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Abstract

Recently, network infiltrations due to advanced persistent threats (APTs) have grown
significantly, resulting in considerable loses to businesses and organizations. APTs are
stealthy attacks with the primary objective of gaining unauthorized access to network
assets. They often remain dormant for an extended period of time, which makes their
detection challenging. In this thesis, we leverage machine learning (ML) to detect hosts
in a network that are a target of an APT attack. We evaluate a number of ML classifiers
to detect susceptible hosts in the Los Alamos National Lab (LANL) dataset. We (i)
leverage graph-based features extracted from multiple data sources i.e., network flows and
host authentication logs, (ii) use feature engineering to reduce dimensionality, (iii) explore
balancing the training dataset using numerous over- and under-sampling techniques, (iv)
compare our model to the state-of-the-art approaches that leverage the same dataset,
and show that our model outperforms them with respect to prediction performance and
overhead, and (v) perturb the attack patterns of LMs, study the influence of change in
attack frequency and scale on classification performance, and propose a solution for such
adversarial behavior.
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Chapter 1

Introduction

Cyber attacks have been growing in sophistication, resulting in considerable damage to
businesses. They not only result in financial losses, but also impact customer trust and
churn. There has been an increasing trend in cyber attacks in recent years. Typically,
an attack initiates by compromising several hosts or user accounts within a network, and
leaves backdoors to gain persistent access to internal assets. This type of attack is com-
monly known as an advanced persistent threat (APT). According to Kaspersky Lab, an
APT campaign in 2019 affected over a million users who installed the ASUS Live Update
utility [25]. Similarly, a cryptocurrency exchange firm, DragonEx, announced in 2019 that
it has suffered USD 7.09 million in losses due to an APT attack [52]. Therefore, it is
imperative to defend businesses against APT-assisted network intrusions.

Lateral movement (LM) is a crucial phase in an APT attack, which follows after an
attacker has gained persistent access to certain network resources (e.g., servers, end-hosts).
The goal of LM is to infiltrate other resources and gain higher privileges inside the target
network. This is typically achieved by performing credential stealing or vulnerability ex-
ploitation on already compromised hosts. Interestingly, 50%–90% of employees have access
to data that they no longer need [50]. This is primarily due to poor security practises,
such as the violation of the least privilege principle [49], which increases the likelihood of
an attacker penetrating the crucial network assets via LM. Therefore, it is vital to detect
LM at an early stage.

As opposed to the traditional detection of successful intrusions [2], an alternative is to
pro-actively identify covert signs of LM. This can potentially generate alarms even before
a successful intrusion has occurred, leading to LM detection during early exploration. Af-
ter acquiring footprints of such behaviour, administrators can get insights into the attack
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strategy. They can also identify system vulnerabilities, which can help alleviate future at-
tacks. However, unlike hosts that act as proxies during the attack, newly compromised or
vulnerable hosts are fairly dormant and leave minimal footprint (e.g., events in authentica-
tion logs). Furthermore, in large enterprises with thousands of hosts, it is unlikely that an
infiltration will compromise the majority of hosts. Typically, the number of compromised
hosts will be minuscule in comparison to the network size, resulting in sparse malicious
activities. These issues make early detection of LM challenging.

Early detection of LM can be addressed by: (i) tagging the malicious host events, or
(ii) tagging the target assets (TA). However, the stealthiness and sparseness of malicious
events can make the first strategy a difficult endeavor. Though, crafting discriminative
features for each event can achieve high recall, it comes at a high computational overhead.
For instance, Fig. 1.1 shows that the number of events increases with the network size.
Similarly, Fig. 1.2 shows that feature extraction time for event tagging using the method
described in [31] significantly increases with the number of hosts in the network. This
drawback makes the first strategy unscalable for very large networks. Furthermore, for
complex network infrastructure with sporadic events, tagging individual events can also
result in a high number of false positives. In comparison, tagging TAs reduce computational
overhead. With carefully crafted features from sparse events, it is possible to achieve a
high precision in detection performance (cf., Chapter 4). We focus on the second strategy
for early detection of LM by leveraging host authentication logs.
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Figure 1.1: Number of Hosts vs. Number of Events: Random sample of hosts from the
original LANL dataset and corresponding authentication events.
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Figure 1.2: Number of Hosts vs. Feature Extraction Time: Random sample of hosts from
five days in the original LANL dataset and features from corresponding authentication
events.

Anomaly-based methods are widely used for intrusion detection. These methods first
establish a baseline of normal system behavior and model a decision engine. The decision
engine determines and alerts any divergence or statistical deviations from the norm as a
threat. Machine learning (ML) [5, 10] is an ideal technique to automatically establish the
normal behavior of a system. However, an important step prior to training a ML model
is feature extraction. These features act as discriminators for learning and inference, and
increase the accuracy of ML models. The most commonly employed features in intru-
sion detection are either network flow-based (e.g., number of packets, direction, packet
size and inter-arrival statistics) or host event-based (e.g., authentication type, authenti-
cation frequency, and user names used during authentication). However, these features
do not completely capture the host communication patterns that may expose additional
aspects of malicious behavior. Graph-based features, derived from flow-level or event-level
information to reflect the true behaviour of hosts, are an alternative that overcome this
limitation.

The distribution of the dataset can also severely influence ML performance. For exam-
ple, in the case of an imbalanced dataset (e.g., sparse malicious host events versus benign
events), the ML techniques are more likely to classify new data to the majority class.
Though, balancing the dataset can alleviate this issue, it may sabotage ML performance
by impacting graph-based features (cf., Chapter 4). Moreover, ML-based intrusion detec-
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tion systems can be vulnerable to adversarial perturbations [4]. Adversaries can introduce
variations in their attack patterns to evade detection (e.g., by varying the frequency and/or
scale of the attack, adding randomness to their behaviour, etc.) In some cases, introduc-
ing noise and variation in the training data can help improve classification performance,
making the system more robust to adversarial attacks. (cf., Chapter 5).

1.1 Contributions

In this thesis, we propose a novel approach for anomaly-based early detection of LM. Our
main contributions are:

• We leverage ML for identifying TAs to facilitate early detection of LM. In this respect,
we evaluate numerous supervised ML techniques and their ensemble, and compare them
in classification performance and overhead.

• We employ graph-based features using real datasets from the Los Alamos National Lab
(LANL) [32]. We explore features that are extracted from multiple data sources i.e.,
network flows as well as host authentication logs, and employ feature engineering to
reduce dimensionality.

• Due to the highly imbalanced nature of the LANL dataset, we evaluate various over-
and under-sampling techniques, and explore their impact on ML performance.

• We compare our approach to state-of-the-art approaches that leverage the LANL dataset
for detecting LM. We show that our approach outperforms the other approaches with
respect to detection performance and overhead.

• We perturb the attack patterns of LMs and study the influence of change in attack
frequency and scale on classification performance. We study different methods to sample
the dataset and mitigate the influence of attack pattern changes.

1.2 Thesis Organization

The rest of the thesis is organized as follows.

• Chapter 2 highlights the most recent related works on LM detection.

4



• Chapter 3 discusses the characteristics of the LANL dataset, delineates the explored
sampling algorithms, exposes feature extraction and selection, and presents the ML
techniques employed for TA detection.

• Chapter 4 discusses the results of our evaluation and comparison to the state-of-the-art
approaches for LM detection.

• Chapter 5 explores the influence of attack pattern change and mitigates the influence by
balancing the training dataset.

• Chapter 6 concludes with a brief summary and outlines future research directions.
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Chapter 2

Background

In this chapter, we first introduce APT and LM in Section 2.1. Then we expose the existing
approaches for LM detection. Sections 2.2.2 and 2.2.3 summarize works on flow-based and
host-based LM detection, respectively. Section 2.2.4 describes detection methods with
evidence from multiple data sources.

2.1 APT and Lateral Movement

In an APT, attackers gain access to systems or networks and reside there in for an ex-
tended period of time. Different from traditional intrusions, APTs have several distinct
characteristics: (i) clear objectives, (ii) highly organized and well resourced, (iii) long term
persistence with repeated attempts, and (iv) stealthy and zeal to stay undetected [16]. Due
to these characteristics, APTs are challenging to detect. Nevertheless, APTs tend to have
distinct characteristics, that lead to several common stages in an attack. A summary of
the typical steps performed by an APT is presented in Table 2.1. During Reconnaissance,
attackers collect information about the target from various resources. They may be so-
phisticated and gather information from the organization websites, multimedia, and social
networks. Then by tricking the employees to clicking on crafted URLs or opening mali-
cious attachments, attackers deliver the malware onto the target hosts. With the malware
successfully installed on the victim host, a command and control channel is used to manage
the victim from the master server. After moving laterally and compromising further hosts,
the attacker finds the valueable assets and steals them through data exfiltration.

LM is an approach used by adversaries to systematically explore the network to access
valuable assets. As a crucial stage in APT, LM normally lasts over the longest span of
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time. Attackers gain more information about the system by scanning the network and
compromising more hosts. To explore the internal network as well as remain undetected,
attackers perform this stage slowly, leaving minimum footprints. They often reduce the
attack frequency and utilize legitimate system tools [30]. Mixed in a large volume of benign
activities, identifying LMs can be challenging.

Table 2.1: Summary of APT stages

Step Summary
Reconnaissance gather information about the target organization

Delivery deliver exploits to the target
Initial Intrusion get first unauthorized access to the target

Command and Control (C2) use C2 to control compromised hosts
Lateral Movement move inside network and expand control
Data Exfiltration steal sensitive data

2.2 Lateral Movement Detection

Two attributes of LM make its detection a challenging problem. First, a plethora of
possible attacking techniques (Pass the Hash, Remote Desktop Protocol, Remote services
etc.) can be used during the lateral movement stage [18]. They leave different traces on
either the network, the hosts, or both. Second, to remain undetected, attackers launch their
attacks slowly and infrequently, as a result, their traces are mixed with the copious benign
activities. Typically, researchers tackle the first problem by using anomaly detection. As
opposed to detecting states (number of bytes received, CPU usage, memory usage, etc.)
caused by the attack, they detect new attacks that result in an undefined state. For the
second problem, different methods collect all evidence available, seeking traces of LMs
from both the host and the network. They also balance the dataset with well-known or
self-defined methods.

2.2.1 Anomaly Detection

Anomaly detection has been extensively used for network intrusion detection [12] [24].
As opposed to methods targeting characteristics of individual attacks, it detects activi-
ties aberrant from normal forms, which makes the method robust to new attacks. After
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building the knowledge of the normal behavior, the system assigns abnormal scores to
new activities, which are then classified accordingly. Works in this area can be classified
into three categories: statistic-based [22] [59], knowledge-based and ML-based anomaly
detection [47] [37].

