
Autonomous Driving: Mapping and
Behavior Planning for Crosswalks

by

Edward Chao

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Edward Chao 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

As autonomous driving integrates with every day traffic, early adopters are initially skep-
tical and designers are overly cautious. With safety as the top priority, current systems are
sometimes too slow at executing maneuvers. Scenarios such as switching into a crowded
lane or waiting for a left turn can result in the autonomous system to wait much longer
than a human driver would. This behavior can be frustrating for passengers and confus-
ing for other drivers around. Acceptable driving style also depends on other context like
location and culture. A driver may be more forceful in a densely populated city compared
to a calmer driver from the suburbs.

This thesis explores the unsignalized pedestrian crosswalk scenario and methods that
balance safety, assertiveness, caution, and obstruction of traffic flow when interacting with
pedestrians. A configurable driving policy for the Autonomoose1 system is introduced
with results. The work adopts the lanelet [5] mapping format and introduces a method
of mapping and representing the crosswalk regulation. The main contribution of the work
is a tunable algorithmic approach for progressing through unsignalized crosswalks that
exemplifies both conservative and assertive driving behavior.

The algorithm described in this work is one of possibly infinitely many methods for
handling unsignalized crosswalks. Reinforcement learning based solutions and other hand
crafted algorithms can benefit from using the work proposed as a point of comparison.
General concepts proposed in the algorithm may inspire more robust algorithms in future
development.

1Self driving research platform at the University of Waterloo https://www.autonomoose.net/

iii

Acknowledgements

This thesis would not have been possible without the collaboration of the entire Au-
tonomoose team. Members of both WISE2 and WAVE3 have contributed significantly
toward a successful public drive.

Firstly, I would like to thank Professor Krzysztof Czarnecki my supervisor for grant-
ing me the opportunity to work with the team and guiding my learning. I would also
like to acknowledge the team members that I have worked with directly. Sean Sedwards,
Changjian Li, and Atrisha Sarkar for bouncing ideas off of and inspiring new ones. Divit
Sharma for his impressive assistance with building the map server. Matthew Pitropov,
Carlos Wang, Kevin Lee, and Danson Garcia for their expertise with in-vehicle testing.
Frederic Bouchard for developing and adapting the rule engine. Marko Ilievski, Ashish
Gaurav, and Aravind Balakrishnan for building the foundation of the behavior planner.
Michal Antkiewicz, Rodrigo Queiroz and all the coop students for all their work in simula-
tion and assistance. Nikolas Stewart for his excellent job as project manager, keeping the
team moving together toward a common goal.

2Waterloo Intelligent Systems Engineering Lab
3Waterloo Autonomous Vehicles Engineering Lab

iv

Dedication

This is dedicated to cold iron for being a light in the darkest of times.

v

Table of Contents

List of Figures viii

1 Introduction 1

2 Background 4

2.1 Autonomous Stack . 4

2.1.1 Perception and Tracking . 4

2.1.2 Mapping and Localization . 5

2.1.3 Mission Planning, Routing, and Navigation 11

2.1.4 Behavior Planning . 12

2.1.5 Motion / Local Planning . 16

3 Mapping and Behavior Planning for Pedestrian Crosswalks 17

3.1 Map representation of crosswalks . 19

3.2 Behavior planning for Crosswalks . 19

3.2.1 Environment Abstraction Predicates 20

3.3 Rules for Crosswalks . 27

3.3.1 Predicate State and Maneuvers . 29

4 Observations 36

4.1 Simulation . 36

vi

4.1.1 Defining Scenarios . 38

4.1.2 Hand Crafted Test Suite . 39

4.2 Real World Data Test Suite . 45

4.2.1 Data Capture and Annotation . 45

4.2.2 Metrics and analysis . 46

4.2.3 Real World GeoScenarios . 48

5 Conclusion 54

References 56

APPENDICES 62

A Lanelet Map Generation 63

A.1 Map Generation . 63

A.1.1 Hardware Based Mapping . 63

A.1.2 Post processing . 67

A.1.3 Satellite Imagery based data collection 69

B Rule Engine Crosswalk Rules 72

Glossary 76

Abbreviations 77

vii

List of Figures

1.1 6 levels of automation defined by SAE . 2

2.1 Sensor coverage on a Tesla Model 3 [29] . 5

2.2 Node representation including elevation . 7

2.3 Way representation with reference to 4 nodes 8

2.4 Complete lanelet representation . 9

2.5 Lanelet with connections shown in Java OpenStreetMap Editor (JOSM) . . 10

2.6 Stop sign xml representation . 11

2.7 Comparison between global path (a) and semi global path (b) on a Colby
Drive lanelet map. Path is depicted as a green line. 12

