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Abstract  

 The widespread utilization of renewable and clean energy sources like solar, wind and 

biomass energy inspires the energy storage market, and a stable, cost-effective and 

environmentally friendly energy storage system is the key to this demand. Aqueous rechargeable 

lithium ion batteries (ARLIBs), rechargeable hybrid aqueous batteries (ReHABs) and aqueous 

zinc ion batteries (ZIBs) are competitive candidates for their advantages of being safe, 

environmentally friendly and of higher ionic conductivity. For material abundance, low cost and 

multivalent charge transport, ZIBs are more attractive.  

 In this research, manganese deficient zinc manganese oxide was synthesized by 

oxidation-precipitation with different zinc and manganese ratio. The cathode material 

synthesized with 1:3 zinc to manganese ratio has the highest initial capacity and also best rate 

performance. The exact chemical formula for the ZMO sample is ZnMn1.71O4, which calculated 

by the XPS results. The abundant of manganese vacancies also promotes high zinc diffusivity. 

The zinc diffusion coefficient of the ZnMn1.71O4 is 4.44E-11cm2/s, which is comparable with the 

Li diffusion coefficient normally at a magnitude of ∼10−10cm2/s in spinel cathode. However, the 

capacity retention is only 33.5% after 500 cycles with the 300mA·g-1 current density. 

 Then, gelatin modified separator was introduced into the battery system to prolong the 

battery cycle life. The capacity retention achieves 91.3% after 500 cycles at the current density 

of 300mA·g-1, which is an unimaginable improvement. Moreover, 7mAh large battery was used 

for simulating the industrial situation with extensive cathode mass loading. The capacity remains 

80% after 2000cycles at 500mA·g-1 current density. Zinc to zinc symmetric cell was applied for 
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simulating the dendrite growth during the cycling. The symmetric cell with G-AGM can keep 

ruing for five days without evident voltage increasing. However, the symmetric cells without G-

AGM stop running on the third day due to the voltage is excess the limitation. The result of CA 

test and the SEM images of the zinc electrodes after CA test are all the evidence that can prove 

that G-AGM has a strong effect on inhibiting zinc dendrite nucleation and growth.   
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Chapter 1: Introduction 

1.1 Introduction  

 Due to the global energy crisis and climate change, developing renewable and 

environmentally friendly energy sources is a suitable solution for every country. Figure 1 shows 

the trends of installed renewable energy capacity from 2010 to 2018. In 2010, the total renewable 

energy capacity was only about 1200KMW, but it achieves 2300KMW in 2018, which almost 

doubled. The increasing trends of renewable energy capacity also lead to the growing demand 

for battery energy storage systems (BESS) which can help make renewable energy — whose 

power output cannot be controlled by grid operators — smooth and dispatchable. 2  

Figure 1 Installed capacity trends from 2010 to 2018 for renewable energy1 
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 From figure 2, the global battery energy storage market volume is 4978MW at 2018 

which is 7 times larger than the size in 2013, at it expected to be 22207MW in 2023. This 

enormous potential market has motivated researchers to find a cost-effective and 

environmentally friendly BESS. Figure 3 shows a steady increase in the batteries market over the 

past years. It also shows the battery energy storage system with dominant battery market share, 

which includes lithium-ion (LIB), nickel-metal hydride (NiMH) and nickel-cadmium (NiCD) 

and lead-acid batteries. From 2000 to 2017, the demand for lead-acid batteries only increased by 

30%, and the increasing speed further decreased in recent years. The demand for lithium ion 

batteries increased fast from 2005 to 2015, but the dramatically increased cost of lithium material 

limited its application in BESS. Moreover, all of these commercial battery systems have some 

ecological, economic, and safety problems.  

Figure 2 Global Battery Energy Storage Market Capacity (MW) 2013-20233 
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 Firstly, lead-acid and nickel-cadmium batteries all use toxic metal as electrode which 

makes their disposal an environmental concern, in addition to the energy density of lead-acid and 

nickel-cadmium batteries are only 30 Wh kg-1.5, 6 Nickel-metal hydride battery has a high energy 

density, but it is expensive, limited high rate capacity and low coulombic efficiency.7-9 The 

electrolyte of commercial lithium ion batteries is LiPF6 dissolved in carbonate ester which is 

flammable and toxic.10 Furthermore, LiPF6 is sensitive to air, so the whole assembly process 

should be operated in an oxygen-free environment which means high prime cost.11  

  

Figure 3 Demand for major battery systems over the past years4 
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1.2 Aqueous rechargeable batteries  

 In contrast, aqueous rechargeable batteries (ARBs) can be a promising candidate for the 

next generation of BESS for some reason. The inherent advance for ARBs is aqueous electrolyte, 

which has a two-order magnitude higher of ionic conductivity than the organic electrolyte in 

LIB.12 Hence, ARBs have high fast charge/discharge efficiency and rate capacity. Moreover, the 

electrolyte salt and solvent are much cheaper, and the cost of battery assembling is highly 

reduced than others. Furthermore, the normal electrolyte salt used in ARBs is non-toxic and 

environmentally friendly and easy for recycling.13   

 The first prototype of the aqueous rechargeable battery was reported by Dahn in 1994 

which uses LiMn2O4 (LMO) and β-VO2 as cathode and anode, respectively.14 Figure 4 illustrate 

the working mechanism of the battery during the charge/discharge process. The lithium ion 

inserts in or extracts from the active material during the cycling, and the reactions are given as 

[1]and [2]14: 

LiMn2O4⇄Li1-xMn2O4+xLi++xe-  [1] 

VO2(β)+xLi++xe-⇄LixVO2  [2] 
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 After that, significant progress was made in this area by exploring more new types of 

ARBs, and more fundamental battery chemistries. Table 1 contains the recent progress of various 

ARBs. As the table shows, ARBs can be generally classified by four types include aqueous 

rechargeable lithium ion batteries (ARLBs), aqueous rechargeable sodium ion batteries 

(ARSBs), aqueous rechargeable zinc ion batteries (ARZBs), and aqueous rechargeable hybrid 

batteries (ARHBs).  

Table 1 Recent progress of various ARBs.15 

Cell type Electrolyte Working 

voltage(V) 

Capacity retention 

(%) 

Initial 

capacity 

(mAh g-1) 

Aqueous rechargeable lithium ion batteries (ARLBs) 

LiMn2O4 nanochains//AC 0.5 M Li2SO4 0-1.8 ~100% (200) at 4.5 C 110 

Porous LiMn2O4//AC 0.5 M Li2SO4 0-1.8 93% (10000) at 9 C ~115 

LiMn2O4 

nanochains//PPy@MoO3 

0.5 M Li2SO4 0-1.95 ~90% (150) at 4.5 C ~88 

LiFePO4@C//LiV3O8 9 M LiNO3 0-0.8 ~91.8% (100) at 10 C 90 

Figure 4 Working mechanism of the LMO/β-VO2 battery15 
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LiFePO4//LiTi2(PO4)3 0.5 M Li2SO4+0.1 M LiOH, 

absence O2 

0-1.4 90% (1000) at 6 C N/A 

Aqueous rechargeable sodium ion batteries (ARSBs) 

Na0.44MnO2//NaTi2(PO4)3 1.0 M Na2SO4 0.1-1.4 > 1000 cycles at 7 C ~127 Wh 

L-1 

Na2FeP2O7//NaTi2(PO4)3 1.0 M Na2SO4 or 4.0 M 

NaClO4 

0-1.4 2.0 mA cm-1 ~45 

Na3MnTi(PO4)3// 

Na3MnTi(PO4)3 

1.0 M Na2SO4 0.4-1.8 98% (100) at 1 C ~56.5 

Na3V2(PO4)3//NaTi2(PO4)3 1.0 M Na2SO4 0.5-1.6 50% (50) at 10 A g-1 ~58 

Na2CuFe(CN)6//NaTi2(PO4)3 1.0 M Na2SO4 0.2-1.8 88% (1000) at 10 C 85 

Aqueous rechargeable zinc ion batteries (ARZBs) 

β-MnO2//Zn 3.0 M Zn(CF3SO3)2+0.1 M 

Mn(CF3SO3)2 

0.8-1.9 94% (2000) at 6.5 C 150 

ZnMn2O4@C//Zn 3.0 M Zn(CF3SO3)2 0.8-1.9 94% (500) at 500 mA 

g-1 

85 

Zn0.25V2O5·nH2O//Zn 1.0 M ZnSO4 0.5-1.4 80% (1000) at 8 C 260 

α-MnO2//Zn 1.0 M ZnSO4 1.0-1.9 ~100% (100) at 6 C ~100 

Aqueous rechargeable hybrid batteries (ARHBs) 