Statistic-based anomaly detection systems (SB-ADS) build the baseline from historical
data, such as the frequency of network events, kind of protocols used, and the number
of destination hosts contacted. By comparing the profiles of historical data and that of
new incoming events, SB-ADS decides the degree of irregularity with a score. Over a span
of time, statistic-based systems can efficiently detect malicious activities with well-defined
normal profiles. However, they are vulnerable when the normal profile is contaminated.
Attackers can interfere during the training phase, which can cause attacking events to
be classified as benign. On the other hand, knowledge-based ADS infers the legitimacy
of events according to pre-defined rules. However, benign patterns that have not been
anticipated, can be misclassified in this approach. Besides, composing the rules itself is
difficult and time consuming [24]. Compared to the previous two methods, ML-based
approach can adapt to behavioral changes. It resembles SB-ADS in theory, but with new
labeled data and properly selected models, ML-based approach can improve its performance
progressively. In this work, we focus on leveraging ML-based approach to capitalize on its
robustness to new attack patterns.

2.2.2 Flow-Based LM Detection

As attackers move laterally in the intranet, they leave footprints on the network regardless
of the attacking strategy. A significant body of work exists in the research literature that
identifies LM using flow-based features.

Micro et al. [39] propose a framework to detect hosts that are involved in data exfil-
trations. They first calculate an abnormal score based on the outgoing traffic, then rank
the hosts based on this metric. The top K hosts are inspected for verification. However,
the detection is limited to APTs that include data exfiltration. Furthermore, this entails
an overhead for administrators to inspect individual hosts. Ullah [55] proposes a system
that leverages the BRO network analyzer. It extracts features from network traffic and
uses k -nearest neighbor (k-NN) classifier. Their system is constrained with Server Message
Block hosts, which is not general enough to cover broad LM activities. Both of these works
are limited to a certain type of LM attack. In comparison, our approach is agnostic to the
employed LM strategy.

Bhasin et al. [7] propose to detect traffic anomalies using the Jaccard Similarity Coef-
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ficient and Clustering technique. Their system can detect LM-related traffic given limited
hosts and applications. However, their system is built on the assumption that most normal
traffic is similar, which does not hold true for complex network topologies with hosts run-
ning heterogeneous applications. As a result, their work is restricted to highly analogous
network infrastructures.

Dahiya et al. [20] apply Canonical Correlation Analysis and Linear Discriminant Anal-
ysis (LDA) for reducing feature dimensionality. The authors apply these methods on the
UNSW-NB15 [42] dataset and compare seven different ML techniques. They show that
random tree yields the best result, i.e., 86.46% and 86.1% in accuracy and precision, re-
spectively.

Ghafir et al. [26] construct a system that detects intrusion in three phases: (i) threat
detection, (ii) alert correlation, and (iii) attack prediction. In the first phase, eight different
modules individually generate alerts for different attacking strategies. In the second phase,
alerts are filtered, clustered and indexed. Finally, a prediction module is trained and tested
based on the output from the second phase. Their system achieves 81.8% and 4.5% in true
positive rate and false positive rate, respectively.

Current flow-based LM detection frameworks cover detection from different aspects.
However, they are either targeting highly constrained scenarios or detecting LM with a fo-
cus on a certain attacking pattern. In contrast, our work detects LM’s exploring behaviour,
regardless of the attacking strategy or pattern.

2.2.3 Host-Based LM Detection

Even though flow logs can contain traces of LM, the complex network topology and di-
verse applications introduce noise in flow-based systems. On top of that, widely adopted
encryption protocols, such as TLS [48], limit the amount of information available from the
network traffic. The encryption endpoint, however, reveals fine-grained information, such
as running processes and user accounts. These insights can enable host-based systems to
differentiate between benign and malicious behavior. Thus, there are numerous works that
leverage host-level information for LM detection.

Liu et al. [38] propose a ranking system to detect targeted hosts. The authors first
construct a connection graph from Windows security events generated by Kerberos service
ticket requests. Then, they rank the hosts according to path-rate score, which reflects
the rarity of a path in the network. To reduce the false positives, the authors construct
Remote File Execution Detector to filter out benign behaviours. Their system can detect
all remote file execution related LMs within a subset of the dataset.

9



Chen et al. [15] leverage features from multiple data sources to identify LM. They
utilize rudimentary graph-based features based on host communication, while employing
autoencoder to improve feature extraction. To address imbalance in the LANL dataset,
the authors propose a custom under-sampling technique. They employ k-NN and achieve
an average of 91.3% precision in LM detection. However, their evaluation is limited to the
k-NN classifier.

Bohara et al. [9] propose an unsupervised approach to detect malicious LM. They
employ the LANL dataset and inject artificial attacks into the original dataset, instead of
using redteam events (available in the dataset). However, these simulated attacks may not
depict behavior of real attacks in enterprise networks. Their LM activity simulation follows
the susceptible-infected-susceptible virus spread model [56]. The authors extract features
from host communication graphs, while principal component analysis (PCA) is used to
correlate different features. For detection, they propose a combination of two different
detectors to enhance performance. The first detector uses PCA and k-means, while the
second one employs PCA and extreme value analysis. This combination achieves an 88.7%
true positive rate.

Chawla et al. [13] apply Convolutional Neural Network (CNN) with Gated Recurrent
Unit (GRU) on the ADFA-LD [19] dataset. The CNN layers can capture local correlation
of structures in the sequences and execute in parallel, which improves the performance.
The Recurrent Neural Network (RNN) with GRU at the same time can learn sequential
correlations from those higher-level features. Their system can reach an Area Under the
Curve (AUC) score of 0.81 after training on normal sequences. However, a well balanced
dataset can not represent real attacks. In reality, APTs are stealthy, which will result
in a highly unbalanced trace, as evident in the LANL dataset. Failing to test against
imbalanced data undermines the classifier’s ability against real attacks.

Tuor et al. [54] and Brown et al. [11] propose RNN for log level anomaly detection.
Tuor et al. introduce a language modeling framework for generic log level anomaly de-
tection, while Brown et al. extend a previous framework and focus on developing RNN
models with attention mechanism. These efforts do not employ feature engineering, but
rather the ML models directly leverage tokenized log lines. They achieve AUC of 0.98 and
0.99, respectively. However, AUC is impacted when the dataset is highly imbalanced. In
contrast, our approach operates on the host level, whereas the aforementioned approaches
detect on the log level.
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2.2.4 Hybrid LM Detection

Both host-based and flow-based LM detection systems have their advantages and disad-
vantages. However, flow-based approaches have access to limited information, since the
packet payload is mostly encrypted. Host-based approaches can leverage more information
from the end system, but may not detect LMs that leverage stealthier vulnerabilities [41].
Thus, a hybrid system that utilizes both host- and flow-based evidence can benefit from
the advantages of both approaches.

Several other works [34, 17, 1] propose a hybrid intrusion detection system. Kim et al.
[34] propose a hierarchical approach that decomposes normal training data into smaller
subsets using decision tree (DT) and leverage one-class support vector machine (SVM) for
each subset. Chitrakar et al. [17] propose a similar approach, where the training data
is split into different clusters using k-medoids, followed by näıve bayes for further attack
classification. Agarwal et al. [1] normalize entropy of network features using a custom
algorithm and leverage SVM for attack classification. However, none of the aforemen-
tioned approaches show both precision and recall in their evaluation. But from the partial
metrics available we can detect their inferior performance in recall. They combine multi-
ple techniques for classification, but none of them explore data from different sources. In
contrast, we explore features extracted from multiple data sources in an effort to improve
classification performance.

Our work leverages trial-and-error and observations from the LANL dataset. The data
structure used (i.e., bipartite graph) is inspired from Kaiafas et al. [31]. They construct
a bipartite graph to extract graph-based features and employ an ensemble of ML models
to improve classification performance. However, the authors only perform k-fold cross-
validation and do not evaluate the robustness of their ML models to unseen data. This is
crucial to ensure the detection of zero-day APTs. We highlight this limitation in Chapter
4.

2.3 Adversarial Learning

ML has been extensively explored for cybersecurity. However, research shows that crafted
adversarial samples can hamper the performance of ML [44, 45, 51, 58]. Xu et al. [58]
propose a generic method to identify evasive samples. After the test against two recent
PDF malware detectors, their system successfully evades detection with 100% success rate.
Biggio et al. [8] experiment with a gradient-based approach to evade detection and show
that popular classification algorithms, such as SVM and neural networks are vulnerable.
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Anderson et al. [3] leverage generative adversarial networks to thwart the performance of
a deep learning-based detector, which detects the use of Domain Generation Algorithm
(DGAs). Most of the works in adversarial learning are geared towards deep learning
approaches. Our approach is based on random forest, which is a well known and widely
used traditional learning algorithm. We perform experiments to explore the influence of
adversarial samples on our approach for TA detection (cf., Chapter 5).
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Chapter 3

Methodology

3.1 Dataset

3.1.1 Characteristics

The LANL dataset contain logs from multiple data sources, including authentication log,
flow log, DNS log, and process log. We explore the authentication and flow logs for TA
detection during LM.

Authentication Log

This log is composed of over 450 million authentication events from Windows-based desktop
computers, spanning 58 days. Among these events there are 749 redteam compromise
events, distributed in the first 30 days of the dataset, as depicted in Fig. 3.1 and Fig. 3.4.
We leverage data in this time frame, which consists of about 230 million events from 14,582
benign hosts and 299 redteam related hosts. However, the malicious activities are a very
small fraction of the overall activities in the LANL dataset. Fig. 3.2 shows the daily events
distribution. In comparison to Fig. 3.1, it also reveals that malicious activities are sparse,
both in general and on a daily basis.

We do not consider local redteam authentication events i.e., malicious events where
the source and destination hosts are the same. The behavior of an attacker that performs
malicious activity within a physical machine tends to be quite different. Such an attacker
has access to the physical interfaces of the host, hence their attack strategy and behaviour
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can be very sophisticated. Evaluating such behavior is out of scope for this thesis. Nev-
ertheless, we capitalize on the number of infrequent events. In total, there are 8,941 hosts
involved in 41,400 authentication events that occur only once in the dataset. Out of the
295 TAs, 280 are involved in such events. Therefore, considering the event infrequency i.e.,
sparseness, can potentially facilitate the detection of TAs.
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Figure 3.1: Redteam activities distribution
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Figure 3.2: Authentication events distribution
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Flow Log

This log contains flow events collected from the central routers in the network. It spans
30 days with a total of 129 million flows, as shown in Fig. 3.3. There is a noticeable
change in distribution from day 16, which indicates a major change in the system. It
is also worth mentioning that flows that do not go through the central routers will not
be recorded. As a result, out of the 14,881 hosts in the authentication log, only 3,456
hosts have corresponding flow data. Also, due to a potential misconfiguration of internal
network routers, the flow data collection completely stops after day 29 [33]. Fig. 3.4 shows
the distribution of redteam-related flows. Compared to the entire dataset, redteam flows
are minuscule, which sum up to 45 million in total. Thus, the flow log is also imbalanced.
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Figure 3.3: Network flow distribution
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Figure 3.4: Redteam network flow distribution

3.1.2 Balancing

Sampling algorithms are employed when a dataset is highly imbalanced. An imbalanced
dataset can result in a classifier that is biased on the majority class, due to the nature
of the training procedure. The sampling algorithms used to alleviate this issue can be
classified into two categories, under-sampling and over-sampling. While under-sampling
approaches balance the dataset by reducing the data points in the majority class, the
over-sampling approaches increase the data points in the minority class. Therefore, the
under-sampling algorithms are known to inherently lose critical information, while the
over-sampling algorithms suffer from over-fitting [6]. However, a potential advantage of
under-sampling is the reduced computational overhead. On the other hand, some classifiers
have the capability to overcome the over-fitting due to over-sampling.

