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Abstract

This thesis presents Multi-view Labelling Object Detector (MLOD). The detector takes
an RGB image and a LIDAR point cloud as input and follows the two-stage object detection
framework [8] [32]. A Region Proposal Network (RPN) generates 3D proposals in a Bird’s
Eye View (BEV) projection of the point cloud. The second stage projects the 3D proposal
bounding boxes to the image and BEV feature maps and sends the corresponding map
crops to a detection header for classification and bounding-box regression. Unlike other
multi-view based methods, the cropped image features are not directly fed to the detection
header, but masked by the depth information to filter out parts outside 3D bounding boxes.
The fusion of image and BEV features is challenging, as they are derived from different
perspectives. We introduce a novel detection header, which provides detection results
not just from fusion layer, but also from each sensor channel. Hence the object detector
can be trained on data labelled in different views to avoid the degeneration of feature
extractors. MLOD achieves state-of-the-art performance on the KITTI 3D object detection
benchmark. Most importantly, the evaluation shows that the new header architecture is
effective in preventing image feature extractor degeneration.

iii



Acknowledgements

I am deeply indebted and appreciate to my supervisor Professor Krzysztof Czarnecki
for his excellent guidance and great encouragement and generous support during my study
at the University of Waterloo. I am truly grateful to WISE lab for its support through my
master program. I would like to thank many of my friends for their enthusiastic help on my
study and living in Ontario. I also want to thank my officemates, Prarthana Bhattacharyya
and Venkateshwaran Balasubramanian, for the many happy conversations and laughter we
had. Finally, I am greatly indebted to my wife, Menglu Che. Without her constant and
selfless love and support, I could not have the opportunity to have and enjoy such joyous
and great life in Canada.

iv



Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 4

2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Convolution Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Selected Convolution Neural Networks Architectures . . . . . . . . 10

2.3 2D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Region Based Object Detectors . . . . . . . . . . . . . . . . . . . . 12

2.3.2 One-Stage Object Detectors . . . . . . . . . . . . . . . . . . . . . . 14

2.4 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Image Region Proposal Methods . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Projection Based Methods . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Multi-View Based Methods . . . . . . . . . . . . . . . . . . . . . . 17

2.5 KITTI 3D Object Detection Evaluation Metrics . . . . . . . . . . . . . . . 18

2.5.1 Intersection over Union . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



2.5.2 Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Average Orientation Similarity . . . . . . . . . . . . . . . . . . . . 19

3 Multi-view Labelling Object Detector 21

3.1 The MLOD Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 BEV Map Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Feature Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Foreground Mask Layer . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.4 Multi-view Header . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Mini-batch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 3D Box Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Experiments 32

4.1 KITTI Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Effects of Multi-view Header . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Effects of Foreground Mask Layer . . . . . . . . . . . . . . . . . . . 35

4.4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion 39

References 40

vi



List of Tables

3.1 BEV branch feature extractor layers. . . . . . . . . . . . . . . . . . . . . . 24

3.2 Image branch feature extractor layers. . . . . . . . . . . . . . . . . . . . . 25

4.1 A comparison of AP3D from MLOD and current state-of-art 3D object de-
tectors on validation set at the moderate difficulty. . . . . . . . . . . . . . 32

4.2 A comparison of the performance of MLOD with current state-of-art 3D
object detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 AP3D from MLOD with different λ settings, evaluated on the validation set.
Since the image channel lacks depth information, it is difficult to predict the
3D bounding box from it. To facilitate the comparison, results from fusion
and image channel use the same 3D bounding boxes. Thus, the shown results
reflect only the variation of classification results. . . . . . . . . . . . . . . . 35

4.4 Effects of a foreground mask layer. . . . . . . . . . . . . . . . . . . . . . . 35

vii



List of Figures

2.1 An artificial neural network architecture. . . . . . . . . . . . . . . . . . . . 5

2.2 Dropout Neural Net Model. Left: An ANN with two hidden layers; Right:
The ANN when Dropout is applied. . . . . . . . . . . . . . . . . . . . . . 8

2.3 An example of CNN architecture [48] . . . . . . . . . . . . . . . . . . . . . 9

2.4 Types of Pooling layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 The architecture of VGG-16 model [46] . . . . . . . . . . . . . . . . . . . . 11

2.6 The architecture of U-Net model [33] . . . . . . . . . . . . . . . . . . . . . 11

2.7 Recognition problems. (a) Image Object classification, (b) bounding box
level object detection [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 The architecture of fast RCNN model [8] . . . . . . . . . . . . . . . . . . . 13

2.9 The architecture of Faster RCNN model [32] . . . . . . . . . . . . . . . . . 14

2.10 The YOLO model [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 The architecture of SSD model [23] . . . . . . . . . . . . . . . . . . . . . . 15

2.12 The architecture of Frustum PointNet model [27] . . . . . . . . . . . . . . 16

2.13 The architecture of deep continuous fusion model [20] . . . . . . . . . . . . 17

2.14 The architecture of AVOD model [18] . . . . . . . . . . . . . . . . . . . . . 18

3.1 Architectural diagram of the proposed method . . . . . . . . . . . . . . . . 22

3.2 The architecture of the feature pyramid extractor. [18] . . . . . . . . . . . 23

3.3 Illustration of foreground masking layer procedure: Step 1: calculating the
median of nonzero values in each grid; Step 2: obtaining a mask by Equation
3.1 (dmin = 6.8, dmax = 9.7 in this example); Step 3: applying the mask to
the feature maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



3.4 A qualitative example of a foreground mask and its application to the orig-
inal image. The bottom left background and the top left and right back-
ground are masked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 The multi-view header architecture diagram . . . . . . . . . . . . . . . . . 28

3.6 Examples of IoU in different views. The pictures show the projection of
3D bounding boxes (proposals A,B,C in green and the ground truth in red)
onto ground plane (BEV) and image. The IoU of proposals B and C is less
than 0.3 in BEV, but is larger than 0.7 in image view. Hence proposals B
and C are negative in BEV and positive in front view. . . . . . . . . . . . . 29

