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Abstract 

The pursuit of real time quality detection of a resistance spot weld (RSW) in the automotive 

industry has progressed alongside technology. With the capability of modern controllers to collect real-

time data from the welding procedure on a millisecond scale, the use of the dynamic resistance curves 

has become feasible. The controller used in this study was a Bosch Rexroth PSI63C0.120L1 with 

adaptive welding capabilities. The adaptive welding method used by Bosch is based on a reference 

dynamic resistance curve upon which the controller bases all of the adjustments to the welding current 

and/or time.  

 In this study the dynamic resistance curves of a simple 2 high stack up of USIBOR® was welded 

under possible unideal process conditions such as shunting, edge welding, and shim/gap welding. It 

was found that under extreme cases for shunt and edge welds, the dynamic resistance curve changes 

significantly. For the particular set up in this thesis, it was found that at a center to center weld shunting 

distance of 10 mm and an edge distance of approximately half the electrode face is statistically 

detectable. For shim/gap welding, the change in the dynamic resistance curve was present at a 1mm 

gap and less at the 2mm gap due to the set-up of the robot arm. When performing the welds under the 

same process conditions with adaptive welding, there was little change to the adaptive dynamic 

resistance curves. In the shunted condition, the adaptive welding extended the time and was able to 

overcome the shunting effect to produce an ideal nugget size. During edge welding it resulted in 

expulsion when it would otherwise not occur, producing undersized nuggets.  

 In an analysis of the quality indicators of the weld controller, it was discovered that the 

Stabilization Factor is based on the average values of the weld, while the UIP values are based on the 

deviation of the dynamic resistance of the weld to the reference. Both the quality indicator variables 

the controller output were found to have no correlation to either the nugget diameter or the tensile 

strength of the welds. Thus, an alternative to make use of the data the controller collects was explored 

through a statistical approach of large data and regression modelling. A model with a fit of 40% was 

made for the similar stack up and validated with production parts, but it lacked the robustness to capture 

all the data. When attempting to replicate the study on a dissimilar weld situation, the laboratory data 

and the data from the production part resulted in an unacceptable fit. This was due to the strong effect 

of different robot welders on the dynamic resistance curve, the lack of robustness in creating the model, 

and lack of logic found in the model parameters and coefficients.  
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Chapter 1 

Introduction 

Resistance spot welding (RSW) is a popular choice in joining sheet metals in any high-volume 

manufacturing setting. Due to its ease of automation, relatively low capital cost, and quick production 

speed, the automotive industry has accepted it as the main form of joining vehicle bodies. The average 

vehicle will be composed of various sheets of metal joined together with upwards of 5000 spot welds 

[1]. The automotive industry’s desire to move forward with more lightweight materials led to the 

introduction of stronger and thinner sheets of steel, referred to as advanced high strength steels (AHSS), 

with their grades and properties comparted in Figure 1.1. Most vehicles in production are composed of 

these AHSS, such as dual-phase (DP), transformation-induced plasticity (TRIP), and press hardened 

steels (PHS) [2]. The material used in this study is classified as a 3rd generation AHSS, commonly 

referred to as USIBOR® 1500 by ArcelorMittal.   

 

Figure 1.1. Steel Strength Ductility Diagram of Today's AHSS Grades [2] 

1.1 Quality of Resistance Spot Welds 

Based on the sheer volume of spot welds on a vehicle and limited time allotted to production, 

each weld cannot be inspected for faults or defects. Instead, during the design and mechanical testing 

process for a vehicle, specifically chosen welds, often referred to as “critical spots”, are deemed to 

represent the integrity of the vehicle as they greatly impact strength/fatigue [3], [4]. During production, 

there are scheduled non-destructive tests, the most common being chisel checks, to determine if there 

are any issues. Further explained in section 2.3.2, the chisel check verifies if a weld nugget is present 

if the workpieces do not separate when the chisel is inserted. In the case of a detection of defect, all of 

the parts between the detection and previous test are required to be individually checked and possibly 

rewelded. This method is common practice in the automotive industry which is inefficient as the cause 
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and occurrence of the issue is difficult to identify and requires downtime to inspect and perform the 

required repairs.  

The main quality indicators of the resistance spot weld in the automotive industry are the weld 

nugget size, the tensile/cross-tension strength, and presence of defects [5], [6].  The most common 

forms of defects in spot welds are: undersized welds, stuck welds, expulsion, cracks, voids, and 

mislocated/edge welds [5]–[9]. All of the listed defects directly affect the performance of the joint, 

leading to loss of strength or change in failure modes [8]. The two extremes of a weld fracture mode 

are the complete button pull out and interfacial fracture (as seen in Figure 1.2). In conventional steels, 

the button pull out is the preferred failure method as it is known to absorb more energy in comparison 

to interfacial failure [10]. AHSS have a higher fracture toughness which encourage interfacial failure 

but exhibit low to no loss of load bearing strength [11]. 

 

Figure 1.2. Diagram of Button Pull Out Failure (Left) and Interfacial Failure (Right) [6] 

1.2 Current Quality Detection Process 

As briefly mentioned, the current process utilizes chisel checking specified critical welds as the 

main non-destructive method at a designated interval to prevent batches of defects. From a control 

perspective, the same welding parameters are applied to each weld using an automated process allowing 

for low variability in the repetition of the welds. Unfortunately, there are unaccountable variables or 

circumstances such as poor set up, wrong material, electrode misalignment, etc. which cause unideal 

welding conditions [12]–[15]. While an error in the process will be detected by the periodic quality 

tests it may miss the outliers or the one-off weld defect which occurs between the quality checks. Thus, 

the need for online quality monitoring arose to detect the one-off defect and ultimately avoid the 

periodic quality tests that occur during fabrication.  

 Multiple methods over the years have been proposed to detect the quality of a weld in real-

time. They can be categorized as either a secondary process or utilizing the in-situ signals. The chisel 

check falls under the secondary process category as it requires an additional step in inspecting the weld 

quality and may incur an increase in production time and cost. The use of in-situ signals is the preferred 
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method as it allows for instantaneous interpretation of values. The primary signal used in this study is 

the dynamic resistance, the resistance curve recorded between the electrodes during the weld. 

1.3 Statistical Tools 

To perform online monitoring of weld quality, the data the controller can collect and export to 

the network needs to be analyzed against the quality indicators to define a correlation and ultimately 

link causation. The three main statistical analysis performed was hypothesis testing, linear regression, 

and analysis of variance (ANOVA). The hypothesis testing was performed using the student’s t-

distribution: 

 
|
𝑋̅𝑠𝑎𝑚𝑝𝑙𝑒 −  𝜇0

𝑆/√𝑛 
| ≤ 𝑡

𝑛−1,
𝛼
2

  (Eq. 1) 

 Where, 𝑋̅ is the sample mean, 𝜇0 is the null hypothesis of population mean, t is the t-distribution 

variable, S is the variance, 𝛼 is the significance level, and n is the number of data points. Application 

of hypothesis testing allows for determining outliers, means comparisons of different conditions, and 

paired testing. The linear regression method was performed using Minitab, an external software, but 

the regression modeling followed this matrix calculation: 

 

𝐺𝑖𝑣𝑒𝑛 𝑚𝑜𝑑𝑒𝑙: 𝑦𝑖 = 𝛽1
∗ + 𝛽2

∗𝑥𝑖 + ⋯ + 𝜀𝑖 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑦 
(Eq. 2) 

 Where for a given data set of n trials and p parameters, the X is a n by p+1 matrix, and y is a n 

by 1 vector, resulting in a p+1 by 1 vector corresponding to the coefficients of best fit to the linear 

model. This level of regression is the basis for any modelling or neural network fitting.  

The analysis of variance is a popular method to breakdown the analysis of regressions (as seen 

in Table 1.1). From left of the table to the right, the sum of squares of the regression (SSR) and error 

(SSE) can be calculated using the experimental values of Y (𝑌), the mean of Y (𝑌̅) and estimate of Y 

(𝑌̂). The mean square/variance (MSR & MSE) can be found with the degree of freedom (DoF), where 

p is the number of parameters and n is the number of observations. The final column is compared to 

the F-test where if the value of MSR/MSE is greater than F(p-1, n-p) then the regression is significant, 

and the model explains a majority of the variability in the data. A low MSE indicates a strong regression 

model. Another indicator of the model is the coefficient of determination (R2=SSR/SST), where the 
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ratio indicates the percentage of variation the model accounts for (ranging from 1 accounting for all, 

and 0 accounting for none).  

Table 1.1. Basic Summary of the ANOVA Table of a Regression 

Source Sum of Squares Degree of Freedom Mean Square F 

Regression Σ(𝑌̂ − 𝑌̅)
2
 p-1 SSR/(p-1) MSR/MSE 

Error Σ(𝑌 − 𝑌̂)
2
 n-p SSE/(n-p)  

Total Σ(𝑌 − 𝑌̂)
2
 n-1   

Another measure of the data’s fit to the regression model/equation is the R2 or R-sq value which 

explains how well the input variables explain the variation of the output variable. On a curve, it relays 

how effective the line of best fit is. When performing regressions with multiple variables an adjusted 

value of R-sq (adj), calculated by (Eq. 3), to counter the superficial increase of R-sq with additional 

variables. In either case, the close the value is to 100%, the better the model explains the values.  

 𝑅𝑎𝑑𝑗
2 = 1 = (

(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
) (Eq. 3) 

1.4 Objectives 

The main objective of this thesis is to fully investigate the quality detection ability of the 

resistance spot welding process using the dynamic resistance curve and identifying the capability of the 

adaptive welding controls. Correlating the dynamic resistance to quality such as microstructure, and 

tensile tests along with the implementation of adaptive welding allows for a stronger understanding of 

this technology. The specific objectives are: 

1. Investigate how the dynamic resistance of USIBOR® during resistance spot welding changes 

according to external variability (such as edge proximity, shunting, shims) 

2. Understand the adaptivity feature of the weld controller along with the quality indicators 

(StabilizationFactor and UIP) output by the controller 

3. Determine if quality indicators provide any insight or correlation to the weld quality 

4. Investigate the adaptive welding controls and outputs to determine feasibility of better weld 

quality detection 
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1.5 Criteria and Constraints 

The welding parameters used in this study were based on the industry partner’s current welding 

set-up. The parameters of the welding schedule was verified based on existing literature and the 

American Welding Society standards for spot welding (AWS 8.1 and 8.9) [5], [6], [16]. The nugget 

size evaluated was deemed acceptable. All other testing or experimentation was based on the AWS 

standards if not specified. The experiments were all limited to the material USIBOR® as the experiment 

process was not material dependent and was the most commonly used material in the specified process 

under investigation by the industry partner.  

1.6 Thesis Outline 

The following thesis report has been organized in the following 7 chapters: 

Chapter 1: Introduction to the report covering the background, problem, objectives and further 

insight to the field.   

Chapter 2: Literature Review of the resistance spot welding process, the fundamental parameters 

of spot welding, the representation of the dynamic resistance curve, and material used. 

Chapter 3: Experimental Methods undertaken to gather results presented in the latter sections of 

the thesis. Inclusion of specimen specifications, equipment, and experimental design.  

Chapter 4: Effect of Process Conditions on the Dynamic Resistance Curve of USIBOR® 

investigates the effect of shunting, edge proximity and shim/alignment of the welds on the 

dynamic resistance curves.  

Chapter 5: Analysis of Adaptive Welding Capabilities of Bosch Rexroth PSI63C0.120L1 

Controller explores the effect of adaptive welding on the dynamic resistance curve and 

determines the main variables making up the quality indicators.  

Chapter 6: Identification of Potential Variables to Correlate the Nugget Size of USIBOR® and 

Dissimilar Stack Up provides insight into utilizing the quality indicators to derive a stronger 

regression model for relating nugget diameter.  

Chapter 7: Conclusion and Final Remarks are the final statements, summarizing all of the major 

findings of each chapter and recommendations.   
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Chapter 2 

Literature Review 

To best approach the issues involved in detecting quality of the resistance spot welding process, 

the basic concepts and theory behind it must first be reviewed. Throughout this chapter, the principles 

of resistance spot welding are explained, and the corresponding signals are explored. Current literature 

attempting to solve the same issues are also compiled to determine the feasibility or see if a unifying 

theory is present.  

2.1 Resistance Spot Welding   

Resistance spot welding (RSW) utilizes the contact surface resistance between sheets of metal 

to localize heat generation with a high current. Two copper electrodes are required to apply pressure 

while conducting the current to a small diameter area [17]–[19]. The invention of the RSW process was 

accredited to Elihu Thomson, who submitted a patent for an electrical welding apparatus in 1891 that 

modern resistance welders (spot, seam, and flash butt welding) are based upon [20]. The welding heat 

is based on Joule heating, where Q is the amount of heat (joules), I is the current (amperes), R is the 

resistance (ohms), and t is the time (seconds): 

 𝑄 = 𝐼2𝑅𝑡 (Eq. 4) 

The RSW process equipment consists of a step-down transformer to produce currents on the 

scale of thousands of amperes (at low voltages), a clamping/pressurizing mechanism, electrodes, a 

water-cooling system, and a welding controller. Concerning the power sources used for RSW, direct 

current (DC) is preferred over alternating current (AC) in the automotive industry due to its robust weld 

lobes, larger nuggets at lower current inputs, and efficient melting heat [21], [22].  

 

Figure 2.1. Schematic Breakdown of RSW Components [17]  
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2.1.1 Basics of RSW 

    

1. Clamp 2. Squeeze 3. Current 4. Hold 

Figure 2.2. Stages of a Resistance Spot Weld 

The RSW process is broken down into 4 stages: clamping, squeeze, current, hold as 

summarized in Figure 2.2. The purpose of the clamping stage is to ensure proper positioning of the 

electrodes before high forces (on the scale of kN) are applied to the surface. When using a manual or 

pedestal welder, this step is important for precise welding locations and to avoid any irreversible 

mistakes. With the rise of automated resistance spot welders, the first step is less crucial as electronics 

ensures repeatable positioning [23]–[26]. During the squeeze stage, a high force is applied through the 

electrodes. The current is then passed through the material form one electrode to the other allowing for 

Joule heating to occur at the metal to metal interface. After the designated welding time, the nugget is 

held between the electrodes to help cool the nugget and finalize the solidification process. The 

workpiece is then released by the electrodes signaling a completed weld. This entire procedure occurs 

on the scale of hundreds of milliseconds.  

2.1.2 RSW Parameters 

To produce an ideal weld in production, the parameters are required to be optimized through 

offline studies. Determining the boundaries of acceptable welding conditions is often referred to as the 

weld lobe curve or process window (see Figure 2.3). The upper bounds of the weld lobe are defined by 

the presence of expulsion (undesired ejection of metal from weld, seen as sparks/spatter) but not limited 

to failure method, indentation, etc. The lower bounds is most commonly defined by a minimum nugget 

size, which follows the AWS standard or the rule of thumb 4√t [6]. 
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Figure 2.3. Representation of a Standard Weld lobe Curve [17] 

The variables that can be optimized in creating a welding schedule are the electrode cooling 

rate, electrode force, current, and time. As a guideline all of the parameters are generalized in the AWS 

standard based on the strength of the material [5], [6]. The reason these generalized parameters may 

not be universal is due to the multiple interactions that occur in the process based on the material stack 

up.  

2.1.2.1 Electrode Cooling Rate 

The electrode flow of cooling water through the electrodes prevents any expulsion or sticking 

at the electrode-workpiece surface [27]. The cooling rate of the nugget is recorded to be on the 

magnitude of thousands of degrees Celsius per second, thus the temperature of the cooling water is 

widely neglected [27]–[29]. It is recommended to increase the cooling water flow rate for thicker 

materials to help dissipate the relative increase in heat required to weld. 

2.1.2.2 Electrode Force 

The applied electrode force has two main purposes. The first is that it allows for improved 

localization for the current path due to the breakdown of surface asperities. The reduction of surface 

asperities decreases the resistance in the pressurized area promoting the current to be concentrated in 

the area under the electrodes. The second purpose is that it helps to contain the molten nugget during 
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the weld resisting expulsion [17], [18], [30]. As the nugget expands due to thermal expansion and 

melting, the pressure exerted by the electrodes contain the nugget with the assistance of the corona 

bonds which form a ring around the nugget. The corona bonds are the results of solid-state diffusion 

between the workpieces in the HAZ area due to the indirect heat and pressure from the weld nugget, as 

shown in Figure 2.4 [19]. At higher electrode forces, more current can be applied to the material as it 

resists expulsion but risks excessive indentation. Excessive indentation creates a stress concentration 

during tensile or fatigue tests and is predominant in thicker sheets (>2mm) [8], [31]–[33]. The presence 

of the stress concentration changes the failure location and risks a loss in strength. 

 

Figure 2.4. Identifying Corona Bond in a Spot Weld [34] 

2.1.2.3 Current 

As previously mentioned, the more popular current applied during spot welding in the 

automotive industry is a direct current (DC). Referring to Joule’s heating (Eq. 4), the heat is a function 

of the current squared making the current the greatest contributor to the heat inputted to create the weld. 

At higher currents the risk of expulsion is much greater and a minor change in the current has a greater 

impact to the process compared to the welding time. Studies have found that the polarity of the current 

can cause electrodes to degrade quicker on the supplying side  and even affect weld nugget sizes [35], 

[36]. 
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Figure 2.5. Example of a Welding Current Schedule [37] 

The current profile in any schedule can be changed to have a pre-current, pulses, or a tempering 

current. The purpose of the pre-current/pre-pulse is to apply heat into the weld to help with fusion and 

has been shown to displace surface coating and lubricant between interfaces allowing for a more 

homogenous fusion [37]–[40]. The main welding current can be applied as a pulse to apply cooling 

time in between for heat balance or manipulate the nugget growth [41]. The tempering current applies 

heat to a pre-existing nugget to temper the microstructure and improve mechanical properties [42]–

[44]. 

2.1.2.4 Welding Time 

Within the variable of welding time, it can be broken down into three categories of time: 

squeeze, weld, cooling, and hold. The squeeze time correlated with stage 2 seen in Figure 2.2 and 

explained in section 2.1.1. The welding time is the duration the current is passed through the material. 

When pulsing the current, the time between each pulse is referred to as the cooling time and can be 

increased to allow for more heat dissipation for further weld control. The hold time is correlated with 

stage 4 explained in section 2.1.1.  

2.1.2.5 Electrode Geometry 

The electrode geometry affects the application of pressure and current onto the workpiece. The 

common spot-welding electrodes are either conical or rounded with a flat machined face. These 

electrode faces can be recut (also referred to as “dressed”) to create a new surface and renew the use of 

the electrodes. The number of welds between each dress is referred to as the wear of the electrodes. 

Purpose of dressing the electrodes is to remove any surface roughness caused by material build up on 

the surface or distortion of the electrodes, referred to as mushrooming shown in Figure 2.6. The effects 
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of any geometry change in the electrodes change the pressure distribution or current density which 

directly affects nugget formation [19], [45].   

