD using emICCD mode to obtain < 500 psec
time resolution, high-quality single-photon detection. The process for the whole signal gain
process is shown in the image above Fig. 4.1 1. Here we are showing in detail the process
of how the incident photons can be converted to the data in the computer which can be
used for display and post-processing.

The initial photons will first go through the intensifier tube which is mainly composed
of a photocathode, a micro-channel plate (MCP) and a phosphor screen. The principle for
controlling the intensifier gain is through changing the photo-cathode voltage concerning
the MCP input voltage for switching the intensifier on and off.

The input image of photons is first focused on the photocathode of an image intensifier
tube where incident photons are converted to electrons via photo-electric effect. When the
intensifier is one where the MCP input is more positive than the photo-cathode, electrons
are accelerating to the MCP channel walls which is acted as a distributed electron multi-
plier, emitting clouds of electrons from every single photo-electron. The amount of gain
depends on the voltage of the MCP output. The electrons then get further acceleration
by a constant high voltage and hit the phosphor fluorescent screen to transform back to

1image come from the PI-MAX4 camera system manual
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photons. Now the number of photons released is way more than the incident photons input
into the intensifier. The released photons are transferred to the surface of the CCD and
keep accumulating the charge produced at each pixel until the intensifier is gated off and
the phosphor decays.

Electron Multiplication (EM) is applied as a sensitivity enhancing technique enabling
the charge multiplication collected in each pixel of the interested region. Within the array,
it will include a second extended serial register where electrons travel with a higher-than-
normal CCD clock voltage and the second electron will be generated via the process of
impact-ionization within the register. The degree of EM gain can be controlled by the
clock voltage applied for the multiplication register. Thus the charge will be shifted to the
serial register and the extended EM one where the multiplied electrons can be read out to
an on-chip amplifier and convert the charge to the analog voltage, which will then digitized
via an analog-to-digital converter. The digitized information will be transmitted from the
camera to the host computer stored in RAM which can be display and post-processed.

4.2.2 Data acquisition

Exposure and read-out make up the data acquisition process. Here exposure refers to the
integration of the signal on the CCD array and read-out is the transfer of the integrated
signal from the array pixels to the shift register and further to the pre-amplifier. Each pixel
senses the amount of light falling on its collection area and stores the proportional amount
of charge in its well. And once the charge accumulated for the exposure time, which is an
important parameter for signal enhancement, it will stop accumulate and read out all the
pixels serially.

During the data acquisition process, the image intensifier is gated on and off to allow
the pixels to register light during the ”on” period and make sure the intensifier is ”off”
when read-out the pixels. Apart from that, the image intensifier can also greatly brighten
our single-photon image. As we mentioned before, the intensifier gain is varied by adjusting
the MCP voltage. Exposure is controlled by the gate width and the number of the gates
per frame which is the product of these two parameters.

Saturation may occur in the exposure process when the charge generated in one pixel
is extremely high and exceed the well capacity, resulting in charge will flow to the adjacent
pixels. This is bad for the precision of beam feature capture. When saturation happens,
we need to reduce the intensifier gain or the read out more frequently.

After the exposure, the charge from pixels is then transferred to the shift register
where the charge is magnified and digitized for data read-out operation. We can choose
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the region of interest suitable for our beam size to better the image data. Since the shape of
our interested region chosen is always the square fitting the beam signal, dual port readout
can be used to accelerate the readout process. During the read-out, the controller gain
can be realized on the software setting to change the relation between acquired electron
and analog-to-digital generated electron. The analog signal representing the charge of each
pixel is digitized and the number of bits per pixel is 16.

4.3 Configuring controlling LightField for taking data

4.3.1 Attempts on noise reduction

Noise reduction is important because the single-photon signal is very weak. Below are the
attempts for noise reduction I tried from several aspects.

Before each gated operation, the camera needs to remove the accumulated charge be-
cause the camera will acquire the signal no matter whether the gated operation is applied
for taking the exposure or not. And even if the data is read out with the intensifier “of” the
dark charge will still accumulate and being the only source for single at that time. How-
ever, the camera will automatically clean periodically for the dark charge while waiting for
acquiring the new data.

However, the noise generated from the power is constant throughout the process. This
kind of noise is thermally induced which can be reduced by cooling the CCD array thereby
improve the signal to noise ratio. An internal Peltier device directly cools the cold finger
which is a piece of laboratory equipment that is used for generating a localized cold sur-
face. The heat can be removed by the air-cooling system enabled by an internal fan and
exhausted through the side-panel grill. So it is dangerous to cover the side-panel grill as
it will block heart dissipation and may terminate the camera. Supplemental circulating
coolant is also provided for further cooling down the camera but it will bring more danger
and is not necessary for our condition. By setting the temperature on Light Field (control-
ling software) to -20 Celsius, the camera will automatically be cooling down the camera to
the locked temperature before ready to work. The software will control the cooling circuits
of the camera fixed for the set array temperature for stable high-quality measurement.