3.7 A visual comparison between various box encoding method: the 8 corners
box encoding method [3], the axis aligned box encoding method [40], and 4
corners encoding method [18] . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 A visual example of aligning skewed regressed 4 corners. The left figure
shows how the reference line is selected along the longest side. The right
figure shows how the corners are aligned with respect to the selected line
[26]. Note that the figure uses the camera coordinate system convention,
where the horizontal plane is represented by the x,z axes. . . . . . . . . . . 31

4.1 Examples of the effects of various λ settings. Column A: λsub−cls/λcls =
0.001; Column B: λsub−cls/λcls = 1. Blue boxes: pedestrians; Yellow boxes:
cyclist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 MLOD predictions on sample 000010 . . . . . . . . . . . . . . . . . . . . . 36

4.3 MLOD predictions on sample 000357 . . . . . . . . . . . . . . . . . . . . . 37

4.4 MLOD predictions on sample 002477 . . . . . . . . . . . . . . . . . . . . . 37

4.5 MLOD predictions on sample 003759 . . . . . . . . . . . . . . . . . . . . . 38

ix



Chapter 1

Introduction

3D object detection is crucial for a safe and robust mobile robotic system, like an au-
tonomous vehicle. It allows such a system to track and predict the motion of objects by
providing classification and localization of physical objects.

Since AlexNet [17] won the 2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [6], deep learning has changed the computer vision landscape. Object detection,
one of the subfields of computer vision, has also experienced tremendous progress in recent
years. Object detection is a computer vision task to predict the class and location of
objects in images. A large number of object detection algorithms have been proposed
based on deep convolutional neural networks (CNNs), which generally fall into one of the
two categories [22]:

• Two-stage detection methods include a region proposal network to select the regions
of interest for the final detection processes. Thus, the overall pipeline is two-stage.
They are also called region-based methods.

• Single-stage detection methods do not rely on region proposal networks. They di-
rectly predict the classes and bounding boxes from the input image using a feed-
forward CNN.

As it is difficult to obtain sufficient depth information using a mono camera, additional
sensors, like stereo cameras or LIDAR, are typically used for 3D perception. LIDAR is
a sensor commonly used in autonomous driving to understand 3D structure of the sur-
rounding environment. It measures distance to a target by illuminating the target with
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laser light and measuring the reflected light with a sensor. By firing off millions of light
beams per second, LIDAR produces a set of 3D points, also referred to as a 3D point cloud,
which provides a 3D representation of the environment, including objects such as cars and
pedestrians.

Due to the unique characteristics of point cloud data, 2D object detection methods
have not transferred well to the detection of 3D objects using LIDAR. LIDAR point cloud
data is sparse and heterogeneous (i.e., of different quality) with respect to distance. A
LIDAR sensor provides good quality measurement for close objects, but the point cloud of
distant object is typically sparse and difficult to interpret. Although CNNs are the state
of the art techniques for 2D object detection, they do not perform as well on 3D point
cloud as on RGB image data. For example, in the KITTI object detection benchmark [7],
a popular 3D object detection dataset in the context of autonomous driving, the state-of-
art 2D object detector, RRC [31], reaches an average precision (AP) of 90.23%, 77.86%,
and 76.49% for car, pedestrian, and cyclist classes, respectively, on the moderate difficulty
level. On the other hand, the current best performing 3D detectors achieve much lower
AP for car, pedestrian, and cyclist on moderate level, namely 77.86%[37], 45.61%[47], and
64.68%[47], respectively.

Another challenge of 3D object detection using LIDAR input is the fusion of LIDAR
and RGB image information. These two sensors capture different physical attributes of
the environment [5]. Moreover the data from camera and LIDAR is derived from different
perspectives. Using such multiple sensors, aka input multi-modality, is of high importance
in order to provide reliable 3D object detection. Existing 3D object detectors used for
autonomous driving fall into one of the three categories based on how they leverage both
LIDAR point cloud and RGB image data.

• Image region proposal approaches, like [27] and [50], use image data to generate
proposals for point clouds. The final classification and regression of bounding boxes
relies only on the selected LIDAR points.

• Projection-based approaches, like [20] and [19], use deep continuous fusion layers,
which were first proposed in [20], to ’project’ the image feature into a birds-eye view
(BEV) map. Then the projected image BEV map and point cloud BEV are jointly
fed into a neural network header to predict the object classification and localization.

• Multi-view approaches, like [3] and [18], use one CNN to extract feature maps from
the RGB image, and another CNN to extract feature maps from the point cloud BEV
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map. Then the multi-view features are fed into the header, which fuses them and
predicts the object classification and localization.

In this thesis, I focus on the feature maps fusion problem in the multi-view methods.
Several multi-view 3D object detectors with BEV map as input exist [18] [3]. These
methods apply CNNs to the BEV map and RGB image data, and fuse the resulting features
and use them to detect objects. In these methods, the multi-view detection networks are
trained in an end-to-end fashion. During training, object proposals are labeled according
to Intersection-over-Union (IoU) in BEV. However the IoU of proposals is different in
top-down view and front view, and as a result the labelled data becomes ‘noisy’ for the
image channel. Consequently, the negative samples with high IoU in front view lead to the
deterioration of image feature extractor.

I propose a Multi-view Labelling Object Detector (MLOD) to address this problem.
The main contribution of this approach is as follows:

• I propose a foreground mask layer, which exploits the projected depth map in front
view to select the foreground image features within a 3D bounding box proposal.

• I propose a multi-view detection header which has output not only from fusion layer,
but also from each sensor channel. This design enables our detection network to be
trained on the samples labeled based on IoU in the view of each channel.

MLOD is evaluated in the KITTI 3D object detection dataset. The multi-view header
is shown to significantly improve the performance of the image channel.

This thesis is organized as follows. I first present some background knowledge on deep
learning applied to computer vision and an overview of the current 3D object detectors
that use both LIDAR point cloud and image data in Chapter 2. Chapter 3 outlines the
proposed detection network architecture and the implementation details, followed by the
experimental results in Chapter 4. Finally, I conclude in Chapter 5.
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Chapter 2

Background

Artificial Neural Networks (ANNs) have been successfully used to solve many complex
tasks related to pattern recognition [15] [35], machine translation [36] [21], self-driving cars
[1] [10], and so on. In this chapter, I will present some background knowledge on ANNs,
and their application to object detection, including 2D image object detection, and 3D
object detection with LIDAR input.