  

Figure 2.6. Mushrooming Effect (Left) and Effect on Electrode Diameter (Right) [46] 

2.2 Resistance in RSW 

Resistance is categorized as the combination of a material’s resistivity and geometry which the 

current passes through. Resistivity of a material is the physical property of the material to oppose the 

flow of the electrical current. The resistance for specific material can be defined by the following 

equation: 

 𝑅 =
𝜌𝑙

𝐴
 (Eq. 5) 

Where R is the resistance, l is the length travelled, A the area of conductance, and ρ the 

material’s resistivity. The source of all the heat generation in the welded nugget stems from the presence 

of a resistance for Joule heating to occur. There are five main resistances present in a typical sheet-to-

sheet spot weld as shown in Figure 2.7: two electrode-workpiece contact resistances (R1 & R5), the 

two material bulk resistances (R2 & R4), and the sheet faying interface (R3). Electrode-workpiece 

contact resistances are low due to the copper electrode’s high conductivity and cooling system. The 

material’s bulk resistance plays a vital role in heating of the material allowing for easier melting 

throughout the sample. The contact resistance between the workpieces (R3) plays the most vital role as 

it is the initiation of the weld nugget formation. The resistance of the electrodes by themselves are 

commonly excluded as they are considered a constant in the welding application.  
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Figure 2.7. Breakdown of Electrical Resistances During RSW [19], [47] 

2.2.1 Dynamic Resistance Curve 

With the help of current technology, the ability to gather the quantity of voltage and current 

between the electrodes at every millisecond is possible. Using these two values, the resistance can be 

simply calculated using Ohm’s law: 

 𝑅 =
𝑉

𝐼
 (Eq. 6) 

where R is the resistance (ohms), V is voltage, and I is current (amperes). By plotting the 

resistance between the electrodes at every millisecond, a dynamic resistance curve is created. The 

dynamic resistance curve shown in Figure 2.8 compiled by Dickinson, Franklin, and Stanya is widely 

accepted as the standard for interpreting the resistance curve [48]. Subsequent study conducted by Cho 

and Rhee verified the development of the welding nugget and correlation to the dynamic resistance 

using a truncated electrode and a high speed electrode [49].   
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Figure 2.8. Generalized Dynamic Resistance Curve Correlated with Events During RSW 

Process [48] 

The dynamic resistance curve defined by Dickinson et al. of uncoated steel, is broken down 

into 5 distinct stages. The first stage (I) is when the current first starts to flow through the workpieces 

where the two surfaces meet. Due to surface asperities and contaminants, there are localized micro-

areas of electrical conduction resulting in a high initial resistance. The resistance drops over time as 

heat is localized at the interface and the surface asperities breakdown increasing the area of contact. At 

lower electrode forces there is more surface asperities present at the interface resulting in a higher 

resistance, which is ideal for improving heating to input power (current) efficiency. As previously 

explained in section 2.1.2.2, the trade-off for lowering the force is the higher risk of expulsion. This is 

due to the relationship between electrode force and contact resistance explained by Kimchi and Phillips 

in Figure 2.9. At the lower electrode forces, there is a greater change in the contact resistance in 

comparison to higher electrode forces, causing instability at the lower forces [50].  
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Figure 2.9. Effect of Surface Asperities, and Electrode Force on Contact Resistance [50] 

 The second stage (II) of the dynamic resistance curve, the surface asperities continue to 

breakdown and there is direct metal to metal contact. At this stage an equilibrium is formed where the 

increasing contact area lowers the resistance while the bulk heating of the material increases the 

resistance. This equilibrium results in a local minimum point often referred to as the alpha point (α) 

[48]. The third stage (III) is dominated by the change in resistance due to bulk heating which acts as a 

self-amplifying cycle promoting heating of the material, especially at the fraying interface.  

 

Figure 2.10. Relation Between Resistivity of Steel and Copper as a Function of Copper [50] 

Because the influence of temperature on the resistivity of steel is stronger than of copper’s, as 

shown in Figure 2.10, the contribution of coppers resistivity to the dynamic resistance curve is 

neglected [50]. The fourth stage (IV) begins when the first localized melting occurs. The maximum 
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resistance is often reached at this stage and is referred to as the beta peak (β). A common misconception 

is that the beta peak itself is when the weld nugget is formed, but it is another equilibrium point where 

the presence of a molten nugget, material softening, and indentation cause a decrease in resistance 

competing against the bulk heating (leading to temperature stabilization). The last stage (V) is a 

relatively linear decrease in resistance due to the previously mentioned mechanisms overwhelming any 

bulk heating of the material. At any point in the last stage, if the weld nugget expands to a point where 

the electrode force and the corona bonds cannot contain the molten metal, expulsion occurs. On a 

dynamic resistance curve, expulsion is easily distinguishable as a near vertical drop in resistance 

(caused by a sudden loss of material between the electrodes).  

2.2.2 Effect of Coating   

Application of a coating to the steel often reduces surface roughness, decreasing the available 

contact resistance [19]. As a result, the welding lobe curves shift towards higher current ranges to 

compensate [51]. Due to the need for corrosion resistant components, the majority of all industrial 

components were and are coated. Gedeon, et al., performed initial experiments in 1987 which suggested 

the most of the change in the resistance was at the electrode-sheet interface, not at the faying interface 

[52]. This meant that the breakdown of the resistance curve would not be as representative as 

Dickinson’s model for uncoated metal. Tsai, et al. (1992) conducted a review of the modeling of the 

nugget growth and found the most accurate models incorporated a dynamic contact resistance at the 

coated faying surface to match the reported temperature profiles [29]. Thornton, et al. (1996), isolated 

the change in the bulk resistance and interfaces in attempts to determine the change in resistance due 

to loading, and found all components played a role in the dynamic resistance [53]. Wang and Wei 

(2002) created a model of the dynamic resistance of the spot welding using the summation of the bulk 

resistance of the coated material and contact resistance [54]. The results shown in Figure 2.11 provide 

strong evidence that the majority of the change in dynamic resistance of coated materials is not solely 

due to the electrode/workpiece interface but a summation of the entire process.  The cause for the two 

different viewpoints is most likely due to the difference in available measuring equipment.  
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Figure 2.11. Breakdown of Dynamic Changes in Resistances of RSW Process (Left) and 

Comparison to Experimental Data (Right) [54] 

Thus, further studies on coated steels were conducted to understand the impact . The most well-

known study was conducted by Savage et al., and Gedeon et al. using a Zn coating, varying with 

uncoated, hot-dipped, and galvanized [52], [55], [56]. It was found that within each condition, there 

was consistency in the dynamic resistance curves which indicated that the dynamic resistance curve 

was reflective of the material condition.  

 

Figure 2.12. Generalized Dynamic Resistance Curve of Coated Steels [52] 

Gedeon proposed a new generalized dynamic resistance shown in Figure 2.12, where the 

uncoated materials exhibits regions 1, 6, 7 and 8 (corresponding well with Dickinson), while the 

galvannealed coating exhibits all regions excluding 4 and 5 [52]. The hot dipped samples exhibited all 
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8 regions. Regions 2 and 3 are exclusive to the coated samples, in which the rise and fall of resistance 

is primarily driven by the bulk heating of the coating at the electrode-sheet interface and the change 

from solid to molten zinc [52]. The decline in resistance to near zero after region 3 is due to the strong 

presence of the molten zinc between the interface overpowering any bulk heating or possible asperities. 

Region 4 and 5 are exclusive to the hot dipped samples due to the weaker of Zn-Fe interlayer, allowing 

for the softer zinc to be melted and pushed around (allowing for the later drop in region 5).  

 

Figure 2.13. Generalized Dynamic Resistance Curve of Recent AHSS [57] 

A more recent study of the dynamic resistance curve was conducted with a currently popular 

AHSS known as USIBOR®. The introduction of AHSS, of different alloying compositions, and coating 

application methods/compositions all play a role in the resistivity of the material. The study performed 

on USIBOR® was performed with an Al-Si coating. The results found correspond to the same dynamic 

resistance stages as Gedeon’s galvannealed curve. The main difference is the introduction of stage 0, 

where the material undergoes surface heating as the voltage builds up before fritting begins (shown in 

Figure 2.13). It should be noted that the beta-peak is present in region 2 to 3 which corresponds to the 

heating/softening and melting of the coating. According to Gedeon’s model, the resistance in region 4 

should rise again due to bulk heating of the material but the increase in the heat resulted in softening of 

the coating at the electrodes. The softening at the electrodes lead to indentation which in  turn resulted 

in a reduction of current path and increased current area countering the increase in resistance [52], [57].  

2.3 Quality of RSW 

The quality of a resistance spot weld is critical as it is the dominating form of joining for all 

automotive applications. Because the structure and integrity of a vehicle depends on the quality of the 

welds, industry standards are monitored and updated as steels and technology advances. The most 
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common standard in North America is American Welding Society’s (AWS) specification for 

automotive weld quality & testing methods (D8.1 & D8.9) [5], [6]. The standard defines four major 

methods of determining the quality of the weld: surface inspection, peel/chisel test, shear/cross tension 

test, metallographic analysis [6]. Of the four major methods, they can be classified as destructive (DT) 

or non-destructive (NDT) tests. The most accurate measure of the weld will be the use of a DT but is 

not applicable outside of the laboratory setting, thus there is more attention being directed to other 

NDT. The results of the test provide if there are defects present, weld nugget size, or weld ultimate 

tensile strength.  

2.3.1 Surface Inspection  

The inspection of the surface typically involves NDT, ranging from a quick glance at the weld 

to the use of a macroscope. A general surface inspection can detect a misplaced/missing weld, expulsion 

flash/marks, surface cracks, holes, excessive indentation, etc. With the help of automation technology, 

the problem of misplaced or missing welds is significantly decreased. When a weld experiences 

expulsion, it is visible as sparks during the welding process. The two locations for expulsion are at the 

faying surface or at the electrode interface. The impact of expulsion at the electrode interface is 

insignificant in comparison to expulsion at the fraying surface where material loss of the molten nugget 

occurs [33], [45]. Surface cracking is a phenomenon which occurs due the microstructural changes that 

allow for weakening of grain boundaries or solidification mechanics. Materials such as magnesium [58] 

and aluminum [59] have a high cracking susceptibility at higher welding currents due to hot cracking. 

Steels with higher austinite content, such as stainless steels, are also more susceptible to cracking [37], 

[60]–[62]. The more relevant 3rd generation AHSS such as dual phase and TRIP steels are currently 

under investigation as they exhibit liquid metal embrittlement (LME) when coated with zinc [63]–[66]. 

The main mechanism of LME is the zinc melting prior to the physical and thermal stressed steel, 

allowing it to penetrate into the grain structure creating intergranular failure.   

 

Figure 2.14. Mechanism of Liquid Metal Embrittlement within the Zn-Fe Binary System [66] 
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2.3.2 Peel/Chisel Test 

         

Figure 2.15. Generic Peel Test (Left) and Chisel Test (Right) [67] 

Peel testing is the quickest destructive test that can be performed to determine the quality of 

the weld. By welding at one end of the strip of the workpiece, the other end can be pulled apart to reveal 

a weld button to measure. The peel test is the most convenient method but is limited to only providing 

the weld nugget size and fracture surface. The chisel test is a destructive test that allows the operator to 

apply a normal force by wedging open the space between the welds. A well-known deviation of this 

test is the chisel check where the test is conducted to an acceptable limit and not to failure. A chisel 

designed to separate the workpieces to a specified distance is inserted in between two workpieces with 

force (often with a hammer or mechanical assistance). If the welds separate upon insertion of the chisel, 

it is categorized as inadequate nugget formation and needs to be rewelded. This process induces plastic 

deformation upon testing the strength and is repaired to its prior appearance.  

2.3.3 Shear/Cross-Tension Test 

Shear and cross tension testing are the quantitative testing of the weld by performing the tests 

with a tensile machine (setups shown in Figure 2.16). As the names suggest the shear test evaluates the 

strength of the weld parallel to the workpiece, and the cross-tension test evaluates the strength 

perpendicular to the workpiece. The main benefit of this method is the ability to gather the extension 

and applied force on the sample allowing for a calculation and plotting of an engineering stress-strain 

curve for further analysis.  
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Figure 2.16. Shear Tensile Test (Top Left), Resulting Load-Displacement Graph (Top Right), 

Cross Tension Test (Bottom) 

2.3.4 Metallographic Evaluation  

Metallographic analysis of the weld is the preferred quality testing method in a laboratory 

setting. The benefits of the metallographic method allow for the analysis of the weld nugget diameter, 

microstructure, measurement of indentation or possible flaws. Possible flaws that can be found by 

conducting the cross-sectioning are solidification voids, internal cracks, or incomplete fusion due to an 

interlayer/coating.  

 

Figure 2.17. Polished and Etched Cross Section of a Spot Weld 

2.4 Quality Monitoring 

Real time quality resistance spot welding monitoring is the next step in research and application 

for the automotive industry. The term real time monitoring refers to the ability to interpret or be notified 

the moment a defect is detected. The main reasons for this shift is the traditional methods for inspection 

of spot welds are not an efficient use of time and materials, potential batch repair or scrapping of 

components, and cannot guarantee every weld is inspected [68]. With the advancements in technology, 
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various alternative methods to determine the quality of the weld had become available. The two major 

categories which all of the real-time quality monitoring fall under is either an automated secondary 

process or analysis using in-situ signals. Processes that fall under the automated secondary process 

category occur after the welding procedure in the same cell or in a separate testing cell along the 

production line. The in-situ processes occur simultaneously or instantly after the weld and requires 

minimal or no additional equipment.   

2.4.1 Secondary Process 

The most common secondary process is an ultrasonic inspection of the resistance spot weld, 

often performed manually but newer technology allows the test to be automated [69]–[71]. As the name 

suggests, ultrasonic inspection utilizes high frequency waves to detect any geometric or material 

defects. The waves are transferred to the weld surface and at any boundary created from a change in 

material (microstructure, gap/gas, air from cracks, etc.), a proportional reflection of the wave occurs 

and is picked up by the sensor [72]. The results of an ultrasonic inspection is often a graph of peaks 

representing reflections and impedances as shown in Figure 2.18 [73]. Proper interpretation and 

operation of the ultrasonic testing device requires a certified operator which is an additional use of 

resources. In addition to this, ultrasonic inspections of the weld require surface preparation by either 

flattening or applying a conductive gel. 

 

Figure 2.18. Results from Ultrasonic Inspection Detecting Undersized Nuggets [73] 

Acoustic microscopy is the use of ultrasonic inspection to create an image on a monitor to make 

it a more robust user-friendly method to inspect the weld. This method allows the user to visually 

inspect the size and shape of the nugget as well as the presence of any defects [74]. The data collected 
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from the acoustic microscopy are now analyzed using neural networks or image analysis programs to 

quickly inspect the weld without the need for an operator [75]–[77]. The trade-off for the easy to 

interpret visual of acoustic microscopy is the high capital cost of the machine. The development of 2D 

array transducers and optimization of algorithms introduced a cheaper and quicker method of 

interpreting the ultrasonic waves into an image [78]–[81]. The difference in the image can be shown in 

Figure 2.19. 

 

Figure 2.19. Results from Acoustic Microscopy, Ultrasonic 2D Array, and Destructive (Left to 

Right) [79] 

Visual analysis of the weld using surface image taken from a camera is also a potential solution 

to analyzing the weld quality. By applying filters to the surface image of a weld and determining an 

appropriate distance function, the weld nugget size and shape can be found [82].  

 

Figure 2.20. Image Filtering and Application of Functions (From a to d) [82] 

Another imaging method is the use of an infrared camera and a flashlamp. The theory is to 

apply a short burst of heat through a flashlamp or equivalent tool to heat the weld and surrounding area 

and take an image of the heated weld to inspect. This method follows the same idea as the previously 

mentioned surface imaging but has the potential to capture internal errors in addition to the weld nugget 
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diameter. Studies have found the brighter and uniform images indicate a good weld, where welds with 

defects do not have a uniform intensity, as shown in Figure 2.21 [83]–[85].  

 

Figure 2.21. Example of a Good Weld (Left) and Bad Weld (Right) Using Infrared Camera [83] 

The use of a secondary process to detect quality was proven to have a strong ability to 

conclusively determine the quality of the weld using the ultrasonic method. Even with cheaper 

alternatives such as using regular or infrared cameras, inspection of the quality of the weld has 

demonstrated effectiveness in detection of quality. The issues with a secondary process is the additional 

step which increases the production time of a part, which is not ideal when production of parts are 

measured on the scale of seconds. Another issue is the additional maintenance required to maintain and 

calibrate the equipment to have reliability. Possibly on a small production scale, these methods would 

be ideal but with a large production requirement, it is less feasible in the automotive industry. 

2.4.2 In-Situ Signals 

The next step in monitoring the quality of the process is to analyze the already available signals 

that are collected by the welding/robot controller. The signals that have been analyzed by current 

literature are the electrode force/displacement, acoustic emission, and dynamic resistance.  

2.4.2.1 Electrode Force/Displacement 

Studies of the electrode during the welding process provided strong relation to the presence of 

a defect or undesirable weld. Upon investigation, the instantaneous (millisecond) displacement and 

force of the weld was not constant and displayed dynamic behavior that correlated to the changes with 

the weld, shown in Figure 2.22 [86].  
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Figure 2.22. Dynamic Electrode Force (Left), Displacement (Right) Curve with Expulsion [87], 

[88] 

During the spot-welding process, the electrode force displays a tendency to increase greater 

than the preset welding force due to the thermal expansion. As the material is heated through Joule 

heating, it undergoes a thermal expansion acting against the electrodes creating an instantaneous 

opposing force against the electrodes [68], [87]. As the material continues to heat and a welding nugget 

has formed, the material begins to soften and provides less resistance to the electrodes. In the case of 

detection, when expulsion at the faying interface occurs, there is a loss of materials and a sudden loss 

of volume results in a sharp drop in the force shown in Figure 2.22.  

 

The electrode displacement was found to react in the same manner as the electrode force. The 

thermal expansion experienced by the work pieces are measured during the welding process and the 

peak thermal expansion was found to represent the amount of weld growth [68]. Thus, undersized 

nuggets could be detected when the peak displacement of the electrodes are less than the standard. 

Expulsion could also be identified by a sudden drop in the displacement due to the loss of material, 

shown in Figure 2.22. Current automated welding machine operate using a servo motor robot to perform 

the welds. The servo motors operate using an encoder to measure travel as well as applied force. A 

study using the indentation measurement from the encoder found that at a select welding parameter, 

there exists a range of acceptable indentation depths which meet the required strength of the weld [89]. 

 

The main drawbacks of utilizing the electrodes as an in-situ monitoring signal is the electro-

magnetic forces that are created during the process of welding (since magnetic fields are a function of 

currents). These magnetic fields create noise in the data collection of the electrode displacement and 
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electrode force allowing for poor confidence when collecting data. With the measurements of the forces 

and displacement, rigid structures are recommended for data acquisition which is not applicable for 

welding guns in automotive settings. Without the rigid structures, precise measuring tools or systems 

are required to perform these measurements which is a cost factor.  

2.4.2.2 Acoustic Emissions 

Acoustic emissions during welding is not a common signal that can be gathered during the 

welding procedure. A piezoelectric sensor is attached to either one or both of the electrodes and the 

emissions from the electrodes are measured. Studies have found, the acoustic emissions of a weld can 

detect plastic deformation, cracking, melting, and martensite transformation [68], [86], [90].  

 

Figure 2.23. Acoustic Emission of Weld with Crack (Left) and Expulsion (Right) [68], [86] 

Section 1, 2 and 3 in Figure 2.23 are the acoustic emissions of the closing and clamping of the 

electrodes, the nugget nucleation, and the electrodes opening (respectively). Event 4 was the detection 

of a crack while event 5 during the nucleation of the nugget was the detection of expulsion [68], [86]. 

While all of these events can be detected, in an industrial setting, the level of noise which is introduced 

to the system significantly increases (due to ambient noise/vibrations, heavy operating machinery, etc.) 

which will require complicated noise reduction systems.  

2.4.2.3 Dynamic Resistance 

The most common signal used to determine the stability or quality of the welding process is 

the dynamic resistance. The use of dynamic resistance is closely tied with the use of voltage as most 

systems used constant current controllers which meant if resistance changes, the voltage would directly 

change (based on Ohm’s law). Thus, multiple welding controllers with quality detectors in the 1970s 

and 1980s would track the voltage fluctuations [52]. As technology advanced, the values could be 

recorded cycle by cycle, down to milliseconds, and the use of dynamic curves explained by Dickinson 

could be employed [48]. As previously explained in Section 2.2.1, the stages of the weld nugget 
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formation and completion were correlated to the segments of a dynamic resistance curve. The idea of 

using the dynamic resistance curve as a quality indicator was pursued in the late 1980s to the early 

2000s and various methods were investigated. Prior to the 2000s, most research focused on following 

Kamat and Lagoo’s [91] logic of comparing the entire dynamic resistance curve against a known curve 

to determine if the weld experienced any abnormalities [52], [91]–[93]. Livshits [94] calculated an 

optimal resistance using the minimum and maximum resistance to use as a quality indicator, shown in 

(Eq. 7), where X, Y, and Z are electrode dimension, current density, and joint geometry correction 

factors (respectively) [94].  

 
𝑅𝑜𝑝𝑡 =

𝑌𝑅𝑚𝑖𝑛

2𝑍 (1 − √1 −
𝑅𝑚𝑖𝑛

𝑋𝑅𝑚𝑎𝑥
)

   
(Eq. 7) 

 

Starting in the 1990s, most investigations focused on breaking down the dynamic resistance 

curves into qualitative values to use as inputs to regressions or neural networks. The breakdown of the 

dynamic resistance curve was either into segments based on time/cycles, material phenomena, or 

graphical. Wen, et al., investigated the relationship between the final resistance of the curve to the weld 

nugget size of a stainless steel weld [14]. The main issue with using only one variable to find correlation 

to a quality indicator is that it does not prove a robust solution and still required a separate analysis of 

the curve. To create a more robust model, the dynamic resistance curve was broken down based on the 

curve’s features. Cho and Rhee [95], [96] were the vanguard in breaking down the curve to use for 

analysis through neural networks, as shown in Figure 2.24, which are still implemented in 2017 by 

Zaharuddin et al [97]. 