We explore different algorithms from both categories for balancing the LANL dataset.
The first algorithm is random under-sampling (RUS), which randomly removes samples
from the majority class. The second algorithm is condensed nearest neighbour (ConNN),
an under-sampling algorithm based on k-NN [27]. This algorithm keeps all samples in the
minority class and uses 1-NN classifier to determine whether to retain the data point in the
majority class or not. The next algorithm is Repeated Edited Nearest Neighbours (RENN),
which implements multiple iterations of Edited Nearest Neighbours (ENN) [57]. For the
over-sampling algorithms, we start with random over-sampling (ROS), followed by the well-

16



known synthetic minority over-sampling technique (SMOTE) [14]. SMOTE over-samples
data points by creating their synthetic counterparts. This is achieved by computing a
vector between a data point and one of its neighbours. Another over-sampling algorithm
is the adaptive synthetic (ADASYN) [28]. ADASYN also leverages k-NN to adaptively
generate synthetic data.

We employ the above sampling algorithms after feature extraction. This is primarily
because applying them directly on the authentication log can sabotage the purity of graph-
based features. For example, all authentication events pertaining to a username may
get eliminated due to under-sampling. Similarly, over-sampling without considering the
diversity of hosts in the dataset may result in emphasizing a single type of host. We study
the influence of these sampling algorithms on TA detection in Chapter 4.
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3.2 Feature Extraction

Table 3.1: Most significant features extracted from authentication logs

Feature Definition

IDusr(dstj) The count of unique username used to logon to dstj

IDsrc(dstj) The count of unique source hosts that logon to dstj

ID(usr,src)(dstj)
The count of unique (username, source) pairs that logon to
dstj

IDAFusr(dstj)

The average over all username of AV Gdstj(username), where
AV Gdstj(username) is the number of times username is used
to logon to dstj divided by the number of days username used
to logon to dstj

IDAFSTDusr(dstj) Standard deviation of AV Gdstj(username)

IDSusr(dstj)
The sum over all username of SF (∗, username, dstj, θ, β),
where SF is exposed in Algorithm 1

IDSsrc(dstj) The sum over all source of SF (source, ∗, dstj, θ, β)

IDS(usr,src)(dstj)
The sum over all (username, source) pairs of
SF (source, username, dstj, θ, β)

WIDS(usr,src)(dstj)

The sum over all (username, source) pairs
of SF (source, username, dstj, θ, β) weighted by
ODS(usr,dst)(source)

ODSusr(srci) The sum over all username of SF (srci, username, ∗, θ, β)

ODSdst(srci) The sum over all destination of SF (srci, ∗, destination, θ, β)

ODS(usr,dst)(srci)
The sum over all (username, destination) pairs of
SF (srci,username,destination,θ,β)

ODAFSTD(usr,dst)(srci)

Standard deviation of AV Gsrci(username, destination),
where AV Gsrci(username, destination) is the number of
times username is used by srci to logon to destination di-
vided by the number of days username is used by srci to
logon to destination

18



Table 3.1: Most significant features extracted from authentication logs (contd.)

Feature Definition

ODAFSTDusr(srci)

The standard deviation of AV Gsrci(username), where
AV Gsrci(username) is the number of times username is
used in a remote login attempt initiated by srci divided by the
number of days username is used by srci in a remote login
attempt

MSF (dstj)
The maximum over all srci of ODS(usr,dst)(srci) where
SF (dstj, srci, in, θ, β) > 0

SUR(dstj)

The number of unique username used to sparsely logon to dstj
(i.e., SF (dstj ,(username,source),in,θ,β) >0 for at least half the logon
events (username, source, dstj)) divided by the number of unique
username used to logon to dstj

AS(Hostj) MSF (Hostj) ∗ SUR(Hostj)

We extract a total of 35 features, 29 features from the authentication log and 6 from the
flow log. A detailed description of the extracted flow log-based features can be found
in our previous work [21]. The 29 authentication-based features are extracted from a
graph representation of the authentication events. As the features are primarily based
on the in-degree and out-degree of different hosts, we build an authentication graph that
is efficient for frequent reference. We first start by building the authentication graph
G = (U, V,E), where U represents the hosts that appear as sources in the authentication
log, while V represents the hosts that appear as destinations. Edges in E link pairs
(u, v) ∈ U × V and summarize all authentication events involving u as source and v as
destination. Authentication events are inserted in the graph, as shown in Fig. 3.5.

For example, consider an authentication event e(Day2, User02, ComPtr10099, ComPtr
4017), where Day2 represents the day when the logon was recorded, User02 is the username
used in the logon attempt, and ComPtr10099 is the source host used by User02 to logon
to destination host ComPtr4017. Assuming that User02 was already recorded logging
into ComPtr4017 from ComPtr10099 twice on Day1, 3 times on Dayn, but never before
on Day2, the event e is added to the edge linking ComPtr10099 to ComPtr4017 on the
graph G with a count of 1, as depicted in Fig. 3.5. Once the graph G is complete, we build
dictionaries that are used to extract the features, as described in Appendix A

A high-level description of the authentication-based features is provided below. Ta-
ble 3.1 further delineates a subset of the authentication-based features.
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[ ( User01,    {  ( Day1, 3 ),      
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......         
( Dayn, 3 )  } ),

( User03,    {  ( Day1, 2 ),      
( Day2, 2 ),      

......        
( Dayn, 2 ) } ) ] 

ComPtr4017ComPtr10099

Figure 3.5: Graph representation of authentication events

In-Degree (ID) and Out-Degree (OD): In the early phase of LM, attackers use
stolen credential to attempt logging into and eventually compromising other hosts. This
will result in the increase of ID of the targeted hosts and OD of successfully compromised
ones.

In-Degree-Avg-Frequency (IDAF) and Out-Degree-Avg-Frequency (ODAF):
Infrequent malicious authentication events will have little impact on ID/OD in the presence
of a much larger number of benign authentication events. Thus, they can be overlooked by
the classifier. We consider IDAF, the daily average number of authentication events tar-
geting the host, as well as ODAF, the average number of authentication events originating
from the host, and leverage the discriminatory nature of these features.

IDAF-Standard-Deviation (IDAFSTD) and ODAF-Standard-Deviation (ODAF-
STD): Sparse malicious authentication logs can be shadowed by regular and repetitive
benign logons when calculating IDAF and ODAF. On the other hand, the standard de-
viation of IDAF will be higher for TAs targeted by a mix of frequent legitimate logons
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and sparse malicious logons, than non-TAs. Similarly, compromised hosts will have higher
ODAFSTD than benign ones.

In-Degree-Sparseness (IDS) and Out-Degree-Sparseness (ODS): In order to cap-
ture infrequent events that are likely to be malicious, we introduce a sparseness function
(SF), as depicted in Algorithm 1. SF considers infrequent events with a specific (combi-
nation of) source host, destination host, or username, and assigns a higher score to more
infrequent events. This amplifies the impact of such events on graph-based features, which
are otherwise largely affected by benign events. IDS and ODS reflect the sparseness of
the incoming and outgoing logons, respectively. In this case, SF evaluates the sparseness
of these events and amplifies the impact of sparse authentication events when computing
the ID of a TA and OD of a compromised host. As sparse malicious logons receive higher
SF scores, TAs are expected to have higher IDS than non-TAs, and compromised hosts to
have higher ODS than benign ones.

Weighted-In-Degree-Sparseness (WIDS): To distinguish between TAs and non-TAs
with comparable IDS but legitimately targeted by a higher number of logons (e.g., servers),
we weigh the sparseness of incoming logons by the ODS of the source.

Maximum-Sparseness-Factor (MSF) and Suspicious-User-Rate (SUR): A com-
mon characteristic of TAs is that they have been occasionally logged into with malicious
intent. The MSF of a particular host denotes the ODS of the source that is most likely to
be malicious and that has sparsely logged into that host. The higher is the MSF of a host
the more likely it is a TA. The SUR of a given host is the proportion of usernames used
to sparsely log into the host.

Attack Score (AS): The AS of a host reflects the likelihood of it being a TA. The higher
the AS of a host, the more like it is a TA. AS is the product of MSF and SUR, hence it is
correlated with MSF and SUR. Experiments with AS show a promising boost with respect
to precision and recall. As the product of MSF and SUR, AS serves as an evident sign
that the host has been tempted by an actively probing source host. It further reveals that
selected ML models can not capture the product relationship of different features. With
all the features, the classifier can better distinguish the boundary between TAs and benign
hosts.

Further details on each and every extracted feature is available in Appendix A.
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Algorithm 1 Sparseness function (SF )

input : Source host Src, username Usr, destination host Dst, thresholds θ, β
output: Sparseness, a sparseness score of event defined by Src, Usr, and Dst

1: Initialize Events to all events in authentication log
2: Sparseness← 0
/∗ filter(∗) is a no-op, countByDays() counts the numbers of days where the events
occur ∗/

3: TotalDays← Events.filter(Src, Usr,Dst).countByDays()
4: if TotalDays ≤ θ then
5: Sparseness← max(TotalDays ∗ β − Events.count(), 0)
6: end if
7: return Sparseness

3.3 ML Techniques

With graph-based features extracted, we evaluate several ML techniques to detect TAs
during LM. We start with decision tree (DT), a non-parametric supervised learning method.
We also leverage random forest (RF), which is a classifier that uses multiple DTs to improve
classification performance and avoid over-fitting. LogitBoost (LB) is another learning
algorithm based on DT that we leverage in our evaluation. We also assess logistic regression
(LR), which is very efficient and does not require feature scaling. However, its performance
deteriorates with highly correlated features. We evaluate the above ML algorithms along
with other well known algorithms, such as support vector machine, k -NN, and gaussian
näıve bayes. However, we do not discuss the latter as they do not perform well in our
evaluation.

