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Abstract

One of the main challenges in designing large scale quantum processors is connecting
separated qubits. In this thesis, we explore new opportunities that mesoscopic many-
body systems provide for creating quantum correlation between isolated quantum systems.
In particular, we study entangling two non-interacting qubits through an intermediate
mesoscopic system consisting of identical two-level systems. Two uncoupled qubits can
be entangled either by projectively measuring a joint property of them or by creating an
indirect interaction between them. The focus of this thesis is on procedures that are based
on joint measurement on the qubits.

We propose a new method for entangling two non-interacting qubits by measuring their
parity indirectly through an intermediate mesoscopic system. Indirect joint measurement
scheme benefits from coherent magnification of the target qubits’ state in the collective
state of the mesoscopic system; such that a low-resolution measurement on the mesoscopic
system suffices to prepare post-selected entanglement on the target qubits. The protocol
is designed to require only global control and course-grained collective measurement of the
mesoscopic system along with local interactions between the target qubits and mesoscopic
system. A generalization of the method measures the hamming weight of the qubits’ state
and probabilistically produces an entangled state by post-selecting on hamming weight
one. Our technique provides a new design element that can be integrated into quantum
processor architectures and quantum measurement devices.

We quantify the resources required for implementing the indirect joint measurement
technique when the intermediate mesoscopic system consists of spin-1/2 particles with in-
ternal dipolar coupling. A mesoscopic spin system consisting of two non-interacting halves,
each coupled to one of the target qubits is proved to provide a helpful geometry that al-
lows implementing the coherent magnification process with experimentally available control
tools. We show that the requirements on the amplified state of the target qubits and the
mesoscopic spin system perfectly maps to the specifications of micro-macro entanglement
between each target qubit and its nearby half of the mesoscopic spin system. In the light
of this equivalence, the effects of experimental imperfections are explored; in particular,
bipartite entanglement between the target qubits is shown to be robust to imperfect prepa-
ration of the mesoscopic spin system. Our analysis provides a new approach for using an
intermediate spin system for connecting separated qubits. It also opens a new path in
exploring entanglement between microscopic and mesoscopic spin systems.
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Chapter 1

Introduction

This thesis explores the use of a mesoscopic system as a tool for creating quantum cor-
relations between separated quantum systems. In particular, we evaluate the resources
required for entangling two non-interacting qubits by measuring their joint state through
an intermediate mesoscopic ensemble of two-level systems e.g., spin half particles. Our
study brings new insights into the opportunities that mesoscopic systems provide for con-
necting separated quantum systems as well as the challenges on the way.

Following developments in addressing and controlling atomic and molecular scale quan-
tum systems such as dopants in solids [1, 2, 3, 4, 5, 6], a crucial step forward towards a
scalable quantum architecture is connecting these localized separated qubits. Mesoscopic
systems, that are intermediate size many-body systems with collective quantum charac-
teristics [7, 8, 9, 10, 11, 12, 13], provide natural candidates for this purpose. They are
extended in space, interact locally with the separated qubits, and can be integrated into
solid-state structures through nano-fabrication techniques.

In this thesis, we study entangling two non-interacting qubits through an intermediate
mesoscopic system consisting of many two-level systems that can be controlled and mea-
sured collectively and interacts locally with the qubits. A reasonable level of control is
collective control of the mesoscopic system, local control over each qubit and local inter-
action between each qubit and a nearby spin within the mesoscopic system. We evaluate
the resources required for creating post-selected entanglement between the target qubits
by measuring a joint property of them through the mesoscopic system.

Two main schemes are discussed and the required resources of each are identified. The
resources that are examined are the purity of the initial state, size, control and internal

1



dynamics of the mesoscopic system. The requirements on the measurement and the meso-
scopic system’s robustness to noise are also discussed. We start with a simple analyzable
procedure that enables entangling the qubits by applying two successive high-resolution
projective collective measurements on the mesoscopic system including and excluding the
two spins that are connected to the target qubits. This approach is discussed in chapter
3. We show that the success of this method solely relies on the power of the projective
measurements and there are minimum requirements on the other resources including state
preparation, control, size, etc. We build on this analysis by introducing indirect joint mea-
surement on the qubits that benefits from amplification of the target qubits’ state in the
collective states of the mesoscopic system and needs only a low-resolution collective mea-
surement on the mesoscopic system to generate post-selected entanglement on the target
qubits. Indirect joint measurement scheme is introduced in chapter 4 and its implementa-
tion with a mesoscopic spin system consisting of spin half particles with internal magnetic
dipole coupling is evaluated in chapter 5. In particular, creating micro-macro entanglement
between the target qubits and the mesoscopic spin system is identified as a robust and im-
plementable strategy for amplifying the target qubits’ state in the collective magnetization
of the mesoscopic spin system. The sensitivity of indirect joint measurement procedure to
the experimental imperfections is analyzed; particularly it is proved to be robust to limited
initial polarization of the mesoscopic spin system.

This thesis complements the ongoing efforts towards using mesoscopic systems as co-
herent control elements to connect localized separated qubits. Previous schemes propose
generating an indirect interaction between the qubits via an intermediate mesoscopic sys-
tem. It has been proposed to use a mesoscopic conductor to engineer an effective inter-
action Hamiltonian between two Rydberg atoms [14]. Floating metallic gates [15, 16] and
quantum Hall edge states [17, 18] have been suggested for creating an effective interaction
Hamiltonian between two otherwise uncoupled quantum dot based qubits. A mesoscopic
ferromagnet was considered to mediate interaction between separated spin qubits [19].

Another approach to connecting localized qubits via an intermediate system is quan-
tum state transfer. There are extensive theoretical studies in transferring quantum states
between separated qubits through a hypothetical 1D spin chain [20, 21, 22, 23, 24, 25, 26,
27, 28, 29]. In Chapter 5, we argue that indirect joint measurement meshes better with
the experimentally available resources. It does not require addressing individual spins in
the chain or engineering the interaction between them and needs only available dipolar
coupling and collective control. It is not restricted to a 1D geometry; in fact, it is expected
to respond significantly faster with mesoscopic systems in 2D and 3D structure. Moreover,
it is robust to limited polarization of the mesoscopic system’s initial state.

It is worth mentioning that the three approaches to connecting non-interacting qubits
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through an intermediate many-body system; namely, engineering an indirect interaction
capable of performing a CNOT gate, quantum state transfer and entangling by indirect
joint measurement, are equivalent up to local operations and classical communications.
Bipartite entanglement between separated qubits is equivalent to quantum state transfer
because an entangled pair of qubits can be used to transfer a quantum state applying
quantum teleportation protocols (1) [30, 31]. On the other hand, two separated qubits
can be entangled by first entangling one of them with a nearby ancilla qubit with local
operations; then transferring the state of the ancilla to the second qubit through quantum
state transfer (2) [20, 32]. A CNOT gate, either direct or indirect, creates maximum entan-
glement between two qubits given that the control and the target qubits are respectively
prepared in an equal superposition state and a polarized state (3). Moreover, quantum
state transfer combined with a local CNOT gate provides an indirect CNOT gate between
uncoupled qubits (4). Overall, as the schematic graph in figure 1.1 shows, all the three
schemes are equivalent up to local operations and classical communications [33].

Indirect Interaction

aa

kk
1D spin chain as a Quantum wire

|𝛼⟩ |𝛼⟩

Indirect 
CNOT Gate

Quantum 
State

Transfer

A separated pair of 
Entangled qubits

LOCC
Equivalence

1

2
31+4

4
3+1

Figure 1.1: The equivalent ways of connecting separated qubits

Studying the many-body dynamics of a mesoscopic system is challenging because full
quantum simulation is not possible due to the large size of the Hilbert space and semi-
classical methods might not capture all the interesting features. We have different ap-
proaches to overcome these challenges. We start with evaluating the collective analyzable
dynamics of the mesoscopic system (in chapters 3 and 4 ), then (in chapter 5) we simulate
the full quantum dynamics of a spin system with internal magnetic dipolar interaction
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and collective control for small sizes (up to 2 × 20 spins) based on Krylov approximation
method [34]. Consistent collective behaviours are extracted and extrapolated to bigger
sizes of the mesoscopic system.
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Chapter 2

Quantum Processes and
Entanglement

This chapter gives a short overview of the analysis of quantum processes directed towards
their application in the rest of the thesis. Moreover, it provides formal definitions of
entangled states and presents measures to quantify bipartite entanglement.

From an operational point of view, quantum processes are divided into three: prepa-
ration, transformation, and measurement. The first four sections are devoted to brief
mathematical descriptions of these processes. Section 2.1 discusses the representation of
quantum states and the preparation process. The transformations of closed and open
quantum systems are covered in sections 2.2 and 2.4. The measurement process is dis-
cussed in section 2.3. For a more comprehensive review of quantum processes, see [37, 38].
The last section of this chapter, 2.5, reviews multiple measures for quantifying bipartite
entanglement, both between two qubits and between one qubit and a mesoscopic system.
A thorough survey on entanglement and its measures can be found in reference [39].

2.1 Preparation and Quantum States

2.1.1 Hilbert space and pure states

Any quantum system is associated with a Hilbert space, H, that is a complex vector space
with an inner product and is complete in the norm. A preparation procedure is ideally
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described by a pure state which can be represented by a unit vector, called a state vector,
in the system’s Hilbert space.

Dirac notation provides a convenient representation of state vectors and their inner
product: A state vector ψ ∈ H is represented by a ket |ψ〉 and the inner product of two
vectors ψ and φ is: 〈ψ|φ〉 := 〈ψ| |φ〉, where bra 〈ψ| represents the conjugate transpose of
the ket |ψ〉, 〈ψ| = |ψ〉† and belongs to the dual Hilbert space.

For instance, a qubit, the simplest quantum system with two levels, is associated with
a two-dimensional Hilbert space Hq = C2. A convenient choice of basis for Hq is {|0〉 =(

1
0

)
, |1〉 =

(
0
1

)
} called the computational basis. An arbitrary normalized pure state of a

qubit can be represented as,
|ψ〉 = a |0〉+ b |1〉 (2.1)

where a and b are complex numbers satisfying the normalization condition |a|2 + |b|2 = 1.
For |a| = |b| = 1√

2
, the state |ψ〉 is called an equal superposition state.

A pure state of a qubit can be represented1 geometrically by a point on a sphere
with unit radius, called the Bloch sphere. The north and south poles of the Bloch sphere
represent states |0〉 and |1〉, respectively. Any other point represent a superposition between
|0〉 and |1〉,

|ψ〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉 (2.2)

where θ is the polar angle and φ is the azimuthal angle as shown in figure 2.1.

68
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𝜙

|𝜓⟩
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Figure 2.1: The Bloch sphere representation of an arbitrary pure state of a qubit.

1Up to a physically unobservable global phase.
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Composite Systems

Given a quantum system A, with Hilbert space HA, and a quantum system B, with Hilbert
space HB, any ideal preparation of the composite system AB belongs to the composite
Hilbert space,

HAB = HA ⊗HB (2.3)

An orthonormal basis for HAB can be constructed by tensor product of two orthonormal
bases of HqA and HqB : {|ai〉 ⊗ |bj〉} where {|ai〉}, i = 1, 2, ..., dim(HA) and {|bj〉}, j =
1, 2, ..., dim(HB) are two orthonormal bases of HA and HB, respectively. As an example,
the Hilbert space of two qubits, qA and qB is, HqAqB = HqA⊗HqB = C2⊗C2 = C4 with the
computational basis: {|00〉 , |01〉 , |10〉 , |11〉} = {|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉} =
{|0〉 , |1〉} ⊗ {|0〉 , |1〉}.

The Hilbert space of a mesoscopic system that consists of N two-level quantum systems2

is the tensor product of the Hilbert spaces of its constituents,

HMS = H1 ⊗H2 ⊗ ...⊗HN = C2 ⊗ C2 ⊗ ...⊗ C2 = (C2)⊗N = C2N (2.4)

with the computational basis: {|0〉⊗N , |0〉⊗N−1 ⊗ |1〉 , ..., |1〉⊗N} = {|0〉 , |1〉}⊗N .

Pure Entangled States

A pure state of a bipartite composite system |ψ〉AB ∈ HAB is called a product state if it can
be expressed as |ψ〉AB = |ψ〉A ⊗ |ψ〉B for some |ψ〉A ∈ HA and |ψ〉B ∈ HB. Any bipartite
pure state that is not a product state is an entangled state.

For instance, state |ψ〉AB = a |00〉 + b |11〉 of two qubits is an entangled state unless a
or b equals zero; in particular for |a| = |b| = 1/

√
2, state |ψ〉AB is a maximally entangled

state. The following four orthogonal maximally entangled states, called the Bell states,
form a basis for the Hilbert space of two qubits,

|e±〉 =
1√
2

(|00〉 ± |11〉)

|o±〉 =
1√
2

(|01〉 ± |10〉) (2.5)

2We do not call the two-level systems constituting the mesoscopic system qubits; since the term qubit
usually implies universal control (to be defined in section 2.2), which we do not assume to be available for
the two-level elements of the mesoscopic system.
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2.1.2 Mixed States and Density Operators

Not all preparation procedures produce pure states. The quantum states that are not
pure are called mixed. From an operational point of view, the state of a quantum system
describes the knowledge one has about the system. Mixed states are associated with
incomplete knowledge about the quantum system. A mixed state is represented by a non-
negative Hermitian operator with trace one, called a density matrix or a density operator.

Suppose that a quantum system is prepared in state |ψ1〉 with probability p1 and in
state |ψ2〉 with probability p2 = 1− p1. The state of the quantum system is a mixed state
with the density operator,

ρ = p1 |ψ1〉〈ψ1|+ p2 |ψ2〉〈ψ2| (2.6)

More generally the density matrix of a quantum system that is prepared in one of the
states {|ψi〉}, i = 1, 2, ..., n each with probability pi ≥ 0 (

∑
i pi = 1), is,

ρ =
n∑

i=1

pi |ψi〉〈ψi| (2.7)

The special case of n = 1 corresponds to a pure state preparation,

ρ = p1 |ψ1〉〈ψ1| = |ψ1〉〈ψ1| (2.8)

Thus, density matrices give a general description of quantum systems that can represent
any pure or mixed state. Conversely, any density matrix can be expressed as a probabilistic
mixture of pure states and represents a pure or mixed quantum state.

In addition to probabilistic preparations, density matrices describe the state of a sub-
system of a composite quantum system. Consider a composite system with the density
matrix ρAB that is either a pure state or a probabilistic mixture of pure states. The reduced
state of the subsystem A is represented by the density operator,

ρA = TrB(ρAB) (2.9)

where TrB(.) is the partial trace over the subsystem B. With an orthonormal basis
{|bj〉}, j = 1, 2, ...dB(= dim(HB)) of the Hilbert space HB, the partial trace is defined
as,

TrB(ρAB) :=

dB∑

j=1

(1A ⊗ 〈bj|)ρAB(1A ⊗ |bj〉) (2.10)

A pure bipartite state ρAB = |ψ〉〈ψ|AB, is an entangled state if and only if the reduced
state ρA (or ρB) is a mixed state.
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General Entangled States

The notion of entanglement is generalized to mixed states and density operators. A bipar-
tite state ρAB is a product state if it can be expressed as ρAB = ρA⊗ ρB and is a separable
state if it can written as a convex combination of product states, ρAB =

∑
i piρ

i
A ⊗ ρiB;

otherwise is an entangled state.

2.2 Transformation

The transformation process of a closed quantum system, i.e., a system that is isolated from
its surroundings, is operationally represented by a unitary operator,

|ψ′〉 = U |ψ〉 (2.11)

where |ψ〉 and |ψ′〉 are the state vectors representing the pure states of the quantum system
before and after the transformation, and U is a unitary matrix satisfying the relation UU † =
U †U = 1. Generalization of Eq. (2.11) to density operators indicates transformation of
mixed initial states,

ρ′ = UρU † (2.12)

The underlying physics law for the time evolution of a closed quantum system is the time-
dependent Schrödinger equation,

i~
d |ψ(t)〉
dt

= H(t) |ψ(t)〉 (2.13)

where H(t) is the Hamiltonian of the system; a Hermitian operator (H(t) = H(t)†) whose
eigenvalues are the allowed energies of the quantum system, and ~ is Plank’s constant
that is usually absorbed in H(t) and set to one, ~ = 1. Among all unitary operators that
describe a valid quantum transformation, in principle, the Schrödinger equation indicates
which ones are accessible for a specific quantum system, in practice. The von Neumann
equation generalizes the Schrödinger equation to density operators and describes the time
evolution of mixed states,

i~
dρ(t)

dt
= [H(t), ρ(t)] (2.14)

where the bracket represents the commutator defined as, [A,B] := AB −BA. Solving the
Schrödinger equation or the von Neumann equation results in a time-dependant unitary
operator, U(t), that specifies the evolution of the quantum system in time,

|ψ(t)〉 = U(t) |ψ(0)〉 , ρ(t) = U(t)ρ(0)U †(t) (2.15)
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If the Hamiltonian is time-independent H(t) = H, the unitary operator is,

U(t) = e−iHt (2.16)

The unitary evolution corresponding to a time-dependent Hamiltonian that commutes at
different times, [H(t), H(t′)] = 0, is,

U(t) = e−i
∫ t
0 H(t′)dt′ (2.17)

For a time-dependent Hamiltonian that does not commute at different times [H(t), H(t′)] 6=
0, the unitary operator is,

U(t) = T e−i
∫ t
0 H(t′)dt′ (2.18)

where T is the time ordering operator.

Any Hermitian operator acting on the Hilbert space of a qubitHq = C2 can be expanded
in terms of the identity operator, and the three Pauli operators with real coefficients. The
Pauli operators are defined as,

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.19)

As a result, any unitary operator on a qubit can be expressed as,

U = Un̂(φ) = e−i
φ
2

(n̂.~σ) (2.20)

up to an unimportant global phase; where n̂ = (nx, ny, nz) is a unit vector, φ is some phase
and ~σ = (σx, σy, σz). In the Bloch sphere representation, Un̂(φ) corresponds to a rotation
of the vector representing the state of the quantum system along the axis n̂ by the angle φ.
Unitary operators on a qubit are also called unitary rotations, in this sense. Any unitary
rotation can be decomposed into Euler rotations,

Un̂(φ) = Uẑ(α)Uŷ(β)Uẑ(γ). (2.21)

In general, rotation about two independant axis in enough for constructing an arbitrary
unitary operator on a qubit. In other words, rotation about two independant axis provides
universal control over a qubit.

In the language of quantum information, quantum transformations and unitary opera-
tors are also called quantum logic gates or quantum gates ; usually when the overall result of
the transformation only matters, not the underlying time evolution. The Pauli operators,
σx, σy and σz, that correspond to π-rotations about x̂, ŷ and ẑ axes, are examples of single
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qubit quantum gates, known as bit flip, bit-phase flip, and phase flip gates, respectively.
Another widely used single qubit gate is the Hadamard gate, defined as,

H =
1√
2

(
1 1
1 −1

)
(2.22)

Applying Hadamard gate on |0〉 and |1〉 states creates equal superposition states with
positive and negative phases,

H |0〉 =
1√
2

(|0〉+ |1〉) := |+〉 , H |1〉 =
1√
2

(|0〉 − |1〉) := |−〉 (2.23)

An important two qubit quantum gate is the Controlled-not (CNOT) gate that along with
single qubit rotations provides universal control over two qubits. The CNOT gate is defined
as,

CNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (2.24)

It flips the second qubit, called the target qubit, if the first qubit, called the control qubit,
is in state |1〉. The CNOT gate transforms separable initial states to maximally entangled
states if the control and the target qubits are prepared in an equal superposition state and
a polarized state, respectively. The maximally entangled Bell states can be created this
way,

CNOT |+〉 |0〉 =
1√
2

(|00〉+ |11〉) = |e+〉 , CNOT |−〉 |0〉 =
1√
2

(|00〉 − |11〉) = |e−〉

CNOT |+〉 |1〉 =
1√
2

(|01〉+ |10〉) = |o+〉 , CNOT |−〉 |1〉 =
1√
2

(|01〉 − |10〉) = |o−〉(2.25)

Implementing a CNOT gate between two qubits, and more generally any gate that trans-
forms a separable state of two qubits to an entangled state, requires the qubits to interact.
This thesis concerns with entangling two non-interacting qubits; i.e. entangling two qubits
when an entangling gate is not available. The Hamiltonian of two non-interacting qubits
can be written as sum of the Hamiltonian on each,

Hq1q2(t) = Hq1(t)⊗ 1q2 + 1q1 ⊗Hq2(t) (2.26)

Solving the Schrödinger equation tells us that the unitary evolution of this system can
always be expressed as,

Uq1q2(t) = Uq1(t)⊗ Uq2(t) (2.27)
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which always transforms a separable initial state, |ψ(0)〉q1q2 = |ψ(0)〉q1 ⊗ |ψ(0)〉q2 , to a
separable final state,

|ψ(t)〉q1q2 = Uq1q2(t) |ψ(0)〉q1q2 = Uq1(t)⊗ Uq2(t)
(
|ψ(0)〉q1 ⊗ |ψ(0)〉q2

)

=
(
Uq1(t) |ψ(0)〉q1

)
⊗
(
Uq2(t) |ψ(0)〉q2

)
:= |ψ(t)〉q1 ⊗ |ψ(t)〉q2 (2.28)

In section 2.3, we show how a joint measurement can entangle two non-interacting qubits.

Collective Dynamics and Collective Rotation of a Mesoscopic System

Among all unitary transformations of a mesoscopic system, an interesting subset are col-
lective dynamics. Collective dynamics, represented by collective unitary operators, are the
transformations that do not discern between the two-level components of the mesoscopic
system. They can be, mathematically, defined as the unitary operations that are invari-
ant under any permutations between the states of the particles in the mesoscopic system.
An arbitrary permutation can be decomposed into two-body swaps. A swapping operator
between ith and jth particle (i < j) is,

SWAPij = |0〉〈0|i ⊗ |0〉〈0|j + |1〉〈1|i ⊗ |1〉〈1|j + |0〉〈1|i ⊗ |1〉〈0|j + |1〉〈0|i ⊗ |0〉〈1|j (2.29)

where the identity operators on N − 2 particles are omitted.

An experimentally relevant subset of collective unitary operators are collective rota-
tions,

UMS
n̂ (φ) = U1

n̂(φ)⊗ U2
n̂(φ)⊗ ...⊗ UN

n̂ (φ) (2.30)

where U i
n̂(φ) represents a general rotation of the ith particle. The collective rotations corre-

spond to collective external control of the mesoscopic system. The Hamiltonian associated
to UMS

n̂ (φ) is,

HCC =
ω

2

N∑

i=1

(nxσ
i
x + nyσ

i
y + nzσ

i
z) =

ω

2

(
nx

N∑

i=1

σix + ny

N∑

i=1

σiy + nx

N∑

i=1

σiz

)
(2.31)

with σia = 1⊗i−1 ⊗ σa ⊗ 1⊗N−i for a = x, y, z. The rotation angle φ is the Hamiltonian
frequency times the evolution time φ = ωt.
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2.3 Measurement

The measurement procedure is the process of observing a physical property of a quantum
system and producing a classical outcome. It is operationally represented by a projector-
valued measure (PVM) or more generally a positive-operator valued measure (POVM).

2.3.1 Ideal Measurement Process

A projective measurement is described by a Hermitian operator on the Hilbert space of
the system, called an observable. The observable has a spectral decomposition,

O =
∑

m

mΠm (2.32)

where {m} is the set of possible measurement outcomes. Each m is an eigenvalue of the
observable and it is a real number. Πm is the projection operator onto the eigenspace
of O with eigenvalue m. The projection operators satisfy the orthogonality condition
ΠmΠn = δmnΠm and they span the Hilbert space,

∑
m Πm = 1. The probability of each

measurement outcome, m, upon measuring a quantum system in an arbitrary state is given
by Born’s rule,

pm = Tr(Πmρ) (2.33)

where ρ is the density matrix representing the state of the quantum system prior to the
measurement. As an example, measuring a qubit that is prepared in an arbitrary pure
state, |ψ〉 = a |0〉 + b |1〉 (ρ = |ψ〉〈ψ|), in the computational basis, with the measurement
operators {Π0 = |0〉〈0| ,Π1 = |1〉〈1|}, results in outcome 0 with the probability p0 = |a|2
and outcome 1 with the probability p1 = |b|2.

A counter-intuitive feature of the measurement process is that it not only reveals the
measured property of the quantum system, but also updates the state of the quantum sys-
tem according to the measurement outcome. Thus, it can be regarded as a state preparation
process, too. This property is the main idea behind entangling separated qubits using a
joint measurement. The state of the system after the measurement and post-selecting on
outcome m, according to Luder’s state-update-rule, is,

ρm =
ΠmρΠm

Tr(Πmρ)
=

ΠmρΠm

pm
(2.34)

where 1
pm

is the normalization factor that guarantees Tr(ρm) = 1.

In the above example the updated states of the qubit corresponding to the measurement
outcomes 0 and 1 are ρ0 = |0〉〈0| and ρ1 = |1〉〈1|.
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Joint measurement as an entangling tool

The state update rule provides the key element for preparing qubits in entangled states
upon implementing a joint measurement. Parity measurement and Hamming weight mea-
surement are two examples of joint measurements. Parity measurement of two qubits
reveals whether the state of the qubits are the same (even parity) or different (odd parity)
without uncovering the state of each qubit. The projective operators of parity measurement
corresponding to even and odd parities are,

Πe = |00〉〈00|+ |11〉〈11|
Πo = |01〉〈01|+ |10〉〈10| (2.35)

Two qubits, that are each prepared in an equal superposition state, |±〉 = 1√
2
(|0〉 ± |1〉),

will be probabilistically projected into the maximally entangled Bell states upon a joint
parity measurement,

|e±〉 =
1√
2

(|00〉 ± |11〉)

|o±〉 =
1√
2

(|01〉 ± |10〉) (2.36)

where the positive and negative phases correspond to the same and different phases of the
qubits’ initial superposition states, respectively. The probability of even and odd parity
outcomes are each equal to 1/2.

