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Abstract 

Room-temperature mid-infrared photodetection meet upcoming demands including 

real-time health condition monitoring, low-cost industrial inspection and distributive 

sensing for Internet-of-Things. Photo-thermoelectric (PTE) effect is a bandgap limitless 

photodetection mechanism which utilizes photons induced thermoelectric effect at material 

interfaces. The 1/f noise and shot noise in dark current can be significantly reduced in a 

zero-biased PTE detector. Carbon nanotubes (CNTs) and graphene are emerging low-

dimensional materials with excellent PTE properties. Besides the strong and broadband 

light-matter interaction, their increased electrical to thermal conductivity ratio /  and 

electron density-of-states dependence on energy dEEdg /)(  also lead to enhanced 

thermoelectric conversion efficiency. 

In this thesis, we present two self-powered PTE detection architectures. In the first one, 

vertical photo-thermoelectric effect of an anti-reflecting carbon nanotube forest (CNTF) is 

employed in a broadband mid-infrared detector. 99.4% average reflection suppression in 

the CNTF at 2.5~25 µm spectral range enables responsivity of 6 V W-1 and detectivity of 

2.2×107 cm Hz1/2 W-1 under very weak illumination power, rendering sensitive weak 

infrared photodetection in real life. Top-electrode material, thickness and patterns are 

systematically studied related to the PTE response, and further improvement is possible by 

increasing the CNTF height and reducing the photosensitive area. In the second 

architecture, CNTs/Poly vinyl alcohol (PVA) composite based planar photodetector with 

asymmetric metallic electrodes is investigated. PTE voltage response is optimized via 
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mixing 25 wt.% CNTs into PVA matrix attributed to the enhanced phonon scattering at 

CNTs/PVA interfaces. Moreover, crystallization of PVA around CNTs networks 

contributes to a rather stable photoresponse (variation < 4 %) under significant bending 

down to a 3.5 mm radius. This flexible, wearable photodetector also proves preliminary 

passive imaging of human body radiation. Finally, a unique and facile fabrication technique 

is demonstrated for the integration of a flexible, semi-transparent photodetector based on 

graphene nanoplatelets/PEDOT: PSS composite. This photodetector exhibits enhanced 

PTE response, high flexibility, and good optical transparency at a low loading of graphene.
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Chapter 1  Introduction 

1.1 Contribution and thesis organization 

My first contribution is having developed a highly flexible, polymer based mid-infrared 

photodetector with quite stable photoresponse under significant bending deformation. The 

core material (CNTs/PVA composite) of this detector is manufactured by solution 

processes and the electrodes are patterned by low-cost non-lithographic methods. An 

optimized photoresponse is found in propriate CNTs loading and room temperature 

imaging of passive human radiation from fingers have been achieved. 

My second contribution is having created a novel photo-thermoelectric detection 

architecture by integrating a broadband anti-reflection blackbody absorber. 99.4% 

reflection suppression is observed in the self-assembled carbon nanotubes forest (CNTF) 

in 2.5~25 µm spectral range and produces an unoptimized photo detectivity of 2.2×107 cm 

Hz1/2 W-1 with non-lithographic fabrication methods. This detector architecture exhibits 

exceptional sensitivity towards weak, unfocused, and broadband infrared illumination as 

low as 6.8 µW mm-2 akin to realistic world. The material, thickness, and pattern of the top-

electrode layer are systematically investigated regarding the PTE effect, and further 

improvement is demonstrated possible by increasing CNTF height and decreasing the 

photo-sensitive area. 

My third contribution is having developed a flexible and semi-transparent polymer 

based mid-infrared detector. A low loading of graphene nanoplatelets (3 wt.%) within the 
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PEDOT: PSS matrix has not only contributed to an improved photo detectivity 1.4×107 cm 

Hz1/2 W-1 compared to our first generation - CNTs/PVA composite, but also yielded a high 

optical transparency of the device with thinner composite film and electrodes. The strong 

interaction between graphene and PEDOT: PSS leads to the low graphene loading and the 

good flexibility in the composite film. This self-powered, low-cost, flexible and 

semitransparent detectors could find applications in wearable technologies and 

autonomous driving assistants. 

Below is a list of refereed journal publications where I am the primary author. In these 

work, I am responsible for all the designs, fabrications, measurements, data analysis, and 

manuscript writing. The co-authors have helped to review the manuscript and provided 

revision advices. 

1. Mingyu Zhang, and John Yeow, “Nanotechnology-Based Terahertz Biological 

Sensing: A review of its current state and things to come,” IEEE Nanotechnology 

Magazine 10 (3), 30-38.  

2. Mingyu Zhang, and John Yeow, “Flexible Polymer–Carbon Nanotube Composite 

with High-Response Stability for Wearable Thermal Imaging,” ACS applied 

materials & interfaces, 10 (31), 26604-26609. 

(This work is presented in Chapter 4.) 

3. Mingyu Zhang, Dayan Ban, and John Yeow, “Large-area and Broadband 

Thermoelectric Infrared Detection in A Carbon Nanotube Black-body Absorber,” 

Revised and re-submitted to Nature Communications. 

(This work is presented in Chapter 3.) 

4. Mingyu Zhang, and John Yeow, “A Flexible, Scalable, and Self-powered Mid-

infrared Detector based on Transparent PEDOT: PSS/Graphene Composite”, To be 

submitted to Carbon. 

(This work is presented in Chapter 5.) 
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This thesis will be presented as follows. Chapter 1 introduces the light absorbing 

materials used in my work - CNTs, graphene, and their polymer composites, the utilized 

photodetection mechanism - photo-thermoelectric effect (including the advancements of 

using low-dimensional materials), and the review of different mid-wave infrared (MWIR, 

3–5 μm) and long-wave infrared (LWIR, 8–12 μm) photodetectors as well as discussions 

on the noise. Chapter 2 provides the synthesis methods and characterization results of 

CNTF, CNTs/PVA composite, and PEDOT: PSS/graphene composite. Chapter 3 presents 

the photo-thermoelectric architecture based on the vertically aligned anti-reflecting carbon 

nanotubes forest. The investigations on the top-electrode layer thickness, material, patterns 

have been discussed. The further photoresponse improvement is also indicated by 

optimizing the physical dimensions of CNTF. Chapter 4 presents the development and 

photoresponse characterization of CNTs/PVA composted based detectors in terms of 

CNTs content, composite channel length and input power density. The detector bending 

properties are investigated and room temperature passive imaging of human body has been 

demonstrated. Chapter 5 describes the characterizations of PEDOT: PSS/graphene 

composite based detectors. The photoresponse correlations with graphene nanoplatelets 

loading and composite film thickness are revealed. Bending properties and optical 

transparency results have been included and practical applications of as-fabricated 

detectors are shown. Chapter 6 summarizes the achievements of all works and proposes 

future works. 
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1.2 Introduction to low-dimensional carbons 

Carbon, congener element of silicon, has appealed great attention in recent decades 

since the discovery of its low-dimensional allotropes - fullerene (0-D), carbon nanotube 

(1-D), and graphene (2-D) in 1985, 1991,[1] and 2004,[2] respectively. Low-dimensional 

carbon assemblies exhibit a variety of superior properties beyond traditional materials such 

as the exceptional electrical conductivity, the excellent mechanical strength,[3] the high 

thermal conductivity,[4] and good chemical stability. 

1.2.1 Graphene 

As the pioneer of 2D materials, graphene is typically referred as the single (0.34 nm 

thick) or few layers hexagonal carbon atoms exfoliated from graphite. Due to the unique 

lattice structure, electrons in the delocalized π orbital can move freely as massless Dirac 

Fermions similar to light waves,[5] leading to an extremely high carrier mobility in theory 

(~15,000 cm2 V-1 s-1). Single-layer graphene exhibits semi-metallic property because its 

conduction band touches the valence band at the Dirac point (as shown in Figure 1-1b), 

creating the zero-bandgap structure. This property also extends the light absorption 

spectrum of graphene into a very broad range - from the short-wavelength ultraviolet to the 

long-wavelength range beyond terahertz and microwaves. As the number of graphite layers 

increases, or as the lateral physical dimension decreases to the nanoscale, graphene shows 

a gradually opened bandgap and starts to behave like a semiconductor. 
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a b 

 

 

Figure 1-1. a, Graphene sketch. b, Energy dispersion diagram of graphene. Figure adapted 

from ref. [6]. 

The extraordinary room-temperature carrier mobility (for both electrons and holes in 

intrinsic graphene),[7] the high thermal conductivity ~3000 W m K-1, the excellent 

Young’s modulus ~1 TPa,[8] the ideal optical transparency ~97.8%, and the availability of 

being doped via simple chemical or electrical techniques have made graphene quite 

promising in future electronic and optoelectronic applications, possibly including 

transparent conductors, solar cells, light emitting diodes, photodetectors, saturable 

absorbers and ultrafast lasers, touch screens, flexible smart windows, etc. as shown in 

Figure 1-2.[9] 
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Figure 1-2. Graphene based optoelectronic devices. a-c, Schematics of inorganic, organic, and 

dye-sensitized solar cells. d, Schematic of an organic light emitting diode. e, Schematic of a 

photodetector.[9] 

1.2.2 Carbon Nanotubes 

Carbon nanotubes (CNTs) can be regarded as the cylinder structure rolled up from a 

graphene layer along a specific axis. Therefore, CNTs share many similar physical 

properties with graphene. CNTs typically consist of one rolled-up graphite wall (single-

walled CNTs, or SWNTs) or several coaxial graphite walls (multi-walled CNTs, or 

MWNTs) with the total diameter ranging from a few nanometers to a hundred nanometers. 

The electrical properties of CNTs are determined by the chirality (the way graphene layer 

is rolled up) and the tube diameter. As shown in Figure 1-3a, the charity of CNTs can be 

determined by 1 2kC na ma
→ → →

= + . If n m= , the CNTs are referred as armchair type (Figure 

1-3b) where relatively straight electron transporting paths exist along the tube axis which 

enable a high electrical conductivity. If 0m = , the CNTs are referred as zigzag type (Figure 

1-3c), which are less conductive because the electron transport paths are generally more 
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twisted. CNTs are found to exhibit metallic behavior only when ( ) / 3n m−  is an integer. 

Otherwise, CNTs are semiconductors with the bandgap inversely proportional to the 

overall diameter.[10] Statistically, 1/3 portion of the all the carbon nanotubes are metallic 

and 2/3 portion of the carbon nanotubes are semiconducting (with bandgaps of 0~2 eV). 

MWNTs are therefore mostly metallic because some of these tube walls could be metallic.  

 

 

a 

 

b c d 

   

Figure 1-3. a, Schematic diagram of the chiral vector and the chiral angle.[11] b-d, Sketch of 

carbon nanotubes armchair type, zigzag type, and chiral type.  

Theoretical thermal conductivity of individual carbon nanotube is  𝜅 = 6600 W m−1 

K−1.[12] But due to the presence of bundling effect and defects, chemical vapor deposition 

synthesized CNTs bundle or sheet usually has a thermal conductivity of  = 50~200 W m-

1 K-1 along tube axis, and the ratio of / ⊥
 is in the range of 3~30 varied with tube 

interspace and misalignment.[13], [14] The experimentally measured electrical 
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conductivity varies with the tube density and defect degrees. The resistance of aligned 

CNTs are found to be ten to hundreds of Ohms/square.[13]–[15] The electron mobility of 

CNTs differs significantly with the morphologies and fabrication methods, as shown in 

Figure 1-4. By virtue of the high electrical conductivity, carrier mobility, and strong light 

absorption, a variety of electronic and optoelectronic devices have been developed based 

on CNTs. CNTs have been utilized as the light absorbing[16], [17] and electrode 

materials[18] in new-generation solar cells, as the conducing channel material in field-

effect transistors,[19], [20] or as molecules absorbing and electronic actuating material in 

chemical and biological sensors.[21], [22] 

 

Figure 1-4. The mobility and on/off ratio trends in CNTs based transistors due to the different 

morphologies and fabrication techniques.[23]  

1.2.3 Carbon-polymer nanocomposites 

The excellent electrical, thermal and mechanical properties of CNTs and graphene we 

talk about are mostly in the microscopic scale, i.e. per unit volume. Therefore, it requires 

propriate assembling strategies to successfully translate their outstanding nanoscale 
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properties into macroscale performance that can be utilized in realistic applications. One 

of the widely adopted strategies is to combine CNTs and graphene with other materials in 

the form of alloys, blends, composites or hybrid materials. The idea of incorporating CNTs 

or graphene as fillers into a variety of polymer matrices have greatly advanced the 

development of nanomaterials by introducing facile and low-cost processing of 

conventional polymers into the material production.[24]–[26] 

A composite consists of two material components: the filler and the matrix. While 

CNTs and graphene with nano-/micro- domains serve as the fillers, the matrix materials 

could be various polymer materials: the electrically conductive polymers such as poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS),[27]–[29] Polyaniline 

(PANI),[30] or the insolating polymers such as poly(vinyl acetate) (PVAc),[31] poly 

(methyl methacrylate) (PMMA),[32] poly vinyl alcohol (PVA),[33], [34] poly (vinylidene 

fluoride) (PVDF),[35] etc.  

 

Figure 1-5. The electrical conductivity versus multiwall carbon nanotubes (MWCNT) (vol.%) 

loadings in polypropylene copolymer/MWCTs composites. Inset shows the log plot of conductivity 

as a function of vc.[36] 
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The addition of CNTs or graphene into insolating polymers lead to the onset and almost 

continuous tunability of the electrical conduction due to the formation of 3D network 

among polymer matrix. The electrical conduction mechanism is carrier transport via intra-

molecular hopping/tunnelling between the dispersed filler particles. The minimum filler 

loading when the continuous conducting network starts to form is referred as the 

percolation threshold.[26] The correlation of electrical conductivity and the volume 

fraction of filler follows a power law function:  

 0= ( )t

cv v  −  (1-1) 

where σ is the electrical conductivity of the composite, σ0 is the characteristic conductivity, 

v is the volume fraction of filler, vc is the volume fraction at the percolation threshold, and 

t is the critical exponent. The percolation threshold in CNT/polymer nanocomposites can 

be affected by many parameters such as filler functionalization, aspect ratio, dispersion, 

alignment, etc. Due to self-aggregation of the 1D shaped CNTs and the π-π stacking 

between graphene flakes, the percolation threshold is always higher than the theoretical 

filler loading value. For the same filler loading, CNTs often show higher electrical 

conductivity than graphene.[25] As shown in Figure 1-5, the electrical conductivity could 

be improved by several orders of magnitude after the filler incorporation. 

The thermal conductivity and thermal stability (glass transition temperature Tg) can 

also be improved after incorporating low-dimensional carbon fillers into polymers and 

found to increase with filler loading fraction.[25] However, due to the presence of 

numerous grain boundaries and interfaces among the filler/matrix composite, phonon 

scattering is enhanced, so the increase in thermal conductivity is not as significant as the 
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increase in electrical conductivity when the filler loading is increased. Usually only a few 

times thermal conductivity improvement is obtained at relatively high CNTs or graphene 

loading.[37], [38] 

The improvement of mechanical strength after CNTs or graphene incorporation is 

another important application of nanocomposite. A CNTs/epoxy composite showed an 

increase of 4.2 to 35% in tensile strength compared to bare epoxy.[25] For aligned CNTs 

array/epoxy composite, a Young’s modulus of 15.0 GPa and a tensile strength of 104 MPa 

were reported along the CNTs alignment direction, which are several times higher than the 

bare epoxy.[39] As expected, the tensile strength is found to increase with the loading of 

graphene filler, shown in Figure 1-6.  

a b 

  

Figure 1-6. a, A typical stress-strain plots of the composites with various graphene loadings. 

b, Tensile strength and elongation beak of graphene/PVA composites with various graphene 

loadings.[40] 

1.3 Introduction in photo-thermoelectric effect  

The photo-thermoelectric (PTE) effect in photodetectors consists of two consecutive 

processes: 1) the low-energy incident photons induced intra-band or inter-band excitations 

in the carbon nanomaterials; 2) the hot-carriers gradient (temperature gradient) induced 
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thermoelectric conversion, as a result of the artificial asymmetries of Seebeck coefficient 

and thermal conduction along carrier transporting direction. 