I also work on reducing the noise light from the lab environment as our emICCD is
super sensitive to normal light. By covering the black-out tape on all the possible light
sources found in the lab and building a sealed box with a 3 nm narrow-band 808 nm filter
to let the signal come in, we reduce the noise from the environment.
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Further dark counts reduction is done in the post-processing period and we developed
the technique for background subtraction which works well for our measurement and will
be discussed later in this chapter.

4.3.2 Gated operation

Gated operation in our emICCD camera behaves like an electronic shutter controlled by
the photo-cathode bias making detection of the super weak signals among interfering noise
with even higher energy possible. Figuring out how intensifier is being gated to acquire
the signal is super important for getting the expected high-quality single-photon intensity
pattern.

PI-MAX4 intensifier’s photocathode is biased only when the gate pulse is applied.
Exposure time is the ”on” period when charge integrates on the CCD will get summed to
the reported data. Gate width is the time when the light will be detected by the intensifier
and applied to the CCD. We can set multiple gates per exposure. Thus for a signal to be
detected in the gated intensifier, it needs to fall in a valid gate during a valid exposure
time. For a single photon beam, the gate width is usually set at 3 ns which is the same as
the coincidence window when doing tomography for a single photon entangled state. The
delay time can be set for controlling the time of opening the gate. By calculating the time
difference between the triggering photon path and the signaling photon path, we can figure
out the time need to be wait is 109 ns in order to capture the correlated photon feature.

We have two valid sources for trigger gating: Internal trigger and External trigger. An
internal trigger is just simply counting the signal based on the user-defined internal trigger
frequency and it is what we use for a quick check of the signal. For the external triggering
mode, it requires an external trigger so our controlling software can record the incoming
light when the external triggering signal is recognized at the Trigger In BNC on the rear
of the camera. For our single-photon beam, the threshold for triggering should is set at
0.5V to better record the incoming single-photon beams on another arm. For the triggering
threshold above 1 V like the default one (1.5 V ), the triggering photon can’t be identified
by the camera.

4.3.3 Signal intensity enhancement

The intensifier should be enabled every time we want to acquire the data. Whenever we
plan to take data later in the day but don’t want to shut down and restart the camera, we
can disable the intensifier and keep the measurement environment for safety.
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The emICCD gain mode is configured via optimal mode by which we select a value
for emICCD gain and the Light Field can then automatically select the best combination
of intensifier and EM gain values that provide the best possible signal quality using a
complex algorithm. You can also choose the advanced intensifier setting to manually set
the intensifier gains and EM gains separately, but is not needed for our purpose.

We can set the Region of Interest and configure the amount of sensor image area used
for acquiring the data that fits our beam well. The region we are interested in is only
about 150 pixels × 150 pixels out of 1024 pixels × 1024 pixels. It is good to every time
only take the data in the interested pixel areas because the sensitivity of each pixel might
differ from each other. Another benefit from this is that we can accumulate less noise from
other pixels and get rid of the interference of irrelevant pixels.

The frame is the area of the CCD array that is readout after an exposure time ends,
in our case is the fixed interested area chosen for an incident beam. We set the Frames to
Save to 1 as we only want to acquire one image each time for checking when optimizing
the parameter settings. Exposure per frame configures whether multiple exposures will
occur while a frame is being acquired and On-CCD accumulation is to decide whether
multiple frames will be used to create a single frame. These two parameters along with
the emICCD gain are the most significant parameters to make the signal intensity up. A
good combination of them makes it possible for us to record the super weak single-photon
beams with a clear feature we want. Finally, we figure out that the EmICCD Gain at 9000,
Exposure Per Frame to 2000, with 50000 On-CCD Accumulation works well and can give
us the clear features for measurement with a high signal to noise ratio.

Once we figure out all the parameters configuration for taking single-photon images,
make sure the intensifier is on and click the button “acquire” for getting the csv version data
for later processing. We tested that the configuration of our camera setting parameters
works well if the single-photon power is within the valid range (from 10k to 20k single
counts). Notice that all the setting we discussed in this chapter is used for the final image,
And for the quick check during the parameter optimization process, we can decrease the
exposure per frame to 200 saving 10 times as much time.

4.4 Image Post-processing

After getting the original data in a csv format, we can process these two-dimensional arrays
via background subtraction with adaptive filters. Each CCD has its dark charge pattern or
background that can be subtracted directly from the acquired signal image. However; we

34



want the customized background that has almost the same environment (both the external
environment and configuration of emICCD) as our signal frame. In this case, we take noise
data of the same frame as the signal data for background subtraction.

Since we want to see the clear feature of the intensity profile with high signal to noise
ratio (SNR), our optimization work is based on the feature observed by eye and the SNR
calculated as following:

S/N =
Signal√
Noise

(4.1)

where Signal is the mean of the signal frame subtract the mean of the noise frame as Signal
and
√
Noise is the square root the noise counts for the whole frame. Wiener filter is a

frequently used signal filter for producing a statistical estimate of an unknown signal with
a related signal (Gaussian) by filtering that known signal out. We first apply a Wiener
filter on the noise frame with the binning unit of 9 pixels× 9 pixels . Binning is a method
to associate the countes of one pixels with its nearest neighbour to smooth the image and
improve the SNR by summing multiple surrounding pixels together as the count for the
center pixel. Then we subtract that filtered noise from the original signal and noise frame
and do the second Wiener filter again on both as a new signal frame and noise frame.
Using the Eq. (4.1), we calculate the S/N before and after applying filtered background
subtraction. We compare the intensity pattern before and after post-processing with SNR
as shown in Fig. 4.2.