 

Figure 2.24. Breakdown of a Dynamic Resistance Curve for Analysis [95] 
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The alternative method to obtain the inputs is to segment the curve into time-intervals and 

calculate a significant value from the interval (max, min, or average) [98]–[100]. The premise of either 

analysis was to obtain a singular quantitative input from a feature or segment of the dynamic resistance 

curve to input into a neural network or regression model to provide a quality indicator output. Figure 

2.25 is an example of a resistance curve transformed into a binary array to input into a neural network. 

This method of analysis is purely based on experimental data and is repeatable under the same 

conditions, but the downside is the lack of theory applied to the results as the neural network acts as a 

black box.  

 

Figure 2.25. Example of Time-Interval Segmentation of a Curve [98] 

2.5 USIBOR® Steel Sheet 

USIBOR® 1500 is classified as a press hardened AHSS alloyed with boron, named by Arcelor 

Mittal. The composition of the material is found in Table 2.1. According to Arcelor Mittal, USIBOR® 

is best used for complex geometry components, uniform mechanical properties, high strength, and 

weldability. Recommended high-strength applications are structural beams or reinforcements for doors, 

windows, floors, etc. [101].  

Table 2.1. Elemental Composition of USIBOR® 1500 [101] 

C (%) Si (%) Mn (%) P (%) S (%) Al (%) B (%) 
Ti+Nb 

(%) 

Cr+Mo 

(%) 

0.25 0.4 1.4 0.03 0.01 0.01-0.1 0.005 0.12 1 

 

The uniqueness of USIBOR® is the ability to undergo forming and pressing process for 

manufacturing applications. There are two methods in which the material could be stamped, directly 
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where the material is austenized, then formed and quenched in the same step. The indirect method 

involves a cold pre-forming before the austenization where the last step is to calibrate and quench the 

part.  

 

Figure 2.26. Standard Hot Stamping Process Chain [102] 

During the austenization step in the hot stamping process, the steel is at risk of oxide scale 

formation (surface oxidation) and decarburization [102]. To prevent any change to the steels during the 

austenization stage, they are coated with a protective layer of Al-Si. The melting point of the Al-Si 

coating of 600°C is lower than the general austenizing temperature of steel (727°C) but when heated, 

the diffusion of Fe into the Al-Si coating is activated, with the most stable form Fe2Al5 melting at 

1171°C [103]. 

 

Figure 2.27. Metallography of Al-Si Coating: A) As-Delivered B) Hot-Stamped [101] 
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Compared to a zinc coating, the Al-Si does not provide any cathodic protection but performs 

better as a barrier. Due to the low forming limits of Al-Si it cannot undergo indirect hot stamping as 

the cold forming will cause discontinuity in the coating surface [102].  

2.5.1 Challenges Welding USIBOR®  

Investigating the weldability of the newer AHSS, it was discovered that the metal behaved 

differently in comparison to the lower strength steels. Firstly, AHSS have narrower weld lobes resulting 

in stricter welding conditions [2]. The strengthening elements in the steels increase the electrical 

resistance providing a higher heat generation which in turn lowers the expulsion current limits. The 

presence of the coating and the formation of an intermetallic between the coating and base metal during 

hot stamping also contribute to the change in resistance. Due to the higher strength of the AHSS, higher 

electrode forces are required to weld the steels. The increase in the electrode forces result in faster 

electrode deformation and increased surface asperity breakdown.  All of these factors influence the 

weld lobe curves indicating AHSS weldability is stricter than weaker metals.  

Another challenge in welding USIBOR® metal is the softening of material that occurs in the 

heat affected zone (HAZ). Previously discovered in spot welded dual-phase (DP) steels, the hardness 

profile of the weld showed a drop between the base metal and the weld nugget due to martensite 

tempering [104]. During weld, the heat affected zones reach temperatures that do not reach melting 

temperatures; thus, the microstructures are dependent on diffusion mechanics. During this time, the 

martensite of the base metal will experience heating and cooling which leads to decomposition of 

martensite and formation of cementite or ferrites which are lower in hardness. Lu et al. modelled the 

HAZ softening of USIBOR® based on the same mechanics found in DP steels and found evidence the 

primary mechanics of soften are the same as that of DP [105]. HAZ softening is attributed to lowering 

the strength of the weld and increase in elongation of the material which is not desired in a stiff 

structural component.  
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Figure 2.28. Results of Modelling the HAZ Softening in USIBOR® [105] 

The weld and base metal of USIBOR® is composed fully of martensite, providing high strength 

and low ductility AHSS is known for. Due to the high hardness and brittle nature of martensite the weld 

nuggets are susceptible to interfacial failure. Interfacial failure in USIBOR® spot welds are linked to 

the notch effect (Figure 2.29) present in spot welds and the brittleness of the nugget, leading to 

susceptibility to crack propagation [106]. In terms of fatigue, this is an undesired property as the 

presence of a notch lowers fatigue life significantly.  In non-AHSS, interfacial failure of a spot weld is 

correlated to lower energy absorption (lower strength) but due to AHSS microstructure, there is 

insignificant correlation between the strength of a weld and the failure method [107].  

 

 

Figure 2.29. Example of a Notched Spot Weld Nugget 
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Chapter 3 

Experimental Design 

3.1 Welding Equipment 

The testing performed in this thesis was all performed using either a pedestal welder or an 

automated servo-robot spot welder. Results in Chapter 4 were gathered using a medium frequency 

direct current (MFDC) 144/180 kVA pedestal welder manufactured by Centerline Ltd. A Rexroth 

PSI63C0.120L1 controller was retrofitted to operate with the pedestal welder. The electrodes used to 

weld were RWMA Group A, Class 2, domed-flat nose with a 6mm diameter flat face.  

      

Figure 3.1. MFDC Pedestal Welder (Left) and Data Collectors (Right) 

The current was measured using a toroid coil on the secondary pick up of the transformer, and 

voltage on the copper electrode mounts. Measured values were recorded every millisecond and the 

resistance was calculated. The adaptive feature of the controller was used to extract the current, voltage, 

and resistance curves.  
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Figure 3.2. Robot Spot Welding Cell (Left) and C-Gun (Right) 

The automated servo motor robot used was a Fanuc 2000ic (210F) with an industry designed 

c-gun resistance spot welder attached at the end. This set up was performed for all later results in 

Chapter 5 and Chapter 6. The top electrode of the c-gun used the same as the pedestal, where the bottom 

is angled at 20 degrees. The same welding controller on the pedestal welder was used on the robot 

welder. A G&T tip dresser with 6mm cutter blades was used to maintain fresh electrode tips and mimic 

production conditions. The welding cell, fixtures, and safety features were designed by Honda of 

Canada Manufacturing.  

3.2 Welding Process 

3.2.1 Chapter 4 

The welding schedule used for the tests in Chapter 4 were based on industry provided welding 

schedule and modified based on a previous weld lobe curve study. The chosen weld schedule was set 

to 7kA for 500ms and AWS D8.9M recommendations of 5.5kN and cooling rate of 6L/min for 1.6mm 

thick group 4 steels were followed [5]. Ten welds using the weld settings previously described were 

conducted to create a reference dynamic curve 

. The set up for the experiments was simplified and shown in Figure 3.3. The centerline of the 

weld was measured to the center of the closest weld to investigate the effect of shunting and measured 

to the edge for edge proximity. Shunts were welded at distances of 10, 20, 30, and 40mm apart. The 
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edge welds started at the center of a 40mm wide coupon (chosen as the reference point) and moved 

closer to the edge in increments of 5mm. Eight welds were made per shunt distance, five welds were 

made per edge weld distance, and five welds nuggets of each parameter were measured.  Shims were 

placed on one side to mimic a bent part or debris between the workpiece. This interference was 

replicated with a 2mm and 4mm shim placed 40mm away from the weld location to allow the material 

bend under the electrode force. The effective gap between the electrodes was calculated to be 1mm and 

2mm (at approximately 2.8° and 5.7° respectively).  

       

Figure 3.3. Representation of a Standard, Shunted, and Edge Weld (from Left to Right) 

Using a similar approach as outlined by Cho, Rhee, and Zaharuddin [95]–[97] the dynamic 

resistance curves were broken down into the following six measures: average resistance, maximum 

resistance (beta-peak), final resistance, formation slop, and growth slope. Linear slopes between the 

start to beta peak, and beta peak to final resistance are used to take into consideration the relation 

between the beta peak times and the beta peak/final resistance. Contrary to previous literature, the initial 

surface heating (i.e., ‘fritting’) stage, where the resistance experiences a rapid steep increase and 

decrease due to breakdown of films, scales, or asperities, was not captured [55].  

3.2.2 Chapter 5-6 

The welding schedule used for the latter chapters were based on an industry recommended 

schedule. The initial pre-weld was set to 12kA for 30ms to apply a burst of heat to reduce the effect of 

the coating. The main current was set to a constant 7.8kA for 450ms with a 20ms cooling time in 

between the pre and main current. The maximum applicable force by the servo motor of 550kgf (or 

approximately 5.5kN) was used to weld the samples.  

To set up the adaptive welding feature for the Bosch Rexroth controller, ten welds of a specified 

welding schedule were recorded and inspected to be an acceptable size and free of defects. The recorded 

dynamic curves were then averaged and set as the reference curve for adaptive welding to be active. 

When the adaptive welding feature was on, none of the settings could be changed.  
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The welding schedule for the dissimilar stack-up welding in section 6.2.2 was also provided by 

the industry. The main current was set to 7.5kA for 417ms (25 cycles) at a force of 350kgf. The same 

procedure for setting up the adaptive welding was used. 

3.3 Specimen Dimensions 

The specimen dimensions were recommended and provided by the industry partner to use 

125x40mm for welding and tensile testing. Smaller samples of 25x25mm for the pedestal welder were 

made for isolated welding testing. 

3.4 Metallography 

Welds were cross sectioned using Struers Accutom-50 precision cutter machine with a 50A15 

blade. The machine was set to 0.015mm/s feed rate, 2800 rpm wheel speed, and applied low force. The 

surface is cleaned with ethanol and air dried. The samples were finished with a 3-micron diamond 

polisher then etched with a 5% nital solution, composed of 5% nitric acid and 95% ethanol. Images 

were captured with a macroscopic stereoscope and electron microscope. Weld nuggets were measured 

using image analysis software ImageJ.  

3.5 Tensile Testing  

The tensile test was performed using Instron Model 4206 at 10mm/min according to AWS 

8.9m [5]. According to the tendency for USIBOR® to undergo interfacial failure vs button pullout, any 

nugget measurements are done on the fracture surfaces.  

 

Figure 3.4 Instron Tensile Testing Machine with Tightening Grips  
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Chapter 4 

Effect of Process Conditions on the Dynamic Resistance Curve of 

USIBOR® 

Throughout this chapter, the influence of the common process faults or errors on the dynamic 

resistance curve of USIBOR® is investigated. The main purpose of this chapter is to determine the 

strength of the correlation between the dynamic resistance curve to the quality of the welding process 

itself. Based on previously established analysis of the dynamic resistance curve, it can provide a strong 

indicator of the stages of the weld nugget formation for steels. Most faults or welding defects occur due 

to poor welding conditions such as poor weld placement. By proving detection is possible through 

observation of curves, one can support the application of adaptive welding controllers which base their 

systems on the dynamic resistance curve to monitor weld quality.  

4.1 Effect of Shunting 

Shunting occurs when a pre-existing weld in close proximity to the intended weld site diverts 

a portion of the current away. The diverted current reduces the amount of heat in the weld area and 

risks formation of undersized nuggets. A shunted weld may occur through incorrect weld placement, 

which is a critical fault in production and will require repair or result in scrap. Xing et al., characterized 

the shunted welds into a simplified electrical circuit of resistors in parallel shown in Figure 4.1[108]. 

According to (Eq. 5), the overall resistance would depend on the path of travel, material property and 

inversely on the area. Assuming the material property is uniform, it can either be calculated as an 

increase in path length and area of the current due to shunting, or two resistances in parallel with same 

area but difference path lengths. Either calculation resulted in a decrease in the overall resistance due 

to the presence of a shunting weld.  

 

Figure 4.1. Electrical Circuit Equivalent of a Shunted Weld 
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The subtle difference in the initial transient of the dynamic resistance from 0 to 40ms reflects 

the initial heat generation at the interface. This has been shown to be highly dependent on the rate at 

which heating occurs and when the first melting initiates [95]. As the spacing of the welds decreases, 

the rate of this heating progressively decreased due to the shunted current flow hampering the heat 

generation. This is reflected by the shallower slope in current shown in Figure 4.2b. Figure 4.2c.  

 

 

 

Figure 4.2. a) Overall Effect of Shunting Distance on Average Dynamic Resistance Curves b) 

Maximum Resistance Peaks c) Tails of Resistance Curves 
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Figure 4.3. Breakdown of 6 Variable of a Dynamic Resistance Curve in Shunted Welds 
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By comparing the box-whisker plots of all six variables, the trends in Figure 4.3 revealed that 

shunted welds exhibit a lower maximum and average resistance, which leads to lower heat input (based 

on Joule heating laws), and a reduced time for nugget growth. The general patterns suggested that as 

the shunting distance is increased, the maximum resistance increased, and the time to reach max 

resistance was reduced while the average and final resistances did not appear to be affected. As 

observed in the curves, the final resistance of the 10mm shunted weld was much higher than all the 

other welds due to the greater loss of current to the shunt. The relation is less visible in the slope plots, 

but the general trend remains that with an increase in the shunting distance, the maximum resistance, 

grow slope, and formation slope increases.    

 

To determine the significance of the results, a hypothesis test comparison between the means 

of the reference curve and the shunted welds using the t-distribution was conducted, in which: 

tprobe=
x̅-μ̅

Sp√1
n1

⁄ +1
n2

⁄

 , where  𝑆𝑝 =
(𝑛1−1)𝑆1

2+(𝑛2−1)𝑆2
2

𝑛1+𝑛2−2
 

where x̅ and μ̅ are the difference in the means of the desired parameter and the reference, SP the pooled 

standard deviation and n is the number of data points. Bonferroni correction for multiple t-tests was 

taken into consideration and a significant alpha value of 0.01 was used. The calculated tprobe values can 

be found in Table 4.1 and the values found to be greater than the critical t value (tα/2=0.005,16 = 2.921) 

were highlighted to identify the most sensitive parameters for monitoring the shunt distance.  

 

Table 4.1. Calculated Mean Parameter tprobe Values for Shunted Welds 

Shunt distance tprobe values 

Shunt Distance (mm) Max Resist Max Time Final Resist Form Slope Grow Slope Avg Resist 

10mm -7.450 2.338 5.505 -3.517 -49.918 -1.683 

20mm -6.522 2.225 -0.00255 -2.751 -65.799 -2.884 

30mm -4.532 2.644 1.577 -2.846 -69.127 -2.619 

40mm -5.149 1.659 0.156 -2.033 -54.442 -2.503 

 

In comparing tprobe values, the most significant variable based on the dynamic resistance curve 

was the maximum resistance and growth slope, followed by the formation slope, and final resistance. 

This implies that analyzing only one of the variables may not provide a reliable method for detecting 
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shunting. The combination of the maximum resistance value and the maximum resistance time 

represented by the growth slope have the greatest detectability based on a statistically significant 

difference from the reference curves. 

 

To verify the correlation between weld nugget formation, dynamic resistance curves and the 

six parameters, the nugget diameter of five randomly selected welds were measured per parameter 

(Table 4.2). All the shunted welds below 30 mm measured to be smaller than the reference weld by 

approximately 0.2mm and displayed slight increase in size with an increase of the shunting distance 

corresponding to Chang’s [109] and Wang’s [110] findings. Based on a one-tail t-test comparing the 

reference weld size to each parameter, the nugget sizes were found to be statistically smaller using an 

overall confidence interval of 95% (tcritical α=0.01,13 = 2.650). The increase in nugget diameter correlated 

to the longer growth time (earlier max resistance times) and growth slopes. The 20mm and 30mm weld 

diameters were similar in size which reflects the similarity in the observed dynamic resistances as well 

as the 6 curve variables.  

Table 4.2. Measured Nugget Sizes of Shunted Spot Welds 

Shunt Distance (mm) Ref 10 20 30 40 

Average Nugget Diameter (mm) 5.37 5.12 5.13 5.13 5.18 

tprobe value   5.24 4.08 3.87 3.83 

 

4.2 Effect of Edge Proximity 

The weld coupons were initially joined at the center of the sample 20mm away from the edge, 

while subsequent welds were made closer to the edge. There were no observable differences when 

welding at edge distances from 20mm to 10mm. At a distance of 5mm small infrequent occurrences of 

expulsion were visible but no large drops in resistance occurred which could indicate it was due to 

surface expulsion. At a distance of 3mm, the welding procedure produced consistent expulsion. When 

welding close to or past half of the electrode face (distances less than 3mm) no expulsions were 

produced however this led to substantial changes in the dynamic resistance curve (Figure 4.4). 
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Figure 4.4. a) Overall Effect of Edge Proximity Distance on Average Dynamic Resistance 

Curves b) Maximum Resistance Peaks c) Tails of Resistance Curves 

In comparison to the shunted weld dynamic curves, there is much more variance in the dynamic 

resistance curves of edge welds. In Figure 4.4b, the curves from 0 to 100 ms gradually moved to the 

right as the edge proximity distance decreased from 15 to 3mm, and the slopes after the peaks 

dramatically change at distances of 1 and 2mm. Portrayed in Figure 4.4c, the final resistances of edge 

welds of 1, 2, and 3 mm remained distinct while the 5, 10, 15, and 20  mm edge welds were indiscernible 

from one another. 
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Figure 4.5. Breakdown of 6 Variables of a Dynamic Resistance Curve in Edge Welds 
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 The slight drop in the resistances as the weld approached the edge was also observed in Wen, 

et al., study with stainless steel, and was explained by cooling rate decreasing as the edge distance 

decreased resulting in an increase in heating rate [14]. In contrast to the aforementioned study, when 

the edge distance was at the critical point multiple expulsions were observed whereas in this study, no 

expulsion was witnessed.  

 

Edge proximity was analyzed in the same fashion as shunting by comparing boxplots of the 6 

variables as shown in Figure 4.5. As the edge proximity distance increased, the maximum resistance, 

final resistance, and average resistance followed a rising trend. The time at maximum resistance 

generally decreased once past the expulsion region. The formation slope and the growth slope also 

increased with the edge proximity distance past the expulsion region. To determine the significance 

between correlating each feature of the dynamic resistance curve with edge proximity, similar values 

of tprobe were calculated for the edge weld variables, tabulated in Table 4.3. Values found to be greater 

than the critical t value (tα/2=0.005,13 = 3.012) are highlighted to identify the most significantly different 

from the reference.  

Table 4.3. Calculated Mean Parameter tprobe Values for Edge Welds 

Edge proximity tprobe values 

Edge Distance 

(mm) 

Max 

Resist 
Max Time Final Resist Form Slope Grow Slope Avg Resist 

1 -2.371 -2.654 -21.588 1.503 -28.798 -12.035 

2 -6.962 -0.144 -11.734 -1.135 -47.505 -10.611 

3 -10.665 5.864 -6.649 -4.238 -55.809 -10.706 

5 -4.688 4.905 2.176 -3.913 -31.346 -5.117 

10 -7.958 3.819 3.823 -3.524 -7.419 -2.720 

15 -5.308 1.896 0.687 -2.237 -4.337 -2.518 

 

When comparing the tprobe of the variables of the edge welds, the growth slope had the greatest 

significance, which was also observed in the shunted welds, followed by the maximum resistance. It 

was also noted that the average resistance was significant for all edge distances up to an edge proximity 

distance of 10 mm. Based on these findings, edge welds could be detected by using the average 

resistance from 1mm to 10mm away from the edge. Otherwise, the growth slope can be used to detect 

the presence of edge welding at all distances.  
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By investigating the weld nugget diameters of the edge welds (Table 4.4) the welds at 3mm or 

less do not meet the minimum size requirement per AWS D8.1M [6]. The welds at 1 and 2mm were 

smaller and warped as half or more of the weld was not contained by surrounding base metal (see Figure 

A.3). All welds below an edge distance of 5mm were found to be statistically smaller using the same t-

test conducted for the shunted weld sizes (tcritical α=0.01,13 = 2.650). The welds conducted at 5mm and 

10mm were measured on average smaller than the welds at 15 and 20mm due to the lower maximum 

and average resistance. 