1.3.1 Light and matter interaction 

While inter-band transition contributes to the main light absorption mechanism in the 

visible and near-infrared region in graphene, for long-wave infrared and THz waves, the 

intra-band transition, also termed as free carrier response, dominates this process due to 

the relatively low photon energies.[41]  

a b 

 

 

Figure 1-7. a, A typical light absorption spectrum in doped graphene. b, Illustration of optical 

transition processes for different light wavelengths, and µ is the chemical potential.[42] 

Figure 1-7 illustrates the light absorption spectrum in doped graphene from visible to 

terahertz range and the various optical transitions. At visible and near-infrared regimes, the 

experimentally measured light absorption in graphene is frequency-independent and close 

to 2.3%  , where 
2e

c
 =  is the fine structure constant.[43] The light absorption in the 

long-wave infrared and terahertz range where the frequency ω<2EF can be described by 

the Drude model. The optical conductivity and DC conductivity are[42], [44] 
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where 
2

2

Fe E
D = is the Drude weight,   is angular frequency of electromagnetic waves, 

and 
1


 =  is the phenomenal scattering rate. ( FE  is Fermi energy,  is reduced Plank 

constant,   is electron scattering time). For mid-infrared waves, reduced absorption is 

expected due to the Pauli blocking, and disorders plays an important role in the optical 

transitions in doped graphene.[45] 

The light-matter interaction in CNTs is similar to that in graphene but differs in several 

ways. One is that macroscale CNTs assemblies usually consist of metallic tubes with zero 

bandgap like graphene as well as semi-conductive tubes with small bandgaps. The second 

is that CNTs is one-dimensional which leads to resonant absorption in certain light 

frequencies when the phases of plasmon and light wave are matched. Two absorption 

mechanisms have been proposed by Kampfrath et al. to explain the far-infrared light 

interaction with CNTs, as illustrated in Figure 1-8.[46] In a broad infrared wavelength 

range of 2~667 µm, the Drude-Lorentz model was employed by Ugawa et al. to describe 

the dielectric constant[47] of a freestanding CNTs film as 

 

2 2

2 2
( )

( ) ( )

p pj

c

j j ji i


  

     


= − −

+ − + 
  (1-4) 
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Where c  stands for the frequency-independent dielectric constant, 
p is the plasma 

frequency,   is the relaxation rate of the charge carriers, and 
j , 

j , 
pj  are the center 

frequency, spectral width, and oscillator strength of the Lorentz oscillators.[47] The second 

term in this equation is Drude term which describes the free electron response and is 

utilized to characterize the optical properties of metals at relatively low frequencies. The 

third term is the Lorentz term that presents the contribution from Lorentzian oscillators due 

to inter-band transitions in dielectric materials and metals at relatively high frequencies.[48] 

 

Figure 1-8. a, The optical transition mechanism in carbon nanotubes a band diagram - the inter-

band transition across the band gap and the impurity-assisted intra-band transition. b, The plasmon 

resonance absorption mechanism in a carbon nanotube.[46] 

In contrast to the isotropic absorption observed in single-layer graphene,[49] a high 

optical anisotropy exists in aligned CNTs thin-film and patterned graphene ribbons. The 

light absorption in CNTs is larger when the electric field of incident waves is parallel to 

the CNTs alignment and is smaller when the electric field is perpendicular to the CNTs 

alignment.[50], [51] Wang et al. extracted the plasma frequency 
2

p


 in aligned CNTs film 

to be 13.1 THz and 39.3 THz in E⊥  and E  directions, respectively, falling between doped 

semiconductors and perfect metals. Due to the larger free electron density and conductivity 
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along the CNTs alignment direction, the higher plasma frequency in E  direction leads to 

enhanced plasmonic absorption and free carrier excitation.[50], [51] 

a b 

 

 

Figure 1-9. a, The absorption coefficient spectra for aligned CNT films at a few THz. b, A 

carbon nanotube polarization sensitive THz detector working at 1~3 THz.[50] 

It is noteworthy that vertically aligned CNTs are regarded as “world’s darkest 

substance” due to the extremely high light absorption properties throughout a broadband 

spectrum. Ultralow reflectance of 0.01~0.02 was observed in the 0.2~200 µm wavelength 

range, as shown in Figure 1-10.[52], [53] This black body behavior is considered to 

originate from the unique forest structure as an assembly of nanotubes which are sparsely 

distributed and vertically aligned.[53] Advanced optical and photonic devices including 

but not limited to photodetectors,[52] solar cells,[54] solar steam generation[55] are 

possible by using the outstanding light absorption properties. 
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Figure 1-10. Reflectance and transmittance spectra of the vertically aligned SWNTs.[53] 

1.3.2 Thermoelectric effect 

The thermoelectric effect includes three separately identified effects: Seebeck effect, 

Peltier effect, and Thomson effect. Discovered by Thomas Johann Seebeck in 1821, 

Seebeck effect which is the reversed phenomenon of Peltier effect indicates a presence of 

temperature gradient can induce an electric field. The simplest application of Seebeck 

effect in our daily life is the thermocouple where two pieces of metal materials are 

connected for the temperature measurement. The temperature difference can be determined 

by the electric voltage measured at two ends of the circuit 

  
2

1

( ) ( )

T

B A

T

V S T S T dT= −  (1-5) 

S stands for Seebeck coefficient of the material which can be measured by 
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V

S T
T


= −


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a 

 

b 

  

Figure 1-11. Schematic of thermoelectric effect and Seebeck effect. [56] 

As illustrated in Figure 1-11a, the Seebeck effect originates from temperature gradient 

induced non-uniformity of carrier density: the carrier density is higher in cold-side 

compared to the hot-side due to less carrier thermal movement and scattering. This carrier 

density gradient creates an electric field pointing from cold-side to hot-side within P-type 

materials (which have positive S), and from hot-side to cold-side within N-type materials 

(which have negative S). The equilibrium state is achieved until the thermoelectric voltage 

has been built up to compensate the thermodynamics. 

The Seebeck coefficient can be described by Mott relation in degenerate systems such 

as metals and heavily doped semiconductors[57], [58] 

 
F
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where 2 2 2/ 3BL k e= is the Lorentz number, EF is Fermi energy, kB is Boltzmann constant, 

*m  is the effective mass of the carrier, and n is the carrier concentration. Mott relation 

reveals that Seebeck coefficient is correlated to the electrical conductivity and its variation 
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with Fermi energy. As the material electric conductivity ( e n = ) are mostly influenced 

by Fermi electrons, the carrier mobility µ and carrier concentration n will change after the 

free carrier excitation which lead to the term / Fd dE .[57] The correlation * 2/3S m n−

indicated in equation (1-8) explains why n-type materials generally have larger S than p-

type materials - due to the higher effective mass *m  for electrons, and why the 

semiconductors have larger S than metals - due to the lower carrier concentration n  for 

semiconductors. For materials with strong electron-phonon coupling, the phonon drag 

effect also contributes to the Seebeck coefficient. In the presence of a temperature gradient, 

electrons can be dragged by the diffusing phonons and thus exhibit a higher effective mass 

thus a larger S.[59], [60] The electrical, thermal conductivities and Seebeck coefficients of 

some representative materials have been listed in Table 1-1. 

Table 1-1. Electrical conductivity, thermal conductivity, and Seebeck coefficient of some 

representative materials. 

Materials Au Al Ni Cr Ti Bi2Te3 Si 

Electrical conductivity 

×105 Ω-1 cm-1 
4.4 3.7 1.4 0.78 0.23 0.01 0.0028 

Thermal conductivity 

W mK-1 
315 237 90.5 90.3 21.9 1.6 145 

Seebeck coefficient 

µV K-1 
1.9 -1.7 -19.5 22 9.1 200 450 

 

In addition to the large Seebeck coefficient, a finite temperature gradient T  has to be 

applied to the device according to equation (1-5) for efficient thermoelectric conversion. 

The overall efficiency of a TE material is characterised by a dimensionless figure of merit 

ZT value defined as 
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2S T

ZT



  (1-9) 

where S is Seebeck coefficient, σ is electrical conductivity, and κ is thermal conductivity, 

and the term 2S   is often referred as power factor. One always expects a large 2S   to 

maintain high carrier mobility, and a low κ to retain sufficient thermal gradient[61]. The 

best ZT value is found in heavily doped semiconductors because insulators have poor 

electrical conductivity and meals usually have low Seebeck coefficient. 

As an inherent property, the electrical and thermal conductivity are strongly correlated 

in many materials especially in metals, through the Wiedemann–Franz law /eL T = , 

where e  is electron thermal conductivity and 
2 2 2/ 3BL k e=  is known as the Lorenz 

number. Wiedemann–Franz law reveals that the thermal transport and the electrical 

currents are carried by the same fermionic quasiparticles in metals, and thus their ZT values 

are intrinsically restrained from being further improved. However, while electrons 

dominate the electrical and thermal transport in metals, phonons contribute to the 

thermoelectric effect additionally in semiconductors.[62] For semiconductors, a major 

contribution to the thermal conductivity comes from phonons with a minor portion coming 

from electrons. The advantage is that the ZT value can be improved by artificially 

suppressing the phonon induced thermal conductivity without causing too much reduction 

in the electrical conductivity. This can be achieved by creating interfaces in composites or 

alloys to enhance phonon scattering.[63]–[65] 
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1.3.3 Enhanced thermoelectric effect in nanostructures 

Low-dimensional materials based nanostructures generally have better ZT values than 

the bulk counterparts due to higher Seebeck coefficient and lower thermal conductivity. 

One intrinsic benefit brought by low dimensionality is the increase in / Fd dE  which 

improves the Seebeck coefficient. For 3D, 2D, 1D, and 0D materials, the electrical 

conductivity   is proportional to the carrier concentration n which further scales with the 

density of states (DOS) g(E) near the Fermi level, as shown in equation (1-10) to (1-13).[66]  

 
1/2

3 3 3 ( )D D D Fn g E E     (1-10) 

 
0

2 2 2 ( )D D D Fn g E E     (1-11) 

 
1/2

1 1 1 ( )D D D Fn g E E −    (1-12) 

 0 0 0 ( )D D D Fn g E E     (1-13) 

Figure 1-12 clearly illustrates that with decreasing dimensions, the DOS changes more 

significantly as a function of EF. This leads to the intrinsically enhanced Seebeck 

coefficient in low-dimensional material based nanostructures due to the higher / Fd dE . 
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Figure 1-12.  Energy dependence of electronic density of states in 3-, 2-, 1- and 0- dimensional 

materials.[66] 

Several other strategies can also be employed to enhance the Seebeck coefficient of 

nanostructures including the energy filtering effect, the semimetal-semiconductor 

transition, and the carrier-pocket engineering.  

The energy filtering effect can be understood as follows: the numerous interfaces 

within nanostructures act as small potential barriers that preferentially filter the low-energy 

carriers and pass higher-energy carriers through the interfaces.[67] This effect contributes 

to a larger asymmetry in the energy differential conductivity, i.e. the term / Fd dE shown 

in equation (1-7). The reduction of electrical conductivity induced by energy barriers is 

more than compensated by the enhancement of Seebeck coefficient, which leads to an 

increase in the power fact 2S  .[68]  

The phenomenon of semimetal-semiconductor transitions happens when the physical 

size of a semimetal is significantly reduced to the nanoscale, e.g. in nanowires and 

nanoribbons. The semimetal energy bands split into discrete sub-bands due to the reduced 
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energy states in quantum confinement direction. As shown in Figure 1-13a, the highest 

occupied molecular orbital (HOMO) moves up and the lowest unoccupied molecular 

orbital (LUMO) moves down when the diameter of a Bismuth (Bi) nanowires decrease, 

leading to a gradually opened energy bandgap.[69] Similarly, Han et.al experimentally 

demonstrated that the graphene bandgap scales inversely with the ribbon width and 

obtained a quantitative fit 
*

gap / ( )E W W= − , where Egap is the bandgap, W is the ribbon 

width, α=0.2 eV nm, and W*=16 nm, as shown in Figure 1-13b. Through the semimetal-

semiconductor transition, higher Seebeck coefficient and ZT value can be achieved. 

a b 

 

 

Figure 1-13. a, Schematic of Bismuth nanowire band structures with decreasing nanowire 

diameters.[68] b, The correlation between bandgap Egap and ribbon width W in graphene.[70]  

The rational of carrier-pocket engineering is to spatially confine two types of carriers 

with the same sign in the quantum well material and the barrier material separately, in order 

to achieve higher Seebeck coefficient. The concept was originally developed in GaAs/AlAs 

superlattice where the Γ-point electrons are restrained in GaAs quantum wells and X-point 

electrons are restrained in the AlAs barriers.[71] 
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Apart from improved Seebeck coefficient, a prominent effect that contributes to the 

high ZT value in nanostructures is the reduced thermal conductivity.[68] Intensive 

interfaces among nanoscale domains in nanostructured materials have scattered phonons 

more effectively than the electrons and lead to higher ZT values. This strategy has been 

widely applied in nanocomposite systems.[72]–[74] 

1.4 Recent advances in infrared photodetectors 

The electromagnetic spectrum consists of a broad wavelength range spanning from the 

radio wave, microwave, infrared, visible, ultraviolet, X-rays and gamma rays, as shown in 

Figure 1-14. Modern quantum theories state that the electromagnet waves exhibit both 

particle properties and wave properties at the same time. The quantized energy E of this 

particle, which is referred as photon, is correlated to the frequency of the wave by the 

equation E h= where h is the Planck constant. The developments of photodetection 

technologies have been playing a critical part in the modern sciences and technologies for 

man kinds, such as the radio wave probing for radio communication and radars, the 

microwave detection for 3G/4G Wi-Fi and mobile communication, the visible light 

detection for high-definition cameras in our daily life, the X-rays detection for biomedical 

imaging, disease diagnosis and physical therapy. 
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Figure 1-14. The electromagnetic spectrum. (Image courtesy of Caltech—funding by NSF.) 

However, the photodetection technologies in mid-infrared and far-infrared (terahertz) 

range fall behind other wavelengths due to the lack of efficient detection mechanisms at 

room temperature. The photon energy is too low to fit the bandgap of most semiconductors 

and the electromagnetic wave frequency is too high for the response of electronic devices. 

For a long time, the fabrication complexity and high operating cost have limited MWIR 

and LWIR detectors only to military applications such as night vision and heat-seeking 

missiles, as well as scientific research purposes such as astronomy and Fourier transform 

infrared spectrometers. However, with the development of miniaturized, low-cost, and 

sensitive photodetectors working at room temperature, there are growing opportunities for 

civilian applications such as distributive sensors in Internet-of-things, biomedical thermal 

imaging,[75], [76] autonomous driving assistants,[77] and non-destructive industrial 

inspection.[78], [79] 
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1.4.1 Review of MWIR and LWIR photodetectors 

In contrast to the mature photoconductive and photovoltaic detection technologies for 

visible-light photodetectors, there is a variety of photodetection mechanisms for MWIR 

and LWIR photodetectors. They can be classified into two categories: photonic detectors 

and thermal detectors. Photonic detectors include mercury cadmium telluride (MCT) 

detectors, GaAs/AlGaAs quantum well detectors, type-II InAs/GaSb superlattice, etc. 