3.4 Evaluation Metrics

In order to measure the performance of ML models, we use a variety of metrics. These
include:

Precision =
True Positive

True Positive + False Positive
× 100

Recall =
True Positive

True Positive + False Negative
× 100
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F1 score = 2× Recall × Precision

Recall + Precision

The precision and recall are better criterion compared to accuracy, false positive rate,
and true negative rate, to assess the performance of a classifier when the dataset is imbal-
anced. The F1 score is essentially a harmonic mean of precision and recall, which represents
the overall performance of a classifier. A higher F1 score indicates both low false positives
and low false negatives (i.e., true TAs are identified without raising many false alarms).
In addition, we plot receiver operating characteristic (ROC) curve to illustrate the per-
formance of a classifier at different classification thresholds. We also calculate AUC to
quantify ML performance.
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Chapter 4

Evaluation

4.1 Environment

4.1.1 Hardware

We perform data analysis and pre-processing on a cluster of four nodes, each of which has
a Intel(R) Xeon(R) 3.30GHZ CPU and 16GB RAM. These nodes are interconnected using
10Gbps Ethernet. ML model training, validation and testing is performed on a machine
equipped with 2 x Intel(R) Xeon(R) 2.20GHz CPU and 384 GB RAM.

4.1.2 Software

We leverage Numpy [43], Scipy [29], and Pandas [40] for data pre-processing. Imbalanced-
learn [36] is employed for balancing the training datasets, while Scikit-learn [46] is used for
building ML models.

4.2 Results

4.2.1 Feature Selection

We start by evaluating the performance of different ML classifiers with graph-based fea-
tures extracted from authentication logs and network flow logs. Table 4.1 showcases the
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result of k-fold cross-validation (k = 10) using a total of 35 features (6 flow-based and
29 authentication-based features) extracted from the first 30 days of the LANL dataset.
We choose θ and β based on trial-and-error and the frequency of benign activities in the
dataset. Most authentication events for a given combination of (src, username, dst) occur
for more than three times per day and exist over three days. Hence, we set θ = β = 3. The
parameters for the ML techniques are set based on their performance i.e., we choose the
parameters that exhibit the best result in TA detection. DT is set to a maximum depth
of 6, while RF uses 400 as the number of estimator with a maximum depth of 12. LB uses
100 estimators and a DT regressor with a maximum depth of 3. LR uses a tolerance of
0.0001 and a regularization strength of 1.

Table 4.1: ML performance using flow- and authentication-based features
(35 features)

ML model Precision Recall F1 score Training time (s)

DT 75.62% 75.15% 0.75 0.14
RF 79.99% 79.27% 0.79 3.31
LB 80.31% 80.29% 0.80 6.69
LR 31.10% 5.47% 0.09 4.04

With the exception of LR, which performs poorly, the other ML techniques classify
TAs with relatively high precision and recall (over 75%). LB outperforms DT and RF with
the highest F1 score. The number of ML features not only influence the computational
overhead, but can also result in model over-fitting. Hence, in order to reduce the number
of features and identify the ideal feature set for TA detection, we then restrict the feature
set to authentication-based features. As depicted in Table 4.2, with the exception of RL
whose performance increases significantly, we witness a marginal performance degradation
when discarding flow-based features. RF outperforms other classifiers, while saving about
14s in feature extraction time. The lackluster performance of the flow-based features can
be attributed to the inferior quality of flow data in the LANL dataset, as discussed in
Chapter 3. This undermines the suitability of flow-based features to detect TAs during
LM in this particular dataset.

Next, we study the correlation between authentication-based features to further reduce
the features for TA detection. Table 4.3 shows that among the 29 features, 11 (column
features) are correlated with 4 others (row features), with a Pearson coefficient exceeding
0.6. Hence, we remove all the 11 correlated features from the feature set. Many of these
features report on the daily average logon times; per host, per user, and per (host, user)
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Table 4.2: ML performance using authentication-based feature set
(29 features)

ML model Precision Recall F1 score Training time (s)

DT 75.26% 75.77% 0.75 0.11
RF 81.36% 80.12% 0.81 3.11
LB 79.64% 79.76% 0.79 5.46
LR 61.31% 53.56% 0.52 6.13

Table 4.3: Pearson correlation matrix for most correlated authentication-based features

FID 2 3 10 11 15 18 22 23 24 26 27

16 0.9 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.9 0.0 0.8
25 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.1 0.0
29 0.0 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.6 0.0

combination. These features are too generic and fail to describe the true nature of LM,
which makes them less discriminative in tagging TAs. We further remove the out-degree-
avg-frequency feature. This latter feature is only significant if there is evidence that the TA
is compromised and is actively attempting to move laterally, which is not the case in this
dataset. We re-evaluate the ML techniques after removing the 12 aforementioned features.
Appendix A provides the Feature IDs (FIDs) for the authentication-based features.

As depicted in Table 4.4, the F1 score for all ML techniques improve with RF out-
performing all other classifiers. Furthermore, LR shows the highest improvement in TA
detection with an F1 score increase of 8%. Even though DT and LB are immune to highly
correlated features [53], we notice a slight increase in their performance. The removed
features primarily pertain to standard deviation and out-degree. On a single host, differ-
ent users can have distinct authentication patterns, which will result in high values for
standard deviation-based features, causing confusion for the classifiers. Furthermore, TAs
do not necessarily have an exploring behaviour, thus out-degree-based features can also
degrade the classifier performance. Hence, in the following experiments we use the reduced
feature set of 17 authentication-based features.
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Table 4.4: ML performance on reduced authentication-based feature set
(17 features)

ML model Precision Recall F1 score Training time (s)

DT 77.59% 75.45% 0.76 0.05
RF 83.72% 81.23% 0.82 2.06
LB 78.99% 80.25% 0.80 2.26
LR 68.13% 54.55% 0.60 5.99

4.2.2 Ensemble Learning

In an effort to improve the performance of the stand-alone ML models for TA detection,
we consolidate them using ensemble learning. Due to the lackluster performance of LR in
comparison to other ML models (cf., Table 4.4), we remove it from the list of potential
classifiers in the ensemble approach. First, we employ the majority voting (MV) algorithm
[35] that leverages all ML models in the ensemble in a uniform manner, and use k-fold
cross-validation (k = 10) on the first 30 days of the LANL dataset. The detection of TAs
during LM using MV over RF, LB and DT is shown in Table 4.5. However, this results in
an inferior performance to stand-alone RF, since low performing classifiers can influence
the voting process.

Table 4.5: Ensemble learning using majority voting

Ensemble Precision Recall F1 score Training time (s)

RF, LB, DT 80% 80.67% 0.80 2.60

Evidently, MV is unable to boost the performance of the best stand-alone classifier.
Therefore, we explore another ensemble approach, namely weighted voting (WV) [23],
where we can assign weights to ML models based on their stand-alone performance. Intu-
itively, this can identify a higher number of true positives (i.e., TAs during LM) that are
missed by RF, the best performing stand-alone classifier. However, with multiple combina-
tion of weights assigned to the ML models in Table 4.6, stand-alone RF still outperforms
WV. This reveals that at the classification boundary where RF is unable to differentiate
between benign and malicious points, LB and DT also suffer and do not facilitate bet-
ter performance. Besides, these ensemble approaches increase training time, undermining
their suitability for early LM detection. Therefore, we choose the stand-alone RF classifier
as our model for further experiments.
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Table 4.6: Ensemble learning using weighted voting,
prioritizing stand-alone ML performance

RF LB DT Precision Recall F1 score Training time (s)
1
3

1
3

1
3

80.00% 80.41% 0.80 2.86
1
2

1
4

1
4

80.70% 80.89% 0.81 2.78
1
2

1
3

1
6

80.68% 80.97% 0.81 2.60

4.2.3 Balancing the Dataset

We further evaluate the robustness of our ML model by training and testing it on logs
recorded on different days. Redteam activities are only conducted on certain days, gen-
erating malicious events that account for a very small fraction of the total number of
authentication events (i.e., less than 0.0001%). Therefore, we reserve day 9, the day with
the highest number of malicious authentication events, for testing, while the remaining
days are chosen for training the model. We evaluate several well known sampling algo-
rithms (cf., Chapter 3) to balance the training dataset. For each sampling algorithm, we
use distinct seeds across 5 iterations and compute the average for each metric. These seeds
are consistent across the sampling algorithms. Furthermore, each sampling algorithm has
its own best sampling rate i.e., the ratio of TA versus Benign (TA/Benign). Hence, we
experiment with different sampling rates and select the best sampling rate to portray the
corresponding results.

Over-sampling The comparison of three different over-sampling algorithms, namely
ROS, SMOTE, and ADASYN, is highlighted in Table 4.7. SMOTE results in the sec-
ond highest recall, as synthesizing minority points help in stressing the TA class. However,
the randomness in synthetic points do not capture the true nature of original TAs, result-
ing in a lower precision. In contrast, ADASYN achieves better precision and recall. It
generates synthetic points closer to the decision boundary, thus enabling the classifier to
better distinguish TAs from benign hosts. As opposed to over-sampling only a portion
of the minority points, ROS simply replicates TAs, which stresses on all TAs. Uniformly
stressing on all TAs preserve the originality of TA class and its behavior to a large extent
in comparison to synthesizing, thus resulting in the highest precision. Each algorithm over-
samples the dataset with the same sampling rate, thus the training time (TT) is similar.
In contrast to ADASYN, ROS and SMOTE consume less sampling time (ST) due to their
simpler sampling mechanism.

28



Table 4.7: Over-sampling with different algorithms
(17 features)

Algorithm TA/Benign Precision Recall F1 score ST (s) TT (s)

ROS 0.02 62.34% 95.36% 0.7539 0.01 4.27
SMOTE 0.02 61.99% 95.71% 0.7524 0.01 4.62

ADASYN 0.02 62.08% 96.07% 0.7542 0.06 4.66

Under-sampling Recall that RUS randomly removes samples from the majority class.
This may result in a high number of benign (majority class) hosts that have similar traits as
certain class of TAs, negatively impacting precision. This is evident in the lower precision
of RUS in comparison to ConNN, as shown in Table 4.8. But the TAs that starkly differ
from the benign hosts are still classified with high recall. A similar affect can be seen
with RENN, which removes benign hosts that are not very similar to their neighbors.
In contrast, ConNN preserves the benign hosts that are different from their neighbors.
Therefore, under-sampling with ConNN results in the best F1 score with precision and
recall of 95.12% and 62.47%, respectively. Due to its simplicity, RUS incurs the least
sampling time. In contrast, ConNN suffers from the highest sampling time, but it also
reduces the number of benign hosts to the largest extent, which positively impacts the
training time.

