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Abstract

Bug fixing is a time-consuming task in software development. Automated bug repair
tools are created to fix programs with little or no human effort. There are many existing
tools based on the generate-and-validate (G&V) approach, which is an automated program
repair technique that generates a list of repair candidates then selects the correct candidates
as output. Another approach is learning the repair process with machine learning models
and then generating the candidates.

One machine learning based approach is the end-to-end approach. This approach passes
the input source code directly to the machine learning model and generates the repair
candidates in source code as output. There are several challenges in this approach such
as the large vocabulary, high rate of out-of-vocabulary (OOV) tokens and difficulties on
embedding learning. We propose an abstraction-and-reconstruction technique on top of
end-to-end approaches that convert the training source code to templates in order to alle-
viate the problems in the traditional end-to-end approach. We train the machine learning
model with abstracted bug-fix pairs from open source projects. The abstraction process
converts the source code to templates before passing it to the model. After the training is
complete, we use the trained model to predict the fix templates of new bugs. The output
of the model is passed to the reconstruction layer to get the source code patch candidates.

We evaluate our approach by training the machine learning model with 470,085 bug-fix
pairs collected from 1000 top python projects from Github. We use the QuixBugs dataset as
the test set to evaluate the result. The fix of the bug in the QuixBugs is verified by the test
cases provided by the QuixBugs dataset. We choose the traditional end-to-end approach
as the baseline and comparing it with the abstraction model. The accuracy of generating
correct bug fixes increase from 25% to 57.5% while the training time reduces from 5.7 hours
to 1.63 hours. The overhead introduced by the reconstruction model is 218 milliseconds on
average or 23.32%, which is negligible comparing to the time saved in the training, which
is 4.07 hours or 71.4%. We performed a deep analysis of the result and identified three
reasons that may explain why the abstraction model outperforms the baseline. Comparing
to existing works, our approach has the complete reconstruction process which converts
templates to the source code. It shows that adding a layer of abstractions increases the
accuracy and reduces the training time of machine-learning-based automated bug repair
tool.
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Chapter 1

Introduction

As software scale grows in recent years, fixing software bugs becomes increasingly expensive
for developers. The major part of the cost comes from human-hours in manual debugging.
Developers have to spend a large amount of time on manually fixing software bugs[2] while
this amount of time could have used to develop new features. Automated program repair
tools are invented to address this problem. The goal of automated program repair tools
is generating program repair patches with less human costs. There are many existing
automated program repair tools with different structures and approaches [11, 19, 28 37,

Y ) Y ) Y Y ) Y ) Y ]

The classic approach to automated program repair is generate-and-validate (G&V)
method [19, 37, 41, 16, 61, 64, 84, 85]. The idea of this technique is that the G&V tools
generate lists of candidate patches and validate each of the candidate patches using test
cases. Although there are still challenges such as over-fitting patches in the G&V approach,
the G&V technique helps developers fixing bugs easier and faster in some scenarios. Re-
cently, there are researches on applying deep-learning techniques to automated program
repair [76]. Tufano et al. perform an empirical study on automated program repair with
neural machine translation (NMT) models [75]. Sequence-R [11] is an end-to-end machine
learning-based program repairing tool. It fixes java bugs by learning the repair operation
from the buggy code, the patches and the context using a machine learning model.

One of the challenges in applying end-to-end neural machine translation approaches to
automated program repair is the large vocabulary size of programming language. NMT
model requires an embedding dictionary that represents all possible tokens of a language.
Unlike natural languages, programming languages contain tokens that are defined by users.
One programmer can name a variable with any name they wish. This leads to the sparsity



of the programming language and also the large size of the vocabulary. Also, the vocabu-
lary only covers the tokens in the training dataset and the actual vocabulary size is infinite
due to the freedom in naming. These missing tokens are called the out-of-vocabulary to-
kens (OOV tokens) [5]. The OOV tokens have to be replaced by a place holder which
makes the information of input sentence incomplete. The model may not understand the
input sentence and produce meaningful output because of the missing information. Fur-
thermore, learning the word embedding of tokens for NMT model is very challenging.
The representations of the embedding of tokens are high dimensional vectors. Learning
an ideal embedding requires a vocabulary with balanced characteristics. In the vocabu-
lary of the traditional model, the majority of the tokens are user-defined variables which
have similar characteristics. The tokens with other characteristics such as operators and
symbols are rare comparing to user-defined variables. This imbalance in the distribution
contributes to the difficulties in the learning of word embedding and leads to inaccurate
patches generation.

To alleviates those challenges and improve NMT-based program repair patch genera-
tion, we proposed an abstraction technique in data pre-processing that replace the variables
in the input to a general form. Abstraction aims to convert the buggy code to a template.
The variable name strings in the input are replaced to the placeholder tokens. The model
receives a buggy template as input and produces fixing template as output. We also pro-
posed a reconstruction step to generate a list of patch candidates based on the fixing
template produced in the previous step.

To evaluate our approach, we collected a dataset with over half a million lines of bug-
fix pairs from GitHub [11]. Then, we apply the abstraction procedure to the bug-fix pairs
to get the bug-fix template pairs. Next, we trained an NMT model with this dataset to
learn the fix operation. After the model is trained, we use it to predict templates for
new inputs. A reconstruction procedure is applied to the templates for transforming the
templates to source code patches. We test the abstraction model and the traditional model
with QuixBugs dataset (40 bugs) and compare the result [$6]. The result shows that 60
percent of the bugs in QuixBugs dataset can be fixed by the abstraction technique while
the traditional model can only fix 25 percent of the bugs. The fixes from abstraction model
not only cover most of the fixes from the traditional model but also covers new types of
bugs compared to the traditional model.

The contributions of this thesis are listed below:

e An abstraction-reconstruction technique on the traditional end-to-end automated
program repair workflow that transfers source code to templates. The abstraction



process reduces the vocabulary size to 0.1% of the original size and reduce the train-
ing time of the machine learning model to 28% of the original training time. The
reconstruction technique on the traditional end-to-end automated program repair
workflow that transfers repair templates to source code candidates with an average
time cost of 218 milliseconds. We are the first to propose a complete abstraction-
reconstruction technique in NMT-based program repair.

An empirical study on the accuracy, time consumption, and ranking of QuixBugs
patch candidates generated by the abstraction model and the traditional model which
identifyies the three reasons why the abstraction model outperformed the traditional
model.

A new machine learning model called the abstraction model that takes bug templates
as input and generate repair templates as output. The evaluation on QuixBugs shows
that we could fix 130% more bugs than traditional NMT-based approach.



Chapter 2

Background and Related Work

In this chapter, we first introduce the terminologies used in this thesis, then we show the
background of auto-bug repairs.

2.1 Terminology

Neural Network: A neural network is an algorithm built by layers of nodes with non-
linear activation functions [8, 62]. Neural networks are used for learning high-dimensional
patterns from given datasets and make predictions based on the correlations it learns
from the dataset. Neural networks layers process the inputs and pass the results to the
next layer. The coefficients in each node, also called weights [33], are adjusted backward
according to the difference between predictions and answers. The weights are adjusted
iteratively using the training algorithm such as gradient descent [9] according to the input
data. This process is commonly referred to as the training process. The training process
stops when the result stops improving after many iterations.

Layer: A layer in a neural network is a group of nodes in the middle of a neural network
[26]. The connection of nodes in a layer can be different depending on the task of the model.
Complex deep learning models consists of stacks of layers[29].

Recurrent Neural Network(RNN): Recurrent network is a class of deep learning models
that enables the possibility of processing and generating sequential data [66, 65]. The sim-
ple RNN model suffers from problems such as fixed sequence length and gradient vanishing
problem [36]. Improvements such as recurrent net [70] and Long short-term memory unit
[32] alleviate the above problems. RNN is strong in sequential data summary tasks such
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as voice recognition, paragraph classification but not as good in grammar correction and
translation tasks comparing to the Transformer model [77].

Convolutional Layers: The nodes in a convolutional layer are connected to the local
regions of the previous layer. A filter with a group of such nodes scans through the input
volume to generate the output. A convolutional layer has several filters used to process
the input independently [39]. The weight of one filter is shared in a scanning process and
independent between each scan. The model we use in this work applies convolutional layers
in the learning of the vector embeddings. Using convolutional layer improves the learning
of local changes in sequential data [77].

Neural Machine Translation: Neural machine translation is a machine learning-based
approach to language translation tasks [3]. The generative model is commonly used in NMT
problems. We develop our approach to address the automated program repair problem from
the NMT models used for NMT tasks due to the similarity between these two tasks.