LiMn2O4//Zn 3 M LiCl+4 M ZnCl2+0.1 M 

KOH 

1.4-2.1 90% (1000) at 4 C 115 

LiFePO4//Zn 1M CH3COOLi+ 1M 

Zn(CH3COO)2 

0.5-1.7 > 95% (125) at 1 C 100 

Na0.44MnO2//Zn 1 M Na2SO4+0.5 M ZnSO4 0.5-2 Above 90% (100) at 

4 C 

40 

NiHCF//Zn 0.5 M Na2SO4+0.05 M 

ZnSO4 

0.9-1.9 81% (1000) at 500 

mA g-1 

76.2 
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1.2.1 Aqueous rechargeable zinc ion battery based on cation-deficient spinal ZnMn2O4 

cathode and zinc foil as the anode 

 The cation-deficient spinal ZnMn2O4 (ZMO) based ARZB was proposed by Chen’s group 

in 2016 inspired by the widely used spinel LiMn2O4 cathode in LIBs. Figure 5 shows the 

proposed Zn2+ diffusion pathway in ZMO spinel with and without Mn vacancies. For a perfect 

ZMO spinel structure, when the zinc ion transport from one 4a site to another passing through 8c 

site, it will endure a huge electrostatic repulsion from the manganese ion in a neighboring 

octahedral site (8d). On the contrast, the ZMO spinel structure is filled with manganese 

vacancies allows easier zinc ion diffusion, leading to high zinc mobility and initial capacity.16 

 The cathode material was synthesized through facile solution-based oxidation–

precipitation and crystallization process at modest condition mixed with carbon, so-called 

coupled spinel ZMO/carbon nanocomposite17. Figure 6 illustrates the process of synthesis 

ZMO/C nanocomposite. Zinc nitrite and manganese nitrite were oxidized and the products 

precipitated. Then the precipitant was washed, centrifuged and dried.  

Figure 5 Schematic illustration of Zn2+ diffusion pathway 
in ZMO spinel without and with Mn vacancies16 
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 Figure 7 shows the working principle of ZMO/Zn battery during the charge and discharge 

process. When the battery is charging, the zinc ions extract from the spinel ZMO cathode. 

Meanwhile, the zinc ions in the electrolyte will gain 2 electrons and deposit on the zinc foil. In 

contrast, zinc from anode lost two electrons and dissolved into the electrolyte, but the zinc ions 

insert into the cathode material during the discharge process. The working potential window is 

0.8-1.9V. The reactions of the electrodes during the charge and discharge process can be written 

as:  

ZnMn2O4⇄Zn1-xMn2O4+xZn2++2xe- [3] 

Zn2++2e-⇄Zn [4] 

Figure 6 Schematic illustration of the synthesis of spinel ZMO/C nanocomposite16 
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 The electrolyte for ZMO/Zn battery is zinc trifluoromethanesulfonate (Zn(CF3SO3)2) 

which is a bulky-anion zinc salt and has been widely applied in solid electrolyte or gel electrolyte 

for its high ionic conductivity.18 Figure 8 shows the Cyclic voltammograms of the Zn electrode 

in the aqueous electrolyte with varied Zn(CF3SO3)2 concentration. The corresponding onset 

potentials of initial Zn plating/stripping are −0.14/−0.050 V and −0.17/−0.055 V, respectively. 

The smaller potential separation between plating and stripping and higher response current can 

be found for Zn(CF3SO3)2, suggesting good reversibility and fast kinetics of Zn 

deposition/dissolution.17  

Figure 7 Schematic illustration of the charge/discharge process of ZnMn2O4/Zn.21 
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1.2.2 Limitations of ZMO cathode based aqueous rechargeable zinc ion batteries 

 The stability of the active material is a persisted problem for all manganese-based 

cathode which includes LiMn2O4, MnO2, ZnMn2O4.19-21 Those manganese-based cathodes all 

have Mn3+ in the structure. During the charge and discharge process, the Mn3+ will tend to have 

an irreversible disproportionation reaction (2Mn3+→Mn2++Mn4+) and dissolved from the 

electrode into the electrolyte.22 The dissolution rate speeds up at high temperature and low PH.27 

This progress will destroy the structure of the cathode, and cause capacity fading. Moreover, the 

capacity of ZMO based ARZB highly depends on the manganese vacancies. The theoretical 

capacity for ZMO cathode is 224mAh·g-1, but the actual largest initial capacity for ZMO is about 

150mAh·g-1 due to the structure stability and electrostatic repulsion.17, 21 Another problem is 

Figure 8 Cyclic voltammograms of Zn electrode in aqueous electrolyte with varied 
Zn(CF3SO3)2 concentration17 
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about the zinc anode, which is wildly applied in ARZBs. By the instinct property of zinc cation, 

the PH value of zinc salt electrolyte is always around 4 or less. The mild acidic electrolyte will 

corrosive the zinc anode and also leads to the dendrite formation along the anode surface.23,24 For 

cost-effective consideration, the electrolyte salt for ZMO battery is another problem. 

Zn(CF3SO3)2, a costly zinc salt, which is almost 25 times higher compared with the zinc sulfate 

based on the quote from Sigma-Aldrich.  

1.2.3 Strategies to overcome the manganese dissolution  

 Manganese disproportionation reaction and dissolution has been a critical problem for the 

commercialization of manganese-based cathode material include MnO2, LiMn2O4 and ZnMn2O4. 

Kinds of strategies have been reported to inhibit the manganese dissolution includes adding 

additives into the electrolyte, and surface coating.21, 25 

 Wu et al. reported that adding manganese ions into the electrolyte can effectively migrate 

the manganese dissolution and improve the capacity for ZMO based battery.21 The electrolyte in 

that work is 1M zinc sulfate mixed with 0.05M manganese sulfate. By the characterization, the 

zinc diffusion rate was increased after adding manganese sulfate into the electrolyte. The 

manganese dissolution is also partially inhibited by equilibrium of the manganese 

disproportionation reaction.26  

 Walz et al. demonstrated that the surface coating of nanoporous ZrO2 and TiO2 on the 

LiMn2O4 cathode has the significant effect of improving the structural stability even at high 

temperature.25 The nanoporous ZrO2 and TiO2 coated cathode were synthesized by sol-gel 

method at a 4wt%. The average size of the nano ZrO2 and TiO2 particles are about 3.3nm and 
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4.8nm, respectively. The batteries with the oxides coating show the excellent stability at high 

temperature compared with the uncoated ones.  

1.2.4 Strategies to inhibit the dendrite formation 

 Dendrite formation has been an inherent and serious problem for all the metal anode 

include lithium metal anode and zinc metal anode. Zinc metal anode is widely used in ARZBs, 

and zinc deposition/dissolution is a significant process during cycling.28 However, the ununiform 

electrodeposition caused the zinc dendrite. The dendrite is continually growing along with the 

cycling, finally, pierce the separator and cause the short circuit. There is plenty of researches 

about migrating the zinc dendrite formation. The methods mentioned here include adding 

additives into electrolyte, surface coating and optimization of electrolytes.29-31  

 Mitha et al. reported that adding polyethylene glycol into aqueous electrolyte as additive 

can suppress the zinc dendrite formation significantly. The polyethylene glycol with the 

molecular weight of 200 was added into the 2M ZnSO4 and 1M Li2SO4 electrolyte with the 

amount of 1vol.% and stirred for 6 hours. The capacity of the batteries with PEG added 

electrolyte was increased significantly. Moreover, the dendrite formation was suppressed 

effectively by the absorption of PEG on the anode surface, which helped the zinc deposit more 

uniformly.29 

 Ahmed et al. fabricated artificial solid electrolyte interface onto the anode surface by 

ultrathin graphene films to migrate the zinc dendrite. The porous zinc anode was coated by 

graphene oxide first, and the graphene oxide was reduced by water vapor to form graphene based 

artificial solid electrolyte (G-SEI). The characterization results reveal that the G-SEI has the 
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ability to control the ion transport between the electrolyte and the anode surface, and also 

promotes a uniform deposition (less dendritic growth) of zinc on the anode.30 

 Tuan et al. reveal the effect of gel electrolyte on inhibiting the zinc dendrite formation in 

aqueous rechargeable batteries system. The aqueous electrolyte was mix with 5wt% of fume 

silica to form the gel electrolyte.31 The previous studies have proved that the increased viscosity 

of electrolyte, the lower cation/anion transportation, but higher stability of both cathode and 

anode.32 Moreover, Tuan et al. also added lead cations into the electrolyte to further suppress the 

dendrite growth. Lead ions can be reduced prior to zinc, and can serve as the substrate for zinc 

deposition. This more positive substrate can lead to the even deposition of zinc, and suppress 

zinc dendrite by regulating the current distribution.33  

1.3 Gelatin  

 Gelatin is a polypeptide and normally obtained by partial hydrolysis of collagen. Figure 9 

shows the structure of collagen and gelatin. Collagen is a sufficient protein in animals. Collagen 

consists of polypeptides wound together to form triple-helices of elongated fibrils which have 

strong mechanic properties, and is the main component of connective tissue. Gelatin is normally 

fabricated by the partial hydrolysis of collagen to destroy the triple-helices structure in hot water 
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or dilute acid. Gelatin contains kinds of amino acid such as glycine, proline, hydroxyproline, etc. 