Another joint measurement is Hamming weight measurement that specifies the distance
from the all zero state. It is equivalent to collective magnetization measurement for spin
qubits. Hamming weight measurement can be defined for any number of qubits. Its
projective operators for two qubits are,

Π0 = |00〉〈00|
Π1 = |01〉〈01|+ |10〉〈10|
Π2 = |11〉〈11| (2.37)

Projective measurement of two qubits’ Hamming weight updates their state to the maxi-
mally entangled state with hamming weigh one, |o±〉 = 1√

2
(|01〉 ± |10〉), with a probability

of 1/2, provided that the qubits are each prepared in an equal superposition state. The
two other outcomes of the measurement are Hamming weights 0 and 2, with the separable
updated states |00〉 and |11〉, each with a probability of 1/4.
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2.3.2 Generalized Measurement Process

The measurement processes are more generally described by POVMs which include PVMs
as a subset. A POVM is operationally characterized by a set of measurement operators
{Eα} that are non-negative Eα ≥ 0 and complete

∑
αEα = 1. The probability of each

measurement outcome α is given by the generalization of the Born’s rule,

pα = Tr(Eαρ) (2.38)

and the state of the quantum system updates according to the generalization of Luder’s
state-update-rule,

ρα =
MαρM

†
α

pα
(2.39)

where Eα = M †
αMα. One set of operators that satisfy these relations is {Mα} = {√Eα};

however, there is no unique choice for {Mα} and it depends on the details of implementing
the POVM.

As an example, a noisy parity measurement, that mixes between even and odd parities,
can be described by the following POVM operators,

Ee = (1− ε)Πe + εΠo

Eo = (1− ε)Πo + εΠe (2.40)

where ε ranges from 0 for no noise to 1/2 for maximum noise and no measurement. As-
suming Mα =

√
Eα, the updated states of the qubits, given in Eq. 2.36, are replaced

by,

ρe = (1− ε) |e±〉〈e±|+ ε |o±〉〈o±|+
√
ε(1− ε)(|e±〉〈o±|+ |o±〉〈e±|)

ρo = (1− ε) |o±〉〈o±|+ ε |e±〉〈e±|+
√
ε(1− ε)(|e±〉〈o±|+ |o±〉〈e±|) (2.41)

According to Neumarks dilation theorem, any POVM can be realized as a PVM on a bigger
Hilbert space of the system and an apparatus [40]. This PVM can always be described
as a von Neuman indirect measurement where the measurement is only applied on the
apparatus, following a unitary interaction between the apparatus and the system [41].
This process has a unique state-update-rule,

ρs,α =
Tra

(
(1s ⊗ Πa

α)Usa(ρs ⊗ |0〉〈0|a)U †sa(1s ⊗ Πa
α)
)

Tr
(

(1s ⊗ Πa
α)Usa(ρs ⊗ |0〉〈0|a)U †sa

) (2.42)
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where ρs and ρs,α are the states of the system before the measurement and after the mea-
surement and post-selection on outcome α, and the apparatus is assumed to be prepared
in a pure state, |0〉〈0|a. The operators Usa and Πa

α represent the unitary operator corre-
sponding to the interaction between the system and the apparatus and the PVM on the
apparatus, respectively. Following this process, the measurement operators of the system
are uniquely determined, Mα = 〈α|a Usa |0〉a, given that the apparatus PVM operators are
rank 1, Πa

α = |α〉〈α|a.

2.3.3 Collective Measurement of a Mesoscopic System

In the following chapters, we deal with collective PVMs and POVMs on a mesoscopic
system consisting of N identical two-level systems. The PVM operators of the collective
Hamming weight measurement of the mesoscopic system are,

Πm =

(Nm)∑

i=1

Pi

(
|0〉〈0|⊗N−m ⊗ |1〉〈1|⊗m

)
(2.43)

where m ∈ {0, 1, ..., N} and Pi is the permutation operator and the summation is over all
permutations. Other collective PVMs over the mesoscopic system are related to the Ham-
ming weight measurement by a collective unitary, Π′m = UColΠmU

†
Col, for m = 0, 1, ..., N .

This collective unitary can be regarded as part of the transformation process. Thus, the
Hamming weight measurement and the POVMs based on that are enough to describe any
collective measurement of the mesoscopic system.

A coarse-grained collective measurement over the mesoscopic system is characterized
by a collective POVM. The collective POVM operators, {Eα}, can be expanded in terms
of collective PVM operators as,

Eα =
N∑

m=0

aα,mΠm (2.44)

where the coefficients aα,m satisfy the conditions: aα,m ≥ 0 and
∑

α aα,m = 1 following
positivity and completeness of the POVM operators.

2.4 Transformation of an open quantum system

A quantum system is generally not isolated from its environment in which case its trans-
formation can not be described by a unitary operator. Evolution of a quantum system is
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more generally described by a quantum dynamical map defined as a transformation that
takes quantum states to quantum states. It can be viewed as the reduced effect of a unitary
operator that acts on the quantum system and its environment3. Any quantum dynami-
cal map is linear, completely positive and trace preserving. Positivity of a map Λ means
that Λ(ρ) ≥ 0 if ρ ≥ 0. Complete positivity guarantees positivity when the transformed
quantum system is part of a composite system,

(ΛA ⊗ 1B(ρAB)) ≥ 0 if ρAB ≥ 0 (2.45)

Trace preserving condition ensures that the normalization is preserved, Tr(Λ(ρ)) = Tr(ρ) =
1. Any completely positive trace preserving (CPTP) map can be represented by a Kraus-
decomposition,

Λ(ρ) =
∑

i

KiρK
†
i (2.46)

where the Kraus operators, Ki’s, are linear operators satisfying the constraint
∑

iK
†
iKi =

1.

In the rest of this section, we review CPTP maps of some experimentally relevant noise
processes for a qubit, then we discuss their generalization for a mesoscopic system. In the
following discussions, a general state of the qubit is considered which is expanded in the
eigen-basis defined by the qubit’s Hamiltonian as,

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
= ρ00 |0〉〈0|+ ρ01 |0〉〈1|+ ρ10 |1〉〈0|+ ρ11 |1〉〈1| (2.47)

where |0〉 = |g〉 and |1〉 = |e〉 represent the ground and the excited state of the Hamiltonian
and the normalization condition requires ρ00 + ρ11 = 1.

2.4.1 Amplitude Damping Map

The amplitude damping map models relaxation from excited state to the ground state. It
is represented by the Kraus operators,

KA
0 =

(
1 0
0
√

1− λA

)
KA

1 =

(
0
√
λA

0 0

)
(2.48)

3Note that the reverse is not true; meaning that it is not always possible to assign a quantum dynamical
map to the evolution of a quantum system that is interacting with its environment.
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where the amplitude damping parameter, λA, ranges from 0 to 1 and can be interpreted
as the probability of relaxation. The qubit’s state after applying the amplitude damping
map is,

ρA = ΛA(ρ) = KA
0 ρK

A†
0 +KA

1 ρK
A†
1 =

(
ρ00 + λAρ11

√
1− λAρ01√

1− λAρ10 (1− λA)ρ11

)
(2.49)

The amplitude damping map reduces the population of the excited state and adds to
the population of the ground state. It also attenuates the coherence terms between the
ground and the excited state. The fixed point of the amplitude map is the ground state:
ρA

f = |0〉〈0|.

2.4.2 Generalized Amplitude Damping Map

A generalization of the amplitude damping map models relaxation towards an arbitrary
diagonal mixed state, ρGA

f = p |0〉〈0| + (1 − p) |1〉〈1| where 0 ≤ p ≤ 1 is the population in
the ground state. The generalized amplitude damping map is represented by the following
Kraus operators,

KGA
0 =

√
p

(
1 0
0
√

1− λA

)
KGA

1 =
√
p

(
0
√
λA

0 0

)

KGA
2 =

√
1− p

(√
1− λA 0

0 1

)
KGA

3 =
√

1− p
(

0 0√
λA 0

)
(2.50)

and the evolved density matrix of the qubit is,

ρGA = ΛGA(ρ) =

(
(1− λA)ρ00 + pλA

√
1− λAρ01√

1− λAρ10 (1− λA)ρ11 + λA − pλA

)
(2.51)

The state of a two-level system in thermal equilibrium with a bath at temperature T is,

ρth =
e
− H
kBT

Tr(e
− H
kBT )

=
1

1 + e
− ∆E
kBT

|0〉〈0|+ e
− ∆E
kBT

1 + e
− ∆E
kBT

|1〉〈1| (2.52)

where H is the Hamiltonian of the system, ∆E = Ee −Eg is the energy different between
its ground and excited states and kB is the Boltzmann constant. The T1 relaxation process,
that drives the system towards this thermal equilibrium state, is modelled by a generalized
amplitude damping map with the fixed point ρGA

f = ρth and the damping probability
λA = 1− e−Γ1t, where Γ1 = 1/T1 is the relaxation rate.
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2.4.3 Phase damping Map

The Phase damping map reduces the off-diagonal terms of the density matrix while leaving
the diagonal terms intact. The associated Kraus operators are,

KP
0 =

(
1 0
0
√

1− λP

)
KP

1 =

(
0 0
0
√
λP

)
(2.53)

and the evolved state of the qubit is,

ρP = ΛP(ρ) =

(
ρ00

√
1− λPρ01√

1− λPρ10 ρ11

)
(2.54)

Decoherence or the T2 relaxation process that is derived by noise along the quantization
axis is modelled by a phase damping map with the damping probability λP = 1 − e−Γ2t,
where Γ2 = 1/T2 is the damping rate.

2.4.4 Depolarizing Map

The depolarizing map models symmetric noise in all directions. The Kraus operators of
this map are,

KDep
0 =

√
1− p1 =

√
1− p

(
1 0
0 1

)
KDep

1 =

√
p

3
σx =

√
p

3

(
0 1
1 0

)

KDep
2 =

√
p

3
σy =

√
p

3

(
0 −i
i 0

)
KDep

3 =

√
p

3
σz =

√
p

3

(
1 0
0 −1

)
(2.55)

With the probability of 1 − p the qubit is intact and each of the three bit flip, phase flip
and bit-phase flip errors occurs with the probability of p/3. The transformed state of the
qubit is,

ρDep = ΛDep(ρ) =

(
(1− 2p

3
)ρ00 + 2p

3
ρ11 (1− 4p

3
)ρ01

(1− 4p
3

)ρ10 (1− 2p
3

)ρ11 + 2p
3
ρ00

)
(2.56)

State ρDep can be simplified using the normalization condition: ρ00 + ρ11 = 1,

ρDep = ΛDep(ρ) =

(
(1− 4p

3
)ρ00 + 2p

3
(1− 4p

3
)ρ01

(1− 4p
3

)ρ10 (1− 4p
3

)ρ11 + (2p
3

)

)

= (1− 4p

3
)ρ+

4p

3

1

2
:= (1− λDep)ρ+ λDep

1

2
(2.57)
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where the depolarizing parameter, λDep, is proportional to the error probability, λDep = 4p
3

.
The error probability, p, ranges from 0 to 1, thus λDep is between 0 and 4

3
. Based on

equation 2.57, if λDep ≤ 1, it can be interpreted as the probability that the depolarizing
map replaces the qubit’s state with the fully mixed state, 1

2
; i.e. erases all the information

of the qubit and 1− λDep is the probability that the qubit’s state is left unchanged.

2.4.5 Noise of a mesoscopic system

The mathematical model of the noise effect on a mesoscopic system depends on the many-
body interaction among the two-level components of the mesoscopic system and the inter-
action between the mesoscopic system and its environment. Nevertheless, assuming that
each of the two-level particles in the mesoscopic system is subject to an independant exter-
nal noise, a simple generalization of the CPTP maps on a qubit models the transformation
of an open mesoscopic system.

Consider that a quantum dynamical map, Λs, with a set of Kraus operators,
{K1, K2, ..., Km}, represents external noise on one of the two-level systems in the meso-
scopic system. A natural generalization of Λs for the mesoscopic system in the special
case where the mesoscopic system’s state is a product state of its constituents, ρPro

MS =
ρ1 ⊗ ρ1 ⊗ ...⊗ ρN , is,

ΛMS(ρPro
MS) = Λs(ρ1)⊗ Λs(ρ2)⊗ ...⊗ Λs(ρN). (2.58)

Replacing each Λs(ρj) with
∑m

i=1KiρjK
†
i in the above relation creates a set of Kraus

operators for ΛMS that can be used to apply ΛMS to an arbitrary input state,

ΛMS(ρPro
MS ) =

m∑

i1=1

Ki1ρ1K
†
i1
⊗

m∑

i1=1

Ki2ρ2K
†
i2
⊗ ...⊗

m∑

iN=1

KiNρNK
†
iN

=
m∑

i1,i2,...,iN=1

(Ki1 ⊗Ki2 ⊗ ...⊗KiN )(ρ1 ⊗ ρ2 ⊗ ...⊗ ρN )(K†i1 ⊗K
†
i2
⊗ ...⊗K†iN )

=

m∑

i1,i2,...,iN=1

(Ki1 ⊗Ki2 ⊗ ...⊗KiN )(ρPro
MS )(K†i1 ⊗K

†
i2
⊗ ...⊗K†iN ) (2.59)

Thus, the quantum dynamical map ΛMS can be characterized by mN Kraus operators con-
structed by tensor product of the single particle Kraus operators, {KMS

1 , KMS
2 , ..., KMS

mN} =
{K1, K2, ..., Km}⊗N .
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This approach to modelling noise of the mesoscopic system is applied in Chapter 3
where the effect of the depolarizing map on the mesoscopic system is evaluated analyti-
cally. Note that the number of Kraus operators grows exponentially with the size of the
mesoscopic system, which significantly reduces the size of the mesoscopic systems that can
be simulated.

Another practically helpful technique for estimating the noise effect on the mesoscopic
system is to average over the independent transformations of each two-level component.
Considering a product input state, the evolved state will be,

Λ′MS(ρPro
MS) =

1

N

N∑

j=1

ρ1 ⊗ ...⊗ Λs(ρj)⊗ ...⊗ ρN

=
1

N

N∑

j=1

ρ1 ⊗ ...⊗
m∑

i=1

KiρjK
†
i ⊗ ...⊗ ρN (2.60)

Thus, the map Λ′MS is characterized by a set of m×N Kraus operators that is the union
of Kraus operators on each particle scaled by 1√

N
to satisfy the normalization condition,

{K ′MS
1 , K ′MS

2 , ..., K ′MS
mN } = UN

j=1{Kj
1 , K

j
2 , ..., K

j
m} with Kj

i = 1√
N
1
⊗j−1
2 ⊗Kj

i ⊗ 1
⊗N−j
2 ,

Λ′MS(ρMS) =
mN∑

l=1

K ′MS
l ρMSK

′MS†
l (2.61)

This approach does not limit the size of the mesoscopic systems that can be simulated
and is used is chapter 5 where a generalized amplitude damping noise is simulated for a
mesoscopic spin system.

2.5 Quantification of entanglement

A pure bipartite state of a composite quantum system, |ψ〉AB, is entangled, if and only
if, the reduced state of each subsystem, ρA = TrB(|ψ〉〈ψ|AB) or ρB = TrA(|ψ〉〈ψ|AB), is a
mixed state. The more entangled the pure bipartite state is, the more information is lost
when one of the parties is ignored; thus, the more mixed the reduced density matrices are.
The entropy of entanglement quantifies entanglement of pure bipartite states based on this
property [42]. It is defined as the von Neumann entropy of any of the two reduced states,

E(|ψ〉AB) := S(ρA) = S(ρB)

S(ρ) := −Tr(ρ log2(ρ)) (2.62)
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where the equality S(ρA) = S(ρB) follows the purity of the bipartite state ρAB = |ψ〉〈ψ|AB.
The von Neumann entropy of a quantum state, S(ρ), is a measure of its purity and ranges
from 0 for pure states, to D = log2(Dim(H)) for a maximally mixed state. Consequently,
the entropy of entanglement of a pure bipartite state E(|ψ〉AB) ranges from 0 for separable
states, to log2(min(Dim(HA),Dim(HB))). If Dim(HA) = Dim(HB) := D, the maximum,
log2(D), corresponds to a maximally entangled state,

|ψ〉AB =
1√
D

D∑

i=1

|i〉A ⊗ |i〉B (2.63)

where {|i〉A} and {|i〉B} are two arbitrary orthonormal bases of HA and HB.

As an example, consider the pure bipartite entangled state of two qubits discussed in
section 2.1, |ψ〉AB = a |00〉+ b |11〉. The reduced density matrices of the subsystems A and
B are: ρA = ρB = |a|2 |0〉〈0| + |b|2 |1〉〈1| and the entropy of entanglement is: E(|ψ〉AB) =
S(ρA) = S(ρB) = −|a|2 log2 |a|2 − |b|2 log2 |b|2.

0.2 0.4 0.6 0.8 1.0
|a| 2,|b| 2

0.2

0.4

0.6

0.8

1.0
S(ρA)=S(ρB)

Figure 2.2: The entropy of entanglement of the state |ψ〉AB = a |00〉 + b |11〉. State
|ψ〉AB = 1√

2
(|00〉+ eiφ |11〉) is maximally entangled for any choice of φ.

Characterizing and quantifying entanglement of a mixed quantum state is challenging.
Various measures have been proposed. Many of them, such as distillable entanglement [43,
44] and entanglement of projection [45], are generalizations of the entropy of entanglement
and reduce to the entropy when applied to pure states. There are also measures that
are defined independently, e.g. negativity and logarithmic negativity [46]. For reviews
on entanglement and its measures see [47, 39]. In the rest of this section, we discuss
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computable measures that are used in this thesis for quantifying bipartite entanglement
between the target qubits or between one target qubit and the mesoscopic system.

2.5.1 Fidelity

When the goal is to produce a specific known maximally entangled state between two
qubits, |φ〉AB, the fidelity, defined as the overlap between the produced state, ρAB, and the
ideal state |φ〉AB, can be used as a measure for success of the preparation process,

Fφ (ρAB) := Tr (|φ〉〈φ| ρAB) = 〈φ| ρAB |φ〉 . (2.64)

The fidelity specifies whether or not the state ρAB can be distilled towards the maximally
entangled state |φ〉AB [44, 43]. It ranges from 0 to 1 and Fφ (ρ) > 1

2
guarantees that the

state ρAB is entangled and distillable towards the state |φ〉AB.

Note that the fidelity is not a standard generally applicable measure for entanglement,
e.g., the fidelity of the state ρAB = |e+〉〈e+| with the state |e−〉 is zero but both states are
maximally entangled; nevertheless it is easy to compute and is appropriate to use when it
is known, a priori, that ρAB is a distorted version of |φ〉AB.

2.5.2 Negativity

Negativity is a measure of entanglement for a general bipartite system; regardless of the
size of each party and purity of the overall state. For a bipartite system in an arbitrary
state, ρAB, negativity is defined as [46, 39],

N (ρAB) :=
||ρTAAB||1 − 1

2
(2.65)

where ρTAAB is the partial transpose of the state ρAB and ||X||1 := Tr(
√
X†X) is the trace

norm. Negativity is also equal to the sum of the absolute values of the negative eigenvalues
of ρTAAB, N (ρAB) =

∑
λ<0 |λ|. It ranges from 0 for separable states to 0.5 for maximally

entangled states.

The essence of this measure is based on the well-known positive partial transpose (PPT)
criteria for bipartite separable states [48]. The PPT criteria states that for any separable
state represented by a density matrix, the partial transpose with respect to one of the
parities is also a valid density matrix thus it is a positive semi-definite operator and has only
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non-negative eigenvalues. PPT is a necessary condition for separability for any dimension
and any bi-partition. It is also a sufficient condition for 2⊗ 2 and 2⊗ 3 (partial transpose
with respect to the second party) systems [49]. Thus, in general, if N (ρAB) > 0 the state
ρAB is entangled but N (ρAB) = 0 does not prove separability.

A related measure of bipartite entanglement is logarithmic negativity defined as [46, 39],

EN (ρAB) := log2

(
||ρTAAB||1

)
= log2(2N (ρAB) + 1) (2.66)

Logarithmic negativity ranges between 0 for separable states to 1 for maximally entangled
states. These measures will be used to quantify entanglement between one qubit and a
mesoscopic system.

2.5.3 Entanglement of projection

Entanglement of projection, introduced in [45], provides a simple computable measure of
bipartite entanglement for mixed states regardless of the size of each party. Consider a
bipartite mixed state, ρAB, with an arbitrary decomposition,

ρAB =
m∑

i=1

pi |ψi〉〈ψi|AB (2.67)

In the above decomposition, the states |ψi〉AB are not necessarily orthogonal and the num-
ber of the states, m, is equal to or bigger than the number of nonzero eigenvalues of ρAB.
The state ρAB can be purified by adding a tagging particle,

|ΨABT 〉 =
m∑

i=1

√
pi |ψi〉AB |i〉T (2.68)

where the states |i〉T are orthogonal states of the taggant and ρAB = TrT (|ΨABT 〉〈ΨABT |).
The entanglement of projection of ρAB, with respect to the purification in Eq. 2.68, is
defined as,

Ep{|i〉}T (ΨABT ) :=
m∑

i=1

piE(|ψi〉AB) (2.69)

where E(|ψi〉AB) is the entropy of entanglement defined in Eq. 2.62. Equation 2.69 can
be interpreted as the average entanglement between systems A and B upon measuring the
tagging particle projectively in the basis {|i〉T}; this explains the idea behind the name
Entanglement of projection.
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Entanglement of projection depends on the basis in which the taggant is measured.
Measuring the tagging particle in the basis {|i′〉T = U |i〉T} results in Entanglement of
projection Ep{|i′〉}T (ΨABT ) =

∑m
i=1 p

′
iE(|ψ′i〉AB) where |ΨABT 〉 =

∑m
i=1

√
pi |ψi〉AB |i〉T =∑m

i=1

√
p′i |ψ′i〉AB |i′〉T . This change of basis of measuring the taggant corresponds to a

different decomposition of the state of the system ρAB =
∑m

i=1 p
′
i |ψ′i〉〈ψ′i|AB.

Entanglement of formation, which is a well-known measure for entanglement of mixed
bipartite states, is defined as,

Ef (ρAB) := min

(
m∑

i=1

piE(|ψi〉AB)

)
(2.70)

where the minimum is taken over all decompositions of ρAB [50]. The entanglement of
formation can be written as the minimum of entanglement of projection over the choice of
taggant’s basis [45],

Ef (ρAB) = min
U
Ep,{U}(ΨABT ) (2.71)

Thus, entanglement of projection with an arbitrary choice of taggant’s basis provides an
upper bound for entanglement of formation Ef (ρAB) ≤ Ep,{|i〉T }(ΨABT ).

Entanglement of projection will also be used to quantify entanglement between one
target qubit and the mesoscopic system.
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Chapter 3

Two successive projective
measurements

Projective measurements are powerful tools that not only reveal the state of a quantum
system but also prepare it in an eigenstate of the observable. Here, we present a general
and simple procedure for entangling two non-interacting qubits through an intermediate
mesoscopic spin system (MSS), that solely relies on projective measurements over the
MSS. The MSS consists of an ensemble of identical spin half particles over which we have
collective control and collective measurement1. Each target qubits is locally coupled to one
nearby spin within the MSS [51], and universal control over the pair is available.

Non-interacting qubits

MS
𝑠" 𝑠#	𝑞" 	𝑞#

Mesoscopic system consisting of N 
identical spin half particles

Figure 3.1: A schematic figure showing target qubits locally coupled to the
mesoscopic system.

1Although, in this chapter, we refer to the mesoscopic system as the mesoscopic spin system, the
arguments are not limited to spin systems only; they are valid for any mesoscopic system consisting of
identical two-level quantum systems that can be measured collectively.
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In this method, the target qubits are entangled by first entangling their nearby spins in
the MSS, s1 and s2, then locally swapping the states between si and qi (i = 1, 2). Entan-
glement between s1 and s2 is achieved by successively applying two projective collective
magnetization measurements on the MSS along the same axis e.g. z-axis and post-selecting
on outcomes being the same. The first measurement reveals the total magnetization of all
spins in the MSS, including s1 and s2, and the second measurement excludes s1 and s2.
Excluding s1 and s2 in the measurement is feasible since the interaction of these two spins
with the external qubits distinguishes them from the rest of the spins in the MSS. Post-
selection on having identical outcomes implies opposite spins of s1 and s2, but it does not
uncover whose state is up, |↑〉, and whose is down, |↓〉. With an appropriate initial state,
this lack of information can be utilized to prepare s1 and s2 in the maximally entangled
singlet, |S〉 = 1√

2
(|↑↓〉 − |↓↑〉), or triplet zero,

∣∣T (0)
〉

= 1√
2

(|↑↓〉+ |↓↑〉), state. This strat-
egy entirely relies on the power of post-selected projective measurements and it has little
additional requirements on the MSS in terms of purity of the initial state, control and size.

We will prove that a general and easy to generate class of states are suited as the
initial state of the MSS. It suffices to prepare s1 and s2 in an equal superposition state,
|+〉 = 1√

2
(|↑〉+ |↓〉), separable from the rest of the spins in the MSS,

ρN = |+〉〈+|s1 ⊗ |+〉〈+|s2 ⊗ ρN−2 (3.1)

There are no requirements on the state of the MSS-{s1, s2}, ρN−2 i.e., it can be any pure
or mixed state. The ability to initialize the target qubits, q1 and q2, and universal control
over the pairs of {q1, s1} and {q2, s2} is enough for preparing an initial state of the form
3.1. Two successive measurements on this initial state create the triplet zero state on s1

and s2 for any measurement outcomes as long as the two measurements have the same
outcomes. The probability of success i.e., the probability of having the same outcomes for
the two measurements is 1

2
. The singlet state can be produced simply by preparing an

equal superposition state with positive phase, |+〉, on one of the spins and with negative
phase, |−〉 = 1√

2
(|↑〉 − |↓〉), on the other one.

The steps of the method can be summarized as:

1. Prepare the MSS in the initial state: ρN = |+〉〈+|s1 ⊗ |+〉〈+|s2 ⊗ ρN−2. The qubits
are each prepared in any arbitrary state, separable from the state of the MSS, ρq1 ⊗
ρq2 ⊗ ρN .