Attention Mechanism: Attention mechanism proposed by Bahdanau et al. [3] intro-
duces a weight factor a to the input sequence that prioritize the information relevant to
the next output token. The weight factor learns the relevance between each element of the
input sequence and output sequence. It is adapted as a standard component of NMT mod-
els. The weight factor learns the relevance between each element of the input sequence and
output sequence. The attention mechanism emphasizes the correlation between the input
layer and the output layer thus alleviates the bias of long-distance dependency problem in
recurrent model [69].

2.2 Generate and Validate Program Repair

GenProg [11] is an automated C program repair tool using genetic programming techniques.
It generates many repair candidates by mutating the input with a group of mutation oper-
ators. These mutation operators are written by human programmers with domain-specific
knowledge. The selecting of the patch in GenProg is through measuring which patch makes
the most passes of test cases. The GenProg also collected 69 defects in popular C programs
as the benchmark dataset to test with. This dataset is accepted by other later works in
automated program repair research.

RSRepair [61] is an automated program repair tool constructed by modifying GenProg.
It applies random search instead of genetic programming to generate patches but uses
the same mutants GenProg uses such as deletion and copy. RSRepair generates random



patches without fitness guidance. It also checks if the patch is valid before running the
patch through test cases to save execution efforts on invalid candidates. The result shows
RsRepair repairs more bugs and requires less time than GenProg.

Kim et al. [37] proposed several fix templates to address the randomness problem in
GenProg. This work concludes several common fix operation templates from the manual
investigation of six thousand developer patches in real bugs.

SPR [16] uses condition synthesis to generate repair patches. It replaces the buggy
line to one of the hard-coded templates with a wild-card variable. Then the SPR test the
wild-card variable with a set of values and record the output. Once SPR finds a variable
in the context of the bug that simulates the bechavior of the fix. SPR apply the variable
to the buggy line to generate the fix.

SemFix [55] uses symbolic execution techniques to address automated program repair
problem. In the first step, the SemFix finds the bug location by using bug localization
algorithm. Then, it synthesis the correct patch by solving the repair constraints. Angelix
[53] also uses symbolic execution technique to fix bugs. Compare to SemFix, it is capable
of fixing bugs in multiple locations which enables automated program repair on a larger
scale. Direct-Fix [52] focus on generating simple fixes while considering bug localization
and patch generation at the same time.

Nopol [81] focuses on repairing bugs related to the if-condition statement. It records the
buggy condition statement and the expected output in the process of running test cases.
Then, it solves the mapping from the expected output to the correct condition statement
by using a satisfiability solver.

Prophet [17] extends SPR with a ranking system that builds on the debugging knowl-
edges from developer patches. Prophet reuses the same bug localization and mutation
algorithm from SPR. It adds a ranking layer on top of the testing phase to prioritize the
patches that have higher chances fo repair the bug. The result shows that the Prophet can
find repair patch faster compare to SPR.

2.3 Automated Program Repair with Deep Learning

DeepFix: [28] is a machine learning-based automated program repair tool focus on C pro-
gram. Gupta et al. adapt the recurrent neural network (RNN) with attention model
(Bahdanau, Cho, and Bengio 2014) [3] as their model to predict fixes in token level. Com-
paring to our model, Deepfix model use multilayer GRU (gated recurrent unit) as the



recurrent unit for the encoder and decoder while we use multi-stack convolutional layer
for the encoder and decoder. The model uses Bahdanau attention [3] with the top-5 beam
search result to produce candidate patches while we use multi-headed attention [77] with
the top-220 beam search result for candidate patch generation. It replaces the value of
variable names to general tokens based on its types. For example, it replaces all string
variables to STR and all integers to NUM [28]. Comparing to our work, the Deepfix can
not map the abstracted token back to the original value. We use a different abstraction
strategy which enables the tracking the variable value and restores the abstracted tokens
to its original value. Because of the reconstruction, our model has a better acceptance of
a wide variety of inputs.

Sequence-R [11] is another work on end-to-end machine learning-based program repair-
ing. The tool focuses on predicting java bug fixes with parallel data input. The model
takes the original code, the abstracted buggy context and the buggy template as input.
Comparing to our work, their abstraction strategy cannot track the value of variables so
that they can not always fully recover the source code for the given input.

Tufano et al. [75] performed an empirical study on automated program repair using
machine learning technique. They use LSTM (long-short-term-memory) multilayer encoder
and decoder model with Badanau attention and beam search in their work. They also
applied an abstraction layer on top of the model. Comparing to our model, they uses an
abstraction strategy similar to us but without reconstruction. They can only generate fix
templates instead of complete source code. They assume that for each input and output,
the vocabulary of the input is a superset of the vocabulary of the output [75]. This
means that they assume the output will not have tokens that are not in the input. This
assumption makes the model unable to generate correct fixes for many real-world bugs since
this assumption does not hold when it comes to fixing real bugs. They did not consider
the reconstruction and the use of buggy context because of the previous assumption.



Chapter 3

Approach

Data Collection »  Absfraction » Training Validation
Bugagy line Bug Template Y
& & —
Fix line Fix Template —
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Template
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New Buggy _
Template Fix Template

Figure 3.1: Workflow of Automated program Repair with Abstraction Technique
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The approach has two parts which are training and template generation. The training
takes the dataset which includes a list of bug-fix source code pairs as input and produces
a trained model as the output. The template generation takes a single line of unseen (i.e.,
new to the trained model) buggy source code as input and produces the correct patch as
the output.

The training begins with data extraction. We collect bug-fix pairs from open-source
projects on GitHub. We choose GitHub as the source of data because it is one of the
largest open-source community [14]. In the abstraction step, we transfer these source code
pairs to bug template and fix template pairs. We use these datasets as the training dataset
for the training of the model. Next, we generate templates for new bugs using the trained
model. The model generates a list of fix templates after receiving a new bug template from



the abstraction step as input. The fix templates are converted to source code patches in
the reconstruction step. In the end, we test the patches and select the correct patches in
the validation step. Figure 3.1 shows the workflow of the training and template generation
process. The arrows indicate the direction of the workflow. The texts in the boxes are
corresponding to the major processes of the approach. The pages represent the result after
each step.

Section 3.1 describes the data collection process. Section 3.2 shows the detail of the
abstraction process. Section 3.3 explains how the neural machine translation model works.
Section 3.4 shows the template generation output with an example. Section 3.5 describes
the reconstruction workflow. Section 3.6 explains the validation method we use for gener-
ating correct patches.

3.1 Data Extraction

-+ We collect historical commit data from GitHub, which is one of the biggest open-source
developer communities [31]. Among the popular programming languages such as Java,
Python, C, and C++ for automated program repair research, we choose Python to study
for the reason that Python has simpler syntax comparing to other programming languages
such as Java and C++ [59]. We use single line bug-fix pairs as the training dataset for our
machine learning-based automated program repair technique because single line bug-fix
pairs are more likely to be bug fixes than multi-line changes [7].

In the first step, we select the top one thousand most popular python projects at 2019
Jan 7th as the source projects of the data. The popularity of a project is measured by
the number of stars of the project. Next, we download the projects and use git API to
get one line bug-fix pairs from the historical commits of these projects. We collected a
total of 519,452 bug-fix pairs from these one thousand projects. For each project, we
search through the entire commit history of the project and select commits with certain
keywords. We manually investigate 100 commit messages and summarize a list of common
keywords including “fix”, “bug” and “patch” as a template to get commits that related to
program repair because these keywords commonly appear in the program repair commit
messages [19]. From the python projects we selected, we apply the above template to
filter unrelated commits and keep the buggy commits and its repair commits. We extract
multiple bug-fix pairs of a commit by comparing the changes of the buggy version and
fixed version.

A commit is selected into the dataset if one or more matches of keywords are found
in the commit message. Also, on top of the result of this step, we remove instances



— field names = map(str, field names)

+ field_.names = [str(x) for x in field_names]
if rename:
seen = set ()

for index, name in enumerate(field_names):

Figure 3.2: Example of Parsing Git diff API Output

from the result by going through the commit message again with a new set of keywords.
The keywords used to filter commit contains “rename”, “rewrite”, “clean up”, “refactor”,
“merge”, “misspelling”, “compiler warning” and “comment”. These keywords are used for
discarding false-positive commits from the result (i.e., commits with repair keywords but
the content is not related to program repair) [19]. After we obtained the list of commits,
We select one-line change pairs by using the git diff API, which is a tool to compare
and highlight the difference between two versions of a file. The one-line change pairs are
extracted by parsing the output of git diff API using a parser.