Figure 10 shows the exact composition percentage of gelatin.  

1.3.1 Gelatin in Industrial Electrodeposition  

 Gelatin is commonly performed as a gelling agent in the food industry, drug capsules, 

and maquillage. However, gelatin was firstly reported by A.G. Betts as additives used in 

industrial metal electrodeposition in 1903.36 Since then, gelatin has been widely used in metal 

electrodeposition includes copper, zinc, tin, and bismuth in the acidic aqueous electrolyte.37, 39, 40, 

41In 2014, Meudre and Ricq reported the gelatin additive in the electrolyte have the ability to 

inhibit the initial nucleation of the deposited metal and promote homogenous and small 

crystallites.37 Figure 11 is the SEM images of copper deposit obtained for 30 min with and 

without gelatin additives. The smooth plating is attributed to the absorption of gelatin during the 

electrodeposition.37 The majority of amino acid in gelatin is glycine, and from previous reports, 

Cu2+ cation can be chelated by glycine to form CuGl+, CuGl2, and CuGl3-based on the electrolyte 

PH.38 In Meudre’s work, the PH value of electrodeposition bath is 1, which means only CuGl+ 

can be formed. Then the positively charged gelatin and copper complexes will be absorbed on 

the working electrode by the applied voltage. The gelatin adsorption film can be characterized 

Figure 10 The structure of collagen and gelatin34 Figure 9 Amino acid composition of 
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and confirmed by quartz crystal microbalance, Fourier transform infrared spectroscopy (FTIR), 

and Atomic force microscopy (AFM). The gelatin film can cover the active sites on the working 

electrode, and decrease the nucleation rate, which finally, in turn, get a smooth coating. 37, 39 

1.3.2 Gelatin as Solid Electrolyte 

 Because of the high ionic conductivity of gelatin, gelatin has also been used as a solid 

electrolyte in the electrochromic device (ECD) or solid-state battery systems. Table 2 shows the 

ionic conductivities of several common polymer matrices based on zinc salt. C. Zhi reported a 

novel hierarchical polymer solid electrolyte (HPE) based on gelatin and PAM. By the 

contribution of HPE, an extremely safe and wearable solid-state zinc ion battery was 

investigated.42 

Table 2 Comparison of gelatin with some zinc-salt-polymer-electrolytes in terms of ionic conductivity in the 
literatures42 

Polymer matrices Ionic conductivity (mS cm-1) Zinc salts 

Figure 11 SEM micrographs of copper deposit obtained for 30 min from an electrolyte contains (a) no additives; (b) 
1g/L gelatin37 
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Gelatin 5.68 ZnSO4 

PEO 2~4 ZnCl2 

Poly-ε-caprolactone 0.88 Zn(CF3SO3)2 

Poly(4-vinylpyridine) 2×10-5 Zn(ClO4)2 

PAN 0.22 ZnSO4 

 Figure 12 illustrates the schematic of the synthesis route to the HPE. Briefly speaking, 

gelatin, potassium persulfate, Acryl amide (AM) monomers and N,N’-methylenebisacrylamide 

(BIS) was mixed and added into the mixture solution of zinc sulfate and manganese sulfate. 

Then, the mixture solution was injected into the porous electrospun PAN membrane and dried 

for 2-3 hours.42 

 The cathode material of the zinc ion battery is α-MnO2, and zinc is the anode. Solid 

electrolyte can be a strong physical barrier to inhibit the dendrite growth. Moreover, manganese 

cannot be dissolved in the solid electrolyte, which significantly enhanced the stability of the 
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cathode material. As a result, the battery shows excellent stability, which has 97% capacity 

retention after 1000 cycles.42 Hence, gelatin has great potential in the battery system.  

1.4 Project scope and objectives  

Overall, this work mainly focuses on two parts.  

1. Synthesize zinc manganese oxide with more manganese vacancies to promote higher initial 

capacity with zinc sulfate as electrolyte. The theoretical capacity of ZMO is 224mAh·g-1, but 

the capacity of original ZMO is only 150 mAh·g-1 at low current density.16,21 In this work, the 

synthesizing method is slightly changed in order to get manganese vacancies abundant ZMO.  

2. Introduce the gelatin to this aqueous rechargeable zinc ion battery to stabilize the system. 

The electrolyte used in this work is mildly acidic, which means favorable for dendrite 

growth. Moreover, defect abundant structure also indicates poor stability, so gelatin is 

applied in this work to inhibit dendrite growth, and also stabilize cathode structure.  

Figure 12 Schematic of the synthesis route to the HPE42 
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Chapter 2: Characterization Techniques  

2.1 Material Characterization Techniques 

2.1.1Scanning Electron Microscope (SEM) 

 Scanning electron microscope (SEM) is a common characterization technique to obtain 

the surface topography and composition information of samples at the nanoscale. It has typically 

several modes that can be operated, which are secondary electron (SE) image, backscattered 

electron (BSE) image, and energy dispersive x-ray (EDX). Secondary Electrons generated on the 

surface of a specimen by the energy gained from inelastic collision with beam electrons. The 

secondary electrons have lower kinetic energy, and have less interaction volume compared with 

backscattered electrons. So, secondary electron form images are normally used to show the 

topography of the sample. Backscattered electrons consist of high-energy electrons originating in 

the electron beam, which are reflected or back-scattered out of the specimen interaction volume 

by elastic scattering interactions with specimen atoms. Since heavy elements (high atomic 

number) backscatter electrons more strongly than light elements (low atomic number), and thus 

appear brighter in the image, BSEs are used to detect contrast between areas with different 

chemical compositions. X-ray is generated when the sample is bombarded by high energy 

electrons and knock off the core electrons of the sample and is left with a vacant energy level. 

Then the outer-shell electron will fall into the vacant energy level and emit photons with 

quantized energy which is the x-ray. Because each element has a unique set of energy levels, the 

x-ray signal can be detected by the energy dispersive x-ray detector to map the distribution or the 

abundance of elements in the sample.  
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 Figure 13 is the schematic of the fundamental internal component of SEM. Voltage is 

applied on the electron gun to release electrons, and the electrons are accelerated by the anode. 

The magnification can be adjusted by the electromagnetic lens and coils. Then the electron beam 

is injected to the specimen with raster scan pattern. For each scan point, the signal includes SE, 

BSE and x-ray were detected and converted to image on the computer.  

 In this work, SEM for all samples was performed on UltraPlus FESEMs (Zeiss) with an 

accelerating voltage of 10kV.  

Figure 13 Schematic of Scanning Electron Microscope43 
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2.1.2 X-ray Diffraction (XRD) 

 X-ray Diffraction is an analytical technique widely used to identify the crystal structure 

and crystallinity. X-ray diffractometers mainly consist of the X-ray source, sample holder and 

counting detector. As figure 14 shows, x-ray is generated by X-ray source and passes through the 

collimator. Then, the incident x-ray strikes the sample surface, the x-ray can be reflected, 

scattered, or absorbed by the sample, and the x-ray signal is collected by the detector and identify 

the intensity. X-ray source and detector will rotate along the testing process, and data will be 

recorded at every rotate. The final result will be a diagram of signal intensity at each incident 

angle.  