2. Apply a projective collective magnetization measurement along z-axis on the MSS.
The outcome of this measurement is called m0.
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1. Preparation

𝜌" = |+⟩⟨+|() ⊗ |+⟩⟨+|(+ ⊗ 𝜌",-
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↑ ↓+↑ ↓+ Mesoscopic System
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𝑚5𝑁/2−𝑁/2

𝑃
Magnetization Spectrum 
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𝑃

Spectrum of N-2 spins

𝑚8

𝑚8 + 1𝑚8 − 1

↑ ↓+↓ ↑
1
2
1
4

𝑠> 𝑠-

Figure 3.2: A schematic summary of the method

3. Apply a projective collective magnetization measurement along z-axis on the MSS
excluding s1 and s2 and post-select on the same outcome as the previous measure-
ment, m0. The probability of having the same outcomes is 1

2
and the updated state of

s1 and s2 is the maximally entangled triplet zero state. The other two possible out-
comes of this measurement are m0−1 and m0 +1, each can happen with a probability
of 1

4
.

4. Prepare q1 and q2 in the triplet zero entangled state by applying a swap gate between
s1 and q1 and also between s2 and q2.

Figures 3.2 and 3.3 show a schematic and the quantum circuit of the two successive mea-
surement procedure, respectively.

Implementing collective projective measurement on a mesoscopic spin system using
one two-level probe spin is discussed in [52]. It is shown that to determine the collective
magnetization of a mesoscopic system of size N , it is enough to prepare the probe spin and
interact it with the mesoscopic system ∼ log2(N) times.
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Figure 3.3: The quantum circuit summarizing the method

3.1 Proof

In this section we will analytically prove that the introduced procedure produces the max-
imally entangled triplet zero state over s1 and s2. We will also show that the probability
of success is 1

2
.

The observable operator for the collective magnetization measurement along the quan-
tization axis, z, for N spin half particles is,

J (N)
z = ~

N
2∑

m=−N
2

mΠ(N)
m , (3.2)

where m ∈ {−N
2
,−N

2
+ 1, ..., N

2
} is the outcome of the measurement up to the constant ~

which we set to 1 now on. The operator Π
(N)
m projects onto a subspace where the difference

in the number of spins in state |↑〉 and in state |↓〉 is 2m. It can be expanded as,

Π(N)
m =

∑

i

Pi

(
|↑〉〈↑|⊗N/2+m |↓〉〈↓|⊗N/2−m

)
(3.3)

where Pi is the permutation operator and the summation is over all possible permuta-
tions2. The outcome of the first projective measurement, m0, is randomly chosen from

2The PVM collective magnetization measurement along the quantization axis is a physical implemen-
tation of Hamming weight measurement, introduced in section 2.3, for spin systems.
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all possible outcomes according to the probability distribution, {P (N)
m0 } = {Tr

(
Π

(N)
m0 ρN

)
}.

The updated state of the system after the measurement is,

ρ′N,m0
=

1

P
(N)
m0

Π(N)
m0
ρNΠ(N)

m0
(3.4)

To simplify the above equation, we rewrite Π
(N)
m0 as a summation of projective operators

on s1 and s2 tensor product with the projective operators on the rest of the spins in the
MSS,

Π(N)
m0

=
∑

i

Pi

(
|↑〉〈↑|⊗N/2+m0 |↓〉〈↓|⊗N/2−m0

)

= |↑↑〉〈↑↑| ⊗
∑

i

P ′i

(
|↑〉〈↑|⊗(N−2)/2+(m0−1) |↓〉〈↓|⊗(N−2)/2−(m0−1)

)

+ (|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|)⊗
∑

i

P ′′i

(
|↑〉〈↑|⊗(N−2)/2+m0 |↓〉〈↓|⊗(N−2)/2−m0

)
(3.5)

+ |↓↓〉〈↓↓| ⊗
∑

i

P ′′′i

(
|↑〉〈↑|⊗(N−2)/2+(m0+1) |↓〉〈↓|⊗(N−2)/2−(m0+1)

)

= Π
(2)
1 ⊗ Π

(N−2)
m0−1 + Π

(2)
0 ⊗ Π(N−2)

m0
+ Π

(2)
−1 ⊗ Π

(N−2)
m0+1

By substituting equation 3.5 in equation 3.4 and replacing ρN from equation 3.1 one finds,

ρ′N,m0
=

1

4P
(N)
m0

(
|↑↑〉〈↑↑| ⊗ Π

(N−2)
m0−1 ρN−2Π

(N−2)
m0−1

+ (|↑↓〉+ |↓↑〉) (〈↑↓|+ 〈↓↑|)⊗ Π(N−2)
m0

ρN−2Π(N−2)
m0

(3.6)

+ |↓↓〉〈↓↓| ⊗ Π
(N−2)
m0+1 ρN−2Π

(N−2)
m0+1

)

After applying the second projective measurement on N − 2 spins and post-selecting on
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the outcome m0, the density matrix of the MSS will be updated to,

ρ′′N,m0
=

(
12 ⊗ Π

(N−2)
m0

)
ρ′N,m0

(
12 ⊗ Π

(N−2)
m0

)

Tr
((

12 ⊗ Π
(N−2)
m0

)
ρ′N,m0

(
12 ⊗ Π

(N−2)
m0

))

=

1

4P
(N)
m0

(|↑↓〉+ |↓↑〉) (〈↑↓|+ 〈↓↑|)⊗
(

Π
(N−2)
m0 ρN−2Π

(N−2)
m0

)

2P
(N−2)
m0

4P
(N)
m0

(3.7)

=
1

P
(N−2)
m0

∣∣T (0)
〉〈
T (0)

∣∣⊗
(
Π(N−2)
m0

ρN−2Π(N−2)
m0

)

where P
(N−2)
m0 = Tr

(
Π

(N−2)
m0 ρN−2

)
and 1

P
(N−2)
m0

is the normalization factor. Tracing over

N − 2 spins gives the state of s1 and s2,

ρs1s2 = Tr(N−2)

(
ρ′′N,m0

)
=

1

P
(N−2)
m0

∣∣T (0)
〉〈
T (0)

∣∣Tr
(
Π(N−2)
m0

ρN−2Π(N−2)
m0

)
=
∣∣T (0)

〉〈
T (0)

∣∣

(3.8)
The above relation completes the proof for creating entangled state over s1 and s2. Next,
we will show that the probability of success i.e., the probability of the same outcomes on
both measurements, is 1

2
. Let’s call the first measurement’s outcome m1 and the second

measurement’s outcome, m2. Then the probability of success is,

Ps := P (m1 = m2) =

+N−2
2∑

m0=−N−2
2

P (m1 = m2 = m0)

=

+N−2
2∑

m0=−N−2
2

P (m1 = m0)× P (m2 = m0|m1 = m0) (3.9)

=

+N−2
2∑

m0=−N−2
2

P (N)
m0
× Tr

(
(12 ⊗ Π(N−2)

m0
)ρ′N,m0

)

Replacing ρ′N,m0
with relation 3.4 results in,

Ps =

+N−2
2∑

m0=−N−2
2

Tr
(
(12 ⊗ Π(N−2)

m0
)
(
Π(N)
m0
ρNΠ(N)

m0

))
(3.10)
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which can be simplified using relation 3.5 and the orthogonality of projection operators,
ΠmΠn = δmnΠm,

Ps =

+N−2
2∑

m0=−N−2
2

Tr
((

Π
(2)
0 ⊗ Π(N−2)

m0

)
ρNΠ(N)

m0

)

= Tr




Π

(2)
0 ⊗




+N−2
2∑

m0=−N−2
2

Π(N−2)
m0




 ρN


 (3.11)

= Tr
((

Π
(2)
0 ⊗ 1N−2

)
ρN

)

The second equality follows two properties of the trace function: cyclic invariance,
Tr(ABC) = Tr(CAB), and linearity, Tr(A+B) = Tr(A)+Tr(B). The third equality holds
since the projection operators span the whole Hilbert space. The above relation proves
that the probability of success, which is defined as the probability of equal outcome on
both measurements, is equal to the probability of having zero total magnetization over s1

and s2. Replacing ρN by 3.1 completes the proof for Ps = 1
2
,

Ps = Tr
((

Π
(2)
0 ⊗ 1N−2

) (
|+〉〈+|s1 ⊗ |+〉〈+|s2 ⊗ ρN−2

))
(3.12)

= Tr
(

Π
(2)
0 |+〉〈+|s1 ⊗ |+〉〈+|s2

)
× Tr (ρN−2) =

1

2
× 1 =

1

2

3.2 Sensitivity to noise

A requirement for the success of the introduced procedure is that the collective magne-
tization of the MSS−{s1, s2} is preserved between the two successive measurements. A
single spin flip among the N−2 spins results in the outcome |↑↑〉〈↑↑| or |↓↓〉〈↓↓| instead of
the maximally entangled state

∣∣T (0)
〉〈
T (0)

∣∣. Thus, assuming instantaneous measurements,
the time constant of the spin flip error, Tbf, divided by the number of spins needs be
large compared to the time between the measurements, ∆t, Tbf/N � ∆t. We can ac-
count for the measurements’ time by adding the duration of the second measurement, t2,
Tbf/N � ∆t+ t2. Moreover, no bit flip or phase flip on s1 and s2 is acceptable during the
experiment.

In this section, we analyze how the entangled state of the qubits is degraded due to
the mentioned errors, assuming that the time constant of the errors is long compared to
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the experiment time. To include both spin flip on N − 2 spins in the MSS, and phase
flip and spin flip on s1 and s2, we model noise on the MSS as a depolarizing map, acting
independently on each of the spins. Depolarizing map on a qubit corresponds symmetric
noise in all directions i.e. equal probability of the three possible errors: bit flip (σx), phase
flip (σz) and bit-phase flip (σy). It operates on a qubit’s state as, Λ(ρ) = (1 − λ)ρ + λ1

2
.

With the probability of 1−λ the state is intact and with the probability of λ it is replaced
by the maximally mixed state. We will show that the entangled state of the spins after
the second measurement up to the first order in λ is,

ρs1s2(λ) =

(
1− Nλ

4
− 2λ

) ∣∣T (0)
〉〈
T (0)

∣∣+
λ

2
(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|)

+
Nλ

8

(
1 +

2m0 + 4

N

)
|↑↑〉〈↑↑|+ Nλ

8

(
1− 2m0 − 4

N

)
|↓↓〉〈↓↓| (3.13)

wherem0 is the outcome of the measurements and we have used the simplifying assumption,
Tr(Π

(N−2)
m0−1 ρN−2) ≈ Tr(Π

(N−2)
m0 ρN−2) ≈ Tr(Π

(N−2)
m0+1 ρN−2). The main source of error is leakage

into {|↑↑〉〈↑↑| , |↓↓〉〈↓↓|} subspace which is associated to bit flip on N −2 spins in the MSS
and scales as Nλ. A small portion of error, proportional to λ, comes from reduction in
the off-diagonal terms of

∣∣T (0)
〉〈
T (0)

∣∣ with respect to the diagonal terms, which is resulting
from phase flip error of s1 and s2. The fidelity of ρs1s2(λ) with the maximally entangled
state,

∣∣T (0)
〉
, up to the first order in λ is,

FT (0) (ρs1s2(λ)) = Tr
(∣∣T (0)

〉〈
T (0)

∣∣ ρs1s2(λ)
)

= 1− Nλ

4
− 3λ

4
(3.14)

As derived in section 2.4, the probability of error in each of the three directions is
proportional to λ, pbf = ppf = pbpf = p/3 = λ/4. Moreover, the probability of each error is
related to the time between the two measurements and the second measurement duration
as, p/3 = ∆t+t2

Terror
, where Terror = Tbf = Tpf = Tbpf is the time constant of the errors. Thus,

the fidelity being close to one requires,

Nλ

4
� 1⇒ Np

3
� 1⇒ N

∆t+ t2
Terror

� 1⇒ ∆t+ t2 �
Terror

N
. (3.15)

3.2.1 Proof

Here, we prove that the ideal maximally entangled state of the qubits,
∣∣T (0)

〉〈
T (0)

∣∣, de-
grades to the state in Eq. 3.13, when spins in the MSS are subject to the depolarizing
noise.
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The state of the MSS after the first measurement and post-selection on outcome m0,
given in equation 3.6, can be rewritten as,

ρ′N,m0
=

1

4

(
|↑↑〉〈↑↑| ⊗ ρm0−1

N−2 + |↓↓〉〈↓↓| ⊗ ρm0+1
N−2 + 2

∣∣T (0)
〉〈
T (0)

∣∣⊗ ρm0
N−2

)
(3.16)

where ρm0−1
N−2 = Π

(N−2)
m0−1 ρN−2Π

(N−2)
m0−1 /P

(N)
m0 , ρm0+1

N−2 = Π
(N−2)
m0+1 ρN−2Π

(N−2)
m0+1 /P

(N)
m0 and 2ρm0

N−2 =

2Π
(N−2)
m0 ρN−2Π

(N−2)
m0 /P

(N)
m0 are the states of the MSS−{s1, s2} after the first measurement

(not necessarily normalized) correlated to the states |↑↑〉〈↑↑|, |↓↓〉〈↓↓| and
∣∣T (0)

〉〈
T (0)

∣∣ of
s1 and s2 respectively. If no error happens, the second measurement with post selection
on m0 projects the state of the MSS into the state

∣∣T (0)
〉〈
T (0)

∣∣⊗ ρm0
N−2.

We consider depolarization of the MSS as independent maps on all of the spins in the
MSS each with probability λ. The depolarizing channel acts as following on each of the
terms of one spin’s density matrix,

Λ (|↑〉〈↑|) =

(
1− λ

2

)
|↑〉〈↑|+ λ

2
|↓〉〈↓| (3.17)

Λ (|↓〉〈↓|) =

(
1− λ

2

)
|↓〉〈↓|+ λ

2
|↑〉〈↑|

Λ (|↑〉〈↓|) = (1− λ) |↑〉〈↓|
Λ (|↓〉〈↑|) = (1− λ) |↓〉〈↑|

The state of the MSS after the first measurement is depolarized as,

Λ(ρ′N,m0
) =

1

4

(
Λ(|↑〉〈↑|)⊗ Λ(|↑〉〈↑|)⊗ Λ(ρm0−1

N−2 ) + Λ(|↓〉〈↓|)⊗ Λ(|↓〉〈↓|)⊗ Λ(ρm0+1
N−2 )

+2Λ(
∣∣T (0)

〉〈
T (0)

∣∣)⊗ Λ(ρm0
N−2)

)
(3.18)

After the second measurement on N − 2 spins in the MSS and post selection on outcome
m0 the state of the MSS is,

ρ′′N,m0
(λ) =

1

Tr(...)

(
Λ(|↑〉〈↑|)⊗ Λ(|↑〉〈↑|)⊗ (Π(N−2)

m0
Λ(ρm0−1

N−2 )Π(N−2)
m0

)

+ Λ(|↓〉〈↓|)⊗ Λ(|↓〉〈↓|)⊗ (Π(N−2)
m0

Λ(ρm0+1
N−2 )Π(N−2)

m0
)

+ 2Λ(
∣∣T (0)

〉〈
T (0)

∣∣)⊗ (Π(N−2)
m0

Λ(ρm0
N−2)Π(N−2)

m0
)
)

(3.19)

The overlap between Λ(ρm0+1
N−2 ) and Λ(ρm0−1

N−2 ) and Π
(N−2)
m0 is of the first order in λ; thus,

to compute the above relation up to first order in λ it is enough to keep Λ(|↑〉〈↑|) and
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Λ(|↓〉〈↓|) to the zeroth order. Tracing over MSS-{s1, s2} the state of s1 and s2 up to the
first order is λ is,

ρs1s2(λ) =
1

Tr(...)

(
Tr((Π(N−2)

m0
Λ(ρm0−1

N−2 )) |↑↑〉〈↑↑|+ Tr(Π(N−2)
m0

Λ(ρm0+1
N−2 )) |↓↓〉〈↓↓|

+ 2Tr((Π(N−2)
m0

Λ(ρm0
N−2))Λ(

∣∣T (0)
〉〈
T (0)

∣∣)
)

(3.20)

The state ρs1s2(λ) deviates from the maximally entangled
∣∣T (0)

〉〈
T (0)

∣∣ state mainly because
of leakage into {|↑↑〉〈↑↑| , |↓↓〉〈↓↓|} subspace and also because of loss in the coherence.
depolarization of the state

∣∣T (0)
〉〈
T (0)

∣∣ up to the first order in λ is,

Λ(
∣∣T (0)

〉〈
T (0)

∣∣) =
1− λ

2
(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|) +

1− 2λ

2
(|↑↓〉〈↓↑|+ |↓↑〉〈↑↓|)

+
λ

2
(|↑↑〉〈↑↑|+ |↓↓〉〈↓↓|)

= (1− 2λ)
∣∣T (0)

〉〈
T (0)

∣∣+
λ

2
12 (3.21)

In order to compute Λ
(
ρkN−2

)
, we expand the state ρkN−2 with k = m0 − 1,m0,m0 + 1 in

{|↑〉 , |↓〉} basis,

ρkN−2 =

( N−2
N−2

2 +k
)∑

i,j=1

akijPi(|↑〉⊗
N−2

2
+k |↓〉⊗N−2

2
−k)Pj(〈↑|⊗

N−2
2

+k 〈↓|⊗N−2
2
−k)

=

( N−2
N−2

2 +k
)∑

i=1

akiiPi(|↑〉〈↑|⊗
N−2

2
+k ⊗ |↓〉〈↓|N−2

2
−k) + off diagonal terms (3.22)

where Pi is the permutation operator and the summations are over all possible permuta-

tions. In order to compute Tr((Π
(N−2)
m0 Λ(ρkN−2)), we only need to keep track of the diagonal

terms of ρkN−2 since the off-diagonal terms would remain off-diagonal after applying the
depolarizing map and they would vanish either when projecting into m0 magnetization
subspace or when computing the trace.

Λ(ρkN−2) =

( N−2
N−2

2 +k
)

∑

i=1

akii Pi

((
(1− λ

2
) |↑〉〈↑|+ λ

2
|↓〉〈↓|)

)⊗N−2
2

+k

(3.23)

⊗
(

(1− λ

2
) |↓〉〈↓|+ λ

2
|↑〉〈↑|)

)⊗N−2
2
−k)

+ off diagonal terms
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To the first order in λ, Λ(ρkN−2) is,

Λ(ρkN−2) =

( N−2
N−2

2 +k
)∑

i=1

akii

(
1− (N − 2)

λ

2

)
Pi(|↑〉〈↑|⊗

N−2
2

+k |↓〉〈↓|N−2
2
−k) (3.24)

+

( N−2
N−2

2 +k
)∑

i=1

akii
λ

2
Pi







(
N−2

2 +k

1 )∑

j=1

Pj(|↓〉〈↓| ⊗ |↑〉〈↑|⊗
N−2

2
+k−1)


⊗ |↓〉〈↓|

N−2
2
−k




+

( N−2
N−2

2 +k
)∑

i=1

akii
λ

2
Pi


|↑〉〈↑|

N−2
2

+k ⊗




(
N−2

2 −k
1 )∑

j=1

Pj(|↑〉〈↑| ⊗ |↓〉〈↓|⊗
N−2

2
−k−1)







+ off diagonal terms

For k = m0 − 1,m0,m0 + 1, Tr((Π
(N−2)
m0 Λ(ρkN−2)) is,

Tr
(

(Π(N−2)
m0

Λ(ρm0
N−2)

)
=

(
1− (N − 2)

λ

2

) ( N−2
N−2

2 +m0
)

∑

i=1

am0
ii =

(
1− (N − 2)

λ

2

)
Tr(ρm0

N−2) (3.25)

Tr
(

(Π(N−2)
m0

Λ(ρm0−1
N−2 )

)
=

λ

2

(
N − 2

2
− (m0 − 1)

) ( N−2
N
2 +m0−2

)∑

i=1

am0−1
ii =

λ

2

(
N

2
−m0

)
Tr(ρm0−1

N−2 )

Tr
(

(Π(N−2)
m0

Λ(ρm0+1
N−2 )

)
=

λ

2

(
N − 2

2
+ (m0 + 1)

) ( N
N
2 +m0

)∑

i=1

am0+1
ii =

λ

2

(
N

2
+m0

)
Tr(ρm0+1

N−2 )

where Tr(ρm0
N−2) = Tr(Π

(N−2)
m0 ρN−2)/Tr(Π

(N)
m0 ρN) is the probability of having magnetization

m0 on N−2 spins in the MSS conditioned on magnetization m0 of the whole MSS. Similarly
Tr(ρm0−1

N−2 ) = Tr(Π
(N−2)
m0−1 ρN−2)/Tr(Π

(N)
m0 ρN) and Tr(ρm0+1

N−2 ) = Tr(Π
(N−2)
m0+1 ρN−2)/Tr(Π

(N)
m0 ρN)

are the probabilities of having magnetization m0 − 1 and m0 + 1 on N − 2 spins in the
MSS conditioned on outcome m0 of the first measurement. Replacing the equations 3.21
and 3.25 in the equation 3.20, the state of s1 and s2 after the second measurement and
post selection on m0, the same outcome as the first measurement, is,

ρs1s2(λ) =
1

Tr(...)

(
2

(
(1−N λ

2
− λ)

∣∣T (0)
〉〈
T (0)

∣∣+
λ

2
12

)
Tr(ρm0

N−2) (3.26)

+
λ

2

(
N

2
+m0

)
Tr(ρm0−1

N−2 ) |↑↑〉〈↑↑|+ λ

2

(
N

2
−m0

)
Tr(ρm0+1

N−2 ) |↓↓〉〈↓↓|
)
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With the simplifying assumption Tr(ρm0
N−2) ≈ Tr(ρm0−1

N−2 ) ≈ Tr(ρm0+1
N−2 ) and including the

normalization factor the above relation reduces to,

ρs1s2(λ) ≈
(

1− Nλ

4
− 2λ

) ∣∣∣T (0)
〉〈
T (0)

∣∣∣+
λ

2
12 +

Nλ

8

(
1 +

2m0

N

)
|↑↑〉〈↑↑|

+
Nλ

8

(
1− 2m0

N

)
|↓↓〉〈↓↓|

=

(
1− Nλ

4
− 2λ

) ∣∣∣T (0)
〉〈
T (0)

∣∣∣+
λ

2
(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|)

+
Nλ

8

(
1 +

2m0 + 4

N

)
|↑↑〉〈↑↑|+ Nλ

8

(
1− 2m0 − 4

N

)
|↓↓〉〈↓↓| (3.27)

This relation completes the proof for equation 3.13.

3.3 Mesoscopic system requirements

The introduced method requires a very high-resolution measurement on the MSS, capable
of detecting a single spin flip. The magnetization of the N − 2 spins in the mesoscopic
system must be preserved between the two measurements. This criterion requires the time
constant of the error, Terror, to be long compared to the experiment time and the internal
interaction among the spins in the mesoscopic system to be either compatible with the
measurement operators or weak enough to not influence the total magnetization. There
should also be no magnetization exchange between s1 and s2 and the rest of the spins in
the mesoscopic system to preserve their separable initial state. On the other hand, this
method needs only preparation of two of the spins in the MSS, s1 and s2, which can be
accomplished through their interaction with the target qubits. The rest of the spins can
be in any mixed or pure state. Any number of spins in the mesoscopic system is admissible
as long as the MSS’s magnetization can be measured with resolution ∆m = 1, and no spin
flip happens after the first measurement, N(t+ t2)� Tbf.

3.4 Conclusion

In this chapter, we introduced a procedure based on projective collective magnetization
measurements for entangling two non-interacting qubits, that are locally coupled to a MSS.
The presented approach has little requirements on the initial state of the MSS but it needs
very high resolution measurements. The success of this method solely relies on the power
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of projective measurements and it does not take advantage from the large number of spins
in the MSS. In the next chapter, we build on this strategy by introducing a scheme that
benefits from the large size of the MSS to amplify the state of the target qubits, and needs
only coarse-grained collective measurements on the MSS.
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Chapter 4

Indirect Joint measurement

In this chapter, we presents a new method for entangling two non-interacting qubits by
measuring their parity or hamming weight indirectly through an intermediate mesoscopic
system.

4.1 Introduction

We show how a mesoscopic system (MS) can entangle two qubits by measuring the parity
of the two qubits’ wave-function. The role of the MS is to magnify the qubits’ parity such
that the distinguishability of the two parity outcomes grows linearly with the MS’s size.
The initial state is separable over each qubit, and the qubits interact only with the MS.
Relying only on collective control of the MS, a low-resolution collective measurement is
still sufficient to prepare a post-selected entangled state with high confidence.

A parity measurement is a two-outcome measurement that determines whether an even
or odd number of qubits is in a particular logical state. For two qubits, each prepared in
an equal superposition state, a projective measurement that reveals the qubits’ parity but
provides no information on individual qubits creates a post-selected entangled Bell state.
Procedures for entangling two qubits through parity measurement have been proposed
for different quantum systems [53, 54, 55, 56, 57, 58] and performed experimentally with
superconducting qubits [59, 60, 61, 62] and nuclear spins next to a nitrogen-vacancy center
in diamond [63].

Here we propose implementing a projective parity measurement on two qubits indirectly
through a MS. The MS in this model consists of hundreds to thousands of identical two-level
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systems over which we have collective control 1. This method leverages local interactions
between each qubit and the MS and global control over the MS to correlate the two
parity states of the qubits with the distinguishable collective states of the MS. Global
measurement of the MS and post-selection then creates an entangled state on the qubits
due to the qubits’ correlation with the MS. This indirect measurement must detect on the
order of N excitations, where N is the MS’s size, unlike single qubit flip detection required
in direct parity measurement of qubits.

Previous proposals on entangling two qubits via an intermediate MS have used the
MS to generate an effective interaction Hamiltonian between the target qubits [14, 19].
In contrast, our novel approach relies solely on indirect joint measurement of the qubits
facilitated by the MS. By relying only upon the measurement, the distinguishability of the
states of the MS corresponding to different parities of the qubits is a natural parameter for
the success of our protocol. This distinguishability can be characterized over the classical
probability distributions of the measurement outcomes. This characterization helps us
derive a rigid upper bound for entanglement of the target qubits as a function of the
MS’s size and initial polarization. Our analysis complements ongoing efforts to control the
quantum aspects of MSs for quantum processing and metrology [64, 65, 19, 66, 67, 68, 14].