Table 4.4. Measured Nugget Sizes of Edge Proximity Spot Welds 

Edge Proximity Distance (mm) 1 2 3 5 10 15 20 

Average Nugget Diameter (mm) 4.02 3.39 4.36 5.09 5.09 5.27 5.37 

tprobe value 10.0 20.3 15.5 2.59 4.67 1.18  

4.3 Effect of Shims 

With the use of shims, the shim distance was limited to the applied force and relation to the 

strength of the material. When the top workpiece can no longer contact the bottom workpiece under the 

applied load of the electrode, no weld will form, and a controller fault for open circuit will appear. 

Observation of the welding process showed no difference with the use of shims as expulsion did not 

occur. When comparing the dynamic resistance curve, the beta peak for both the curves are visibly 

lower than the reference with a higher final resistance.  

Study conducted by Shen, Zhang, and Lai, performed with DP steels, discovered that the 

presence of an initial gap prevented uniform pressure distribution as shown in Figure 4.6 [111]. The 

increase in the gap distance decreased the contact area along the electrode face while increasing the 

contact pressure. This results in a net resistance drop as the increase in localized pressure is magnitudes 

larger than the decrease in contact area for the current to travel.  

 

Figure 4.6. Effect of Initial Gaps on the Pressure Distribution on the Workpiece [111]  
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Figure 4.7. a) Overall Effect of Shims on Average Dynamic Resistance Curves b) Maximum 

Resistance Peaks c) Tails of Resistance Curves 

As shown in Figure 4.7b, the beta peak is actually higher with a 2mm effective gap compared 

to the 1mm but exhibits the same curve. The observed findings with the shims correlate to the findings 

of Shen et al., as the change in contact area would result in less energy required for the formation of 

the nugget, resulting in an earlier beta peak.  
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Figure 4.8. Breakdown of 6 Variables of a Dynamic Resistance Curve in Shimmed Welds 
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 When analyzing the 6 variables for the introduction of shims, it is evident that they greatly 

affect the dynamic resistance curve. Interpreting the box-whisker plots in Figure 4.8, the beta peak 

drops and shifts to an earlier time. The final and average resistance seems to have no strong correlation 

between the effective gap distances but show a noticeable difference compared to the reference. 

Similarly, the relational formation slope and growth slope are not greatly different from each other but 

are different from the reference.  

 

To determine the significance between correlating each feature of the dynamic resistance curve 

with effective shim gap, tprobe values were calculated for the shim weld variables, tabulated in Table 

4.5. Values found to be greater than the critical t value (tcritical α=0.01,9 = 3.25) are highlighted to identify 

the most significantly different from the reference. In this case, all variables except the maximum 

resistance of the 2mm gap were found to be significantly different. This is positive in detecting bent 

parts or interfering components preventing proper contact between the worksheet. 

Table 4.5. Calculated Mean Parameter tprobe Values for Shunted Welds 

Shim tprobe values 

Effective Gap (mm) Max Resist Max Time Final Resist Form Slope Grow Slope Avg Resist 

1mm -7.040 -5.151 6.918 3.836 -9.577 17.189 

2mm -1.533 -5.944 5.510 5.406 -3.421 12.251 

 

The weld nuggets for the shimmed welds are displayed in Table 4.6. The nugget diameter 

exhibited a decrease in size with the increase in the effective shim distance. Both shimmed welds were 

found to be statistically smaller using the same t-test (tcritical α=0.01,13 = 2.650). In contrast to the previous 

conditions, the 2mm gap displayed a higher resistance beta peak with a smaller weld nugget. This is 

due to the higher gap reducing the effective contact area between the workpieces.  

Table 4.6. Measured Nugget Sizes of Edge Proximity Spot Welds 

Shim Size (mm) Ref 1 2 

Average Nugget Diameter (mm) 5.367 5.122 4.682 

tprobe value  3.61 6.19 
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4.4 Summary 

The investigation of process changes on the profile of the dynamic resistance curve was 

reported throughout this chapter. The focus of the process changes was on poor placement of the weld 

or workpiece, simulated with shunts and edge welding, and workpiece error, simulated with shims. 

Visual inspection of the dynamic resistance curve may be able to pick up the effect of shunting at 

10mm, edge proximity below 3mm, and the presence of a shim or bend. Using the analysis of the 6 

variables the dynamic resistance curve was broken down into, the growth slope was found to be the 

most significant difference for all cases (compared to a reference curve of good welds). It was observed 

that there existed a critical edge proximity distance of approximately half of the electrode face where 

expulsion occurs. Below the critical edge distance, a new dynamic resistance curve shape exists. For 

all scenarios. The weld nuggets correlated with the behavior of the dynamic resistance curve.   
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Chapter 5 

Analysis of Adaptive Welding Capabilities of Bosch Rexroth 

Controller 

The spot weld controller in question for this study was the Bosch Rexroth PSI63C0.120L1. 

The controller promotes the ability to analyze the dynamic resistance curves based on a set reference 

dynamic resistance curve (composed of an average of “good” welds). The findings of the previous 

chapter determined that changes to the process are reflected as a change to the dynamic resistance curve. 

The solution proposed by Bosch Rexroth was to adapt the welding process in-situ to manipulate the 

dynamic resistance curve to be similar to the reference. In doing so, they output various quality 

parameters which they claim to indicate the quality of the weld. The following results throughout this 

chapter investigate the effectiveness of the adaptive control of the controller and the quality indicators.  

5.1 Controller Variables 

The controller is capable of outputting various signals of the welding process, the most relevant 

variables are outlined in Table 5.1. The two main quality variables the controller outputs are labelled 

uipActualValue and stabilisationFactorActual.  

Table 5.1. Summary of Controller Variables 

Variable Description 

iActual1, 2, 3 Average current of pre-pulse (1), main weld (2), and tempering (3) 

voltageActualValue Average of voltage throughout weld schedule 

currentActualValue Average of current throughout weld schedule 

weldTimeActualValue Full duration of weld schedule 

energyActualValue Calculation of energy of weld: Power*time 

powerActualValue Calculation of power of weld: I*V, R*I2, V2/R 

resistanceActualValue Average of resistance throughout weld schedule  

pulseWidthActualValue Controller width of the pulse signal  

stabilisationFactorActual Controller defined quality variable 

uipActualValue Controller defined quality variable 

uirExpulsionTime Time which expulsion occurs, 0 if no expulsion 
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The recommended Bosch Rexroth procedure to monitor the quality of the welding process was 

to perform multiple verified welds to determine the limits of the UIP values and set alarms for when 

the controller outputs UIP values outside of the limits. To best understand the capability of this 

procedure, process conditions performed in chapter 4 known to change the dynamic resistance and 

affect nugget diameter are applied. 

5.2 Effect of Process Condition on Adaptive Welding 

For the study conducted in this chapter, the welding was performed with the automated robotic 

welder equipped with the servo-gun described in Chapter 3, incorporating an initial high pre-pulse to 

remove the coating layer as requested by the industry partner, schedule shown in Figure 5.1. The study 

of the effect of pre-pulse on the coating was performed previously by Hou and verified with the pre-

pulse current setting of 12kA and 30ms which was outside of the matrix originally presented [112]. 

Based on the generalized dynamic resistance curve for AHSS evaluated by Ighodaro, the main welding 

curve would lose the small drop in resistance post-beta peak where the coating breaks down (see Figure 

2.13 for reference) [57].   

 

 

Figure 5.1. Weld Schedule Performed for Study in Chapter 5 

5.2.1 Shunting  

Only the 10mm and 20mm shunting distances were examined for this analysis as there was a 

notable change in the curve from the 20mm shunted distance, to the 10mm shunted distance. As seen 

in Figure 5.2b, the shunted welds displayed similar behavior of a later beta peak. The 10mm displayed 

the characteristic lower beta peak resistance and higher final resistance as in the previous chapter. The 

introduction of the pre-pulse did not change the overall effect of the process condition on the resistance 
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curves but did change the severity as the 20mm and 10mm welds did not decrease as much as it did in 

Chapter 4. This is due to the presence of heat induced by the pre-pulse changing the heating rates of 

the material and reducing sensitivity in the main welding pulse.   

  

Figure 5.2. Full Schedule (a) and Main Weld (b) Dynamic Resistance Curve of Shunted Welds 

  

Figure 5.3. Pre-Pulse (a) and Main Weld (b) Dynamic Resistance Curves of Shunted Welds with 

Adaptive and Constant Current Controls 

As noted in Figure 5.3, the dynamic resistance curves of the adaptive and the constant current 

curves differ slightly due to the control mechanism of the controller. The two most notable cases were 

in the pre-pulse of the 20mm and main weld of the 10mm. For the pre-pulse of the 20mm weld (Figure 

5.3a), the curve starts to increase until 10ms where it drops to fit with the reference curve. In the main 

current (Figure 5.3b), the adaptive 10mm is much lower than the constant current weld which is 
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attributed to the weld controller supplying more current to decrease the resistance to better match the 

reference. In both cases the controller’s capabilities do not apply the full 10% current control set for 

the weld to fit with the set reference curve. This indicates that the function of the controller is not to 

match the same curve but to meet a set value.  

Table 5.2. Controller Values for Shunted Welds with and Without Adaptive Control 

Condition Current (kA) Resistance (µohm) Energy (J) UIP 

Reference 7.63 160 5345 - 

Shunt 10mm 7.63 166 5538 107 

Shunt 20mm 7.63 162 5450 104 

Adapt Shunt 10mm 7.84 161 5854 116 

Adapt Shunt 20mm 7.77 163 5614 115 

 

Comparing the average values for the shunted welds in Table 5.2, welds with constant current 

control outputted a higher resistance. The adaptive welds were performed with a higher average current 

(maximum reaching 8.22kA, ~5% increase). The application of the higher current was able to lower 

the overall resistance during the weld to resemble the average reference resistance. Performing a means 

comparison between the UIP values with adaptive welding active versus without, the two UIP values 

were found to be significantly different. This meant that the UIP values are significantly higher than 

without the adaptive and possibly more likely to be detected. To determine if the weld controller was 

limited by the 10% current control setting, the I% was increased to 50% (max) in increments of 10% 

for a 10mm shunted weld. As shown in Figure 5.4, the current never exceeded 10% and no single 

variable was found to be significantly different from the initial 10% current control setting.  

 

Figure 5.4. Dynamic Current Curves of All Welds Performed with 10 to 50% Current Control 
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and require an extension of time to accommodate. In the shunted welds made with a time extension of 

50% (Figure 5.5), expulsion occurred when it should not have, and time extension was activated to 

continue to weld past the set time. The current was not observed to be any different than the other 

recorded welds and thus was considered an outlier. 

 

Figure 5.5. Dynamic Current Curve of Shunted Welds with Time Extension Active 

 

 

Figure 5.6. Measured Weld Nugget Diameter of Shunted Welds 

Figure 5.6 indicates that regardless of whether the adaptive welding was active (A) or not, the 

shunted welds resulted in a smaller nugget size in comparison to the reference (ideal) welds. Only with 

time extension active (T) did the nugget diameter no longer significantly differ from the reference. It 

can be concluded that activating the time extension with welds at risk of shunting may be beneficial.  
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5.2.2 Edge Proximity  

In this study the edge proximity distances were 15 and 10mm as at 10mm and smaller distances, 

expulsion occurred during adaptive welding until reaching the critical point of half the electrode face. 

  

Figure 5.7. Full Schedule (a) and Main Weld (b) Dynamic Resistance Curve of Edge Welds with 

Pre-Pulse 

The curves in Figure 5.7 follow the same pattern found in Chapter 4, where the beta peak 

resistance decreased and occurred later with a higher final resistance. A local peak and valley occur at 

100ms in Figure 5.7b, which coincides with either a surface film breakdown or a coating melting. This 

is an interesting phenomenon as the pre-pulse was proven to be effective at removing the coating layer 

material from the interface surfaces and reduces roughness. This indicates that as the weld approaches 

the edge a residual roughness is more likely.  
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Figure 5.8. Pre-Pulse (a) and Main Weld (b) Dynamic Resistance Curves of Edge Welds with 

Adaptive and Constant Current Controls 

With the implementation of the adaptive control, the localized peak and valley suspected to be 

residual roughness is removed with the adaptive functionality in Figure 5.8b. At an edge distance of 

10mm, the risk of expulsion has increased, when it did not occur at constant current. This is likely due 

to the fluctuating current the controller is applying to the weld causing instability, and with a reduced 

distance of travel expulsion was more likely to occur. Comparing the UIP values found in Table 5.3, 

the application of adaptive welding seems to lower the values in contrast to shunting, where the values 

increased.  

Table 5.3. Controller Values for Edge Welds with and Without Adaptive Control 

Condition Current (kA) Resistance  (µ ohm) Energy (J) UIP 

Reference 7.63 160 5345 - 

Edge 10mm 7.63 153 5048 107 

Edge 15mm 7.63 155 5113 115 

Adapt Edge 10mm 7.73 148 5014 100 

Adapt Edge 15mm 7.71 156 5250 113 

Over Edge 3mm 10.74 84 6028 30 
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Figure 5.9. Dynamic Resistance Curves of Edge Welding with Adaptive Time Extension and 

Over-Edge Welding 

When time extension setting was activated for 10mm edge welds, the expulsion time moved from 

250 to 400ms shown in Figure 5.9 which may be accounted for by the controller reducing the severity 

of the current control as it now has the option to extend the time. Regardless, expulsion still occurred 

and the time for the weld was extended in efforts to increase the nugget growth stage.  When observing 

the resistance curve of the over-edge welding condition in Figure 5.9, the curve is visually different 

from the others. When comparing the UIP values in Table 5.3, the controller output an average of 30, 

a substantial change in comparison to UIP values near 100, and extreme cases may be detected with 

UIP.  

 

Figure 5.10. Measured Weld Nugget Diameter of Edge Welds 
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Figure 5.10 displays a general loss of nugget size with edge welding as found in the previous 

chapter. The introduction of adaptive welding worsened the nugget size as it caused expulsion, leading 

to a loss of material inside the weld. The application of time extension did not make a significant 

difference to the nugget size of a weld with expulsion as the 10mm edge weld with adaptive compared 

to the adaptive and time extension weld have weld nugget diameters of 5.87mm and 5.70mm 

respectively.  

5.2.3 Influence of Sheet Separation using Shims  

In this study, the same effective separation distance was used as the previous study in section 

4.3 to compare the effect of adaptive welding. Welding with a gap on the robot produced the greatest 

difference in results in comparison to welds with pedestal welds. Welds performed with the pedestal 

welds produced dynamic resistance curves with lower and early beta peaks, while curves in Figure 5.11 

have beta peaks that are higher and later. The main reason for this difference was accredited with the 

difference in the rigidity of the system which was the main cause of increased variance in spot welding  

[113]. During the application of the force, rigidity plays an influential role as deflections in the system 

may cause indirect reductions of force or change in electrode contact angles. The rigidity did not play 

a large role in prior studies with the robot as all of the workpieces were placed flat against each other 

but with a singular shim on one side of the workpiece, the impact would have been significant. 

 

  

Figure 5.11. Dynamic Resistance Curve of Shim Welds with Pre-Pulse 

0

50

100

150

200

250

0 200 400 600

R
es

is
ta

n
ce

 (
µ

 o
h

m
)

Time (ms)

Reference

1mm

2mm

150

160

170

180

190

200

210

50 150 250

R
es

is
ta

n
ce

 (
µ

 o
h

m
)

Time (ms)

Reference

1mm

2mm



 

 57 

The increase and delay of the beta peak in Figure 5.11 was due to the lack of contact caused by 

the deflection in the welding gun. This led to a reduction of force leading to higher surface roughness 

and an increased current path which consequentially delayed heat generation at the nugget.  

  

Figure 5.12. Pre-Pulse (Left) and Main Weld (Right) Dynamic Resistance Curves of Shim 

Welds with Adaptive and Constant Current Controls 

In the pre-pulse section of the curves in Figure 5.12, the resistance changes from a high to low 

with constant current while with the adaptive welding the resistance follows the same behavior of low 

to high as the reference. In the main weld, there was no notable overall differences in the curves even 

with the time extension. The UIP values for the 1mm and 2mm were 111 and 119, while with the 

adaptive it was reported values of 107 and 120, respectively.  

 

Figure 5.13. Measured Weld Nugget Diameter of Shim Welds 
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from the initial observation. The increase in the distance between the constant current welds increased 

the variance in the nugget size but with adaptive the deviations were similar. 

 

5.3 UIP 

With the discovery that UIP does not directly reflect any minor changes in the process and 

could not differentiate any of the process changes aside from extreme cases such as over-edge welding, 

the origin of the UIP value comes into question. The origin of the quality indicator UIP and any 

correlation to the physical weld are explored. In the following section, the variables the controller most 

likely considers when outputting the UIP values are investigated.  

5.3.1 Source of UIP 

Figure 5.14 to Figure 5.16 compare the statistical analysis between the deviation of the variable 

from the reference curve against the average value. The summation of the deviation of the curve from 

the reference curve was calculated using a MATLAB code found in Appendix B. The data was set to 

best fit a singular variable model. All variables were found to be statistically significant at a P-value of 

less than 0.01. It is evident that the variation in the UIP values are explained better by the deviation 

from the reference current than the static average values. Thus, it was concluded that the basis of this 

adaptive controller is based on Kamat and Lagoo’s theory of comparing dynamic resistances [91].  

 

 

  

Figure 5.14.  Statistical Analysis of UIP as a Function of Deviation of Current from Reference 

Curve (Left) and Average Current (Right)  
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In all of the deviation from reference plots exists data points that are not close to the majority 

groupings. These points were the result of over the edge welding where a portion of the electrode face 

was not in contact with the material to provide the worst-case scenario. While these data points may 

influence/skew the data, it is more important to determine if the quality variable does not change its 

calculations based on a “good” or “bad” weld situation. It was noted for later analysis that the poor 

welding condition of over-edge welding lay far outside of the main grouping the controller could weld. 

 

  

  

Figure 5.15. Statistical Analysis of Deviation of UIP as a Function of Voltage from Reference 

Curve (Left) and Average Voltage (Right)  

  

  

Figure 5.16. Statistical Analysis of UIP as a Function of Deviation of Resistance from Reference 

Curve (Left) and Average Voltage (Right) 



 

 60 

A regression analysis was performed using the delta variables available from the output of the 

controller and resulted in the following model:  

 

 
UIP = -4117 + 5.62 ΔI + 0.000407 ΔV + 0.00364 ΔR - 0.0513 ΔF + 4044 UA 

+ 0.000002 ΔI*ΔR - 5.62 ΔI*UA - 0.005260 ΔR*UA + 0.0525 ΔF*UA 
(Eq. 8) 

   

where the constant UA is a Boolean variable to indicate if the weld was performed with adaptive control 

(1) or with constant current (0). The model calculated a 95.79% R-sq (adj) fit to the experimental data. 

Similar to the output of a neural network method, the constants could not be compared to any familiar 

constant values related to RSW. From the regression model, it is evident that there are the two-level 

interactions which change the UIP value significantly depending on if adaptive welding was active or 

not which reflects the results in section 5.2. The full regression analysis is included in Appendix B. 

5.3.2 UIP vs Quality  

  

Figure 5.17. Nugget Diameter (Left) and Ultimate Tensile Strength (Right) as a Function of UIP 

 It is collective understanding that the strength of the weld and the nugget diameter possess a 

direct relationship. But with USIBOR® being an AHSS, the nugget diameter and the UTS do not have 

a clear relationship and thus cannot assume if the nugget reaches a specific size, it will perform well. 

Thus, both quality indicators were compared separately. Visually comparing the UIP value to the 

nugget diameter or the ultimate tensile strength (UTS) in Figure 5.17 show no clear trend. Upon running 

the variables in Minitab, the UIP variable was found to have a significant (P<0.05) relationship to both 

the nugget diameter and UTS but have a R-sq of 13.49% and 27.70% (respectively). This indicates that 
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the UIP variable alone cannot provide information on the quality of the weld. While UIP demonstrates 

a significant relationship to the destructive-tested weld nuggets, other variables may need to be 

incorporated to provide a more robust model. The full analysis performed with Minitab can be found 

in Appendix B. 

  

5.4 Stability Factor 

While not explicitly mentioned as a quality indicator, the function of the stabilization factor is 

a variable the controller calculates to provide feedback for the process. As the name suggests, this 

number fluctuates but did not appear to have a no direct correlation to the UIP (refer to Figure B.12 in 

Appendix B). Thus, the origin of the quality indicator stabilisationFactorActual was investigated.  

 

5.4.1 Source of Stability Factor 

In contrast to the UIP quality indicator, the Stabilization Factor in the controller outputs are not 

uniquely dependent on either the deviation from the reference curve or the average value the controller 

outputs. Comparing the R-sq values in Figure 5.18 to Figure 5.20, the average values provide a slightly 

higher R-sq value with the greatest difference in fit in Figure 5.18 comparing 98.18% to 98.84%. As 

seen in UIP as well as for stability, the introduction of the over-edge welding introduced points that lie 

far outside of the main grouping. For the same reason as UIP, they were kept to determine the source 

of the stabilization factor.  