After that, we apply a non-linear (Gaussian relation with appropriate parameter) color
scaling to better distinguish the bright signal point with the dark non-signal point. Also
due to the property of the initial Gaussian beam where the intensity decay from the beam
center, we divide the signal by a Gaussian to remove the Gaussian profile of the beam. The
measurement results shown in Chapter 5 and Chapter 6 are all using the post-processing
technique we discuss here.
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Figure 4.2: Appliance of Post-processing technique

36



Chapter 5

Remote state preparation with
single-photon spin-orbit lattice arrays

Notes and acknowledgements

The contents of this chapter will be published and here are the author contributions to
this work:

Kevin Resch and Dmitry Pushin conceived of the study.

Ruoxuan Xu, Andrew Cameron and Sacha Schwarz carried out the experiment.

Connor Kapahi, Dusan Sarenac, Katanya Kuntz and Jean-Philippe MacLean
gave guidance in both theoretical and experimental work.

Ruoxuan Xu wrote the first draft of the manuscript.

All author listed above participated in regular discussion throughout the project and
contributed to the revision work.

5.1 Introduction

Remote state preparation (RSP) is a quantum communication protocol that relies on the
correlation between two distant parties. Here, we implement the remote state preparation
in a novel way using hybrid-entanglement. Our RSP scheme can be divided into three
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section: generation of the polarization-entangled Bell state |Φ+〉, Spin-orbit transfer on re-
ceiver photon using the Lattice of Optical Vortex prism pairs and detection of the prepared
state with the emICCD for verifying the state.

5.2 Theory

Starting from the maximally entangled state on polarization degree of freedom created
between two remote parties Alice and Bob, the shared entangled resource can be written
as

|Φ+〉 =
1√
2

(|HAlice〉|HBob〉+ |VAlice〉|VBob〉) . (5.1)

We introduce the spin-orbit coupling on Bob’s side can remotely prepare the OAM lattice
state by means of linear optic components (LOV) depending on the polarization measure-
ment on Alice’s side.

We apply the operator provided by LOV prism pairs given in Eq. (3.3) on Bob’s side to
generate a lattice of spin-orbit state expressed in Eq. (3.4). In our case, we use N = 2 LOV
prism pairs configuration shown in Fig. 5.1 and then filter the polarization with respect
to |R〉 to generate two-dimensional arrays which are then coupled with an initial spin
degree of freedom with the quantum number of l = ±1. The number N provides control
over the mean radial quantum number in the lattice cell. We can get a higher azimuthal
quantum number encoded in a single photon by increasing the LOV prism pairs as shown
in Eq. (3.7).

A spin-orbit lattice state is prepared via a remote state preparation protocol. We
express the originally generated polarization entangled Bell state |Φ+〉 shown in Eq. (5.1)
in the basis of left-handed and right-handed circular polarization states, |L〉 and |R〉. One
of the photon pair is transferred to the N = 2 LOV prism pairs set-up enables the hybrid-
entanglement shared between Alice and Bob. The shared state can be rewritten given in
Eq. (3.4) for all x and y to

|ψN=2
LOV〉 =

1√
2
|+1, PL〉Alice|R〉Bob

+
1√
2
|−1, PR〉Alice|L〉Bob

(5.2)

where |+1, PL〉 = (ÛxÛy)
2|0, L〉 and |−1, PR〉 = (ÛxÛy)

2|0, R〉 are in the basis with OAM
quantum number l and polarization P .
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It has been shown that the correlation between the coupled spin and orbit degrees of
freedom suggests post-selecting on one degree of freedom will determine the other. When
Alice performs the polarization measurement, the state |ψLOV〉 collapses and the OAM
degrees of freedom yields a transverse field distribution is based on the remotely prepared
polarization mixture of Alice and the polarization filtering on Bob side. As a result, what
we measure is a transverse two-dimensional intensity distribution as described in Eq. (3.6)
Im,n = |Alice〈m|Bob〈n|ψLOV〉|2 when performing m polarization measurement on Alice and
filtering Bob with polarization n. We filter the polarization of photons on Bob’s side to
|R〉, the measurement on the prepared state we perform on Bob’s side can be expressed by
Im = |Alice〈m|Bob〈R|ψLOV〉|2. Thus, the state prepared in Bob’s side is only determined by
Alice’s local polarization measurement m.

5.3 Experimental setup

Our experimental setup is shown in Fig. 5.1. We create a high-fidelity polarization-
entangled photon pairs using type II Spontaneous parametric down-conversion (SPDC)
by pumping with the 404.4nm Toptica iWave continuous-wave diode laser [52]. By tem-
perature tunning a 10 mm long periodically poled potassium-titanyl-phosphate crystal
(PPKTP) at 75 degree celsius, degenerated photon pairs have been generated enabling
high-efficiency entanglement.