Figure 3.2 shows an example of bug-fix pairs. Firstly, the parser splits the output to
multiple hunks by file names. Then, for each chunk, the parser scan through the code
chunk and search for a pair of the removed line (start with “-” character) and added line
(start with “+” character). We remove the “-” and “+” in the lines and attach each bug
line and fix line pairs to a list. In the example below, the removed line is indicated by red
color and the added line is indicated by green color. The data we get after this step is a
list of bug and fix line pairs (bug-fix pairs). To remove data that unrelated to repair from
the dataset, we discard the bug-fix pair if the pair contains comments or strings.

We apply two constraints for data cleaning. The first constraint is filtering out com-
ments from the bug-fix lines. We discard the sample if the sample is editing of comments,
such as fixing a comment typo or changing the function description. The second constraint
is removing samples that contain string value (e.g. a = some string”). Since the focus of
the model is on repairing source code bugs, predicting the variation of the string value is
less interesting. Also, including string values will increase the volume of the vocabulary of
input dramatically and make the template generation a harder task. For each bug-fix pair
from the previous step, if the line matches one or more of the filters, the pair is discarded.
To check if the data collected by this approach is a good representation of bug-fix data,
we picked 100 random samples from the bug-fix pairs and manually inspect each of them.
93 out of 100 samples are related to repair operation [19].
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3.2 Abstraction

buggy line fixing line

[ﬂeld_names = map(str, ﬁeld_names]] [ﬂeld_names = [str(x) for x in field_names]

tokenization tokenization

r

—i "field_names”, "=", "map”, "(", "str”, ",", "field_names", )]

h

["field_names". =t st (T, WL Y, Mfor”, v, Min”, “field_names”, ]—

l unique tokens lunique tokens

i discard reserved token/\get dictionary

"field_names", "=", "map”, "(", "str", ".", "ju"] ["field_names". =", st (T, R, Y, Mer”, tin”, ]
get dictionaMﬁrd reserved tokens
"=" "map”, "(", "str", "", "jl"] [ Var1 = field_names ] [Vaﬂ = field_names, Var2 = x] [= T, "strt, (", ", Mior”, Tin, ]]

Abstraction with one input
Figure 3.3: Abstraction process with example from training data

We propose an abstraction technique that converts the source code to template to alle-
viate the OOV token problem in traditional NMT model for program repairing mentioned
in Chapter 1. Figure 3.3 describes the process of abstraction. In this graph, we use an
example to demonstrate the abstraction process. The example we use is a buggy commit
from python project boltons'. We used the python built-in tokenizer and an abstraction
script to transfer tokens in the input sequence to get the bug template and fix template.
We keep the duplicates after this step for two reasons. the first one is that duplicates of
codes are common in software engineering. The second one is that different bug-fix pairs
may have to same repair pattern after the details of the code is replaced in the abstraction
step. Keeping the duplicates of bug-fix templates may emphasize the pattern of repairing
operation.

'File path: root/boltons/namedutils.py; commit hash: bdfba346113b6d31a169e70c05449813d2e-06750

11



The abstraction starts from a bug-fix pair from the dataset we obtain in data collection.
In the first step, we tokenize the bug-fix pair using built-in python parser. After the
tokenization completes, we record the unique tokens from the bug-fix pair to a list. Then,
we further remove tokens from the list if the token is in the reserved token list. The
reserved keywords list contains tokens that related to python language syntaxes such as
operators, data types, built-in methods, and common attributes. Table 3.2 shows all the
reserved tokens used in the approach.

After the above two steps of removal operations, the remaining tokens are mostly
relevant to the context of the bug such as variable names and methods names. We need
to remove these tokens from the input and replace these tokens to placeholders. The
rationale behind this is that the original token before abstraction provides details that
are related to the context of the bug. Replacing these tokens with variable tokens (VTs)

, ( ) =
* ] [ - < >
+ ! / { } b
\ | ; & A i
’ False None True and as
assert break class continue def del
elif else except finally for from
global if import in is lambda
non local not or pass raise
return try while with yield self
abs min dict help setattr all
dir hex next slice any divmod
id object sorted ascii enumerate | input
oct staticmethod bin eval int open
str bool exec isinstance ord sum
bytearray filter issubclass pow super bytes
float iter print tuple callable format
len property type chr frozenset list
range vars classmethod | getattr locals repr
zip compile globals map reversed | import
complex hasattr max round delattr hash
memoryview set

Table 3.1: table of reserved tokens
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removes the context dependency of the input. With these tokens replaced to their generic
form, the model focus more on predicting the programming language syntax rather than
the variable names. The purpose of the abstraction technique is to remove details that
are unnecessary for program repairing based on the belief that the fixing operation of the
buggy line is on syntax instead of the details such as the name of variables. In other words,
the modifications which can potentially fix the bug are on the syntax of the code rather
than the naming of variables. Motivated by existing study [30], changing variable names
do not affect the syntax of the code and the execution of the code. Also, the naming of
variables and methods names are project-specific, which means that these variable names
do not represent the syntax of the programming language. The abstraction technique will
replace these tokens to its generic form so that the input of the model represents more of
the syntax of the bug rather than the naming methodology of the project that has the bug.

Next, we build a dictionary from the remaining tokens of the input line. We use VTs
(“Var” followed by a number) as the keys of the dictionary where hashtags represent the
indices of the tokens in the dictionary. In some cases, the VT's in output have lower indices
than VTs in the input. In this case, we reorder the dictionary to make sure all input tokens
are before the output tokens. For example, given a dictionary {Varl : input_func_name_one
Var2 : output_string_one, Var3 : input_func_name_two}. Varl and Var3 have a gap, which
is Var2. We believe this gap between indices is a hint to the answer that can potentially
interference the template generation process of the model. We remove this gap to make
sure of the isolation of the answer to the template generation process. To do so, we sort
the input token and output token independently and concatenate the output dictionary
after input dictionary. The reason for sorting two dictionaries separately is to make sure
that the abstraction of the input line is consistent between the training phase and the
template generation phase. If the two dictionaries are not sorted separately, there could
be a mismatch of indices between tokens from the output and tokens from the input. This
mismatch will make the abstraction of only the input tokens inconsistent. For example, If
the dictionary of the abstraction of the input line and the output line is dictl = {Varl =
a, node = b, Var3 = ¢, Vard = d} where token ¢ belongs to output only. The abstraction
of input line by itself will be dict2 = {Varl = a, Var2 = b, Var3 = d}. This creates the
inconsistency between {Var3 = ¢, Var4d = d} in dictl and {Var3 = d} in dict2. By using
the above method, we keep track of each key-value pairs so that the variable dictionaries
are consistent in the abstraction stage and the reconstruction stage.

The abstraction process in the template generation for new inputs is slightly different
from the abstraction in training. In the process of generating training data, we have the
input buggy line and the fixed-line. Meaning that the correct fix of the buggy line is known.
However, in the template generation for new inputs, the dictionary from the input side does
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not merge to the output side because the fixing line is missing. Because the correct fix of a
new buggy input is unknown, we need to tokenize the buggy line without the information
from the fixing line. In this project we only consider single line bugs because the input
length is short and the fix is concise. For multi-line bugs, we could transform the buggy
lines to a long one-line input sequence and use this as the input of the model.

The abstraction in the template generation process begins with a buggy line. The
buggy line is tokenized and filtered by using the same algorithm from the abstraction in
the training phase. The missing of the fix line dictionary does not change the ranking of
VTs because the two dictionaries are sorted in isolation. At the end of the abstraction
process, the new buggy lines transfer to the buggy templates.

3.3 Neural Network Model

The model we used to learn the bug-to-fix operation is the convolutional sequence to
sequence model [22]. The initial purpose of this model is to apply machine learning tech-
nique on natural language translation tasks. We choose this model because the model
performs better on end-to-end program repairing tasks comparing to other models such as
LSTM-based sequence to sequence [19]. In model selection, we evaluate the performance
of the model by comparing the validation accuracy across models. This model preforms
well on a variety of natural language processing tasks as well [23]. The author show how
the convolutional layers contributes to the improvement of the model in the paper [23].
The model learns the translation operation by adjusting its weight and minimize the loss
function according to a pair of given input and output, which are two sentences in two
languages with the same meaning. We believe that the model is capable of learning the
repairing operation from a piece of buggy source code to a piece of correct code because
the translation and repairing are both transformations between input and output. Similar
to the learning of natural language translation, in our approach, we use this model to learn
the transformation from the buggy lines to the fix lines.