In this chapter, we introduce the general scheme for indirect parity measurement of
two qubits through a MS. In section 4.2, we present the general circuit consisting of the
evolution, measurement and post-processing steps and determine the success criteria of the
protocol. We explain the method with some idealized examples emphasizing on the role of
the evolution step which magnifies the qubits’ parity in the collective state of the MS. We
show that collective control of the MS and local interaction between the qubits and the
MS is enough to implement this magnification. In section 4.3 we discuss the measurement
step, demonstrating that a course-grained two outcome collective measurement on the MS
with post-selection is sufficient for producing maximally entangled states on the qubits.
In section 4.4, we consider the effect of beginning with a non-ideal mixed initial state of
the MS and find a rigid upper bound on the qubits’ entanglement caused by MS’s limited
polarization. Finally in the conclusion section 4.5 we summarize the results and discuss
the future works.

1An example of this ensemble of identical two-level systems is an ensemble of spin half particles as
will be discussed in the next chapter 5. But the general indirect joint measurement procedure is not only
limited to spin systems. To emphasize on this generality we do not refer to the elements of the mesoscopic
system as spins in this chapter.
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4.2 General circuit

FIG. 4.1 shows a schematic of the proposed indirect parity measurement circuit. Each qubit
is prepared in the coherent |+〉 = 1√

2
(|0〉+|1〉) state, and the MS is provisionally prepared in

the polarized state, |0〉⊗N . The MS evolves conditional on the qubits’ state with the general
unitary, Uq,MS = |00〉〈00|q ⊗UMS

00 + |01〉〈01|q ⊗UMS
01 + |10〉〈10|q ⊗UMS

10 + |11〉〈11|q ⊗UMS
11 ,

creating the following entangled state of the qubits and MS,

|ψ〉q,MS =
1

2
(|00〉 ⊗ |ψ00〉+ |01〉 ⊗ |ψ01〉

+ |10〉 ⊗ |ψ10〉+ |11〉 ⊗ |ψ11〉) (4.1)

with |ψγ〉 = UMS
γ |0〉⊗N for γ = 00, 01, 10, 11.

q1, |0〉 H

Uq,MS Vq,MSMMS, ρi ...

q2, |0〉 H









|ψ〉q,MS

Figure 4.1: The general circuit of the parity measurement through an intermediate MS.

The evolution is followed by a Positive-Operator Valued Measure (POVM) of the col-
lective excitation on the MS and post-selection with the measurement operators {Eα} and

the state-update-rule, ρMS;α =
√
Eα.ρMS .

√
Eα

Tr(Eα.ρMS)
. ρMS and ρMS;α are the MS’s states before and

after the measurement with post-selecting the outcome α, respectively 2. For a mesoscopic
spin system, this measurement corresponds to a total angular momentum measurement.
Adding the qubits, the state-update-rule becomes,

ρq,MS;α =
(12 ⊗

√
Eα).ρq,MS.(12 ⊗

√
Eα)

Tr((12 ⊗ Eα).ρq,MS)

Eα =
N∑

m=0

aα,mΠ(m), m = 0, 1, ..., N (4.2)

2There is no general state-update-rule for the POVMs, and the post-measurement state depends on
the details of the measurement procedure. Nevertheless any POVM is operationally equivalent to a von
Neumann indirect measurement, which follows the mentioned state-update-rule. [38].
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where Π(m) is the operator that projects into the subspace with m excitations and the
coefficients aα,m satisfy the conditions 0 ≤ aα,m ≤ 1 and

∑
α aα,m = 1, so that the POVM

operators satisfy both the positivity, Eα ≥ 0, and trace-preserving,
∑

αEα = 1, conditions.

To measure the target qubits’ parity, the combination of the evolution and measurement
must be such that the two pairs of states {|ψ01〉 , |ψ10〉} and {|ψ00〉 , |ψ11〉}, called the odd
and even pair, respectively, are discerned by the measurement but the states in each pair
are not.

With this criterion, the measurement and post-selection project the target qubits’ state
into even or odd parity subspaces due to its correlation with the MS’s state. If the MS’s
states within the odd and even pair are identical, post-selection on the measurement out-
come ideally updates the state of the qubits to one of the two maximally entangled Bell
states, |e+〉 := 1√

2
(|00〉+ |11〉) or |o+〉 := 1√

2
(|01〉+ |10〉), each with a probability of 1

2
.

However, if the odd or even pair states are not identical, a post-processing gate is re-
quired to disentangle the qubits from the MS (gate Vq,MS in FIG. 4.1). Thus, different and
even orthogonal states in each pair are acceptable at the price of an extra gate after the
measurement.

Even if measuring the MS distinguishes between the even pair states, which corresponds
to hamming weight measurement of the target qubits, there is a 1

2
probability that the

qubits will end up in the entangled state |o+〉 with a hamming weight of one. The remaining
outcomes are hamming weights of zero and two, each with a probability of 1

4
and with the

updated states |00〉 and |11〉, respectively.

We evaluate the success of our method by the amount of entanglement in the qubits’
state, quantified by the fidelity, defined as the overlap of the qubits’ state, ρq1q2 , and the
ideal maximally entangled state, |φ〉,

Fφ(ρq1q2) := Tr(ρq1q2 |φ〉〈φ|) = 〈φ| ρq1q2 |φ〉 . (4.3)

The fidelity ranges between 0 and 1. If Fφ(ρq1q2) > 1
2
, the state ρq1q2 is entangled and

can be distilled towards the maximally entangled state |φ〉 [43, 44].

4.2.1 Collective conditional gates

FIG. 4.2 shows an idealized parity measurement circuit. Two global π-rotations on the
MS, conditioned on the state of each target qubit, correlate the target qubits’ parity with
the MS’s collective excitation. The evolved state of the target qubits and MS is,

|ψ1〉q,MS =
|00〉+ |11〉

2
⊗ |0〉⊗N +

|01〉+ |10〉
2

⊗ |1〉⊗N . (4.4)
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The odd pair states are equal to each other and are therefore indistinguishable by any
measurement, as are those of the even pair. Furthermore, the two pairs are maximally
separated in the collective excitation spectrum, and thus can be distinguished with the
lowest resolution global measurement.

u1
|0〉 H •

e−i
π
2
Jx e−i

π
2
Jx M|0〉⊗N ...

|0〉 H •









u2 |ψ1〉q,MS

Figure 4.2: An idealized example of indirect parity measurement. During the evolution
the MS’s qubits are rotated conditioned on each external qubit’s state, sequentially. The
operator Jx =

∑
j σ

j
x where σjx is the Pauli operator along x on the j ’th qubit.

In order to flawlessly distinguish between the states |0〉⊗N with m = 0 and |1〉⊗N
with m = N number of excitations, it is sufficient that Tr(Eα.Π(0)) × Tr(Eα.Π(N)) = 0
for any measurement operator, Eα. If this condition is not satisfied, the qubits’ state
will be perturbed from the maximally entangled states |e+〉 or |o+〉. For example, if the
measurement outcome is β, and the probabilities corresponding to even and odd pairs are
pe,β = Tr(Eβ. |0〉〈0|⊗N) and po,β = Tr(Eβ. |1〉〈1|⊗N) where pe,β > po,β > 0, the qubits’
entangled state is ρq1q2 =

pe,β
pe,β+po,β

|e+〉〈e+| +
po,β

pe,β+po,β
|o+〉〈o+| with fidelity Fe+(ρq1q2) =

pe,β
pe,β+po,β

.

A variation of the circuit outlined in FIG. 4.2 measures the hamming weight of the
target qubits and illustrates the role of the post-processing gate. If during the evolution
step, half of the MS’s qubits are flipped conditioned on the first qubit’s state and the other
half on the second qubit’s state, the whole system evolves into the state,

|ψ2〉q,MS =
1

2
(|00〉 ⊗ |0〉⊗N + |01〉 ⊗ |0〉⊗N2 |1〉⊗N2

+ |10〉 ⊗ |1〉⊗N2 |0〉⊗N2 + |11〉 ⊗ |1〉⊗N). (4.5)

Neither the odd nor even pair states are equal. However, the odd pair states share the same
collective excitation, m = N

2
, and thus are indistinguishable by any collective measurement.

In contrast, the even pair states have the maximum separation in the collective excitation
spectrum. Nevertheless, depending on the details of the POVM on the MS, they may
or may not be distinguished by the measurement, which correspond to indirect hamming
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weight and parity measurements of the qubits, respectively. We illustrate the hamming
weight measurement here and later discuss the parity measurement.

Suppose that the POVM on the MS distinguishes between m = 0, m = N
2

and m = N
number of excitations. Then, post-selection on the outcome m = N

2
projects the qubits’

state into the odd parity subspace, 1√
2
(|01〉 ⊗ |0〉⊗N2 |1〉⊗N2 + |10〉 ⊗ |1〉⊗N2 |0〉⊗N2 ), but the

state of the qubits is entangled with the MS’s state. Thus, a disentangling gate is required
to restore the coherence of the qubits’ state. A general choice for this gate is to reverse the
evolution step, leading to the state 1√

2
(|01〉+ |10〉)⊗ |0〉⊗N , which includes the maximally

entangled |o+〉 state on the qubits, separable from the MS’s state.

To perfectly distinguish the odd pair from both states of the even pair, any measurement
operator, Eβ, that can select the odd pair, i.e., Tr(EβΠ(N/2)) 6= 0, must not overlap with
the even pair, i.e., Tr(EβΠ(0)) = Tr(EβΠ(N)) = 0. If this condition is not satisfied, the

fidelity of the updated state is Fo+(ρq1q2) =
2p01,β

2p01,β+p00,β+p11,β
where pγ,β = Tr(Eβ |ψγ〉〈ψγ|),

with γ = 00, 01, 10, 11, is the probability of the measurement outcome β corresponding to
the MS’s state |ψγ〉.

4.2.2 Local interaction

The two examples discussed require a collective rotation of the MS controlled by the target
qubits’ state. The target qubits’ parity or hamming weight can also be encoded in the MS’s
collective state by the local interaction between each target qubit and its nearby qubit in
the MS, by preparing the MS in an entangled state prior to their interaction. FIG. 4.3
shows this effect in its extreme limit. First the MS is prepared in the maximally entangled

GHZ state, 1√
2
(|0〉⊗N +i |1〉⊗N), by evolving under the collective unitary operation e−i

π
4

Πjσ
j
x

where σjx represents the Pauli operator along x on the jth particle. Second, the target
qubits’ parity is encoded in the phase of the GHZ state by applying two controlled-Z
gates controlled by each target qubit on its nearby qubit in the MS. This global phase
information is then transformed into population by reversing the first gate, leading to the
state |ψ1〉q,MS in equation 4.4, the same as the evolved state of the first circuit.

Similar to the first example, the qubits’ parity is correlated with the states of the MS
that are maximally separated in the collective excitation spectrum. This infers that these
two circuits use the maximum capacity of the MS.
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π
4

Πjσ
j
x M|0〉⊗N ...

σz

|0〉 H •








|0〉⊗N + i |1〉⊗N |ψ1〉q,MS

Figure 4.3: Entanglement among the qubits in the MS and local interaction with target
qubits.

4.3 Measurement

Entangling two qubits by direct parity measurement requires detection of single qubit
flip, while our approach of indirect parity measurement only needs distinguishing between
the odd and even pair states of the MS that differ by many qubits’ flip. A wide range of
measurements could achieve the desired goal. In this section we show that a coarse-grained
two-outcome POVM on the MS is sufficient to distinguish between the odd and even pair
states. We also demonstrate that this POVM can be implemented through a PVM on a
two-level apparatus system.

Consider the general form of a two-outcome POVM of the collective excitation, param-
eterized with an angle θ(m),

E0 =
∑

m

cos (θ(m))2 Π(m), E1 =
∑

m

sin (θ(m))2 Π(m) (4.6)

Any two-outcome collective excitation measurement can be written in this form by properly
choosing the corresponding function θ(m). According to Neumark’s dilation theorem, any
POVM on the system’s Hilbert space, HS, can be realized operationally as a projector
valued measure (PVM) on an extended Hilbert space of the system and an apparatus
HS ⊗ HA [40]. This PVM can always be realized, operationally, as a von Neumann’s
indirect measurement [41]. A von Neumann’s indirect measurement consists of a unitary
interaction between the system and the apparatus, followed by a PVM on the apparatus
[38]. FIG. 4.4 shows such an indirect measurement for the POVM in equation 4.6. The gate
UM =

∑N
m=0 Π(m)⊗e−iθ(m)σay with Π(m) and σay acting on the MS and the apparatus qubit

respectively, rotates the apparatus qubit by an angle that depends on the MS’s collective
excitation. Next a PVM is performed on the apparatus qubit with the measurement
operators, Πa(0) = |0〉〈0| and Πa(1) = |1〉〈1|. The combination of the above unitary
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evolution and PVM effectively performs the POVM in equation 4.6 on the MS with the
state-update-rule in equation 4.2.

!"
|0⟩	'

() !" = + Π - ⨂/012 3 456
7

389
Π: = |0⟩⟨0|, |1⟩⟨1|

Figure 4.4: A simple two-outcome POVM for the MS implemented through collective
interaction with an apparatus qubit.

The gate UM can be conveniently realized through collective linear interaction between
the MS and the apparatus qubit with the Hamiltonian HM = gJz⊗σay , where the operator

Jz is defined as Jz =
∑N

j=1(σjz + 1j)/2 =
∑N

m=0 mΠ(m). With this interaction, θ(m) =
gmtM is proportional to the collective excitation of the MS, m; where g and tM are the
interaction strength and time, respectively.

Based on the expected spectrum of the odd and even pair states prior to the measure-
ment, tM is chosen to achieve the maximum contrast between the two pairs. FIG. 4.5
shows the proper choices of θ(m) (tM) for the examples discussed. For |ψ1〉q,MS, the two-
outcome POVM with θ(m) = π

2N
m (tM = π/2Ng) flawlessly distinguishes between the two

pairs, resulting in the updated states |e+〉 ⊗ |0〉⊗N or |o+〉 ⊗ |1〉⊗N , with equal probability.
For |ψ2〉q,MS, the POVM with θ(m) = π

N
m (tM = π/Ng) updates the qubits-MS state

to 1√
2
(|00〉 ⊗ |0〉⊗N + |11〉 ⊗ |1〉⊗N) or 1√

2
(|01〉 ⊗ |0〉⊗N/2 |1〉⊗N/2 + |10〉 ⊗ |1〉⊗N/2 |0〉⊗N/2),

with equal probability. These states will be evolved into the separable states between the
qubits and the MS |e+〉 ⊗ |0〉⊗N and |o+〉 ⊗ |0〉⊗N by the following disentangling gate.
With this POVM, the second example desirably measures the target qubits’ parity, not
their hamming weight, since the two states |0〉⊗N and |1〉⊗N are not distinguishable by the
measurement due to the cyclic form of the measurement operators expansion.

4.4 Mixed initial state

So far we have considered the ideal pure fully polarized state, |0〉⊗N , as the initial state
of the MS. Here we discuss the mixed initial state of the MS as one of the experimental
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Figure 4.5: (a) The collective excitation spectrum of the MS with |ψ1〉q,MS and the
expansion of the appropriate two-outcome POVM. The measurement operator E0 (E1)
selects the odd (even) pair over the even (odd) pair perfectly. (b) Similar to (a) but for
the state |ψ2〉q,MS.

imperfections; in particular, we find an upper bound on the qubits’ entanglement when
the MS is initially in the experimentally relevant mixed state,

ρi = ρε :=

(
1 + (1− ε)σz

2

)⊗N
(4.7)

where N is the number of particles in the MS and (1 − ε) is the polarization of each.
Without loss of generality we assume positive polarization; thus 0 < (1− ε) ≤ 1. Consider
the general indirect parity measurement circuit depicted in FIG. 4.1. In deriving the
upper bound imposed by the initial state of the MS, we allow any collective excitation
measurement on the MS and any conditional unitary evolution of the form,

Uq,MS = (|00〉〈00|+ |11〉〈11|)⊗ Ve + (|01〉〈01|+ |10〉〈10|)⊗ Vo. (4.8)

The above unitary evolution guarantees that the odd pair states equal each other as do
the even ones; therefore, a post-processing gate is not required.

In this section, we first find a general relation between the entanglement of the target
qubits and the probability distributions of the measurement outcomes for any initial state
of the MS, any collective excitation measurement and unitary evolution of the form 4.8.
We also relate the upper bound on the entanglement to the distinguishability of the even
and odd pair states of the MS. Next, we find an analytic relation for the upper bound on
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entanglement of the target qubits assuming that the MS is prepared in the state 4.7. Last,
we discuss the relation between the amplitude damping noise on the MS and limited initial
polarization of the MS.

4.4.1 Fidelity and probability of the measurement outcomes

With a fixed evolution and measurement, the average fidelity over all measurement out-
comes is,

Favg :=
∑

α

pαFα(ρq1q2,α) (4.9)

where pα is the probability of the measurement outcome α. ρq1q2,α is the updated state
of the qubits after the measurement on the MS with post-selecting the outcome α, and
Fα(ρq1q2,α) is defined as, Fα(ρq1q2,α) := max

(
Fo+(ρq1q2,α), Fe+(ρq1q2,α)

)
. This maximizing

occurs as one of the two entangled states |o+〉 or |e+〉 is more probable depending on
the measurement outcome. The corresponding fidelity is the appropriate measure of the
entanglement.

Assuming that the evolution has the form 4.8, the average fidelity is related to the two
classical probability distributions of the measurement outcomes corresponding to the even,
ρe = VeρiV

†
e , and odd, ρo = VoρiV

†
o , states of the MS measured by the collective POVM

{Eα}, as,

Favg(Vo, Ve, {Eα}) =
∑

α

1

2
max (po,α, pe,α) (4.10)

where po,α = Tr(ρoEα) and pe,α = Tr(ρeEα). See subsection below for the derivation. Max-
imizing the average fidelity over all pairs of unitary operators, {Ve, Vo}, and all collective
POVMs, {Eα}, gives the entanglement’s upper bound,

Favg,max := max
Vo,Ve{Eα}

Favg(Vo, Ve, {Eα}). (4.11)

This upper bound on the qubits’ entanglement has an interesting physical interpretation
as following. The classical trace distance of two probability distributions is defined as
Dc(~p1, ~p2) := 1

2

∑
α |p1,α−p2,α| =

∑
α max (p1,α, p2,α)−1, [38, 37]. Thus the average fidelity

can be written in terms of the classical trace distance between the probability distributions
~po and ~pe as,

Favg(Vo, Ve, {Eα}) =
1

2
(1 +Dc(~po, ~pe)) . (4.12)

The quantum trace distance between two states ρ1 and ρ2 is defined as the maximum of the
classical trace distance between their associated probability distributions over all possible
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POVM measurements, Dq(ρ1, ρ2) := max{Eα}Dc(~p1, ~p2). The quantum trace distance has
an important operational meaning. It quantifies how distinguishable the two states are
by a single shot measurement via the relation Pr(correctly inferring ρ1 over ρ2) = 1

2
(1 +

Dq(ρ1, ρ2)) [38, 37]. According to equations 4.12 and 4.11 the entanglement’s upper bound
is a function of the quantum trace distance of the states ρo and ρe as,

Favg,max =
1

2

(
1 + max

Vo,Ve
Dq(ρo, ρe)

)
. (4.13)

Hence the desirable states, ρ?o = V ?
o .ρε.V

?†
o and ρ?e = V ?

e .ρε.V
?†
e , that maximize the average

fidelity are the ones that have the maximum quantum trace distance i.e. are the most
distinguishable with a single shot measurement. Besides, the upper bound on the qubits’
entanglement is the probability of successfully distinguishing between the states ρ?o and ρ?e
of the MS with a single shot measurement, Favg,max = 1

2
(1 +Dq(ρ

?
o, ρ

?
e)).

Average fidelity as a function of classical probability distributions

Following the circuit 4.1 with the unitary evolution 4.8 the state of the target qubits and
the MS after the evolution is:

ρq,MS =
1

2
(|o+〉〈o+| ⊗ ρo + |e+〉〈e+| ⊗ ρe (4.14)

+ |o+〉〈e+| ⊗ χoe + |e+〉〈o+| ⊗ χeo)

where ρo = Vo.ρi.V
†
o , ρe = Ve.ρi.V

†
e , χoe = Vo.ρi.V

†
e , χeo = χ†oe = Ve.ρi.V

†
o . According to

the state update rule 4.2, the state of the qubits after the measurement, post-selection on
the outcome α, and tracing over the MS is:

ρq1q2,α =
|o+〉〈o+|Tr(Eαρo) + |e+〉〈e+|Tr(Eαρe)

Tr(Eαρo) + Tr(Eαρe)

+
|o+〉〈e+|Tr(Eαχoe) + |e+〉〈o+|Tr(Eαχeo

Tr(Eαρo) + Tr(Eαρe)

:=
po,α |o+〉〈o+|+ pe,α |e+〉〈e+|+ ...

po,α + pe,α
(4.15)

where po,α := Tr(Eαρo) and pe,α := Tr(Eαρe) are the probabilities of the measurement
outcome α corresponding to the states ρo and ρe of the MS respectively. The fidelity of
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the state ρq1q2,α with the odd and even parity states is,

Fo+(ρq1q2,α) = Tr(ρq1q2,α |o+〉〈o+|) =
po,α

po,α + pe,α

Fe+(ρq1q2,α) = Tr(ρq1q2,α |e+〉〈e+|) =
pe,α

po,α + pe,α
. (4.16)

Substituting in equation 4.9 we find the average fidelity for a particular choice of the
evolution gates, {Vo, Ve}, and the measurement, {Eα},

Favg(Vo, Ve, {Eα}) =
∑

α

pα max

(
po,α

po,α + pe,α
,

pe,α
po,α + pe,α

)

=
∑

α

1

2
max (po,α, pe,α) . (4.17)

The second equality follows the fact that the probability of the outcome α is pα = Tr((12⊗
Eα)ρq,MS) = 1

2
(po,α + pe,α).

4.4.2 Analytic relation for entanglement’s upper bound

With the initial state ρi = ρε, one choice for the states ρ?e and ρ?o are ρ?e = ρε =(
1+(1−ε)σz

2

)⊗N
and ρ?o =

(
1−(1−ε)σz

2

)⊗N
corresponding to the gates V ?

e = 1⊗N and V ?
o =

e−iπ/2Jx = σ⊗Nx ; meaning that the best one can do is flipping all the two-level systems in
the MS conditioned on the parity of the two target qubits similar to the circuit depicted
in the FIG. 4.1. In this case, the optimal measurement on the MS is the PVM of the
collective excitation, {E?

α} = {Π(m)} 3. See the following subsection for the proof.

Replacing the above choices for ρ?e, ρ
?
o and {E?

α} in the average fidelity relation in
equation 4.10 gives the upper bound on entanglement as a function of the number of
particles in the MS, N , and their polarization, (1− ε),

Favg,max =
∑

α

1

2
max(b(α;N, 1− ε

2
), b(α;N,

ε

2
))

=

{
B(N−1

2
;N, ε

2
) odd N

B(N
2
− 1;N, ε

2
) + 1

2
b(N

2
;N, ε

2
) even N

(4.18)

3The coarse-grained PVM as long as m ≤ N/2 and m > N/2 excitations do not mix are acceptable

too, e.g., a two-outcome PVM with the operators, E0 =
∑bN/2c

m=0 Π(m) and E1 =
∑N

m=bN/2c+1 Π(m).
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where the function b represents the probability density function (PDF) and the function B
represents the cumulative distribution function (CDF) of the Binomial distribution. The
second line follows the assumption that ε < 1. A concrete general proof for equation 4.18
is given below.

FIG. 4.6 displays the plots of the entanglement’s upper bound as a function of the
number of qubits in the MS and their polarization. Increasing the number of qubits or
average polarization raises Favg,max, as expected. Moreover, this bound is not limiting for
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Figure 4.6: Upper bound on target qubits’ entanglement (a) as a function of the number
of qubits in the MS for different polarizations, (b) as a function of the polarization for
different numbers of qubits in the MS .

physically realistic amounts of polarization e.g. with the polarization 1 − ε = 0.5 and
only 50 qubits the upper bound is remarkably Favg,max = 0.9999. In order to violate
Clauser-Horne-Shimony-Holt (CHSH) inequality the fidelity of F > (2 + 3

√
2)/8 ≈ 0.78

is sufficient [44, 69]. As an example, the thermal polarization of an ensemble of electron
spins in temperature T = 1◦K and the magnetic field B = 4T is 0.99.

Proof for the Entanglement Upper Bound

Here we prove that Favg,max given in equation 4.18 is the upper bound on the entanglement
of the target qubits when the initial state of the MS is mixed state of the form 4.7. We also
show that the unitary gates V ?

o = e−iπ/2Jx and V ?
e = 1⊗N and the set of the measurement

operators {E?
α} = {Π(m)} saturate this upper bound.
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The state ρε can be expanded as,

ρε =

(
1 + (1− ε)σz

2

)⊗N
=
(

(1− ε

2
) |0〉〈0|+ (

ε

2
) |1〉〈1|

)⊗N

=
N∑

j=0

qN−j(1− q)j
(Nj )∑

i=1

Pi

(
|0〉〈0|⊗N−j ⊗ |1〉〈1|⊗j

)
(4.19)

where q is defined as q := 1 − ε
2

and Pi represents the permutation operator and the
summation over i is over all permutations. In a compact form, ρε can be written as:

ρε =
2N∑

k=1

ck |ψk〉〈ψk| (4.20)

where {|ψk〉} = {|0〉⊗N , |0〉⊗N−1 ⊗ |1〉 , |0〉⊗N−2 ⊗ |1〉 ⊗ |0〉 , ..., |1〉⊗N} is the orthonormal
basis along the quantization axis (Z axis) and the set of the corresponding coefficients is,

{ck} = {qN ,
(
N

1

)
times qN−1(1− q)

,

(
N

2

)
times qN−2(1− q)2, ..., (1− q)N}. (4.21)

With the assumption that ε < 1, q is bigger than 1
2

and the above set of {ck} has a
decreasing order.