Pumping with diagonally polarized light into the Sagnac interferometer shown in fig-
ure.1, we produced the state |ψ〉 = |Hi〉|Vs〉 + eiφ|Vi〉|Hs〉 [133, 38]. The phase can be
adjusted by tilting a quarter wave plate on Alice’s side to get the |Ψ+〉 Bell state. The
output of photon pairs are then coupled using single-mode fibers for spatial separation
of signal photons (Bob) and idler photons (Alice). By flipping the polarization of Bob
using fiber controller, we create a maximally entangled |Φ+〉 state in polarization degree of
freedom between two spatially separated photons described in Eq. (5.1) with the fidelity
of 97.5% verified by quantum state tomography [124].

We operate on one of the previously entangled photon pairs by sending signal photons
to the LOV prism pairs, generating a lattice of spin-orbit states. The signal photon beam
is magnified 25/3 times with telescope followed by N = 2 sets of LOV prism pairs and
a polarization filter fixed on |R〉 generating the OAM lattice state. In order to display
the features of the intensity profile while maintaining the signal to noise ratio, we apply a
single-lens imaging system mapping the pattern of prepared state to the sensor of emICCD
with a de-magnification factor of 25/6. After the polarization measurement, idler photons
are then guided to an avalanche photodiode (APD) which triggers the emICCD offering
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Figure 5.1: Experimental setup for the remote state preparation protocol. Photon pairs are
generated via spontaneous parametric down-conversion (SPDC) in a Sagnac interferometer and
coupled into single-mode fibers. After the propagation through a 30m long fiber, Bob photon is
sent through a telescope with 8x magnification, N = 2 sets of LOV prism pairs and a polarization
filter. Signal photons are then imaged onto an intensified electron-multiplying CCD (emICCD)
triggered by the detection of idler photons. A single-lens imaging system is used for mapping and
shrinking the photon beams for better signal to noise ratio.

1 classical bit. Unlike teleportation, we do not require a Bell-state measurement, only a
the measurement on signal photons is sufficient.The 30 m single-mode fiber is used for
delaying signal photons with respect to the idler photons enabling precise detection of
remotely prepared state.

5.4 Results

The measurement of the prepared states is captured by emICCD camera giving a two-
dimensional transverse field distribution profile as in Eq. (3.6) for verification of the pro-
tocol.

We use the PI-MAX4 Intensified CCD camera (emICCD PI-Max4: 1024 EMB) for
acquiring the intensity distribution profile I(P ) = |i〈P |s〈R|ψLOV〉|2 where P is the polar-
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Figure 5.2: Simulated and experimental measurement outcomes for the prepared state. We fix
the polarization selection on signal photons after N = 2 LOV prism pairs on |R〉 and measure
the two-dimensional intensity distribution I(P ) = |i〈P |s〈R|ψLOV〉|2 where P is the polarization
measurement on idler photons. The measurement taken for the prepared state is determined
by the polarization measurement performed on the remote idler photons. Here we show the
measurement outcome for prepared state of signal photons by measuring the polarization of idler
photons on |H〉, |D〉, |R〉.

ization measurement on idler photons and |R〉 is the polarization filtered after LOV prism
pairs on signal photons. The details for tackling the measurement problem of emICCD
camera is discussed in Chapter 4. When the incoming single-photon beam hit the CCD
array, the signal photons in interested region (150 pixels by 150 pixels) start to integrate
and then be digitalized and transmitted to the computer for storage and display. We use
Light-Field as controlling software where we can set the parameter configuration such as
intensity gain, exposure per frame, on CCD accumulation. The temperature of the operat-
ing environment is fixed at -20 degree Celsius cooling the CCD array for lower dark charge
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and further increase the signal to noise ratio. The delay time is set at 109 ns with a 3 ns
gate width calculated via traveling time difference between Alice and Bob photon path.

It is shown in Fig. 5.2 that the local polarization measurement on idler photons remotely
prepares a OAM lattice state on the other photon. Post-selecting idler photons onto right
circular polarization |R〉 prepares us the lattice of OAM state with a ”ring-like” transverse
field intensity pattern after filtering on right circular polarization. The “ring-like” state
indicates the polarization of signal photons before LOV prism pairs is |L〉 as shown in the
simulation results. This agrees with the correlation of |R〉Alice|L〉Bob in Bell state |Φ+〉 as
shown in Eq. (5.1).

5.5 Conclusion

In this work, we report the demonstration of a remote state preparation protocol with
a lattice of spin-orbit single-photon states via hybrid-entanglement. We start with high
fidelity polarization entangled state generated by Sagnac single-photon source. By apply-
ing an operation on one of the photon pairs via linear optics components demonstrated as
LOV prism pairs [107], we prepare lattice of spin-orbit states by performing polarization
measurements on its remote photon partner. Our scheme offers high efficiency for re-
mote manipulation of the structured OAM lattice via hybrid-entanglement and has great
potential for long-distance compatible and efficient quantum information protocols.
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Chapter 6

Talbot effect with single-photon
spin-orbit lattice arrays

Notes and acknowledgements

The contents of this chapter has been submitted to publication and here are the author
contributions to this work:

Kevin Resch and Dmitry Pushin conceived of the study.