Thermal detectors mainly include superconductor detectors, bolometers, Golay cells, 

pyroelectric detectors, and thermoelectric detectors, etc. Photonic detectors usually have 

very fast response and quite high sensitivity, but they must be cooled to the condition 

kT h to reduce thermal noise while thermal detectors are generally lower cost and have 

relatively lower but broadband photoresponse. 

The radiation in the MWIR and LWIR regimes correspond to photon energy less than 

0.7 eV.[80] For inter-band transition photonic detection, there are only a few material 

systems that can satisfy the small bandgap requirement, including the commercial mercury 

cadmium telluride (HgCdTe), the lead chalcogenide family (PbS, PbTe, PbSe) and the 

indium antimonide based family (InGaAsSb). However, the tunability of the absorption 

and detection wavelength can only be achieved by changing the composition between each 

element. Also, these materials suffer from high fabrication complexity, low production 

yield and high cost. Lately, the advent of colloidal quantum dots (CQD) based 

photodetectors has mitigated these drawbacks with the size-tunable optical features and 

facile fabrication as solution-processable materials.[81], [82] Tang et.al demonstrated a 

dual-band infrared photodetector by tuning the physical sizes of two stacked CQD layers 
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and achieve both short-wave infrared (SWIR, 1.5~2.5 µm) detection and MWIR detection 

in a single device.[81] 

 

Figure 1-15. a, Illustration of the structure of a dual-band CQD imaging device. b, Optical 

absorption of SWIR and MWIR HgTe CQDs used to fabricate the dual-band device. The sizes of 

the SWIR and MWIR CQDs are 6 nm and 9 nm, respectively. c, Specific detectivity as a function 

of temperature under bias. Dashed lines are the calculated results.[82] 

Another photonic detection methodology is the bandgap-limitless intra-band transition 

utilized for quantum-well infrared photodetectors (QWIP). A QWIP consists of 

periodically alternating GaAs/AlGaAs thin layers grown by molecular beam epitaxy (MBE) 

or metalorganic chemical vapor deposition (MOCVD). The thicknesses and doping 

concentrations of these semiconductor layers are precisely controlled in atomic level to 

engineer the conduction sub-bands energy splitting which is equivalent to a specific photon 
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energy. The detectivity of QWIP can reach 1010~1011 cm Hz1/2 W-1 under liquid nitrogen 

cooling (~77 K) and degrades with the temperature increase as shown in Figure 1-16a, b.[83] 

Palaferri et.al integrated a patch antenna array into the QWIP which effectively slowed 

down the decrease of the detectivity at elevated temperature (Figure 1-16c, d).[84] They 

attributed this improvement to both the enhancement of responsivity and the strong 

suppression of the dark current owing to the antenna effect.  

a b 

  
c d 

  
Figure 1-16. a, QWIP detectivity at 10.6 µm at various temperatures. b, QWIP detectivity at 

5 µm at various temperatures. d, Specific detectivity D* as a function of the temperature at a bias 

of 0.5 V for the mesa reference (red) and two array structures (blue). Reproduced from ref. [83], 

[84]. 

The most widely used thermal detectors are bolometers utilized in room-temperature 

thermal cameras. Usually each microbolometer in the focal plane array is made of 
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vanadium oxide or amorphous silicon heat resistor. Upon infrared illumination, the 

electrical resistance change due to phonon vibrations will be measured and processed into 

temperature values.[85] There is another type of bolometers called hot-electron bolometers 

which measures the resistance change of nanomaterials or superconducting materials under 

cooling conditions below 10 K. At cryogenic temperature, the electron-phonon coupling 

becomes much weaker and the electrical resistance could be strongly correlated to the 

electron temperature.[86] Hot-electron bolometers usually have extremely high sensitivity 

with the noise equivalent power (NEP) in the 10-15~10-19 W Hz-1/2 range.  

More lately, the development of thermoelectric detectors has been largely advanced by 

the research on nanomaterials due to stronger light-matter interaction and enhanced 

thermoelectric conversion efficiency. The key concept of thermoelectric detectors is to 

create asymmetry of related physical properties in the device. Current photo-thermoelectric 

architectures mostly fall into two types - the light absorbing p-n junctions[87]–[89] and 

dissimilar electrodes based detectors.[90]–[94] The photoresponse of p-n junction 

thermoelectric detectors originates from the Seebeck coefficient difference of the p-type 

(positive S) and n-type (negative S) materials at presence of a temperature gradient in the 

vicinity of the junction induced by infrared illumination, as shown in Figure 1-17a, b. 
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a b 

  

Figure 1-17. a, A schematic diagram of the detector consisting of the junction of a partially p-

doped and partially n-doped CNT film. b, Temperature profile along the CNT film channel under 

laser illumination at different power densities.[51] 

Dissimilar electrodes can also generate significant amount of photoresponse attributing 

to the differential thermoelectric effect at two kinds of electrode/channel interfaces. The 

dissimilar electrode combinations could be Sc/Pd,[95] Au/Cr,[91] and Al/Ti,[90] deposited 

on an infrared absorbing thin-film such as graphene and CNT. Diverse electrode 

combinations could yield different thermoelectric response as the result of different 

Seebeck coefficient offsets and the thermal gradient across the detector channel.[90], [96] 

In addition, the integration of plasmon resonant electrodes into this architecture have also 

been demonstrated (as shown in Figure 1-18b) to effectively improve the light absorption 

at certain wavelengths.[89], [91] 
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Figure 1-18. a, A schematic diagram of dissimilar electrodes based detector.[94] b, A 

plasmonic resonance enhanced thermoelectric photodetector.[89] 

There is another thermoelectric structure which simply contains two identical 

electrodes and an infrared absorbing channel. But localized and focused illumination on 

one of the electrode/channel interfaces is required for photodetection functionality and this 

type of detectors is also bulky.[97]–[100] 

1.4.2 Noises in photodetectors 

Noises are very important consideration in photodetectors and the noise levels are 

different in different kinds of optoelectronic devices. The evaluation of noises is critical in 

determining the photodetector performance. The mainly considered noises in 

photodetectors include shot noise, Johnson-Nyquist noise, and flicker noise.  

Shot noise, also known as quantum noise, is due to the fact that electrical currents are 

carried by discrete charges which transport and arrive randomly and discontinuously. The 

quantum nature of photons also gives rise to a statistical randomness of their arrivals onto 

the detector surface and contributes to the fluctuation of electron-hole pair generation.[101] 

The shot noise can be evaluated by 
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 2sh DCi eI f=   (1-14) 

where e is the electron charge, IDC is the average DC current, and f  is the instrument 

bandwidth. Since the shot noise level increases with the current in circuit, high-voltage 

biased photodetectors often suffer from large shot noises.  

Johnson-Nyquist noise (thermal noise) is the random voltage fluctuation existing in all 

electronic devices due to the thermodynamic motion of carriers. The Johnson-Nyquist 

noise level is expressed as 

 
4 B

JN

k T f
i

R


=  (1-15) 

where kB is the Boltzmann constant, T is the temperature of the electronic device, and R is 

the resistance of the whole circuit.  

Flicker noise is also referred as pink noise or 1/f noise as this kind of noise level is 

proportional to 1/ af  where 0 < a < 2, and more significant in low frequency regime. 

Flicker noise is generally accepted to arise from the fluctuation of carrier number (in 

semiconductors) and mobility (in metals) due to the presence of defects and disorders as 

trapping and scattering sites.[102] The flicker noise in graphene and carbon nanotubes are 

found to scale with the current and temperature.[102], [103] 

Considering that the photo-thermoelectric effect based photodetectors can operate 

under zero bias, i.e. self-power, the shot noise and flicker noise have been significantly 

reduced. The measured actual noise levels are found to approach the Johnson-Nyquist 

noise level limit.[89]–[91], [97] Therefore, reduced noise is another great merit for self-
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powered infrared detectors besides being battery-free itself, and also the important reason 

for them to be capable of working under room temperature.
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Chapter 2  Synthesis and characterization of low-dimensional 

carbon assemblies 

There are a variety of synthesis methods of carbon nanotubes and graphene based 

materials, leading to various physical sizes, morphologies, number of graphite layers, 

composite materials, etc. 

For carbon nanotubes synthesis, arc-discharge, laser ablation, and chemical vapor 

deposition are the three main methods. Arc-discharge and laser ablation can produce high 

crystalline CNTs with narrow tube diameter distributions, but the excessive by-products 

and high temperature (thousands of degrees Celsius) during the processes have hindered 

them from large-scale application.[104] Among the three, chemical vapor deposition (CVD) 

is the most widely adopted synthesis method due to the low set-up cost, high production 

yield, ease of scale-up, and control of CNTs architecture.[105] CVD allows the CNTs to 

grow in different forms such as powder, horizontally aligned thin-film,[106] vertically 

aligned forest,[107] etc., and on various substrate materials or predefined sites on a 

patterned substrate. The CVD growth of CNTs follows the vapor-liquid-solid growth 

pattern and generally comprises of plasma-enhanced CVD (PECVD) and thermal CVD. 

2.1 Vertically aligned carbon nanotubes forest 

Vertically aligned carbon nanotubes forest (CNTF) could be grown by thermal CVD 

or low-pressure CVD (LPCVD) machine. The process involves passing hydrocarbon 
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contained precursors to the catalyst layers sitting in a high temperature reactor (600℃ 

~1100℃). The precursors consist of one hydrocarbon gas such as methane (CH4), ethylene 

(C2H4) or acetylene (C2H2), and one reducing gas such as hydrogen (H2) or ammonia (NH3). 

Commonly used catalyst materials are nanometer thick transition metals such as iron (Fe), 

nickel (Ni), and cobalt (Co). Tip-growth model and base-growth model are the two growth 

mechanisms, as shown in Figure 2-1, depending on the interaction strength between the 

catalyst layer and substrate.  

 

Figure 2-1. Two growth mechanisms of CNTs. a, the tip-growth model, b, the base-growth 

model. 

The growth mechanism of CNTF follows the base-growth model which is composed 

of three steps: 

1) The catalyst layer forms into nanoscale liquid-state droplets on the substrate through 

‘de-wetting’ process at elevated temperature; 

2) Hydrocarbon precursors get reduced and decompose into individual carbon atoms 

around the catalyst and then diffuse into the catalyst droplets; 
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3) When the catalyst droplets become supersaturated with carbons, the carbon atoms 

precipitate out of the particles and nucleate into carbon nanotubes. The nanotube 

diameter is the same as the catalyst droplets size. 

The vertical alignment of individual CNT is achieved by the Van de Waals force 

between each closely standing nanotube as the density of the forest is quite high. The height 

of the CNTF span from tens of microns to millimeters scale depending on the catalytic 

activity. It is noteworthy that a small amount of water has been considered to enhance the 

catalytic activity and assist the growth of ultralong CNTF, creating a height of 2.5 

millimeters.[108] 

2.1.1 Catalyst layers preparation 

In the following two sections, we present our synthesis method of CNTF.  

The preparation of catalyst layers is critical as the thicknesses of each catalyst layer 

strongly influence the CNTF growth results. The top catalyst layer is a 0.8 nm Fe catalyst 

film deposited by magnetron sputtering (AJA Orion twin chamber). The thickness of Fe 

layer is of great importance since it determines the de-wetting droplet size and thereafter 

determines the CNTs diameter. In general, a thinner Fe catalyst layer produce SWNTs 

while thick Fe catalyst layer produce MWNTs. Underneath the Fe layer, there is 10 nm Al 

layer which acts as diffusion barrier preventing the Fe atoms from diffusing into the Si and 

provide proper wetting properties of the Fe droplets. Alternatively, Al2O3 could also be 

used instead of Al. A 20 nm Ti bottom electrode is sandwiched between the Al layer and 
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the doped Si substrate. Prior to this, the RCA cleaned Si substrate was previously back-

side metallized with 5 nm Ti/20 nm Au using electron-beam evaporation.  

2.1.2 Low pressure chemical vapor deposition of CNTF 

The catalyst layers covered substrate is then put into a chemical vapor deposition 

reactor (Aixtron Black Magic 2 system). Prior to CNTF growth, the catalyst has to be 

annealed under 700 sccm (standard cubic centimeters per minute) H2 in the reactor at 550℃ 

for 10 min to reduce the oxidized Fe2O3 back to Fe. More importantly, the nanoscale Fe 

thin-film starts to melt and becomes discontinuous islands and finally droplets during the 

annealing process. That iron could melt at such low temperature is because at nanoscale 

the melting point of metal is significantly reduced, as show in Figure 2-2.[109] 

 

Figure 2-2. Tdewetting as a function of different film thicknesses for Ni and Cu. Reproduced from 

ref.[109] The melting points of bulk Ni and Cu are 1455°C and 1085°C, respectively. 

After annealing pre-treatment, the CNTF growth takes place at 660℃ and 15 mbar by 

introducing 10 sccm C2H2 flow as carbon stock while 700 sccm H2 is kept serving as 

reducing gas. For a typical 30 min growth, the CNTF height is ~100 µm, and the average 

tube diameter is ~10 nm. After growth, the C2H2 and H2 flows are shut off and 2000 sccm 

N2 is introduced to protect the as-gown CNTF from oxidizing while the reactor chamber 
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cools down until 200℃. The scanning electron microscope (SEM) picture of as-grown 

CNTF is shown in Figure 2-3. Scanning electron microscopy (SEM) images of is taken in 

a JEOL JSM 7200F field emission SEM at 5 kV/10 kV voltage with 8~10 nA beam 

current.  

  a b 

  

Figure 2-3. SEM pictures of as-grown CNTF on Si substrate. a, tilted view of CNTF, the scale 

bar is 10 µm. b, top view of CNTF, the scale bar is 100 nm. 

2.2 Carbon nanotubes/poly vinyl alcohol nanocomposite 

The fabrication of CNTs/polymer composites can be generally classified into two 

methods: mixing and in-situ polymerization, as shown in Figure 2-4. Depending on 

whether the polymer is soluble in solvents, the composite mixing can be either achieved 

by solution processing or melt mixing.  

Solution processing is the most widely used composite fabrication technique. Firstly, 

CNTs are added into polymer dissolved solvent such as acetone or water. Next, CNTs and 

polymer chains are dispersed via a variety of methods including magnetic/mechanical 

stirring, ultrasonication, shear dispersion homogenization, etc. to make the CNTs 

uniformly distribute within the polymer matrix. Finally, the CNTs/polymer blend is 
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transferred onto a substrate by spin coating (uniform and thin films formed) or drop casting 

(thicker films formed) followed by natural or heated evaporation of the solvent material. 

a 

 

b 

 

Figure 2-4. a, Solution processing schematic of CNTs/polymer composite. b, Monomers 

incorporation with CNTs and in-situ polymerizations. 

2.2.1 Synthesis of CNTs/PVA composite 

CNTs power and poly vinyl alcohol (PVA) composite is used as the photo-

thermoelectric material in the 1st generation planar-structured photodetector. 

To avoid CNT aggregation and bundling within the polymer matrix,[110] MWCNT 

with diameter < 8 nm, length 10~30 μm, and purity > 95% from Cheap Tubes Inc. is used 

in our work. The poly vinyl alcohol (Mw 100 000, 87% hydrolyzed) was purchased from 

Fischer Scientific. At first, 1g PVA powder was dissolved into 10 ml DI water by 2 hours 

at elevated temperature of 90℃ and magnetic stirring. MWCNT was then added into PVA 

solution followed by 60 min ultrasonic bath and several hours magnetic stirring at room 



39 

 

temperature for efficient dispersion. Finally, the PVA/CNT homogeneous slurry was 

poured onto pre-cleaned glass or acrylic substrate for 48 hours slow drying. Due to the 

hydrophilic nature of PVA, dried composite film with typical thickness of 50~150 μm can 

be easily peeled off from the hydrophobic acrylic substrate, as shown in Figure 2-5. 