  

  

Figure 5.18. Statistical Analysis of Stabilization Factor as a Function of Deviation of Current 

from Reference Curve (Left) and Average Current (Right) 
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Figure 5.19. Statistical Analysis of Stabilization Factor as a Function of Deviation of Voltage 

from Reference Curve (Left) and Average Voltage (Right) 

  

  

Figure 5.20. Statistical Analysis of Stabilization Factor as a Function of Deviation of Resistance 

from Reference Curve (Left) and Average Resistance (Right) 

Based on the slightly higher fit using the average values, the calculated Energy and Power from 

the average values of the weld were incorporated into the analysis in Figure 5.21. Stabilization factor 

as a function of either energy or power is relatively low in comparison to the R-sq values found for 

current, voltage, or resistance, but cannot be ignored as they possess R-sq values of greater than 75%.  
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Figure 5.21. Statistical Analysis of Stabilization Factor as a Function of Energy (Left) and 

Power (Right) 

Energy and power are functions of the voltage, resistance, current, and time which act as well-

known interaction terms and contribute to explaining the variance in the stabilization factor. When 

performing the regression model, a variety of variables were used to model the data and the best 

combination was found to incorporate energy (E), power (P), current (I), voltage (V), and resistance 

(R) as follows: 

 

 
Stabilization Factor = -3448 - 0.00549 E - 0.0792 P + 569.8 I + 1188 V + 4.220 R 

- 25.24 I^2 - 0.000465 P*R 
(Eq. 9) 

  

The model for stabilization factor, shown as (Eq. 9), resulted in a R-sq (adj) value of 99.78%, 

which is a suitable fit of experimental data to the modelled data. This fit helps explain that the 

stabilization factor is not based on any instantaneous values but dependent on the calculated values the 

controller outputs.  

5.4.2 Stabilization Factor vs Quality  

Based on the fact stabilization factor utilizes the average values, there is no expected direct 

correlation to quality indicators of nugget diameter or UTS. Visual inspection of Figure 5.22 shows a 

potential positive relationship of stabilization to nugget diameter and negative relation to the UTS. 

Using Minitab, it was found the stabilization factor has a significant relation (P<0.05) to both nugget 

diameter and UTS with R-sq values of 46.55% and 35.01% (respectively). The R-sq values are much 
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higher than those calculated for the UIP values which may indicate that the use of the average values 

to determine the quality of the weld may not be easily dismissed.  

  

Figure 5.22. Nugget Diameter (Left) and Ultimate Tensile Strength (Right) as a Function of 

Stabilization Factor 
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5.5 Summary  

With the introduction of adaptive current welding to the process conditions investigated in 

Chapter 4, there was a clear observation that the adaptive welding current did not operate by matching 

the weld to the reference dynamic resistance curve. The controller was free to vary the current by 50% 

and in all cases except the over-edge welding, and it did not exceed 10% of the control. Thus, only at 

extreme changes in the profile of the welding curve did the welder apply the full control of the welding 

procedure, and the associated UIP values were far below the others. When not welding extreme welding 

conditions, the application of adaptive welding was beneficial in some conditions and produced adverse 

effects to the nugget size. The related UIP values which were supposed to indicate quality abnormalities 

did not vary with the process condition, nor with incremental severity of the condition.  

When investigating the UIP value, it was found that the deviation of the current, voltage, 

resistance, and force curves from the preset reference curve played the largest role in determining the 

UIP factor. Each variable possessed R-sq values of above 95%, and with the addition of the Boolean 

variable indicating the adaptive welding was active or not, could create a model that fit with a R-sq 

(adj) of a 95.79%. UIP was found to have no direct correlation to the nugget diameter or the tensile 

strength of a weld but was found to be significant (P<0.05) when comparing the data. The same 

procedure was performed for the stabilization factor and it was found that the average values the 

controller output would best explain this variable. With the average current, voltage, resistance, and the 

resulting energy and power, a model with a R-sq (adj) of 99.78% could be made. This variable was also 

not found to have any direct correlation to the nugget diameter or tensile strength but was also found 

to be significant (P<0.05).  
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Chapter 6 

Identification of Potential Variables to Correlate the Nugget Size of 

USIBOR® 

In the previous study, the most significant variables for UIP and Stabilization Factor were 

identified. It was concluded that there was a lack of evidence the variable UIP or Stabilization Factor 

could accurately be correlated to the quality of the weld, or even a change in the process. A further 

investigation into identifying significant variables in the models was conducted and reported in this 

chapter.  

6.1 Nugget Diameter 

The nugget diameter is a widely accepted criterion in the industry in determining if the weld is 

acceptable or not. While USIBOR® does not follow the common relation between larger nuggets 

providing higher strength, a loss of nugget size will negatively influence the strength of the weld. Thus, 

a model to identify if a nugget is undersized using the available information from the controller would 

be beneficial in reducing physical and destructive quality testing. Upon imputing all of the values into 

a regression analysis with the average values that the controller can output, the following ANOVA 

variables were determined (see Table 6.1). 

Table 6.1. Summary of ANOVA values for Regression of Controller Variables 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 9 2.84580 0.31620 3.86 0.000 

  wear 1 0.01338 0.01338 0.16 0.687 

  voltageActualValue 1 0.79862 0.79862 9.74 0.002 

  currentActualValue 1 0.62087 0.62087 7.57 0.007 

  energyActualValue 1 0.11833 0.11833 1.44 0.233 

  powerActualValue 1 0.69972 0.69972 8.53 0.004 

  resistanceActualValue 1 0.36746 0.36746 4.48 0.037 

  stabilisationFactorActValue 1 0.63215 0.63215 7.71 0.007 

  uipActualValue 1 0.16682 0.16682 2.03 0.157 

  uipExpulsion 1 0.02490 0.02490 0.30 0.583 

Error 85 6.97176 0.08202       

Total 94 9.81756          
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The high P-Value variables indicate a low to insignificant variable in creating a robust model. 

Variables with values higher than an error level of 0.1 in Table 6.1 were the wear, energy, UIP and 

expulsion. The wear and energy term can be removed as the wear value provides information about the 

electrode condition and not about the individual weld, while the power value provides the same 

information as energy if time is held relatively constant. The UIP term remains included, as it provides 

indication of any large intermediate changes to the dynamic resistance curve which was proven to 

change significantly in Chapter 4. Expulsion possesses a relatively high P-Value as it is a Boolean 

which directly correlates poorly but may provide more information with interactions with other non-

Boolean variables. When this model was derived based only on the average variables and no 

interactions, it possessed a R-sq (adj) value of 21.47%, further analysis can be seen in Appendix C. 

Once interactions were considered, various methods of removing the unnecessary terms were used to 

determine the best fitting model. The best result possible with the gathered data was a model with a R-

sq (adj) of 40.29%. Table 6.2 contains all of the terms used in the model with corresponding P-Values. 

The full ANOVA analysis can be found in Appendix C. 

Table 6.2. Segment of ANOVA Table for Full Model Displaying P-Values Used Variables 

Term P-Value 

Constant 0.843 

V 0.014 

I 0.042 

P 0.004 

R 0.014 

Stabil 0.095 

UIP 0.374 

Expl 0.044 

Stabil2 0.068 

UIP2 0.183 

V*UIP 0.021 

V*Expl 0.037 

I*UIP 0.024 

I*Expl 0.072 

P*Expl 0.056 

R*Stabil 0.019 

Stabil*UIP 0.050 

V*UIP2 0.017 

I*UIP2 0.019 

Stabil2*UIP 0.057 
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Using the variables found to be important in Table 6.2, the model for nugget diameter labelled 

(Eq. 10) was made.  

 

Nugget Diameter (mm) = -179 - 1654 V + 415 I + 0.02306 P + 1.443 R 

- 26.2 Stabil + 15.6 UIP - 1320 Expl + 0.1532 Stabil^2 - 0.1198 UIP^2 + 26.V*UIP 

+ 1195 V*Expl - 7.97 I*UIP + 139.0 I*Expl - 0.1288 P*Expl - 0.01531 R*Stabil 

+ 0.244 Stabil*UIP- 0.1188 V*UIP^2 + 0.0356 I*UIP^2 - 0.001300 UIP*Stabil^2 

(Eq. 10) 

where Expl is the Boolean variable indicating if expulsion occurred, and Stabil is the stabilization factor 

previously modelled in Section 5.4. The coefficients did not match any known constants related to the 

resistance spot welding process and thus were qualitatively analyzed. Among the single order variables, 

the detection of expulsion (Expl) has the greatest negative impact on the nugget diameter. The second 

most influential parameter was the current, as it provided the most positive influence on the nugget 

diameter. Both of these variables aligned with known relations to the nugget diameter and thus was 

found reasonable. Of the second order variables, the controller quality indicators: stabilization factor 

(Stabil) and UIP were found to be the most frequently reoccurring and influential. The large role the 

two quality variables showed that there may be some quality detection capability with the variables, 

just not a direct relation.  

 

Figure 6.1. Predicted Nugget Diameter with Prediction Limits (Blue) Layered with 

Experimental (Red) of All Data Points 

 The data used to predict the model was used to determine the fit in Figure 6.1. Of the 100 data 

points used, 63 of the nugget diameters lie outside of the predicted limits, which links back to the R-sq 
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(adj) value of 40.29% output by the ANOVA analysis. The predicted data was plotted against the 

experimental data in Figure 6.2 to determine if the model was over- or underestimating the nugget size. 

It was concluded that the model could capture the general trend of the nugget diameter based on the 

weld controller outputs, when it did incorrectly predict, it tends to be overestimating the nugget size. 

  

Figure 6.2. Plot of Experimental vs Modelled Nugget Diameter 

6.1.1 Model Validation  

A validation set of welds were made with a new reference curve for the adaptive feature to test 

the robustness of the model. The results based on the validation welds input into the model are shown 

in Figure 6.3 and Figure 6.4.  

 

Figure 6.3. Predicted Nugget Diameter with Prediction Limits (Blue) Layered with 

Experimental (Red) of Validation Points 
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Figure 6.4. Plot of Experimental vs modelled Nugget Diameter Using New Reference Curve  

 Based on Figure 6.3, it would appear that the model is able to capture the experimental data 

within the prediction limits (to an error level of 0.1), but based on the variability of the new set of data, 

the error limits of each point ranges from 0.79 to 1.96 mm. To put the scale of the error bars into 

perspective, the data from Figure 6.1 displayed error bars ranging from 0.05 to 0.25 mm where nearly 

37% of the data fit into the model. If the same error bars were used for this data set, 1 of the 25 data 

points would not fit, resulting in a 4% fit. When plotting the modelled nugget diameter to the 

experimental nugget in Figure 6.4, the lack of fit of the data is more evident. The model under-predicts 

the size of the nuggets as nuggets measured close to 6.5mm are predicted as close to 4.5 mm. This 

result demonstrates that the model using one reference curve is not robust enough to fit data of another 

reference curve and a more robust model is needed.  

6.1.2  Creating a Robust Model 

Combining the validation data points with the previous data set, a new model can be derived 

as (Eq. 11) to provide a stronger expression to capture and detect the fluctuation of the nugget diameter. 

The resulting model fit increased from a R-sq (adj) value of 40.29% to 45.71% indicating that this 

method should be chosen over creating separate models per each unique dynamic resistance curve. The 

model is shown in the following equation on the next page: 
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Nugget Diameter (mm) = -2232 + 388 I - 1402 Expl - 0.000071 P^2 

- 0.0863 R^2 + 0.384 V*P + 15.19 V*R - 3.623 V*Stabil + 1252 V*Expl 

- 2.469 I*UIP + 144.0 I*Expl + 0.000480 P*Stabil + 0.002784 P*UIP 

- 0.1317 R*Expl + 0.0544 R*UIP - 889 V^3 + 0.000000 P^3 + 0.000113 R^3 

- 0.000267 UIP^3- 1.891 V*I*UIP + 0.01193 I*UIP^2 - 0.000006 P*R*UIP 

(Eq. 11) 

 

It is evident there was a change in the variables used in attempting to correlate the controller’s 

variables to the nugget diameter with the addition of the validation data set. All the variables and P-

Values can be found in Table 6.3, where they were all found to be significant below an error level of 

0.05. The first issue to note is the first order variables were not found to be significant to the data but 

still used in higher order terms, which indicates that with a new reference curve, the use of the variables 

themselves do not provide any useful information. The only single order terms were current and the 

Boolean term for expulsion, which are considered the two principal factors when investigating nugget 

sizes. The influence on the nugget diameter remained the same as higher current or no expulsion would 

produce a larger nugget.  While it is customary to keep first order terms in the model, the missing first 

order variables were captured as either 2nd or 3rd order terms, and thus a decision was made to leave 

them out of the model.   

Table 6.3. Segment of ANOVA Table for Robust Model Displaying P-Values Used Variables 

Term P-Value Term P-Value 

Constant 0.001 P*Stabil 0.000 

I 0.000 P*UIP 0.000 

Expl 0.020 P*Expl 0.034 

P2 0.000 R*UIP 0.000 

R2 0.000 V3 0.000 

V*P 0.000 P3 0.000 

V*R 0.000 R3 0.000 

V*Stabil 0.000 UIP3 0.000 

V*Expl 0.016 V*I*UIP 0.000 

I*UIP 0.000 I*UIP2 0.000 

I*Expl 0.047 P*R*UIP 0.000 

 

The resulting model shown in Figure 6.5a, provides a much better fit to the data possessing 

standard deviation prediction limits of 0.13 and 0.44 while encapsulating 18 of the 25 validation data 
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points, a substantial improvement in comparison to the previous model. With the inclusion of all the 

previous data, shown in Figure 6.5b, the new model captured 50 of the 125 data points (~40%) within 

the prediction limits. It was concluded that including data from welds using a separate unique reference 

curve is able to improve the robustness of a model.  

  

 

 

Figure 6.5. Predicted Nugget Diameter with Prediction Limits (Blue) Layered with 

Experimental (Red) with New Robust Model 
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Figure 6.6. Plot of Experimental vs Modelled Nugget Diameter of Robust Model 

When comparing the modelled nugget diameter to the experimental nugget diameter, Figure 6.6a 

displays the ability of the new model to capture the validation data while still capturing all of the 

original data in Figure 6.6b. It can be said that the addition of another reference curve will not skew the 

model and improve the ability to capture various reference curves.  

6.2 Production Validation 

To determine if the applicability of the findings in the laboratory setting could be directly 

applied to an automotive production setting, parts from the production line from Honda were supplied 

to be analyzed. The specific parts were the side stiff component, which consists of the a-pillar, and door 

frames, for the current production vehicle, as shown in Figure 6.7.  

           

Figure 6.7. Outer Stiff Component (Left) and Analyzed Relevant Welds (Right) 
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The study performed in this thesis was intentionally based on the parameters and material 

stackup of the welds highlighted by Figure 6.7 to correlate to welds found on this component. For the 

specific two-stack, USIBOR® sheets were welded with a 12kA pre pulse and 7.8kA main pulse weld, 

with 12 welds along the bottom of the side component to be analyzed. Only one part for each side of 

the vehicle (driver and passenger) was provdied to be torn down and analyzed, totalling 24 welds to 

use as validation. In production, each of the 24 welds were welded with a unique reference curve that 

was set based on the specific weld location. Thus, the UIP values for all of the welds were not consistent 

as it changes as a function of the deviation from the set reference curve. The spread of the reference 

curves are shown in Figure 6.8, where the black line is the average of all of the curves. The widest 

spread is located during the pre-pulse with a standard deviation of 8.615. The second highest deviation 

was during the first 50ms of the second pulse ranging between 3 to 3.5. The level of deviation in Figure 

6.8 from the reference curve was deemed acceptable to have minor effect on the UIP.  

 

Figure 6.8. Compiled Reference Curves of All 24 Welds Used to Perform the Validation Welds  

6.2.1 Nugget Diameter Validation 

  The statistical model formed in 6.1.2 was used to predict the nugget sizes based on the 

controller output signals from the production floor. The results shown in Figure 6.9, indicate that in 

comparison of the eperimental to the modelled data, it can be used to produce an acceptable linear 

correlation of the data, with 7 of the 24 data points found as outliers. The two predicted negative nugget 

diamters was found to be due to the expulsion. While expulsion was included in the model, it was found 

that the calculated power of the process was much higher. This was due to the adaptive welding 
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applying a higher current to mitigate high resistance situations caused by oils or dirt on the production 

parts in comparison to the cleaned workpieces in the lab. The prediction of the 9mm nugget was also 

due to the presence of expulsion. This indicates that the presence of expulsion in general was causing 

the model to produce poor fits. This is because it acts as a boolean variable and does not provide any 

addition information, but acts as a correction factor which activates other variables to correct any 

expulsion nugget diameters. This issue could be fixed by utilizing the production floor data to create 

the regression model and account for the higher power. The robustness of the model is limited to the 

boolean state of the expulsion variable.  

 

Figure 6.9. Plot of Experimental vs Modelled Nugget Diameter of Production Data using 

Robust Model 

With results found comparing the laboratory setting and the production parts, the fit of the 

model was acceptable and possibly feasible with an in-depth investigation in determining what would 

make the model more robust.    

6.2.2 Validation of Dissimilar Steel Stack Up 

The side stiff components are fully composed of AHSS as it is a major component to the 

structural integrity of the vehicle. Al-Si coated USIBOR® and dual-phase (DP980) steels with a yield 

strength of 980 MPa made up the majority of the piece, each playing a different role. USIBOR® 

possesses a yield strength of 1500 MPa with low ductility, providing stiffness to prevent any 

deformation in the cabin. The DP980 possesses a lower yield strength because it is composed of a ferrite 
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matrix with martensite, or martensite-austenite islands to prevent dislocation, in comparison to 

USIBOR®’s full martensite composition [2], [114].  The presence of the ferrite matrix allows for 

improved ductility, and energy absorption to assist in protecting the cabin in the event of a collision.  

With the introduction of a new material (DP980), the difference in bulk resistance of the 

different sheets would alter the dynamic resistance as well as the heat balance, as it is no longer 

symmetrical. These were deemed negligible to the performance of the adaptive welding capabilities of 

the controller as a unique reference curve for each weld in production is created. The reference curves 

of the production dissimilar welds can be seen in Figure 6.10 below. When comparing the production 

curves to the reference curve made in the laboratory setting at the university, the difference was notable. 

The beta peaks of the production curves range from 25 to 65% higher than the beta peaks observed in 

the laboratory setting. It was also noted the presence of two distinct groupings of the dynamic resistance 

curves (I and II in Figure 6.10). Upon investigation, the two groupings corresponded to the two separate 

robots used to weld the parts. In automotive production, multiple robots may simultaneously weld a 

larger component to meet the high demand. Thus, it should be noted that a specific robot may affect 

the dynamic resistance by contributing to the resistance path (through wires, wear on electrode guns, 

etc.).  

 

Figure 6.10. Reference Curves for All Dissimilar Welds, Production Curves in Grey and Lab 

Made Curves in Black 

Various attempts to replicate the production setting dynamic resistance curves were made but 

could not be replicated without changing the test coupons. Acknowledging the discrepancy between 

the production data and the data collected in the lab setting, the same procedure for the same stack up 
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found earlier in this section was performed using 50 USIBOR®-DP980 welds. The resulting model is 

displayed below as (Eq. 12). The ANOVA analysis produced a R-sq (adj) value of 45.20% which was 

comparable to the previous models. All the first order terms were visible in this regression, but when 

comparing the previous models, the variable with the greatest positive influence was voltage (V) and 

Expl is not a negative influence. The Expl variable only appears once more as an interaction term with 

voltage (V) with a negative influence. This indicates that the nature of the welding behavior was not 

properly captured in this model and an extensive study similar to the one performed for the USIBOR® 

similar stack up is required for a robust model.  

 

 

Nugget Diameter (mm) = -4526 + 22330 V + 4375 I - 1.52 P - 223.8 R 

- 772 Stabil + 432 UIP + 1269 Expl + 10.46 Stabil*Stabil - 2.425 UIP*UIP 

+ 158.2 V*R - 337.1 V*Stabil - 188.1 V*UIP - 900 V*Expl + 31.6 I*R - 67.3 I*Stabil 

- 36.8 I*UIP - 0.02230 P*R + 0.0462 P*Stabil - 0.0005 P*UIP + 5.12 Stabil*UIP 

- 0.02666 Stabil*Stabil*Stabil + 0.00336 UIP*UIP*UIP + 0.000122 P*UIP*UIP 

- 0.02705 Stabil*Stabil*UIP 

(Eq. 12) 

 

The prediction capabilities of the model can be observed in Table 6.4. All error % found to be 

greater than 100% was highlighted red, leaving 1 of the 12 data points. The rest of the data produced 

unreasonable nugget diameters ranging from -7.9 to 118 mm nugget diameters (error % of -235.47% 

and 2083.85%). This indicates that the difference in the reference resistance curves and the lack of 

robustness of the model renders the model ineffective.  