The structure of the convolutional sequence to sequence model contains three major
parts, which are the encoder, decoder, and multi-step attention [22]. The encoder is a
neural network structure that contains many layers of one-dimensional convolution blocks.
Each block z; takes the output of the previous block z, 1 = (2_11,...2i-1m) as input and
output z; = (211,... z1m) except the first layer of encoder block. Each input block takes the
input sequence x = (z1,... x,,) as input. The decoder structure is similar to the encoder.
It takes the fixing part of the input sequence and outputs a hidden state h; = (hyy ... ).
The last part of the model structure is multi-step attention. The traditional attention
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layer is simply a dot product of the last input hidden states and last output hidden states.
However, in this model, the initial input representation and output representation are also
involved in the calculation of the attention. On the encoder side, the representation of the
input of each encoder convolutional layer is added to the calculation of decoder hidden
states as a residual connection. On the decoder side, the output representation of each
decoder layer is added to the output of the attention.

As soon as the data is abstracted and tokenized, we split the data into two parts, which
are training data and validation data, to train the model. We use 10-fold cross-validation
in this step. It is common to split training and validation datasets in this way [38].
The training of the model is minimizing the error between output and label by adjusting
its weights with multiple iterations (also known as epochs) of training data. The initial
parameter is weight We R?%24 bias b,,€ R?>? and input x € R¥*?. After several epochs of
training, the model contains a certain set of weight parameters which generates the most

promising repair templates. After the model is trained, The training part of the workflow
is finished.

3.4 Template Generation

Once the model is trained, we use the trained model to generate repair patches for new
bug instances. This process is called the template generation. The template generation
uses the trained model to obtain the fix of a new buggy input (i.e., a bug the trained model
has never seen before).

To begin with, the template generation process requires one buggy line, the context
of the buggy line and the trained model. Firstly, we abstract the buggy line to the bug
template using the abstraction script. Note that the abstraction in predicting phase is
slightly different than the abstraction in the training phase. In the abstraction of training
data, we transfer both the input and output to templates. In the abstraction of the
predicting phase, we only transfer the input because the output (repaired line) is unknown.

Next, We feed the bug template as input to the trained model to predict the patch
template. In this step, the output of the model is a set of templates instead of source
code. After the model finishes reading the input sequence, the generation begins with
the initial token <START> and then generates tokens one at a time and concatenates
tokens to the output sequence. In each step of the token generation, the model outputs
a new token based on the token sequence generated in previous steps and concatenates
the new token to the output sequence. In one iteration, the model uses the beam search
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rank fix template

0 return 1 + Var4(Varl[l:], Var2[1:])
1 return 1 + Vard(Varl[l:], Var2[1:])
2 return 1 + Var4(Varl[l:], Var2[1:]]
3 return 1 + Var4(Varl[l:], Var2[1:]])
4 | return True + Var4(Varl[l:], Var2[1:])
5 return 0 + Vard(Varl[l:], Var2[1:])
6 return 1 + Vard(Varl[l:], Var2[1:]
7 return 1 + Varl(Var2[0:], Var3[1:])
8 return 1 + Varl(Var2[1l:], Var3[1])
9 return 1 + Varl(Var2[1:], Var3[1:]]
10 return Var4(Varl[l:], Var2[1:])

Table 3.2: Example of template outputs

algorithm to decide which token to select as the output token. In the next iteration, the
model takes an incomplete sequence from previous steps as the input and produces the
next token based on the current incomplete input sentence. After several iterations, the
model finally outputs an <END> token and that ends the template generation process.
The beam search algorithm is a searching algorithm that generates output candidates by
searching through the token candidates’ space and picking the best candidates according
to the probability based on the current incomplete input. The beam search algorithm is an
alternative to the default greedy search algorithm. The greedy algorithm returns the token
with the most probability at each generation step. On the other hand, the beam search
algorithm returns top K result for each generation step and ranks the complete output by
the total likelihood score in T generation steps. The algorithm has two parameters, beam
width and searches depth which corresponds to the above variable K and T respectively.

Table 3.2 shows the ranking of the beam search result. We use the result of bug
Levenshtein from QuixBugs (bug_ID 16) as an example. In this bug from QuixBugs
dataset, the buggy code is “return 1 + levenshtein(source[1:], target[1:])” and the fix code
is “return levenshtein(source[l:], target[1:])” In this example, the rank of the correct fix
template is ten. The number beside the token is the negative log of the probability of the
token. The ranking of this example is measured under the beam width 220 and search
depth 220. The beam width is the number of candidate tokens considered in each iteration
of predicting the next token. we set the beam size and the number of best candidates to
220 for both models. We choose 220 because the vocabulary size is 220 tokens and the
beam width can not go over this limit. The rank is calculated by the sum of the likelihood
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Figure 3.5: Beam Search Ranking Example

score for each sequence and sorted in descending order(i.e., from high to low). Figure 3.5
shows an example of the beam search scores, in the second iteration, the score of token
“0” is lower than the score of token “True”. In the current sequence (from the beginning
to the second token), the score of sequence with “True” is lower than the score of sequence
with“0”. In the generation of the second last token, token “)” (-0.0116) has a higher score
than token“]” plus token®)” (-1.0351+0.0119). The generation process stops at the second
last token because of that. At the end of the generation, the output of the beam search
algorithm is a ranked list of top 220 fixing template candidate.

3.5 Reconstruction

After obtaining the fix templates from the previous step, we run the reconstruction algo-
rithm for each fix templates to get the candidate patches. The goal of the reconstruction
process is to transfer each fix templates to a set of source code patch candidates. To begin
with, this process requires a template of the buggy input, the context of the bug and also
the fix template candidates from the model. Figure 3.6 shows the workflow of the recon-
struction process. In the first step, we take one fix template candidate and replace the VT's
back to its original value according to the input dictionary generated in the abstraction
process.

After replacing VTs to its original values, there are two scenarios to consider. The first
one is that all VTs in the source code are mapped to its value and the second one is that
there are still VT's remains unconverted in the output. For example, if the patch template
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contains Varl to Varb and the input dictionary only contains Varl to Var4, token Varb is
not in the input dictionary and therefore cannot be converted. If the source code is fully
converted, that line of source code is considered as fix line and ready to proceed to the next
step. On the other hand, if there are tokens that are not in the input dictionary, we need
to map each remaining VTs to a value. because the code is modified in the fixed version.
Normally, some tokens in the fixed version are not in the buggy version. This causes the
output templates of abstraction model sometimes contain VTs that do not appear in the
input. We further investigated the context of the bug and we found that most of the
missing tokens are in the context of the bug. We randomly select 10 thousand samples
from our database. Out of 7405 parsable instances, 94.2% or 6975 instances have every
new token in the context with a range of 5 lines of codes above and below the buggy line.
Based on our experiment, the new tokens are very likely to be in the context of the bug. In
this case, we create a search space from the context of the inputs and fill in the new token
by trying every possible user-defined tokens from the search space. Since the context size
of samples in QuixBugs is small, we use the full file as the scope of the context. For new
inputs, the size of context is five lines before and after the buggy line. In our approach, we
generate a search space of candidate tokens from the context of the bug. Then we generate
a fix line candidate for each token or each combination of tokens in search space. In the
case we can not find any candidates that pass the test suite successfully, we conclude that

19



we are not able to generate correct fix for this particular input.

3.6 Validation

The next step is the validation of patches. We take the list of fix line candidates and
overwrite the buggy line with each fix line candidates to generate patch candidates. In the
end, we run the test cases on each of the patch candidates to check if the patch is correct.
In automated program repair, using future data to predict past data should be avoided in
the generation of patches [71]. We address this problem by picking an independent test set
instead of taking a slice from the training data to make sure that our validation process
does not suffer from this problem.

We pass the buggy line as the input to the model and receive a list of patches as
outputs. Then, we run related test cases for each output in the list and mark one patch
as a correct patch if the patch passes the test suite. Next, we manually investigate the
correct patches to check if the correct patch is overfitted [05]. For evaluation purpose, the
overhead of the reconstruction is measured by the additional testing time introduced by
the reconstruction. Note that the testing time is case-specific, meaning that the run time
of testing depends on the complexity of test cases. For this reason, we calculate the run
time for each patch and compare the average of run-time per patch.
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Chapter 4

Experimental setup

4.1 Dataset

We collected 519,452 bug-fix pairs from top 1000 popular python GitHub projects at 2019
Jan 7th. After applying the filtering process described in section 3.1, there are 423,075
bug-fix pairs remains for training and 470,10 bug-fix pairs for validation. The training
samples provide to the two models are the same. The difference between these two models
is that the abstraction model has an abstraction layer in pre-processing. The abstraction
model takes the abstracted code template as input and the traditional model trains directly
on the source code.