2.1 Artificial Neural Networks

ANNs are computational algorithms originally inspired by biological neural systems (see
Figure 2.1). An ANN is composed of a collection of connected units or nodes, commonly
referred to as neurons. The feed-forward network is a kind of ANN where the connections
of output of certain nodes to the input of other nodes are given by a directed weighted
graph.

A neuron takes the output xi of predecessor neurons with labels 0 to n as its input and
computes its output as

y = σ(
n∑
i=0

wixi + b),

where σ(·) is the activation function, b is the bias, and wi are weights.

If identify function is used as activation function, the whole network becomes a linear
system of input since a linear combination of linear models is still a linear system. As many
complex tasks can not be addressed by linear models, activation functions are necessarily
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Figure 2.1: An artificial neural network architecture.

nonlinear. It has been proved that a two-layer ANN with non-linear activation function is
a universal function approximator [4] [14].

Some popular activation functions are listed as below.

Sigmoid σ(x) = 1
1+e−x

Tanh σ(x) = ex−e−x

ex+e−x

Rectified linear unit (ReLU) σ(x) =

{
x, if x ≥ 0

0, if x < 0.

2.1.1 Stochastic Gradient Descent

There are many ways to train ANNs. Here, we will focus on the first-order optimization
algorithms, and we will not discuss algorithms which are not feasible to compute in practice
for deep neural networks (NNs).

Gradient descent is one of the most popular algorithms to optimize NNs. For an objec-
tive function L(θ) which is parameterized by θ ∈ Rd, gradient descent updates parameters
in the opposite direction of the gradient of the objective function ∇L(θ) to minimize the
objective function. For samples xi for i = 0, . . . , N , Gradient descent updates parameters
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by

θt = θt−1 − η
N∑
i=0

∇L(θt−1;xi),

where η is the pre-defined learning rate. In many practical tasks, the training data is enor-
mous. Evaluating the sums of all gradients becomes very expensive and thus impractical.
Thus, stochastic gradient descent (SGD), which samples a subset of the training set at
every step, is used instead:

θt = θt−1 − η
B∑
i=0

∇L(θt−1; x̂i),

where x̂i for i = 0, . . . , B are the randomly selected samples in the training set.

Momentum

SGD becomes very slow when the the surface curves are much more steep in one dimension
than in another [42]. Momentum method was introduced in [34] to accelerate SGD by
navigating along the relevant direction and softens the oscillations in irrelevant directions.
It adds a fraction term τ of the update vector of the past step to the current update vector.

vt = τvt−1 + η
B∑
i=0

∇L(θt; x̂i),

θt = θt−1 − vt

Root Mean Square Propagation

Root Mean Square Propagation (RMSProp) [13] is a method in which a different learning
rate is used for every parameter at a time step.

vt = τvt−1 + (1− τ)
∑
i

(
∇L(θt; x̂i)

)2
θt = θt−1 −

η
√
vt

∑
i

∇L(θt; x̂i)

It is noticed that squaring and square-rooting is done element-wise. The learning rate of
RMSProp is adjusted automatically to avoid overshooting.
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Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) [16] is another way that computes the adaptive
learning rates for each parameter. It does not just calculate exponentially decaying average
of past square gradients, but also that of past gradients, similar with Momentum.

mt = β1mt−1 + (1− β1)
∑
i

∇L(θt; x̂i)

vt = β2vt−1 + (1− β2)
∑
i

(
∇L(θt; x̂i)

)2
To correct the bias,

m̂t =
mt

(1− β1)
∑t

k=1 β
t−k
1

v̂t =
vt

(1− β2)
∑t

k=1 β
t−k
2

θt = θt−1 −
η√
v̂t + ε

m̂t

2.1.2 Dropout

Since there are millions of parameters in a deep NN, which are much more than the
size of data, regularization is necessary. Regularization reduces over-fitting and is often
implemented by adding a penalty to the loss function. Srivastava, Nitish, et al [41] proposed
another regularization method for NNs, called Dropout.

In the training stage, for each hidden layer, each iteration, any node is either dropped
out of the net with probability p, or kept in the net with chance 1 − p. Incoming and
outgoing edges to dropped-out nodes are also removed (See Figure 2.2). In the inference
phase, all neurons are used, but their activation is reduced by a factor p to keep the
expected output of the hidden units consistent with the training.

Dropout can be considered as an ensemble learning method [11]. Dropout produces the
original NN into many sub-networks, which are trained independently. During inference,
the ensemble output is calculated by as the average of the sub-networks.
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Figure 2.2: Dropout Neural Net Model. Left: An ANN with two hidden layers; Right:
The ANN when Dropout is applied.

2.2 Convolution Neural Networks

A convolution neural network (CNN) is a deep learning architecture which is commonly
used in computer vision. CNNs were inspired by the organization of the Visual Cortex
[25]. Individual neurons respond to stimuli only in a restricted receptive area of the visual
field. A collection of such areas overlap to cover the entire visual field.

In general, CNNs are organized as a stack of different convolution layers and pooling
layers, which are followed by some fully connected layers (see Figure 2.3).

The convolution operation is an integral that expresses the amount of overlap of one
function g as it is reversed and then shifted over another function f :

[f ∗ g](t) =

∫
f(s)g(t− s)ds.

For 2D image processing, where data is expressed in the form of 2 dimensional discrete
map, the convolution of I with the kernel K is defined as:

[I ∗K](i, j) =
∑
s

∑
t

I(s, t)K(i− s, j − t).

Convolution Layers are the key component of CNNs. In a convolution layer, input is
filtered by a learnable kernel, and then passed to an activation function. Convolution can
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Figure 2.3: An example of CNN architecture [48]

Figure 2.4: Types of Pooling layers.

be viewed as a special type of a linear operation, so the kernel is learned by traditional
training algorithm.