 The relation between the incident angle and signal intensity is based on Bragg’s Law, 

which is  

nλ=2dsinθ [5] 

Where n is an integer number, d is the spacing between two planes, λ is the wavelength of the 

generated x-ray, and θ is the incidence angle. Furthermore, once the distance between crystal 

Figure 14 Schematic of X-ray diffractometer44 
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planes is known, the Miller index of that particular crystal plane (for cubic structures) can be 

determined using the equation: 

d = 𝑎𝑎
√ℎ2+𝑘𝑘2+𝑙𝑙2

  [6] 

Where a is the unit cell length and h, k, and l are the Miller indices associated with that particular 

crystal plane. Figure 15 shows how the x-ray interact with a typical crystalline sample. 

Moreover, the XRD spectrum can also tell the average size of the crystal by the Scherrer method: 

d = 𝐾𝐾λ
(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 [7] 

 Where d is the size of the crystal, K is the Scherrer shape constant, λ is the wavelength of the X-

rays, FWHM is the full width at half maximum of the corresponding peak in the XRD spectrum, 

and θ is the incidence angle. Some common K values from literature are 0.94 for spherical 

crystals, 1.00 for nanorods, and 0.89 for platelets.45 

 In this work, XRD characterization was carried out on a Bruker D8 Discover X-ray 

diffractometer using a copper target and a wavelength of 0.154 nm (Cu Kα). The measurement 

range was 5°-90° at a scan rate of 0.2 degrees per second. 

2.1.3 Fourier Transform Infra-red Spectroscopy (FTIR) 

 FTIR spectroscopy is used to get the spectrum of absorbance of infra-red light for 

different materials. As infra-red light passes through a molecule, certain wavelengths will be 

absorbed and be converted to the physical motion of the covalent bond. With exposure to infra-

red radiation, molecules experience a change in their dipole moments leading to a change in the 

energy state. This excitation can be manifest in stretching, twisting, scissoring, bending or 
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translation of a molecule. The transmitted light can be captured by a detector and analyzed to 

determine the types of bonds present in the sample. 

 Figure 15 shows the working principle of an FTIR interferometer. Normally, infra-red 

light is generated by firing a broad-band beam, and passes through a partially reflective mirror 

leading to beam splitting. The split beams are respectively directed to one fully reflective 

stationary mirror, and a fully reflective moving mirror. The split beams reflect off these mirrors, 

interact with the sample and are then collected at the detector. The moving mirror is used to add 

phase difference to the incident rays. During constructive interference (no path difference 

between infra-red rays from the moving and stationary mirrors) maximum signal reaches the 

detector after passing through the sample. In contrast, when the interference is destructive, no 

signal is expected at the detector. The measurement is carried out at a variety of phase angles 

producing an interferogram at the detector. This is then converted to a frequency spectrum using 

a Fourier transform. The spectrum can be compared to databases to identify specific bonds 

responsible for the absorption of light, and through this, the entire molecular landscape can be 

identified. 

Figure 15 Schematic of an FTIR interferometer46 
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 FTIR spectroscopy in this work was performed on a Bruker Optics Vertex 70 

Spectrometer in the wavenumber range of 400 cm-1 to 4000 cm-1 with a repetition of 20 scans. 

2.1.4 Thermogravimetric analysis (TGA) 

 Thermogravimetric analysis is a thermal analytical method to record the weight changes 

of samples over time with increasing temperature which normally used to evaluate the thermal 

stability of the sample. TGA can be operated in different atmospheres include ambient air, 

vacuum, oxidizing gases, and corrosive gases depend on the researchers. Figure 16 illustrates the 

working principle of TGA. The sample will be heated by the furnace at a constant rate, and the 

mass changes will be recorded by the balance and send to the computer. Moreover, the heat flow 

will also be tested by the thermocouple. 

Figure 16 Working Principle of Thermogravimetric Analysis47 
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 In this work, TGA was operated at a temperature range between 30℃ to 700℃ at a 

constant heat speed of 10℃/min.  

2.1.5 X-Ray Photoelectron Spectroscopy (XPS) 

 X-ray photoelectron spectroscopy is a surface sensitive (7-11nm) characterization 

technique, which generally used for identifying the composition and chemical state of elements. 

As the figure 17(a) shows, the basic components of XPS include x-ray generator, sample holder, 

and photoelectron detector. The analysis is carried out in ultra-high vacuum. When the incident 

x-ray strikes electron of the surface atom, the electron gains energy. This energy can be 

sufficient for the electron to overcome the binding energy of the nucleus, and the remaining 

energy is converted to kinetic energy (Figure 17B). The velocity of these moving electrons is 

detected by the detector. The binding energy experienced by the electron is given by: 

EB=hv-Ek-φ [8] 

Where EB is the binding energy of specific element, Ek is the kinetic energy of photoelectron 

detected, h is the Planck’s constant, v is the frequency of the incident x-ray, and work function φ 

is an adjustable instrumental correction factor which normally is a constant and rarely needs to 
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be adjusted in practice. By the information of the binding energy, the composition and chemical 

state of the sample can be easily identified.  

 In this work, A Thermo-VG Scientific ESCALab 250 microprobe was used to record 

XPS spectra. The spectra were taken at 1486.6 eV and 49.3 W, using a 200.0 μm beam size. 

Reported binding energies were normalized against the C1s peak at 284.8 eV. The chamber 

pressure was maintained at 2.0 nPa during testing. A wide survey (0-1350 eV) was conducted for 

each sample to determine the surface elemental composition of the samples. This was followed 

by scanning over a narrower energy window to obtain high energy resolution spectra of the 

elements. The results were operated in CasaXPS vision 2.31, and the Shirley background type 

was used for peak fitting.  

  

Figure 17 (a) Schematic of XPS instrument (b) principle of the emission of photoelectron48,49 
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2.2 Electrochemical characterization techniques  

2.2.1 Chronoamperometry (CA) 

 Chronoamperometry is a time-dependent electrochemical technique that can be used to 

study electrodeposition behavior of ions on an electrode surface. There are two types of 

chronoamperometry that are commonly used, controlled-potential chronoamperometry and 

controlled-current chronoamperometry. For here, the controlled-potential chronoamperometry is 

introduced. As figure 18 shows, the constant potential between working electrode and counter 

electrode is maintained by potientostat. By the constant overpotential, the metal ions in the 

electrolyte will be reduced on working electrode, and the current change will be recorded and 

plotted as a function of time. Then, the processes of electrodeposition can be qualified by the 

plot.  

Figure 18 Scheme of Chronoamperometry Instrument50 
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 Figure 19 describes these processes during reduction.51 At the initial stage without 

overpotential applied, the system is at equilibrium and the oxidation and reduction reactions at 

the electrode are equal and thus there is no net transfer of electrons. After a potential is applied in 

Stage II, the electroreduction reaction begins. This represents the nucleation step. Once the 

nuclei are formed, the growth phase commences represented by Stage III. An understanding of 

the types and magnitudes of nucleation and growth reactions can be gained by analyzing 

chronoamperograms from different systems. 

 Chronoamperometry was measured using a Bio-Logic VMP3 electrochemical 

workstation. Zinc foil was used as both the working and counter electrodes, and Ag/AgCl were 

used as a reference electrode. Applied overpotential was set to -120 mV. Electrolyte is 2M zinc 

Figure 19 Schematic presentation of phenomena involved during copper nucleation at various stages of 
chronoamperometric experiment for (a) lower and (b) higher concentration of metal ions. Depicted stages 
are (I) prior to electroreduction, (II) state at the onset51 
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sulfate with PH adjusted to 4. Chronoamperometry was conducted for different time durations 

depending on the investigation. 

2.2.2 Cyclic Voltammetry (CV) 

 Cyclic voltammetry (CV) is an electrochemical technique used to study the oxidation and 

reduction potentials of molecular species. This technique is carried using two- or three-electrode 

system. In a typical cyclic voltammetry experiment, the working electrode is applied with a 

constant increasing rate versus time which called cathodic sweep. As the potential reaches the set 

voltage, the potential deceases at the same rate and back to the initial potential named as anodic 

sweep (Figure 20a). It also can be operated with constant decreasing potential first. The rate and 

repeat times can be adjusted as needed. A voltammogram is obtained by plot current versus 

potential.  