We test both models with the QuixBugs [13] dataset which is an independent dataset.
The QuixBugs dataset does not overlaps with the training dataset. Thus, the experiment
does not suffer from the data contamination problem [71] described in section 3.6.

4.2 Implementation

The tool is implemented using python. The python packages used are pytorch, collections,
difflib, io, matplotlib, tokenize, copy, itertools, json, numpy, os, pandas, pprint, random,
re, statistics, sbuprocess, sys, time, and types. The model we used is the fconv model from
Facebook Al research lab which is an NMT model based on pytorch framework[57].
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4.3 The Traditional Model Structure

We implemented the traditional version of the model as a baseline to evaluate the ef-
fectiveness of the abstraction model. This section explains how the traditional model is
constructed. The traditional model uses the same machine learning model structure but
without the abstraction step in the prepossessing and thus do not require reconstruction.
We feed the buggy source code line directly to the model without mapping it to a template.
The model is trained with source code instead of the template. The output of the model
is source code as well.

We do not have the reconstruction process after the template generation because the
output is source code already. Then, after we get the candidate patches, we test all patches
with the test suite and finally output the patches that pass all test cases. We consider the
patch as a correct patch if and only if the patch is an exact match to the developer patch
or semantically equivalent to the developer patch.

4.4 Training

To make sure the comparison between the two models is fair, we apply the same training
process to the traditional model and the abstraction model. We train both models 12
epochs with 423,075 samples and validate the models using 470,10 samples.

The traditional model has an encoder dictionary with 215,664 tokens, a decoder dic-
tionary with 224,608 tokens and 234,660,654 model parameters. The training of the tradi-
tional model completes in 20548.9 seconds (5.7 hours). The average training time for each
epoch is 28.5 minutes.

The abstraction model has an encoder dictionary with 220 tokens, a decoder dictionary
with 220 tokens and 11,852,562 model parameters. The training of the abstraction model
completes in 5888.3 seconds (1.63 hours). The average training time for each epoch is 8.1
minutes. The above numbers are the key feature of the two models. The configuration
details of both models are listed in Appendix A. Both models are trained on 56 Intel Xeon
E5-2695 CPUs and a single NVIDIA Xp GPU.
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4.5 Hyperparameter Search

We perform the hyperparameter search on both models for 100 iterations. As previous
work mentioned [1], hyperparameter tuning should be performed specifically for models
with different learning tasks to fairly compare the performance. In our work, we consider
learning the bug-fix operations with and without abstraction as two different learning tasks.
We perform random hyperparameter search on both models separately for 100 times within
the following search space: size of embedding vectors form 50 to 500, convolution filter
shape 128 * (1 — 5)2, stack of convolution filters from 1 to 10, drop out rate from 0 to 1,
clip normalization parameter from 0 to 1, learning rate from 0 to 1, and momentum from
0 to 1. we choose the hyperparameter set that gives the best result from the 100 random
parameter sets as the final hyperparameter set.

23



Chapter 5

Experimental Results

In this section, we present the result of our experiment. We compare the performance of
the abstraction model and the traditional model in three aspects, including numbers of
bug fixes, types of bug fixes and execution time of generating bug fixes. In our experiment,
we define the reconstructed code as a candidate patch. We consider a candidate patch
as a correct fix of one bug if the reconstructed code is the same as developer patch or
semantically equivalent to the developer patch. Otherwise we consider the candidate patch
as a failed attempt.

5.1 Comparison of Number of Correct Fixes Gener-
ated by Different Models

Table 5.1 shows the number of bugs correctly fixed by the traditional model and the
abstraction model in the QuixBugs dataset. We get the result by running the test scripts
on both model outputs for each bug in the QuixBugs dataset. In the total amount of 40
bugs in the QuixBugs dataset, the traditional model fixes 10 bugs and the abstraction
model fixes 23 bugs. Column “All” shows the total number of fixes from each model.
Column “Top-one” shows the number of bugs fixed correctly by the first patch generated
for each model. Column “unique” shows the number of bugs fixed by one model but cannot
be fixed by the other model. In the traditional model, there are nine out of ten fixes has
the top-one rank. We consider a fix to be the top-one rank if the fix is the first correct
fix generated by a model. In the other model, 22 fixes out of 23 bugs fixed are ranked as
top-one. Its top-one ratio is close to the top-one ratio in the traditional model. Meaning
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that the overfitting level of the abstraction model is as low as the traditional model. The
abstraction technique does not rise the overfitting level in the traditional model. In the ten
fixes of the traditional model, the abstraction model can fix nine of them as well. Meaning
that the abstraction model fixes the majority (90%) of the bugs the traditional model fixes.
The remaining 15 fixes in the abstraction model are unique to the traditional model. The
above comparison shows that the abstraction model fixes not only 90% of the bugs the
traditional model fixes but also 15 additional bugs the traditional model does not fix.

Fixes All | Top-1 | Unique
Original 10 9 1
Abstraction | 23 22 14

Table 5.1: Comparison of the number of correct fixes

The abstraction model increases the number of total fixes by 140%. The fixes from the
abstraction model cover most of the original fixes and also maintains a similar top-one ratio.
This result shows that the abstraction model fixes more bugs than the traditional model
without increasing the overfitting level. The rational and analysis of why the abstraction
model fixes more bugs are described in chapter 6.

Index Algorithm traditional rank | Abstraction_rank

5 find first_in_sorted 4 5
7 flatten 1 44

8 ged 111 28

10 hanoi 110 1

13 knapsack 1 3

20 mergesort, 107 36

24 pascal 6 5

29 rpn_eval 133 46

34 sieve 3 3

Table 5.2: Comparison of ranks of shared correct fixes
In the bugs that both model fix, we compare the rank of fixes of both models. Recall

that the rank of fixes is the rank of the successful patch among all patches. For example, in
a list of patches generated from one model for one task, if the second patch repairs the bug,
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Type | Name abbreviation
A | Incorrect Assignment operator | IncAssignOp
B Incorrect variable IncVar
C Incorrect comparison operator | IncCompOp
D Missing condition MisCond
E | Missing/added+1 MisOne
F Variable swap VarSwap
G Incorrect array slice IncArrSle
J Incorrect method called IncMethCal
K Incorrect field dereference IncFldDeref
L Missing arithmetic expression | MisArithExp
M | Missing function call MisFuncCal
N Missing line MisLine

Table 5.3: Types of bugs in QuixBugs dataset

the rank of the fix for that task is two. Table 5.2 shows the rank of fixes in different models.
From the table, we can see that the abstraction model reduces the rank dramatically in the
case that the original rank is over 100. In algorithm gcd, Hanoi, mergesort, and rpn_eval,
the rank of fixes in the traditional model are 111, 110, 107, and 133. After applying the
abstraction technique, the rank of fixes decreases to 28, 1, 36, and 46 respectively. In the
case that the original rank of the fix is less than ten, the rank of fix in the abstraction
model stays at the same level. In algorithm find_first_in_soted, knapsack, Pascal, and sieve,
the original rank of fixes are four, one, six, and three. The abstraction rank of the above
bugs stays at a similar level, which is five, three, five and three. There is an exception to
the above observation. In the algorithm flatten, the original rank is 1 and the rank with
the abstraction model is 44. In general, the abstraction model increases the rank in the
case that the rank is lower than 100. Also, in most cases, the abstraction model generates
patches with ranks similar to the original rank if the original rank is relatively high.