Table 6.4. Results of Implementation of Laboratory Created Model of Dissimilar Steel Stack Up  

Weld # 
Nugget Diameter 

(mm) 

Predicted Nugget 

Diameter (mm) 
Error % 

11A_1 5.87 13.004 121.53% 

11A_2 5.8 46.71553 705.44% 

11A_3 5.61 40.18154 616.25% 

11A_4 5.47 111.0839 1930.78% 

11A_5 5.7 69.09023 1112.11% 

11A_6 5.44 118.8015 2083.85% 

11C_1 6.29 5.308053 -15.61% 

11C_2 6.15 -0.60165 -109.78% 

11C_3 6.05 -2.24254 -137.07% 

11C_4 5.91 16.47872 178.83% 

11C_5 5.84 -7.91152 -235.47% 

11C_6 5.7 94.51068 1558.08% 
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6.3 Summary 

From the findings of section 6.1, a regression model of the same stack up weld using the 

variables output by the controller is possible to make with a fit of 40.29%. To achieve such a fit, the 

sample was composed of welds made under various process conditions such as edge welding, shunting, 

poor fitment, etc. The models were able to reflect the known relations between the nugget diameter and 

process variables such as the direct relation with current or the negative influence of expulsion. When 

implementing the model to the data collected from the production floor and comparing the nugget 

diameters, there was reasonable fit hinting that this process has potential to be a feasible solution if 

more research is conducted.  

 

With the implementation of the dissimilar steel stack up, there were findings that were not 

captured by the similar stack up. The first being that different welding robots create notably different 

reference curves which will reduce the effectivity of the model (as the adaptive controller will behave 

differently under the different resistance curves). This ultimately will change the UIP values and in turn 

no longer be viable to use one model for the specific stack up. The second is that the model created in 

the lab must be made with varying process conditions or else the model will not accurately reflect the 

relations the nugget diameter has with the process variables as demonstrated by the results with the 

dissimilar welding. There is a possibility that the dissimilar welding itself had caused error in the 

regression methods and requires further investigation.  Lastly, the statistical model should reflect the 

known physical relations between the quality indicator and the model variables regardless of the fit (R-

sq adj) for it to be viable.  
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Chapter 7 

Conclusion and Final Remarks 

The intention of the thesis was to provide a compiled report of all the findings with the use of 

the dynamic resistance curve and the adaptive welding controller which utilizes it. The findings were 

broken down by the investigation process performed. Firstly, the effect of process parameters on a 

constant parameter welding condition were investigated to see if there were any detection capability. 

Secondly, the capability of the weld controller was investigated to determine how it achieved the results 

it claimed it did. Lastly the quality of the weld represented by the weld nugget diameter and a statistical 

analysis of important variables along with a potential model was proposed, along with the problems of 

the method.  

7.1 Process Conditions on the Dynamic Resistance Curve 

The dynamic resistance curve had been used synonymously with the real-time condition of the 

welding process. With the first introduction of the breakdown of the dynamic resistance curve by 

Dickinson, research focused on this curve had been extensive [48]. The dynamic resistance is sensitive 

to an introduction of change in the material or type of coating [57].  With such sensitivity, the response 

of the dynamic resistance curve under various process conditions was tested. The results showed for 

extreme cases of shunting, edge welding, and shim gap, the dynamic resistance curve was significantly 

different from the standard reference weld. In the case of shunted welds, at a distance of 10mm between 

the center of a pre-existing weld to the new weld lead to a lower resistance and later beta peak resulting 

in a smaller nugget. During edge welding, a critical distance of approximately half of the electrode face 

exists where expulsion occurs and at smaller distances the shape of the curve drops quicker due to the 

nugget growing outside of the workpieces. For shimmed welds, the beta peak was reached earlier due 

to the change in current density and contact area as the required pressure of the electrodes increased. 

Through these findings, it is possible to justify the use of a reference resistance curve to detect a change 

in the process condition.  

7.2 Adaptive Control 

The adaptive controller promoted claims to detect the quality of the weld in real time. The 

claim was based on the ability of the controller to utilize a predetermined reference curve. Since the 

dynamic resistance curve varied significantly due to extreme changes in the process, the quality output 
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variables of the controller were thoroughly investigated. The ability of the adaptive controller to follow 

the reference curve was tested by applying the same extreme process conditions that were found to 

significantly change the curves. Comparing the adaptive welds with the welds performed with a 

constant current, it was found that in a laboratory setting the controller did not change the current by 

more than 10% even with the option to change up to 50%. The adaptive curves did not fit the reference 

any better than without, but the measured welds provided mixed results. All adaptive welds did not 

result in any larger nuggets except with the use of time extension for shunted welds. For edge welds it 

was found to be greatly detrimental, inducing expulsion.  

Statistical regression analysis was performed to determine what the variable UIP was actually 

measuring or indicating. UIP was found to be a function of the deviation of the current, voltage, 

resistance, and force curves collected by the controller against the set reference curve. In addition, the 

stability variable was found to be a function of the average values of the energy, power, current, voltage, 

and resistance. Both quality indicators were found to have no correlation to the nugget diameter or the 

tensile strength. 

7.3 Nugget Diameter Modelling  

With the capability of the UIP and Stabilization determined to have no relation the quality of 

the weld, a model incorporating other variables in conjunction with the quality indicators. A regression 

of the same stack up weld was conducted to reach a maximum fit of (R-sq adj) 40.29%. This meant 

that the best achievable prediction of the weld was close to half of the welds performed, which is not 

ideal for any production setting. The model was verified against a part off of the production like and 

found to have an acceptable fit. While the modelling was to be as robust as possible, there were certain 

steps taken that could help further studies but were not done in this thesis. The data collected was from 

an assortment of process conditions but was limited to the time required for each stage of analysis and 

more process conditions could not be incorporated. This could have filled in any of the gaps between 

the points which appear to skew the data and may help build a better model and explanation. Further 

modelling could be done using normalized data which was not considered in this thesis as the effect of 

the raw data on the model/nugget was used to decipher the model and helped determine the validity. 

Given a normalized data set, the spread of the data would not be as wide considering the parameters 

were fixed with adaptive welding and only the variance caused by the controller would have been 

normalized. The analysis and interpretations of the controller is best used as the first step in moving 

forward in using a statistical approach of modelling nugget diameter. While it may not be the ideal 
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method as it neglects a lot of the physical phenomena and importance of the coefficients as a black box 

(neural network) would do, it is an alternative method to utilize the large amounts of data collected 

from the controllers. 

 The same investigation was performed with dissimilar materials to determine if the modelling 

process is robust to accommodate the effect of change in bulk resistance of other materials. It was found 

that the specific robot played an influential role in the resistance dynamic resistance curve, changing 

the adaptive control of the process. It was also discovered that the coefficients of the model should 

reflect the natural relations inherent to the welding process. Even with a better fit of 45.20%, the use of 

the model on the production part predicted error rate of over 2000%. Thus, the capabilities of this 

process ranges from acceptable to unusable, and further investigation is required into making this 

process more robust. 

7.4 Future Recommendations 

The following recommendations are based on the findings enclosed in this thesis: 

1. The phenomena of the critical edge distance (approximately half of the electrode face) is 

worth investigating as all literature states the weld will experience expulsion, however no 

expulsion was observed below the critical edge distance.   

2. An investigation into producing a more robust model is necessary if this method is to be 

successfully implemented as a quality monitoring tool. This may include other process 

conditions not covered in this study such as electrode wear (change in electrode face 

diameter). 

3. The UIP value utilizes the force readings from the robot servo motors but the accuracy as 

force measurements are not precise as the robot controller does not gather data to the 

millisecond scale. This may improve the UIP readings in detecting and accounting for the 

fluctuations of the change in force.  

4. The significance of the robot on the dynamic resistance is another area of interest as the 

dynamic resistance curves for the same weld schedule and same materials produced two 

unique curves based on two separate robots with the same tooling.  
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Appendix A 

Chapter 4 Supplementary Data 

Table A.1. Data for 6 Variables for Shunt Welds 

Shunt max_resist max_time final_resist form_slope grow_slope avg 

10.00 237.72 42.42 135.29 5.60 0.22 158.13 

10.00 215.93 64.06 136.55 3.37 0.18 152.90 

10.00 228.73 32.43 131.83 7.05 0.21 155.09 

10.00 228.72 36.99 130.70 6.18 0.21 152.90 

10.00 217.75 38.58 130.43 5.64 0.19 150.62 

10.00 216.23 43.18 130.80 5.01 0.19 148.48 

10.00 220.52 40.68 132.32 5.42 0.19 150.08 

10.00 219.20 47.44 129.22 4.62 0.20 149.75 

20.00 244.43 31.54 130.13 7.75 0.24 156.64 

20.00 235.41 29.77 127.48 7.91 0.23 152.52 

20.00 231.26 40.24 126.01 5.75 0.23 149.37 

20.00 229.24 37.04 126.64 6.19 0.22 150.77 

20.00 224.27 49.94 126.37 4.49 0.22 148.86 

20.00 226.97 43.82 127.02 5.18 0.22 149.12 

20.00 229.00 44.84 125.93 5.11 0.23 148.63 

20.00 224.54 52.60 126.87 4.27 0.22 148.16 

30.00 243.89 33.14 129.60 7.36 0.24 151.91 

30.00 248.51 32.92 130.36 7.55 0.25 152.69 

30.00 235.38 42.32 126.04 5.56 0.24 150.25 

30.00 240.20 41.24 129.33 5.82 0.24 153.38 

30.00 239.04 35.91 129.74 6.66 0.24 153.70 

30.00 226.92 48.57 124.32 4.67 0.23 147.54 

30.00 239.15 43.04 129.50 5.56 0.24 153.73 

30.00 232.13 44.92 127.54 5.17 0.23 150.69 

40.00 248.79 27.26 130.38 9.13 0.25 155.24 

40.00 243.91 31.84 128.86 7.66 0.25 152.69 

40.00 235.38 44.84 124.84 5.25 0.24 150.03 

40.00 235.15 33.84 127.45 6.95 0.23 149.95 

40.00 233.78 38.82 125.80 6.02 0.23 151.27 

40.00 233.78 42.60 125.84 5.49 0.24 148.04 

40.00 234.25 43.18 128.36 5.42 0.23 152.04 

40.00 240.73 34.67 129.73 6.94 0.24 154.13 
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Table A.2. Data for 6 Variables for Edge Welds 

Edge max_resist max_time final_resist form_slope grow_slope avg 

1 224.1 25.25 110.7 8.876 0.2388 132.7 

1 222.6 27.73 107.4 8.028 0.2438 129.0 

2 230.2 35.47 114.7 6.490 0.2485 136.7 

2 227.5 36.30 115.1 6.267 0.2424 135.5 

2 233.1 25.12 116.5 9.278 0.2454 138.6 

3 225.1 49.89 122.3 4.512 0.2284 136.7 

3 218.4 45.50 117.6 4.800 0.2218 135.7 

3 218.9 48.02 122.0 4.558 0.2142 139.7 

5 237.1 47.83 128.3 4.957 0.2406 145.9 

5 221.1 43.03 129.9 5.137 0.1995 148.4 

5 221.8 48.75 127.7 4.550 0.2085 149.1 

10 224.2 49.52 128.6 4.527 0.2121 149.6 

10 231.4 45.17 130.4 5.122 0.2220 152.6 

10 230. 40.84 130.7 5.648 0.2177 152.0 

15 241.6 41.49 126.9 5.824 0.2502 149.4 

15 235.1 33.84 127.4 6.948 0.2310 149.9 

15 233.7 42.60 125.8 5.487 0.2359 148.0 

15 240.7 34.66 129.7 6.943 0.2385 154.1 

1 231.7 19.78 105.1 11.70 0.2635 130.1 

1 245.9 17.52 105.7 14.02 0.2904 133.2 

1 257.2 17.83 104.0 14.42 0.3175 136.8 

2 213.1 29.57 114.7 7.207 0.2091 133.1 

2 218.0 29.65 112.2 7.352 0.2249 130.9 

2 216.8 26.15 110.7 8.289 0.2239 129.7 

Table A.3. Data for 6 Variables for Shim Welds 

Fit Up max_resist max_time final_resist form_slope grow_slope avg 

1mm 217.1 17 131.7 12.77 0.1767 175.8 

1mm 230.8 19 137.2 12.14 0.1946 178.8 

1mm 230.5 19 137.4 12.13 0.1935 179.2 

1mm 217.4 16 136.7 13.59 0.1668 178.1 

1mm 229.3 15 137.3 15.28 0.1895 180.6 

2mm 250.9 15 139.7 16.73 0.2294 190.5 

2mm 236.0 13 137.1 18.15 0.2031 180.8 

2mm 250.3 15 133.9 16.69 0.2401 186.8 

2mm 236.4 18 134.9 13.13 0.2105 183.2 

2mm 259.8 14 132.2 18.55 0.2625 190.7 
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Figure A.1. Macroscopic Cross Section of Shunted 10mm Weld 

 

Figure A.2. Nugget Diameter of Shunted Welds with 2 Standard Deviation Bars 
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Table A.4. Macroscopic Images of Cross-Sectioned and Etched Shunted Welds  
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Figure A.3. Macroscopic Cross Section of Edge Weld at 2mm  

 

 

Figure A.4. Nugget Diameter of Edge Welds with 2 Standard Deviation Bars 
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Table A.5. Macroscopic Images of Cross-Sectioned and Etched Edge Welds 
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Figure A.5. Macroscopic Cross Section of Shim Weld 

Table A.6. Macroscopic Images of Cross-Sectioned and Etched Shim Welds 
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Figure A.6. Nugget Diameter of Shim Welds with 2 Standard Deviation Bars  

3.000

3.500

4.000

4.500

5.000

5.500

6.000

0 1 2 3

N
u

gg
et

 D
ia

m
et

er
 (

m
m

)

Shim Size(mm)



 

 96 

Appendix B 

Chapter 5 Supplementary Data 

MATLAB Code 

clear all 
close all 

  
% reading the data in 
data_dir = 'C:\Users\Kyu Won Choi\Documents\MASc\2018 Data\Experiments\Robot\1.5mm 

usibor\Matlab'; 

  
dat1 = importdata('TimeExt.txt'); 
dat2 = importdata('Compile.txt'); 
dat3 = zeros(550,186); 
dat3 = importdata('Validate.txt'); 

  
%Offset: 1time2current3voltage4resist5zwxks6force 
offset = 2; 

  
%Compare Resistance 
for k=1:1:16 
    for i=1:1:length(dat1) 
        compare1(i,k)=dat1(i,(offset+6*(k-1)))-dat1(i,90+offset); 
    end 
end 

  
%Compare Resistance 
for k=1:1:38 
    for i=1:1:length(dat2) 
        compare2(i,k)=dat2(i,(offset+6*(k-1)))-dat1(i,90+offset); 
    end 
end 

  
%Compare Resistance 
for k=1:1:31 
    for i=1:1:length(dat3) 
        compare3(i,k)=dat3(i,(offset+6*(k-1)))-dat3(i,180+offset); 
    end 
end 

  
compare1(isnan(compare1))=0; 
compare2(isnan(compare2))=0; 
compare3(isnan(compare3))=0; 

  
totaldiff1=sum(compare1); 
totaldiff2=sum(compare2); 
totaldiff3=sum(compare3); 

 
abstotaldiff1=sum(abs(compare1)); 
abstotaldiff2=sum(abs(compare2)); 
abstotaldiff3=sum(abs(compare3)); 
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Statistical Analysis of UIP  

  

   

  

Figure B.7. MiniTab Initial Regression Data for Delta  

Regression Analysis: UIP versus X1, X2, X3, X4, X5, 

X1*X3, ... *X5, X4*X5 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 9 16358.2 1817.58 125.02 0.000 

X1 1 76.0 75.98 5.23 0.028 

X2 1 32.2 32.20 2.21 0.145 

X3 1 36.9 36.87 2.54 0.119 

X4 1 77.0 76.99 5.30 0.027 

X5 1 80.8 80.77 5.56 0.023 
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X1*X3 1 81.4 81.39 5.60 0.023 

X1*X5 1 75.9 75.89 5.22 0.028 

X3*X5 1 524.1 524.07 36.05 0.000 

X4*X5 1 80.2 80.24 5.52 0.024 

Error 40 581.5 14.54 

  

Lack-of-Fit 38 581.5 15.30 * * 

Pure Error 2 0.0 0.00 

  

Total 49 16939.8 

   

Model Summary 

S R-sq R-sq(adj)  

3.81293 96.57% 95.79%  

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant -4117 1723 -2.39 0.022 

 

X1 5.62 2.46 2.29 0.028 2057366.94 

X2 0.000407 0.000274 1.49 0.145 310.14 

X3 0.00364 0.00229 1.59 0.119 1016.13 

X4 -0.0513 0.0223 -2.30 0.027 373758.13 

X5 4044 1716 2.36 0.023 2385001.37 

X1*X3 0.000002 0.000001 2.37 0.023 182.87 

X1*X5 -5.62 2.46 -2.28 0.028 1970758.22 

X3*X5 -0.005260 0.000876 -6.00 0.000 135.29 

X4*X5 0.0525 0.0223 2.35 0.024 1102463.05 

Regression Equation 

UIP = -4117 + 5.62 X1 + 0.000407 X2 + 0.00364 X3 - 0.0513 X4 + 4044 X5 + 0.000002 X1*X3 

- 5.62 X1*X5 - 0.005260 X3*X5 + 0.0525 X4*X5 

Fits and Diagnostics for Unusual Observations 

Obs UIP Fit Resid Std Resid   

9 106.00 104.49 1.51 3.75 R X 

13 35.00 31.71 3.29 3.50 R X 

14 23.00 26.07 -3.07 -3.49 R X 

44 78.00 85.72 -7.72 -2.34 R 
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46 70.00 70.00 0.00 * 

 

X 

R  Large residual 

X  Unusual X 

Residual Plots for UIP 
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Figure B.8. MiniTab Removal of Outlier Regression Data for Delta 

 

Figure B.9. Plot of Experimental vs Model UIP 
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Regression Analysis: UIP versus X1, X2, X3, X4, X5, 

X2^2, ... *X4, X4*X5 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 10 14671.6 1467.16 537.07 0.000 

  X1 1 89.0 89.03 32.59 0.000 

  X2 1 83.2 83.16 30.44 0.000 

  X3 1 75.3 75.33 27.57 0.000 

  X4 1 44.7 44.70 16.36 0.000 

  X5 1 10.6 10.56 3.87 0.057 

  X2^2 1 50.5 50.47 18.48 0.000 

  X1*X2 1 36.0 35.98 13.17 0.001 

  X2*X3 1 38.0 38.02 13.92 0.001 

  X3*X4 1 98.9 98.87 36.19 0.000 

  X4*X5 1 19.6 19.59 7.17 0.011 

Error 35 95.6 2.73       

  Lack-of-Fit 33 95.6 2.90 * * 

  Pure Error 2 0.0 0.00       

Total 45 14767.2          

Model Summary 

S R-sq R-sq(adj)  

1.65281 99.35% 99.17%  

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 25.2 12.7 1.99 0.055    

X1 0.909 0.159 5.71 0.000 45547.78 

X2 -0.00721 0.00131 -5.52 0.000 36314.55 

X3 0.04451 0.00848 5.25 0.000 73690.42 

X4 -0.000715 0.000177 -4.05 0.000 109.96 

X5 -161.5 82.1 -1.97 0.057 25768.22 

X2^2 0.000000 0.000000 4.30 0.000 10325.99 
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X1*X2 0.000001 0.000000 3.63 0.001 2962.16 