Table 4.8: Under-sampling with different algorithms
(17 features)

Algorithm TA/Benign Precision Recall F1 score ST (s) TT (s)

RUS 0.02 60.9% 96.55% 0.747 0.01 2.45
ConNN 0.51 62.47% 95.12% 0.754 130.88 0.99
RENN 0.01 60.07% 97.62% 0.743 2.81 3.32

Comparison We highlight the over- and under-sampling algorithms with the highest F1
score in Table 4.9, along with no sampling (i.e., unbalanced training dataset). As evident,
ADASYN increases the precision and recall by 0.54% and 0.84%, respectively. However,
this comes at the cost of increased sampling and training times, which undermines its
suitability. On the other hand, ConNN increases precision by 0.93%. However, its sampling
time is very high in comparison to training without any sampling. Thus, we proceed
without any sampling to detect TAs during LM in the LANL dataset.
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Table 4.9: Comparing different algorithms
(17 features)

Algorithm TA/Benign Precision Recall F1 score ST (s) TT (s)

ADASYN 0.02 62.08% 96.07% 0.7542 0.06 4.66
ConNN 0.51 62.47% 95.12% 0.7541 130.88 0.99

Unbalanced 0.01 61.54% 95.23% 0.7476 0 3.61

4.2.4 Comparative Analysis

To further evaluate our approach, we compare our model with two state-of-the-art ap-
proaches for LM detection. We implement the approaches in Chen et al. [15] and Kaiafas
et al. [31]. To achieve a fair comparison, we balance the dataset according to the algorithm
in [15], which preserves the redteam events while under-sampling the benign activities. Due
to scalability issues in [31], we only leverage data for k-fold cross-validation (k = 10) from
day 9. As depicted in Table 4.10, our model outperforms Chen et al. in precision, recall
and F1 score. However, our approach consumes more feature extraction time (FET) and
model training time.

Kaiafas et al. marginally outperforms our model in recall, with an improvement of 0.02
in F1 score. However, their feature extraction and model training times are magnitudes
higher than both Chen et al. and our approach. In the balanced dataset, there are about
97,000 authentication events and their overhead is largely due to feature extraction for
each individual event. In contrast, our approach strikes a balance between performance
and overhead.

Table 4.10: TA detection using stand-alone RF and
cross-validation versus ([15], [31])

Classifier Precision Recall F1 score FET (s) TT (s)

Our Model 97.02% 93.04% 0.95 169.35 0.145
Chen et al. 7.24% 73.12% 0.13 0.69 0.529

Kaiafas et al. 100% 93.47% 0.97 100.81 2333.24

Followed by cross-validation, we evaluate the robustness of the aforementioned ap-
proaches on never seen data. Thus, we leverage authentication events from day 9 as the
test dataset, while the remainder of the dataset (i.e., 29 days) is used for training. In this
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case, the training dataset is composed of over 220 million log entries, which can potentially
introduce a lot of noise. As depicted in Table 4.11, the model from Chen et al. fails miser-
ably with a near-zero recall when tested on never seen data. The authors in [15] leverage
features, including network traffic amount, sending packet amount, authentication amount
and DNS queries amount, etc. These generic statistical features fail to distinguish TAs in a
noisy environment. Unfortunately, we are unable to extract features for Kaiafas et al. for
this robustness evaluation in a reasonable amount of time. Thus, the robustness evaluation
for their model is unavailable. In contrast, our model shows remarkable performance with
a recall and F1 score of 98.81% and 0.75, respectively.

Table 4.11: Robustness of TA detection using stand-alone RF versus ([15], [31])

Classifier Precision Recall F1 score FET (s) TT (s)

Our Model 60.58% 98.81% 0.75 2210.45 3.95
Chen et al. 2.98% 3.16% 0.030 823.51 59.45

Kaiafas et al. — — — > 360000 —

Nevertheless, to compare the robustness of Kaiafas et al. we reduce the cardinality
of the training dataset from the previous experiment. Data from days 13, 14, and 15 is
used for training, while day 9 is reserved for testing. For a fair comparison, we leverage
the under-sampling method from Chen et al. for both comparative models. Note that
Kaiafas et al. do not expose their sampling approach in detail. Furthermore, no sampling
is applied to our model. As shown in Table 4.12, our model significantly outperforms other
approaches. Even though Kaiafas et al. perform quite well in cross-validation, they fail in
robustness to never seen TAs.

The authors in [31] extract features, including frequency, first occurrence tag, diversity
of user, etc. However, these features fail to differentiate the TAs from the benign hosts
for large networks. Due to the diversity of different authentication events, they can result
in hosts having similar values with regard to less crafted features, such as the number
of successful/failed authentication events. Such noise will influence the performance of
ML models that leverage less-thought-of features. However, with features based on the
degree of sparse events, our model is able to filter out noise and differentiate TAs. Fig. 4.1
shows the ROC curve, which indicates that our model has the highest AUC of 0.995. Note
that Kaiafas’s model is using MV, which is not feasible for plotting as a ROC curve. In
comparison to previous robustness result, our model shows a marginal loss in precision
and recall. However, our model out classes other approaches, with a high precision of over
94%, while the F1 score is the highest at 0.74.
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Table 4.12: Robustness of TA detection using stand-alone RF versus
([15], [31]) on a reduced training dataset

Classifier Precision Recall F1 score FET (s) TT (s)

Our Model 61.24% 94.05% 0.74 475.46 2.56
Chen et al. 4.64% 9.52% 0.06 11.22 0.66

Kaiafas et al. 9.58% 45.83% 0.16 40488.56 1903.24
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Figure 4.1: ROC for robustness in TA detection using stand-alone RF vs. ([15], [31]), with
days 13, 14 and 15 for training, and day 9 reserved for testing
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Chapter 5

Adversary Study

In APT, attackers during LM strive to introduce minimal influence. Highly skilled at-
tackers can trick a system by adding small randomness in their activities or imitating
benign behavior after long-term scouting. However, in practice, it is very difficult for
an attacker to collect behaviour information of benign users. Therefore, we study the
influence of adversarial attempts for the former scenario. We assume that the attacker
cannot access behaviour profile of benign users, the model or the training data. Therefore,
the adversary introduces variations in attack patterns to potentially trick the classifier.
Since our approach relies on authentication patterns, variations in other aspects such as
system vulnerability and perturbing tools, will not influence the classifier’s performance.
Our approach capitalizes on the infrequency of malicious authentication events. Thus, we
evaluate the influence of an adversary perturbing its probing pattern. More specifically,
this includes perturbing the number of TAs and the frequency of malicious authentication
events, as shown in Fig. 5.1. An attacker can both increase the attacking frequency (in b)
and decrease it. Similarly, an attacker can also increase the number of TAs (in c) or reduce
it. We start by exploring perturbations in both of these aspects in Sections 5.1 and 5.2.
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Figure 5.1: Attacker changes probing pattern: (a) the original attack, (b) increasing attack
frequency (c) increasing the attacking scale (i.e., attack more TAs). Note that arrow labels
correspond to authentication events.

5.1 Perturbing Number of TAs

To simulate attackers probing different number of TAs, we first define the Ratio between
the sampled TAs and the original TAs as follows:

Ratio =
Number of TAs after sampling

Number of TAs in the original dataset

For Ratio greater than 1 (i.e., increase in number of TAs), we randomly select (Ratio−1) ×
Original Number of TAs from within benign hosts. Then for each of the chosen new host
(i.e., victim), we simulate the attack from the original redteam in a one-to-one manner.
An example is illustrated in Fig. 5.2. Similarly, for Ratio smaller than 1 (i.e., decrease in
number of TAs), we randomly select Ratio×Original Number of TAs from the redteam,
and only preserve redteam events related to the selected TAs.
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Figure 5.2: Example of increase in number of TAs with Ratio = 2: (a) original attack,
(b) attacking more TAs, for each new host (i.e., victim V Ci for corresponding original
TAi) map to it the original attack ai on TAi i.e., a′i. Note, attack ai on TAi is a set of
authentication events.

Decreasing the Ratio can reduce the sparse related graph-based features. When at-
tacking fewer TAs, the ODS of the attacking (source) host will decrease. Consequentially,
the WIDS(usr,src)(dstj) feature will also decrease, as it is weighted by the source ODS.
We assert this claim by inspecting the features for each host in our experiments. Fig. 5.3
shows the AUC with respect to different Ratio. At a high level, the decrease in Ratio does
not severely impact the true positive rate (TPR) and the false positive rate (FPR). How-
ever, upon zooming on the upper left corner (i.e., the balance between TPR and FPR), as
shown in Fig. 5.4, there is a noticeable variation in TPR at the balance point. We further
highlight the corresponding results in Table 5.1.
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Figure 5.3: AUC with decrease in number of TAs and Ratio
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Figure 5.4: AUC with decrease in number of TAs and Ratio (zoom view)

Table 5.1: Decrease in number of TAs

Ratio Precision Recall F1 score TP FP FN
1 60.58% 98.81% 0.751 166 108 2

0.8 53.85% 99.25% 0.6982 133 114 1
0.6 45% 99% 0.6188 99 121 1
0.4 34.54% 100% 0.513 67 127 0
0.2 19.76% 100% 0.3299 33 134 0
0.1 10.46% 100% 0.189 16 137 0

Evidently, the number of FP increases as the Ratio decreases. By inspecting the data
points after sampling, we observe that for most benign hosts the sparse related features stay
at a very low level. For example, the average WIDS(usr,src)(dstj) of TAs is around ten times
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that of benign hosts. Furthermore, we notice a drop in these features for TAs. Therefore, we
concur that the classifier is not aggressively relying on these distinctive features. One way
to adjust the sensitivity to sparse features is to tune the classifier threshold. Table 5.2 shows
the result with the threshold values that lead to the best F1 score. There is a clear increase
in precision when compared to the use of a uniform threshold. However, manually tuning
the classifier threshold is impractical after deployment. Therefore, to directly stress on
sparse related features, we further explore by only considering the corresponding features.

Table 5.2: Decrease in number of TAs and classifier threshold according to F1 score

Ratio Precision Recall F1 score TP FP FN Threshold
1 60.58% 98.81% 0.751 166 108 2 0.3

0.8 54.29% 99.25% 0.7024 133 112 1 0.32
0.6 45.37% 98% 0.620 98 118 2 0.33
0.4 34.74% 98.51% 0.5136 66 124 1 0.33
0.2 20.75% 100% 0.3438 33 126 0 0.35
0.1 11.03% 100% 0.1988 16 129 0 0.36

Table 5.3 shows the result using sparse related features only i.e., without features such
as IDsrc(dstj), IDusr(dstj), and ID(usr,src)(dstj). Evidently, the classifier can not perform
well at the decision boundary where benign hosts and TAs are very similar. Therefore,
there is a significant increase in FP and FN. With these observation, it is clear that sparse
related features can effectively identify TAs, but at the same time, misclassify benign hosts
that have similar probing behavior as TAs. Furthermore, non-sparse related features serve
as a support to rule out these FNs, thus it is not possible to ensure classifier robustness to
smaller Ratio pertubations by leveraging only the sparse related features.