Convolution layers have a shared-weights architecture and translation invariance prop-
erty. Although fully connected layers can be used to learn features from data, it is not
practical to apply them to an image. A huge number of nodes would be needed, due to
the large size of images. For example, a small image of size 100 × 100 would need 104

number of weight. Thus, it is infeasible to construct deep NNs by stacking fully connected
layers to extract higher-level features of image data. A convolution layer uses the same
shared weights for each application of the kernel, so that the number of parameters of
convolution layers only depends on the kernel size. On the other hand, convolution layers
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can successfully extract the spatial and temporal contexts in image data, as it does not
require flattening the image data format. If an image represented as a matrix of pixel
values is flattened, the spatial dependencies are destroyed by the flatten operation. Every
pixel value is treated equally for each node. In a convolution layer, a node only focuses on
the nearby pixel values to obtain the local spatial and temporal features.

A pooling layer slides a window over its input and outputs the maximum or average
value within the window (see Figure 2.4). These two types of pooling are called max
pooling and average pooling, respectively. Pooling layers are commonly used in CNNs
to down-sample feature maps, such that less computational power is required to process
them. For instance, an image of size 512× 512 is reduced to the size of 256× 256 after a
2× 2 pooling operation.

2.2.1 Selected Convolution Neural Networks Architectures

In recent years, CNNs have achieved significant success in image classification. After the
introduction of CNNs, the top-5 error rate in the ImageNet Large Scale Visual Recognition
Challenge [6], a benchmark in object classification, reduced from 26% to less than 3.1%
[43].

I present two popular CNNs architectures below. These architectures are not just used
for the classification task, but also modified and implemented as backbone networks for
other tasks, such as object detection [32] [23] and image semantic segmentation [12] [2].

VGG-Net

VGG is a CNN model proposed by Simonyan et al [39] for object classification problem. It
achieves 92.7% top-5 test accuracy in ImageNet. VGG is a CNN constructed by stacking
a series of 3× 3 convolution layers and max pooling layers (see Figure 2.5).

U-Net

Pooling layers are commonly used in CNNs for object classification problem to reduce
the computational volume. But some feature information is lost in the downsampling
process. It is unfavorable for tasks with high resolution requirement, like object detection
and semantic segmentation. Take VGG-16 CNNs as an example, there are 5 2× 2 pooling
layers. So an image of size 32× 32 is compressed into one pixel in final feature map. Thus,
it is impossible to distinguish among the pixels in the 32× 32 input image.
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Figure 2.5: The architecture of VGG-16 model [46]

Figure 2.6: The architecture of U-Net model [33]

To overcome the problem, U-Net [33] was developed, originally for biomedical image
segmentation. U-Net takes advantage an upsampling operation to propagate context in-
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formation to higher resolution layers. The U-Net is composed of a contracting path and
an expansive path, which yields a u-shape architecture (see Figure 2.6). The contract-
ing path is a typical CNN which down-samples the feature resolution by pooling layers.
The expansive path includes a series of up-convolutions and concatenations. The low res-
olution features are upsampled through up-convolution, and then concatenated with the
corresponding features from contracting path to fuse the information from different levels.

2.3 2D Object Detection

Before discussing 3D object detection, I summarize popular image object detection meth-
ods. Object detection is a computer vision task that requires an algorithm to locate
instances of certain classes (see Figure 2.7). CNNs based detection methods divide the
image into several regions, and classify objects in each region, then combine all results to
get the detected objects in the original image.

(a) Object Classification (b) Object Detection

Figure 2.7: Recognition problems. (a) Image Object classification, (b) bounding box level
object detection [22]

2.3.1 Region Based Object Detectors

Here I will focus on the Region-Based Convolutional Neural Networks (RCNN) approaches.
Since objects in an image have various aspect ratios and spatial locations, a large amount of
regions are required to obtain accurate detection results. Hence, region proposal networks
are used to select regions, such that much fewer regions are fed into the final classification
and localization networks.
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Fast RCNN

A typical RCNN uses selective search to extract Region of Interests (RoIs) from an image,
followed by a CNN to check whether the regions contain any objects. Hence, such an
algorithm needs to run a CNN thousands of times per image.

To speed up RCNN, Ross Girshick proposed a two stage detection method [8], Fast
RCNN. Fast RCNN applies a CNN just once per image, and the classification and local-
ization networks take the convolutional feature maps, instead of the original image.

Figure 2.8: The architecture of fast RCNN model [8]

The algorithm is split into three steps below (see Figure 2.8).

1. The algorithm passes an image into a CNN first, and then generates a series of RoIs
by using selective search algorithm [44] on the feature maps.

2. An RoI Pooling layer is used to reshape the RoIs into one fixed size.

3. The pooled RoIs are fed into a fully connected layer with softmax output layer to
classify the object. Also, a regression layer is used in parallel to refine the coordinates
of the bounding boxes.

Faster RCNN

Faster RCNN [32] is a modification of Fast RCNN. Instead of selective search, Faster
RCNN uses region proposals network (RPN) to generate RoIs. RPN slides window over
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the feature maps. For each window, it generates k anchor boxes with various shapes (see
Figure 2.9). The tasks of RPN are to predict the probability that object exists in the ROI,
and to adjust the anchors to better fit the object.

Figure 2.9: The architecture of Faster RCNN model [32]

2.3.2 One-Stage Object Detectors

One-stage approaches refer broadly to architectures that directly predict class probabilities
and bounding box offsets from full images with a single feed forward CNN. Since there is
no region proposal generation, it is a simpler and faster model architecture.

YOLO

YOLO (You Only Look Once) was first proposed in [30]. It is a one-stage detector casting
object detection as a regression problem from image pixels to spatially separated bounding
boxes and associated class probabilities. YOLO divides an image into a S × S grid. Each
grid predicts class probabilities, bounding box locations and confidences scores for those
boxes (see Figure 2.10).
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Figure 2.10: The YOLO model [30]

Figure 2.11: The architecture of SSD model [23]

SSD

In order to preserve real-time speed without sacrificing too much detection accuracy, Liu
et al. [23] proposed SSD (Single Shot Detector). To speed up the process time, SSD uses
convolutional predictors, instead of fully connected layer, for object detection. After ex-
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tracting the feature maps, SSD applies convolution filters for each cell to make predictions.
Since objects with various scales may appear in the same image, SSD uses multiple lay-
ers to detect objects. Shallower layers with higher resolution are used for detecting small
objects (see Figure 2.11).