Any unitary evolution rotates the orthonormal basis {|ψk〉} to another orthonormal
basis, but it does not change the coefficients ck; therefore the evolved states, ρo and ρe,
have similar expansions,

ρo = VoρεV
†
o =

2N∑

k=1

ck |φo,k〉〈φo,k|

ρe = VeρεV
†
e =

2N∑

k=1

ck |φe,k〉〈φe,k| (4.22)

where |φo,k〉 = Vo |ψk〉 and |φe,k〉 = Ve |ψk〉. With a fixed POVM measurement, {Eα}, the
probability distribution of the measurement outcomes corresponding to the state ρo is,

po,α = Tr (Eαρo) =
2N∑

k=1

ckTr (Eα |φo,k〉〈φo,k|)

=
2N∑

k=1

ao,αkck (4.23)
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The variable ao,αk := Tr (Eα |φo,k〉〈φo,k|) has the following properties:

0 ≤ Eα ≤ 1 −→ 0 ≤ ao,αk ≤ 1∑

k

ao,αk = Tr(Eα
∑

k

|φo,k〉〈φo,k|) = Tr(Eα)

∑

α

ao,αk = Tr((
∑

α

Eα) |φo,k〉〈φo,k|) = 1

∑

k,α

ao,αk =
∑

k

Tr(1 |φo,k〉〈φo,k|) =
∑

k

1 = 2N (4.24)

Similarly pe,α =
∑2N

k=1 ae,αkck with ae,αk := Tr (Eα |φe,k〉〈φe,k|) which has all the above
properties. Substituting the relations for po,α and pe,α in equation 4.17 the average fidelity
is,

Favg =
1

2

∑

α

max




2N∑

k=1

ao,αkck,

2N∑

k=1

ae,αkck




=
1

2

∑

α


sα

2N∑

k=1

ao,αkck + (1− sα)

2N∑

k=1

ae,αkck




=
1

2

2N∑

k=1

((∑

α

sαao,αk

)
+

(∑

α

(1− sα)ae,αk

))
ck

=
1

2

2N∑

k=1

(βo,k + βe,k) ck =
1

2

2N∑

k=1

βkck. (4.25)

We introduce the coefficient sα, which acts as a switch; it is equal to 1 if po,α ≥ pe,α and
equal to 0 otherwise. We also define βo,k :=

∑
α sαao,αk, βe,k :=

∑
α(1 − sα)ae,αk and

βk := βo,k + βe,k. Note that

βo,k =
∑

α sαao,αk∑
α ao,αk = 1, 0 ≤ ao,αk ≤ 1

sα = 0, 1



 −→ 0 ≤ βo,k ≤ 1 (4.26)

Similarly one can show that 0 ≤ βe,k ≤ 1; and thus 0 ≤ βk ≤ 2. Also note that the
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coefficients βk add up to 2N ,

∑

k

βk =
∑

k

βo,k + βe,k (4.27)

=
∑

k

(∑

α

sαao,αk +
∑

α

(1− sα)ae,αk

)

=
∑

α

(
sα

(∑

k

ao,αk

)
+ (1− sα)

(∑

k

ae,αk

))

=
∑

α

Tr(Eα)(sα + 1− sα) = Tr(
∑

α

Eα) = 2N .

As a summary,

Favg =
1

2

∑

k

βkck with 0 ≤ βk ≤ 2 ,
2N∑

k

βk = 2N . (4.28)

As mentioned before, the set of the coefficients {ck} is fixed by the initial state and with
q > 1

2
has the decreasing order displayed in equation 4.21. Thus in order to maximize Favg

one should choose βk = 2 for half of ck with higher values and βk = 0 for the other half
with lower values, if possible, i.e.

{
βk = 2 1 ≤ k ≤ 2N−1

βk = 0 2N−1 + 1 ≤ k ≤ 2N
. (4.29)

This choice of βk results in the following maximum average fidelity and proves equation
4.18.

Favg,max (4.30)

=





N−1
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(1− q)lqN−l
(
N
l

)
odd N

N
2
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(
N
l

)
+ q

N
2 (1− q)N2

(
N
N
2

)
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=

{
B(N−1

2
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It is straight forward to show that the choices of V ?
e = 1⊗N and V ?

o = σ⊗Nx and {E?
α} =

{Πα} saturates the above upper bound for the average fidelity. The probability distribu-

tions associated with the state ρ?e = V ?
e .ρε.V

?†
e = ρε = (1+(1−ε)σz

2
)⊗N and ρ?o = V ?

o .ρε.V
?†
o =

(1−(1−ε)σz
2

)⊗N are,

p?o,α = Tr(Παρ
?
o) = (1− q)αqN−α

(
N

α

)
(4.31)

p?e,α = Tr(Π?
αρ

?
e) = qα(1− q)N−α

(
N

α

)
.

Since q > 1
2
, the max(p?e,α, p

?
o,α) is,

max(p?e,α, p
?
o,α) =

{
p?o,α = (1− q)αqN−α

(
N
α

)
α ≤ N

2

p?e,α = qα(1− q)N−α
(
N
α

)
α > N

2

. (4.32)

Combining the above equality with the relation 4.17 for the average fidelity, results in the
maximum average fidelity as given in equation 4.30.

4.5 Conclusion

In summary, we proposed a new procedure for entangling two non-interacting qubits in
interaction with an intermediate mesoscopic system of identical two-level systems. The
method is based on measuring the parity or hamming weight of the qubits’ state indirectly
by first coherently amplifying it in the collective state of the MS and then measuring the
MS. This generic method is not limited to a specific MS or target qubit and is enabling in
systems where measurement-device sensitivity is inadequate to detect a single qubit flip.

We demonstrated that, by preparing the MS in an entangled state, the local inter-
action between target qubits and nearby qubit from the MS is enough to magnify the
target qubits’s parity in the collective state of the MS. We discussed the measurement
requirements and showed that with an ideal initial state and evolution, a course-grained
two-outcome collective measurement of the MS can result in maximally entangled states
of the target qubits. Our analysis shows that in general the measurement needs to detect
only on the order of the number of qubits in the MS’s flips compared to the direct parity
measurement that needs to detect single qubit’s flip. We derived a rigid upper bound on
entanglement of the target qubits imposed by the initial polarization of the MS’s state
and verified that our scheme performs well even under limited polarization. Thus perfect
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preparation of the MS is not required. Analysis of further experimental imperfections such
as limited control depends on the specific choice of the target qubits and the MS. We will
present those analysis for spin target qubits and mesoscopic system system in the next
chapter.
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Chapter 5

Resources Needed for Implementing
Indirect Joint Measurement with a
Mesoscopic Spin System

In this chapter, we evaluate the resources required for implementing the indirect joint
measurement method using a mesoscopic spin system (MSS) consisting of dipolarly coupled
spin-1/2 particles. A MSS with two non-interacting halves, each coupled to one of the
target qubits is identified as a helpful geometry that allows implementing the magnification
process with the experimentally available control tools. We show that the requirements on
the amplified state of the target qubits and the MSS perfectly maps to the specifications of
micro-macro entanglement between each target qubit and its nearby half of the MSS. This
equivalence is used to quantify the sensitivity of the indirect joint measurement technique
to the experimental imperfections.

5.1 Introduction

Coherent control via a mesoscopic system is an emerging tool in quantum information
processing [14, 19, 18, 70, 17, 71, 15, 72]. In the previous chapter, using a mesoscopic system
to indirectly measure a joint property of two noninteracting qubits through a coarse-grained
collective measurement was introduced as a new approach for entangling uncoupled qubits.
Here, we analyze creating micro-macro entanglement between target spin qubits and a
mesoscopic spin system as a robust strategy for implementing indirect joint measurement
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on spin qubits. Micro-macro entangled states have two main characteristics, bipartite
entanglement between a microscopic system e.g., a qubit and a many-body system e.g.,
a mesoscopic system and macroscopic distinctness between the states of the many-body
system that are correlated with different states of the microscopic system [73, 74, 75].

Interest in micro-macro entangled states dates back to Schrödinger’s well-known thought
cat experiment [76] which was designed to formulate fundamental questions such as to what
extent the quantum mechanics laws apply? Or what causes quantum to classical transi-
tion? [75, 77]. It took several decades for quantum technology to reach the capability to
allow realizing purely quantum correlations at macroscopic scales (of course not as macro-
scopic as a cat). Micro-macro entangled states have been produced with Rydberg atoms
as the microscopic system coupled to photons confined in a cavity [78, 79], transmon qubit
coupled to photons in a waveguide cavity resonator [80], path degree of freedom of a sin-
gle photon and optical coherent states with different phases [74, 81] and internal state of
trapped ions entangled to their motional degrees of freedom [82, 83]. These experiments
pave the way for the application of micro-macro entangled states in quantum processing.
Here, we study the requirements for generating micro-macro entangled states between in-
dividual spin qubits and mesoscopic spin systems and using such states to entangle two
uncoupled spin qubits by indirect joint measurement. In particular, we show that with
the experimentally available control on the mesoscopic spin system including collective
rotations and internal magnetic dipole-dipole interactions, local coupling between a target
spin qubit and one nearby spin within the mesoscopic spin system suffices for generating
an extended micro-macro entangled state.

Bipartite entanglement between separated qubits is equivalent to quantum state trans-
fer (QST) up to local operations and classical communications [32, 20]. An entangled pair
of qubits can be used to transfer a quantum state using quantum teleportation protocols
[30]. On the other hand, two separated qubits can be entangled by first entangling one
of them with a nearby ancilla qubit with local operations then transferring the state of
the ancilla to the second qubit through QST. There are extensive studies on QST through
a (hypothetical) 1D spin chain [20, 21, 22, 23, 24, 25, 26, 27, 28, 84, 29]. These studies
usually consider spin preserving interaction Hamiltonians and fully polarized initial state,
which allows restricting the dynamics to the first excitation manifold [20, 21, 22, 23, 24].
Nearest-neighbor coupling is also widely assumed, which enables finding analytical solu-
tions through Jordan-Wigner transformation [85]. Although these simplified models are
very insightful, when it comes to physical systems, such as dipolarly coupled spin systems,
they do not provide a complete enough description of the dynamics. Here, we focus on
analyzing a fair model of the intermediate MSS. We consider the experimentally available
grade-raising Hamiltonian not the spin preserving flip-flop (XY) or Heisenberg Hamilto-
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nian and all-to-all dipolar coupling and not only nearest-neighbor interaction. Thus the
many-body dynamics of the spin system neither is limited to the first excitation manifold
nor can be solved analytically. We simulate the dynamics for up to 20 spins and extrapo-
late the results for larger sizes of the MSS. We also do not limit the geometry to a 1D spin
chain. In fact, we observe significantly faster responses in higher dimensions. Comparing
to QST proposals, high fidelity bipartite entanglement between separated qubits is antici-
pated without assuming single spin addressability, engineering the interaction between the
spins in the chain [21, 26] or adaptive two-qubit gates at the end of the spin chain [24]
given that a coarse-grained collective non-destructive magnetization measurement on the
MSS is available. The difference in the requirements is because our approach is based on
magnification of the state of the target qubits and global measurement of the MSS, com-
pared to directional information transfer from one qubit to the other needed in the QST
procedures.

5.2 Statement of the problem

Consider two uncoupled spin qubits and an intermediate mesoscopic spin system (MSS).
The target spin qubits are spin-half particles that can be initialized, controlled, and mea-
sured individually. The MSS is an ensemble of identical electron spins or spin half nuclei
that can be controlled and measured collectively. The spins in the MSS interact with each
other according to the two-body magnetic dipole coupling,

Hdip =
∑

i,j;i<j

dij(2σ
i
zσ

j
z − σixσjx − σiyσjy) (5.1)

where σx, σy and σz are the Pauli operators and the interaction strength is proportional
to the inverse cube of the distance between the spins, dij ∝ 1/|~rij|3. Each target qubit is
locally coupled to the MSS. To be specific, we consider that each qubit, qi, is interacting
with one nearby spin within the MSS, si, and universal control over the pair is available
[51]. An example of such a set-up consists of two nitrogen-vacancy (NV) centers in a
diamond as the target qubits and electronic P1 defects in the diamond or electron spins of
phosphorous defects in a silicon lattice attached to the surface of the diamond as the MSS.

The goal is to evaluate the resources required for entangling the target qubits by indirect
joint measurement through the MSS. The analyzed resources of the MSS are the purity of
the initial state, the size, control and internal dynamics, measurement, and robustness to
noise. The approach is to limit the coherent control tools to experimentally available ones,
(including collective rotations, internal dipolar interaction among the spins in the MSS
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Figure 5.1: A schematic of a MSS in local contact with two non-interacting individual
qubits

and local coupling between each target qubit and the MSS), and find the requirement on
the other resources.

This chapter is organized as follows. In section 5.3, the general scheme for entangling
two non-interacting spin qubits through indirect joint measurement is reviewed, the role
of micro-macro entangled states is highlighted, and the measurement requirements are
identified. In section 5.4, we present a scheme that can generate a mesoscopic superposition
state with micro-macro entanglement between a spin qubit and a mesoscopic spin system
using experimentally available control including collective rotations and internal dipole-
dipole interaction in the MSS and local coupling between the qubit and the MSS. The
scaling of the magnification time with the size of the MSS and its dependency on the
geometry and dimension are discussed. In section 5.5, the entanglement of the target qubits
is quantified based on the magnification procedure of section 5.4 and a general collective
measurement through a two-level apparatus. In sections 5.6 and 5.7, the sensitivity of the
scheme to limited initial polarization of the MSS and particle loss is analyzed. In particular,
it is shown that limited initial polarization can be compensated for by enlarging the MSS.
We summarize the required resources for entangling two uncoupled spin qubits through a
MSS and conclude the chapter in section 5.8.

5.3 Indirect joint measurement

Two non-interacting qubits can be entangled either by creating an indirect interaction
between them or by projectively measuring a joint property of them. Measuring the parity
of two qubits each prepared in a superposition state, |±〉 = 1√

2
(|0〉 ± |1〉) projects their

state into a maximally entangled state with odd, |o±〉 = 1√
2

(|01〉 ± |10〉), or even, |e±〉 =
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1√
2

(|00〉 ± |11〉), parity. Similarly, total magnetization measurement of the qubits projects

their state into the maximally entangled state |m0〉 = 1√
2

(|01〉 ± |10〉) or separable states

|m−1〉 = |11〉 and |m+1〉 = |00〉 with the probabilities of 1
2
, 1

4
and 1

4
, respectively. Here, the

qubit states |0〉 and |1〉 represent the spin states |↑〉 and |↓〉. Entangling two spin qubits
by projective measurement needs a very high-resolution joint measurement able to detect
a single spin flip. Indirect joint measurement through a MSS relaxes this criterion by first
coherently amplifying the state of the target qubits in the collective magnetization of the
MSS along a known direction (called z) (gate Uq,MSS in Fig. 5.2), then measuring the MSS
by a coarse-grained collective magnetization measurement that is capable to detect only
many spin flips (operation M in Fig. 5.2).

qL, |0〉 H

Uq,MSS (U †q,MSS)MMSS, ρin ...

qR, |0〉 H









|ψ〉q,MSS

Figure 5.2: The general circuit of indirect joint measurement on two separated qubits
through an intermediate MSS introduced in chapter 4.

The coherent magnification process, represented by gate Uq,MSS in Fig. 5.2, changes
the state of the MSS conditioned on the state of the target qubits, Uq,MSS = |00〉〈00|q ⊗
U00 + |01〉〈01|q ⊗U01 + |10〉〈10|q ⊗U10 + |11〉〈11|q ⊗U11. With a pure initial state over the
MSS, |ψin〉, the state of the qubits and the MSS after applying this gate is,

|ψ〉q,MSS =
1

2

(
|00〉q |ψ00〉+ |01〉q |ψ01〉+ |10〉q |ψ10〉+ |11〉q |ψ11〉

)
(5.2)

where |ψij〉 = Uij |ψin〉, for i, j = 0, 1. To indirectly measure the joint magnetization of the
target qubits, the combination of the maginifaction and the measurement needs to be such
that the collective coarse-grained magnetization measurement over the MSS distinguishes
the pair of states {|ψ01〉 , |ψ10〉} from the pair {|ψ00〉 , |ψ11〉} but does not discern between
the states |ψ01〉 and |ψ10〉. With these criteria, the state of the qubits and the MSS after
the measurement and post-selection ideally is,

|ψm0〉q,MSS =
1√
2

(
|01〉q |ψ01〉+ |10〉q |ψ10〉

)
(5.3)

In general the states |ψ01〉 and |ψ10〉 are not equal, thus |ψm0〉q,MSS is an entangled state
between the target qubits and the MSS. To prepare the target qubits in the maximally
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entangled triplet zero state, |m0〉 = 1√
2
(|01〉+ |10〉), they need to be disentangled from the

MSS by undoing the magnification step (gate U †q,MSS in Fig. 5.2). In the quantum eraser
language the MSS is like a tagging particle and the target qubits’ entanglement needs to
be restored similar to the reversible eraser scheme [45].

5.3.1 Micro-macro Entanglement

With the experimentally available control tools, an interesting and potentially imple-
mentable geometry consists of a MSS with a barrier in the middle; such that there is
no internal interaction, and thus no flow of information, between the two sides of the bar-
rier. The state of each target qubit is magnified in the collective state of its nearby side.
However, the collective measurement is implemented on the whole MSS, as schematically
depicted in Fig. 5.3.

Magnification 

0𝑞# 1+ 𝑞&0 1+𝑠# 𝑠&

MSS
L R

𝑞# 𝑞&
𝑠# 𝑠&

MSS

Measurement

Figure 5.3: A schematic of a MSS with two non-interacting halves, each in contact with
one target qubit. The state of each target qubit is magnified in the collective magnetization
of its nearby side of the MSS, but the measurement is applied on the whole MSS.

The main benefit of this configuration is that it enables satisfying the mentioned distin-
guishability criteria on the magnified state of the target qubits and the MSS, while using
only the experimentally available control tools. Here, we show that, within this geometry,
the conditions on the magnified state of the qubits and the MSS entirely maps to the spec-
ifications of micro-macro entangled states between each target qubit and its nearby half
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of the MSS. In section 5.4, we will show that creating micro-macro entanglement between
each target qubit and half the MSS needs only experimentally available control tools in-
cluding local interaction between the qubit and the MSS, collective rotations on the MSS
and internal magnetic dipole interaction between the spins in the MSS.

|0〉+|1〉√
2

|φ〉qL,MSSL
qL, |0〉 H

UL U †L

M

MSSL, ρ
L
in ...

UR U †R

...MSSR, ρ
R
in

qR, |0〉 H









|0〉+|1〉√
2

|φ〉qR,MSSR

Figure 5.4: Indirect joint measurement with a MSS consisting of two non-interacting
halves

The general circuit for this geometry, depicted in Fig. 5.4, is a subset of the generic
indirect joint measurement circuit in Fig. 5.2, in which the magnification gate is decom-
posed into two parts Uq,MSS = UL ⊗ UR, each being a conditional gate on half of the MSS
controlled by its nearby target qubit,

Ui = |0〉〈0|qi ⊗ U
MSSi
0 + |1〉〈1|qi ⊗ U

MSSi
1 , i = L,R (5.4)

With an ideal pure separable initial state of the MSS, |ψin〉 =
∣∣ψLin

〉
⊗
∣∣ψRin

〉
, the general

state of each target qubit and its nearby half of the MSS after applying this gate and before
the measurement is,

|φ〉qi,MSSi
=

1√
2

(
|0〉qi

∣∣ψi0
〉

+ |1〉qi
∣∣ψi1
〉)
, i = L,R (5.5)

This state is a micro-macro entangled state if |ψi0〉 and |ψi1〉 are orthogonal and macroscop-
ically distinct i.e., distinguishable by a coarse-grained collective measurement [73, 74, 75].
Macroscopic distinctness between the states |ψi0〉 and |ψi1〉 mathematically means that the
difference in the expectation value of a particular collective observable e.g. the collective
magnetization along z, Jz =

∑
j σ

j
z, for these two states is large compared both to the
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quanta of the collective observable (e.g. ~ for collective magnetization) and to the sum of
their standard deviation [73, 74, 75].,

| 〈J iz〉0 − 〈J iz〉1 |
max((∆J iz)0 + (∆J iz)1, ~)

� 1 (5.6)

Taking the maximum between (∆J iz)0 + (∆J iz)1 and ~ ensures meaningful answer when
both (∆J iz)0 and (∆J iz)1 are zero. In addition, to effectively use all the spins in the MSS,
the difference in the expectation value of the collective magnetization observable preferably
should be proportional to the size of the MSS,

〈
J iz
〉

0
−
〈
J iz
〉

1
∝ N (5.7)

The collective magnetization observable, Jz, for N spins follows the spectral decomposition,

Jz =

N
2∑

mz=−N
2

mzΠ
N(mz) (5.8)

where the operator ΠN(mz) projects onto the subspace with total magnetization of mz and
~ is set to one. The magnetization spectrum of an arbitrary state, |φ〉, is,

Pφ(mz) = Tr(ΠN(mz) |φ〉〈φ|) (5.9)

Macroscopic distinctness between the states |ψi0〉 and |ψi1〉 requires them to have well sep-
arated magnetization spectra, as depicted in Fig. 5.5a.

The states of the whole MSS associated with different states of the target qubits are,
|ψ00〉 =

∣∣ψL0
〉 ∣∣ψR0

〉
, |ψ01〉 =

∣∣ψL0
〉 ∣∣ψR1

〉
, |ψ10〉 =

∣∣ψL1
〉 ∣∣ψR0

〉
and |ψ11〉 =

∣∣ψL1
〉 ∣∣ψR1

〉
. To

implement indirect magnetization measurement on the qubits, the states {|ψ10〉 , |ψ10〉} not
only need to be orthogonal to the states {|ψ00〉 , |ψ11〉} but also must be distinguishable
from them by a coarse-grained collective magnetization measurement. In addition, the
states |ψ10〉 and |ψ10〉 must not be distinguishable from each other.These three conditions
are satisfied if and only if each qubit and its nearby half of the MSS are prepared in
(similar) micro-macro entangled states.

The pair of the states {|ψ10〉 , |ψ10〉} and {|ψ00〉 , |ψ11〉} are orthogonal if and only if the
states |ψi0〉 and |ψi1〉 are orthogonal to each other for i = L,R. The second criterion requires
macroscopic distinctness between the states |ψi0〉 and |ψi1〉. The magnetization spectra of
the states |ψ00〉, |ψ01〉, |ψ10〉 and |ψ11〉 of the whole MSS are the convolution of the spectra
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Figure 5.5: Magnetization spectrum of (a) An example of two macroscopically distinct
states of half of the MSS and (b) the corresponding states of the whole MSS.

of the corresponding states of the halves. Consequently, their means and variances are sum
of the means and variances of the spectra of the corresponding states of the halves,

〈Jz〉kj =
〈
JLz
〉
k

+
〈
JRz
〉
j

(5.10)

(∆Jz)kj =
√

((∆JLz )k)2 + ((∆JRz )j)2

for k, j = 0, 1. The equivalence between macroscopic distinctness between the states |ψi0〉
and |ψi1〉 and the distinguishablity between the pairs {|ψ01〉 , |ψ10〉} and {|ψ00〉 , |ψ11〉} fol-
lows from these relations. The distinguishablity between {|ψ01〉 , |ψ10〉} and {|ψ00〉 , |ψ11〉},
by a course-grained collective magnetization measurement along a particular axis e.g.,
z-axis, requires that,

| 〈Jz〉01 − 〈Jz〉00 | � (∆Jz)01 + (∆Jz)00

| 〈Jz〉01 − 〈Jz〉11 | � (∆Jz)01 + (∆Jz)11

| 〈Jz〉10 − 〈Jz〉00 | � (∆Jz)10 + (∆Jz)00

| 〈Jz〉10 − 〈Jz〉11 | � (∆Jz)10 + (∆Jz)11 (5.11)

Replacing the means and the standard deviations according to Eq. (5.10) and assuming
that the two target qubits and their nearby sides of the MSS are prepared in similar states
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i.e.,
〈
JRz
〉
k
≈
〈
JLz
〉
k

and (∆JLz )k ≈ (∆JRz )k, the above conditions are met if 1,

|
〈
J iz
〉

1
−
〈
J iz
〉

0
| � (∆J iz)1 + (1 +

√
2)(∆J iz)0

|
〈
J iz
〉

1
−
〈
J iz
〉

0
| � (∆J iz)0 + (1 +

√
2)(∆J iz)1 (5.12)

for i = L,R. or more simply if,

|
〈
J iz
〉

1
−
〈
J iz
〉

0
| � (1 +

√
2)((∆J iz)1 + (∆J iz)0) (5.13)

which is the same as the macroscopic distinctness condition in Eq. (5.6) up to a small
coefficient (1 +

√
2) ≈ 2.41. Satisfaction of relation (5.13) clearly requires the macroscopic

distinctness condition given in Eq. (5.6) to be fulfilled. Thus, each target qubit and
its nearby half of the MSS need to be in a micro-macro entangled state prior to the
measurement step. On the other hand, preparing each qubit and its nearby half of the
MSS in similar micro-macro entangled states guarantees that the states {|ψ01〉 , |ψ10〉} have
similar magnetization spectra separated from the spectra of the states {|ψ00〉 , |ψ11〉}. Thus,
the two pairs can be distinguished by a coarse-grained collective measurement while the
states |ψ01〉 and |ψ10〉 will not be discerned due to their similar spectra.