Sacha Schwarz, Ruoxuan Xu and Andrew Cameron carried out the experiment.

Sacha Schwarz performed numerical simulation.

Connor Kapahi, Dusan Sarenac, Katanya Kuntz and Jean-Philippe MacLean
gave guidance in both theoretical and experimental work.

Sacha Schwarz wrote the first draft of the manuscript

All author listed above participated in regular discussion throughout the project and
contributed to the final version.

6.1 Introduction

The Talbot Effect occurs with the propagation of periodically structured waves and has
found its application in optical metrology, image processing, data transmission, and matter-
wave interferometer. In this work, we demonstrate the Talbot Effect with a single photon
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prepared in a lattice of orbital angular momentum (see Chapter 3). We observe that
upon propagation, the wavefronts of the single-photon indicate the periodic helical phase
structure which corresponds to a lattice of orbital angular momentum (OAM) state.

6.2 Theory

The Talbot Effect is near-field diffraction where light beams that are periodic in the trans-
verse direction reappear in the propagation direction. We demonstrate the Talbot Effect
with single photons prepared in a lattice of orbital angular momentum arrays.

In this work, we focus on the OAM lattice state which is generated using the technique
we introduced in Chapter 3. Spin-orbit arrays state can be attained by passing the left
circularly polarized light through pairs of LOV prism pairs [107]. Each lattice cell of such
beam approximates the following spin-orbit state:

|ψ〉 = A(r, φ)
[
cos
(πr
d

)
|L〉+ iei`φ sin

(πr
d

)
|R〉
]
, (6.1)

where (r, φ) are the cylindrical coordinates, ` specifies the OAM number, d is the distance
in which the polarization state performs a full rotation on the Poincaré sphere, |L〉 and
|R〉 denote the right and left circular polarization states, and A(r, φ) denotes the envelope.
We prepare the lattices of OAM states by filtering the polarization that is coupled with
OAM.

The operators of the two perpendicular birefringent gradients are given in Eq. (3.3).
Sending a photon in the left circularly polarization state |L〉 through N = 2 sets of such
prism pairs prepare the state:

|ψN=2
LOV〉 = α(x, y)(ÛxÛy)

2|L〉, (6.2)

where α(x, y) describes the incoming Gaussian beam envelope with beam waist w0. The
periodic nature of polarization rotations enables the prism pairs to create a two-dimensional
lattice of spin-orbit states.

By filtering the state in Eq. (6.2) on the right circular polarization |R〉, we obtain the
initial intensity distribution profile of the form

I(x, y) =|〈L||ψN=2
LOV〉|2

=|α(x, y)|2 cos2
[πx
a

]
cos2

[πy
a

]
× (2− cos

[
2π(x+ y)

a

]
− cos

[
2π(x− y)

a

]
),

(6.3)
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Figure 6.1: Simulated initial distribution in xy plane which is perpendicular to the propagation
direction z. This OAM arrays state is obtained by sending left-handed circularly polarized light
through N = 2 sets of the LOV prism pairs filtered to the right-handed circular polarization at
propagation distance z = 0.

which is depicted in Fig. 6.1. This periodic beam structure imprinted by the LOV prism
pairs sets up conditions required for the Talbot Effect. The transmitted light interferes in
such a way that after a Talbot distance expressed in Eq. (1.9), the initial periodic intensity
pattern reappears. The same intensity distribution also appears at half the distance, zT/2,
but with spatial shifts ∆a = a/2 along the x- and y-directions.

We describe the free-space propagation of single photons by a complex-valued transverse
field distribution E(x, y) convoluted with the Fresnel propagator

KF (x, y, z) =
eikz

iλz
exp

[
ik

2z
(x2 + y2)

]
, (6.4)
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Figure 6.2: (A) By plotting the yz intensity at x = a/4 (indicated in Fig. 6.1 with the dash-
dotted white line) we recover what is known as the Talbot carpet. (B) xy intensity patterns
at specific propagation distances z in (A). (C) The Talbot carpet with no phase structure in
the initial beam. (D) the xy intensity cross-sections at certain propagation distance in (C).
This demonstrates the effect of the OAM lattice phase structure on the intensity profile at the
fractional Talbot Distances.

where k is the wavevector. The field E(x, y) at position z is evaluated via

E(x, y, z) =
eikz

iλz

∫∫
dx′dy′E(x′, y′, 0) e

ik
2z

[(x−x′)2+(y−y′)2]. (6.5)

In Fig. 6.2, we show the simulated intensity distribution in yz plane when beam propa-
gates along z direction as well as the intensity distribution in xy plane at certain propaga-
tion distance. Fig. 6.2 (A) and Fig. 6.2 (C) depict the intensity pattern in yz plane at x = 1

4

as shown in Fig. 6.1 with a white dash line for the initial intensity profile 〈L|ψN=2
LOV〉 and

|〈L|ψN=2
LOV〉|, respectively. Fig. 6.2 (B) and Fig. 6.2 (D) give the intensity pattern at certain

fractional Talbot distance z = 0, zT/8, zT/4, 3zT/8, zT/2, 5zT/8, 3zT/4, 7zT/8, zT . Among
them, we can also observe that the intensity distributions along the full zT distance are
exactly symmetric about z = 1/2zT .
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6.3 Experimental setup

The experimental setup is depicted in Fig. 6.3. We start with degenerated photon pairs
generated via type-II spontaneous down-conversion using a Sagnac interferometer (see n
Chapter 2). The pump is horizontally polarized creating the target state |H〉s⊗|H〉i where
s stands for signal photon heralded using idler photon denoted as i.