2.4 3D Object Detection

There are many ways to perceive 3D environment, including LIDAR and stereo cameras.
In this thesis, I only consider the 3D detection problem with image and LIDAR data input.
There are roughly three ways to take advantage of camera and LIDAR for 3D objection
detection for autonomous driving scenarios: image region proposal based, projection based
and multi-view based methods.

2.4.1 Image Region Proposal Methods

Frustum PointNet (F-PointNet) [27] uses a 2D image detection module to provide 2D
bounding boxes as proposals (see Figure 2.12). Then the LIDAR points inside the proposals
are cropped and fed into an instance segmentation module using a PointNet [28] to select
the positive points. Finally, two additional PointNets predict the bounding box within the
selected LIDAR points.

Figure 2.12: The architecture of Frustum PointNet model [27]

IPOD [50] implements a 2D semantic segmentation network to filter out background LI-
DAR points. Then it classifies and refines 3D bounding boxes on the remaining foreground
points.
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2.4.2 Projection Based Methods

Figure 2.13: The architecture of deep continuous fusion model [20]

Liang et al. [20] proposed a method that projects image features into BEV and fuses
them with the convolutional layers of a LIDAR based detector using a continuous fusion
layer (see Figure 2.13). The layer creates a continuous BEV feature map where each pixel
in BEV contains the corresponding image information. For each BEV pixel, the detector
first finds the k nearest LIDAR points on the BEV map, then obtains the image feature at
the continuous coordinates by bilinear interpolation. The interpolated image features and
geometry offsets are feed into a multilayer perceptron (MLP). Then the deep continuous
fusion networks fuse multi-sensor information by the summation of BEV features and
output from MLP.

2.4.3 Multi-View Based Methods

MV3D [3] and AVOD [18] are examples of multi-view based two-stage detectors. The
multi-view based methods merge features from BEV map and RGB image to predict the
3D bounding boxes. MV3D uses only BEV maps in its RPN to generate proposals, and
AVOD uses both BEV and image views. When small instances (like pedestrians and cy-
clists) on BEV maps are down-sampled by pooling layers, object features are compressed
into one pixel in the final feature map, which is insufficient for the second stage detec-
tion. Hence, AVOD-FPN improved MV3D by using pyramid convolution structure in
BEV/image feature extractors. In AVOD, features are merged in the refinement phase
(see Figure 2.14).
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Figure 2.14: The architecture of AVOD model [18]

2.5 KITTI 3D Object Detection Evaluation Metrics

In this section, I discuss some common metrics used to evaluate 3D object detectors for
autonomous vehicles.

2.5.1 Intersection over Union

Intersection over Union (IoU) is measures the overlap between predicted bounding box and
the ground truth one. It is calculated as follows

IoU =
area of Bpred ∩Bgt

area of Bpred ∪Bgt

,

where Bpred and Bgt are the predicted bounding box and ground truth bounding box,
respectively. Usually, a predicted bounding box is said to match with a ground true one, if
its IoU is larger than some threshold number. For example, KITTI benchmark [7] requires
IoUs to be larger than 0.7 for cars, and 0.5 for pedestrians and cyclists.

2.5.2 Average Precision

Average Precision (AP) is a popular metric to measure the accuracy of object detectors.
It is the average precision value over recall numbers from 0 to 1.
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• Precision measures the accuracy of the detection. It is the ratio of positives in the
predictions. It is also referred to as positive predictive value.

• Recall measures the ability of detecting all objects. It is the ratio of detected objects
in all ground true objects. It is also referred to as the true positive rate.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

where TP, FP, and FN denote the number of true positive, false positive, and false negative
samples, respectively.

By ranking the scores of predictions, we can generate the precision-recall curve p(r).
In general, AP is the area under the precision-recall curve.

AP =

∫ 1

0

p(r)dr

Practically, AP is calculated by the mean of interpolated precision at 11 equally-spaced
recall levels.

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r),

where
pinterp(r) := max

r̃≥r
p(r̃).

Unlike the original zigzag precision-recall curve p(r), its interpolated version pinterp(r) is a
monotonically decreasing function. Thus, the calculated AP is less sensitive to the small
variation in ranking of examples. Since AP penalizes the approaches that detect only a
subset of ground-true objects with high precision, a detector should have high precision
at all levels of recall to obtain a high AP score. Detections are assigned to ground truth
labels based on the largest IoU. Multiple detections of the same object are considered as
false positives.

2.5.3 Average Orientation Similarity

Average Orientation Similarity (AOS) was first proposed in [7] to assess the performance
of jointly detecting objects and estimating their 3D orientation. It is defined as:

AOS =
1

11

∑
r∈{0,0.1,...,1}

max
r̃≥r

s(r̃),
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where s is the orientation similarity at recall level r. It is a normalized variant of the cosine
similarity.

s(r) =
1

|D(r)|
∑
i∈D(r)

1 + cos ∆
(i)
θ

2
δi.

Here D(r) denotes the set of detections at recall level r. ∆
(i)
θ is the difference in angle

between predicted and ground-truth orientation of detection i. δi = 1 if detection i is
assigned to a ground-truth label, and δi = 0 if it has not been assigned. Thus, the event
that an object is detected multiple time is penalized by δi .

Ku et al. [18] proposed Average Heading Similarity (AHS) to evaluate 3D detection
results. It is the AOS, but evaluated using 3D IoU and global orientation angle instead of
2D IoU and observation angle.
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Chapter 3

Multi-view Labelling Object Detector

The existing multi-view based approaches tend to rely more on BEV map input rather
than RGB images. Two-stage methods usually select the top k proposals to feed into the
detection header networks. Due to the different viewpoints, the IoUs with ground-true box
in BEV and image view, respectively, are also different. Hence some proposals are labelled
as negative samples in BEV, but should be treated as positive in image view (see Fig. 3.6).
Since the positive/negative samples in the current multi-view neural network architectures
are assigned based on the IoU in BEV, some positive samples in image view are labelled as
negative ones, and thus the image feature extractor is trained on the ‘noisy’ labels. This
problem weakens the performance of the image channel. Therefore the existing multi-view
3D object detectors tend to fail to leverage the image information, and only concentrate
on the BEV map.