5.3.2 Coarse-grained Collective Measurement

The measurement and post-selection must project the state of the qubits into zero magne-
tization subspace along with the states of the MSS. In other words, the collective magne-
tization measurement on the MSS and post-selection not only need to discern the MSS’s
states correlated with zero magnetization of the qubits from states associated with ±1
magnetizations; but also must update the MSS’s state according to the measurement out-
come, with minimum disturbance on the selected states. The state of the qubits and the
MSS after the measurement ideally is,

|ψ〉q,MSS =
1√
2

(
|01〉q

∣∣ψL0
〉 ∣∣ψR1

〉
+ |10〉q

∣∣ψL1
〉 ∣∣ψR0

〉)
(5.14)

Bipartite entangled state between the qubits separable from the MSS can be created from
this state simply by reversing the magnification gate, similar to reversible quantum eraser
protocol [45, 36],

|ψ〉q,MSS =
1√
2

(
|01〉q + |10〉q

)
⊗ |ψin〉 (5.15)

1For any a ≥ 0 and b ≥ 0,
√
a2 + b2 ≤ a+ b
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The desired coarse-grained collective magnetization measurement is mathematically rep-
resented by a Positive-Operator Valued Measure (POVM) with measurement operators,
{Eα}, satisfying two conditions: positivity, Eα ≥ 0, and trace-preserving,

∑
αEα = 1.

Since the measurement is collective, the POVM operators can be expanded in terms of the
collective magnetization projection operators, ΠN(mz),

Eα =
∑

mz

aα,mzΠ
N(mz) (5.16)

The expansion coefficients, aα,mz , satisfy two conditions 0 ≤ aα,mz ≤ 1 and
∑

α aα,mz = 1
following the positivity and trace-preserving of the Eα operators. The probability of each
measurement outcome, α, upon measuring the MSS in a general state ρMSS is,

Pα = Tr(EαρMSS) (5.17)

and the state of the MSS after the measurement is,

ρMSS,α =
MαρMSSM

†
α

Pα
(5.18)

where the operator Mα satisfies the relation MαM
†
α = Eα. Following the expansion of Eα

in Eq. (5.16), the operators Mα are expanded in terms of collective projectors as,

Mα =
∑

mz

eiφα,mz
√
aα,mzΠ

N(mz) (5.19)

The phase factor, eiφα,mz , depends on the details of the measurement implementation. The
operator Mα simplifies to

√
Eα if φα,mz does not depend on mz, φα,mz := φα.

The measurement requirements can be specified by the necessity that the measurement
and post-selection updates the qubits and the MSS’s state from the state in Eq. (5.2) into
the state in Eq. (5.3). There should exist as least one measurement operator, Mβ, that
overlaps with the states

∣∣ψL0
〉 ∣∣ψR1

〉
and

∣∣ψL1
〉 ∣∣ψR0

〉
but does not overlap with the states∣∣ψL0

〉 ∣∣ψR0
〉

and
∣∣ψL1
〉 ∣∣ψR1

〉
. Moreover, this measurement operator ideally must preserve the

amplitude and the phase of the spectral expansion of the states
∣∣ψL0
〉 ∣∣ψR1

〉
and

∣∣ψL1
〉 ∣∣ψR0

〉

i.e. in the expansion of the measurement operators in Eq. (5.19) the amplitudes, aβ,mz , and
the phases, eiφβ,mz , should be equal for all the collective magnetizations that the spectra
of the states

∣∣ψL0
〉 ∣∣ψR1

〉
and

∣∣ψL1
〉 ∣∣ψR0

〉
contain. The former condition guarantees that ±1

magnetizations of the target qubits i.e. the states |00〉q and |11〉q are not selected by the
measurement and the latter ensures that the coherence between |01〉q and |10〉q states of
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the qubits can be restored by disentangling the MSS through reversing the magnification
gate.

If these two measurement requirements are not perfectly satisfied, the final entan-
gled state of the target qubits, ρq, deviates from the maximally entangled state |m0〉 =

1√
2
(|01〉q + |10〉q). However, ρq is an entangled state and can be distilled towards the state

|m0〉, if the fidelity defined as the overlap of these two states is greater than 0.5 [44, 43],

Fm0(ρq) := Tr(ρq |m0〉〈m0|) (5.20)

Fidelity ranges between 0 and 1 and if Fm0(ρq) > (2 + 3
√

2)/8 ≈ 0.78, ρq is entangled
enough to violate Clauser-Horne-Shimony-Holt (CHSH) inequality [44, 69] 2.

Entangling the target spin qubits by first entangling each with the nearby half of
MSS and then measuring the whole MSS might remind one of entanglement swapping
[86]. One main difference is the measurement process. In the entanglement swapping
procedure, measurement of two qubits, each from an entangled pair, in the Bell basis en-
tangles the two other qubits. The analogy in our case is measuring an observable that

1√
2
(
∣∣ψL0
〉 ∣∣ψR1

〉
±
∣∣ψL1
〉 ∣∣ψR0

〉
) and 1√

2
(
∣∣ψL0
〉 ∣∣ψR0

〉
±
∣∣ψL1
〉 ∣∣ψR1

〉
) are four of its eigenstates with

different eigenvalues. Such an observable, in general, is not a collective observable in
contrast to the observable in the indirect joint measurement procedure.

5.4 Creation of micro-macro entanglement

In this section, we discuss producing a mesoscopic superposition state with micro-macro
entanglement between one target spin qubit and a MSS, half the size of the whole MSS,
as the first step towards implementing indirect joint measurement on two non-interacting
target qubits. The focus is on using experimentally available control elements namely local
control of the qubit, interaction between the target qubit, q, and one nearby spin within the
MSS, s 3, collective rotations on the MSS and magnetic dipole-dipole interaction among

2Note that we use the fidelity, defined in Eq. (5.20), as a measure for entanglement since we know a
priori what the expected maximally entangled state is. However fidelity is not a measure for entanglement
in general e.g. the maximally entangled states 1√

2
(|00〉 ± |11〉) have zero overlap with |m0〉 state.

3It is sufficient for the target qubit to interact with only one spin within the MSS but it is not required,
i.e., the qubit may interact with more than one spin. The main requirement on the local interaction
between the target qubit and the MSS is that it needs to enable creating a local conditional gate on
the MSS, controlled by the state of the qubit. We consider the most local form of interaction between
the target qubit and the MSS to show that it is possible to create micro-macro entangled state with the
entanglement extended to the whole MSS even in this case.
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the spin in the MSS. The qubit is prepared in the superposition state, |+〉 = 1√
2
(|0〉+ |1〉),

and the MSS is ideally prepared in the polarized state, |↑〉⊗Nh , where Nh ≈ N/2 is the
number of spins in the MSS.

We start with an intuitive approach based on repetitive application of a conditional lo-
cal gate on the MSS controlled by the qubit and a duration of internal interaction between
the spins of the MSS. The internal evolution of the MSS redistributes the magnetization
between the spins in the MSS but preserves the total magnetization. The collective mag-
netization is only changed conditioned on the state of the target qubit. After enough
repetitions, on the order of Nh, the states of the MSS correlated with different states of
the target qubit become macroscopically distinct and a micro-macro entangled state is
produced.

Next we present a different scheme in which the target qubit interacts with the MSS only
once. The key feature of this approach is that the MSS is prepared in a globally correlated
state prior to its interaction with the target qubit such that a local change in the MSS
conditioned on the state of the target qubit has a global conditional effect. The maximally

entangled GHZ state, 1√
2

(
|↑〉⊗Nh + |↓〉⊗Nh

)
, is an ideal state for this purpose [36]. However

preparing the GHZ state is challenging for a mesoscopic size system 4; we show that micro-
macro entanglement between the target qubit and the MSS can be produced by preparing
less demanding correlated states, created through the experimentally available two-body
dipolar coupling and collective rotations.

After presenting these two approaches, the magnification time and its relation to the
size of the MSS and its dimensionality are discussed.

5.4.1 Repeated interactions

The circuit in Fig. 5.6 shows an intuitive approach for making a macroscopic global
change in the collective magnetization of the MSS conditioned on the state of the qubit
using only local interactions between the two. The CNOT gate, controlled by the qubit,
q, on its nearby spin within the MSS, s, CNOT = |0〉〈0|q ⊗ 1s + |1〉〈1|q ⊗ σsx, changes the
magnetization of the MSS locally conditioned on the state of the qubit and evolving under
zero-quantum flip-flop Hamiltonian,

HXY =
∑

i,j;i<j

aij
(
σi+σ

j
− + σi−σ

j
+

)
aij ∝

1

|~rij|3
(5.21)

4It needs either accessing individual spins in the MSS or synthesizing N-body interaction among all the
spins.
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passes on this change to the rest of the spins in the MSS while preserving the total mag-
netization. These two processes are repeated r times to create a macroscopic effect. The
Hamiltonian HXY is widely used in QST proposals usually with only nearest-neighbor
interactions, aij = 0 for |i− j| 6= 1. Here we consider all-to-all interactions with the coef-
ficients aij proportional to inverse cube of the distance between the two spins, consistent
with the magnetic dipolar interaction among the spins in the MSS. The important feature
of HXY is that it only redistributes the magnetization among the spins while preserving the
collective magnetization of the MSS. The collective magnetization of the MSS varies only
conditioned on the state of the qubit by the CNOT gate. Hence, in each repetition, the
total magnetization of the MSS either is preserved or varies by ∆mz ∈ [−1, 1], depending
on the qubit’s state.

UXY ×r
q, |+〉 •

s

HXY , dtMSS, |↑〉⊗Nh ...










Figure 5.6: Magnification process based on repetitive interaction between the external
qubit and its nearby spin from the MSS intervened by internal evolution of the MSS under
the magnetization preserving HXY Hamiltonian

With an initial superposition state of the qubit, |+〉 = 1√
2
(|0〉+ |1〉), and polarized state

of the MSS, |↑〉⊗Nh , the general output state for the circuit 5.6 is,

∣∣φXY (dt, r)
〉
q,MSS

=
1√
2

(
|0〉q |↑〉⊗Nh + |1〉q

∣∣ψXY1 (dt, r)
〉)
. (5.22)

For appropriate choice of the evolution time, dt, and large enough repetitions, r ∝ Nh,
the state

∣∣ψXY1 (dt, r)
〉

is macroscopically distinct from the state |↑〉⊗Nh upon collective
magnetization measurement along z. Figure 5.7 shows the simulation results of the mag-
netization spectra of these two states for a MSS in a 1D spin chain geometry with number
of repetitions r = 2Nh and dt = π/a12, where a12 = aii+1 is the nearest neighbor interaction
strength of the Hamiltonian in Eq. (5.21) 5. The spectrum of the polarized state |↑〉⊗Nh
is a peak at mz = Nh/2; whereas, the spectrum of the state

∣∣ψXY1

〉
is distributed around

mz = 0 and has nonzero values for mz = Nh/2, Nh/2− 2, ...,−Nh/2.

To characterize the spectrum of the state
∣∣ψXY1

〉
, we simulate the mean and the standard

deviation (SD) of its distribution as a function of the number of repetitions, r, with dt =

5All the numerical simulations are conducted using the open source ”Expokit” software package [87]
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Figure 5.7: The distinct magnetization spectra of the MSS’s states, |↑〉⊗Nh and
∣∣ψXY1

〉

correlated to |0〉 and |1〉 states of the target qubit simulated based on the circuit in Fig.
5.6 with dt = π/a12 and r = 2Nh for Nh = 12 spins in a 1D chain geometry.

π/a12 for up to Nh = 20 spins. As figure 5.8 shows, after a transient time the mean
of the spectrum of

∣∣ψXY1

〉
approaches zero and its SD approaches

√
Nh/2, which are the

same as the mean and the SD of a fully mixed state with Nh spins, (12/2)⊗Nh , or an

equal superposition state,
(
(|0〉+ |1〉) /

√
2
)⊗Nh 6. This result can be extrapolated to larger

systems; the mean and the SD of the spectrum of
∣∣ψXY1

〉
are expected to be ≈ 0 and

≈ √Nh/2, respectively. On the other hand, the spectrum of |↑〉⊗Nh is focused at Nh/2. As
a result, the macroscopic distinctness between the states

∣∣ψXY1

〉
and |↑〉⊗Nh scales as

√
Nh,

〈Jz〉XY0 − 〈Jz〉XY1

(∆Jz)XY0 + (∆Jz)XY1

≈ Nh/2− 0

0 +
√
Nh/2

∝
√
Nh (5.23)

It should be mentioned that the two states are not necessarily orthogonal; nevertheless,
for the proper choices of dt and r their overlap is small. Thus, for a large enough MSS,√
Nh � 1, and with appropriate dt and r the state in Eq. (5.22) is a micro-macro entangled

state.

The introduced procedure provides a reasonable process for creating a micro-macro

6One difference is that the spectrum of the state
∣∣ψXY

1 (t)
〉

has nonzero values for every other magnetiza-

tion whereas the spectrum of a fully mixed state or
(
(|0〉+ |1〉) /

√
2
)⊗Nh

state includes all magnetization.
But what is important is the extend of the two spectra which is quantified by their mean and SD and is
similar for the two cases
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Figure 5.8: (a) The mean and (b) the standard deviation (SD) of the magnetization
spectrum of

∣∣ψXY1

〉
as a function of the number of repetitions for Nh = 13, 15, 16, 18 qubits.

After a transient time both the mean and the SD of the spectrum approach those of the
identity state with the same size.

entangled state using only local interactions. However, it is hard to implement experi-
mentally in a spin system with dipolar coupling. It needs the XY Hamiltonian which can
not be synthesized out of the natural dipole-dipole interaction using collective rotations
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78. Moreover, the number of the CNOT gates between the target qubit and the MSS is
proportional to the number of spins in the MSS which is challenging for large systems.

Next, we will introduce a different procedure that requires only a one-time interaction
between the qubit and the MSS. It also uses a Hamiltonian that can be engineered from
the dipolar coupling using only collective control.

5.4.2 One-time interaction

Here we show that the circuit in Fig. 5.9 coherently magnifies the state of the target
qubit in the collective magnetization of the MSS and creates a micro-macro entangled
state using only one CNOT gate. The internal dynamics of the MSS is governed by the
reversible grade-raising Hamiltonian,

H2GR =
∑

i,j;i<j

aij
(
σi+σ

j
+ + σi−σ

j
−
)

aij ∝
1

|~rij|3
(5.24)

which is a well known Hamiltonian within the nuclear magnetic resonance (NMR) commu-
nity. Both ±H2GR can be synthesized out of the naturally occurring magnetic dipole-dipole
interaction at high field by applying appropriate sequences of collective rotations [88].

UGRq, |+〉q •
s

H2GR, t −H2GR, tMSS, |↑〉⊗Nh ...




Figure 5.9: This circuit creates micro-macro entanglement between the target qubit and
the MSS with a one-time interaction between the two and using experimentally available
control.

The circuit in Fig. 5.9 works as follows. First, evolution under the grade-raising
Hamiltonian correlates the spins in the MSS. For long enough evolution times a globally
correlated state is created; specifically the spin of the MSS that is in contact with the

7Synthesis of XY Hamiltonian out of dipolar coupling needs π−pulses on every other qubit [25]. De-
pending on the geometry it might be achieved using field gradients.

8Secular dipolar-dipole interaction, Hdip in Eq. (5.1), preserves the collective magnetization similar to
HXY ; but according to our simulations replacing HXY by Hdip in the circuit in Fig. 5.6 does not yield
the desired response
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external target qubit becomes correlated with the rest of the spins in the MSS. Next,
the CNOT gate controlled by target qubit, q, on its nearby spin in the MSS, s, perturbs
the state of the MSS 9. This local conditional gate has a global conditional effect due
to correlations established in the MSS prior to its local interaction with the target qubit.
Finally, applying the reverse of the first gate makes this global conditional effect observable
in the collective magnetization spectrum of the MSS along the quantization axis. The
unperturbed state of the MSS returns back to the initial polarized state |↑〉⊗N while the
perturbed one evolves to a state with a very different collective magnetization.

The state of the target qubit and the MSS after the evolution follows the general form
of a micro-macro entangled state in Eq. (5.5) with |ψi0〉 = |↑〉⊗Nh and |ψi1〉 =

∣∣ψGR1

〉
,

∣∣φGR(t)
〉
q,MSS

=
1√
2

(
|0〉q |↑〉⊗Nh + |1〉q

∣∣ψGR1 (t)
〉)
. (5.25)

The states
∣∣ψGR1 (t)

〉
and |↑〉⊗Nh are not only orthogonal but also macroscopically distinct

given that the evolution time, t, is long enough.
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Figure 5.10: The distinct magnetization spectra of the MSS’s states, |↑〉⊗Nh and
∣∣ψGR1

〉

correlated to |0〉 and |1〉 states of the target qubit simulated based on the circuit in Fig.
5.9 with t = 2πNh/a12 for Nh = 12 spins in a 1D chain geometry.

Figure 5.10 shows the separation in the collective magnetization spectra of the states
|↑〉⊗Nh and

∣∣ψGR1 (t)
〉

simulated for a MSS in a 1D chain geometry with Nh = 12 spins and

9Controlled-Z gate has similar effect.
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evolution time t = 2πNh/a12, where a12 is the nearest neighbor coupling strength of the
grade-raising Hamiltonian represented in Eq. (5.24). Figure 5.11 displays the mean and
the SD of the magnetization spectrum of the state

∣∣ψGR1

〉
as a function of the normalized

evolution time, t/Nh, for up to Nh = 20 spins. After a transient time, the mean of
the spectrum approaches zero and the SD approaches

√
Nh/2 similar to the steady-state

behaviour of the state
∣∣ψXY1

〉
. Thus, the macroscopic distinctness of the states

∣∣ψGR1

〉
and

|↑〉⊗Nh , upon collective Jz measurement, scales as
√
Nh,

〈Jz〉GR0 − 〈Jz〉GR1

(∆Jz)GR0 + (∆Jz)GR1

≈ Nh/2− 0

0 +
√
Nh/2

∝
√
Nh (5.26)

After applying the introduced magnification process on both target qubits and their
nearby halves of the MSS, the states of the whole MSS correlated with different states of

the target qubits are:
∣∣ψGR00

〉
= |↑〉⊗N ,

∣∣ψGR01

〉
= |↑〉⊗NL

∣∣∣ψR,GR1

〉
,
∣∣ψGR10

〉
=
∣∣∣ψL,GR1

〉
|↑〉⊗NR

and
∣∣ψGR11

〉
=
∣∣∣ψL,GR1

〉 ∣∣∣ψR,GR1

〉
. According to the relations in Eq. (5.10), the mean and the

SD of the collective magnetization spectra of these states scale as,

〈Jz〉GR00 ≈ N

2
, (∆Jz)

GR
00 ≈ 0 (5.27)

〈Jz〉GR01 ≈ 〈Jz〉GR01 ≈
N

4
, (∆Jz)

GR
01 ≈ (∆Jz)

GR
10 ≈

√
N/2

2

〈Jz〉GR11 ≈ 0, (∆Jz)
GR
11 ≈

√
N

2

where N is the size of the whole MSS and NL ≈ NR ≈ Nh ≈ N/2. Macroscopic distinctness
of the states

∣∣ψGR01

〉
and

∣∣ψGR10

〉
from both of the states

∣∣ψGR00

〉
and

∣∣ψGR11

〉
imposes a lower

bound on the size of the MSS,

N

4
�
(√

N/2

2
+

√
N

2

)
⇒ N � 12 (5.28)

Comparing to the circuit based on XY Hamiltonian, the coherent control elements
of this circuit meshes better with the experimentally available tools. It needs only one
CNOT gate. Additionally, the grade-raising Hamiltonian can be synthesized from dipolar
interaction with only collective pulses in contrast to the XY Hamiltonian that requires
both collective pulses and rotations on every other spin [25]. Thus, in the rest of this
chapter we will consider the circuit in Fig. 5.9, based on the grade-raising Hamiltonian as
the magnification process.
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Figure 5.11: (a) The mean and (b) the SD of the magnetization spectrum of
∣∣ψGR1

〉
as a

function of the normalized evolution time for MSSs with Nh = 12, 16, 18, 20 spins. After a
transient time both the mean and the SD of the spectrum approach those of the identity
state with the same size.

5.4.3 Dimensionality

The simulations in section 5.4.2 were all set in a 1D geometry. Here, generating micro-
macro entanglement between a target qubit and a MSS that has a 2D structure is studied.

Figure 5.12 compares (a) the mean and (b) the SD of the spectrum of
∣∣ψGR1

〉
simulated

for Nh = 20 spins when in a 1D chain versus 2 by 10 and 4 by 5 2D lattices. The asymptotic
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Figure 5.12: Comparing (a) the mean and (b) the SD of
∣∣ψGR1

〉
with the circuit in Fig.

5.9 for a 1D chain and 2D lattices. 2D lattice structures have much shorter transient times
than a 1D chain with the same number of spins but the steady state responses are similar.

behaviours of 2D lattices are similar to that of a 1D chain; however, the transition times
of the 2D structures are much shorter meaning that the information flows much faster.
One simple explanation for this difference is that information flows over just one path
in a 1D structure compared to multiple paths in 2D (or 3D) structures. One-directional
information flow is crucial in quantum state transfer proposals; in contrast, our method
relies on amplification of the qubit’s state in the whole system rather than propagation of
information in a specific direction. Therefore, it benefits from faster response in 2D (and
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3D) structures.

To conclude, all the previous steady-state results apply to higher dimensions with an
essential advantage of shorter transient times and faster responses.

5.4.4 Magnification time

An important consideration moving forward is determining the magnification process’s
time. Of particular interest is how the magnification time scales with the size of the MSS
and what its relation is to the dimension of the MSS. This question is in general hard to
answer because it depends on the many-body dynamics of the MSS. Nevertheless, we have
some clues to the answer. We have shown that the dimension of the MSS significantly
affects the response time. The magnification process has a much shorter transient time
if the MSS has a 2D structure, compared to a 1D chain of the same size. Moreover, as
depicted in Fig. 5.13, the long range magnetic dipole interaction entails shorter transient
times compared with truncating to only nearest-neighbor (NN) interactions. Furthermore,
comparing the SD vs normalized time for different numbers of spins in a 1D chain in
Fig. 5.11 shows that as the size of the MSS increases, the peak is shifted towards shorter
normalized times; indicating that the transient time has a sub-linear relation with the size
of the MSS even in a 1D geometry.
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Figure 5.13: Comparing the transient times for MSSs with NN coupling and long range
dipolar coupling. Information flows faster in a system with full dipolar compared to trun-
cating to only NN interactions.

The magnification time in our protocol is closely related to the rate of information
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flow in a system with dipolar coupling. In 1972, Lieb and Robinson showed that there is
a constant group velocity for the flow of information in a system with local interactions,
e.g., nearest-neighbor interactions (or exponentially decaying interaction strength), known
as the Lieb-Robinson bound [89]. Our results show that the dynamics of MSS violates
the Lieb-Robinson bound, a finding consistent with long-range dipolar interaction in the
system. Recently, numerous attempts have been made to find the rate of information
flow in systems with long-range interactions decaying with power law, aij ∝ 1

rαij
[90, 91,

92, 93, 94, 95, 96]. Based on these studies, different relations between the magnification
time and the size of the MSS are expected depending on the MSS’s dimension. It has
been shown that the correlation times for a system with power-law interaction, aij ∝ 1

rαij
,

grow as T ∝ rζ , with 1
ζ

= 1 + 1+D
α−2D

when α > 2D [96]. Thus, for a 1D chain, the

magnification time is expected to scale as t1Dmag ∝ l
1
3 ∝ N

1
3
h where l is the length of the spin

chain. For 2D and 3D lattices with dipolar coupling, no bound tighter than an exponential
information flow is found [90]. We also know that the information flow is faster in 2D and
3D structures than in 1D chains. Thus, in 2D and 3D structures the respective range of

the magnification times are expected to be (∼ log(l) ∝ log(
√
Nh)) ≤ t2Dmag < (∼ l

1
3 ∝ N

1
6
h )

and (∼ log(l) ∝ log( 3
√
Nh)) ≤ t3Dmag < (∼ l

1
3 ∝ N

1
9
h ). It is worth mentioning that recently

an algorithm has been proposed that saturates the logarithmic bound for a 3D structure
with dipolar coupling. It needs t ∝ log(r) to transfer a state through a system with 1

rα

interaction if α = D [97].

5.5 Measurement and Fidelity

The requirements of an ideal measurement procedure were discussed in section 5.3. Here
we estimate the fidelity of the target qubits’ post-selected entangled state using the mag-
nification process introduced in section 5.4.2 and a collective measurement on the MSS
through a two-level apparatus.

The measurement model is based on the general collective two-outcome POVM on
a mesoscopic system suggested chapter 4. Any two outcome collective POVM can be
parametrized with a phase function θ(mz),

E0 =
∑

mz

cos2(θ(mz))Π
N(mz) (5.29)

E1 = 1− E0 =
∑

mz

sin2(θ(mz))Π
N(mz)
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Such a measurement is equivalent to a projective measurement on a two-level apparatus
system after it interacts with the MSS according to the interaction gate [41, 40],

UM =

N
2∑

mz=−N
2

ΠN(mz)⊗ e−iθ(mz)σay (5.30)

Linear collective interaction between the MSS and the apparatus qubit, HM = gJz ⊗ σy,
conveniently creates UM with a phase function proportional to the collective magnetization,
θ(mz) ∝ mz. See Fig. 5.14. In this measurement process, the state of the MSS is updated
according to Eq. (5.18), with the measurement operators,

M0 =
∑

mz

cos(θ(mz))Π
N(mz) (5.31)

M1 = i
∑

mz

sin(θ(mz))Π
N(mz)

!" = $%&'()( = * Π, -. ⨂$
%&0 12 345

6/8

129%6/8

, ; -. = <="
-.

2

?@ = * cos8 ; -. Π,(-.)

6/8

129%6/8

?F = * sin8 ; -.

6/8

129%6/8

Π,(-.)

POVM

!"
I", ="

|0⟩	N

OPP

Q
Π@ = |0⟩⟨0|
ΠF = |1⟩⟨1|

I" = <T.
"UU⨂VW

X

Figure 5.14: Two outcome POVM on a MSS implemented through an apparatus qubit.