 Figure 20(b) is a typical cyclic voltammogram, where ipc and ipa show the peak cathodic 

and anodic current respectively for a reversible reaction. During this scan, the molecular species 

under investigation either gets reduced (or oxidized). At the initial voltage, the potential is too 

low for any reaction to happen and hence no current is measured. As the voltage is initially 

swept, reaction started to happen and current start to flow in the system. This current start to 

increase as the potential keeps on increasing. This current is due to the flow of ions from the bulk 

electrolyte to the electrode surface. At the electrode surface, the ions get reduced (or oxidized), 

and at these potentials, this reaction is limited by the diffusion of the ions to the electrode surface 

(diffusion-controlled). However, at the reduction (or oxidation) potential, the diffusion of the 

ions reaches its maximum because now the reaction is limited by the reaction’s activation energy 

(activation-controlled). At this point, the current in the working electrode also reaches its 
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maximum (ipc or ipa in the CV plot in Figure 20b). As the potential scan continues, the current 

starts to drop. This drop is because at these potentials the ions accumulate on the electrode 

surface and do not reduced (or oxidized) fast enough.53 

 In cyclic voltammetry, the peak current depends not only on the concentration and 

diffusional properties of the electroactive species but also on scan rate. So, Randle-Sevcik 

equation was commonly used to describes the effect of scan rate on the peak current ip. 

ip=2.69·105n3/2AD1/2v1/2ΔC0 (25 °C)  

Where ip is the peak current (mA), n is the number of electrons per reaction species, A is the 

surface area of the electrode, D is the diffusion coefficient of Zn2+ (cm2/s), v is the scan rate 

(V/s), C0 is the concentration change of zinc ions after reaction. By this equation, the zinc 

diffusion coefficient of the hole system can be calculated. As the zinc diffusion rate in solution is 

much higher than in cathode. So the result can be approximated to be the zinc diffusion 

coefficient in cathode.  

Figure 20 (a)Cyclic voltammetry waveform; (b) Typical cyclic voltammogram52 
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 In this work, CV was tested on Bio-Logic VMP3 potentiostat with polished zinc foil as 

counter and reference electrode. Electrolyte is 2M ZnSO4 with adjusted PH equals 4, and the 

voltage range is 0.8V to 2.0V.  

2.2.3 Electrochemical Impedance Spectroscopy (EIS) 

 Electrochemical Impedance Spectroscopy (EIS) is a technique used to probe the response 

of a system to an electrical perturbation with varying frequency. Over a wide range of 

frequencies (i.e. 1 Hz to 1 MHz) various inductive and capacitive effects can be observed in a 

system. The electrochemical cell is exposed to a load at each frequency, the corresponding 

current flowing through the cell is measured, and software is used to deduce this value to its real 

and imaginary impedance components. There are two principal equations which describe the real 

and imaginary impedance components of EIS, shown in Equations 9 and 10, respectively, below:  

Z′ = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑐𝑐𝑐𝑐
1+𝜔𝜔2𝑅𝑅𝑐𝑐𝑐𝑐2 𝐶𝐶𝑑𝑑𝑑𝑑

2  [9] 

Z′′ = 𝑅𝑅𝑐𝑐𝑐𝑐2 𝐶𝐶𝑑𝑑𝑑𝑑𝜔𝜔
1+𝜔𝜔2𝑅𝑅𝑐𝑐𝑐𝑐2 𝐶𝐶𝑑𝑑𝑑𝑑

2  [10] 

where Z’ and Z’’ are the real and imaginary components of impedance, Rs is the resistance of the 

electrolyte, Rct is the charge transfer resistance, ωis the applied frequency, and Cdl is the 

capacitance of the double layer. 
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 Figure 21 shows a typical Nyquist plot, which can be further broken down to its two main 

components: the activation-controlled region (represented by the semicircle) and the diffusion-

controlled region (represented by the linear tail). Solution and charge transfer resistances are 

frequency independent and thus are both real quantities. Ion diffusivity is measured in the 

diffusion-controlled region and is observed at low frequencies. The inset in Figure 21 shows a 

simplified circuit used to model the experimental data. 

 In this project, EIS measurements were conducted on a Bio-Logic VMP3 electrochemical 

workstation with scanning of AC frequencies from 100 MHz to 10 mHz. 

2.2.4 Battery Testing  

 Cycle life for coin (~ 1.15 cm2 in 1.15 mAh cell) and large (~ 20.25 cm2 in 7 mAh cell) 

cells were tested using the constant current (CC) protocol with voltage window between 0.8 V 

and 1.9 V vs. Zn2+/Zn. In this mode, the cell is first charged to 1.9 V using the desired current 

rate, and discharge to 0.8V with the same current for one cycle.  

Figure 21Typical Nyquist plot. Inset: simple Randles 
equivalent circuit for fitting EIS spectrum for an 
electrochemical cell54 
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 To measure rate capability, the cycling C-rate was varied to observe the effect of current 

density on discharge capacity. Measurements were conducted at 50mA/g-100mA/g-200mA/g-

500mA/g-1A/g-50mA/g using a constant current (CC) charge-discharge protocol. 

 Symmetric cell was tested in coin cell at a constant current density of 2mA·cm-2 with one 

hour charge and discharge period, respectively. Symmetric cell in this project is used for 

studying the effect of G-AGM on dendrite inhibiting, so both cathode and anode side of the cell 

are zinc foil. The electrolyte used here is 2M zinc sulfate.  
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Chapter 3: Synthetization, Optimization and 

Characterization of Zinc Manganese Oxide 

Cathode 

3.1 Synthesis of Cation Deficient Zinc Manganese Oxide with Different Cation Ratio 

The cation deficient zinc manganese oxide was synthesized according to the previous 

report17, but with small differences on the ratio of zinc nitrite and manganese nitrite. There 

are four types of ratio which are 50, 55, 60 and 65mL 0.2 M Zn(NO3)2 mixed with 100 mL 

0.2 M Mn(NO3)2(cation ratio can be converted to 1:2, 1.1:2, 1.2:2, 1.3:2) and 1.6g carbon 

(graphite nanoplates (GNP), Zerocor Technologies) were pre-mixed and loaded into a 500 

mL flask. 90 mL aqueous ammonia (28wt%) was prepared and constant dripped into the 

mixture in 1 hours with stirring. Then the mixture will be put into the oven for 3 hours under 

180℃ to generate the product. The ZMO/C product was centrifuged at 2000RPM for 5 mins 

and washed by water and acetone separately for 3 times each. The final product contains 

about 80wt% of ZMO and 20wt% of carbon. 

3.2 Cathode Fabrication and Battery Assembling  

 CR2032 coin-type batteries were employed for electrochemical tests. 90wt% ZMO/C 

composite as the mixture of active material and conductive agent, and 10wt% polyvinylidene 

fluoride (PVDF) as binding material were mixed in N-methyl pyrrolidinone (NMP) to form 
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slurry. The slurry was uniformly pasted onto a conductive polyethylene (PE) film (All-Spec 854-

36150) with an active material mass loading of 4mg/cm2 and vacuum dried at 80℃ for 4 hours. 

A disk of 12mm diameter was cut to be the cathode. The electrolyte was 2M zinc sulfate blended 

with 0.1M manganese sulfate with the pH been adjusted to 4, and zinc foil was the anode. The 

manganese sulfate in the electrolyte is used for inhibiting manganese dissolution and improve 

initial capacity which have been proved by previous report.21 The separator used in this project is 

Absorbed Glass Mat (AGM). Figure 22 illustrated the components of the coin cell.  

Figure 22 Schematic of the components of the coin cell 
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3.3 Material characterizations 

 TGA was done to quantify the percentage of carbon and zinc manganese oxide in the 

products respectively. As the figure 23 shows, all the products show a rapid decrease of weight at 

the temperature between 350℃ and 450℃, which is carbon combustion. After the carbon was 

combusted, the rest samples should be zinc manganese samples, and the percentage of the rest 

products are similar for all of four samples which are 75%, 78%, 79%, and 80% for the sample 

ZMO-1:2, ZMO-1.1:2, ZMO-1.2:2, and ZMO-1.3:2 respectively.  

 Figure 24 shows the morphology and topography of the prepared samples. The four 

samples are all well synthesized and uniformly distributed. There are some agglomerations of 

particles that can be observed, but most particles are around the size of 30nm. 
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Figure 23 TGA of prepared ZMO/C composites 
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 Figure 25 is the XRD patterns of the synthesized samples, and all the samples have high 

crystallinity, which can be indicated by the high peak intensity. The patterns of the ZMO-1:2 and 

ZMO-1.1:2 samples are precisely the same and perfectly match the standard pattern of the body-

centered tetragonal ZnMn2O4 (JCPDS no.24−1133). However, patterns of the sample ZMO-1.2:2 

and ZMO-1.3:2 show other peaks which are readily assigned to the cubic zincblende structure ZnO 

(JCPDS no. 36-1451). The ZnO may come from the excess zinc cation during the synthesis.  