The outputs of the Sagnac interferometer are coupled into two single-mode fibers sepa-
rating the signal and idler. The signal photons are sent through a telescope to magnify the
beam by a factor of 25/3, followed by N = 2 sets of LOV prism pairs. This configuration
prepares a lattice of spin-orbit states where one of the polarization states is coupled to
` = 1. Higher values of ` may be achieved by employing a setup with more LOV prism
pairs, while negative values of ` may be achieved by changing the input polarization state
[107].

The polarization state of the signal photon is prepared using a half-wave plate (HWP)
and a quarter-wave plate (QWP). After transmission through the LOV prism pairs, the
signal is filtered with respect to left-handed or right-handed circularly polarized light using
a QWP. The free-space propagation of the OAM lattice is then analyzed via an arrangement
of flip mirrors that effectively change the propagation distance z before measurement. The
single-photon detection unit consists of a telescope to demagnify the beam by a factor of 4
(f3 and f4 lenses in Fig. 6.3) and a gated intensified electron-multiplying CCD (emICCD
PI-Max4: 1024 EMB). The telescope is followed by a single lens (f5 lens in Fig. 6.3) which
images the plane immediately following the telescope.

The idler is detected by an avalanche photodiode, which acts as a trigger for the
emICCD, heralding the single-photon state. We use a 30 m spool of single-mode fiber
to delay the detection of the signal with respect to the idler to accommodate the delays
from triggering electronics. We set the delay time between the idler and signal photon for
each propagation distance z and use the emICCD camera to align the coincidence window
of 3 ns.

In addition to the single-photon setup, we couple light from a linearly polarized laser
diode (central wavelength λLD = 813.4 nm) into the signal channel to compare images
generated by single photons versus laser diode light. We measure the intensity profile
using a conventional CCD camera (Coherent LaserCam-HR II) at the same positions as
the single-photon images captured by the emICCD.
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Figure 6.3: Experimental setup for Talbot Effect. Correlated photon pairs are generated via
type-II spontaneous parametric down-conversion in a Sagnac interferometer and coupled into
single-mode fibers (SMF). A singles rate of 18 kHz and a coincidence rate of 1.5 kHz is measured
after the SMF. After propagating through a 30 m long fiber, the signal photon is sent through
a telescope with 8.3x magnification, N = 2 sets of LOV prism pairs and a polarization filter.
The free-space propagation z can be varied via different flip mirror combinations. The signal
photons are then imaged onto an intensified electron-multiplying CCD (emICCD), triggered by
the detection of the corresponding idler. The imaging arrangement in the detection unit consists
of a telescope with 4x demagnification (f3 and f4 lenses) followed by a single-lens (f5) that images
the beam onto the detection plane of the emICCD.

6.4 Results

Fig. 6.4 presents the simulated as well as the measured intensity distribution profile using
both single-photon and laser diode at fractional Talbot distance z = 0, zT/8, zT/4, 3zT/8, zT/2.
In principle the Talbot distance is equal to 16 m.

At half Talbot distance the aperture array repeats itself but with a half-pitch shift
from the original structure. Tab. 6.1 lists the experimental distances, Zexp, which effectively
correspond to the theoretical distances, Ztheo. The observed intensity profiles are processed
using background subtraction and an adaptive two-dimensional Gaussian image filter.
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Figure 6.4: Simulated and observed self-images at different fractional Talbot lengths. We
measure the two-dimensional intensity profile I(x, y) = |〈L|ΨN=2

LOV〉|2 at positions z ∈ Zexp. In
the simulation, we multiply a Gaussian beam envelope with the same beam waist w0 as in the
experiment (i.e., w0 = (4.1±0.05) mm) to account for features occurring due to finite beams sizes
when propagating along the z-axis. For comparison, we couple light from a laser diode into the
signal channel, and measure corresponding self-images at the same positions. Good qualitative
agreement is found between the simulated and observed profiles.

In Tab. 6.1, we present the SNR before and after the imaging post-processing for
different propagation distances. However, it can be noted that the self-imaging property
of this beam can be seen clearly in the similarity between images taken at distances z =
{0, zT/2}, with the correct spatial shift. The propagation distances in the experimental
setup were increased by a constant offset of 0.85 m to account for the three lens system
in the detection unit [44]. We can see the outermost rings of the zT/2 image are distorted
a little bit and that’s because of the boundary effect which can be mitigated by using a
beam containing more lattice sites.
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Ztheo Zexp
Measured

SNR
Post-processed

SNR
0 0.71 m 0.584 240.377

zT/8 2.86 m 0.547 181.988
zT/4 4.85 m 0.113 102.514
3zT/8 6.87 m 0.159 126.298
zT/2 8.86 m 0.259 264.755

Table 6.1: Experimental propagation distances Zexp which correspond to the fractional Talbot
distances Ztheo, and single photon signal-to-noise ratio (SNR). The SNR is given by the ratio of
the average signal to the standard deviation of the background. In the third (fourth) column, we
list the SNR calculated from raw (post-processed) images.