2.8 Simplest rule handling stop sign regulation at an intersection 14

2.9 An example model integrity rule . 15

3.1 4 Types of pedestrian crossovers in Ontario [41] 18

3.2 A crosswalk highlighted in JOSM including 2 stop line members and 2 ref-
erence members . 20

3.3 Lanelet crosswalk in XML representation 21

3.4 Crosswalk with reference points marked . 21

3.5 Crosswalk with unit vectors (black arrows) pointing from entrance points
(yellow) toward pedestrian (black circle) 22

3.6 Exaggerated crosswalk where dot products of unit vectors are positive . . . 22

3.7 Even-odd strategy (left); Non-zero winding strategy (right) for determining
point in polygon . 30

viii

3.8 Labeled reference points in equation 3.1 31

3.9 Four combinations of pedestrian position and walking direction 31

3.10 Crosswalk with a pedestrian in semicircle area shown on one side and rele-
vant unit vectors . 32

3.11 Vectors used for determining velocity component toward crosswalk. Dotted
arrow is real pedestrian velocity; Solid arrow is auxiliary for computing
component vector . 33

3.12 Configurable radius circle centered at the middle of the crosswalk 33

3.13 A: Approaching; B: At; C: On . 34

3.14 A: Approaching; B: At; C: On for vehicles around crosswalks 34

3.15 Time range when crosswalk is occupied; A: Currently crossing pedestrian;
B: Other pedestrian enters crosswalk; C: Time for ego to reach crosswalk
and cross . 35

4.1 Distribution of walking speeds. Frequency distribution of individual pedes-
trians’ walking speeds averaged across the survey area (n = 2613). The data
are distributed normally about the mean (1.47m

s
), with a standard deviation

of (0.299m
s

) [58] . 37

4.2 A sample GeoScenario of a large group crossing a crosswalk in front of ego 39

4.3 Pedestrians walking speeds vs. minimum gap distance for ego to cross . . . 41

4.4 Unreal simulation of pedestrians walking along the side of the road (radius
extended 2 meters) . 43

4.5 Unreal simulation of pedestrians two large groups crossing 45

4.6 Unreal simulation using trajectories recorded from above 46

4.7 PDAEE d when driver commits to crossing 47

4.8 Histogram of distances shown in figure 4.7. mean=3.36 m; stdev=1.6 m . . 48

4.9 PDFLE d when driver commits to crossing 49

4.10 Histogram of distances shown in figure 4.9. mean=2.21 m; stdev=1.15 m . 50

4.11 Pedestrian distance d and speed s when driver commits to crossing (DSBEE) 51

4.12 Approaching pedestrian distance and speed at the moment when human
drivers commit to cross. Minimum safe distance is with respect to a theo-
retical vehicle 6.4 m from crosswalk marking travelling at 20 kph. 52

ix

A.1 Lane indicator counters on a 4 lane road 65

A.2 Example plan for mapping Colby Drive in Waterloo, Ontario 66

A.3 How raw data points are repositioned offline in post processing 68

A.4 Curb lines traced in ArcGIS with visible road markings 70

B.1 Rule Engine source code for identifying time window conflict 73

x

Chapter 1

Introduction

Autonomous robotics have proved to be successful in smaller scoped, specialized, and niche
applications. Robots are conventionally designed to perform a limited set of tasks extremely
well, repeatedly over an extended period of time. One of the challenges of extending the
capabilities of a specialized robot to handle more complex tasks like driving a car is the vast
expansion of scope that it would have to consider and overcome. The possible scenarios
an autonomous vehicle can encounter is limited by the imagination. Attempts at creating
intelligent robots throughout history have failed to match the performance and intelligence
of humans. Recent advances in machine learning [1] and continued innovation in computer
hardware have opened up the floodgates of autonomous driving research. Particularly,
machine learning demonstrations have proved to be successful in areas such as perception
and decision making. These demonstrations impart confidence in researchers and inspire
funding toward further research efforts.