 

Figure 2-5. A flexible CNTs/PVA composite film peeled off from the substrate. 

2.2.2 Characterization of CNTs/PVA composite 

SEM pictures of PVA/CNT composites with different CNT contents are obtained in 

FEI Quanta Feg 250 ESEM at 10 kV voltage. Raman spectra and XRD patterns are 

investigated by Raman microscope Bruker Senterra with a 785 nm laser at 50 mW intensity, 

and Panalytical X’Pert PRO MRD HR X-Ray Diffraction System, repectively. Seebeck 

coefficients (measured by ULVAC-RIKO ZEM 3) for 40 wt.%, 50 wt.% and 60 wt.% CNT 

content composites are 27.3 µV K-1, 22.5 µV K-1, and 25.0 µV K-1, respectively, consistent 

with device responsivity trend. 
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Figure 2-6. SEM pictures. a, 25 wt% CNTs/PVA composite. b, 15 wt% CNTs/PVA composite. 

c, d, 50 wt% CNTs/PVA composite. 

The SEM pictures of CNTs/PVA composite with different CNT contents is shown in 

Figure 2-6. It can be found that the skeleton of CNTs is clearly revealed within the circular 

shape shown in Figure 2-6b created by high-energy electron beam as the PVA polymer has 

been burnt out. Figure 2-6c, d show that CNTs are dispersed and embedded within the 

polymer for the 50 wt.% CNTs content composite. Compared to the continuous-film 

morphology in low CNT content composite (Figure 2-6a, b), the 50 wt.% CNTs composite 

is porous due to the decreasing polymer content, causing the film to be more brittle. 
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Figure 2-7. a, Raman spectra of composite films with different CNT contents. b, XRD patterns 

for PVA and composite films with different CNT contents.  

Figure 2-7a is the Raman spectra of 15 wt.%, 30 wt.% and 60 wt.% CNTs composites. 

The spectra mainly containing the D band at ~1340 cm-1 and G band at ~1580 cm-1 

originating from the MWNTs. The presence of D band indicates the disorders and defects 

in CNTs, and the G band is an intrinsic vibration feature of sp2 hybridized carbon 

materials.[111] The broadening and red shift (towards low-frequency) of G band peak have 

been observed from 1584.5 cm-1 in the 15 wt.% CNTs composite to 1574.5 cm-1 in the 60 

wt.% CNTs composite. We explain these phenomena are correlated to a relatively high 

Seebeck coefficient in well-dispersed composite with low CNTs content (e.g. 25 wt.%), 

and supressed Seebeck coefficient when CNT content continues to increase.[112] 

Figure 2-7b shows the XRD patterns of pure PVA and CNTs/PVA composites. After 

adding 15 wt.% of CNT into pure PVA polymer, the characteristic peak of PVA at 2θ = 

19.5° becomes stronger and sharper. The full widths at half-maximum (FWHM) of this 

peak shows significant sharpening with increasing CNTs content within composite: 4.2° 

for pure PVA, 3.3° for 15 wt.% CNTs composite, 2.8° for 30 wt.% CNTs composite and 

2.7° for 60 wt.% CNTs composite. This indicates increasingly ordered arrangement of the 
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polymer molecular chains,[30], [113] i.e. enhanced PVA crystallinity at increasing CNTs 

content.  

2.3 Graphene/PEDOT: PSS nanocomposite 

PEDOT: PSS and graphene nanoplatelets composite has been fabricated as light 

absorbing and thermoelectric material in the 2nd generation planar-structured photodetector.  

2.3.1 Synthesis of graphene/PEDOT: PSS composite 

0.5 mL Dimethyl sulfoxide (purchased from Sigma-Aldrich, product ID: D4540) which 

acts as electrical conductivity enhancer is first added into 10 mL PEDOT: PSS water 

solution (1.3 wt.%, purchased from Sigma-Aldrich, product ID: 483095, and the ratio 

between PEDOT and PSS is 5:8). Next, graphene nanoplatelets (7 nm thickness, 2 µm 

diameter, purchased from Kennedy Labs) with different loadings within the composite (0 

wt.%, 1 wt.%, 3 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.%, 12.5 wt.%) are added into PEDOT: PSS 

solution. The mixed solution is dispersed by magnetic stirring at room temperature for 3 

hours and placed in an ultrasonic bath (50 W) for 15 min in order to reduce the π-π stacking 

between graphene flakes. Dispersed solution is then transferred onto Kapton substrate 

(polyimide, ~100 µm thick) that has been pre-treated by 10% HCl solution for 1 hour to 

improve the hydrophilicity. A typically 3~4 µm thick and non-transparent 

graphene/PEDOT: PSS film can be obtained through drop-casting followed by 1 hour 

annealing at 150 ℃ on hot-plate. 

For a transparent and highly flexible composite (film thickness 0.1~1 µm), the 

synthesis process is shown in Figure 2-8. Dispersed PEDOT: PSS/graphene solution is first 
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spin-coated onto HCl treated Kapton substrate at 500 ~ 2000 rpm speed followed by 10 

min annealing at 150 ℃. Next, a relatively sticky PVA (100,000 molecular weight, 87% 

hydrolyzed, purchased from Fischer Scientific) water solution is drop casted onto the dry 

PEDOT: PSS/graphene composite surface. The hybrid material is left drying in ambient 

condition for over 48 hours. Finally, the PEDOT: PSS/graphene will stick with the PVA 

sheet and easily peel off the Kapton substrate attributed to the similar hydrophilic 

properties of PVA and PEDOT: PSS. 

 

Figure 2-8. Fabrication process of PEDOT: PSS/graphene composite on a flexible substrate. 

2.3.2 Characterization of graphene/PEDOT: PSS composite 

Scanning electron microscopy (SEM) images was taken in a JEOL JSM 7200F field 

emission SEM at 10 kV voltage and 9 nA beam current. The Fourier Transform Infrared 

Spectroscopy (FTIR) spectra were measured in Bruker Tensor 27 FTIR system. The 

Raman spectra were obtained in Bruker Senterra-2 Raman spectrometer. The UV-Vis 

spectra of PEDOT: PSS/graphene composite were obtained in a PerkinElmer Lambda 35 

&1050 UV-Vis spectrometer. 
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Figure 2-9. SEM image of PEDOT: PSS/3 wt.% graphene composite. 

The as-dispersed PEDOT: PSS/graphene composite with graphene loading of 3 wt.% 

is shown in Figure 2-9. It can be seen that the micron-scale graphene nanoplatelets are 

well-dispersed within the polymer matrix. 

 

Figure 2-10. FTIR spectra of PEDOT: PSS/graphene composites. 

FTIR spectra of 0 wt.%, 3 wt.%, and 10 wt.% graphene loading composites are shown 

in Figure 2-10. The vibrational bands at ~1325 cm-1 is attributed to the C−C stretching 

vibration of the thiophene ring.[114] The bands at ~1204 cm-1, ~1141 cm-1, and ~1086 cm-

1 are brought by the C−O−C bond stretching in the ethylene alkylene dioxy group.[115] 
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The bands at ~976 cm-1 and ~819 cm-1 indicate the presence of C−S bond in the thiophene 

ring from PEDOT: PSS.[115] The characteristic peaks of PEDOT: PSS become weaker 

and weaker after the formation of PEDOT: PSS/graphene composite in 3 wt.% and 10 wt.% 

graphene composite due to the broadband light absorption in graphene.[116] No resonant 

absorption peaks originating from the micron-size graphene platelets have been observed, 

probably because the graphene nanoplatelets are distributed within the polymer matrix at 

various orientations and angles with regard to the incident light. 

 

Figure 2-11. Raman spectra of PEDOT: PSS/graphene composites. 

The Raman spectra of 0 wt.%, 3 wt.%, and 10 wt.% graphene loading composites are 

shown in Figure 2-11. Five bands shows on the spectra which can be interpreted as the C–

C inter-ring stretching band (1258.0 cm-1), the C–C single bond band (1364.5 cm-1), the 

C=C symmetric stretch band (1433.0 cm-1), the C=C asymmetric stretch band (1500.0 cm-

1), and the C=C anti-symmetric stretch band (~1571.0 cm-1).[114] The C=C symmetric 

stretch peak shifts slightly from 1433.0 cm-1 in 0 wt.% graphene composite to 1430.0 cm-
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1 in 10 wt.% graphene composite. This red-shift indicates an enhanced π-π interaction 

between the graphene nanoplatelets and PEDOT chains.[115] 

 

Figure 2-12. Electrical resistances of the composite at different graphene loadings. The 

electrodes are 200 nm Al and 25 nm ITO. 

Figure 2-12 shows the electrical resistances of the composites at different graphene 

loadings. Pure PEDOT: PSS shows high resistance of 624 Ω. With 1 wt.% ~ 12.5 wt.% 

loadings of graphene nanoplatelets, the resistance becomes lower and varies around 67 Ω. 
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Chapter 3  Vertically aligned carbon nanotubes integrated 

anti-reflecting photo-thermoelectric architecture  

3.1 Background and motivations 

Beyond semiconductor bandgaps, mid-wave infrared (MWIR, 3-5 µm) and long-wave 

infrared (LWIR, 8-12 µm)[80] absorptions in most solid-state matters are fairly low 

compared to the visible range. This has been a main obstacle in the development of room-

temperature mid-infrared optoelectronics which share broad applications in biomedical 

imaging,[76] industrial monitoring, and Internet of Things, etc. Although strong light-

matter interaction in low-dimensional materials have largely improved detector 

performance,[117], [118] the portions of light getting absorbed by most 2D materials are 

rather low - up to 2.3% in single-layer graphene[42] and around 3% in black 

phosphorus.[118] The advent of plasmon resonant structures including grated 

electrodes[119] and patterned light-active materials[89], [120] have greatly increased light 

absorption at certain wavelengths. Resonant absorption around 10 µm are observed in 

graphene nanoribbons, achieving a photoresponsivity of 0.4 A W-1.[121] However, 

expensive electron-beam lithography (EBL) fabrication keeps these subwavelength 

structures from large-area and low-cost application. With solution-processing advantage, 

quantum-dot based photodetectors also exhibit high photosensitivity from visible to mid-

infrared range even at room-temperature.[81] Whereas the drawbacks include high toxicity 
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in these heavy-metal materials (HgTe/HgCdTe) as well as narrow responsive spectra 

restricted by the finite bandgap and resonant particle size. Besides, synthesized by scalable 

methods (vapor-liquid-solid growth or wet-etching), vertically aligned nanowire arrays 

such as Si,[122] SiO2,[123] ZnO,[124] GaN[54], GaAs[125] and InAsSb[126] have been 

widely studied as anti-reflecting absorbers in the visible and infrared range. As a 

representative, carbon nanotube forest (CNTF), a self-aligned and densely-packed 3D 

architecture of carbon nanotubes (CNTs), is renowned for nearly perfect light absorption 

in an ultrabroad infrared range beyond far-infrared.[53], [127], [128]  

However, one problem with long-wave infrared photodetectors using narrow- or zero- 

bandgap materials (such as CNTs and graphene) is the pronounced dark-current and low 

signal-to-noise ratio under DC biases. In this sense, recent intensive reports on photo-

thermoelectric (PTE) effect have exemplified that photodetection utilizing photons induced 

thermoelectric effect at zero-bias can reduce the dark current effectively by avoiding 1/ f  

noise and shot noise in circuits.[90]–[92], [129], [130]. PTE photodetection, on the other 

hand, also benefit from the enhanced thermoelectric effects in low-dimensional materials, 

attributed to the reduced thermal to electrical conductivity ratio  / and strong electron 

density-of-states dependence on energy levels ( ) /dg E dE .[68] The demonstration of mid-

infrared and far-infrared imaging with PTE photodetectors was firstly achieved by Suzuki 

et al. with a noise equivalent power of ~1 nW Hz−1/2 at CNT/metal interface under ambient 

conditions.[90] Prior to that, Walia et al. discovered efficient photo-thermal conversion in 

vertical GaAs nanowires array under external light illumination and revealed a thermal 

gradient along the nanowires.[125]  
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To date, novel mid-wave and long-wave infrared photodetectors are still hampered by 

several challenges towards realistic applications. 1) High infrared reflection in low-

dimensional materials due to high conductivities along zig-zag direction of 2D materials 

and the axis direction of 1D nanowires. 2) Field-effect photodetectors have ~µm scale 

channel lengths and limited detectivity so that focused high power-density lasers are 

needed as the actuating light source. 3) Most current PTE photodetectors are designed 

bulky for effective heat dissipation but require precise illumination on p-n junctions or the 

interfaces for photodetection. 

In this work, we demonstrate a self-powered, large-area and broadband mid-infrared 

photodetector as well as energy harvester by exploiting the temperature gradient in a CNTF 

black-body absorber. Light reflection is suppressed by 99.4% in the self-assembled CNTF 

due to nanotube homogenous sparseness and vertical alignment.[53] To the best of our 

knowledge, this is the first macroscopic photodetector which employs the vertical photo-

thermoelectric effect of an anti-reflecting nanowire array.[123], [125] This photojunction 

architecture enables the device to be responsive to an unfocused and broadband infrared 

light as low as 6.8 µW mm-2, akin to the real-world illumination. We find an optimized 

PTE performance can be yielded in the top conductive layer (could be patterned) which 

has an appropriate thickness and low contact-resistance. A responsivity of 6 V W-1 and a 

detectivity of 2.2×107 cm Hz1/2 W-1 at 2.5~25 µm spectral range are observed in the non-

lithographic CNTF photodetector with much room for optimization.  
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3.2 Photodetector architecture and light absorption  

 

Figure 3-1. CNTF photo-thermoelectric photodetector. a, Schematic of the self-powered 

photodetector. A CNTF covered by top conductive layer (Al) is mounted on a doped-Si substrate 

with Au back-metallization. The zoom-in carbon nanotube on the right illustrates the temperature 

gradient of the photodetector induced by infrared illumination. Black arrows on the left indicate 

the electrons moving direction due to thermoelectric effect. b, Temporal response of the unfiltered 

photocurrent at zero-biased with the blackbody illumination on and off. The sampling rate is 1 s. c, 

Ohmic current-voltage characteristics under illumination and dark and conditions. Open-circuit 

voltage OCV  and short-circuit current SCI  are indicated. The top-electrode thickness and 

photosensitive area of the device in b, c) are 25 nm and 1 mm2, respectively. 
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The photodetector schematic diagram is illustrated in Figure 3-1a. A densely packed 

CNTF grown by low pressure chemical vapor deposition (LPCVD) is sandwiched by the 

top and the bottom electrodes on a Si substrate. The top-electrode layer connecting 

individually self-standing CNTs is deposited by magnetron sputtering due to the conformal 

step-coverage on CNTs tips and better electrical contact compared to evaporation. Finally, 

the device is glued to the cathode on a chip carrier, and a thin gold-wire connected to anode 

pin is then glued onto CNTF top-electrode by silver conductive epoxy. A broadband, 

unfocused black-body radiation source (Newport Oriel 67030) was used to imitate real-

world mid-infrared emission when measuring the detector photo response. The black-body 

temperature is set from 373 K to 973 K with an opening spot diameter of 0.5 cm, and 

photodetectors to be measured are placed 25 mm away. I−V characteristics and currents 

with and without black-body illumination were measured by a Keithley 6487 pico-ammeter. 

The photo-thermoelectric voltages at zero-bias were calculated from measured 

photocurrents by V IR= , where R  represents resistance of the device.  