The proposed two-stage neural network architecture is presented in Figure 3.1. BEV
map and RGB image are fed into two convolution neural networks to obtain features. For
computational efficiency, we only use the BEV features in RPN to generate 3D proposals.
Based on the depth information of the proposals, image features outside 3D proposals are
masked by a foreground mask layer. Then the masked image feature map and the BEV
feature map are cropped and passed to multi-view header to provide the final classification,
localization, and orientation results.
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Figure 3.1: Architectural diagram of the proposed method

3.1 The MLOD Architecture

3.1.1 BEV Map Preparation

Similar to [3] [18], the six-channel BEV map input is a 2D grid with 0.1 meter resolution,
which includes five height channels and a single density channel. The BEV only includes
points which are inside the domain [−40, 40] × [0, 70] meters, along the x- and z-axis
respectively. Hence, the point cloud data is encoded into a BEV map of size 800× 700× 6.
The point cloud is divided into 5 equal slices between [0, 2.5] meters along the normal of
the ground plane, and each slice produces a height channel with each grid cell representing
the maximum height of points in that cell. The density map is the logarithm of number
of points in a cell, N , and capped at 1.0, i.e. min(1.0, log(N + 1)/ log 16).

3.1.2 Feature Extractor

We adopt the U-Net [33] structure from [18] as BEV and image feature extractors. The
encoder part for the BEV feature extractor is a VGG-like CNN [39], but with CNN layers
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Figure 3.2: The architecture of the feature pyramid extractor. [18]

only up to conv-4 and only half of the channels (see Table 3.1). The encoder part of the
image feature extractor is a VGG16 CNN up to conv-5 layer (see Table 3.2). In the decoder
part, both feature extractors use the conv-transpose operation to up-sample the feature
maps. The up-sampled feature maps are fused with corresponding features from encoder
via concatenation (see Figure 3.2).

3.1.3 Foreground Mask Layer

To correctly capture the image features of the object inside the proposed 3D bounding
box, we introduce a foreground masking layer to filter out the foreground features.

In order to identify the foreground and background of images, the depth information
of each pixel is necessary. But due to the sparsity of the LIDAR point cloud, most of
the depth information in the image plane is unknown. Recently, several approaches were
proposed to complete the depth map, e.g., [45], [24]. Unfortunately, they typically have
high GPU memory usage, and thus are not suitable for our implementation. Instead we
introduce a light-weight method to take advantage of the sparse depth information.
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Number of Layers Number of Channels Operations Kernel

2 32 conv1 3× 3

1 - max pooling 2× 2

2 64 conv2 3× 3

1 - max pooling 2× 2

3 128 conv3 3× 3

1 - max pooling 2× 2

3 256 conv4 3× 3

1 128 upconv3 3× 3

1 64 pyramid fusion3 3× 3

1 64 upconv4 3× 3

1 32 pyramid fusion2 3× 3

1 32 upconv5 3× 3

1 32 pyramid fusion1 3× 3

1 32 upconv5 3× 3

Table 3.1: BEV branch feature extractor layers.
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Number of Layers Number of Channels Operations Kernel

2 64 conv1 3× 3

1 - max pooling 2× 2

2 128 conv2 3× 3

1 - max pooling 2× 2

3 256 conv3 3× 3

1 - max pooling 2× 2

3 512 conv4 3× 3

1 - max pooling 2× 2

3 512 conv5 3× 3

1 512 upconv3 3× 3

1 256 pyramid fusion3 3× 3

1 256 upconv4 3× 3

1 128 pyramid fusion2 3× 3

Table 3.2: Image branch feature extractor layers.
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Figure 3.3: Illustration of foreground masking layer procedure: Step 1: calculating the
median of nonzero values in each grid; Step 2: obtaining a mask by Equation 3.1 (dmin =
6.8, dmax = 9.7 in this example); Step 3: applying the mask to the feature maps.

Figure 3.4: A qualitative example of a foreground mask and its application to the original
image. The bottom left background and the top left and right background are masked.

Figure 3.3 presents the procedure of the foreground masking layer. First, the layer crops
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and resizes the (sparse) depth map using front-view 2D bounding boxes, projected from
the 3D proposals. For computational convenience, the resized depth map is n times the
k× k size of the cropped image feature map. Since the depth information is discontinuous
in front view, we use nearest neighbour interpolation algorithm to obtain the resized depth
map. Then the nk × nk depth map is split equally into a k × k grid. Thus each grid
cell represents the depth information of the corresponding pixel in the k× k image feature
map. The layer calculates the median mij of the nonzero depth values in each grid cell, as
zero value means no LIDAR point information for this pixel. Note that all depth values
in a grid cell may be zero, due to the sparsity of point cloud. Since far objects have fewer
projected LIDAR points, some parts of these objects do not have any depth information.
Thus, to preserve the image features that are inside the 3D bounding box or have no depth
information, we set the foreground mask as

Maskij =

{
1 if mij ∈ [dmin − ε1, dmax + ε1] ∪ [0, ε2]

0 otherwise,
(3.1)

where dmax and dmin are the maximum and minimum depth value of a 3D bounding box,
respectively. ε1 and ε2 are small buffers to absorb the uncertainty of 3D proposals and
point cloud.

3.1.4 Multi-view Header

In the current multi-view 3D object detection methods, the labels of proposals are assigned
based on the IoU in BEV. But the IoU in front view can be significantly different than that
in BEV. Fig. 3.6 shows an example that a 3D bounding box is assigned to a negative label,
but has IoU > 0.7 in image view. When object detectors are trained on labels assigned
based on IoU only in BEV, the performance of (front-view) image channel is degraded.