Safety and ethics have always been discussed around the topic of robotics and inter-
action with humans. It is especially important with autonomous cars due to the close
proximity of passenger and machine. Since so many people depend on reliable transporta-
tion on a daily basis, the impact of safety scales proportionately. As autonomous vehicle
technology matures, legislators are now examining more seriously the rules and regulations
around it and how it will impact our everyday lives. [4, 19, 56]. Society of Automotive
Engineers (SAE) have developed the 6 level system of automation for categorizing au-
tonomous driving systems. The J3016 standard levels of automation first introduced in
2016 is constantly under revision as the autonomous driving industry evolves. As it cur-
rently stands, the 6 levels of automation are summarized in figure 1.1. In level 3, the person
sitting in front of the wheel must take control when the system requests. The autonomous
system described in this thesis most closely resembles level 3 autonomy.

1

Figure 1.1: 6 levels of automation defined by SAE

With safety as the top priority, current systems are sometimes too slow at executing
maneuvers. When attempting to switch lanes for example, an autonomous vehicle may
exhibit hesitation that confuses other drivers and slows traffic. It can also cause the
failure of following predetermined routes causing delay for passengers. Interactions with
pedestrians at busy crosswalks can cause extended waiting and traffic congestion. On the
contrary, other situations call for a more conservative driving style. Autonomous driving
systems may need to be more conservative with passengers that are inexperienced to gain
their trust. Drivers can also be expected to be more cautious in school zones for example.

Following chapters touches on a couple of essential subsystems associated with ma-
neuvering around crosswalks, pedestrians, and general guidance created by the Ministry
of Transportation of Ontario (MTO). Specifically, this thesis focuses on the mapping and

2

behavior planning subsystems under the context of interaction with pedestrians at unsignal-
ized crosswalks. Following other vehicles when approaching a crosswalk and waiting behind
them are not included in the scope. In section 2, a general overview of an autonomous driv-
ing system colloquially referred to as the stack is presented. A more detailed introduction
to mapping explains how the road environment is represented in section 2.1.2. One of the
contributions in this section is a method of generating small scale lanelet maps. Closely
integrated with mapping is behavior planning and is introduced in section ??. The stack
as a whole engages pedestrians and crosswalks in section 3. this section contains the main
contribution; the tunable driving policy for navigating through crosswalks. Simulation re-
sults based around Unreal Engine and real world data based testing is discussed in section
4.

3

Chapter 2

Background

2.1 Autonomous Stack

The autonomous stack refers to the architectural design of the system. Like in other
large hardware/software system, there are multiple viable options and selection of one is
usually associated with making trade offs. As more research effort continues in autonomous
driving, a common pattern and general consensus on what defines a conventional stack has
emerged [34, 30, 56]. Fundamentally, the stack must perceive its surroundings, understand
where it is located, and safely command the mechanical system to execute missions safely
and comfortably1. An example of a mission could be to take the passengers from A to B
without breaking any rules of the road, while minimizing distance travelled. The following
sections introduce the main subsystems of a stack as a precursor for handling crosswalks.

2.1.1 Perception and Tracking

The goal of perception and tracking is to gain an understanding of the immediate domain in
which the system operates. It attempts to identify and classify features of the environment
that are important for successfully executing missions. Some examples of features include
pedestrian location and velocity, cyclists, and other miscellaneous obstacles.

Methods of perception are varied with each having their own benefits and disadvantages.
A Light Detection and Ranging (LIDAR) sensor for example has the ability to directly sense

1comfort is subjective

4

the location including distance of an obstacle in 3 dimensions. It also has the ability to
operate in any lighting condition. A limitation of LIDAR is the ability to perceive color.
Because of this, standard visible light spectrum cameras are complementary to LIDAR.
Other sensors include Radio Detection and Ranging (RADAR) and ultrasonic. Figure 2.1
below shows the coverage of the sensor suite including 8 cameras, 12 ultrasonic sensors for
detecting hard and soft obstacles, and a forward facing radar that enables Tesla’s Autopilot.

Figure 2.1: Sensor coverage on a Tesla Model 3 [29]

Naturally, instantaneous detection is insufficient for the task of driving a car. It is criti-
cal to observe how features progress throughout time in order to make proactive decisions.
The tracking module processes detections and produces a pseudo-continuous temporal un-
derstanding of how features advance through time. For example in a scene of 2 pedestrians
walking, the tracking module repeatedly takes instantaneous detections of the pedestrians
and labels each one by a unique identifier. Their identifiers are locked on to each pedes-
trian throughout the sequence. The tracker may also provide secondary information such
as velocity or acceleration and prediction of future trajectory.