Table 5.3: Decrease in number of TAs and Ratio, using sparse related features only

Ratio Precision Recall F1 score TP FP FN
1 54.05% 95.24% 0.690 160 136 8

0.8 47.41% 95.52% 0.634 128 142 6
0.6 39.34% 96% 0.558 96 148 4
0.4 30.14% 98.51% 0.4615 66 153 1
0.2 17.10% 100% 0.292 33 160 0
0.1 8.38% 93.75% 0.1538 15 164 1
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We then investigate when attackers increase the number of TAs. There is no significant
drop in TPR and FPR, asserting classifier robustness to this kind of perturbation, as
illustrated in Fig. 5.5. Table 5.4 shows a significant increase in precision, while there is a
decrease in recall. Since we choose more benign hosts as TAs and perform similar probing
activities on them, the classifier is able to identify them with higher precision. However,
it is counter intuitive for FN to increase significantly, since the classifier has seen similar
activities. Therefore, we further investigate with only sparse features. Table 5.5 shows
more stable results with respect to recall. Therefore, using only sparse related features
achieves stable recall at the cost of lower precision.
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Figure 5.5: AUC with increase in number of TAs and Ratio
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Table 5.4: Increase in number of TAs, using uniform threshold

Ratio Precision Recall F1 score TP FP FN
1 60.58% 98.81% 0.751 166 108 2
2 74.76% 94.35% 0.834 317 107 19
4 86.43% 92.86% 0.895 624 98 48
6 90.68% 91.67% 0.912 924 95 84
8 93.37% 92.26% 0.928 1240 88 104
10 94.38% 91.96% 0.932 1545 92 135

Table 5.5: Increase in number of TAs, using sparse features only

Ratio Precision Recall F1 score TP FP FN
1 54.05% 95.24% 0.690 160 136 8
2 70.55% 95.54% 0.812 321 134 15
4 83.99% 95.24% 0.893 640 122 32
6 88.96% 95.93% 0.923 967 120 41
8 91.86% 95.68% 0.937 1286 114 58
10 93.44% 95.83% 0.946 1610 113 70

5.2 Perturbing Attack Frequency

Another aspect that we explore is frequency with respect to an attacker’s probing activity
(PA). Here We define Ratio as follows:

Ratio =
Number of PAs after sampling

Number of PAs in the original dataset

For increasing the attack frequency, we simulate additional attacks by replicating the orig-
inal attacks on a TA by a factor of Ratio, as shown in Fig. 5.6. For each new attack we
also add randomness to its attack time. Similarly, for a decrease in attack frequency, we
randomly sample the attacks on each TA to the Ratio of the original attack.
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Figure 5.6: Example of increase in attack frequency with Ratio = 2: (a) the original attack,
(b) for each attack ai on the original TAi, we add randomness to its attack time, which
results in a′i that is simulated on TAi. Note, attack ai on TAi is a set of authentication
events.

Fig. 5.7 shows the AUC of decreasing the attack frequency. Since the features are built
atop sparse authentication events, reducing the frequency further emphasizes the sparse
related features. Thus, there is no significant drop in TPR or FPR. Fig. 5.8 shows the upper
left corner of the AUC, where the optimum balance of TPR and FPR resides. In general,
the model performs better as the Ratio decreases. Table 5.6 shows the precision, recall, and
F1 score with decreasing Ratio. As the Ratio decreases, all metrics increase steadily. That
is, as attacks get less frequent, sparse related features become more pronounced, which
helps the classifier better identify TAs. Hence, our model shows robustness to infrequent
attacks.
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Figure 5.7: AUC with decrease in attack frequency
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Figure 5.8: AUC with decrease in attack frequency (zoomed view)

Table 5.6: Decrease in malicious authentication events frequency with different Ratio

Ratio Precision Recall F1 score TP FP FN
1 60.58% 98.81% 0.751 166 108 2

0.8 60.73% 99.40% 0.754 167 108 1
0.6 60.73% 99.40% 0.754 167 108 1
0.4 60.73% 99.40% 0.754 167 108 1
0.2 60.87% 100% 0.757 168 108 0
0.1 60.87% 100% 0.757 168 108 0
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Table 5.7: Decrease in malicious authentication events frequency with different Ratio,
using sparse features only

Ratio Precision Recall F1 score TP FP FN
1 54.05% 95.24% 0.690 160 136 8

0.8 54% 96.43% 0.692 162 138 6
0.6 53.85% 95.83% 0.690 161 138 7
0.4 54% 96.43% 0.692 162 138 6
0.2 53.97% 97.02% 0.694 163 139 5
0.1 54.13% 97.62% 0.696 164 139 4

Figure 5.9 shows the AUC of increasing the attack frequency. As the Ratio increases,
probing behavior becomes similar to regular benign activities, which diminishes the dis-
criminating nature of sparse related features. As a result, both the precision and recall
suffer, as shown in Tables 5.8 and 5.9. Even though employing all features show consistently
better result, the less prominent sparse related features sabotage model performance.

In summary, our model shows robustness to attackers that probe more TAs or reduce
the attack frequency. When the attack frequency increases or when fewer TAs are targeted,
both precision and recall drop significantly. This is consistent with how the sparse features
are influenced, more prominent sparse related graph-based features improve the classi-
fier performance. The classifier itself is not extremely sensitive to sparse feature change,
since other non-sparse related features can boost the precision. Tuning the threshold helps
improve the recall by adjusting the classifier’s sensitivity to sparse feature’s increase. How-
ever, manually tuning the classifier threshold is not feasible in practice. Furthermore,
using only sparse related features result in higher FPs and reduces the classifier’s ability
to differentiate TAs and benign hosts that are similar in the feature space. Therefore, we
propose to keep all the features and solve the issue by perturbing the training data.
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Figure 5.9: AUC with increase in attack frequency

Table 5.8: Increase in malicious authentication events frequency with different Ratio

Ratio Precision Recall F1 score TP FP FN
1 60.58% 98.81% 0.751 166 108 2
2 47.83% 58.93% 0.528 99 108 69
4 42.17% 41.67% 0.419 70 96 98
6 36.43% 30.36% 0.331 51 89 117
8 33.33% 26.19% 0.293 44 88 124
10 21.74% 14.89% 0.177 25 90 143
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Table 5.9: Increase in malicious authentication events frequency with different Ratio,
using sparse features only

Ratio Precision Recall F1 score TP FP FN
1 54.05% 95.24% 0.690 160 136 8
2 40.52% 55.95% 0.47 94 138 74
4 34.33% 41.07% 0.374 69 132 99
6 27.87% 30.36% 0.291 51 132 117
8 25.99% 27.38% 0.267 46 131 122
10 16.13% 14.88% 0.155 25 130 143

5.3 Adversarial Learning

With the above discussion, we conclude that our model is robust when the attacker de-
creases the attack frequency or increases the number of TAs. But when the attacker
changes the attacking pattern in the other direction (i.e., increases the attack frequency
or decreases the number of TAs), our model is vulnerable. That is, we observe a drop in
both precision and recall.

To alleviate this impact, we add synthetic TAs with perturbed attack patterns to en-
hance the classifier’s ability in differentiating TAs from benign hosts in an adversarial
setting. More specifically, we generate synthetic TAs by decreasing the number of TAs. As
shown in Fig. 5.10, with a Ratio = 0.6, we randomly choose 60% of the original TAs, add
randomness to their attack time (i.e., for corresponding authentication events) and generate
synthetic TAs (i.e., TA′s). Then we add the synthetic TAs to the training dataset, retrain
our model and reevaluate its performance. After experimenting with different Ratio, we
get the best result with Ratio = 0.6. Table 5.10 depicts the classifier performance after
adding these synthetic TAs to the training dataset.

Comparing the results with that of the original experiment (cf., Table 5.3), there are
more FPs, which means lower precision, while the recall is restored to 100%. Adding the
synthetic TAs in the training dataset makes the classifier more aggressive at the boundary.
This results in a higher number of FPs, while enabling a 100% recall, our primary objective.
Table 5.11 shows a similar influence on performance when the adversary increases the attack
frequency (when compared with Table 5.8). Interestingly, the synthetic TAs generated
by decreasing the number of TAs alleviates both vulnerabilities. Recall that perturbing
attack behavior makes the sparse related features less prominent, causing the classifier to
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misclassify TAs with low sparse features. Adding synthetic TAs enables the classifier to
correctly classify TAs with less prominent sparse features, making it robust to adversarial
attempts.

Table 5.10: Decrease in number of TAs, adding synthetic TAs to training
dataset (Ratio = 0.6)

Ratio Precision Recall F1 score TP FP FN
1 53.53% 99.40% 0.6958 167 145 1

0.8 46.85% 100% 0.638 134 152 0
0.6 38.61% 100% 0.557 100 159 0
0.4 28.88% 100% 0.448 67 165 0
0.2 16.10% 100% 0.277 33 172 0
0.1 8.38% 100% 0.155 16 175 0

Table 5.11: Increase in malicious authentication events frequency, adding synthetic TAs
to training dataset (Ratio = 0.6)

Ratio Precision Recall F1 score TP FP FN
1 53.53% 99.40% 0.6958 167 145 1
2 46.51% 59.92% 0.522 100 115 68
4 41.08% 45.24% 0.431 76 109 92
6 33.74% 32.74% 0.332 55 108 113
8 31.41% 29.17% 0.302 49 107 119
10 21.43% 17.86% 0.195 30 110 138

Table 5.12: Decrease in number of TAs, adding synthetic TAs to training
dataset (Ratio = 0.1)

Ratio Precision Recall F1 score TP FP FN
1 53.55% 98.81% 0.6946 166 144 2

0.8 47.00% 99.25% 0.638 133 150 1
0.6 38.67% 99% 0.556 99 157 1
0.4 29.13% 100% 0.451 67 163 0
0.2 16.26% 100% 0.280 33 170 0
0.1 8.47% 100% 0.156 16 173 0
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Table 5.13: Increase in malicious authentication events frequency, adding synthetic TAs
to training dataset (Ratio = 0.1)

Ratio Precision Recall F1 score TP FP FN
1 53.55% 98.81% 0.6946 166 144 2
2 46.70% 58.93% 0.521 99 113 69
4 42.13% 44.64% 0.434 75 103 93
6 33.77% 30.95% 0.323 52 102 116
8 31.54% 27.98% 0.297 47 102 121
10 22.73% 17.86% 0.2 30 102 138

We expect this influence to decrease as the number of synthetic TAs added to the
training dataset decreases. Table 5.12 asserts our conjecture. FP increases with a reduced
number of TAs and so does FN. Therefore, we add synthetic TAs with Ratio = 0.6 in
the training dataset, to achieve the best recall at the cost of slightly lower precision. In
the two vulnerable cases of attackers increasing the attack frequency and probing smaller
number of TAs, our approach results in an effective mitigation of adversarial attempts
against our model. However, we do notice in Table 5.13 the false negative is still very
high. We have explored adding synthetic TAs generated with reduced Ratio. By adjusting
the number of TAs to add in the training dataset, we can potentially further improve the
performance. Besides, adding synthetic TAs generated by increasing the frequency may
also further mitigate the impact of the perturbation.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we propose a novel approach for detecting TAs during the LM phase of an
APT attack. We explore graph-based features extracted from multiple data sources (i.e.,
network flows and host authentication logs) in the LANL dataset. Among all the baseline
features, we filter less impactful and correlated features to select the ideal feature set for TA
detection and reduce computational overhead. To cope with the highly imbalanced nature
of the dataset, different sampling algorithms are explored to improve classifier performance.
The result shows that our approach is robust against imbalanced dataset. Our approach
outperforms the other state-of-the-art approaches in TA detection on the LANL dataset.