In order to select
∣∣ψGR01

〉
and

∣∣ψGR10

〉
over

∣∣ψGR00

〉
and

∣∣ψGR11

〉
, the linear phase function is

chosen to be θ(mz) = 2π
N
mz. Figure 5.15 depicts the corresponding expansion coefficients

of the POVM operators and the fidelity of the target qubits’ state with the maximally
entangled state |m0〉, upon measurement, post-selection on outcome 1 and disentangling
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from the MSS. The fidelity increases with the size of the MSS and asymptotically ap-
proaches its maximum value, one. This increase has two origins. First, the macroscopic
distinctness between the states {

∣∣ψGR01

〉
,
∣∣ψGR10

〉
} and {

∣∣ψGR00

〉
,
∣∣ψGR11

〉
} grows with the size of

the MSS. Second, for larger MSSs, the measurement coefficients become closer to uniform
distribution over the expansion of the spectrum of

∣∣ψGR01

〉
and

∣∣ψGR10

〉
; thus these states get

less distorted by the measurement and the following disentangling gate will restore more
coherence between the qubits’ states |01〉q and |10〉q. It should be mentioned that we have
simulated an ideal noise-free process. In practice, the fidelity is not expected to increase
with the size of the MSS, indefinitely. Including noise effect imposes an upper bound on
size of the MSS, since in general larger MSS are more sensitive to noise.
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Figure 5.15: (a) The expansion coefficients of the two POVM operators based on the
measurement procedure shown in Fig. 5.14 with θ(mz) = 2π

N
mz, chosen to distinguish

between {
∣∣ψGR01

〉
,
∣∣ψGR10

〉
} and {

∣∣ψGR00

〉
,
∣∣ψGR11

〉
} with highest probability. (b) The corre-

sponding fidelity of the entangled state of the target qubits with the maximally entangled
state |m0〉, after applying the measurement in (a) on the MSS, post-selecting on outcome
1 and disentangling from the MSS. The fidelity is computed based on simulation of the
spectra of the states {

∣∣ψGR01

〉
,
∣∣ψGR10

〉
,
∣∣ψGR00

〉
,
∣∣ψGR11

〉
} for N = 12, 16, 20, 24, 28, 32, 36 spins

and extrapolation of their spectra according to binomial distribution for larger systems.

Figure 5.15 shows that the fidelity, Fm0(ρq),exceeds 0.5 and the target qubits are en-
tangled for all simulated sizes of the MSS, although the assumed measurement model is
not an ideal measurement procedure. Moreover, for N ≥ 24, the fidelity is greater than

81



0.78, enough to violate the CHSH inequality [69, 44].

5.6 Mixed initial state

So far, a pure polarized state, |↑〉⊗N , has been considered as the initial state of the MSS. In
this section, we prove robustness of the introduced indirect joint measurement procedure
to limited initial polarization of the MSS. In particular, we will show that micro-macro
entanglement between each target qubit and its nearby half of the MSS and the subsequent
bipartite entanglement of the non-interacting target qubits are robust to deviations of the
MSS’s initial state from fully polarized state; when the MSS is initially in the experimen-
tally relevant mixed state,

ρin(N, ε) =

(
1 + (1− ε)σz

2

)⊗N
(5.32)

=
(

(1− ε

2
) |↑〉〈↑|+ ε

2
|↓〉〈↓|

)⊗N

The polarization parameter, ε, ranges from 0, for a fully polarized pure state, to 1, for the
maximally mixed state. We are particularly interested in highly polarized states, i.e., ε
close to 0.

The magnification gate in Fig. 5.9 can be written as,

UGR = |0〉〈0|q ⊗ 1 + |1〉〈1|q ⊗ V1 (5.33)

with V1 |↑〉⊗Nh =
∣∣ψGR1

〉
. The state of one target qubit and its nearby half of the MSS after

applying gate UGR to the initial state |+〉〈+| ⊗ ρin(Nh, ε) is,

ρGRq,MSS =
1

2

(
|0〉〈0|q ⊗ ρin + |1〉〈1|q ⊗ (V1ρinV

†
1 )

+ |0〉〈1|q ⊗ (ρinV
†

1 ) + |1〉〈0|q ⊗ (V1ρin)
)

(5.34)

Micro-macro entanglement of state ρGRq,MSS requires bipartite entanglement between the
qubit and the MSS and macroscopic distinctness between the state ρGR0 = ρin and ρGR1 =
V1ρinV

†
1 . We investigate how these two characteristics change when the initial state of

the MSS deviates from the ideal polarized state. Direct verification of bipartite entangle-
ment between a microscopic and a mesoscopic system experimentally is a challenging task
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[98, 99]. Nevertheless, it can be simulated for small sizes of the mesoscopic system. A
computable measure of bipartite entanglement for a general state, ρAB, regardless of the
size of each party and the purity of the overall state, is negativity, which is defined as the
sum of the absolute values of the negative eigenvalues of the partially transposed density
matrix, ρTAAB, [46]

Neg(ρAB) :=
∑

i

|λi| (5.35)

Negativity ranges from zero for separable states to 0.5 for maximally entangled states
10. This measure is specifically helpful in quantifying bipartite entanglement of a mixed
state, when one or both of the parties have more than two levels; where, other computable
measures for mixed state entanglement such as concurrence can not be applied. A related
measure is logarithmic negativity, defined as,

Lneg(ρAB) := log2 ||ρTAAB||1 = log2(2Neg(ρAB) + 1) (5.36)

where ||ρTAAB||1 is the trace norm of the partially transposed density matrix, ρTAAB. Loga-
rithmic negativity ranges from 0, for separable states, to 1, for maximally entangled states
[46].

Figure 5.16 shows logarithmic negativity of the bipartite entangled state of the qubit
and the MSS, ρGRq,MSS, as a function of the polarization parameter, ε, simulated for different
sizes of the MSS up to 10 spins. We are particularly interested in highly polarized states,
where ε is close to 0. For the fully polarized initial state (ε = 0), the state ρGRq,MSS is
maximally entangled as already discussed. The entanglement reduces with decrease in the
polarization (increase in ε) with a slow initial pace. The larger the MSS, the slower the
initial drop in entanglement, i.e. for larger MSS, bipartite entanglement of state ρGRq,MSS is
more robust to polarization reduction of the MSS’s initial state.

Macroscopic distinctness between the states ρGR0 and ρGR1 can be quantified according
to Eq. (5.6). The collective magnetization spectrum of the state ρGR0 = ρin(Nh, ε) is a
shifted 11 binomial distribution with the probability of success p = 1− ε/2, and number of
trials Nh. Its mean and SD are 〈Jz〉GR0 (ε) = (1− ε)Nh/2 and (∆Jz)

GR
0 (ε) =

√
Nh

ε
2
(1− ε

2
).

The mean and SD of the spectrum of state ρGR1 = V1ρinV
†

1 are known for the two
extreme cases; ε = 0 and ε = 1. It was shown that with a polarized initial state, ε = 0, the
mean of the spectrum is 〈Jz〉GR1 (ε = 0) ≈ 0 and its SD scales as (∆Jz)

GR
1 (ε = 0) ≈ √Nh/2.

10Based on the PPT criteria cite all separable states have zero negativity but not all entangled states
have nonzero negativity except for 2× 2 and 2× 3 systems. In other words nonzero negativity guarantees
entanglement but there are entangled states with zero negativity.

11The distribution ranges from −Nh/2 to Nh/2 rather than 0 to Nh.
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Figure 5.16: Entanglement between one target qubit and its nearby half of the MSS as
a function of deviation of the initial state of the MSS from fully polarized state simulated
for different sizes of the MSS. For larger MSSs, bipartite entanglement between the target
qubit and the MSS is more robust to polarization reduction.

On the other side of the range, when ε = 1, the initial state, ρin, is a fully mixed state; thus
ρGR1 is also a fully mixed state and the mean and SD of its spectrum are, 〈Jz〉GR1 (ε = 1) = 0
and (∆Jz)

GR
1 (ε = 1) =

√
Nh/2. Similar mean and SD for the two extreme cases suggests

the same scaling for all other polarizations, 0 < ε < 1. Simulation results for different
polarization with Nh = 12 spins, shown in Fig. 5.17, confirms this prediction. Thus, the
mean and SD of the spectrum of ρGR1 are 〈Jz〉GR1 (ε) ≈ 0 and (∆Jz)

GR
1 (ε) ≈ √Nh/2, for all

initial polarizations. Consequently, the macroscopic distinctness between the states ρGR0

and ρGR1 requires that,

〈Jz〉GR0 (ε)− 〈Jz〉GR1 (ε)

(∆Jz)GR0 (ε) + (∆Jz)GR1 (ε)
≈ (1− ε)Nh/2− 0√

ε(2− ε)√Nh/2 +
√
Nh/2

� 1 (5.37)

For 0 ≤ ε ≤ 1, the maximum of
√
ε(2− ε) is 1 at ε = 1 and the above relation is lower

bounded by,
〈Jz〉GR0 (ε)− 〈Jz〉GR1 (ε)

(∆Jz)GR0 (ε) + (∆Jz)GR1 (ε)
>

(1− ε)Nh/2√
Nh

∝ 1− ε
2

√
Nh (5.38)

Thus, 1−ε
2

√
Nh � 1 assures macroscopic distinctness between the states ρGR0 and ρGR1 . This

condition along with robustness of entanglement to decreases in polarization, shown in Fig.
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Figure 5.17: (a) The mean and (b) the SD of the spectrum of ρGR1 as a function of time
simulated with Nh = 12 spins in a 1D chain for different initial polarization of the MSS.

5.16, prove that the micro-macro entanglement between each target qubit and its nearby
half of the MSS is robust to polarization loss when ε is close to 0 and Nh(1− ε)2 � 4.

Two copies of the state in Eq. (5.34) represent the state of the two non-interacting
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target qubits and the uncoupled halves of the intermediate MSS,

ρq,MSS =
1

4

(
|00〉〈00|q ⊗ ρGR00 + |01〉〈01|q ⊗ ρGR01

+ |10〉〈10|q ⊗ ρGR10 + |11〉〈11|q ⊗ ρGR11

+ |01〉〈10|q ⊗ (ρLinV
L†

1 )⊗ (V R
1 ρ

R
in)

+ |10〉〈01|q ⊗ (V L
1 ρ

L
in)⊗ (ρRinV

R†
1 )

+ other off-diagonal terms) (5.39)

where ρGRij = ρGRi ⊗ ρGRj for i, j = 0, 1. The normalized state of the target qubits after the
measurement, post-selection on zero magnetization and disentangling from the MSS is,

ρq = TrMSS

(
UL†GR ⊗ U

R†
GR

(1⊗M1)ρq,MSS(1⊗M †1)

Tr(E1ρq,MSS)
ULGR ⊗ URGR

)
(5.40)

The measurement on the MSS and post-selection, 1 ⊗M1, defined in Eq. (5.31), selects
ρGR01 and ρGR10 , correlated with |01〉q and |10〉q states of the qubits, and the disentangling

gate, UL†
GR ⊗ UR†

GR, restores the coherence between the target qubits.

Success of the measurement process relies on distinguishability of the states ρGR01 and
ρGR10 from the states ρGR00 and ρGR11 , which requires,

N

4
(1− ε) �

(√
N

2

√
1 + ε(2− ε)

2
+

√
N

2

)
∼
√
N

⇒ N(1− ε)2 � 16 (5.41)

Restoring the coherence between the states |01〉q and |10〉q requires each qubit to be en-
tangled with its nearby half of the MSS prior to the measurement on the MSS.

The target qubits’ state can be expanded in the computational basis as,

ρq =
1∑

i,j,k,l=0

cij,kl |ij〉〈kl| (5.42)

with the normalization condition c00,00 + c01,01 + c10,10 + c11,11 = 1. The amplitude of the
states |01〉q and |10〉q (c01,01 and c10,10) and the coherence between them (c01,10 and c10,01)
equally contribute to the fidelity of the target qubits’ state with the maximally entangled
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state |m0〉 = 1√
2

(|01〉+ |10〉),

Fm0(ρq) =
c01,01 + c10,10 + c01,10 + c10,01

2
(5.43)

= c01,01 + c01,10 = c01,01

(
1 +

c01,10

c01,01

)

where 0 ≤ c01,10 ≤ c01,01 ≤ 0.5 and the second line follows the equalities: c01,01 = c10,10

and c01,10 = c10,01 that hold assuming identical states on the two qubits and their nearby
halves of the MSS.

Equation 5.43 shows that reduction of the fidelity, as the polarization decreases, orig-
inates from two sources: leakage from the subspace spanned by {|01〉q , |10〉q} to the sub-
space spanned by {|00〉q , |11〉q} and loss of coherence between the states |01〉q and |10〉q,
which are associated to losing macroscopic distinctness and bipartite entanglement in the
micro-macro entangled state in Eq. (5.34), respectively.

Figure 5.18 shows (a) the fidelity in Eq. 5.43, (b) the population in {|01〉q , |10〉q} sub-
space (c01,01 + c10,10) and (c) the coherence between the states |01〉q and |10〉q relative to
the population (c01,10/c01,01), simulated as a function of ε for MSSs with N = 8, 12, 16, 20
spins. In these simulations, the measurement model of section 5.5 is used with the mea-
surement parameter θ(mz) = 2π

N(1−ε)mz, modified as a function of the polarization such

that the measurement operator M1 selects ρGR01 and ρGR10 over ρGR00 and ρGR11 with the highest
probability.

These plots show that for the simulated sizes of the MSS, the fidelities drop fast
with decrease in the polarization, as a result of the fast decreases in the populations in
{|01〉q , |10〉q} subspace. The coherence losses happen at a slow rate consistent with the
slow entanglement losses in the corresponding micro-macro entangled states, depicted in
Fig. 5.16.

Fast decreases in the populations, observed in Fig. 5.18(b), are not generic effects and
result from the small sizes of the simulated systems, that do not satisfy the distinguisha-
bility condition: N(1−ε)2 � 16. For large enough systems, N � 16, the population drops
with a slow rate as ε grows, up to a point where the macroscopic distinctness condition is
not satisfied, ε ≈ 1 − 8√

N
, as shown in Fig. 5.19. Thus, the population in {|01〉q , |10〉q}

subspace is close to 1 when N(1− ε)2 � 16. In addition, as figure 5.18(c) shows, the larger
the MSS, the slower the rate of the coherence loss. Thus, for large MSSs, N(1− ε)2 � 16,
both population in {|01〉q , |10〉q} subspace and coherence between the states |01〉q and
|10〉q, and consequently the fidelity, Fm0(ρq), are robust to decrease in polarization of the
MSS’s initial state.
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Figure 5.18: Simulation results of (a) the fidelity (b) the population (the diagonal terms
of the density matrix) and (c) the coherence (the off-diagonal terms of the density matrix
relative to diagonal terms) of the target qubits’ states as a function of initial polarization
of the MSS for small number of spins. Slow initial drop in the coherence follows robust-
ness in the bipartite entanglement between each qubit and its nearby half of the MSS to
polarization reduction. Fast decrease in the population and the fidelity results from small
sizes of the simulated system that do not satisfy macroscopic distinctness condition.

In conclusion, bipartite entanglement between the target qubits is robust to deviation
of the initial state of the MSS from the fully polarized state, as long as N(1 − ε)2 � 16.
With a fixed measurement resolution limited initial polarization of the MSS needs to be
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Figure 5.19: Simulation of diagonal terms of the qubits’ state, c01,01 + c10,10, based on the
extrapolation of the spectra of ρ00, ρ01, ρ10 and ρ11 according to the binomial distribution
and using the measurement model of section 5.5 with θ(m) = 2π

N(1−ε) .

compensated for by enlarging the MSS, Nε = Nε=0/(1− ε).

5.7 Sensitivity to noise

A common feature of micro-macro entangled states and more generally macroscopic super-
position states is their sensitivity to noise [100]; to the extent that the rate of coherence
loss has been suggested as a measure of the macroscopicity of quantum superposition states
[101, 102]. This section discusses sensitivity of the micro-macro entangled state

∣∣φGR
〉
q,MSS

,

in Eq. (5.25) and bipartite entanglement of the target qubits to single particle loss12.

Among the two characteristics of micro-macro entanglement, namely microscopic dis-
tinctness and bipartite entanglement, macroscopic distinctness is, by definition, robust to
single particle loss. The states of the MSS associated with |0〉q and |1〉q states of the
qubit differ by many spin flips; thus, single particle loss does not significantly affect their
distinctness.

12Particle loss is a common noise in photonic systems. For a spin system, in which particles are preserved,
loss of a single spin models a generalized amplitude damping channel on the spin with an arbitrary fixed
point and the damping probability of one.
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Before studying the sensitivity of bipartite entanglement of the state
∣∣φGR

〉
q,MSS

to

particle loss, we first analyse a class of symmetric entangled states between the target
qubit and the MSS,

|Sk〉q,MSS =
1√
2

(
|0〉q ⊗ |↑〉

⊗Nh + |1〉q ⊗ |Dk〉
)

(5.44)

The parameter k ranges from 1 to Nh, and |Dk〉 is the symmetric pure state with k spins
|↓〉 and Nh − k spins |↑〉,

|Dk〉 =
1√(
Nh
k

)
(Nhk )∑

i=1

Pi(|↓〉⊗k |↑〉⊗Nh−k) (5.45)

where Pi is the permutation operator and the summation is over all permutations. State
|Dk〉 is an eigenstate of the collective magnetization operator, Jz, with the eigenvalue
mz = Nh−2k

2
; hence, the (macroscopic) distinctness between the states |↑〉⊗Nh and |Dk〉 is

proportional to k and for k � 1, |Sk〉q,MSS is a micro-macro entangled state. We show that
sensitivity of bipartite entanglement between the qubit and the MSS in state |Sk〉q,MSS

to single particle loss increases with k. Thus, there is a trade off between macroscopic
distinctness of a micro-macro entangled state and robustness of its bipartite entanglement
to particle loss.

The state of the target qubit and the MSS after loss of any single particle is,

ρkq,MSS−1 = pk↑
∣∣∣ψk↑
〉〈
ψk↑
∣∣∣+ pk↓

∣∣∣ψk↓
〉〈
ψk↓
∣∣∣ (5.46)

√
pk↑

∣∣∣ψk↑
〉

=
1√
2
|0〉q ⊗ |↑〉⊗Nh−1

+
1

√
2
√(

Nh
k

) |1〉q ⊗
(Nh−1

k )∑

i=1

Pi(|↓〉⊗k |↑〉⊗Nh−k−1)

√
pk↓

∣∣∣ψk↓
〉

=
1

√
2
√(

Nh
k

) |1〉q ⊗
(Nh−1
k−1 )∑

i=1

Pi(|↓〉⊗k−1 |↑〉⊗Nh−k)

where the states
∣∣ψk↑
〉

and
∣∣ψk↓
〉

are normalized and orthogonal to each other and pk↑+p
k
↓ = 1.

The entanglement of projection between the target qubit and the MSS in state ρkq,MSS−1

is defined as [45],
Ep(ρ

k
q,MSS−1) = pk↑E(

∣∣ψk↑
〉
) + pk↓E(

∣∣ψk↓
〉
) (5.47)
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where E(|ψAB〉) is the von Neumann entropy of the pure bipartite state |ψAB〉, defined
as E(|ψAB〉) = −Tr[ρA log2(ρA)] with ρA = TrB(ρAB). Entanglement of projection ranges
between 0 to 1 and is an upper bound for entanglement of formation [50, 103].

State
∣∣ψk↓
〉

is a separable state ,thus E(ψk↓) = 0. The von Neumann entropy of state∣∣ψk↑
〉

is,

E(
∣∣ψk↑
〉
) =

1

1 + r↑
log2(

1

1 + r↑
) +

r↑
1 + r↑

log2(
r↑

1 + r↑
) (5.48)

where r↑(k) =
(
Nh−1
k

)
/
(
Nh
k

)
= 1− k

Nh
is the probability of finding one spin |↑〉 in the state

|Dk〉 of the MSS, and ranges from r↑ = 0, for k = Nh, to r↑ = 1 − 1
Nh

, for k = 1. The

entanglement of projection of state ρkq,MSS−1, according to Eq. (5.47), is,

Ep(ρ
k
q,MSS−1) =

Er
p(r↑) := −1 + r↑

2

(
1

1 + r↑
log2(

1

1 + r↑
)

+
r↑

1 + r↑
log2(

r↑
1 + r↑

)

)
(5.49)

Note that Ep(ρ
k
q,MSS−1) depends on the ratio k/Nh and not on k and Nh, independently.
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Figure 5.20: Entanglement of projection of the symmetric bipartite entangled state
|Sk〉q,MSS upon single particle loss as a function of macroscopic distinctness between |↑〉Nh
and |Dk〉. The more macroscopically distinct the states |↑〉Nh and |Dk〉 are, the more fragile
the bipartite entanglement of |Sk〉q,MSS is.

Figure 5.20 plots Ep(ρ
k
q,MSS−1) as a function of the macroscopic distinctness, k. The

bipartite entanglement between the target qubit and the MSS becomes more fragile to
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particle loss as the macroscopic distinctness in state |Sk〉q,MSS increases. At the limit of

maximum macroscopic distinctness, |DNh〉 = |↓〉⊗Nh , |Sk〉q,MSS represents an overall GHZ
state, and no entanglement will remain after loss of one particle from the MSS.

The entangled state of interest,
∣∣φGR(t)

〉
q,MSS

in Eq. (5.25), follows a similar form to

state |Sk〉q,MSS in Eq. 5.44 except that |Dk〉 is replaced by
∣∣ψGR1 (t)

〉
. The state

∣∣ψGR1 (t)
〉

is

not necessarily symmetric; thus, to quantify the sensitivity of state
∣∣φGR(t)

〉
q,MSS

to single

particle loss, we average the entanglement of projection upon losing each of the spins in
the MSS, assuming that all spins have equal probabilities of being lost.
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Figure 5.21: (a) The mean of the spectrum of state
∣∣ψGR1 (t)

〉
as a measure of macroscopic

distinctness between
∣∣ψGR1 (t)

〉
and |↑〉Nh . (b) The entanglement of projection of the state∣∣φGR(t)

〉
q,MSS

upon single spin loss as a function of time. Bipartite entanglement of state∣∣φGR(t)
〉
q,MSS

upon single particle loss reduces with increase in the macroscopic distinctness

between
∣∣ψGR1 (t)

〉
and |↑〉Nh until it reaches the asymptotic value 2/3. This asymptotic

value is similar for all sizes of the MSS and corresponds to difference in the mean of the
collective Jz magnetization, 〈Jz〉GR0 − 〈Jz〉GR1 ∼ 1

2
Nh/2, similar to symmetric bipartite

entangled state |Sk〉q,MSS with k = Nh/2.

Figure 5.21 shows simulation results for the mean of the spectrum of state
∣∣ψGR1 (t)

〉

and the entanglement of projection of state
∣∣φGR(t)

〉
q,MSS

upon single particle loss as a

function of the evolution time for different sizes of MSS. As evolution time increases, the
mean of the spectrum of state

∣∣ψGR1 (t)
〉

decreases and macroscopic distinctness in the
state

∣∣φGR(t)
〉
q,MSS

and its sensitivity to particle loss increase. For long evolution times,
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the probability of finding any of the spins in the MSS in state |↑〉 is close to 1/2. Thus,
the asymptotic value of the average of entanglement of projection is,

Nh∑

j=1

Ep(Trj(
∣∣φGR(t)

〉〈
φGR(t)

∣∣)) ≈ Er
p(r↑ = 1/2) =

2

3
(5.50)

Decrease in bipartite entanglement of the micro-macro entangled state
∣∣φGR

〉
, upon

particle loss, is reflected in the fidelity of the target qubits’ entangled state. Even with an
ideal measurement on the MSS and post-selection, that perfectly selects the {|01〉q , |10〉q}
subspace of the qubits over the {|00〉q , |11〉q} subspace, the fidelity can not be greater than
Fmax = cmax

01,01 + cmax
01,10 = 1/2 + 1/4 = 3/4 (See section 5.7.1). This upper bound follows

the reduced coherence between |01〉q and |10〉q in the state of the qubits, even when the
population is preserved.

Fragility of the micro-macro entangled state and bipartite entanglement of the target
qubits to particle loss illustrates the importance of shorter transient time with a MSS that
has a 2D or 3D structure compared to a 1D chain, demonstrated in section 5.4. Since any
loss in the MSS results in a reduction of bipartite entanglement between the target qubits,
the overall experiment time needs to be much shorter than T1 divided by the number of
spins in the MSS, texp � T1

Nh
.

5.7.1 Upper bound on Fidelity upon single particle loss

The sensitivity of the micro-macro entangled states and bipartite entanglement between
the target qubits to spin loss in the MSS was discussed in section 5.7. In particular, it was
specified that the upper bound on the fidelity of the target qubits’ state with the maximally
entangled state |m0〉 = 1√

2
(|01〉q + |10〉q), upon single particle loss, reduces from one to 3/4

and this decrease solely originates from reduction of the coherence between |01〉q and |10〉q
states. In this section, we prove this upper bound on the fidelity.