2.1.2 Mapping and Localization

The purpose of mapping is to consolidate relevant environment features into a format that
is readily consumable by the rest of the system. Where perception captures dynamic ele-

5

ments, mapping aims to capture static elements that are unlikely to change over time. A
map may contain relevant details such as the location and category of road markings, loca-
tion of curbs, location of traffic signs, and other regulatory elements [12]. Fundamentally,
mapping represents the world as a high definition abstraction that only carries relevant
information. Depending on system architecture, the level of detail can vary. Typically,
global mapping aims to store information about traditionally static2 road features. As
a result, the map is generally understood to be unchanging or at the very most, infre-
quently. Localization compares the immediate surrounding with features in the map to
probabilistically identify where the vehicle is. This form of localization depends on having
a preexisting map on which it can compare measurements.

Another form of mapping and localization is commonly known as Simultaneous Local-
ization and Mapping (SLAM) [8]. As the name suggests, this type does not necessarily
depend on a prepared map. It attempts to build a map of the environment as it explores
it for the first time. This for example is analogous to a person finding his way through a
building that he has never been in before. The layout of the building is remembered so
that he knows when he has returned to an area already seen before. The level of planning
is local i.e. go straight as to not walk into a wall as opposed to a higher level planning
i.e. go upstairs to get to the lunchroom. Since SLAM is an online process, it consequently
maps dynamic features of the environment. For example, SLAM on an autonomous vehicle
would include location of traffic cones, temporary barriers, and other unexpected elements
that may affect behavior planning.

The distinction made here is to clarify that the mapping discussed in later chapters
refer to the former global mapping rather than SLAM.

Lanelet Maps

Originally developed by Bender et al.[5] and further refined [43], the lanelet structure
defines an efficient human readable representation of the static environment. By design,
the format naturally allows for both geometrically and topologically accurate maps. Its
simplicity makes extensions easy and intuitive. Details can be customized for extraneous
scenarios. In chapter 3, the original lanelet format is extended to include crosswalks.
Processes developed for generating small-scale lanelet maps is discussed in further detail
in appendix A.

Lanelets have been proven in the autonomous driving domain, and the format was
the cornerstone of the Bertha drive [60] with over 100 kilometers, intersections with and

2colloquially fixed throughout time

6

without traffic lights, roundabouts, narrow sections, through 23 small villages and major
cities.

Nomenclature

Since the lanelet format was inspired partly by the osm format [23], there are some com-
monalities between the two. The atomic element of the lanelet format is a node. A node is
a single point that specifies a position in the world described by a latitude and longitude
coordinate. Additional properties can be tagged on a node to augment interpretation. Ele-
vation or altitude is an example of an additional property that is often tagged on nodes. A
node with elevation represents a position in 3 dimensions and therefore can be referenced
by multiple coordinate frames. More informed decisions can be made by knowing elevation.
For example, rising elevation along a route can be identified as a hill climb and driving
behavior can accommodate for the grade. An accurate acquisition of elevation is difficult
because GPS measurement is more suited for position along the earth’s surface.

The lanelet map is represented in xml file format, and specifically follows the osm data
format. An example of a node is shown in figure 2.2.

<node id=’-1123941’ lat=’43.5014638934’ lon=’-80.5366403762’>

<tag k=’elevation’ v=’308.722194092’ />

</node>

Figure 2.2: Node representation including elevation

Two ordered nodes define a line segment, which is referred to as the basic way. Ways
are line segments composed of two or more ordered nodes. The ordering of nodes is a
topological property and does not have any geometrical constraints. Because of this, ways
can cross itself; however, self crossing ways are uncommon for representing road structure.
Like nodes, additional properties can be tagged to ways if necessary. The maps used by
the autonomoose system do not rely on additional properties on ways. Figure 2.3 is an
example of a way in xml format. Since ways are defined by individual nodes and are hence
piece wise linear, curvature is undefined. A method for finding the closest distance of a
point to a way is introduced in the original lanelets publication. The approach interpolates
tangential vectors along a way to achieve a pseudo-tangent. The magnitude of this pseudo
tangent vector approximates the distance of a point to the way. It approximates the piece
wise linear way as a smooth continuous line and computes the shortest distance of a point
to that line. This can be used to determine for example the distance of the ego vehicle from

7

the edge of the road and hence facilitate lane centering. For the purpose of lane centering,
autonomoose maps are augmented with explicitly defined center ways for all drive lanes.