X2*X3 -0.000000 0.000000 -3.73 0.001 44639.59 

X3*X4 -0.000000 0.000000 -6.02 0.000 2706.13 

X4*X5 -0.00417 0.00156 -2.68 0.011 25262.32 

Regression Equation 

UIP = 25.2 + 0.909 X1 - 0.00721 X2 + 0.04451 X3 - 0.000715 X4 - 161.5 X5 + 0.000000 X2^2 

+ 0.000001 X1*X2 - 0.000000 X2*X3 - 0.000000 X3*X4 - 0.00417 X4*X5 

Fits and Diagnostics for Unusual Observations 

Obs UIP Fit Resid Std Resid   

3 107.00 104.55 2.45 2.07 R    

6 102.00 105.18 -3.18 -2.03 R    

9 106.00 107.17 -1.17 -2.06 R X 

12 112.00 109.04 2.96 2.26 R    

13 35.00 35.16 -0.16 -1.28    X 

14 23.00 22.87 0.13 1.21    X 

42 70.00 70.00 -0.00 *    X 

R  Large residual 

X  Unusual X 

Residual Plots for UIP 
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Figure B.10. MiniTab Analysis of Nugget Diameter as a Function of UIP 

R-squared (adjusted) 11.38% 9.27%

P-value, model 0.015* 0.054

P-value, linear term 0.015* 0.978

P-value, quadratic term — 0.828

Residual standard deviation 0.332 0.336

Statistics Linear

Selected Model

Quadratic

Alternative Model

120110100908070

7.0
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5.5

UIP

D
ia

Large residual

Unusual X

Y: Dia
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Fitted Line Plot for Linear Model

Y = 7.705 - 0.01159 X

* Statistically significant (p < 0.05)     

Regression for Dia vs UIP
Model Selection Report
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Figure B.11. MiniTab Analysis of UTS as a Function of UIP 

 

Figure B.12. Plot of UIP as a Function of Stabilization Factor 

 

R-squared (adjusted) 24.41% 21.39%
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Statistical Analysis of Stabilization  

 

Figure B.13. MiniTab Regression Data for Stability  

 

Figure B.14. Plot of Experimental vs Model Stabilization Factor 
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Regression Analysis: stabil versus X1, X2, X3, X4, X5, X3^2, 

X2*X5 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 7 16054.1 2293.44 3119.11 0.000 

  X1 1 10.2 10.24 13.92 0.001 

  X2 1 7.0 6.99 9.51 0.004 

  X3 1 32.1 32.07 43.62 0.000 

  X4 1 19.0 19.04 25.90 0.000 

  X5 1 27.2 27.20 36.99 0.000 

  X3^2 1 45.8 45.79 62.28 0.000 

  X2*X5 1 29.5 29.46 40.06 0.000 

Error 42 30.9 0.74       

  Lack-of-Fit 40 30.9 0.77 * * 

  Pure Error 2 0.0 0.00       

Total 49 16085.0          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

0.857489 99.81% 99.78% 99.65% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant -3448 546 -6.31 0.000    

X1 -0.00549 0.00147 -3.73 0.001 10.21 

X2 -0.0792 0.0257 -3.08 0.004 6498.80 

X3 569.8 86.3 6.60 0.000 180842.26 

X4 1188 233 5.09 0.000 20816.97 

X5 4.220 0.694 6.08 0.000 8260.35 

X3^2 -25.24 3.20 -7.89 0.000 84184.09 

X2*X5 -0.000465 0.000073 -6.33 0.000 10288.45 

Regression Equation 
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stabil = -3448 - 0.00549 X1 - 0.0792 X2 + 569.8 X3 + 1188 X4 + 4.220 X5 - 25.24 X3^2 

- 0.000465 X2*X5 

Fits and Diagnostics for Unusual Observations 

Obs stabil Fit Resid Std Resid   

3 87.000 87.036 -0.036 -0.09    X 

5 98.000 95.749 2.251 2.77 R    

10 88.000 87.077 0.923 1.71    X 

12 91.000 90.848 0.152 0.33    X 

13 5.000 4.541 0.459 1.21    X 

14 1.000 1.423 -0.423 -1.18    X 

30 89.000 90.894 -1.894 -2.40 R    

46 94.000 96.442 -2.442 -3.20 R    

R  Large residual 

X  Unusual X 

Residual Plots for stabil 
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Figure B.15. MiniTab Analysis of Nugget Diameter as a Function of Stabilization 

R-squared (adjusted) 45.25% 43.91%

P-value, model <0.005* <0.005*

P-value, linear term <0.005* 0.975

P-value, quadratic term — 0.895

Residual standard deviation 0.261 0.264
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* Statistically significant (p < 0.05)     

Regression for Dia vs stabil
Model Selection Report
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Figure B.16. MiniTab Analysis of UTS as a Function of Stabilization 
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Appendix C 

Chapter 6 Supplementary Data 

Regression of Nugget Diameter with No Interactions 

Regression Analysis: Nug Dia versus wear, ... ActualValue, 

uipExpulsion 
Method 

Rows unused 5 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 9 2.84580 0.31620 3.86 0.000 

  wear 1 0.01338 0.01338 0.16 0.687 

  voltageActualValue 1 0.79862 0.79862 9.74 0.002 

  currentActualValue 1 0.62087 0.62087 7.57 0.007 

  energyActualValue 1 0.11833 0.11833 1.44 0.233 

  powerActualValue 1 0.69972 0.69972 8.53 0.004 

  resistanceActualValue 1 0.36746 0.36746 4.48 0.037 

  stabilisationFactorActValue 1 0.63215 0.63215 7.71 0.007 

  uipActualValue 1 0.16682 0.16682 2.03 0.157 

  uipExpulsion 1 0.02490 0.02490 0.30 0.583 

Error 85 6.97176 0.08202       

Total 94 9.81756          

Model Summary 

S R-sq R-sq(adj)  

0.286393 28.99% 21.47%  

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 171.2 60.4 2.83 0.006    

wear 0.00074 0.00184 0.40 0.687 2.36 

voltageActualValue -157.0 50.3 -3.12 0.002 1990.39 

currentActualValue -22.53 8.19 -2.75 0.007 1620.91 
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energyActualValue -0.000491 0.000409 -1.20 0.233 9.23 

powerActualValue 0.01877 0.00643 2.92 0.004 5025.00 

resistanceActualValue 0.1110 0.0524 2.12 0.037 42.61 

stabilisationFactorActValue 0.0586 0.0211 2.78 0.007 4.01 

uipActualValue 0.0325 0.0228 1.43 0.157 24.99 

uipExpulsion 0.161 0.293 0.55 0.583 4.01 

Regression Equation 

Nug Dia = 171.2 + 0.00074 wear - 157.0 voltageActualValue - 22.53 currentActualValue 

- 0.000491 energyActualValue + 0.01877 powerActualValue 

+ 0.1110 resistanceActualValue + 0.0586 stabilisationFactorActValue 

+ 0.0325 uipActualValue + 0.161 uipExpulsion 

Fits and Diagnostics for Unusual Observations 

Obs Nug Dia Fit Resid Std Resid   

1 5.526 6.387 -0.861 -3.11 R    

3 6.165 5.671 0.494 2.33 R X 

4 5.866 5.924 -0.058 -0.25    X 

6 5.440 6.079 -0.639 -2.89 R X 

19 5.961 6.582 -0.621 -2.25 R    

21 6.625 6.422 0.203 0.95    X 

25 5.808 6.425 -0.617 -2.26 R    

26 6.717 6.349 0.368 1.65    X 

51 5.604 5.904 -0.300 -1.41    X 

54 5.827 5.832 -0.005 -0.08    X 

78 7.070 6.488 0.582 2.08 R    

R  Large residual 

X  Unusual X 

Durbin-Watson Statistic 

Durbin-Watson Statistic = 1.59254 
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Regression of Nugget Diameter with Interactions 

Regression Analysis: Nug Dia versus 

voltageActualValue, ... pExpulsion 
The following terms cannot be estimated and were removed: 

currentActualValue*powerActualValue, powerActualValue*resistanceActualValue, 

resistanceActualValue*uipExpulsion, stabilisationFactorActValue*uipExpulsion, 

uipActualValue*uipExpulsion, voltageActualValue*voltageActualValue*voltageActualValue, 

currentActualValue*currentActualValue*currentActualValue, 

voltageActualValue*voltageActualValue*currentActualValue, 

voltageActualValue*voltageActualValue*powerActualValue, 

voltageActualValue*voltageActualValue*resistanceActualValue, 

voltageActualValue*voltageActualValue*stabilisationFactorActValue, 

voltageActualValue*voltageActualValue*uipActualValue, 

voltageActualValue*voltageActualValue*uipExpulsion, 

voltageActualValue*currentActualValue*currentActualValue, 

voltageActualValue*currentActualValue*powerActualValue, 

voltageActualValue*currentActualValue*resistanceActualValue, 

voltageActualValue*currentActualValue*stabilisationFactorActValue, 
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voltageActualValue*currentActualValue*uipActualValue, 

voltageActualValue*currentActualValue*uipExpulsion, 

voltageActualValue*powerActualValue*powerActualValue, 

voltageActualValue*resistanceActualValue*resistanceActualValue, 

currentActualValue*currentActualValue*powerActualValue, 

currentActualValue*currentActualValue*resistanceActualValue, 

currentActualValue*currentActualValue*stabilisationFactorActValue, 

currentActualValue*currentActualValue*uipActualValue, 

currentActualValue*currentActualValue*uipExpulsion, 

currentActualValue*powerActualValue*powerActualValue, 

currentActualValue*powerActualValue*resistanceActualValue, 

currentActualValue*powerActualValue*stabilisationFactorActValue, 

currentActualValue*powerActualValue*uipActualValue, 

currentActualValue*powerActualValue*uipExpulsion, 

currentActualValue*resistanceActualValue*resistanceActualValue, 

powerActualValue*powerActualValue*resistanceActualValue, 

powerActualValue*powerActualValue*stabilisationFactorActValue, 

powerActualValue*powerActualValue*uipActualValue, 

powerActualValue*powerActualValue*uipExpulsion, 

powerActualValue*resistanceActualValue*resistanceActualValue, 

powerActualValue*resistanceActualValue*stabilisationFactorActValue, 

powerActualValue*resistanceActualValue*uipActualValue, 

powerActualValue*resistanceActualValue*uipExpulsion, 

powerActualValue*stabilisationFactorActValue*stabilisationFactorActValue, 

powerActualValue*uipActualValue*uipActualValue, 

resistanceActualValue*resistanceActualValue*stabilisationFactorActValue, 

resistanceActualValue*resistanceActualValue*uipActualValue, 

resistanceActualValue*resistanceActualValue*uipExpulsion, 

resistanceActualValue*stabilisationFactorActValue*stabilisationFactorActValue, 

resistanceActualValue*stabilisationFactorActValue*uipExpulsion, 

stabilisationFactorActValue*stabilisationFactorActValue*uipExpulsion, 

stabilisationFactorActValue*uipActualValue*uipExpulsion, 

uipActualValue*uipActualValue*uipExpulsion 

Method 

Rows unused 5 

Backward Elimination of Terms 
α to remove = 0.1 

Analysis of Variance 

Source DF Adj SS 

Regression 19 5.29687 

  voltageActualValue 1 0.38441 

  currentActualValue 1 0.25723 
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  powerActualValue 1 0.52907 

  resistanceActualValue 1 0.37816 

  stabilisationFactorActValue 1 0.17244 

  uipActualValue 1 0.04814 

  uipExpulsion 1 0.25256 

  stabilisationFactorActValue*stabilisationFactorActValue 1 0.20729 

  uipActualValue*uipActualValue 1 0.10882 

  voltageActualValue*uipActualValue 1 0.33759 

  voltageActualValue*uipExpulsion 1 0.27231 

  currentActualValue*uipActualValue 1 0.31936 

  currentActualValue*uipExpulsion 1 0.20063 

  powerActualValue*uipExpulsion 1 0.22796 

  resistanceActualValue*stabilisationFactorActValue 1 0.34640 

  stabilisationFactorActValue*uipActualValue 1 0.23963 

  voltageActualValue*uipActualValue*uipActualValue 1 0.36237 

  currentActualValue*uipActualValue*uipActualValue 1 0.34465 

  stabilisationFactorActValue*stabilisationFactorActValue*uipActualValue 1 0.22468 

Error 75 4.52069 

Total 94 9.81756 

Source Adj MS F-Value 

Regression 0.27878 4.63 

  voltageActualValue 0.38441 6.38 

  currentActualValue 0.25723 4.27 

  powerActualValue 0.52907 8.78 

  resistanceActualValue 0.37816 6.27 

  stabilisationFactorActValue 0.17244 2.86 

  uipActualValue 0.04814 0.80 

  uipExpulsion 0.25256 4.19 

  stabilisationFactorActValue*stabilisationFactorActValue 0.20729 3.44 

  uipActualValue*uipActualValue 0.10882 1.81 

  voltageActualValue*uipActualValue 0.33759 5.60 



 

 115 

  voltageActualValue*uipExpulsion 0.27231 4.52 

  currentActualValue*uipActualValue 0.31936 5.30 

  currentActualValue*uipExpulsion 0.20063 3.33 

  powerActualValue*uipExpulsion 0.22796 3.78 

  resistanceActualValue*stabilisationFactorActValue 0.34640 5.75 

  stabilisationFactorActValue*uipActualValue 0.23963 3.98 

  voltageActualValue*uipActualValue*uipActualValue 0.36237 6.01 

  currentActualValue*uipActualValue*uipActualValue 0.34465 5.72 

  stabilisationFactorActValue*stabilisationFactorActValue*uipActualValue 0.22468 3.73 

Error 0.06028    

Total       

Source P-Value 

Regression 0.000 

  voltageActualValue 0.014 

  currentActualValue 0.042 

  powerActualValue 0.004 

  resistanceActualValue 0.014 

  stabilisationFactorActValue 0.095 

  uipActualValue 0.374 

  uipExpulsion 0.044 

  stabilisationFactorActValue*stabilisationFactorActValue 0.068 

  uipActualValue*uipActualValue 0.183 

  voltageActualValue*uipActualValue 0.021 

  voltageActualValue*uipExpulsion 0.037 

  currentActualValue*uipActualValue 0.024 

  currentActualValue*uipExpulsion 0.072 

  powerActualValue*uipExpulsion 0.056 

  resistanceActualValue*stabilisationFactorActValue 0.019 

  stabilisationFactorActValue*uipActualValue 0.050 

  voltageActualValue*uipActualValue*uipActualValue 0.017 

  currentActualValue*uipActualValue*uipActualValue 0.019 
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  stabilisationFactorActValue*stabilisationFactorActValue*uipActualValue 0.057 

Error    

Total    

Model Summary 

S R-sq R-sq(adj)  

0.245512 53.95% 42.29%  

Coefficients 

Term Coef SE Coef 

Constant -179 901 

voltageActualValue -1654 655 

currentActualValue 415 201 

powerActualValue 0.02306 0.00778 

resistanceActualValue 1.443 0.576 

stabilisationFactorActValue -26.2 15.5 

uipActualValue 15.6 17.5 

uipExpulsion -1320 645 

stabilisationFactorActValue*stabilisationFactorActValue 0.1532 0.0826 

uipActualValue*uipActualValue -0.1198 0.0892 

voltageActualValue*uipActualValue 26.5 11.2 

voltageActualValue*uipExpulsion 1195 562 

currentActualValue*uipActualValue -7.97 3.46 

currentActualValue*uipExpulsion 139.0 76.2 

powerActualValue*uipExpulsion -0.1288 0.0662 

resistanceActualValue*stabilisationFactorActValue -0.01531 0.00639 

stabilisationFactorActValue*uipActualValue 0.244 0.122 

voltageActualValue*uipActualValue*uipActualValue -0.1188 0.0485 

currentActualValue*uipActualValue*uipActualValue 0.0356 0.0149 

stabilisationFactorActValue*stabilisationFactorActValue*uipActualValue -0.001300 0.000673 

Term T-Value P-Value 

Constant -0.20 0.843 

voltageActualValue -2.53 0.014 
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currentActualValue 2.07 0.042 

powerActualValue 2.96 0.004 

resistanceActualValue 2.50 0.014 

stabilisationFactorActValue -1.69 0.095 

uipActualValue 0.89 0.374 

uipExpulsion -2.05 0.044 

stabilisationFactorActValue*stabilisationFactorActValue 1.85 0.068 

uipActualValue*uipActualValue -1.34 0.183 

voltageActualValue*uipActualValue 2.37 0.021 

voltageActualValue*uipExpulsion 2.13 0.037 

currentActualValue*uipActualValue -2.30 0.024 

currentActualValue*uipExpulsion 1.82 0.072 

powerActualValue*uipExpulsion -1.94 0.056 

resistanceActualValue*stabilisationFactorActValue -2.40 0.019 

stabilisationFactorActValue*uipActualValue 1.99 0.050 

voltageActualValue*uipActualValue*uipActualValue -2.45 0.017 

currentActualValue*uipActualValue*uipActualValue 2.39 0.019 

stabilisationFactorActValue*stabilisationFactorActValue*uipActualValue -1.93 0.057 

Term VIF 

Constant    

voltageActualValue 458786.81 

currentActualValue 1329126.49 

powerActualValue 10029.22 

resistanceActualValue 6995.88 

stabilisationFactorActValue 2927762.92 

uipActualValue 20130732.29 

uipExpulsion 26419464.24 

stabilisationFactorActValue*stabilisationFactorActValue 2688541.18 

uipActualValue*uipActualValue 28335291.65 

voltageActualValue*uipActualValue 24020832.95 

voltageActualValue*uipExpulsion 30276607.43 



 

 118 

currentActualValue*uipActualValue 69759881.28 

currentActualValue*uipExpulsion 21299831.03 

powerActualValue*uipExpulsion 24340684.92 

resistanceActualValue*stabilisationFactorActValue 14064.74 

stabilisationFactorActValue*uipActualValue 6044798.50 

voltageActualValue*uipActualValue*uipActualValue 18729907.52 

currentActualValue*uipActualValue*uipActualValue 57595765.76 

stabilisationFactorActValue*stabilisationFactorActValue*uipActualValue 2284034.31 

 

Regression Equation 

Nug 

Dia 

= -179 - 1654 voltageActualValue + 415 currentActualValue 

+ 0.02306 powerActualValue 

+ 1.443 resistanceActualValue - 26.2 stabilisationFactorActValue 

+ 15.6 uipActualValue - 1320 uipExpulsion 

+ 0.1532 stabilisationFactorActValue*stabilisationFactorActValue 

- 0.1198 uipActualValue*uipActualValue + 26.5 voltageActualValue*uipActualValue 

+ 1195 voltageActualValue*uipExpulsion - 7.97 currentActualValue*uipActualValue 

+ 139.0 currentActualValue*uipExpulsion - 0.1288 powerActualValue*uipExpulsion 

- 0.01531 resistanceActualValue*stabilisationFactorActValue 

+ 0.244 stabilisationFactorActValue*uipActualValue 

- 0.1188 voltageActualValue*uipActualValue*uipActualValue 

+ 0.0356 currentActualValue*uipActualValue*uipActualValue 

- 0.001300 stabilisationFactorActValue*stabilisationFactorActValue*uipActualValue 

Fits and Diagnostics for Unusual Observations 

Obs Nug Dia Fit Resid Std Resid   

1 5.526 6.279 -0.753 -3.21 R    

3 6.165 6.165 -0.000 *    X 

4 5.866 5.866 -0.000 -0.00    X 

6 5.440 5.440 -0.000 -0.00    X 

17 6.913 6.422 0.491 2.23 R    

19 5.961 6.466 -0.505 -2.14 R    

20 6.032 6.495 -0.463 -2.01 R    

21 6.625 6.625 -0.000 *    X 

26 6.717 6.729 -0.012 -0.08    X 

51 5.604 5.588 0.016 0.42    X 
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53 6.205 6.676 -0.471 -2.01 R    

54 5.827 5.800 0.027 0.57    X 

78 7.070 6.449 0.621 2.60 R    

83 6.110 6.632 -0.522 -2.19 R    

88 6.130 6.065 0.065 0.51    X 

92 6.039 6.060 -0.021 -0.25    X 

R  Large residual 

X  Unusual X 

Durbin-Watson Statistic 

Durbin-Watson Statistic = 1.45400 
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Regression of Nugget Diameter with Inclusion of Validation Data 

Regression Analysis: Nug Dia versus 

voltageActualValue, ... pExpulsion 
The following terms cannot be estimated and were removed: 

currentActualValue*powerActualValue, powerActualValue*resistanceActualValue, 

resistanceActualValue*uipExpulsion, stabilisationFactorActValue*uipExpulsion, 

uipActualValue*uipExpulsion, currentActualValue*currentActualValue*currentActualValue, 

voltageActualValue*voltageActualValue*currentActualValue, 

voltageActualValue*voltageActualValue*powerActualValue, 

voltageActualValue*voltageActualValue*resistanceActualValue, 

voltageActualValue*voltageActualValue*uipExpulsion, 

voltageActualValue*currentActualValue*currentActualValue, 

voltageActualValue*currentActualValue*powerActualValue, 

voltageActualValue*currentActualValue*resistanceActualValue, 

voltageActualValue*currentActualValue*stabilisationFactorActValue, 

voltageActualValue*currentActualValue*uipExpulsion, 

voltageActualValue*powerActualValue*powerActualValue, 

voltageActualValue*resistanceActualValue*resistanceActualValue, 

currentActualValue*currentActualValue*powerActualValue, 

currentActualValue*currentActualValue*resistanceActualValue, 

currentActualValue*currentActualValue*stabilisationFactorActValue, 

currentActualValue*currentActualValue*uipExpulsion, 

currentActualValue*powerActualValue*powerActualValue, 

currentActualValue*powerActualValue*resistanceActualValue, 

currentActualValue*powerActualValue*stabilisationFactorActValue, 

currentActualValue*powerActualValue*uipActualValue, 

currentActualValue*powerActualValue*uipExpulsion, 

currentActualValue*resistanceActualValue*resistanceActualValue, 

powerActualValue*powerActualValue*uipActualValue, 

powerActualValue*powerActualValue*uipExpulsion, 

powerActualValue*resistanceActualValue*resistanceActualValue, 

powerActualValue*resistanceActualValue*stabilisationFactorActValue, 

powerActualValue*resistanceActualValue*uipExpulsion, 

powerActualValue*stabilisationFactorActValue*stabilisationFactorActValue, 

powerActualValue*uipActualValue*uipActualValue, 

resistanceActualValue*resistanceActualValue*stabilisationFactorActValue, 

resistanceActualValue*resistanceActualValue*uipExpulsion, 

resistanceActualValue*stabilisationFactorActValue*stabilisationFactorActValue, 

resistanceActualValue*stabilisationFactorActValue*uipExpulsion, 

stabilisationFactorActValue*stabilisationFactorActValue*uipExpulsion, 

stabilisationFactorActValue*uipActualValue*uipExpulsion, 

uipActualValue*uipActualValue*uipExpulsion 

Method 
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Rows unused 5 

Backward Elimination of Terms 
α to remove = 0.1 

Beginning with step 1, the model may not be hierarchical because some required terms are 

     impossible to estimate. 