The state of the target qubits and the MSS after the magnification process is:
∣∣φGR

〉
L
⊗

∣∣φGR
〉
R

where
∣∣φGR

〉
i

=
1√
2

(|0〉qi |↑〉
⊗Nh + |1〉qi

∣∣ψGR1

〉
i

with i = L,R is the state of each

qubit and its nearby half of the MSS. Let’s consider that the state of one spin from the MSS
with index a is lost and is replaced by a state ρa. This particle loss process corresponds to
a generalized amplitude damping map with the fixed point ρa and the damping probability
of one on spin a. Without loss of generality, we assume the lost spin is in the left half of
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the MSS, a ≤ N/2. The state
∣∣ψGR1

〉
L

can be expanded in the basis {|↑〉a , |↓〉a} of spin a
as, ∣∣ψGR1

〉
L

= αa |ψa
α〉 |↑〉a + βa

∣∣ψa
β

〉
|↓〉a (5.51)

where αa |ψa
α〉 = (〈↑|a⊗1Nh−1)

∣∣ψGR1

〉
L
, βa

∣∣ψa
β

〉
= (〈↓|a⊗1Nh−1)

∣∣ψGR1

〉
L
, and |αa|2+|βa|2 = 1

following the normalization of state
∣∣ψGR1

〉
L
. After particle loss the state of the target qubit

qL and its nearby half of the MSS will be,

ρGRqL,MSSL
=
(
p↑
∣∣ψa
↑
〉〈
ψa
↑
∣∣+ p↓

∣∣ψa
↓
〉〈
ψa
↓
∣∣)⊗ ρa (5.52)

where the states
∣∣ψa
↑
〉

and
∣∣ψa
↓
〉

are,

√
p↑
∣∣ψa
↑
〉

=
1√
2

(
|0〉qL |↑〉

⊗Nh−1 + |1〉qL (αa |ψa
α〉)
)

√
p↓
∣∣ψa
↓
〉

=
|1〉qL√

2
βa
∣∣ψa

β

〉
(5.53)

An ideal measurement that perfectly selects the states of the MSS correlated to zero mag-
netization of the qubits over the states of the MSS correlated to ±1 magnetizations of the
qubits, updates the state ρGRqL,MSSL

⊗
∣∣φGR

〉〈
φGR

∣∣
R

of the target qubits and the MSS to the
state,

ρqLqR,MSS =
1

2

(
|01〉〈01| ⊗ (|↑〉〈↑|⊗Nh−1 ⊗ ρa)⊗

∣∣ψGR1

〉〈
ψGR1

∣∣
R

+ (|10〉〈10| ⊗ ((|αa|2 |ψa
α〉〈ψa

α|+ |βa|2
∣∣ψa
β

〉〈
ψa
β

∣∣)⊗ ρa)⊗ |↑〉〈↑|⊗Nh

+ |01〉〈10| ⊗ (α?a |↑〉Nh−1 〈ψa
α| ⊗ ρa)⊗

∣∣ψGR1

〉
R
〈↑|⊗Nh

+ |10〉〈01| ⊗ (αa |ψa
α〉 〈↑|Nh−1 ⊗ ρa)⊗ |↑〉⊗Nh

〈
ψGR1

∣∣
R

)

Note that the off-diagonal terms of the qubits are scaled with αa and α?a. This state is
a correlated state between the target qubits and the MSS. The following disentangling
gate needs to restore the coherence between the target qubits. The maximum retrievable
coherence between the target qubits is |αa|2 that corresponds to the state ρa = |↑〉〈↑|. With
this choice of the ρa, after applying the disentangling gate and tracing over the MSS, the
target qubits’ state will be,

ρqLqR =
1

2

(
|01〉〈01|+ |01〉〈01|+ |αa|2 |01〉〈10|+ |αa|2 |10〉〈01|

)
(5.54)

The fidelity of this state with the maximally entangled triplet zero state is F a
max = (1 +

|αa|2)/2 where |αa|2 can be interpreted as the probability of finding spin a in state |↑〉a when
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the MSS is in state
∣∣ψGR1

〉
L
. We know that the mean of the collective magnetization spec-

trum of state
∣∣ψGR1

〉
L

is zero, which is mathematically equivalent to
∑

a |αa|2 =
∑

a |βa|2.
Combining with the normalization condition |αa| + |βa| = 1, the average of maximum
fidelity upon loss of each particle in the MSS is,

Fmax :=
1

N

∑

a

F a
max =

1

2
+

∑
a |αa|
2N

=
1

2
+

1

4
=

3

4
(5.55)

This relation completes the proof for the upper bound on the fidelity of the target qubits’
state.

Based on the dynamics that create state
∣∣ψGR1

〉
L
, the magnetization is expected to be

distributed uniformly among the spins in the MSS, thus |αa|2 is anticipated to be close
to 1/2 for all spins and the maximum fidelity upon loss of any spin is expected to be
F a

max ≈ 3/4.

5.8 Discussion and Conclusion

We analyzed the resources required for entangling two uncoupled spin qubits through an
intermediate mesoscopic spin system by indirect joint magnetization measurement. In
contrast to direct joint measurement, that needs a high-resolution apparatus capable of
detecting a single qubit flip to entangle two qubits, indirect joint measurement benefits
from coherent magnification of the target spin qubits’ state in the collective magnetization
of the MSS and only requires a low-resolution collective measurement on the MSS. This
work complements the ongoing efforts in using mesoscopic systems as coherent control
elements in coupling separated qubits [14, 19] [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

A MSS consisting of two non-interacting halves, each coupled to one of the target qubits,
was identified as a practically helpful geometry, that allows implementing the coherent
magnification process with experimentally available control tools; namely local interaction
between each target qubit and the MSS, naturally occurring dipolar coupling among the
spins in each half of the MSS and collective rotations on the MSS. It was demonstrated
that the requirements on the pre-measurement state of the target qubits and the MSS,
entirely fulfill the specifications of micro-macro entanglement between each target qubit
and its nearby half of the MSS. It has been shown that direct experimental demonstration
of micro-macro entanglement is challenging [98, 99]. Verification of bipartite entanglement
between the target qubits provides a means of proving micro-macro entanglement between
each target qubit and half of the MSS in the pre-measurement state.
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The numerical simulations showed that available internal dipolar interaction and col-
lective control can be used to prepare each half of the MSS in a globally correlated state,
such that a one-time interaction between each target qubit and a nearby spin within the
MSS suffices to magnify the qubit’s state in the collective magnetization of the MSS and
create a micro-macro entangled state. The time scale of the magnification process was
discussed. In particular, it was demonstrated that, with long-range dipolar coupling in the
MSS, the magnification time scales sub-linear with the size of the MSS regardless of the
dimension of its structure. Moreover, it was shown that the magnification time is much
shorter with a MSS in 2D and 3D lattices compared to a 1D spin chain.

It was shown that a low-resolution collective magnetization measurement on the MSS
capable of detecting only (1− ε)N/4 spin flips, where N is the number of spins in the MSS
and 1− ε is the polarization of each spin, suffices to distinguish between the states of the
MSS correlated with different magnetizations of the target qubits. The measurement must
also probabilistically project the state of the MSS into the subspace associated with zero
magnetization of the target qubits, with minimum disturbance.

Different scenarios can be considered for implementing such a measurement. When
a linearly-polarized photon passes through a magnetic material, its polarization rotates
depending on the magnetic moment of the medium, according to the Faraday rotation
effect. The Faraday effect follows the required collective dynamics and has been proposed
as a means for implementing a quantum non-demolition measurement on an ensemble
of spins [104]. Strong coupling to a superconducting cavity may provide another means
for implementing a collective measurement on the MSS that follows the required state-
update-rule. Measurement through a cavity in the dispersive regime has been used to
entangle two superconducting qubits [59, 61] where an incoming photon is transmitted
through or reflected from the cavity depending on the joint state of the qubits. In these
experiments, couplings between the superconducting qubits and the cavities are so strong
that a single qubit flip results in a detectable shift in the resonance frequency of the
cavity. Couplings between spin qubits and superconducting cavities are too weak to enable
direct joint measurement of two spin qubits. Correlating different states of the spin qubits
with macroscopically distinct states of the MSS can in principle compensate for this weak
coupling since the shift in the resonance frequency of the cavity corresponding to different
states of the qubits scales proportionally to the size of the MSS. See Fig. 5.22. Faraday
rotation and state-dependent shift of a cavity’s resonance frequency are examples of two
phenomena that potentially enable measurements that are collective and update the MSS’s
state according to the measurement outcome. Evaluating the details of the measurements
based on these phenomena 13 and their resolution need to be further explored.

13As an example, coupling of a spin ensemble with a cavity in the dispersive regime introduces indirect
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Figure 5.22: (a) The spectra of the MSS’s states correlated to different states of the target
qubits. (b) The expected transmission probability of a photon through a cavity coupled
to the MSS in its dispersive regime. The unloaded resonance frequency of the cavity is ωc,
go is the coupling strength between a single spin in the MSS and the cavity, κ is the cavity
loss and ∆ is the difference between the resonance frequency of the cavity and the spin
system. The resolution of the measurement is high enough if the three peaks corresponding

to different states of the MSS can be resolved,
g2
0N

2∆
> κ+

g2
0

√
N

∆
.

Indirect joint measurement through a MSS was shown to be robust to limited initial
polarization of the MSS as long as N(1− ε)2 � 16 and the measurement resolution is high
enough to detect (1 − ε)N/4 spin flips. Thermal polarization of an ensemble of electron

interaction between the spins mediated through the cavity. Effect of such interactions on the measurement
needs to be explored.
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spins is close to one at low temperatures and high magnetic fields (e.g. T ≈ 1K and
B ≈ 7T). Hyperpolarization of nuclear spins may be achieved through dynamic nuclear
magnetization processes that transfer polarization from electron spins to nuclear spins
[105, 106].

The process of entangling non-interacting qubits by indirect joint measurement is in-
evitably sensitive to noise in the MSS. It was shown that single particle loss in the MSS
reduces the upper bound on the fidelity of the target qubits’ state with the intended maxi-
mally entangled state from 1 to 3/4. Thus, creating highly entangled target qubits requires
the relaxation time of the MSS to be long compared to the number of spins in the MSS
times experiment time, T1 � Ntexp.

Different factors compete in determining the practical size of the MSS. The number of
spins in the MSS needs to be large enough to satisfy the macroscopic distinctness condition,
N1 � 16/(1 − ε)2, and the distinguishability criteria according to the resolution of the
measurement, N2 > 4∆m/(1 − ε), where ∆m is the minimum number of spin flips the
measurement apparatus can detect. The overall lower bound on the size of the MSS is
Nmin = max(min(N1),min(N2)). Upper bound on the size of the MSS is imposed by
the fragility of the micro-macro entangled state between the target qubits and the MSS
and as a result the fragility of the bipartite entanglement of the target qubits to noise,
Nmax � T1/texp.

To summarize, among the required resources, the control tools are available, highly
polarized initial states of the MSS and long T1 relaxation times are feasible at low tem-
peratures. The bottleneck is implementing a collective measurement on the many-body
state of the MSS that follows the required state-update-rule; namely probabilistic selection
of the states of the MSS correlated to zero magnetization of the qubits over the states of
the MSS correlated to ±1 magnetizations of the qubits with minimum disturbance to the
selected states.
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Chapter 6

Conclusion and Future Works

One of the main challenges in building complex quantum systems is connecting separated
qubits. Mesoscopic systems are particularly attractive candidates for this purpose due
to their local coupling to the qubits, their extension in space and their collective quan-
tum characteristics. In this thesis, we analyzed creating quantum correlations between
separated quantum systems through an intermediate mesoscopic system from a new per-
spective. We introduced novel techniques for entangling two non-interacting qubits by
measuring their joint state through the mesoscopic system. These scenarios were used to
quantitatively evaluate the resources needed for using a mesoscopic system to entangle
uncoupled qubits.

First, we introduced a simple idealized method that facilitates entangling the qubits by
implementing two successive projective measurements on the mesoscopic system, including
and excluding two spins in the mesoscopic system that are locally coupled to the target
qubits. The success of this procedure relies entirely on the high-resolution collective mea-
surements on the mesoscopic system and it has little requirements on the other resources,
e.g. any initial state of the mesoscopic system is acceptable. Nevertheless, this method
does not take advantage of the large number of particles in the mesoscopic system.

Next, we proposed a general technique for implementing an indirect joint measurement
on the target qubits through the mesoscopic system. In contrast to the previous method,
indirect joint measurement benefits from the large number of particles in the mesoscopic
system to magnify the state of the qubits, and thus needs only a coarse-grained collec-
tive measurement on the mesoscopic system to create post-selected bipartite entanglement
between the target qubits. This method was designed to require only local interaction
between each target qubit and the mesoscopic system. It is robust to imperfect prepa-
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ration of the mesoscopic system. The measurement and post-selection on the mesoscopic
system only need to detect a large number of spin flips (on the order of the number of
particles in the mesoscopic system), and they must update the mesoscopic spin system’s
state according to the measurement outcome with minimum disturbance to the selected
state.

Lastly, we evaluated the resources needed for implementing the indirect joint mea-
surement procedure using a mesoscopic system consisting of dipolarly coupled spin-1/2
particles. A mesoscopic spin system with two non-interacting halves, each coupled to one
of the target qubits was proved to provide a useful geometry that allows implementing the
magnification process with the experimentally available control tools; including collective
external control of the mesoscopic system, internal dipolar interaction between the spins in
each half of the mesoscopic system and local coupling between each target qubit and the
mesoscopic system. We showed that the general conditions on the amplified state of target
qubits and the mesoscopic system perfectly matches the specifications of micro-macro en-
tanglement between each target qubit and its nearby half of the mesoscopic system, in this
geometry. This equivalence brought clarity and accuracy in evaluating the requirements for
implementing indirect joint measurement and quantifying the sensitivity of this method to
the experimental imperfections. In particular, bipartite entanglement between the target
qubits was shown to be robust to imperfect preparation of the mesoscopic system follow-
ing the robustness of micro-macro entanglement. Moreover, the sensitivity of the target
qubits’ entanglement to noise was estimated based on the fragility of the micro-macro en-
tangled states and was shown to be consistent with simulation results for small sizes of the
mesoscopic system.

This thesis complements the ongoing studies on the collective quantum dynamics of
mesoscopic systems and brings new insights into the opportunities that these many-body
systems provide for entangling separated quantum systems. We expect our work to moti-
vate future experiments and ultimately lead to developing technologies that can be inte-
grated into quantum processors and quantum measurement devices.

The presented study can be expanded in different directions both towards more com-
prehensive theoretical analyses and towards future experiments. On the theory side, an
immediate extension of the indirect joint measurement technique, that eliminates the chal-
lenging step of the measurement and post-selection on the mesoscopic system, is to investi-
gate entangling the target qubits by first, creating micro-macro entanglement between one
qubit and the mesoscopic system, then flipping the state of the second qubit conditioned
on the state of the mesoscopic system. This approach can be viewed as generating an
indirect CNOT gate between the two non-interacting qubits mediated through the meso-
scopic system where the first qubit is the control qubit and the second qubit is the target
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qubit. Flipping the target qubit conditioned on the state of the mesoscopic system can
be conversely seen as measuring the state of the mesoscopic system by the target qubit.
The target qubit is coupled locally to the mesoscopic system; thus, this measurement is a
local measurement as opposed to the collective measurement on the mesoscopic system in
indirect joint measurement scheme. It will be interesting to estimate the resources needed
for implementing this protocol as well as its success probability, and compare the results
to the indirect joint measurement scheme.

We demonstrated that micro-macro entanglement plays a crucial role in entangling two
non-interacting qubits through an intermediate mesoscopic spin system. Here, we briefly
discuss opportunities for creation and verification of micro-macro entanglement using the
electron spin of a nitrogen-vacancy (NV−) center in diamond as the qubit and phosphorous
nuclear spins doped in a silicon crystal as the mesoscopic system. The goal is not to propose
an experiment but to show that experimental opportunities and theoretical questions are
close to each other.

Diamond
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(𝑎)
Isotopically purified𝑞*+Si
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NV, |+iq •

HP�P
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2GR , tMSS, ⇢✏ ...
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Figure 6.3: This circuit creates micro-macro entanglement between the target qubit and
the MSS with a one-time interaction between the two and using experimentally available
control.
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Figure 6.1: (a) A schematic of the spin systems. (b) Effective interaction between the
phosphorous spins mediated through their nearby electron spins. (c) A quantum circuit for
creating micro-macro entanglement between the NV qubit and the mesoscopic phosphorous
spin system based on the method discussed in section 5.4.2.

Figure 6.1(a) shows a schematic of the spin configuration. The electron spin of an
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NV− center close to the diamond surface is considered as the microscopic system. The
electronic structure of an NV− center effectively forms a three level, spin 1 electron. In
zero external field, the |±1〉 levels are degenerate and separated from the |0〉 level by a
zero-field splitting of 2.87 GHz. Introducing an external field along the NV axis removes
the degeneracy between the |±1〉 manifolds, and two levels of this three-level system (e.g.
|0〉 and |1〉) can be treated as a qubit. The NV qubit can be initialized in the |0〉 state
and measured along the zero-field splitting through optically detected magnetic resonance
[107].

An isotropically purified 28Si sample enriched with 31P is attached to the surface of the
diamond and the phosphorous nuclear spins form the mesoscopic system. Each phospho-
rous spin is accompanied by a donor electron. At low temperatures (less than ∼ 35K) the
wave-function of the electron is localized around the phosphorous and the two spins are
coupled via a strong hyperfine coupling (∼ 117 MHz). A powerful feature of this hybrid
(electron-nuclear spin) system is that it benefits from long coherence times of the nuclear
spins while high polarization and strong interactions can be achieved through the electron
spins. At low temperatures (∼ 100 mK) and high magnetic fields (∼ 7 T) the thermal
polarization of the electron spins is effectively 100%. Fast hyperpolarization of phospho-
rous nuclear spins has been demonstrated by transferring this polarization to nuclear spins
[105, 106].

A layout of the quantum circuit, based on the one-time interaction approach discussed
in section 5.4.2, is depicted in figure 6.1(c). Evolution of the mesoscopic phosphorous
system under the grade-raising internal Hamiltonian needs to create a globally correlated
state among the phosphorous spins, so that the local conditional gate, |0〉〈0|q ⊗ 1N +
|1〉〈1|q ⊗ Vk ⊗ 1N−k, has a global conditional effect. The grade-raising Hamiltonian can
be engineered from the dipolar coupling using collective pulses. However, direct dipolar
coupling between the phosphorous nuclear spins is negligible even at highest concentrations
(∼ mHz at ∼ 1016/cm3). The dipolar coupling between the electron spins is six orders of
magnitude stronger (∼ 1 − 10kHz at ∼ 1016/cm3) due to their larger gyromagnetic ratio.
An effective strong interaction between the nuclear spins of phosphorous can be mediated
through the electron spins. This indirect coupling can be engineered using the electron-
nuclear hyperfine coupling and coherent control on both electron and nuclear spins [108].
Local interaction between the NV and the nearby phosphorous spins also needs to be
mediated through their corresponding electrons. The experiment needs to be done within
the relaxation times of both the NV and the mesoscopic system. The coherence time of the
phosphorous spins is extremely long at sub-Kelvin temperatures. The coherence time of
the NV electron spin can be extended using a nearby nuclear spin as a memory [109, 110].

To verify micro-macro entanglement both entanglement between the qubit and the
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mesoscopic system and macroscopic distinctness between magnetization of the states of
the mesoscopic system correlated with different states of the qubit need to be confirmed.
We discuss a set of measurements to achieve these.

Macroscopic distinctness and correlation in one direction can be verified by measuring
both the qubit and the mesoscopic system along the quantization axis. The first step would
be to measure the NV by a single shot projective measurement along the quantization axis
(Π0 = |0〉〈0| ,Π1 = |1〉〈1|). Such a measurement collapses the state of the mesoscopic
system along with the state of the NV. Repetitive measurement scheme through a nearby
carbon spin can be used to increase the visibility of the signal in this measurement [111].
Next the mean or the standard deviation of magnetization of the mesoscopic system along
the z-axis should be measured using a coarse-grained collective measurement e.g. inductive
measurement of the phosphorous spins. Observing different outcomes depending on the
outcome of the measurement on the qubit, proves macroscopic distinctness between the
states of the mesoscopic system correlated with the |0〉q and |1〉q states of the qubit. It also
proves correlation between the qubit and the mesoscopic system along the z-axis. Direct
inductive measurement of the phosphorous spins’ magnetization needs a large number of
spins (∼ 1011−12); if measured through the electron spins this number can be reduced by
three orders of magnitude (∼ 108−9). A more physically viable approach is to measure the
mesoscopic system’s magnetization by observing the mean-field seen by the NV. Observing
different mean-fields depending on the outcome of projective measurement on the NV
confirms correlation between the state of the microscopic and the mesoscopic systems
along the quantization axis; however this measurement is a local measurement and can
not specify the extend of correlation, thus it is generally not enough to prove macroscopic
distinctness.

Proving correlation in one direction is not enough for demonstrating entanglement since
it can not discern an entangled state,

|φ〉q,MSS =
1√
2

(
|0〉q |ψ0〉+ |1〉q |ψ1〉

)
.

from a classically correlated state,

ρq,MSS =
1

2
(|0〉〈0|q ⊗ ρ0 + |1〉〈1|q ⊗ ρ1)

A spin counting experiments, depicted in figure 6.2, can distinguish between the above
entangled and classically correlated states by measuring only the qubit. It can also verify
the extend of correlation between the qubit and the mesoscopic system, and thus prove
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Figure 6.2: A schematic of the spin counting experiment. This circuit measures the
coherence and the extend of correlation between the qubit and the mesoscopic system, by
measuring only the qubit.

macroscopic distinctness when direct measurement on the mesoscopic system is not avail-
able.

The evolution step, shown in figure 6.1(c), ideally prepares the micro-macro entangled

state, |φ〉q,MSS = 1√
2

(
|0〉q |ψ0〉+ |1〉q |ψ1〉

)
. The encoding step applies a collective rotation

along the quantization axis eiθJz on the mesoscopic system,

eiθJz |φ〉q,MSS ≈
1√
2

(
|0〉q eiθ〈Jz〉0 |ψ0〉+ |1〉q eiθ〈Jz〉1 |ψ1〉

)

=
eiθ〈Jz〉0√

2

(
|0〉q |ψ0〉+ eiθ(〈Jz〉1−〈Jz〉0) |1〉q |ψ1〉

)

where 〈Jz〉i = Tr(|ψi〉〈ψi| Jz) for i = 0, 1. The relative phase in the above superposition
state is proportional to the difference in the average magnetization of the states |ψ0〉 and
|ψ1〉. By reversing the evolution, this phase appears on the superposition state of the
qubit only and can be detected by measuring the qubit in the transverse plane. Repeating
this measurement for different angles and taking the Fourier transform with respect to
θ reveals 〈Jz〉1 − 〈Jz〉0. If the evolution step prepares a classical mixture instead, ρ =
1
2
(|0〉〈0| ⊗ ρ0 + |1〉〈1| ⊗ ρ1), the encoding step results in,

eiθJz(ρq,MSS)e−iθJz ≈ 1

2
(|0〉〈0|q ⊗ eiθ〈Jz〉0ρ0e

−iθ〈Jz〉0 + |1〉〈1|q ⊗ eiθ〈Jz〉1ρ1e
−iθ〈Jz〉1)

=
1

2
(|0〉〈0|q ⊗ ρ0 + |1〉〈1|q ⊗ ρ1) = ρq,MSS

Thus, even if the states ρ0 and ρ1 have macroscopically distinct magnetization spectra, the
result of the spin counting experiment is independent of θ since no coherence between the
two states exists.

The demonstration of micro-macro entanglement in solid-state is yet to be realized.
But as outlined above, the different components have already been achieved or are in reach
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within the current or near future technologies. One main challenge is combining them all
together. It remains to explore whether the discussed set of measurements are enough to
rigorously prove entanglement between the mesoscopic system and the qubit. If yes, what
are the conditions? If no, what other measurements are required?

We investigated procedures for creating micro-macro entanglement in spin systems
and provided a list of measures for verifying their validity. Our analysis paves the way
towards observing this extended quantum phenomena in solid-state. We also showed that
producing micro-macro entangled states between a qubit and a mesoscopic system provides
a new tool for information transfer and quantum control which may be used to connect
separated quantum systems. Fabrication and control of mesoscopic systems are practically
viable since atomic precision is not required. By illustrating their potential application in
quantum control, our study opens new avenues towards using mesoscopic spin systems in
large scale quantum architectures.
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[30] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
“Teleporting an unknown quantum state via dual classical and einstein-podolsky-
rosen channels,” Phys. Rev. Lett., vol. 70, pp. 1895–1899, Mar 1993.

[31] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,
“Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.

[32] C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,”
Nature, vol. 404, p. 247, Mar 2000.

[33] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quan-
tum computation using teleportation and single-qubit operations,” Nature, vol. 402,
no. 6760, pp. 390–393, 1999.

[34] E. Gallopoulos and Y. Saad, “Efficient solution of parabolic equations by krylov
approximation methods,” SIAM Journal on Scientific and Statistical Computing,
vol. 13, no. 5, pp. 1236–1264, 1992.

108



[35] M. S. Mirkamali and D. G. Cory, “Using a mesoscopic system to generate entangle-
ment,” October 2017. US Patent 9792558.

[36] M. S. Mirkamali, D. G. Cory, and J. Emerson, “Entanglement of two noninteracting
qubits via a mesoscopic system,” Phys. Rev. A, vol. 98, p. 042327, Oct 2018.

[37] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, England, 2000.

[38] J. Emerson, “Lecture notes in open quantum systems,” March 2017.

[39] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entangle-
ment,” Rev. Mod. Phys., vol. 81, pp. 865–942, Jun 2009.

[40] M. A. Neumark, “On a representation of additive operator set functions,” C. R.
(Dokl.) Acad. Sci. URSS, vol. 41, pp. 359–361, 1943.

[41] J. von Neumann, Mathematische Grundlagen der Quantenmechanik. Springer Ver-
lag, Berlin, 1932. [English translation (by R. Beyer): Mathematical Foundations of
Quantum Mechanics (Princeton University Press, Princeton 1955)].

[42] P. Horodecki, R.and Horodecki, “Quantum redundancies and local realism,” Physics
Letters A, vol. 194, no. 3, pp. 147 – 152, 1994.

[43] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating
partial entanglement by local operations,” Phys. Rev. A, vol. 53, pp. 2046–2052, Apr
1996.

[44] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K.
Wootters, “Purification of noisy entanglement and faithful teleportation via noisy
channels,” Phys. Rev. Lett., vol. 76, pp. 722–725, Jan 1996.

[45] R. Garisto and L. Hardy, “Entanglement of projection and a new class of quantum
erasers,” Phys. Rev. A, vol. 60, pp. 827–831, Aug 1999.

[46] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A,
vol. 65, p. 032314, Feb 2002.

[47] M. B. Plenio and S. Virmani, “An introduction to entanglement measures..”
arXiv:quant-ph/0504163v3, 2006.

109



[48] A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett., vol. 77,
pp. 1413–1415, Aug 1996.

[49] M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: nec-
essary and sufficient conditions,” Physics Letters A, vol. 223, no. 1, pp. 1 – 8, 1996.

[50] S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev.
Lett., vol. 78, pp. 5022–5025, Jun 1997.

[51] P. Cappellaro, C. Ramanathan, and D. G. Cory, “Dynamics and control of a quasi-
one-dimensional spin system,” Phys. Rev. A, vol. 76, p. 032317, Sep 2007.

[52] G. Giedke, J. M. Taylor, D. D’Alessandro, M. D. Lukin, and A. Imamoğlu, “Quantum
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