The photodetection is based on photo-thermoelectric effect that accumulated p-type 

carriers from the cold bottom of CNTF diffuse towards the illuminated top surface, as 

evidenced by zero-bias photocurrent direction shown in Figure 3-1a-c. To be specific, 

incident light waves will be absorbed by CNTF/top-electrode interface and trapped at upper 

region of the photodetector because our CNTs height (~100 µm) exceeds typical CNTF 

perfect absorbers (~10 µm).[127], [128] The top of the photodetector therefore becomes 

hot via electron excitation while the substrate serve as heat sink, leading to a thermoelectric 

voltage as per equation (3-1) due to the temperature gradient.  
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Figure 3-1b indicates that under broadband radiation emitted from a black-body source, 

the device photocurrent exhibits a sub-second temporal behavior in response to the light 

switching on and off, which is satisfying as a room-temperature PTE photodetector. Figure 

3-1c presents the ohmic current-voltage characteristics for the photodetector at dark and 

light conditions where a net photocurrent is measured at zero external-bias. Under thermal 

radiation of 514.9 µW mm-2 for 973 K source temperature, an open-circuit voltage of 44 

µV and a short-circuit current 58 nA are generated. This self-power merit thus enabled the 

device an extra function as energy harvester, which can find applications in industrial 

waste-heat recycling and wearable human-body radiation collection.  

The scanning electron microscope (SEM) morphologies of pristine and metal-covered 

CNTFs are presented in Figure 3-2 and Figure 3-3a-d. Figure 3-3a shows the intersection 

of upper surface and side wall in the CNTF/Al junction, and Figure 3-3b-d show the top-

viewed CNTFs morphologies with increased Al coverage. As the metal thickness increases, 

nanotube interspace becomes narrower and the diameter grows larger which is roughly 

equal to the metal deposited as shown in Figure 3-2.  
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Figure 3-2. Top-viewed SEM image of a 200 nm Al covered CNTF. The diameter of each 

individual CNT expands to ~209 nm after Al sputtering. With the knowledge that pristine CNTs 

diameter is 8~10 nm, the actual metal coverage (~100 nm) on each CNT is in fact half of the 

sputtered thickness. Scale bar is 100 nm. 

This sparse and vertical alignment of CNTs leads to a very efficient interaction with 

light waves (Figure 3-3e), which is confirmed via infrared reflectance measured by 

Fourier-transform infrared spectroscopy (FTIR). The FTIR spectrum is obtained by FTIR 

spectrometer (Nicolet iS50R FT-IR Thermo Scientific), and the 2.5~25 µm averaged 

reflectance is calculated by wavenumber. As shown in Figure 3-3f, throughout the 2.5~25 

µm spectral range, relatively low reflectance of 0.6%, 11%, and 50% are observed in the 

pristine CNTF, 25 nm Al covered CNTF, and 100 nm Al covered CNTF, respectively. 

Compared to flat CNTs thin-films and bulk Al, the significant reflectance suppression in 

pristine/metal covered CNTFs is because: 1) The homogenous sparseness of CNTF has 

induced ideal refractive-index matching at the interface. 2) The slightly tilted CNTs 

alignment allows light waves bounce back and forth several times without escaping.[53] 

The lithography-free CNTF provides an efficient light-absorbing platform for broadband 

infrared photodetection.  
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Figure 3-3. Morphology, infrared reflection and photoresponse of CNTFs covered by various 

metal thicknesses. a, Scanning electron microscope (SEM) image of a CNTF/Al junction (200 nm 

Al) taken at 35° tilted angle. The scale bar is 1 µm. b-d, SEM images of top-viewed 25 nm, 50 nm, 

and 100 nm Al covered CNTFs. The scale bar is 100 nm. e, Schematic of CNTFs under infrared 

irradiation. f, Infrared reflectance spectrum of air, pristine CNTF, 25 nm Al covered CNTF, 100 

nm Al covered CNTF, and gold in 2.5~25 µm spectral range. The reflectance of air (0.03 %) and 

gold mirror (100.0%) are measured for reference. g, The photoresponsivity relation with increasing 

Al coverage on the CNTF. The device photosensitive areas are 1 mm2. 

3.3 PTE engineering of CNTF top conductive layer 

The primary task of constructing a PTE detector is to effectively collect and convert 

the light-induced temperature gradient in vertically aligned CNTs. When a pristine CNTF 

top and bottom sides are directly connected by lead wire, measured photoresponsivity is 

fairly low (11 mV W-1). Whereas after depositing an Al layer on CNTFs and increasing 

the thickness (5 nm, 10 nm, and 25 nm), the photoresponsivity has witnessed a rise of eight-
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folds (89 mV W-1) in the 25 nm Al covered CNTF as shown in Figure 3-3g. We explain 

this phenomenon in two aspects. First, since the electrical conductivity of CNTF in the 

vertical direction is much higher than that in horizontal direction,[131] only a small portion 

of photocurrent under silver paste can be collected and other CNTs are short-circuited. 

Thus, even though light absorption is maximized in pristine CNTF, a lateral top-electrode 

is critical for photocurrent collection. Second, the presence of Al on CNTF has constituted 

an interface which improves the localized Seebeck coefficient as a result of abrupt carrier 

concentration change between the hole-transporting CNTs and electron-transporting 

metal.[132] It has been considered that in vicinity of CNTs/metal contact, the Seebeck 

coefficient becomes significantly larger due to the chiral fermion interference resonance, 

taking place in conditions of Klein tunneling.[133] The continuous photoresponse 

improvement as Al increases from 5 nm to 25 nm follows the growing trend of Seebeck 

coefficient in bulk metals compared to thin-films.[134] An asymptotic expression of pure 

metal Seebeck coefficient at room temperature between the thin-film ( thinS ) and bulk ( bulkS ) 

morphologies can be given by the free-electron size effect theory show in equation (3-

2)[135] 

 ( )
3

1 1
8 1

thin bulk

l U
S S p

t U

  
= − −  +  

  (3-2) 

Where t  is metal thickness, l  is electron mean free path, p  is the fraction of carriers 

reflected at the film surface specularly, and 
ln

=
ln E

l
U

E =

 
 
 

 where   is the Fermi level. By 

assuming 0P = , 100l = ,and =2U  (i.e. 2l E ) according to Bloch quantum theory, a 



56 

 

notable reduction of thinS  compared to bulkS  is measured when the metal thickness is below 

30 nm,[135] which is well consistent with our results. As the top-electrode becomes thicker, 

however, photoresponsivity exhibits a decay due to the stronger light reflection in metal 

which offsets other factors if the skin-depth of Al (7.5~24 nm at 2.5~25 µm spectral range) 

is considered.  

 

Figure 3-4. PTE response for different top-electrode materials and illumination conditions. a, 

Photoresponse of CNTF detectors covered by 4 kinds of conductive materials. The top-electrode 

thicknesses are 25 nm and photosensitive areas are 1 mm2. The photoresponse of each junction is 

an averaged value by two devices. b, Photoresponse (in red dots) of a 25 nm Al covered CNTF 

detector under different radiative temperature, i.e. different incident power-density. The detector 

received illumination power intensities (the grey stars) are 514.9 µW mm-2 (973 K), 82.9 µW mm-

2 (623 K), 24.6 µW mm-2 (473 K), 14.2 µW mm-2 (423 K), and 6.8 µW mm-2 (373 K), respectively.  

With these knowledge in minds, we fabricate photodetectors with various top-electrode 

materials to investigate the PTE response properties.[90], [91], [96] Four kinds of 

CNTF/conductive material junctions with equal thickness of 25 nm are formed: CNTF/Al, 

CNTF/Ti, CNTF/Au, and CNTF/ITO. Figure 3-4a shows the photodetector response trend 

in these junctions where CNTF/Al junction owns the highest value followed by CNT/Ti, 

CNTF/Au, and CNTF/ITO. It has been recognized that thermal as well as electrical contact 
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quality of a junction have significant impacts on thermoelectric efficiency:[136]–[138] 

high thermal barrier resistance leads to reduced temperature gradient and high electrical 

contact resistance results in lower Seebeck coefficient in the vicinity of the interface.[137], 

[139] Here, we attribute these different PTE responses to a mutual effect of Seebeck 

coefficient offset and interface induced thermal gradient (physical parameters of the 4 

junctions are reviewed in Table 3-1). Low PTE response in CNTF/Au junction and 

CNTF/ITO junction are considered correlated to the typically poor thermal and electrical 

contacts of Au and ITO.  

Table 3-1. Physical properties of four CNTF/top-electrode junctions. 

Junction Properties Al Ti Au ITO 

Seebeck coefficient -1.7 µV K-1 9.1 µV K-1 1.9 µV K-1 -29 µV K-1 

Thermal barrier resistance with 

CNTs[140] 
0.81 0.74 1.06 - 

Electrical contact resistance 

with CNTs[141]–[143] 
Low Low Medium 

Generally 

high 

 Note: The Seebeck coefficient of CNTs are usually in the range of 20~50 µV K-1. 

 

Next, the photoresponse correlation with illumination power-density is obtained by 

adjusting the black-body source temperature from 973 K to 373 K (700℃ to 100 ℃). When 

source temperature decreases, the peak wavelength of radiative spectrum is shifted from 

3.0 µm to 7.8 µm accordingly while the total power-density received by photodetectors is 

also decreased as shown in Figure 3-5. 
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Figure 3-5. Calculated black-body spectral radiant emittances at temperature of 373 K, 423 K, 

473 K, 623 K, and 973 K. The peak wavelength of the emittance spectrum increases from 3.0 µm 

to 7.8 µm as the black-body radiant temperature decreases from 973 K to 373 K. 

As the detector received power-density changes from 514.9 µW mm-2 (973 K) to 6.8 

µW mm-2 (373 K) shown in Figure 3-4b, we observe the photo detectivity increase from 

0.07 V W-1 to 0.25 V W-1. It reveals an improved photoresponse at lower illumination 

power-density in the 2.5~25 µm spectral range (~90% of the black-body radiation is 

situated in this band). The photoresponse nonlinearity mostly originates from temperature 

saturation at increased illumination power due to the less efficient cold-end (substrate) 

cooling. As shown in Table 3-2, we found as illumination power density increases, the 

substrate is heated up simultaneously with CNTF top surface, leading to a non-linear 

temperature gradient increase and non-linear photoresponsivity. This is because the CNTF 

are still too short for effective heat dissipation, and the silicon substrate is seated on a 

thermally insolating Teflon board which lacks effective cooling. Therefore, a more rational 
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choice of substrate material and additional bottom cooling layer are preferred to further 

improve device performance. 

The calculated T  is estimated by V S T=   assuming SCNTF = 30 µV K-1. The 

difference between measured T  and calculated T  is probably caused by two reasons: 1) 

the relatively large measurement focal spot size of infrared thermometer compared to the 

device vertical dimension, 2) the emissivity difference between CNTs and silicon,[53] 

which leads to inevitable errors in non-contact measurement.  

Table 3-2. Infrared thermometer measured and calculated device temperature under global 

illumination of IR source. 

Temperature 
Device top 

surface 

Substrate 

sidewall Measured T  Calculated T  

Illumination 

Power 

90 µW mm-2 29.1 ℃ 28.4 ℃ 0.7 ℃ 0.26 ℃ 

350 µW mm-2 32.0 ℃ 31.1 ℃ 0.9 ℃ 0.42 ℃ 

   Note: The device temperature without illumination is measured as 23.2 ℃ in ambient conditions. 

 A zero-bias photocurrent of 1.5 nA is measured under a quite low illumination of 6.8 

µW mm-2, which is probably the lowest power-density used for room-temperature PTE 

detectors. The weak-power sensitivity is considered benefited from the efficient light 

absorption and effective heat dissipation in the vertical metal/CNTF junction.[125] This 

feature could find practical significance in real-world photodetection where the infrared 

radiation to be detected/harvested is usually much weaker than a laser output. Moreover, 

this architecture might possibly pave the way to mid-infrared single-photon detection while 

a vertical InP nanowire array has recently been used to achieve room-temperature single-

photon detection in visible range.[144] 
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3.4 Patterned top-electrode 

 

Figure 3-6. Patterned top-electrode. a, Simulated reflectance spectrum of a CNTF 

photodetector with periodic ring-shape patterns, showing a dip between 5 to 10 µm wavelength. 

The inset shows the schematic of the patterns whose period, outer diameter, and inner diameter are 

50 µm, 38 µm, and 32 µm, respectively. b, Photoresponse comparison of two CNTF photodetectors 

with and without periodic patterns in the 200 nm Al top-electrode. Inset: optical image of the ring-

shape patterned top-electrode. 

As a pathway to improve light absorption in the presence of a top metallic layer, we 

design and fabricate microscale (Figure 3-6a inset) and nanoscale periodic patterns in the 

top-electrode (Al) to mitigate reflection. The optical simulation is carried out by finite 

element method in COMSOL Multiphysics. Periodic boundary conditions were established 

in x and y directions, and perfectly matched layer was placed in z direction above detector 

surface. The top (200 nm Al) and bottom (10 nm Al and 20 nm Ti) layers were treated as 

perfect electric conductor (PEC) layers, and the electrical conductivity of CNTF was 

modelled as (1, 1, 300) S/m along x-y-z axis.[131] The light wave in a frequency range of 

10~100 THz (3 µm~30 µm) is normally incident onto the detector surface. Polarization-

independent ring-shape patterns with 50 µm period, 38 µm outer diameter and 32 µm inner 
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diameter are chosen through impedance matching to minimize infrared reflection. 

Simulated reflection spectrum in Figure 3-6a shows that these patterns exhibit a reflection 

dip at around 4~12 µm spectral range where most of black-body radiation is situated. Here 

the light transmittance is treated as zero due to the presence of bottom metallic layers, and 

infrared absorption of the photodetector is )(1)()(1)(  RTRA −=−−= , where A , 

R , and T are the absorption, reflectance and transmittance, respectively. The 3 µm 

feature-size and 130 nm feature-size periodic patterns in Al top-electrodes were etched by 

inductively coupled plasma - reactive ions etching (Oxford Plasma lab). Etching masks 

were patterned by UV lithography (Suss MA6 Mask Aligner) with S1811 as positive-tone 

photoresist, and by electron beam lithography (RAITH150-TWO) with ZEP-520A as 

positive-tone e-beam resist, respectively. The measured photo detectivity demonstrates 6-

fold increase after patterning the Al layer on CNTF (Figure 3-6b). These results 

demonstrate the possibility of photoresponse improvement by patterning the infrared-

reflecting metallic layer on CNTF. 

 

Figure 3-7. The device with EBL patterned top-electrode. 
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Figure 3-7 shows a CNTF photodetector with electron-beam lithography (EBL) 

patterned Al top-electrode. Simulated reflectance spectrum of a CNTF detector covered by 

200 nm Al with periodic cross-shape pattern is shown in Figure 3-7a. The reflection dip is 

designed to be 9.3 µm, which is identical to infrared radiation from a human body, 

demonstrating the capability of a photodetector for body temperature monitoring and 

harvesting. The inset shows the schematic diagram of the patterns. Each period (3.7 µm) 

consists of 4 crosses with the same width of 130 nm, but different lengths: 1.67 µm (left 

top), 1.60 µm (right top), 1.53 µm (left bottom), and 1.46 µm (right bottom). The patterns 

are chosen to reduce the light reflection at the designed wavelength. Here, the SEM image 

of the pattern is not shown to avoid the damaging and doping effect by high-energy 

electrons at high-resolution mode.[121] Figure 3-7b shows the photoresponse comparison 

of a CNTF photodetector with and without the periodic patterns, showing ~5 times 

improvement. 

3.5 Performance optimization and discussion 

The best observed photo responsivity VR  and detectivity *D  are 6 V W-1 and 2.2×107 

cm Hz1/2 W-1, respectively, in a zero-biased 25 nm Al covered CNTF device at 2.5~25 µm 

spectral range. Detectivity *D  which indicates capability of identifying the weakest 

illumination from noise is calculated by 
*= / 4v BD R A k TR  where A  is photosensitive 

area, Bk  is Boltzmann constant, T  is temperature, and R  is resistance. This performance 

rivals other PTE based photodetectors (the comparison is shown in Table 3-3) and the 

possibilities for further improvement are indicated in Figure 3-8.  