However, our approach is limited by the poor quality of the LANL dataset. This pre-
vents us from exploiting data from multiple sources for TA detection. This is largely due
to the incompleteness of network traffic monitoring data. Apart from this, the sampling
algorithms do not significantly boost the performance of classifiers, which needs further
investigation. Furthermore, in situations where attackers evade detection by adding varia-
tion in their probing behaviour, we show that our model can be robust by adding synthetic
TAs in the training data. As the data grows rapidly in an enterprise network, the em-
ployment of online learning would be valuable, both in terms of computation overhead
and performance. This will also facilitate the adjustment of ML decision boundary after
deployment.
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6.2 Future Work

On top of our approach for TA detection during LM, several other avenues can be explored.

Evolving Sparse Function: Currently, the graph-based features are generated from a
sparse function with thresholds. These parameters are not fully explored with different
benign activity patterns. An adaptive sparse function that adjusts itself according to
benign behavior can improve the robustness of TA detection.

Evolving Threshold: The threshold of the classifier reveals its sensitivity to the bound-
ary data points. It has a big impact on precision and recall. The automatic evolving of the
threshold has the potential of stabilizing the classifier’s performance in different scenarios.

Hybrid Sampling: A simple sampling approach has been explored in this thesis. A
more sophisticated sampling approach could further improve the performance.
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Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at
test time. In Joint European conference on machine learning and knowledge discovery
in databases, pages 387–402. Springer, 2013.

52



[9] A. Bohara, M. A. Noureddine, A. Fawaz, and W. H. Sanders. An unsupervised multi-
detector approach for identifying malicious lateral movement. In Proceedings of IEEE
Symposium on Reliable Distributed Systems, pages 224–233, 2017.

[10] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities.
Springer Journal of Internet Services and Applications, 9(1), 2018.

[11] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. Recurrent neural
network attention mechanisms for interpretable system log anomaly detection. In
Proceedings of the First Workshop on Machine Learning for Computing Systems, pages
1–8, 2018.

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[13] Ashima Chawla, Brian Lee, Sheila Fallon, and Paul Jacob. Host based intrusion
detection system with combined cnn/rnn model. In Carlos Alzate, Anna Monreale,
Haytham Assem, Albert Bifet, Teodora Sandra Buda, Bora Caglayan, Brett Drury,
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Appendix A

Appendix

A Feature Index Table

ID Feature ID Feature ID Feature

1 ID(usr,src)(dst) 11 IDAFSTDsrc(dst) 21 ODS(usr,dst)(src)
2 IDAF(usr,src)(dst) 12 IDSsrc(dst) 22 ODdst(src)
3 IDAFSTD(usr,src)(dst) 13 WIDSsrc(dst) 23 ODAFdst(src)
4 IDS(usr,src)(dst) 14 IDusr(dst) 24 ODAFSTDdst(src)
5 WIDS(usr,src)(dst) 15 IDAFusr(dst) 25 ODSdst(src)
6 MSF (dst) 16 IDAFSTDusr(dst) 26 ODusr(src)
7 SUR(dst) 17 IDSusr(dst) 27 ODAFusr(src)
8 AS(host) 18 OD(usr,dst)(src) 28 ODAFSTDusr(src)
9 IDsrc(dst) 19 ODAF(usr,dst)(src) 29 ODSusr(src)
10 IDAFsrc(dst) 20 ODAFSTD(usr,dst)(src)
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B Build Authentication Dictionary

Algorithm 2 Build the InHostUserMap dictionary

input : Authentication log AuthLog
output: InHostUserMap dictionary representing the number of incoming authentication

events recorded at each host per username per day
begin BuildInHostUserMap(AuthLog)

InHostUserMap← dict{} for event ∈ AuthLog do
if eventdst /∈ InHostUserMap then

InHostUserMap[eventdst]← dict{}
end
if eventusr /∈ InHostUserMap[] then

InHostUserMap[eventdst][eventusr]← dict{}
end
day ← eventtime / 86400
if day /∈ InHostUserMap[eventdst][eventusr] then

InHostUserMap[eventdst][eventusr][day]← 0
end
InHostUserMap[eventdst][eventusr][day]←

InHostUserMap[eventdst][eventusr][day] + 1
end
return InHostUserMap

end
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Algorithm 3 Build the InHostSrcMap dictionary

input : Authentication log AuthLog
output: InHostSrcMap dictionary representing the number of incoming authentication

events recorded at each host per source host per day
begin BuildInHostSrcMap(AuthLog)

InHostSrcMap← dict{} for each event ∈ AuthLog do
if eventdst /∈ InHostSrcMap then

InHostSrcMap[eventdst]← dict{}
end
if eventsrc /∈ InHostSrcMap[eventdst] then

InHostUserMap[eventdst][eventsrc]← dict{}
end
day ← eventtime / 86400
if day /∈ InHostSrcMap[eventdst][eventsrc] then

InHostSrcMap[eventdst][eventsrc][day]← 0
end
InHostSrcMap[eventdst][eventsrc][day]←
InHostSrcMap[eventdst][eventsrc][day] + 1

end
return InHostSrcMap

end
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Algorithm 4 Build the InHostUsrSrcMap dictionary

input : Authentication log AuthLog
output: InHostUsrSrcMap dictionary representing the number of incoming authentica-

tion events recorded at each host per (username, source host) per day
begin BuildInHostUsrSrcMap(AuthLog)

InHostUsrSrcMap← dict{} for each event ∈ AuthLog do
if eventdst /∈ InHostUsrSrcMap then

InHostUsrSrcMap[eventdst]← dict{}
end
if event(usr,src) /∈ InHostUsrSrcMap[eventdst] then

InHostUsrSrcMap[eventdst][event(usr,src)]← dict{}
end
day ← eventtime / 86400
if day /∈ InHostUsrSrcMap[eventdst][event(usr,src)] then

InHostUsrSrcMap[eventdst][event(usr,src)][day]← 0
end
InHostUsrSrcMap[eventdst][event(usr,src)][day]←
InHostUsrSrcMap[eventdst][event(usr,src)][day] + 1

end
return InHostUsrSrcMap

end
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Algorithm 5 Build the OutHostUsrMap dictionary

input : Authentication log AuthLog
output: OutHostUsrMap dictionary representing the number of outgoing authentication

events recorded at each host per username per day
begin BuildOutHostUsrMap(AuthLog)

OutHostUserMap← dict{} for each event ∈ AuthLog do
if eventsrc /∈ OutHostUserMap then

OutHostUserMap[eventsrc]← dict{}
end
if eventusr /∈ OutHostUserMap[eventsrc] then

OutHostUserMap[eventsrc][eventusr]← dict{}
end
day ← eventtime / 86400
if day /∈ OutHostUserMap[eventsrc][eventusr] then

InHostUserMap[eventsrc][eventusr][day]← 0
end
InHostUserMap[eventsrc][eventusr][day]←
InHostUserMap[eventsrc][eventusr][day] + 1

end
return OutHostUsrMap

end
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Algorithm 6 Build the OutHostDstMap dictionary

input : Authentication log AuthLog
output: OutHostDstMap dictionary representing the number of outgoing authentication

events recorded at each host per destination host per day
begin BuildOutHostDstMap(OutHostDstMap)

OutHostDstMap← dict{} for each event ∈ AuthLog do
if eventsrc /∈ OutHostDstMap then

OutHostDstMap[eventsrc]← dict{}
end
if eventdst /∈ OutHostDstMap[eventsrc] then

OutHostDstMap[eventsrc][eventdst]← dict{}
end
day ← eventtime / 86400
if day /∈ OutHostDstMap[eventsrc][eventdst] then

OutHostDstMap[eventsrc][eventdst][day]← 0
end
OutHostDstMap[eventsrc][eventdst][day]←
OutHostDstMap[eventsrc][eventdst][day] + 1

end
return OutHostDstMap

end
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Algorithm 7 Build the OutHostUsrDstMap dictionary

input : Authentication log AuthLog
output: OutHostUsrDstMap dictionary representing the number of outgoing authenti-

cation events recorded at each host per (username, destination host) per day
begin BuildOutHostUsrDstMap(OutHostUsrDstMap)

OutHostUsrDstMap← dict{} for each event ∈ AuthLog do
if eventsrc /∈ OutHostUsrDstMap then

OutHostUsrDstMap[eventsrc]← dict{}
end
if event(usr,dst) /∈ OutHostUsrDstMap[eventsrc] then

OutHostUsrDstMap[eventsrc][event(usr,dst)]← dict{}
end
day ← eventtime / 86400
if day /∈ OutHostUsrDstMap[eventsrc][event(usr,dst)] then