  

Figure 24 SEM images of (a) ZMO-1:2 sample; (b) ZMO-1.1:2 sample; (c) ZMO-1.2:2 sample; (d) ZMO-1.3:2 sample 
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 Figure 26 is the XPS spectrums include a full spectrum and high-resolution scans of the 

Mn2p peaks from all of the four samples. The survey spectra of the four samples are the same, 

which indicates the presence of zinc, manganese, oxide, and carbon elements. The two peaks with 

the binding energy of 642 eV and 654 eV are assigned to the Mn2p3/2 and Mn2p1/2, respectively.55 

Then, the spectra of high-resolution scans of Mn2p peaks are used for determining the percentage 

of Mn3+ and Mn4+ in the samples and then calculate the exactly Mn vacancies. The peak of Mn2p3/2 

can be split into two peaks which located at 641.2eV and 642.7eV in figure 26(b)-(e). These split 

peaks are due to the presence of Mn3+ and Mn4+, where 641.2 eV is Mn3+ and 642.7 eV is Mn4+ 

Figure 25 XRD patterns of the obtained samples 
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from literature.56, 57 The similar results also show in the peak of Mn2p1/2, where the split peaks 

located at 653.4eV and 653.9 eV, and these two binding energies also indicate the presence of 

Mn3+ and Mn4+, respectively.58, 59 The exact chemical sate percentage of Mn3+, Mn4+ as well as the 

manganese vacancies can be seen in table 3.  

Table 3 Fitting results from XPS spectra 

 Percentage of Mn3+ Percentage of Mn4+ Exact Chemical Formula 

ZMO-1.:2 73.4 26.6 ZnMn1.84O4 

ZMO-1.1:2 59.8 40.2     ZnMn1.76O4 

ZMO-1.2:2 53.2 46.8 ZnMn1.73O4 

ZMO-1.3:2 48.5 51.5 ZnMn1.71O4 

 With the increasing amount of zinc cation during the synthesis, the percentage of Mn4+ 

increased which means an increasing amount of manganese vacancies. However, the increasing 

amount of manganese vacancies between the first two samples is 0.08, and it is much larger than 

the increasing amount between the last two samples which is only 0.02. It is due to the structure 

limitation; the amount of manganese cannot be increased unlimitedly. 
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Figure 26 XPS spectra of the samples (a) survey spectrum; (b) Mn 2p spectrum of ZMO-1:2; (c) Mn 2p spectrum of 
ZMO-1.1:2; (d) Mn 2p spectrum of ZMO-1.2:2; (e) Mn 2p spectrum of ZMO-1.3:2 
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3.4 Electrochemical characterizations  

 The coin cells were assembled with the synthesized cathode material and tested. Figure 27 

shows the battery performance of different cathode materials tested with 300mA·g-1 current density. 

Firstly, the initial capacity increased by the increasing amount of manganese vacancies. The initial 

specific capacity of ZnMn1.71O4 is 170mAh·g-1, which is 2.1 times larger compared with the initial 

capacity of ZnMn1.84O4 (82mAh·g-1). However, capacity retention shows the opposite trend, the 

ZnMn1.71O4 sample has the lowest capacity retention which is only 51.2%, and the capacity 

retention of ZnMn1.84O4 is 71.4%. The capacity fading may be caused by the manganese 

disproportionation reaction and dissolution. The more manganese vacancies exist, the more 

unstable structure it has, and finally cause more manganese dissolution and capacity fading.  

Figure 27 Batteries performance with different cathode materials 
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 Figure 28 shows the cyclic voltammogram with different scan rates of different samples, 

respectively, and the relationships between the peak current and square root of scan rate in the 

main cathodic and anodic processes. Figure 28(a, c, e, f, g) show a similar result. Two separate 

peaks at 1.2V and 1.38 V can be clearly distinguished on the cathodic sweeping, and two 

overlapped peaks locate at 1.55V and 1.6V on the anodic seeping. These processes correspond to 

stepwise electrochemical Zn2+ insertion and extraction from the spinel structure which just like 

spinel LiMn2O4 cathode in LIBs.  

 The plots with the peak current and square root of scan rate can be used to calculate the 

zinc diffusion coefficient of the cathode material with the Randle-Sevcik equation: 

ip=2.69·105n3/2AD1/2v1/2ΔC0 (25 °C) [11] 

 Zinc Diffusion Coefficient 

ZnMn1.84O4 2.43E-12cm2/s 

ZnMn1.76O4 1.09E-11cm2/s 

ZnMn1.73O4 3.20E-11cm2/s 

ZnMn1.71O4 4.44E-11cm2/s 

Table 4 Zinc diffusion coefficient 
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Where ip is the peak current (mA), n is the number of electrons per reaction species, A is the 

surface area of the electrode (with the geometric area of the electrode,1.15cm2), D is the 

diffusion coefficient of Zn2+ (cm2/s), v is the scan rate (V/s), C0 is the concentration change of 

zinc ions after reaction. The calculated result can be seen in table 4. The zinc diffusion 

coefficient of ZnMn1.71O4 cathode is 4.44E-11cm2/s, which is comparable with the Li diffusion 

coefficient normally at a magnitude of ∼10−10cm2/s in spinel cathode.60 However, the zinc 
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diffusivity of ZnMn1.84O4 is only 2.43E-12cm2/s. As a result, the manganese vacancies in the 

spinel ZMO cathode have an effect to increase the zinc diffusivity.  

 The rate performance of the four cathode sample was also tested, and the results are 

presented in figure 29. The abnormally low capacity of the first cycle is due to the gradual 

activation of the electrode, similar to the observation from MnO2-based cathodes in ZIBs.61 

ZnMn1.71O4 cathode exhibit highest capacity at all current densities (average capacity of all 

current densities were calculated to be 219.8mAh·g-1, 194.2 mAh·g-1, 171.8 mAh·g-1, 94.4 

mAh·g-1, 63.2 mAh·g-1, 205.7 mAh·g-1, respectively). Form the figure, the capacity difference is 

much apparent when the current density is low. However, the capacity difference decreased 

when the current density becomes large. Moreover, the reversibility of ZnMn1.71O4 cathode is the 

worst if compare the capacity of the first five cycles and the last five cycles.  

  

Figure 28(a, c, e, g) the cyclic voltammograms of samples at different scan rates; (b, d, f, h) the relationships 
between the peak current and square root of scan rate in the main cathodic and anodic processes 
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3.5 Conclusions  

 The cathode materials were successfully synthesized by an oxidation-precipitation process 

with different zinc and manganese cation with 78% of ZMO and 22% of carbon on average. Then, 

the number of manganese vacancies in the cathode materials were calculated by the XPS result. 

The goal of this project is successfully met as the initial specific capacity of ZnMn1.71O4 cathode 

achieves 220mAh·g-1 at 50mA·g-1 current density. The initial capacity of ZMO in the previous 

report is only 150mAh·g-1 at the same current density, which displays a 47% improvement.17 

Moreover, ZnMn1.71O4 cathode also has the best rate performance which the average capacity of 

all different densities was calculated to be 219.8mAh·g-1, 194.2 mAh·g-1, 171.8 mAh·g-1, 94.4 

mAh·g-1, 63.2 mAh·g-1, 205.7 mAh·g-1, respectively. Furthermore, ZnMn1.71O4 cathode has the 

Figure 29 Specific capacity at different current densities of the four cathode samples 
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highest zinc diffusivity (4.44E-11cm2/s), which is even comparable with LiMn2O4 cathode in LIBs. 

The high zinc diffusivity is the fundamental reason for the high capacity and excellent rate 

performance.  

 Although the zinc diffusivity is increased significantly by the abundant of manganese 

vacancies, the structural stability is decreased dramatically. From the XRD result, all the cathode 

materials can perfectly match the standard ZMO pattern, but the sample ZnMn1.73O4 and 

ZnMn1.71O4 have some peaks corresponding to the zinc oxide. Moreover, the peaks of zinc oxide 

are more evident in the sample ZnMn1.71O4, and the crystallinity of ZnMn1.71O4 is also worse than 

other samples. The capacity retention of ZnMn1.71O4 cathode is only 51.2% after 300 cycles, which 

is much worse than the others (71.4%,64.5%,  61% respectively).  