5.2 Distribution of Bug Types

In our work, we analyze and compare the difference of the types of bug fixes from the
two NMT-based models and also other existing models. According to this paper [36], the
QuixBugs dataset contains 12 kinds of bugs. We use the same labeling and classification
from this work for ease of discussion. Table 5.3 shows all the types of bugs defined by the
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index algorithm type | Our | Baseline

0 bitcount A | Yes

1 breadth_first_search D | Yes

2 bucketsort G | Yes

5 find_first_in_sorted C | Yes Yes
7 flatten J Yes Yes
8 ged F Yes Yes
9 get_factors G | Yes

10 hanoi B | Yes Yes
11 is_valid_parenthesization | B | Yes

12 kheapsort G | Yes

13 knapsack C | Yes Yes
16 levenshtein E | Yes

17 lis L Yes
20 mergesort C | Yes Yes
21 minimum_spanning tree | B | Yes
23 next_permutation C Yes
24 pascal B | Yes Yes
25 possible_change D | Yes
27 quicksort C | Yes
29 rpn_eval F Yes Yes
30 shortest_path_length K | Yes

31 shortest_path_lengths F Yes

34 sieve J Yes Yes
36 subsequences N Yes

Table 5.4: Comparison of type of bugs repaired

paper. The twelve bug classes in the paper are A: Incorrect Assignment operator (IncAs-
signOp), B: Incorrect variable (IncVar), C: Incorrect comparison operator (IncCompOp),
D: Missing condition (MisCond), E: Missing/added+1 (MisOne), F: Variable swap (Var-
Swap), G: Incorrect array slice (IncArrSle), J: Incorrect method called (IncMethCal), K:
Incorrect field dereference (Inc FldDeref), L: Missing arithmetic expression (MisArithExp),
M: Missing function call (MisFuncCal), and N: Missing line (MisLine).

In all 40 bugs from QuixBugs dataset, there are ten instances in class IncVar, five
instances in class IncCompOp, IncArrSlc and MisLine, four instances in class VarSwap,
three instances in class MisCond, two instances in class MisOne and IncMethCal and one
instance for the class in IncAssignOp, Inc, MisArithExp, and MisFuncCal. Table 5.4 shows
all bugs fixed by the models. From the table, we can see that the traditional model fixes
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Figure 5.1: Comparison of type of bugs

three bugs in class IncCompOp, two bugs for each of class IncVar and VarSwap, and one
bug in class IncMethCal. The abstraction model fixes all bugs in the table except bug 36
(subsequences).

Figure 5.1 shows the comparison of numbers of fixes for both models. The bars in gray
color represent the total bugs in each class in the QuixBugs dataset. The bars in dark
blue color represent the fixes in the abstraction model. The bars in light blue color indi-
cate the bugs fixed by the traditional model. In all twelve types of bugs in the QUixBugs
dataset, the abstraction model can fix all bugs in class IncAssignOp, IncCompOp, In-
cMethCal, FldDeref, MisArithExp, and MisLine, while class IncMethCal is the only class
that the traditional model can fix every bug in that type. Comparing the numbers of
fixes from two models, the abstraction model fixes two more bugs in class IncCompOp
(next_permutation and quicksort), two more bugs in class IncVar (is_valid_parenthesization
and minimum_spanning_tree), three bugs in class IncArrSlc , two bugs in class MisCond ,
and one bug of each type in class IncAssignOp, MisOne, MisArithExp, MisFuncCal, and
IncFldDeref.

In terms of the coverage of different types of bugs, The traditional model fixes bugs in
class IncVar, IncCompOp, VarSwap, IncArrSlc, and MisLine. In contrast, the abstraction
model fixes all the bugs in the above categories except class MisLine. Also, the traditional
model fixes bugs in class IncAssignOp, MisCond, MisOne, IncArrSle, IncFldDeref, Mis-

28



ArithExp, and MisFuncCal, which cannot be fixed by the traditional model. This result
shows the abstraction model not only covers more types of bugs than the traditional model

but also fixes more bugs than the traditional model in the types of bugs that they both
fix.

5.3 The Execution Time of Reconstruction

To measure the execution time of the reconstruction, we run the test suite on the end-to-
end patch generation approach and the patch generation with reconstruction. Note that
the rank of the correct patch can be different in the abstraction model and the traditional
model. For each task, we calculate the average execution time of the patch using the
execution time of that task divided by the number of total patches. For example, if task
A has five candidate patches before the correct patch and the execution time to find the
correct patch is ten seconds. The average patch execution time of task A is ten divided
by five, which is 2 seconds per patch. Table 4 shows the model ranking, total execution
time and execution time per patch for all samples fixed by both models in the QuixBugs
dataset. Comparing with the end-to-end approach, the reconstruction needs extra 23.32%
of total execution time. This percentage can be different in the bugs with a larger scope
of context.

model traditional abstraction

algorithm rank | total (sec) | per patch | rank | total (sec) | per patch
find first_in_sorted 4 2.15 0.54 14 10.45 0.75
flatten 1 0.048 0.048 58 2.51 0.043
gcd 111 6.80 0.06 10 0.40 0.04
mergesort 107 5.13 0.048 | 181 6.9 0.038
pascal 6 0.32 0.053 23 0.89 0.039
hanoi 110 4.19 0.038 3 0.24 0.08
rpn_eval 133 5.85 0.044 | 153 7.35 0.048
sieve 3 0.20 0.07 10 0.43 0.04

Table 5.5: Comparison of time cost between models
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Chapter 6

Result Analysis

In this chapter, we analyze all bugs from the unique fixes of the abstraction model. We
find some insights that explain why abstraction model performs better than the traditional
model. After we compare the top ten candidates from the traditional model outputs with
the top ten candidates from the abstraction model outputs, we found 4 reasons which could
explain the difference in performance between these two models. Section 6.1 explains the
structural differences in the output of the template model and the traditional model. Sec-
tion 6.2 explains why synonyms affect the result and how the abstraction model alleviates
this problem. Section 6.3 describes how the reduction of the out-of-vocabulary token rate
contributes to the increase of bug fixes. Section 6.5 shows why the model has the potential
of finding semantically equivalent fixes.

6.1 The Clustering of Candidates

The output of the abstraction model is a list of templates. Each template can be transferred
to a list of source code candidates. Comparing to the original approach where each output is
one source code candidates, the abstraction model outputs have a higher density of pattern
representation. For example, table 6.1 shows the top-10 outputs for both models for bug one
in Quixbugs, in bug one (breadth first search), the Varl in the output is a new token to the
traditional model input, indicating that Varl does not exist in the input. We define these
tokens as variable tokens (VTs) and the outputs with such tokens as templates. the VT's are
placeholders for the real variables and will be replaced by some variables in the search space
of the input context. Recall that the reconstruction process maps the VT's to each value in
the context search space. For example, given an output template “while Var2.Varl:” and
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a search space S={ update, successors, startnode }, The output of reconstruction is Out={

while successors.update:”, “while successors.startnode:”, “while

while startnode.update:”, “while update.startnode:” }

bYAINA

“while update.successors:”,

7«

startnode.successors:”,

In table 6.1, the candidate at rank one in the abstraction model (red-colored cell in
column abstraction) has the same pattern with the candidate at rank three and rank seven
in the traditional model (red-colored cell in column original). The abstraction model uses
one position for each candidate template and fills in the VTs later. The traditional model
needs two positions for these two results, which is inefficient.

By applying the abstraction technique, the model aggregates the output pattern of can-
didates three and candidates seven in candidate one, which reduces the space usage from
two to one. By contrast, the traditional model spends two or more positions matching
tokens for candidates with the same pattern. With the clustering property, the abstrac-
tion compresses the candidates in templates, which increase the possibility of finding fixes
templates.

model | abstraction traditional

input | while True: while True:

output | while Varl: while queue:

rank 1 | while self.Varl: while True:

rank 2 | while Varl: while not self._closing:

rank 3 | while True: while self.alive:

rank 4 | while not self.Varl: while not self._closing.is_set():

rank 5 | while Varl is not None: | while not self.exit_flag.is_set():

rank 6 | while Var2.Varl: while self.alive is not None:

rank 7 | while self.Var2.Varl: while self.closed:

rank 8 | while self.Varl is None: | while not self.exit_flag :

rank 9 | while not Var2.Varl: while len(ISendWaiting)>0:
rank 10 | while self.Varl.Var2 : while not self.shouldquit:

Context: Varl,Var2e {update, successors, startnode, queue, pople ft,

nodesseen, node, goalnode, extend, deque, collections, append, add, Queue}

Table 6.1:  Top-10 results of the dataset with file name

breadth_first_search, bug ID 1

bug in Quixbugs
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model | abstraction traditional

input | return 1+Varl(Var2[1l:], Var3[1:]) return 1+ levenshtein(source[l:],target[1:])
output | return levenshtein(source[l:] target[1:]) return levenshtein(source[1:] target[1:])

rank 1 | return 1+levenshtein(source[l:],target[1:]) return 1+affineGapDistance(source[1:],target[1:])
rank 2 | return 1+Var4(source[l:],target[1:]) return 1+levenshtein(source[l:],target[1:])

rank 3 | return O+levenshtein(source[l:],target[1:]) return 1+affineGapDistance(source[0:],target[1:])
rank 4 | return levenshtein(source[1:],target[1:]) return 1+affineGapDistance(source|[1:])

rank 5 | return 14levenshtein(source[l:],Var4[1:]) return 1+affineGapDistance(source[1:]target[2:])
rank 6 | return Vard-+levenshtein(source[l:],target[1:]) | return 1+affineGapDistance(source[l:],targets[1:])
rank 7 | return 1+levenshtein(source[0:],target[1:]) return O+affineGapDistance(source[1:],target[1:])
rank 8 | return 1+levenshtein(source[l:],target[1]) return 1+affineGapDistance(source[1:],target[0:])
rank 9 | return 1+levenshtein(source[l:],target[1:]] return 2+affineGapDistance(source[1:] target[1:])
rank 10 | return True+levenshtein(source[l:],target[1:]) | return 1+affineGapDistance(source[2:],target[1:])