We propose a multi-view detection header to avoid the decay of RGB image features.
Figure 3.5 shows the header network structure. The key idea is to add an extra output
layer to each channel before the (Concat) fusion layer. Each of the two outputs feeds into a
corresponding sub-output loss. Each sub-output loss is calculated using the labels assigned
by IoU in the corresponding channel’s view, i.e.

Lsub−cls =
1

N

∑
i

Lcls(y
img
i , ŷimgi )

+
1

N

∑
i

Lcls(y
bev
i , ŷbevi )
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Figure 3.5: The multi-view header architecture diagram

Lsub−reg =
1

N img
p

∑
i

I[ŷimgi > 0]Lreg(s
img
i , ŝimgi )

+
1

N bev
p

∑
i

I[ŷbevi > 0]Lreg(s
bev
i , ŝbevi ).

I[· > 0] is the indicator function to select the positive proposals. N , N img
p and N bev

p are

the number of total samples, positive samples in image view and BEV, respectively. yimgi

and ybevi are the classification scores for proposal i obtaied from image and BEV branch,
respectively, and ŷimgi and ŷbevi are the corresponding ground-truth labels. The predicted
corner offsets for each branch are simgi and sbevi , and the corresponding ground truth lables
are ŝimgi and ŝbevi .

We use a multi-task loss to train our network. The loss function of the detection
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Figure 3.6: Examples of IoU in different views. The pictures show the projection of 3D
bounding boxes (proposals A,B,C in green and the ground truth in red) onto ground plane
(BEV) and image. The IoU of proposals B and C is less than 0.3 in BEV, but is larger
than 0.7 in image view. Hence proposals B and C are negative in BEV and positive in
front view.

network is defined by Eq. 3.2,

L =
λcls
N

∑
i

Lcls(y
fusion
i , ŷbevi )

+
λreg
N bev
p

∑
i

I[ŷbevi > 0]Lreg(s
fusion
i , ŝbevi )

+
λang
N bev
p

∑
i

I[ŷbevi > 0]Lang(a
fusion
i , âbevi )

+ λsub−clsLsub−cls + λsub−regLsub−reg.

(3.2)

We use smooth L1 loss for 3D bounding box offset and orientation rotation regression,
and cross-entropy loss for classification. λ are the hyperparameters to balance the different
loss terms. The sub-output losses can be considered as a kind of regularization on the
network.
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3.2 Implementation Details

KITTI benchmark [7] uses different IoU thresholds for the car class (>0.7) and the pedes-
trian and cyclist classes (>0.5). Hence, following [18], we train two networks, one for
cars, another for pedestrians and cyclists. The RPN network and the detection header are
trained jointly using mini-batches with 1024 ROIs. We use ADAM [16] optimizer with an
exponentially decayed learning rate initialized to 0.0001. For the car network, we apply
a decay factor of 0.1 every 100K iterations. For the pedestrian and cyclist network, we
apply a decay factor of 0.5 every 20K iterations. Image feature extractor loads pre-trained
ImageNet [6] weights. The weights of the BEV feature extractor are initialized by Xavier
uniform initializer [9].

3.2.1 Mini-batch Settings

A car proposal is marked as positive in top-down/front view if the BEV/image IoU with
a ground truth object is larger than 0.65/0.7, respectively. It is marked negative if its
BEV/image IoU is less than 0.55/0.5, respectively. A positive pedestrian or cyclist proposal
has at least 0.45/0.6 IoU in BEV/image view, respectively. A negative sample has no more
than 0.4/0.4 IoU in BEV/image view, respectively. For mini-batches, we first select 1024
samples consisting of both positive ROIs and negative ROIs with highest RPN scores in
top-down view, then pick ROIs which are positive or negative in front view.

3.2.2 3D Box Encoding

There are many ways to encode 3D boxes (e.g., [18], [3], [40]). To reduce the number of
parameters and keep physical restrictions, we follow the encoding method from [18], where
the 3D bounding box is represented as four corners on X-Y plane and the top and bottom
corner height offsets from the ground plane (see Figure 3.7). In regression stage, the final
bounding box prediction is determined by aligning the quadrilateral, which is formed by
the network output of 4 skewed corners. Figure 3.8 shows the alignment process. First,
two segments joining the midpoints of opposite sides of the quadrilateral are calculated.
Then the predicted bounding box is the minimum rectangle covering the quadrilateral, and
aligned with the longest segment. It is calculated by choosing the minimum and maximum
corner values along each axis.

30



Figure 3.7: A visual comparison between various box encoding method: the 8 corners box
encoding method [3], the axis aligned box encoding method [40], and 4 corners encoding
method [18]

Figure 3.8: A visual example of aligning skewed regressed 4 corners. The left figure shows
how the reference line is selected along the longest side. The right figure shows how the
corners are aligned with respect to the selected line [26]. Note that the figure uses the
camera coordinate system convention, where the horizontal plane is represented by the x,z
axes.

3.2.3 Data Augmentation

Data augmentation is an important technique for increasing the number of training in-
stances and reducing overfitting. Two augmentation methods, flipping and PCA jittering
[17], are implemented in our network training. The point clouds and images are flipped
along the x-axis. PCA jittering alters the intensities of the RGB channels in training im-
ages. PCA decomposition is applied to the set of RGB pixel values of the whole set of
training images. Then Gaussian random noise is added to the principle components of
images.
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Chapter 4

Experiments

4.1 KITTI Dataset

We evaluate MLOD on the 3D detection tasks for cars, pedestrians, and cyclists of the
KITTI Object Detection Benchmark [7]. The data was recorded on a modified Volkswagen
Passat B6, which used Velodyne HDL-64E Laser scanner to collect LIDAR point cloud
data, and 2 Point Grey Flea 2 colour cameras for image RGB data.

The 3D object detection dataset of KITTI contains 7, 481 training frames and 7, 518
testing frames. The frames contain target-class objects categorized into into three difficulty
levels: easy (E), moderate (M), and hard (H), based on the occlusion level, maximum
truncation and minimum bounding box height. Since no official validation set is provided,
the labelled 7, 481 frames are split into a training set and a validation set at 1 : 1 ratio,
similar to [18] and [3].