 Overall, the initial capacity indeed increased by changing the cation ratio during the 

synthesis, but the structure stability decreased dramatically. The increased capacity comes from 

the change of zinc diffusivity of the cathode material. The capacity fading is due to the manganese 

disproportionation reaction and dissolution. Then, the next step is to try to stabilize the cathode 

and increase capacity retention.  
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Chapter 4: Fabrication, Optimization and 

Characterization of Gelatin Modified Separator  

4.1 Fabrication and optimization of gelatin modified separator (G-AGM) 

 The gelatin modified AGM (g-AGM) was prepared by a straightforward method. The 

AGM was immersed into the 5wt% (Decided by the previous work in the group) gelatin solution 

for 1mins. Then the AGM was vacuum dried at 110 ℃ for 12 hours. A disk of 12mm diameter 

was cut to be the separator for the coin cell, which is as same as the coin cell in the previous 

section. Moreover, a 9cm2 square was cut to be the separator for the 7mAh to test capacity 

retention for long cycle life. Figure 30 is the picture of the 7mAh large battery which the mass 

loading (30mg) of the cathode is much close to the industrial standard. The cathode material used 

for this project is ZnMn1.71O4 which has been mentioned in the last section. The electrolyte is 

also as same as previous, which was 2M zinc sulfate blended with 0.1M manganese sulfate, and 

the pH was adjusted to 4. Zinc foil was the anode. 

Figure 30 Picture showing (a) inner and (b) outer part of 7 mAh battery 
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4.2 basic Characterizations of G-AGM 

 Figure 31 is the SEM images of bare AGM and G-AGM. The bare AGM consist of glass 

fibers with the diameter in a range of 10nm-2μm. However, the gelatin in G-AGM is not particle 

form anymore, but becomes membrane connected with the fibers which can increase the 

toughness and mechanical strength of the separator.  

 FTIR was also tested for comparing the bare AGM and G-AGM. The sharp peaks are 

located below 1000cm-1 which are all come from SiO2 including Si-O-Si band and Si-O band 

due to the different bond vibration. The peak located at 1650cm-1 is corresponding to the peptide 

bond which comes from gelatin. Both SEM and FTIR can prove that gelatin is successfully 

attached to the AGM, and SEM images also indicate that gelatin transferred into membrane 

structure in the G-AGM.  

Figure 31 SEM image of (a) bare AGM; and (b) G-AGM 
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4.3 Battery Performance  

 Figure 33 shows the cycling performance of the coin cell with and without G-AGM 

tested at 300mA·g-1 current density and the cycling performance of the large battery with G-

AGM at 500mA·g-1 current density. The coulombic efficiency is about 99%-100% for both 

samples in figure 33(a). Although the initial capacity of the batteries with g-AGM is only 

103mAh/g which is much lower than the other samples, the capacity retention is after 500 cycles, 

the capacity retention achieves 91.3%. However, the capacity of the battery without G-AGM is 

only 57mAh·g-1 after 500 cycles with 33.5% capacity retention. G-AGM have great effect on 

prevent capacity fading, but the initial capacity decreased dramatically (the initial capacity of the 

battery without G-AGM is 170mAh·g-1 ). The large battery was used for testing the capacity 

retention with high mass loading (30mg, and 4.8mg/cm2) cathode in order to simulate the 

Figure 32 FTIR spectra of bare AGM and G-AGM 
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industry situation. The initial capacity of the large battery at 500mA·g-1 current density is 

62.7mAh·g-1. After 2000 cycles, the capacity remains 80%, which is 50.2mAh·g-1.  

 Figure 34 shows the rate performance of the coin cell with and without G-AGM. Notably, 

the capacities of both samples are the same (62mAh·g-1) at 1A·g-1 current density. Moreover, the 

capacity difference between the two samples is small when the current density is 50mA·g-1 

(220mAh·g-1 for the batteries without G-AGM, and 212mAh·g-1 for the batteries with G-AGM). 

When back to 50mA·g-1 in the last five cycles, the batteries with G-AGM exhibit better 

reversibility (97% retention, and 89%retention, respectively). 

 

Figure 33 (a)Cycling performance of coin cell without G-AGM and with G-AGM; (b) cycling performance of 
7mAh large battery with G-AGM 
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 Figure 35 is the charge-discharge profile of the coin cells with and without G-AGM 

separator for the first cycles at a current density of 50mA·g-1. The two plateaus observed in the 

charge-discharge profile correspond to the CV profile and are related to two stages of the Zn2+ 

extraction/insertion behavior in the cathode. However, the plateaus voltage of the batteries with 

G-AGM is larger than the other during the charging process, but the plateaus in the discharge 

process have the same voltage value.  

Figure 34 Charge-Discharge Curves 

Figure 35 Rate performance of coin cell with and without G-AGM 
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 Figure 36 shows the result of the zinc to zinc symmetric cell test. The components of the 

zinc dendrite are not only zinc, but also include zinc hydroxide and zinc oxide.29 So the voltage 

of the symmetric cell will increase if the zinc dendrite is formed along the surface of zinc foil. 

From the figure 36, the voltage of the cell without G-AGM increased dramatically from 2V to 

5V (the limitation of the program is 5V) after about 3 days, which is due to the dendrite growth. 

However, the voltage of the cell with G-AGM is only 1V even after 5 days running which means 

uniformly electroplating and electrolysis during the charge and discharge.  

Figure 36 Zinc to zinc symmetric cell test with and without G-AGM separator for 5 days  
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4.4 Electrochemical and Material Characterizations 

 RD results of the cathode after charge and discharge are shown in figure 37(a). The 

signature peak of Zn4(OH)6SO4·4H2O is landed on the 8.52 degree of two theta, which also 

shown in the XRD pattern after discharge. While after charge, there is no peak corresponding to 

Zn4(OH)6SO4·4H2O anymore, but MnO2 can be distinguished. Figure 37(b, c) are the SEM 

image of cathode after charge and discharge from the batteries without G-AGM. For the figure 

37 (b), there are plenty of sheets can be seen on the surface of the cathode after discharge, which 

can be confirmed as zinc hydroxide sulfated. However, after charge, all the sheets are 

disappeared. From the previous report, the Mn3+ from ZnMn2O4 will have disproportionation 

reaction catalyzed by H+ and dissolved into electrolyte (reaction 1). These processes will destroy 

the structure of the material, decrease the theoretical specific capacity and increase the PH. 

Furthermore, MnO2 and Mn2+ can be mutually converted during the charge and discharge 

process (reaction 2). As a result, the more manganese ions dissolved, the higher PH value of the 

electrolyte will be detected after the discharge. When the PH reaches 5.47, zinc ions will be 

precipitated and form Zn4(OH)6SO4·4H2O (reaction 3).16,62,63 The reactions are shown below:  

ZnMn2O4+4H+ → MnO2+Mn2++Zn2++2H2O {1} 

MnO2+4H++2e- ⇄ Mn2++2H2O {2} 

4Zn2++6H2O+SO4
2-+4H2O⇄Zn4(OH)6SO4·4H2O+6H+ {3} 
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 As a result, the lamellar zinc sulfate hydroxide was precipitated by the PH change which 

is induced by manganese disproportionation reaction and dissolution. Figure 37(d) shows the 

morphology of the cathode with G-AGM in the battery after charge. Compare with figure 37(b), 

the amount of zinc sulfate hydroxide is significantly decreased. Furthermore, the precipitates are 

distributed much smaller and uniform along the cathode surface. These results indicate that the 

gelatin has the ability to inhibit the manganese dissolution and maintain the spinel structure of 

the cathode during cycling. 

 Chronoamperometry (CA) was performed to study the dendrite formation and growth 

effected by G-AGM on the zinc anode. These tests were performed on a three-electrode system 

with zinc foil as a counter and working electrodes, and Ag/AgCl as a reference electrode, 

respectively, with over-potential of 120 mV for 1 hour. Figure 38 shows the results from CA test. 