Context: Varl = levenshtein, Var2 = source, Vard = target, Vard € {}

Table 6.2: Top-10 results of the bug in Quixbugs dataset with file name levenshtein, bug
ID 16

6.2 The Tracking of Variables

In deep learning models, each word in the vocabulary is represented as vectors. The word
embedding of the vector can be either learned by the model or imported from another
model. In some cases, the vector distance between a word vector and its synonym vector
is so close that these two vectors are used interchangeably in the process of template
generation. The synonyms problem makes the template generation inefficient because the
model wastes resources in generating similar patches with synonyms. The abstraction
model alleviates this problem by tracking the variables. In the input sequences of the
abstraction model, each user-defined variable is replaced by VT followed by an index. The
mapping from user-defined variables to V'Ts is saved as a dictionary to replace the VTs to
its original variable later. This mapping tracks the variables and avoids the confusion of
synonyms.

For example, the table 6.2 shows the top-ten results of bug Levenshtein, in the original
output of Bug Levenshtein, the traditional model generates fixes with the synonymous
token “affineGapDistance” instead of the correct token “Levenshtein”, which is a method
of calculating string differences (red-colored cells in the original column). In the training
process, the traditional model learns the similarity of the token “Levenshtein” and its syn-
onyms “affineGapDistance”, which is another algorithm for calculating string differences.
The confusion of these two wards contributes to the failure of the fix generation in the
end-to-end approach. However, this issue is being addressed in the abstraction model by
replacing the user-defined tokens to VTs and labeled by index. In the reconstruction step,
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the VTs are replaced to its original variable according to the mapping dictionary. Since the
reconstruction only searches for user-defined tokens that are in the context of the input,
this replacement removes the synonyms because the synonym “affineGapDistance” is not
in the context of the input. The abstraction technique increases the chance of finding the
fix by avoiding the matching of synonyms in the template generation.

The abstraction model not only saves the model from generating outputs with irrelevant
tokens but also increase the diversity of output templates. The other approach, which
simply filters out the irrelevant tokens from the original output will not receive good
results. To prove this, we filter out the outputs that contain tokens outside the context
search space from the traditional model and compare this filtered output to the output of
the abstraction model to check if the filtered output performs as good as the abstraction
model output. Table 6.3 shows the top-ten original output examples after the filtering
process. We keep the candidate fixes that only contains tokens in the input or the bug
context. Only 20 out of 220 candidates remain after the filtering. From the result, we
found that the correct fix is not in the 20 filtered results. This is because the traditional
model focuses on matching every detail of the output which results in the exhaustion of
beam search potentials. With a level of abstraction to the source code, the model focuses
on predicting the fixed template instead of a perfect detailed fix.

Rank | Filtered Original Output
Input | return 1+levenshtein(source[l:],target[1:])
Output | return levenshtein(source[l:],target[1:])

2 return 1 + levenshtein(source[1:],target[1:])

27 return 1 + levenshtein(source[1:])

39 return 1 + levenshtein(source[l:],target[1:],target)
45 return 1 + levenshtein(source,target|1:],target[1:])

46 return (1 4 levenshtein(source[l:],target[1:]))
50 return 1 + levenshtein(source[1:|+target|[1:])

53 return 1 + levenshtein(source[1:],target,target[1:])
67 return 1 + levenshtein(sources[1:],target[1:])

81 return 1 + levenshtein(target|1:],target[1:])

94 return 1 + levenshtein(source[1:],target)

Table 6.3: Top-10 filtered results of the bug in file reversed_linked_list in Quixbugs dataset
with bug ID 28
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model | abstraction traditional

input | node = Varl node = nextnode

output | Var3 = node <<unk>>= node

rank 1 | node = Var3 node = cached _requirements

rank 2 | Var3 = nextnode node = nextnode

rank 3 | node = nextnode node = get_original _host()

rank 4 | node = Var3.nextnode | node = self. xtickmarkers

rank 5 | node = self.Var3 node = ||

rank 6 | node = Var4.Var3 node = self.MockClass

rank 7 | node = self.nextnode) | node = self. LONG_SLEEP_INTERRUPT_TIMEOUT
rank 8 | node = nextnode() node = self._existing_object

rank 9 | node = Var3() node = LazylInstanceClassName
rank 10 | node = 1 node = self.cachel _mdb

Varl = nextnode, Var2 = node, Var3,Vard € {prevnode, reverse_linked_list, successor}

Table 6.4: Top-10 results of the bug in Quixbugs dataset with file name reversed_linked list,
bug ID 28

6.3 The Decrease of Out-of-Vocabulary Rate

In the traditional model, some of the tokens in the developer patch are out-of-vocabulary
(OOV), thus being replaced by token <<unk>> (red-colored cell in the original column),
which makes the output syntactically incomplete (i.e., missing information). As a result,
the traditional model is unable to predict such output because the correct token is not
in the vocabulary of the model. We pick 47010 random samples as a validation set and
check the OOV rate. With the aid of the abstraction technique, the rate of unknown token
reduces from 2.7% in the traditional model to 0.00021% in the abstraction model. The
abstraction model does not require all the tokens in the developer patch to exist in the
vocabulary of the model. This is because the abstraction model predicts the pattern first,
then searches for the missing tokens in its context search space which is additional to the
model vocabulary. Moreover, the abstraction technique alleviates the OOV token problem
and thus accepts a broader variation of inputs compared to the traditional model. For
example, table 6.4 shows the top-ten result of bug 28, the correct output is “prevnode =
node”. The token “prevnode” is in replacement of token <<unk>>because it is not in the
vocabulary of the traditional model. The traditional model cannot fix this bug because
the buggy line does not have token “prevnode” and the traditional model cannot generate
tokens that are not in the model vocabulary. However, the abstraction model is capable of
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fixing this bug because the token “prevnode” is in the context search space of the input,
therefore it can be generated by the reconstruction process.

Comparing to the traditional model, the abstraction model extracts tokens from the
context of the bug. If we provide the context information to the traditional model,i.e., inject
the context tokens to the dictionary of the traditional model, this additional information
still cannot be used directly in the traditional model. The reason is that if we add these
context tokens to the dictionary of the traditional model, the traditional model has zero
chance of generating candidate fixes that contains these context tokens because the model
never saw any training data that has these tokens, otherwise these tokens should already
exist in the model dictionary. Recall that the model dictionary is a collection of all tokens
in the training dataset. If one context token occurs in the training dataset, the token will
be collected by the model dictionary.

6.4 The Unique Fix From Baseline

For the bug that only fixed by the baseline, We compared the patch list generate by the
baseline and the abstraction model. Table 6.5 shows the comparison of top-10 result of
the patch lists. For bug subsequence, the input of the model is return [ | for both models.

The output of the model is return [ [ ] | for both the baseline and the abstraction model.
model | abstraction traditional
input | return || return ||
output | return [ [] ] return [ [ ] ]
rank 1 | return | | return [ |
rank 2 | return { } return Varl ()
rank 3 | return [ ],[ | return { }
rank 4 | return None return Varl.Var2 ()
rank 5 | return set () return None
rank 6 | return () return Varl
rank 7 | defer.returnValue([ |) | return [ ], |
rank 8 | return { },[ | return Var2.Varl ()
rank 9 | return list( [ ] ) return ()
rank 10 | return list( { } ) return ( ),[ ]

Table 6.5: Top-10 results of the bug in Quixbugs dataset with file name Subsequence
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From the table we can see that, the input and the output are identical for both baseline
and the abstraction. Variable tokens are not exist in the input nor output. In this case,
the abstraction is equivalent to not being applied to this bug. Based on our analysis to
this bug, we think the absence of variable tokens contributes to the non-successful repair
to this bug.