Analysis of Variance 

Source DF Adj SS Adj MS 

Regression 21 6.6346 0.31593 

  currentActualValue 1 0.8101 0.81015 

  uipExpulsion 1 0.3039 0.30391 

  powerActualValue*powerActualValue 1 0.9522 0.95216 

  resistanceActualValue*resistanceActualValue 1 1.4929 1.49286 

  voltageActualValue*powerActualValue 1 0.7891 0.78910 

  voltageActualValue*resistanceActualValue 1 1.1577 1.15767 

  voltageActualValue*stabilisationFactorActValue 1 1.1312 1.13125 

  voltageActualValue*uipExpulsion 1 0.3322 0.33221 

  currentActualValue*uipActualValue 1 1.2702 1.27016 

  currentActualValue*uipExpulsion 1 0.2213 0.22129 

  powerActualValue*stabilisationFactorActValue 1 1.1771 1.17707 

  powerActualValue*uipActualValue 1 0.8363 0.83628 

  powerActualValue*uipExpulsion 1 0.2530 0.25302 

  resistanceActualValue*uipActualValue 1 1.2794 1.27935 

  voltageActualValue*voltageActualValue*voltageActualValue 1 1.0258 1.02576 

  powerActualValue*powerActualValue*powerActualValue 1 1.0428 1.04279 

  resistanceActualValue*resistanceActualValue*resistanceActualValue 1 1.1909 1.19093 

  uipActualValue*uipActualValue*uipActualValue 1 1.4608 1.46082 

  voltageActualValue*currentActualValue*uipActualValue 1 0.8500 0.84997 

  currentActualValue*uipActualValue*uipActualValue 1 1.4913 1.49126 

  powerActualValue*resistanceActualValue*uipActualValue 1 1.0715 1.07152 

Error 98 5.3654 0.05475 

Total 119 11.9999    

Source F-Value P-Value 
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Regression 5.77 0.000 

  currentActualValue 14.80 0.000 

  uipExpulsion 5.55 0.020 

  powerActualValue*powerActualValue 17.39 0.000 

  resistanceActualValue*resistanceActualValue 27.27 0.000 

  voltageActualValue*powerActualValue 14.41 0.000 

  voltageActualValue*resistanceActualValue 21.15 0.000 

  voltageActualValue*stabilisationFactorActValue 20.66 0.000 

  voltageActualValue*uipExpulsion 6.07 0.016 

  currentActualValue*uipActualValue 23.20 0.000 

  currentActualValue*uipExpulsion 4.04 0.047 

  powerActualValue*stabilisationFactorActValue 21.50 0.000 

  powerActualValue*uipActualValue 15.27 0.000 

  powerActualValue*uipExpulsion 4.62 0.034 

  resistanceActualValue*uipActualValue 23.37 0.000 

  voltageActualValue*voltageActualValue*voltageActualValue 18.74 0.000 

  powerActualValue*powerActualValue*powerActualValue 19.05 0.000 

  resistanceActualValue*resistanceActualValue*resistanceActualValue 21.75 0.000 

  uipActualValue*uipActualValue*uipActualValue 26.68 0.000 

  voltageActualValue*currentActualValue*uipActualValue 15.52 0.000 

  currentActualValue*uipActualValue*uipActualValue 27.24 0.000 

  powerActualValue*resistanceActualValue*uipActualValue 19.57 0.000 

Error       

Total       

Model Summary 

S R-sq R-sq(adj)  

0.233985 55.29% 45.71%  

Coefficients 

Term Coef SE Coef 

Constant -2232 631 

currentActualValue 388 101 
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uipExpulsion -1402 595 

powerActualValue*powerActualValue -0.000071 0.000017 

resistanceActualValue*resistanceActualValue -0.0863 0.0165 

voltageActualValue*powerActualValue 0.384 0.101 

voltageActualValue*resistanceActualValue 15.19 3.30 

voltageActualValue*stabilisationFactorActValue -3.623 0.797 

voltageActualValue*uipExpulsion 1252 508 

currentActualValue*uipActualValue -2.469 0.513 

currentActualValue*uipExpulsion 144.0 71.7 

powerActualValue*stabilisationFactorActValue 0.000480 0.000104 

powerActualValue*uipActualValue 0.002784 0.000712 

powerActualValue*uipExpulsion -0.1317 0.0613 

resistanceActualValue*uipActualValue 0.0544 0.0113 

voltageActualValue*voltageActualValue*voltageActualValue -889 205 

powerActualValue*powerActualValue*powerActualValue 0.000000 0.000000 

resistanceActualValue*resistanceActualValue*resistanceActualValue 0.000113 0.000024 

uipActualValue*uipActualValue*uipActualValue -0.000267 0.000052 

voltageActualValue*currentActualValue*uipActualValue -1.891 0.480 

currentActualValue*uipActualValue*uipActualValue 0.01193 0.00229 

powerActualValue*resistanceActualValue*uipActualValue -0.000006 0.000001 

Term T-Value P-Value 

Constant -3.54 0.001 

currentActualValue 3.85 0.000 

uipExpulsion -2.36 0.020 

powerActualValue*powerActualValue -4.17 0.000 

resistanceActualValue*resistanceActualValue -5.22 0.000 

voltageActualValue*powerActualValue 3.80 0.000 

voltageActualValue*resistanceActualValue 4.60 0.000 

voltageActualValue*stabilisationFactorActValue -4.55 0.000 

voltageActualValue*uipExpulsion 2.46 0.016 

currentActualValue*uipActualValue -4.82 0.000 
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currentActualValue*uipExpulsion 2.01 0.047 

powerActualValue*stabilisationFactorActValue 4.64 0.000 

powerActualValue*uipActualValue 3.91 0.000 

powerActualValue*uipExpulsion -2.15 0.034 

resistanceActualValue*uipActualValue 4.83 0.000 

voltageActualValue*voltageActualValue*voltageActualValue -4.33 0.000 

powerActualValue*powerActualValue*powerActualValue 4.36 0.000 

resistanceActualValue*resistanceActualValue*resistanceActualValue 4.66 0.000 

uipActualValue*uipActualValue*uipActualValue -5.17 0.000 

voltageActualValue*currentActualValue*uipActualValue -3.94 0.000 

currentActualValue*uipActualValue*uipActualValue 5.22 0.000 

powerActualValue*resistanceActualValue*uipActualValue -4.42 0.000 

Term VIF 

Constant    

currentActualValue 453888.26 

uipExpulsion 25016437.70 

powerActualValue*powerActualValue 25662108.24 

resistanceActualValue*resistanceActualValue 812461.63 

voltageActualValue*powerActualValue 9388268.48 

voltageActualValue*resistanceActualValue 1474029.86 

voltageActualValue*stabilisationFactorActValue 33180.77 

voltageActualValue*uipExpulsion 27505831.65 

currentActualValue*uipActualValue 2880249.29 

currentActualValue*uipExpulsion 20935486.96 

powerActualValue*stabilisationFactorActValue 48187.14 

powerActualValue*uipActualValue 11468049.65 

powerActualValue*uipExpulsion 23132883.94 

resistanceActualValue*uipActualValue 690227.83 

voltageActualValue*voltageActualValue*voltageActualValue 1474791.31 

powerActualValue*powerActualValue*powerActualValue 5195303.99 

resistanceActualValue*resistanceActualValue*resistanceActualValue 106024.47 
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uipActualValue*uipActualValue*uipActualValue 675608.11 

voltageActualValue*currentActualValue*uipActualValue 5214853.40 

currentActualValue*uipActualValue*uipActualValue 2811521.34 

powerActualValue*resistanceActualValue*uipActualValue 1164445.77 

Regression Equation 

Nug 

Dia 

= -2232 + 388 currentActualValue - 1402 uipExpulsion 

- 0.000071 powerActualValue*powerActualValue 

- 0.0863 resistanceActualValue*resistanceActualValue 

+ 0.384 voltageActualValue*powerActualValue 

+ 15.19 voltageActualValue*resistanceActualValue 

- 3.623 voltageActualValue*stabilisationFactorActValue 

+ 1252 voltageActualValue*uipExpulsion - 2.469 currentActualValue*uipActualValue 

+ 144.0 currentActualValue*uipExpulsion 

+ 0.000480 powerActualValue*stabilisationFactorActValue 

+ 0.002784 powerActualValue*uipActualValue 

- 0.1317 powerActualValue*uipExpulsion 

+ 0.0544 resistanceActualValue*uipActualValue 

- 889 voltageActualValue*voltageActualValue*voltageActualValue 

+ 0.000000 powerActualValue*powerActualValue*powerActualValue 

+ 0.000113 resistanceActualValue*resistanceActualValue*resistanceActualValue 

- 0.000267 uipActualValue*uipActualValue*uipActualValue 

- 1.891 voltageActualValue*currentActualValue*uipActualValue 

+ 0.01193 currentActualValue*uipActualValue*uipActualValue 

- 0.000006 powerActualValue*resistanceActualValue*uipActualValue 

Fits and Diagnostics for Unusual Observations 

Obs Nug Dia Fit Resid Std Resid   

1 5.526 6.374 -0.848 -3.75 R    

3 6.165 6.165 -0.000 *    X 

4 5.866 5.866 -0.000 -0.00    X 

6 5.440 5.440 -0.000 -0.00    X 

19 5.961 6.479 -0.518 -2.30 R    

20 6.032 6.501 -0.469 -2.10 R    

21 6.625 6.625 -0.000 *    X 

26 6.717 6.693 0.024 0.18    X 

51 5.604 5.515 0.089 0.64    X 

53 6.205 6.677 -0.472 -2.08 R    

54 5.827 5.798 0.029 0.68    X 
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72 6.953 6.435 0.518 2.32 R    

78 7.070 6.424 0.646 2.82 R    

83 6.110 6.626 -0.516 -2.30 R    

84 5.899 6.074 -0.175 -1.18    X 

92 6.039 6.122 -0.083 -0.63    X 

117 6.767 6.316 0.451 2.06 R    

125 6.279 6.394 -0.115 -1.36    X 

R  Large residual 

X  Unusual X 

Durbin-Watson Statistic 

Durbin-Watson Statistic = 1.46314 
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Regression of Nugget Diameter OF Dissimilar Steels 

 

Regression Analysis: Nugget Dia versus V, I, P, R, Stabil, UIP, 

Expl 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 7 1.68188 0.24027 5.22 0.000 

  V 1 0.03959 0.03959 0.86 0.359 

  I 1 0.05792 0.05792 1.26 0.268 

  P 1 0.04202 0.04202 0.91 0.345 

  R 1 0.03902 0.03902 0.85 0.362 

  Stabil 1 0.02250 0.02250 0.49 0.488 

  UIP 1 0.09411 0.09411 2.05 0.160 

  Expl 1 0.30125 0.30125 6.55 0.014 

Error 42 1.93184 0.04600       

Total 49 3.61372          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

0.214467 46.54% 37.63% 31.53% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 98.9 73.5 1.35 0.186    

V -46.6 50.2 -0.93 0.359 1533.27 

I -10.97 9.78 -1.12 0.268 846.83 

P 0.00635 0.00665 0.96 0.345 1397.28 

R -0.0684 0.0743 -0.92 0.362 138.17 

Stabil -0.0203 0.0291 -0.70 0.488 2.41 

UIP 0.0291 0.0203 1.43 0.160 9.66 

Expl -1.173 0.458 -2.56 0.014 8.77 

Regression Equation 
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Nugget Dia = 98.9 - 46.6 V - 10.97 I + 0.00635 P - 0.0684 R - 0.0203 Stabil + 0.0291 UIP 

- 1.173 Expl 

Fits and Diagnostics for Unusual Observations 

Obs 

Nugget 

Dia Fit Resid Std Resid   

5 6.590 6.122 0.468 2.23 R    

16 6.220 6.222 -0.002 -0.01    X 

46 5.280 5.246 0.034 0.23    X 

50 5.200 5.234 -0.034 -0.23    X 

R  Large residual 

X  Unusual X 
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Regression Analysis: Nugget Dia versus V, I, P, R, Stabil, UIP, 

Expl 
The following terms cannot be estimated and were removed: 

Expl*Expl, V*P, I*P, I*Expl, P*Expl, R*Expl, Stabil*Expl, UIP*Expl, V*V*V, I*I*I, P*P*P, R*R*R, V*V*I, V*V*P, 

V*V*R, V*V*Stabil, V*V*UIP, V*V*Expl, V*I*I, V*I*P, V*I*R, V*I*Stabil, V*I*UIP, V*I*Expl, V*P*P, V*P*R, 

V*P*Stabil, V*P*UIP, V*P*Expl, V*R*R, V*R*Stabil, V*R*UIP, V*R*Expl, V*Stabil*Stabil, V*Stabil*UIP, 

V*Stabil*Expl, V*UIP*UIP, V*UIP*Expl, V*Expl*Expl, I*I*P, I*I*R, I*I*Stabil, I*I*UIP, I*I*Expl, I*P*P, I*P*R, 

I*P*Stabil, I*P*UIP, I*P*Expl, I*R*R, I*R*Stabil, I*R*UIP, I*R*Expl, I*Stabil*Stabil, I*Stabil*UIP, I*Stabil*Expl, 

I*UIP*UIP, I*UIP*Expl, P*P*R, P*P*Stabil, P*P*UIP, P*P*Expl, P*R*R, P*R*Stabil, P*R*UIP, P*R*Expl, 

P*Stabil*Stabil, P*Stabil*UIP, P*Stabil*Expl, P*UIP*Expl, R*R*Stabil, R*R*UIP, R*R*Expl, R*Stabil*Stabil, 

R*Stabil*UIP, R*Stabil*Expl, R*UIP*UIP, R*UIP*Expl, Stabil*Stabil*Expl, Stabil*UIP*UIP, Stabil*UIP*Expl, 

UIP*UIP*Expl 

Backward Elimination of Terms 
α to remove = 0.1 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 24 2.60338 0.108474 2.68 0.009 

  V 1 0.21429 0.214287 5.30 0.030 

  I 1 0.21113 0.211134 5.22 0.031 

  P 1 0.06748 0.067482 1.67 0.208 

  R 1 0.30153 0.301535 7.46 0.011 

  Stabil 1 0.22717 0.227172 5.62 0.026 

  UIP 1 0.27958 0.279579 6.92 0.014 

  Expl 1 0.33104 0.331041 8.19 0.008 

  Stabil*Stabil 1 0.37818 0.378184 9.36 0.005 

  UIP*UIP 1 0.40209 0.402089 9.95 0.004 

  V*R 1 0.31218 0.312176 7.72 0.010 

  V*Stabil 1 0.49309 0.493094 12.20 0.002 

  V*UIP 1 0.43308 0.433084 10.72 0.003 

  V*Expl 1 0.33148 0.331484 8.20 0.008 

  I*R 1 0.32657 0.326567 8.08 0.009 

  I*Stabil 1 0.47290 0.472904 11.70 0.002 

  I*UIP 1 0.44350 0.443501 10.97 0.003 

  P*R 1 0.33654 0.336544 8.33 0.008 

  P*Stabil 1 0.47304 0.473042 11.70 0.002 
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  P*UIP 1 0.00008 0.000084 0.00 0.964 

  Stabil*UIP 1 0.37125 0.371247 9.19 0.006 

  Stabil*Stabil*Stabil 1 0.33844 0.338442 8.37 0.008 

  UIP*UIP*UIP 1 0.43333 0.433327 10.72 0.003 

  P*UIP*UIP 1 0.18013 0.180132 4.46 0.045 

  Stabil*Stabil*UIP 1 0.37291 0.372913 9.23 0.006 

Error 25 1.01034 0.040414       

Total 49 3.61372          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

0.201032 72.04% 45.20% * 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant -4526 13608 -0.33 0.742    

V 22330 9698 2.30 0.030 65043567.81 

I 4375 1914 2.29 0.031 36934856.53 

P -1.52 1.17 -1.29 0.208 49678179.79 

R -223.8 81.9 -2.73 0.011 1.91403E+08 

Stabil -772 325 -2.37 0.026 3.43668E+08 

UIP 432 164 2.63 0.014 7.19400E+08 

Expl 1269 443 2.86 0.008 9332882.65 

Stabil*Stabil 10.46 3.42 3.06 0.005 1.39121E+09 

UIP*UIP -2.425 0.769 -3.15 0.004 6.64897E+08 

V*R 158.2 56.9 2.78 0.010 4.90405E+08 

V*Stabil -337.1 96.5 -3.49 0.002 83396624.06 

V*UIP -188.1 57.5 -3.27 0.003 3.20890E+08 

V*Expl -900 314 -2.86 0.008 8605213.74 

I*R 31.6 11.1 2.84 0.009 95938700.11 

I*Stabil -67.3 19.7 -3.42 0.002 1.13007E+08 

I*UIP -36.8 11.1 -3.31 0.003 1.42918E+08 

P*R -0.02230 0.00773 -2.89 0.008 3.49530E+08 
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P*Stabil 0.0462 0.0135 3.42 0.002 95018515.10 

P*UIP -0.0005 0.0118 -0.05 0.964 6.18764E+08 

Stabil*UIP 5.12 1.69 3.03 0.006 6.25461E+08 

Stabil*Stabil*Stabil -0.02666 0.00921 -2.89 0.008 2.08291E+08 

UIP*UIP*UIP 0.00336 0.00103 3.27 0.003 28535926.89 

P*UIP*UIP 0.000122 0.000058 2.11 0.045 5.12729E+08 

Stabil*Stabil*UIP -0.02705 0.00891 -3.04 0.006 1.96185E+08 

Regression Equation 

Nugget Dia = -4526 + 22330 V + 4375 I - 1.52 P - 223.8 R - 772 Stabil + 432 UIP + 1269 Expl 

+ 10.46 Stabil*Stabil - 2.425 UIP*UIP + 158.2 V*R - 337.1 V*Stabil - 188.1 V*UIP 

- 900 V*Expl + 31.6 I*R - 67.3 I*Stabil - 36.8 I*UIP - 0.02230 P*R 

+ 0.0462 P*Stabil - 0.0005 P*UIP + 5.12 Stabil*UIP 

- 0.02666 Stabil*Stabil*Stabil + 0.00336 UIP*UIP*UIP + 0.000122 P*UIP*UIP 

- 0.02705 Stabil*Stabil*UIP 

Fits and Diagnostics for Unusual Observations 

Obs 

Nugget 

Dia Fit Resid Std Resid   

16 6.220 6.202 0.018 0.97    X 

19 5.700 6.062 -0.362 -2.08 R    

46 5.280 5.280 0.000 *    X 

50 5.200 5.200 0.000 *    X 

R  Large residual 

X  Unusual X 
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