Method Cars Pedestrians Cyclist
MV3D [3] 72.4 - -
AVOD [18] 74.4 58.8 49.7

Ours 74.1 63.9 54.6

Table 4.1: A comparison of AP3D from MLOD and current state-of-art 3D object detectors
on validation set at the moderate difficulty.

32



AP3D(%) APBEV(%)
Method Class E M H E M H

AOVD-FPN[18]

Car

81.94 71.88 66.38 88.53 83.79 77.90
MV3D [3] 71.09 62.35 55.12 86.02 76.90 68.49

F-PointNets [28] 81.20 70.39 62.19 88.70 84.00 75.33
MLOD 72.24 64.20 57.20 85.95 77.86 76.93

AOVD-FPN[18]

Pedestrian

50.80 42.81 40.88 58.75 51.05 47.54
MV3D [3] - - - - - -

F-PointNets [28] 51.21 44.89 40.23 58.09 50.22 47.20
MLOD 48.26 40.97 35.74 52.24 44.40 43.24

AOVD-FPN[18]

Cyclist

64.00 52.18 46.61 68.09 57.48 50.77
MV3D [3] - - - - - -

F-PointNets [28] 71.96 56.77 50.39 75.38 61.96 54.68
MLOD 67.66 49.89 42.23 69.68 58.21 50.14

Table 4.2: A comparison of the performance of MLOD with current state-of-art 3D object
detectors

4.2 Accuracy

To evaluate the performance of MLOD, we present the Average Precision (AP) results
over the validation set and the KITTI test set in Table 4.1 and 4.2, respectively. MLOD
outperforms two other state-of-the-art multi-view object detectors on the validation set.
However, our method perfroms worse than AVOD on the KITTI test set. This may caused
by the different ground planes used in MLOD and AVOD. The evaluation shows that our
method can reach the current state of art result, however.

4.3 Ablation Study

4.3.1 Effects of Multi-view Header

To evaluate the effects of the multi-view header, we compare the AP(%) of MLOD with
different λsub−cls settings in Table 4.3 on the validation set. When λsub−cls/λcls = 0.001,
the fusion channel, with BEV labelled samples, dominates the network training, such that
the sub-channel losses are ignorable. The multi-view header is shown to provide significant
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Figure 4.1: Examples of the effects of various λ settings. Column A: λsub−cls/λcls = 0.001;
Column B: λsub−cls/λcls = 1. Blue boxes: pedestrians; Yellow boxes: cyclist.

performance gains for image channel, ranging from 5% to 20%, however. The final detection
AP achieves an increase of 6.7%, 5.2% and 4.5% in AP for Pedestrians Easy, Moderate,
and Hard classes, respectively. Figure 4.1 shows an example of the effects of multi-view
header. Note when λsub−cls/λcls = 0.001, the image channel fails to correctly classify any
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object detection from LIDAR BEV, and it assigns score of 0.0 to true or false positives
from LIDAR BEV. Since the image channel information is not reliable, the fusion channel
just takes advantage of the BEV features to provide the final prediction. On other hand,
when λsub−cls/λcls = 1, the image channel correctly assigns score of 0.0 to the pedestrian
false positives from LIDAR BEV, such that the fusion channel notices the false positives
from LIDAR BEV, by observing the image channel information.

Pedestrians Cyclist

λsub−cls

λcls
Branch E M H E M H

0.001
Fusion 65.2 58.7 51.7 71.5 53.6 47.5
Image 53.3 47.3 41.5 39.5 23.6 22.8

1
Fusion 71.9 63.9 56.2 73.5 54.6 52.7
Image 59.4 52.8 49.7 59.2 40.2 38.5

Table 4.3: AP3D from MLOD with different λ settings, evaluated on the validation set.
Since the image channel lacks depth information, it is difficult to predict the 3D bounding
box from it. To facilitate the comparison, results from fusion and image channel use the
same 3D bounding boxes. Thus, the shown results reflect only the variation of classification
results.

4.3.2 Effects of Foreground Mask Layer

Table 4.4 shows how the mask component affects the performance of MLOD.

Pedestrians Cyclist

E M H E M H
With masks 71.9 63.9 56.2 73.5 54.6 52.7
W/o masks 69.1 61.4 53.6 74.1 54.2 52.5

Table 4.4: Effects of a foreground mask layer.
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4.4 Qualitative Results

Some qualitative results in 3D and image space are presented in Figure 4.2 - 4.5.

Figure 4.2: MLOD predictions on sample 000010
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Figure 4.3: MLOD predictions on sample 000357

Figure 4.4: MLOD predictions on sample 002477
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Figure 4.5: MLOD predictions on sample 003759
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Chapter 5

Conclusion

Camera and LIDAR sensors fusion is one of the most challenging problem in 3D environ-
ment perception for for autonomous driving scenarios, as the RGB image and LIDAR point
cloud data represent different physical characteristics of instances. They are different in
many ways, such as in data format and geometric alignment.

In this thesis, a multi-view based 3D object detection model is proposed. In order to
obtain the image features inside 3D bounding box proposals, a foreground mask layer is
introduced. This layer uses LIDAR depth points to remove the background information in
the image feature maps.

Like other multi-view based 3D object detector, such as MV3D[3] and AVOD[18], point
cloud is encoded into the form of BEV maps in this method. Since BEV maps have different
viewpoint compared to image data, the proposed detector is trained with the multi-view
rather than BEV-only labelled data to prevent the decay of the image channel, and is
shown to provide better classification and localization outcomes as a result. Evaluated on
KITTI detection dataset, our method achieves state of the art benchmark performance.

Our detection method relies on the ground prior, which is considered as a plane. How-
ever, it is often inaccurate for vertically curved roads [49]. 3D object detector with BEV
input can be further improved by non-plane ground estimation, which leverages the ge-
ometry of the ground to provide better 3D location. Another idea for future work is to
use uncertainty in the depth predictions to accomplish LIDAR and image fusion [45] [29].
The depth completion methods use confidence/uncertainty masks to handle mixed LiDAR
signals near foreground boundaries due to occlusion, and combine estimates from the color
image. This idea could be extended to 3D object detection, and potentially provide more
accurate depth estimation at the edges of instances.
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