63 

 

Table 3-3. Comparison between this work and representative PTE photodetectors. 

Photosensitive 

Materials 

Photosensitive 

area 

Light-

source 

power 

Responsive 

wavelength  
Responsivity Detectivity Ref. 

Metal covered 

CNTF 
0.05 mm2 6.8 µW mm-

2 
2.5~25 µm 6 V W-1 2.2×107  

cm Hz1/2 W-

1 

This 

work 

Black 

phosphorus 
7.2 μm2 325 µW 0.26~0.38 

THz 
0.15 V W-1 - [130] 

Nanoporous 

silicon 
100 mm2 500 µW 

mm−2 
476~514 nm - - [145] 

Bi2Te3/Sb2Te3 

nanowires 
0.0025 mm2 ~104 µW 

mm-2 
0.5~0.75 µm 38 V W–1 6.1×105  

cm Hz1/2 W-

1 

[89] 

SrTiO3 
planar 

junction 
≥11.6 mW 0.33~10.67 

µm 
1.18 V W−1 - [98] 

Graphene <1 µm2 10 µW 0.5~0.9 µm 0.12 V W-1 - [120] 

Graphene 

ribbons 
4.2 µm2 0.75 µW 119 µm 10 V W−1 ~2×106  

cm Hz1/2 W-

1 

[91] 

CNT fiber PN 

junction 
p-n junction - 0.41~ 216 

µm 
0.17 V W-1 2.2×106  

cm Hz1/2 W-

1 

[146] 

Graphene PN 

junction 
several µm2 a few 

hundred µW 

0.45~1.55 

µm 
0.19 V W-1 - [147] 

 

As longer channel is considered to sustain elevated temperature gradient,[92], [99] an 

enhanced PTE response is observed with increased CNTF height as shown in Figure 3-8a. 

The estimated PTE response may increase nearly an order of magnitude if the CNTF could 

achieve ~mm height as in ref [108] - the typical size of a thermoelectric component. Figure 

3-8b shows the measured and predicted photo responsivity VR  correlation with decreasing 

photosensitive area A  (the lateral size of CNTF). It is found that as A  decreases from 6 

mm2 to 0.05 mm2, the photovoltage only sees a slight variation within 7.08 µV to 7.89 µV, 

but the VR  increases enormously from 14 mV W-1 to 1.7 V W-1 as calculated by equation 

(3-3) 
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Figure 3-8. Photoresponsivity improvement by optimizing CNTF height and photosensitive 

area. a, Detector responsivity improves with increasing CNTF height. The CNTF heights are 17 

µm, 103 µm, and 125 µm, respectively determined by SEM. b, The PTE voltage has seen small 

variation between 7.89 µV and 7.08 µV by decreasing the photosensitive area from 6 mm2 to 0.05 

mm2, and calculated photoresponsivity increases by 123-folds to 1.7 V W-1 correspondingly. Dash 

lines show the predicted PTE response for even smaller photosensitive areas. 

This is because the PTE photovoltage is basically determined by thermal gradient in z 

direction instead of x-y plane in this 3D architecture. The equivalent circuit of the 

photodetector is shown in  Figure 3-9. The Al covered CNTF acts as a voltage power source, 

and the whole resistance of the device is the sum of three resistances: 
parasiticR , substrateR , and 

CNTFR . While the PTE voltage is relatively constant as the photosensitive area decreases, 

we measure an increase in the device resistance: 644 Ohms in 6 mm2 device, 1084 Ohms 

in 1 mm2 device, and 2369 Ohms in 0.05 mm2 device. This is because less individual CNTs 

are involved for charge transporting in the circuit-loop after shrinking the CNTF lateral 

size, leading to higher resistance and reduced photocurrent. Considering the photosensitive 
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area in this work is much larger than most state-of-the-arts, the photoresponsivity is 

predicted to further increase in even smaller size device although several reasons could 

lead to its final degradation.  

 

Figure 3-9. Equivalent circuit of the photodetector.  

For a broader interest, this photodetector architecture is applicable to the combination 

of other nanowire arrays (e.g. semiconducting nanowires with higher Seebeck coefficients) 

and top conductive layers (e.g. MoS2, black phosphorus) providing a good contact can be 

formed. Advantages of this vertical PTE junction architecture are in three folds. First, 

compared to a planar interface PTE detector, the photoresponse in a vertical photojunction 

is relatively insensitive to illumination spot position, mitigating the optical alignment and 

focusing requirement. Second, the device compactness is less likely to be compromised 

when the PTE channel can be extended in vertical direction for heat dissipation, facilitating 

the integration of a compact detector array. Third, for infrared energy harvesting purpose, 

the ease of expanding the light-harvesting area brings convenience for enhanced 

photocurrent collection.  
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3.6 Conclusion 

In summary, we demonstrate a self-powered, large-area and broadband mid-infrared 

photodetector by employing vertical PTE effect of high-density CNTF with nearly unity 

black-body absorption properties. A photo detectivity of 2.2×107 cm Hz1/2 W-1 at 2.5~25 

µm spectral range is achieved under weak, unfocused, and broadband infrared illumination 

(as low as 6.8 µW mm-2 at 373 K) akin to realistic world. The photodetectors are 

implemented through delicate engineering of the top-electrode layer whose material, 

thickness, and pattern are systematically investigated regarding the PTE effect, while 

further improvement is possible by increasing CNTF height and decreasing the area. These 

findings open up possibilities in self-powered, broadband room-temperature infrared 

detection and energy harvesting for real-time health condition monitoring, low-cost 

industrial inspection, and distributed sensing/power supplying in Internet of Things. 
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Chapter 4  Flexible carbon nanotubes/poly vinyl alcohol 

composite with stable infrared response for wearable imaging 

4.1 Background and motivations 

Photo-detection technologies are faced with performance degradation and cooling 

requirement when it comes to mid-infrared (3 µm<λ<50 µm) and Terahertz region (30 

µm<λ<3000 µm) where human-body broadband radiation (peak λ=9.3 µm) is located. 

Room-temperature thermal imaging, which finds growing needs in flexible sensing, energy 

harvesting and wearable biomedical electronics,[76], [90], [148], [149] has seldom been 

accomplished, due to the bandgap limit in colloidal quantum-dots[150] (for λ<2.2 µm) and 

the high frequency roll-off in field-effect transistors[151] (for λ>300 µm). Recently, photo-

thermoelectric (PTE) effect detectors have seen rapid progress towards sensitive and room-

temperature detection[51], [87], [90], [91], [129], [152], [153] in mid-infrared and THz 

region, and low-dimensional nanostructured silicon,[145] carbon nanotubes,[97] 

graphene,[154]–[156] and black phosphorus[130] have been used as PTE conversion 

materials due to their enhanced photon absorption and thermoelectric conversion.[68] The 

self-powered, battery-free PTE detectors are in particular desirable as wearable electronics 

compared to transistors or bolometers[119] since modern wearable systems[150], [157]–

[159] are required to be light-weight and miniaturized. Nevertheless, at its infant stage, 
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current PTE detectors are still limited by the low detectivity, light polarization 

sensitiveness[51], [91] and poor flexibility.  

Herein, we have combined PVA with CNTs to investigate the photo-thermoelectric 

characteristics of PVA/CNTs composites as mid-infrared detectors using low-cost, 

lithography-free fabrication methods. Compared to the latest unary nanomaterial 

detectors,[51], [130], [145], [154] there are certain advancements by utilizing the binary 

CNTs/PVA composite for a wearable detector. First, the introduction of PVA chains, 

which wrap around the randomly aligned CNTs network, has effectively reduced the 

composite thermal conductivity and improved the thermoelectric efficiency by creating 

phonon scattering sites at PVA/CNTs boundaries.[160], [161] Hence the composite 

detectors show better biocompatibility,[162]–[164] higher compactness[97] and relatively 

improved PTE performance,[87], [130], [165]–[170] paving paths to the successful passive 

body thermal imaging in this work, as well as potential biomedical applications including 

breast cancer early diagnosis and foot ulcers inspection for diabetic patients.[149] Second, 

the moderate crystallinity of PVA polymer around CNTs has yielded a balance of 

mechanical property between the regional rigidity around CNTs and the macroscopic 

flexibility of composite film.[171], [172] Therefore, the detector’s response stability to 

infrared radiation has been improved compared to pure CNTs or graphene detectors[87], 

[173] under dramatic and bi-directional bending deformation, which is the top requisite for 

a flexible sensing or clothes-embedded device that gets bent/wrinkled quite often. 
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4.2 Photodetector architecture and photoresponse 

A symmetric device is first formed by pasting a PVA/CNTs composite thin film (20 

wt% CNTs, resistance 81 kΩ, thickness=150 µm, width=2.5 mm, channel length=10 mm) 

onto two Aluminum plates. By illuminating the left, right, and central part of the channel, 

±1.9 nA and 0 nA photocurrents are generated at zero bias, respectively. This is consistent 

with photo-thermoelectric phenomenon, and to the best of our knowledge, it is the first 

time found in polymer/carbon nanomaterial composite. However, because this position-

dependent detector is bulky and not desired for compact array, asymmetric electrode 

designs[90], [91], [174] have mitigated this problem by realizing uniform illumination on 

detector channel. Here, we use low-toxicity and low-cost Al/Ti as electrodes, schematic 

drawn in Figure 4-1a. 200 nm Aluminum and Titanium electrodes are formed by shadow 

mask pattern and electron beam evaporation. Lead wires are connected onto electrodes 

using silver conductive epoxy. Instead of using high-power laser, we use low-intensity 

blackbody radiation source (Newport Oriel 67030) placed 20 mm away from detectors in 

order to imitate real-world broadband thermal emission.[152] Blackbody is set from 373 

K to 523 K and output power is shown in Figure 4-1a. I-V curves with and without black 

body illumination are measured by Keithley 6487 pico-ammeter, and photo-voltages are 

calculated out of measured photocurrents by V=IR for the convenience of comparison. 
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Figure 4-1. a, Scheme of asymmetric electrode detector: Al (left electrode) and Ti (right 

electrode) formed on bendable PVA/CNTs composite film. b, Current-voltage curve with (red) and 

without (black) 523 K black body illumination in 25 wt.% CNTs device. c, Responsivity and 

detectivity trends with changing CNTs contents. Responses are measured on glass substrate, and 

all devices are with 0.5 mm channel length.  

The current - voltage response curve with and without blackbody irradiation is shown 

in Figure 4-1b, indicating a net photocurrent under zero-bias condition. Figure 4-1c shows 

the detector responsivity RV and detectivity D* trends with increasing CNTs content among 

PVA/CNTs composites. The responsivity /V ph inR V P=  reaches a peak of 0.10 V W-1 at 25 

wt.% CNTs followed by a decline when CNTs content continue to increase. The initial 

increase of RV at low CNTs content occurs for two possible reasons: 1) With increasing 

CNTs content, photon absorption enhancement leads to a higher temperature gradient in 

the detector channel, and therefore the response is increased; 2) Thermoelectric conversion 
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efficiency (figure of merit)[166] 
2S T

ZT



= has been improved due to an increase in 

electrical conductivity σ, an enhancement of S due to energy filtering effect and the 

stagnancy of thermal conductivity к due to interfacial phonon scattering.[175], [176] The 

following decrease in Rv curve after 25 wt.% CNTs content occurs because of the CNTs 

aggregation induced ZT reduction.[166] Detectivity is another performance parameter for 

photodetectors: 

 
*= 4 /V B VD R A k fTR R A R   (4-1) 

Here A is detector area, kB is the Boltzmann constant, ∆f is frequency bandwidth, T is 

temperature, and R is zero-bias resistance. We can find from equation (4-1) that D*  is 

proportional to responsivity and inversely proportional to square root of resistance. The 

pink curve in Figure 4-1c shows the D* peaks at the 30 wt.% CNTs device, and this is 

likely to be related to the very high responsivity for this CNTs content. On the other hand, 

dramatically reduced resistance is assumed the key factor on the major D* increase for the 

60 wt.% CNTs photodetector.  

Apart from CNTs content, possible factors affecting a PTE detector performance 

include source power and substrate materials. For different input source power, stable 

photo-response is desired in photodetectors. Figure 4-2a shows the constant responsivity 

(V W-1) of the detector observed under black-body radiation of 373 K, 423 K and 473 K. 

Corresponding power intensities received by the detector are 40.5 µW mm-2, 84.0 µW mm-

2 and 146.0 µW mm-2, respectively, and the radiation peak wavelength also shifts from 7.8 

µm to 6.1 µm accordingly (indicated in inset of Figure 4-2a). 
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Figure 4-2. a, Responsivity of increasing incident power intensity for 30 wt.% CNTs device 

(insert shows the black body output intensity at different temperature). b, Detectivity comparison 

between placing detectors on glass substrate and suspending them in air.  

Heat dissipation from the channel towards substrate is supposed to influence the 

performance of PTE detectors due to hot electron cooling effect via substrate surface 

phonons.[51], [154] Now that previous results were measured by placing devices on glass 

substrates (thermal conductivity 1.05 W m-1 K-1), we expect that thermal conduction loss 

could be minimized by letting the detectors work as substrate-free. The measurement is 

carried out by suspending detector channel over 3 mm in air (0.024 W m-1 K-1). Figure 4-2b 

shows that detectivities for 25 wt.%, 30 wt.%, and 60 wt.% devices have increased to 177%, 

263% and 203% respectively after suspension. The optimum D* reaches 1.6×106 cm Hz1/2 

W-1 in 30 wt.% CNTs device, and 4.9×106 cm Hz1/2 W-1 in 60 wt.% CNTs device (noise 

equivalent power is 35 nW Hz-1/2), which is comparable or higher than previous room-

temperature mid-infrared or THz detector.[51], [97], [130], [153] Orders of magnitude 

improvement could still be achieved after integrating appropriate antenna[153] and being 

tested in vacuum.[90] 
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4.3 Channel length affected photoresponse 

There have been debates on asymmetrical structured PTE detectors working 

mechanism. Herein, we explain that CNTs composite channel as well as metal electrode 

contributes to the PTE effect: When photons impinge onto the detector, PVA/CNTs 

composite absorbs photon energy and gets heated up rapidly, while two metal electrodes 

act as heat sink for being infrared reflective; Because Ti (𝜅Ti=22 W m-1 K-1, STi~7 µV K-1) 

thermal conductivity is a lot lower than Al (𝜅Al=205 W m-1 K-1, SAl~-2 µV K-1), Ti/CNT 

interface would have higher temperature drop than Al/CNTs interface,[90], [96], [140] and 

asymmetric temperature gradient is created along the channel. Device temperature T(x) and 

Seebeck coefficient S(x)  profiles is drawn as Figure 4-3a, and photo-voltage is the 

integration of S(x)∇T(x) along device: 

 = ( ) ( ) ( ) ( ) ( ) ( )ph Al Al CNTs CNTs Ti TiV S x T x dx S x T x dx S x T x dx +  +     (4-2) 

Therefore, channel photo-response equals to the net area enclosed by the curve and x axis 

across the detector: A+B+C+D, and A has opposite sign to B, C and D (shown in the bottom 

drawing in Figure 4-3a).  
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Figure 4-3. a, PTE voltage schematic drawing along device channel position x. A, B are areas 

enclosed by the curve and axis. b, c, Photo-response dependence on channel lengths for 25 wt%, 

30 wt%, 50 wt% and 60 wt% CNTs content (3 groups) detectors.  