OutHostUsrDstMap[eventsrc][event(usr,dst)][day]← 0
end
OutHostUsrDstMap[eventsrc][event(usr,dst)][day]←
OutHostUsrDstMap[eventsrc][event(usr,dst)][day] + 1

end
return OutHostUsrDstMap

end

C Generating Features from Dictionaries

The following algorithms describe all the features in section A

Algorithm 8 Calculate IDusr(dstj)

input : InHostUserMap, dstj
output: IDusr(dstj)
if dstj in InHostUserMap then

return number of usr in InHostUserMap[dstj]
else

return 0
end
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Algorithm 9 Calculate IDsrc(dstj)

input : InHostSrcMap, dstj
output: IDsrc(dstj)
if dstj in InHostSrcMap then

return number of src in InHostSrcMap[dstj]
else

return 0
end

Algorithm 10 Calculate ID(usr,src)(dstj)

input : InHostUsrSrcMap, dstj
output: ID(usr,src)(dstj)
if dstj in InHostUsrSrcMap then

return number of (usr, src) in InHostUsrSrcMap[dstj]
else

return 0
end

Algorithm 11 Calculate ODusr(srcj)

input : OutHostUserMap, srcj
output: ODusr(srcj)
if hostnameinOutHostUserMap then

return number of usr in OutHostUserMap[srcj]
else

return 0
end

Algorithm 12 Calculate ODdst(srcj)

input : OutHostDstMap, srcj
output: ODdst(srcj)
if srcj in OutHostDstMap then

return number of dst in OutHostDstMap[srcj]
else

return 0
end
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Algorithm 13 Calculate OD(usr,dst)(srcj)

input : OutHostUsrDstMap, srcj
output: OD(usr,dst)(srcj)
if srcj in OutHostUsrDstMap then

return number of (usr, dst) in OutHostUsrDstMap[srcj]
else

return 0
end

Algorithm 14 Calculate IDAFusr(dstj)

input : InHostUsrMap, dstj
output: IDAFusr(dstj)
UserFrequency ← list[] if dstj in InHostUsrMap then

for each username in InHostUsrMap[dstj] do
UsrFreq ←

Average logon times per day for username UserFrequency.append(UsrFreq)
end
return the average of UserFrequency

else
return 0

end

Algorithm 15 Calculate IDAFsrc(dstj)

input : InHostSrcMap, dstj
output: IDAFsrc(dstj)
SrcFrequency ← list[] if dstj in InHostSrcMap then

for each src in InHostSrcMap[dstj] do
SrcFreq ←

Average logon times per day for src SrcFrequency.append(SrcFreq)
end
return the average of SrcFrequency

else
return 0

end
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Algorithm 16 Calculate IDAF(usr,src)(dstj)

input : InHostUsrSrcMap, dstj
output: IDAF(usr,src)(dstj)
UsrSrcFrequency ← list[] if dstj in InHostUsrSrcMap then

for each usr-src in InHostUsrSrcMap[dstj] do
UsrSrcFreq ←

Average logon times per day for usr-src UsrSrcFrequency.append(UsrSrcFreq)
end
return the average of UsrSrcFrequency

else
return 0

end

Algorithm 17 Calculate ODAFusr(srcj)

input : OutHostUsrMap, srcj
output: ODAFusr(srcj)
UserFrequency ← list[] if srcj in OutHostUsrMap then

for each username in OutHostUsrMap[srcj] do
UsrFreq ←

Average logon times per day for username UserFrequency.append(UsrFreq)
end
return the average of UserFrequency

else
return 0

end
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Algorithm 18 Calculate ODAFdst(srcj)

input : OutHostDstMap, srcj
output: ODAFdst(srcj)
DstFrequency ← list[] if srcj in OutHostDstMap then

for each dst in OutHostDstMap[srcj] do
DstFreq ←

Average logon times per day for dst DstFrequency.append(DstFreq)
end
return the average of DstFrequency

else
return 0

end

Algorithm 19 Calculate ODAF(usr,dst)(srcj)

input : OutHostUsrDstMap, srcj
output: ODAF(usr,dst)(srcj)
DstFrequency ← list[] if srcj in OutHostUsrDstMap then

for each usr-dst in OutHostUsrDstMap[srcj] do
UsrDstFreq ←

Average logon times per day for usr-dst UsrDstFrequency.append(UsrDstFreq)
end
return the average of UsrDstFrequency

else
return 0

end
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Algorithm 20 Calculate IDAFSTDusr(dstj)

input : InHostUsrMap, dstj
output: IDAFSTDusr(dstj)
UserFrequency ← list[] if dstj in InHostUsrMap then

for each username in InHostUsrMap[dstj] do
UsrFreq ←

Average logon times per day for username UserFrequency.append(UsrFreq)
end
return the standard deviation of UserFrequency

else
return 0

end

Algorithm 21 Calculate IDAFSTDsrc(dstj)

input : InHostSrcMap, dstj
output: IDAFSTDsrc(dstj)
SrcFrequency ← list[] if dstj in InHostSrcMap then

for each src in InHostSrcMap[dstj] do
SrcFreq ←

Average logon times per day for src SrcFrequency.append(SrcFreq)
end
return the standard deviation of SrcFrequency

else
return 0

end
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Algorithm 22 Calculate IDAFSTD(usr,src)(dstj)

input : InHostUsrSrcMap, dstj
output: IDAFSTD(usr,src)(dstj)
UsrSrcFrequency ← list[] if dstj in InHostUsrSrcMap then

for each usr-src in InHostUsrSrcMap[dstj] do
UsrSrcFreq ←

Average logon times per day for usr-src UsrSrcFrequency.append(UsrSrcFreq)
end
return the standard deviation of UsrSrcFrequency

else
return 0

end

Algorithm 23 Calculate ODAFSTDusr(srcj)

input : OutHostUsrMap, srcj
output: ODAFSTDusr(srcj)
UserFrequency ← list[] if srcj in OutHostUsrMap then

for each username in OutHostUsrMap[srcj] do
UsrFreq ←

Average logon times per day for username UserFrequency.append(UsrFreq)
end
return the standard deviation of UserFrequency

else
return 0

end
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Algorithm 24 Calculate ODAFSTDdst(srcj)

input : OutHostDstMap, srcj
output: ODAFSTDdst(srcj)
DstFrequency ← list[] if srcj in OutHostDstMap then

for each dst in OutHostDstMap[srcj] do
DstFreq ←

Average logon times per day for dst DstFrequency.append(DstFreq)
end
return the standard deviation of DstFrequency

else
return 0

end

Algorithm 25 Calculate ODAFSTD(usr,dst)(srcj)

input : OutHostUsrDstMap, srcj
output: ODAFSTD(usr,dst)(srcj)
DstFrequency ← list[] if srcj in OutHostUsrDstMap then

for each usr-dst in OutHostUsrDstMap[srcj] do
UsrDstFreq ←

Average logon times per day for usr-dst UsrDstFrequency.append(UsrDstFreq)
end
return the standard deviation of UsrDstFrequency

else
return 0

end
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Algorithm 26 Sparseness function (SF )

input : Source host Src, username Usr, destination host Dst, thresholds θ, β
output: Sparseness, a sparseness score of event defined by Src, Usr, and Dst
Initialize Events to all events in authentication log Sparseness← 0
/∗ filter(∗) is a no-op, countByDays() counts the numbers of days where the events occur
∗/
TotalDays← Events.filter(Src, Usr,Dst).countByDays()
if TotalDays ≤ θ then

Sparseness← max(TotalDays ∗ β − Events.count(), 0)
end
return Sparseness

Algorithm 27 Calculate IDSusr(dstj)

input : InHostUserMap, dstj
output: IDSusr(dstj)
UserSparses← list[] if dstj in InHostUserMap then

for each usr in InHostUserMap[dstj] do
UserSparse← SF (∗, usr, dstj, θ, β)
UserSparses.append(UserSparse)

end
return the sum of UserSparses

else
return 0

end
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Algorithm 28 Calculate IDSsrc(dstj)

input : InHostSrcMap, dstj
output: IDSsrc(dstj)
SrcSparses← list[] if dstj in InHostSrcMap then

for each src in InHostSrcMap[dstj] do
SrcSparse← SF (src, ∗, dstj, θ, β)
SrcSparses.append(SrcSparse)

end
return the sum of SrcSparses

else
return 0

end

Algorithm 29 Calculate IDS(usr,src)(dstj)

input : InHostUsrSrcMap, dstj
output: IDS(usr,src)(dstj)
UsrSrcSparses← list[] if dstj in InHostUsrSrcMap then

for each usr-src in InHostUsrSrcMap[dstj] do
UsrSrcSparse← SF (src, ∗, dstj, θ, β)
UsrSrcSparses.append(UsrSrcSparse)

end
return the sum of UsrSrcSparses

else
return 0

end
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Algorithm 30 Calculate ODSusr(srcj)

input : OutHostUserMap, srcj
output: ODSusr(srcj)
UserSparses← list[] if srcj in OutHostUserMap then

for each usr in OutHostUserMap[srcj] do
UserSparse← SF (srcj, usr, ∗, θ, β)
UserSparses.append(UserSparse)

end
return the sum of UserSparses

else
return 0

end

Algorithm 31 Calculate ODSdst(srcj)

input : OutHostDstMap, srcj
output: ODSdst(srcj)
DstSparses← list[] if srcj in OutHostDstMap then

for each dst in OutHostDstMap[dstj] do
DstSparse← SF (srcj, ∗, dst, θ, β)
DstSparses.append(DstSparse)

end
return the sum of DstSparses

end
return 0

Algorithm 32 Calculate ODS(usr,dst)(srcj)

input : OutHostUsrDstMap, srcj
output: ODS(usr,dst)(srcj)
UsrDstSparses← list[] if srcj in OutHostUsrDstMap then

for each (usr,dst) in OutHostUsrDstMap[srcj] do
UsrDstSparse← SF (srcj, usr, dst, θ, β)
UsrDstSparses.append(UsrDstSparse)

end
return the sum of UsrDstSparses

end
return 0
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Algorithm 33 Calculate WIDSsrc(dstj)

input : InHostSrcMap, dstj
output: WIDSsrc(dstj)
WeightedSrcSparses← list[] if dstj in InHostSrcMap then

for each src in InHostSrcMap[dstj] do
SrcSparse← SF (src, ∗, dstj, θ, β)
Weight← ODSdst(src)
WeightedSrcSparses.append(SrcSparse ∗Weight)

end
return the sum of WeightedSrcSparses

else
return 0

end

Algorithm 34 Calculate WIDS(usr,src)(dstj)

input : InHostUsrSrcMap, dstj
output: WIDS(usr,src)(dstj)
WeightedUsrSrcSparses← list[] if dstj in InHostUsrSrcMap then

for each (usr,src) in InHostUsrSrcMap[dstj] do
Weight← ODS(usr,dst)(src)
UsrSrcSparse← SF (src, ∗, dstj, θ, β)
WeightedUsrSrcSparses.append(UsrSrcSparse ∗Weight)

end
return the sum of WeightedUsrSrcSparses

end
return 0
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Algorithm 35 Calculate MSF (dstj)

input : InHostSrcMap, dstj
output: MSF (dstj)
MSF ← 0 if dstj in InHostUsrSrcMap then

for each src in InHostSrcMap[dstj] do
if MSF < ODSdst(src) then

MSF = ODSdst(src)
end

end
return MSF

end
return 0

Algorithm 36 Calculate SUR(dstj)

input : InHostUsrMap, dstj
output: SUR(dstj)
NumUsr ← 0 NumSparseUsr ← 0 if dstj in InHostUsrMap then

for each usr in InHostUsrMap[dstj] do
NumUsr = NumUsr + 1 if SF (∗, usr, dstj, θ, β) > 0 then

NumSparseUsr = NumSparseUsr + 1
end

end
if NumUsr > 0 then

return NumSparseUsr/NumUsr
else

return 0
end

else
return 0

end

Algorithm 37 Calculate AS(dstj)

input : MSFdstj, SUR(dstj)
output: AS(dstj)
return MSFdstj ∗ SUR(dstj)
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