6.5 Conclusion

In this work, we demonstrated and analyzed the Talbot Effect with single photons prepared
in a lattice of OAM states. Heralded single photons are sent through N = 2 sets of LOV
prism pairs and their transverse two-dimensional intensity distributions are measured at
various fractional Talbot lengths. The propagation of structured wavefronts is calculated
in the near-field and shows good agreement with experimental results. We observe that
the initial phase profile defines the transverse intensity pattern at various propagation
distances, and thus the Talbot carpet. Future work will scrutinize the connection between
OAM and Talbot physics as a new characterization tool. Other avenues of exploration
include the addition of path entangled OAM lattices and the implementation of quantum
logic using the Talbot Effect and the OAM degree of freedom.
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Chapter 7

Summary for the works

The novel method for generating a lattice of spin-orbit beams using Lattice of Optical
Vortice (LOV) prism pairs was first demonstrated with neutrons in Dmitry Pushin’s group.
This method interfaces orbital angular momentum with the easily manipulated spin degree
of freedom giving a new possibility for higher dimensional quantum systems. In our work,
we repurpose their technique to work with single photons instead of neutrons in order to
image the intensity patterns. This also allows us to integrate entanglement into experiment
and demonstrate remote state preparation of a novel state.

Photons barely interact with the environment which makes it the most suitable system
for long distance quantum communication. Our initial idea was to combine the spin-
orbit techniques with quantum entanglement to implement a quantum communication
protocol: Remote State Preparation. We begin with high fidelity polarization-entangled
photon pairs. By sending one of the photon pairs through two sets of LOV prism pairs
followed by a polarization filter, we implement a state preparation scheme between two
spatially separated photons sharing a hybrid-entangled state involving polarization and
OAM degrees of freedom. We showed that OAM lattice states can be remotely prepared
by local polarization projective measurement of its remote partner.

Due to the periodic structure of the OAM lattice we prepared, we can demonstrate a
near-field diffraction effect known as the Talbot Effect. The Talbot Effect occurs with the
propagation of periodically structured waves. It has enabled several unique applications in
optical metrology, image processing, and data transmission. It is a significant addition to
the toolbox of orbital angular momentum and spin-orbit techniques which opens another
possibility for optical implementations of quantum information.

In order to introduce these two experiments, I first gave a background knowledge in-
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troduction in chapter 1 and then discussed in detail the three crucial techniques used in
both experiments in chapter 2-4.

Future works for remote state preparation can be finding a method to quantitatively
benchmark the entanglement. We can also implement novel high dimensional Quantum
Key Distribution protocols that require a structured lattice beam [21]. For the Talbot
Effect experiment, we can implement quantum logic with the Talbot Effect of our OAM
lattices. Another application we can explore is the phase retrieval of the lattice state using
the Talbot Effect with OAM degrees of freedom.

My contributions to these two experiments:

1: Maintained the Sagnac entangled source as shown in Fig. 2.1 which was built by
Lydia Vermeyden in 2014;

2: Built the two polarization measurement stages for state tomography, the set-up
figure is shown in Fig. 2.2;

3: Implemented the state tomography using vi in Labview and analyzed the recon-
structed state using the maximum likelihood Mathematica code written by Rainer Kaltenbaek
and Robert Prevedel in 2010;

4: Built the entire experimental set-ups (Fig. 5.1 and Fig. 6.3) for both Remote State
Preparation and Talbot Effect experiments with Andrew Cameron and Sacha Schwarz;

5: Fine-tuned the emICCD (software configuration and data post-processing) single-
photon camera for good-quality intensity measurements with Connor Kapahi and Andrew
Cameron;

6: Wrote the manuscript of the Remote State Preparation experiment.

Other important contributions to these two experiments:

1: Sacha wrote the whole Python package for LOV prism pairs operators;

2: Sacha did the simulations for both set-ups (imaging system, propagation system,
etc.) and Talbot Carpet;

3: Sacha wrote the manuscript of the Talbot Effect experiment;

4: Dusan Sarenac and Connor Kapahi helped a lot in controlling the LOV prism;

5: Katanya Kuntz taught Andrew Cameron and me a lot about optics in the lab and
did the initial simulation for LOV prism pairs during the first one to two semesters.
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Helmerson, and William D Phillips. Quantized rotation of atoms from photons with
orbital angular momentum. Physical review letters, 97(17):170406, 2006.