To figure out the way channel length is affecting PTE performance, we fabricated 

detectors with five channel lengths: 4 mm, 3 mm, 2 mm, 1 mm, 0.5 mm. For 25 wt.%, 30 

wt.%, and 50 wt.% CNTs detectors, stable voltage responses are observed in all channel 

lengths (as shown in Figure 4-3b). However, for 60 wt.% CNTs detector, photo-voltage 

shows obvious decrease when it comes to 0.5 mm channel (for all 3 groups, shown in 

Figure 4-3c). According to Rv∝ Vph Pin⁄ , the responsivity should be proportional to L-1 

(channel length) when illumination intensity per area is constant. All experiment results 

are consistent with the theory, fitted as Rv∝ L-1.01 and Rv∝ L-1.03 in 25 wt.% and 60 wt.% 

devices for 4 mm, 3 mm, 2 mm, and 1 mm channel length except for the deviation found 

for 0.5 mm channel device with 60 wt.% CNTs. We explain this degradation originates 
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from the incapability of a short channel to maintain high temperature gradient when 

composite thermal conductivity 𝜅channel is increased: When 𝜅channel is low (e.g. 15 wt.% 

CNTs composite), temperature of the channel central region ∆𝑥 could be constant (∇T=0, 

shown in Figure 4-3a) under certain light intensity; When 𝜅channel gets higher (for 60 wt.% 

CNTs composite), the channel peak temperature would be pinned relatively low due to a 

shorter channel length (0.5 mm), resulting in smaller A, B areas, and smaller 

Vph=A+B+C+D. One can speculate that for even higher CNTs content or pure CNTs film, 

detector voltage will be much more restricted by the channel length as well as light intensity. 

As a result of the low thermal conductivity in a lower CNTs loading detector, however, the 

pixel size could be made smaller by improving its compactness but without sacrificing 

performance.  

4.4 Flexibility and passive imaging 

The combined properties of high flexibility and high response-stability of the detector 

have been revealed in Figure 4-4, showing stable photo-response at a quite small bending 

radius. In general, low CNTs content composites demonstrate better flexibility than high 

CNTs content composites which has intensive porosity. It is also worthy noted that the 

detector photo-response shows little difference between concave and convex bending[177] 

(Figure 4-4a), being an important feature for wearable electronics especially for the places 

like inner and outer elbows. Smallest bending radius we achieve without performance 

degradation is 3.5 mm in 25 wt.% and 30 wt.% CNTs detectors; 200 bending cycles of 60 

wt.% CNTs detector to a 15 mm radius finally prove unaffected performance (Figure 4-4b). 
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These results show significant improvement compared to a pure CNTs detector,[87] whose 

CNTs network gets disconnected easily due to weak Van der Waals force, leading to a 

reduced figure of merit (ZT ∝ σ) and degraded detector response. PVA-CNTs interaction, 

however, is much stronger than CNT-CNT counterpart as PVA crystallization is 

moderately enhanced (shown from XRD patterns in Figure 2-7b) in the vicinity of 

CNTs.[34], [171] The CNTs network is consequently immobilized by its surrounding 

crystallized PVA, while the rest of uncrystallized PVA chains are functioning to assure the 

composite flexibility and excessive amount of crystallinity can reduce the flexibility.[172] 

We interpret it is the moderate crystallinity of PVA in an appropriate CNTs content device 

(e.g. 25 wt.% CNTs) that enables the high photo-response stability as well as good 

flexibility for dramatic bending.  

 

Figure 4-4. Bending response. a, Highly-stable photo-response with various bending radius using 

25 wt% detector. Negative sign means concave bending and positive sign means convex bending. 

b, 60 wt% CNT detector response under multiple flat and bent cycles at 15 mm bending radius.  

Finally, Human-body thermal detection (peak wavelength λ=9.3 µm) is performed 

using the detector at non-contact mode. By holding a fingertip ~2 mm away from the 

composite surface, obtained detector response (Figure 4-5a) is relatively fast, and the 
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thermal emission induced signals, which are comparable to contact-mode temperature 

sensors,[178] are significantly higher than noise level. Furthermore, Figure 4-5b shows a 

passive thermal image of two fingers acquired by moving a single pixel detector in a step 

motor in X-Y plane over a stationary hand. Margin of fingertips could be clearly identified, 

demonstrating our detector’s capability for wearable thermal imaging. 

 

Figure 4-5. a, Repeatable detection of human fingertip radiation placed above detector surface. 

b, Scanned thermal image of the first and middle fingers. The step size in X axis is 2 mm, and 

scanning speed in Y axis is 0.4 mm/s.  

4.5 Conclusion 

In summary, PVA/CNTs nanocomposites have been investigated as mid-infrared 

detectors using simple fabrication method. Detector channel length is found to have 

influence on the photo-response through Seebeck effect. Stable response is maintained 

under extreme bending conditions due to immobilized CNTs network supported by PVA 

crystallization. Bending radius reached 3.5 mm in 30 wt.% CNTs device with a detectivity 

of 1.6×106 cm Hz1/2 W-1, and 15 mm in 60 wt.% CNTs device with 4.9×106 cm Hz1/2 W-1. 

Finally, a clear image of human fingers is acquired by a passive scanning. This self-
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powered and highly flexible thermal detector will find application in wearable electronics, 

especially real-time health monitoring and fast skin cancer THz imaging. 
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Chapter 5  A flexible, scalable, and self-powered mid-infrared 

detector based on transparent PEDOT: PSS/graphene 

composite 

5.1 Background and motivations 

Portable and low-cost mid-wave infrared (MWIR, 3–5 µm) and long-wave infrared 

(LWIR, 8–12 µm) photodetectors meet forthcoming applications in wearable health 

monitoring electronics, distributed sensor networks in Internet-of-things, and autonomous 

driving assistants. Traditional mercury cadmium telluride mid-infrared detectors suffer 

from high material toxicity and fabrication complexity, and state-of-the-art quantum-well 

photodetectors need be cooled at cryogenic conditions to operate. The advent of novel 

nanomaterials such as graphene,[91], [179] black phosphorus[118], [180] and 

molybdenum disulfide[80] have achieved room-temperature photodetection via 

mechanisms including bolometric effect,[181] photovoltaic effect,[182] photo-

thermoelectric effect (PTE),[183]–[185] and plasmon detection.[186] As the first 2-D 

material, graphene exhibits broadband light absorption due to zero bandgap structure and 

enhanced thermoelectric properties by virtue of low-dimensionality.[32,33] Based on PTE 

effect, single-layer graphene achieved photo detectivity of ~2×106 cm Hz1/2 W-1 at 119 µm, 

and reduced graphene oxide detector exhibited a maximum 4.6×105 cm Hz1/2 W-1 

detectivity in a broadband range from 0.37 to 118 µm.[91], [185] Even though large-area 
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graphene growth can be achieved by chemical vapor deposition,[187] high-quality single-

layer graphene is expensive for scalable fabrication and fragile to manipulate. CNTs are 

also ideal PTE materials[26,36–39] and Suzuki et al. exemplified a CNT based 1-D 

detector array for far-infrared imaging with a noise equivalent power less than 1 nW 

Hz−1/2.[90] But drawbacks of pure CNT film detectors are the visible opacity and unstable 

photocurrent under deformation due to weak Van der Waals interaction between 

nanotubes.[92] 

Modern optoelectronic system expect photodetectors to be low cost and have novel 

functionalities to accommodate broader applications.[25], [40], [188] Polymer based 

photodetectors are therefore receiving growing attentions in visible and near-infrared range 

by now due to solution processability, high flexibility, and good transparency.[189]–[191] 

PTE conversion is proved with 0.9 mV photovoltage output under 2.3 W cm-2 near-infrared 

excitation in a flexible and transparent hexyl-3,4-ethyl-enedioxyselenophene,[192] - the 

derivative of PEDOT: PSS which is also investigated as thermoelectric material.[28], [193] 

For MWIR/LWIR regimes, however, polymer based PTE detectors had been vacant until 

the report of PVA/CNT composite detector by our group in 2018.[92] The rationales of 

polymer composite based detectors include facile fabrication, improved sensitivity and 

better flexibility: the composite detector exhibits negligible response variation at 3.5 mm 

bending radius while the responsivity sees several times improvement with detectivity of 

4.9×106 cm Hz1/2 W-1, attributed to the interface phonon scattering and energy filtering 

effects.[35], [73], [194]–[196] However, PVA/CNT composite is opaque and unoptimized 

due to aggregation induced high CNT loading.[32], [92], [197] 
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In this work, we have developed a unique and facile fabrication technique towards a 

flexible, scalable, self-powered, and semi-transparent mid-infrared photodetector using 

PEDOT: PSS/graphene composite. An optimized photoresponse is achieved at a low 

loading of graphene (3 wt.%) in polymer composite and 1.4×107 cm Hz1/2 W-1 photo 

detectivity under broadband mid-infrared radiation has been measured in an asymmetric 

PTE architecture. To the best of our knowledge, this is the firstly demonstrated flexible, 

semi-transparent, and self-powered mid-infrared photodetector to date.  

5.2 Photodetector fabrication and photoresponse 

On top of the PEDOT: PSS/graphene composite we described in chapter 2.3, 200 nm 

Aluminum and 25 nm ITO (indium tin oxide) electrodes are formed via shadow mask 

patterning and magnetron sputter deposition, as shown in Figure 5-1a. No photo 

lithography or e-beam lithography has been used. For the semi-transparent devices, thinner 

electrode layers - 25 nm or 15 nm Al, and 25 nm ITO are used instead. A 13×13 pixeled 

detector array has been fabricated using this shadow mask technique and the pixel size 

(period) is 2.8 mm. The electrodes in the array are 15 nm Al and 25 nm ITO. Instead of 

using high-power laser, we use low-intensity, broadband blackbody radiation source 

(Newport Oriel 67030) in order to imitate the real-world mid-infrared emission. The black-

body temperature is set from 373 K to 573 K with an opening spot diameter of 0.5 cm or 1 

cm, and the photodetectors to be measured are placed 25 mm away. The I−V characteristics 

with and without black-body illumination were measured by a Keithley 6487 pico-ammeter. 
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The photo-thermoelectric voltages at zero-bias were calculated from measured 

photocurrents by V IR=  where R represents resistance of the device. 

Figure 5-1a, c illustrates the fabrication process and schematic of PEDOT: 

PSS/graphene composite based mid-infrared photodetector. The temporal response of the 

device on Kapton substrate is shown in Figure 5-1b. The blackbody source is set at 573 K 

and the detector received power density is 225 µW mm-1. As our detector is in a large 

physical scale and based on thermal mechanism[92], a relatively long photocurrent 

transition time of 15 ~30 s is measured. A stable photocurrent response can be achieved 

when a thermal gradient has been established among the device channel, the substrate and 

the environment. Figure 5-1d shows the current-voltage curves of the photodetector under 

dark condition and under 573 K blackbody illuminated condition, and a net photocurrent 

can be observed at zero-bias.  
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Figure 5-1. a, Non-lithographic fabrication processes of the PEDOT: PSS/graphene based 

photodetector. b, Temporal response of 3 wt.% graphene loading photodetector under 225 µW mm-

1 blackbody radiation. c, Schematic of the flexible, semi-transparent infrared detector. d, I-V curves 

of the photodetector measured in the dark and under blackbody illumination. 

The photo-thermoelectric characteristics of PEDOT: PSS/graphene detectors have been 

investigated by tuning the graphene nanoplatelets content within composite. As shown in 

Figure 5-2a, detectivity *= / 4v BD R A k TR is used to evaluate the photodetector 

performance where A is photosensitive area, Bk  is Boltzmann constant, T is temperature, 

and R is resistance. D* represents the capability of detector to identify the weakest photo 

signal from the noise. For a pure PEDOT: PSS (0 wt.% graphene) device, the detectivity 

is measured to be only 5.9×105 cm Hz1/2 W-1 at 55 µW mm-1 radiation. By increasing the 

graphene content to 3 wt.%, the detectivity increases by 22 folds to 1.3×107 cm Hz1/2 W-1 

under the same illumination condition. We explain this phenomenon to be the result of the 
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enhanced photo absorption at elevated graphene content, and the optimized thermoelectric 

efficiency at 2~3 wt.% graphene loading as reported by literature of PEDOT: PSS 

composite.[114], [197], [198] When the graphene content increases from 3 wt.% to 12.5 

wt.%, a reduced photoresponse is observed attributed to a lower Seebeck coefficient due 

to increased carrier concentrations[114], [197] as illustrated by equation (5-1).  
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where 2 2 2/ 3BL k e= is the Lorentz number, h is Planck constant, *m  is effective mass 

of the carrier, and n is carrier concentration. The optimized PTE performance can be 

achieved at such low graphene content because the PEDOT: PSS chains have facilitated 

the dispersion of graphene. A strong π-π interaction exists between the 2-D graphene 

nanoplatelets and the planar backbone of PEDOT, and an intermolecular electrostatic 

repulsive force also exists between PSS and the graphene.[197] As a comparison to 

PEDOT: PSS/CNTs composite, the optimized CNTs loading is much higher - typically 35 

wt.%, due to the bundling and aggregation effect of cylindrical CNTs.[27], [197] The low 

requisite loading for graphene filler not only improves the biocompatibility[164][162] and 

reduces material cost, but also exhibits great potential in the integration of optically 

transparent and ultra-flexible devices. 
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Figure 5-2. a, Photodetector detectivity correlation with the increasing graphene content 

within the PEDOT: PSS/graphene composite. The graphene nanoplatelets loadings are 0 wt.%, 1 

wt.%, 3 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.%, 12.5 wt.%, respectively. b, The photoresponse of 3 

wt.% graphene photodetector at different blackbody radiation temperatures. While the radiative 

temperatures are 373 K, 423 K, 498 K, 573 K, the detector received power densities are 26.5 µW 

mm-1, 54.9 µW mm-1, 121 µW mm-1, 225 µW mm-1, respectively. 

Figure 5-2b shows the photodetector responses under different blackbody radiation 

conditions. As the temperature of blackbody source decreases from 573 K to 373 K, i.e. 

the detector received power density deceases from 225 µW mm-1 to 26.5 µW mm-1, the 

detector photoresponse sees a slight increase from 1.1 ×107 cm Hz1/2 W-1 to 1.4×107 cm 

Hz1/2 W-1. Compared to our previous work which used PVA polymer containing 60 wt.% 

CNTs, the detectivity here shows an improvement of 2.9 folds. There are two reasons for 

this credit: 1) The optimized electrode design – substituting 200 nm Ti with 25 nm ITO 

has enhanced the PTE asymmetry in contrast to the 200 nm Al electrode;[199] 2) The better 

dispersion of graphene filler within the polymer matrix has contributed to a higher 

thermoelectric conversion efficiency compared to the CNTs composite.[197] 
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Figure 5-3. a, Photoresponsivity correlation with PEDOT: PSS/graphene composite film 

thickness. The electrodes are 25 nm Al and 25 nm ITO. b, A schematic of the detector response 

related with some of the physical parameters.  