6.5 Semantically Equivalent Fix

There are instances that the fix generated by the abstraction model is not the same as the
developer patch but semantically equivalent to it. For example, In bug 11, the developer
patch is return depth == 0 and the patch generated by the abstraction model is return
not depth. These two patches are semantically equivalent in python3 because they both
triggered the same root function _nonzero__. Another example is bug 23. The developer
patch of bug 23 is if perm[i] <perm][j]: and the model output is if perm[j] >perm][i] :, which
is semantically equivalent to the developer patch. In the testing result of QuixBugs, the
semantically equivalent fixes are normally ranked at top-one, which means the model is
capable of generating semantically equivalent fixes without introducing overfitted patches.
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Chapter 7

Threats

7.1 Multi-line Bugs

In the data collection process, we collected 519,452 bug-fix pairs from top 1000 popular
python GitHub projects. We select only the bugs that contain single line fixes out of
all kinds of bugs. In practice, Single line fixes is a small part of all types of bugs. In
result, the dataset does not include multi-line bugs. So, there is no instance represents
the fixing operations that only exist in multi-line bugs in the collected dataset. Since the
dataset is the only data source that is used to train the model, the model learns only the
fixing operations of single-line bugs. The pattern of multi-line bugs and corresponding
fixes can be different from single-line bugs. Even if the fixing operation of single-line bugs
is will-learned, the model may not perform well on multi-line bug fixing.

7.2 Random Hyperparameter Search

In the tuning process, we randomly generate 100 sets of hyperparameters and run the
experiment 100 times with each set of hyperparameters for both the traditional model and
the abstraction models. We pick the set of hyperparameters that returns the best result
for both model. Although we tried to make the comparison as fair as possible, the best
result of two sets of 100 random hyperparameters does not guarantee the same level of
tuning performance.

37



Chapter 8

Conclusion

Program repairing is a critical and time consuming part in day-to-day software development
cycle. Automated program repair tools are created to reduce the cost of program repair.
The goal of these tools is generating program patches with less or without human effort in
the process of repairing. The classic approach to Program repair is Generate and Validate
approach. These type of tools generates a lot of patch candidates by mutates the buggy
code with a list of mutants|[11]. This approach suffer from the over-fitting problem|[(%].
Another new approach is to use a neural machine translation model to generate patches.
The limitation of this method is that training takes a long time, and if the size of the
training data set is large, accuracy cannot be guaranteed.

In this thesis, we propose an abstraction technique on top of the end-to-end Neural
machine translation approach to alleviate the problems in the end-to-end approach and
improve the result of the fix generation. We collected 519,452 bug-fix pairs and convert
each pair to templates using the abstraction algorithm. We train the f-conv model us-
ing 423,075 bug-fix templates and validate the model using 470,10 samples. We use the
trained model to predict the outputs and convert the outputs back to the source code
using the reconstruction process. We train the model 12 epochs with 100 random sets of
hyperparameters and choose the model with the best validation result.

We choose the traditional end-to-end approach which does not have the abstraction and
reconstruction as the baseline and compare it with the abstraction model. The accuracy of
the fix generation increased form 25% (10 out of 40) in the traditional model to 57% ( 23
out of 40 ) in the abstraction model. The result of the abstraction model covers 9 out of 10
fixes of the traditional model. The type coverage of bugs increased from five types in the
traditional model to eleven types in the abstraction model The remaining fifteen fixes from
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abstraction models are unique to the traditional model. The training time is reduced from
5.7 hours in the traditional model to 1.63 hours. The size of the encoder dictionary reduced
from 215,664 tokens in the traditional model to 220 tokens in the abstraction model. The
size of the decoder dictionary reduced from 224,608 tokens to 220 tokens.

The experimental results show that our method significantly reduces the time cost and
the vocabulary size of training. Since our approach is an overlay of pre-possessing and post-
processing to the existing neural machine translation rather than modifying the model, our
approach can be applied to other existing NMT-based automated program repair tool.

39



Chapter 9

Future Work

9.1 Multi-line templates

The Single-line bug is one simple scenario among many different bug scenarios. There
are many other kinds of bugs we do not take into consideration. To support multi-line
program repair, We need to further analysis multi-line bug scenarios and find a better way
to represent the bug rather than simply flatten multiply buggy lines to a one-dimensional
sequence.

9.2 Alternative Abstractions

In our abstraction technique, we abstract user-defined values and variable names to variable
tokens (VTs). There are many other ways to consider in the abstraction from source code
to templates. We will explore more on different abstraction mappings and compare the
effectiveness. Hopefully, it will give us more insight to get the best abstraction design and
also answer the question that what information is more important in fixing software bugs.
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Appendix A

Model configuration

This appendix provides the configuration details of the traditional model and the abstrac-
tion model to help other researcher reproducing the result. The difference of parameters
between two models are highlighted in red.

A.1 traditional model configuration details

arch=fconv

bucket_cap_mb=150
clip_.norm=0.4828638760240562
criterion=Ilabel smoothed_cross_entropy
data=][../fairseq-data/bin]
ddp_backend=c10d
decoder_attention=True
decoder_embed_dim=290
decoder_embed_path=None
decoder_layers=[(512\7)] * 8

decoder_out_embed_dim=197
device_id=0
distributed_backend=nccl
distributed_init_method=None
distributed_port=-1
distributed_rank=0
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distributed_world_size=1
dropout=0.31636707239399064

encoder_embed_dim=290
encoder_embed_path=None
encoder_layers=[(512\7)] * 8
fix_batches_to_gpus=False
fpl6=True
fp16_init_scale=128
keep_interval updates=-1
label_smoothing=0.0
left_pad_source=True
left_pad_target=False
log_format=None
log_interval=1000
Ir=[0.5774274889402233]
Ir_scheduler=reduce_lr_on_plateau
Ir_shrink=0.1

max_epoch=12
max_sentences=32
max_sentences_valid=32
max_source_positions=1024
max_target_positions=1024
max_tokens=1000
max_update=0
min_loss_scale=0.0001
min_lr=0.0001
momentum=0.6168128191126693
no_epoch_checkpoints=False
no_progress_bar=False
no_save=False

optimizer=nag
optimizer_overrides={}
raw_text=False
reset_lr_scheduler=False
reset_optimizer=False
restore_file=checkpoint_last.pt
save_dir=../fairseq-data/model
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save_interval=1
save_interval_updates=0

seed=1

sentence_avg=False
share_input_output_embed=False
skip_invalid_size_inputs_valid_test=False
source_lang=None
target_lang=None
task=translation
train_subset=train
update_freq=|[1]
upsample_primary=1
valid_subset=valid
validate_interval=1
weight_decay=0.0

A.2 abstraction model configuration details

arch=fconv

bucket_cap_mb=150
clip_.norm=0.4553322458425517
criterion=label_smoothed _cross_entropy
data=[../fairseq-data/bin]
ddp_backend=c10d
decoder_attention=True
decoder_embed_dim=312
decoder_embed _path=None
decoder_layers=[(256\6)] * 2

decoder_out_embed_dim=469
device_id=0
distributed_backend=nccl
distributed_init_method=None
distributed_port=-1
distributed_rank=0
distributed_world _size=1
dropout=0.22343933879238076
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encoder_embed_dim=312
encoder_embed_path=None
encoder_layers=[(256\6)] * 2
fix_batches_to_gpus=False
fpl6=True
fp16_init_scale=128
keep_interval_updates=-1
label smoothing=0.0
left_pad_source=True
left_pad_target=False
log_format=None
log_interval=1000
Ir=[0.7896441745393431]
Ir_scheduler=reduce_lr_on_plateau
Ir_shrink=0.1
max_epoch=12
max_sentences=32
max_sentences_valid=32
max_source_positions=1024
max_target_positions=1024
max_tokens=1000
max_update=0
min_loss_scale=0.0001
min_lr=0.0001
momentum=0.7680298739590937
no_epoch_checkpoints=False
no_progress_bar=False
no_save=False
optimizer=nag
optimizer_overrides={}
raw_text=False
reset_lr_scheduler=False
reset_optimizer=False
restore_file=checkpoint_last.pt
save_dir=.. /fairseq-data/model
save_interval=1
save_interval_updates=0
seed=1
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sentence_avg=False
share_input_output_embed=False
skip_invalid_size_inputs_valid_test=False
source_lang=None
target_lang=None
task=translation
train_subset=train
update_freq=[1]
upsample_primary=1
valid_subset=valid
validate_interval=1
weight_decay=0.0
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