Figure 37 XRD pattern of the cathode after charge and discharge; SEM image of the cathode from the battery 
without G-AGM (b)after discharge, and (c) after charge; (d) SEM image of the cathode from the battery with G-AGM 
after discharge 
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Compared the long-term chronoamperograms of zinc foil with and without G-AGM, the absolute 

current density was significantly lower after G-AGM was applied (3.14 mA·cm-2 for the G-AGM 

sample and 5.06 mA·cm-2 for the control sample). Moreover, overall increasement of the current 

density for the sample without G-AGM is 0.76mA·cm-2 after 1-hour chronoamperometry test, but 

the increasement of the current density for the sample with G-AGM is only 0.4 mA·cm-2. From 

the chronoamperograms of the first ten seconds, it shows a quick drop in current density (current 

density dropped to 4.15 mA·cm-2 from 4.26 mA·cm-2 which only took 1.5s) initially which 

suggests fast nucleation of the zinc dendrites. Then the current Absolute current density 

increased along the time which is caused by an increase in surface area of the zinc anode. This 

increase in surface area is due to the dendritic zinc growth. However, the current density of the 

zinc anode with G-AGM also dropped at the initial, but took 4s, which is much longer than the 

control sample. Moreover, the current density remains plat after the drop which also indicates the 

dendrite growth was inhibited. All the results show that G-AGM have the ability to prevent zinc 

dendrite nucleation and growth.  
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 SEM images of zinc anodes with and without G-AGM after CA test is presented in 

Figure 39. The images evidently show the effect of G-AGM on anode side. The anode surface 

without G-AGM is filled with gravel-type dendrites with the diameter about few micrometers. 

After 10mins CA, the gravel-type dendrites growth and converted into strip like dendrite with 

much larger size. However, after 5 mins, the surface of the anode with G-AGM is uniformly 

distributed with small zinc nuclei. After 10 mins CA, mossy dendrites were observed on the 

surface.  

 

Figure 38 1-hour Chronoamperometry of zinc electrodes with and without G-AGM. Insert: first 10s of the 
chronoamperograms.  
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 Figure 40 is the FTIR spectra of zinc electrodes after 10 mins CA, and pure zinc. The 

spectra of the counter electrode and pure zinc are almost the same. However, the spectrum of the 

working electrode shows 3 peaks located around 1000-1250 cm-1. The two peaks located on 

1025 and 1080cm-1 is corresponding to the OH bond from zinc hydroxide64. There is another 

peak located on 1230cm-1 which is corresponding to the gelatin65. The results can prove that 

gelatin can be absorbed on the zinc surface during the electroplating.  

 

Figure 39 SEM image of zinc anode after 5 mins CA without G-AGM(a); with G-AGM(b); and SEM 
image of zinc anode after 10 mins CA without G-AGM(c); with G-AGM(d) 
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 Figure 41 shows the Nyquist plots of EIS measurements of the batteries with and without 

G-AGM, and the fitting results were presented in table 5. The Rs is negligible compare with Rct. 

The charge transfer resistance of the ZIBs without G-AGM is about 468.1Ω, but it increased to 

897.7Ω when G-AGM was applied into the batteries. The dramatically increased Rct is due to 

the chelating effect of the gelatin38. If Zn2+ was chelated by gelatin, and become ZnGl+. The 

charge decreased, but the molecular weight increased immensely. As a result, charge transfer 

resistant increased.  

Table 5 Fitting results from the Nyquist plots 

 
Rs(ohm) Rct(ohm) 

ZMO 7.03 468.1 

ZMO with G-AGM 14.7 897.7 

Figure 40 FTIR of zinc electrodes after 10 mins CA, and FTIR of pure zinc  
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4.5 Conclusions  

 Gelatin modified separator was fabricated successfully by a straightforward method. The 

gelatin transferred into membrane structure attached on the AGM that was found by the SEM 

images. The capacity retention of ZIBs are significantly improved after the G-AGM was applied. 

The capacity retention of the coin cell at the 300mA·g-1 current density achieves 91.3%, while 

only 33.5% of capacity remained for the batteries without G-AGM after 500 cycles. Moreover, 

80% capacity remained after 2000cycles for the 7mAh large batteries with G-AGM. By the XRD 

Figure 41 Nyquist plots of EIS measurements of the batteries with and without G-AGM.  
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pattern and SEM images of the cathode after charge and discharge, G-AGM was found that it has 

the ability to inhibit the manganese disproportionation reaction and dissolution, and protect the 

spinel structure of the cathode material. Thereby, increase the capacity retention.  

 However, the initial capacity at the 300mA·g-1 current density was decreased dramatically 

with G-AGM employed. From the rate performance results, G-AGM will affect the capacity 

especially in the current density range of 100mA·g-1 to 500 mA·g-1. However, when the current 

density is low like 50 mA·g-1 or high enough (>500 mA·g-1), the capacity of the batteries with 

and without G-AGM are similar. High charge transfer resistance caused by G-AGM is the 

reason.  

 G-AGM also has the ability to inhibit the zinc dendrite formation. The zinc to zinc 

symmetric cell with G-AGM can run for 5 days without obvious voltage increasing. However, 

the voltage of the symmetric cell without G-AGM increased dramatically after 2 days’ running. 

The increasing voltage is caused by the uncontrollable zinc dendrite growth. 

Chronoamperometry test also proves that the G-AGM have a great effect on inhibiting dendrite 

growth. Moreover, the speed of zinc dendrite nucleation also slowed down after G-AGM was 

introduced. SEM images of the zinc surface after CA with and without is the most direct 

evidence. FTIR spectra of zinc electrode after CA prove that gelatin will be adsorbed on the zinc 

surface during electroplating and form thin film. The gelatin film can cover the active sites on 

the working electrode, and decrease the nucleation rate, which finally, in turn, get a uniform 

coating without dendrite. 37, 39 
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Chapter 5: Summary of the Thesis 

 Aqueous rechargeable zinc ion battery is an attractive candidate for next generation of 

battery energy storage system from the ecological, cost effective aspects thinking. However, 

there are only few cathode materials have been reported which can serve as the hosts of divalent 

Zn2+ ions including V2O5, MnO2, Prussian blue analogues (PBAs) and ZnMn2O4. Nevertheless, 

all kinds of V2O5 nanostructure like nanowires and nanobelt are synthesized by hydrothermal 

method which means cannot be commercialized. 66 The various types of manganese-based 

cathode material (include ZMO and MnO2) are suffering from the poor capacity retention due to 

the Mn dissolution via the disproportionation reaction.67 Moreover, the anode undergoes 

detrimental oxidation and zinc dendritic growth during cycling is another problem for ARZIBs. 

With cycling, these dendrites grow taller, can pierce the separator along the way and ultimately 

make contact with the cathode. This contact leads to short-circuiting and ultimate failure of the 

battery. Furthermore, the initial capacity of ZMO in previous report is only 150 mAh·g-1 even 

use 3M zinc trifluoromethanesulfonate (Zn(CF3SO3)2) solution as electrolyte.  

 In this work, a stable ARZIBs based on ZMO cathode is reported. The cathode material 

was synthesized by oxidation-precipitation method. With increasing the zinc cation during the 

synthesize, ZMO with abundant manganese vacancies was obtained. The exact chemical formula 

of the ZMO with the most manganese vacancies is ZnMn1.71O4. Zinc diffusion coefficients of the 

cathode materials were calculated by the Randle-Sevcik equation. The ZnMn1.71O4 has the 

highest zinc diffusivity. Moreover, ZnMn1.71O4 cathode also has the highest initial capacity 
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(220mAh·g-1), which is close to the theoretical capacity (224 mAh·g-1). The high zinc diffusivity 

and initial capacity are all promoted by the manganese vacancies. However, the abundant 

manganese vacancies make the cathode structure unstable. Thus, the capacity retention of the 

ZnMn1.71O4 is only 33.5% after 500 cycles.  

 Then, gelatin modified separator was introduced into the battery system to prolong the 

battery cycle life. The capacity retention achieves 91.3% after 500 cycles at the current density 

of 300mA·g-1, which is an unimaginable improvement. Zinc to zinc symmetric cell was applied 

for simulating the dendrite growth during the cycling. The symmetric cell with G-AGM can keep 

ruing for five days without evident voltage increasing. However, the symmetric cells without G-

AGM stop running on the third day due to the voltage is excess the limitation. The result of CA 

test and the SEM images of the zinc electrodes after CA test are all the evidence can prove that 

G-AGM has a strong effect on inhibiting zinc dendrite nucleation and growth.  

 Overall, A stable ARZIBs is obtained. The initial capacity is 212 mAh·g-1 at 50mA·g-1 

current density, and 91.3% capacity retention after 500cycles operated in the current density of 

300mA·g-1. Large battery with high cathode material mass loading was also tested. The capacity 

is 80% after 2000 cycles with 500mA·g-1 current density.  
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