We further investigated the photoresponse of spin-coated PEDOT: PSS/graphene 

composites on PVA substrate at various spin speeds where different composite film 

thicknesses are obtained. The as-prepared PEDOT: PSS/3 wt.% graphene solution is spin-

coated at speeds of 500 rpm, 100 rpm, 1500 rpm, and 2000 rpm and the corresponding 

thicknesses are 1 µm, 450 nm, 250 nm and 100 nm, respectively. The film thickness 

obtained by drop-casting is between 2~4 µm (3 µm is used here). In general, thinner films 

exhibit higher optical transparency but also higher electrical resistance. Figure 5-3a shows 

the photoresponse correlation with different thicknesses of the composite. An optimized 

detector responsivity is found in the 450 nm thick film obtained at 1000 rpm spin coating 

speed. The responsivity dependence on composite film thickness could be understood by 

a theoretical model.[199]: 

 total electrode interface composite interface composite( ) ( )halfV S T T S T T= − + −  (5-2) 
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where Vhalf is the photo voltage generated by half of the photodetector as shown in Figure 

5-3b, Stotal is the combined Seebeck coefficient of the electrode and composite underneath 

(substrate included), Tinterface is the temperature at the electrode/composite interface, and 

Telectrode and Tcomposite are temperatures at the two farther ends of the electrode and composite, 

respectively. Equations (5-2) and (5-3) indicate that the thicknesses of the electrode and 

composite are directly and indirectly correlated to the thermoelectric voltage in several 

ways – their respective thickness could affect the light absorption and temperature 

distribution along the channel, and the ratio of them determines the Stotal. Another possible 

reason for the low photoresponse in thinner films is the distribution of graphene 

nanoplatelets (~2 µm diameter) within polymer matrix become worse after spin coating at 

high speed (i.e. 100 nm thick) and leads to lower photo absorption and thermoelectric 

conversion. The high detectivity of the 3000 nm thick composite (drop-casted) device is 

attributed to the much lower electrical resistance due to * -1/2D R . 

5.3 Flexible and semi-transparent photodetector 
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Figure 5-4. Transparent composite and semi-transparent photodetectors. a, The UV-Vis 

spectrum and optical image of the PEDOT: PSS/graphene composite on PVA substrate in visible 

range. b, The UV-Vis spectra of composite based photodetectors with 15 nm/25 nm Al and 25 nm 

ITO as electrodes. The optical image is the 15 nm Al electrode based device. c, The UV-Vis 

spectrum and optical image of a 13×13 pixeled detector array.  

Semi-transparent photodetectors based on transparent composite and substrate are 

demonstrated by transferring the spin-coated PEDOT: PSS/graphene composite onto PVA 

substrate and integrating electrodes with reduced thicknesses. An optical image and UV-

Vis transmittance spectrum of the PVA supported composite is shown in Figure 5-4a, and 

the average optical transmittance in the 300 nm ~ 800 nm range is 80%. For photodetector 

devices with 15 nm and 25 nm Al electrodes (25 nm ITO), the average optical 

transmittances are 60% and 58%, respectively (Figure 5-4b), and optical transmittance of 

a 13×13 pixeled detector array is 62% (Figure 5-4c). Considering the Al skin depth of 5 

µm infrared waves is around 10 nm, the thinnest Al layer here - 15 nm still functions to 

block the incident light as a thicker electrode does. However, the optical transmittance of 

15 nm Al film is around 10%,[200] which is main limitation of the detector transparency. 

A possible way to further increase the electrode optical transmittance is to replace the 

continuous film with conductive nanowires network. As discussed above, various 
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composite and electrode thickness combinations yield different photoresponse.[90] For 

thinner Al electrode thickness, the photo detectivity has seen some degradation compared 

to 1.4×107 cm Hz1/2 W-1 detectivity in the 200 nm Al device, but still achieves 8.3×106 cm 

Hz1/2 W-1 in the 25 nm Al, 25 nm ITO device and 7.0×106 cm Hz1/2 W-1 in the 15 nm Al, 

25 nm ITO device. A comparison between this work and representative room temperature 

MWIR/LWIR detectors is shown in Table 5-1.  

Table 5-1. Comparison between this work and representative MWIR/LWIR photodetectors. 

Ref. 
Photodetection 

Materials 
Detection 

Mechanism 
Responsive 
wavelength  

Responsivity Detectivity  
Bias 

Voltage 
Flexibility Transparency 

This 
work 

Drop-casted 
PEDOT: 

PSS/graphene  
PTE 

2.5~25 µm 
(7.8 µm) 

0.27 V W-1 

@2.5~25 µm 
1.4×107 

cm Hz1/2 W-1 
0 Flexible - 

Spin-coated PEDOT: 
PSS/graphene  

PTE 
2.5~25 µm 
(7.8 µm) 

1.9 V W-1 

@2.5~25 µm 
7.0×106  

cm Hz1/2 W-1 
0 

Ultra-
flexible  

63% 

[98] SrTiO3/Ag interface PTE 0.3~10.7 µm 
1.18 V W−1 

@10.67 µm - 0 - - 

[185] 
Reduced Graphene 
Oxide/Au interface 

PTE 0.37~118 µm 
0.09 V W−1 

@10.67 µm 
4.6×105  

cm Hz1/2 W-1 
0 - ~2% 

[201] 
EuBiSe3/Au 

interface 
PTE 0.37~118 µm 

~1 V W−1 

@10.6 µm 
~1.7×108  

cm Hz1/2 W-1 
0 - - 

[202] 
Graphene with 

antenna 
Photo-

Conductive 
4.45 µm 

0.4 V W−1 

@4.45 µm 
- 0.6 V - - 

[118] Black phosphorus 
Photo-

Conductive 
3.4~7.7 µm 

2.2 mA W−1 
@7.7 µm 

- 1.2 V - - 

[82] HgTe CQDs 
Photo-

Conductive 
3~5 µm - ~1×107  

cm Hz1/2 W-1 
0.5 V - - 

[91] Graphene Ribbons PTE 119 µm 
10 V W−1 

@119 µm 
~2×106  

cm Hz1/2 W-1 
0.2 V - - 

[146] 
CNT Fiber PN 

junction 
PTE 0.4~216 µm 

0.17 V W-1 

@4.53 µm 
2.2×106 

cm Hz1/2 W-1 
0 

Ultra-
flexible 

- 

[92] 
CNTs/PVA 
composite 

PTE 
2.5~25 µm 

(7.8µm) 
0.10 V W-1 

@2.5~25 µm 
4.9×106 

cm Hz1/2 W-1 
0 Flexible - 
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Figure 5-5. Bending properties of PEDOT: PSS/graphene based photodetectors. a, The 

photovoltage outputs of a device on Kapton substrate at convex bending of 2.4 cm, 1.8 cm, 1.0 

cm radiuses, and concave bending of 2.4 cm radius. b, Some photovoltage outputs during 400 

times bending to 1 mm radius. c, d, Optical images of the flexible detector and array. 

The PEDOT: PSS/graphene detector exhibits excellent flexibility and stable 

photoresponse under bending deformation. Figure 5-5a shows the photoresponse at 

different bending radius in a 3 wt.% graphene device on Kapton substrate obtained by drop-

casting deposition. The photoresponse sees a small variation under bent conditions even 

for a significant bending of 1 cm radius. The relatively stable response is assumed to 

originate from the strong interaction between graphene filler and polymer matrix which 

keeps the electrical and thermal transport paths stable.[92] However, due to the excessive 

film thickness and weak substrate interaction, some cracks appeared on the composite film 
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after 100 times bending. This issue has been mitigated in the spin-coating deposited 

composite film on flexible PVA substrate. Figure 5-5b shows the photoresponse outputs of 

a spin-coated composite on PVA substrate during 400 times of bending deformation. The 

flexible substrate and thin composite film have enabled quite small bending radius below 

1 mm (Figure 5-5c, d).  

 

Figure 5-6. a, Repeated detection of a human fingertip radiation placed non-contact above the 

detector surface. b, A flexible photodetector integrated transparent wrist belt. 

Finally, human-body passive radiation detection is performed using the PEDOT: PSS/3 

wt.% graphene detector. Similar to the blackbody source we use for characterization, 

thermal emission from human-body is a broadband radiation covering MWIR and LWIR 

regimes having peak wavelength at 9.3 µm. A notable photocurrent is observed under the 

unfocused, spontaneous body emission when the fingertip is placed ∼2 mm away from the 

detector as shown in Figure 5-6a. This demonstrates the possible functionality of this 

device as wearable optoelectronics since the fluctuation of body radiation could be 

reflected in the change of photocurrent. Figure 5-6b presents a flexible, transparent 
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wristband integrated with a single-pixel PEDOT: PSS/graphene detector. By tracking the 

variation of body emission, the wristband can serve as a wearable monitor for the sleep 

health condition.[203], [204] Wearable MWIR/LWIR detectors can also diagnose breast 

or skin cancers and foot ulcerations attributed to the infrared radiation change from the 

body at their very early occurrence.[75], [149] We consider our photodetector have 

advantages in terms of comfort, convenience, and integration compared to skin-touching, 

rigid, and battery-driven temperature sensors. Furthermore,  Figure 5-7a-c show possible 

applications of a flexible and semi-transparent 13×13 pixeled detector array, which is 

proposed as part of the gesture recognition system inside vehicles as a supplement to the 

current ultrasound transducers, or as photodetector/energy-harvester installed on the car 

windshield of the environmental MWIR/LWIR radiation. Since the infrared emissivity of 

various matters such as bio-tissues are different (even under the same temperature), the 

detector array could also be integrated onto glasses/contact lens and serve as eyeball 

tracking device under dark conditions. 
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Figure 5-7. A detector array placed a. inside a vehicle, b. on the windshield, c. on glasses. 

5.4 Conclusion 

In summary, PEDOT: PSS/graphene composite mid-infrared photodetectors have been 

demonstrated based on self-powered photo-thermoelectric effect. This flexible, semi-

transparent, and sensitive photodetector is fabricated by a unique, scalable method. The 

best photo detectivity of 1.4×107 cm Hz1/2 W-1 is achieved at a graphene loading of 3 wt.% 

within PEDTO: PSS. High flexibility at the bending radius of 1 mm, high optical 

transmittance - 80% for the composite and 63% for detector array have been achieved. 

These photodetector functionalities could open new possibilities of next-generation 

optoelectronics for applications in Internet-of-things sensors, wearable biomedical 

electronics, and autonomous driving assistants. 
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Chapter 6  Summary and outlook 

6.1 Summary 

Room temperature and low-cost MWIR/LWIR photodetectors meet upcoming 

wearable health condition monitoring, fast industrial inspection and distributed 

sensors/power-sources for Internet-of-things. The current issues which are hindering these 

infrared optoelectronics from widespread applications include the material toxicity of 

heavy element MCT detectors, the cryogenic cooling requirement for III-V semiconductors, 

the inefficient light-absorption in 2D materials (2.3% in graphene, ~3% in black 

phosphorus), the expensive photolithography and e-beam lithography patterning of 

electrodes, the non-scalable production of light sensitive materials, as well as the material 

and device mechanical rigidity against deformation. In this thesis, we have developed two 

architectures and three categories of room-temperature MWIR/LWIR photodetectors 

based on photo-thermoelectric effect, aiming to mitigate above mentioned limitations. 

Chapter 2 introduces the synthesis methods we have developed and characterization 

results of three large-area, scalable, and relatively low-cost light absorbing materials, i.e. 

the vertically aligned carbon nanotubes forest, the CNTs/PVA composite film, and the 

PEDOT: PSS/graphene nanoplatelets composite film.  

Chapter 3 describes a self-powered, large-area and broadband mid-infrared 

photodetector by employing vertical photo-thermoelectric effect of high-density CNTF 

with nearly unity black-body absorption. A photo detectivity of 2.2×107 cm Hz1/2 W-1 at 

2.5~25 µm spectral range is achieved under weak, unfocused, and broadband infrared 
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radiation akin to the real-world illumination. The photodetectors are integrated through the 

engineering of the top-electrode layer, the material, thickness, and pattern of which are 

investigated regarding the PTE effect. A further response improvement is demonstrated by 

increasing CNTF height and decreasing the photosensitive area. These findings open up 

new possibilities in broadband infrared detection and energy harvesting for real-time health 

condition monitoring, low-cost industrial inspection, and distributed sensing/power 

supplying in Internet of Things. 

Chapter 4 presents that PVA/CNTs nanocomposites have been investigated as mid-

infrared detectors using solution processing and non-lithographic fabrication method. The 

detector channel length correlation with the photo-response has been revelled through the 

Seebeck effect. Stable response is observed under significant convex and concave bending 

(to 3 mm radius) attributed to the immobilized CNTs network supported by PVA 

crystallization. An image of human fingers is obtained by a passive scanning the single-

pixel detector. This self-powered and highly flexible MWIR/LWIR detector will find 

application in wearable electronics especially for real-time health monitoring and fast skin 

cancer THz imaging. 

Chapter 5 introduces the PEDOT: PSS and graphene composite based mid-infrared 

photodetectors, which is the second-generation of the CNTs/PVA composite. The 

optimized photo detectivity of 1.4×107 cm Hz1/2 W-1 is achieved at a graphene loading of 

3 wt.% within the composite, compared to the 4.6×106 cm Hz1/2 W-1 in a 60 wt.% CNTs 

content PVA composite. The low loading of graphene filler has also enabled the realization 

of a flexible and semi-transparent detector, which has been achieved by spin coating the 
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composite solution onto a PVA substrate. Good photoresponse stability against bending 

deformation have been proved due to strong interaction between graphene and PEDOT: 

PSS matrix. This sensitive, flexible, semi-transparent, and low-cost detector could find a 

variety of applications as Internet-of-things sensors, wearable biomedical electronics, and 

autonomous driving assistants. 

6.2 Outlook 

Currently, the study of our photodetectors is still at early stage and lots of work can be 

done to further improve the photodetection performance and advance the integration and 

utilization of these kinds of photodetectors towards practical scenarios.  

1) Optimizing the channel dimensions 

As discussed before, since increased CNTF height will help improve the PTE response, 

the CNTF growth parameters can still be optimized in order to extend its height. By 

introducing small amount of water into the reactor chamber during fabrication or adding a 

very thin layer of molybdenum on top of the Fe catalyst layer could be two of the possible 

methods to boost CNTs growth to even millimeter scale.[108], [205] 

The optimized channel widths (perpendicular to the carrier transport direction) in 

CNTs/PVA and PEDOT: PSS/graphene detectors have not been investigated. By referring 

to the irrelevant correlation between the photosensitive-area and output voltage in CNTF 

based detector, the channel widths of the planar detector architecture will probably not 

influence the photo-thermoelectric voltage either.  
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2) Novel 2D materials as the top-electrode layer  

For now, the 25 nm Al top-electrode layer has achieved the best photoresponse in 

CNTF based detectors. However, strong light reflection and relatively low Seebeck 

coefficient of metals have probably not made Al the ultimately best option. According to 

our results that good electrical and thermal contact matter significantly for the PTE 

response, novel 2D conducting materials who have lower infrared reflection and tunable 

Seebeck coefficients such as graphene, MoS2, and black phosphorous could also be utilized 

as the top-electrode layer should fair contacts can be formed with the CNTF. 

3) Integration of focal plane array 

While a single-pixel detector has been used in imaging demonstration and a 13 by 13 

pixels array has only been fabricated but not packaged or tested yet, the integration and 

testing work of a focal plane array with readout circuitry needs to be carried out. During 

this process, there must be some trade-offs among the detector pixel density (period), the 

photoresponse (as shorter channel probably leads to reduced response), and the shadow 

mask pattern lower limit. 

4) Calibration of the detector output to body temperature 

If the flexible photodetectors are to be used as wearable health monitors which 

constantly measures the infrared/THz radiation from human bodies, the light induced 

current outputs need to be calibrated to the real body temperature. After doing so, by 
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reading the photodetector output current, a digital signal processor (DSP) can provide the 

real-time temperature values of our bodies onto the electronic display. 

5) Improve the device endurance 

The long-term reliability of this photodetectors needs to be improved. The 

photoresponse degradation in a CNTs/PVA composite detector is ~35% after 6 months by 

placing the device under ambient conditions. This is most likely caused by the metal 

electrode oxidation as evidenced by the visual color change, followed by reason of polymer 

degradation. Possible measures to slow down the degradation process and improve device 

endurance may include covering the device with PMMA protection layer or depositing a 

thin layer of noble metal on top of the two electrodes in order to reduce the moisture and 

O2 corrosion. 
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