[5] Alain Aspect, Philippe Grangier, and Gérard Roger. Experimental realization of
einstein-podolsky-rosen-bohm gedankenexperiment: a new violation of bell’s inequal-
ities. Physical review letters, 49(2):91, 1982.
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Appendix A

Python code for OAM lattice
simulation

A.1 Define the field generated by LOV prism pairs

Note: This code is written by Sacha Schwarz in 2018.

def Ux(x,x0,rc):

sigmaX=np.matrix([[0,1],[1,0]])

return (np.cos(np.pi*(x-x0)/(2*rc))*np.identity(2)

+1j*np.sin(np.pi*(x-x0)/(2*rc))*sigmaX)

def Uy(y,y0,rc):

sigmaY=np.matrix([[0,-1j],[1j,0]])

return (np.cos(np.pi*(y-y0)/(2*rc))*np.identity(2)

+1j*np.sin(np.pi*(y-y0)/(2*rc))*sigmaY)

Here is the function defined for LOV-field with an explanation for all variables used.

def LOV_field(N,X,Y,x0,y0,rc

,phi_IN,ket_meas

,w0):
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for k in range(dim):

for kk in range(dim):

x=X[k,kk]

y=Y[k,kk]

field[kk,k] = np.dot(np.conjugate(ket_meas).T

,(Ux(x,x0,rc)*Uy(y,y0,rc))**N*phi_IN)

field=np.exp(-(X**2+Y**2)/w0**2)*field

return field

’’’Explanation for LOV_field function:

Generates transversal distribution of LOV prisms (with interferometry and

plotting option) for given input and projection state

INPUT

-----

N: int

sets of LOV prism pairs

X: ndarray

2D x axis meshgrid array

Y: ndarray

2D y axis meshgrid array

x0: float

zero position of x

y0: float

zero position of y

rc: float

smallest radial distance at which the polarization

undergoes a pi-rotation

phi_IN: ndarray

polarization state as input

ket_meas: ndarray

polarization state as input

w0: float

beam waist of transversal Gaussian intensity distribution
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OUTPUT

------

field: ndarray

LOV_field(X,Y) values for input meshgrid X,Y with parameters

N,x0,y0,rc,phi_IN,ket_meas,w0,kx,ky,phi_x and phi_y

’’’

A.2 Plotting simulation results of the intensity distri-

bution

Now, I plug in parameters of our LOV prism pairs and set the beam waist (w0) to be what
we generated in the lab (25/3 mm). The polarization of the incoming beam is set to be
|L〉 and we post-select on |R〉 after N = 2 sets of LOV prism pairs.

nSamples=2**10 #we have 1024*1024 pixels

theta=2*np.pi/180 #prism angle

lambda0=0.808 #wavelength of our beam

dn=0.0091 # birefringence of LOV prism (circular quartz wedges)

a=lambda0/(dn*np.tan(theta))

x0=0

y0=0

rc=a/2

limits=25/3*(10**3) #We use micrometers in the code

vec=np.linspace(-limits,limits,nSamples)

X,Y=np.meshgrid(vec,vec)

field = [LOV_field(2,X,Y,x0,y0,rc,phi_IN=ket_L(),ket_meas=ket_R()

,w0=25/3*(10**3),grayPlots=False)]

The simulation outputs the intensity distribution seen in Fig. A.1. In the lab our images
are not as bright so only the middle 3× 3 lattice is visible. We crop the simulated images
by setting the limitation of x− axis and y− axis to the same region.
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Figure A.1: Simulated OAM lattice with all parameters used in the lab

Here I give an example of the Python code for generating Fig. 3.1. First, we generate
the intensity distribution with parameters used in the lab:

phi_IN_vec=[ket_H(),ket_V(),ket_D(),ket_A(),ket_L(),ket_R()]

nSamples=2**10

theta=2*np.pi/180

lambda0=0.808

dn=0.0091 # birefringence of LOV prism (circular quartz wedges)

a=lambda0/(dn*np.tan(theta))

x0=0

y0=0

rc=a/2

N=2

w0=25/3*(10**3)

limits=25/3*(10**3)
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vec=np.linspace(-limits,limits,nSamples)

X,Y=np.meshgrid(vec,vec)

theoField=np.zeros((len(phi_IN_vec),nSamples,nSamples),dtype=’complex’)

for k in range(len(phi_IN_vec)):

theoField[k,:,:]=LOV_field(N,X,Y,x0,y0,rc,phi_IN=phi_IN_vec[k]

,ket_meas=ket_R(),w0=w0,plots=True)

Then, we crop the simulated images to match the visible region observed in the lab and
plot them nicely.

sidePos= a

lim=4e3

xPlotLimits=[-lim,lim]

yPlotLimits=[-lim,lim]

fontSize=18

fig,ax=plt.subplots(3,2,figsize=(10,10))

for j in range(3):

for i in range(2):

p=ax[j,i].contourf(X,Y,np.abs(theoField[2*j+i,:,:])**2,100, cmap=’inferno’)

ax[j,i].set_aspect(’equal’)

plt.sca(ax[j,i])

plt.xlim(xPlotLimits)

plt.xticks([-sidePos,0,sidePos], [’-a’, ’0’, ’a’], fontsize=fontSize)

plt.ylim(xPlotLimits)

plt.yticks([-sidePos,0,sidePos], [’-a’, ’0’, ’a’], fontsize=fontSize)

cbar=fig.colorbar(p, ax=ax[j].ravel().tolist())

cbar.solids.set_edgecolor("face")

cbar.set_label(’Intensity’, fontsize=fontSize, labelpad=10)

cbar.set_ticks(np.arange(0, 1.1,0.25))

plt.show()
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