<way id=’-1145270’>

<nd ref=’-1123941’ />

<nd ref=’-1132261’ />

<nd ref=’-1132263’ />

<nd ref=’-1132265’ />

</way>

Figure 2.3: Way representation with reference to 4 nodes

The minimal lanelet is defined by two ways, conventionally named ’left’ and ’right’.
Lanelets can represent a multitude of different road elements. The most primitive is its
use in representing drive lanes, although there is no restriction on how a lanelet can be
used. As long as a road element can be represented by 2 polyline boundaries, it can be
expressed as a lanelet. Examples of non drive lane lanelets include: bus stop areas, bike
lanes, and road dividers. The semantic identity of a lanelet depends on the properties that
are assigned to it. Lanelets can be as short as 1 meter or as long as many kilometers.
The length of a lanelet depends on the properties that apply to it. Properties applied to a
lanelet are constant and so affect ego’s behavior throughout its entire length. An example
of a property is the speed limit on drive lanes. When the speed limit changes, the lanelet
must end and another lanelet must begin to reflect the change in property.

Figure 2.4 illustrates a drive lane lanelet, which is a longitudinal section of a drive lane.
Driving direction is implied by the ordering of the nodes in the ways that are referenced by
a lanelet. Since two lanelets with opposite driving direction can share their left way, the
ordering of nodes in the shared left way is not used. This often appears when there exists
two drive lanes in opposite direction on a two lane road. Right side driving roads in North
America can reliably depend on the right side way node ordering for driving direction.

Connections effectively build the road network by referencing drivable transitions from
one lanelet to another. Connections of a lanelet to another are represented as left, right,
next, and previous members of the given lanelet. These connections define purely topo-
logical relations and do not represent legal transitions. For example, 2 adjacent lanelets
of opposite direction can both refer to one another with left connection members. This
does not mean a vehicle can legally lane change from one to the other, but rather to in-
dicate that there is a lanelet present which is to its left. Lanelets may have multiple next
and previous connections for representing many paths a vehicle can take. At a four way

8

<relation id=’-1145345’>

<member type=’way’ ref=’-1145270’ role=’left’ />

<member type=’way’ ref=’-1145255’ role=’right’ />

<member type=’way’ ref=’-1145290’ role=’center’ />

<member type=’relation’ ref=’-1145344’ role=’left’ />

<member type=’relation’ ref=’-1145357’ role=’next’ />

<member type=’relation’ ref=’-1145358’ role=’next’ />

<tag k=’lane_type’ v=’driving’ />

<tag k=’left_marking’ v=’none’ />

<tag k=’name’ v=’-61099’ />

<tag k=’right_marking’ v=’none’ />

<tag k=’speed_limit’ v=’50’ />

<tag k=’type’ v=’lanelet’ />

</relation>

Figure 2.4: Complete lanelet representation

stop sign intersection for example, a lanelet entering the intersection can have three next
lanelets: one for going straight, one for left turn, and one for right turn. Figure 2.5 shows
an example of such a lanelet in the JOSM editor. The main lanelet is highlighted in red
and the connecting lanelets are highlighted in purple. In this case, there are two next
lanelets, one for straight and one for right turn.

Some road rules can be embedded in lanelets through property tags, but more elaborate
rules require additional elements. Regulatory elements are different from lanelets in that
they do not follow the conventional referencing of a left and right way. These elements are
applied to lanelets through the use of member tags in the affected lanelet. A single lanelet
can refer to multiple regulatory elements. An example of a road rule that is expressed by
a regulatory element is a stop sign. The regulatory element is defined by a type as well
as additional entities that determine where or when it is relevant. A node and a way that
indicates the position of the stop sign as well as the position of the stop line, respectively,
are used to represent a single stop regulation. Figure 2.6 is an example of a stop sign
regulatory definition.

Additional regulatory elements such as pedestrian crosswalks, traffic lights, and speed
bumps can be added to the lanelet map definition simply by referring to them in the lanelet
on which it affects. Section 3 goes over the pedestrian crossings regulatory element in detail
and how it is represented using the lanelet format.

9

Figure 2.5: Lanelet with connections shown in JOSM

Map Server ROS Node

The map server Robot Operating System (ROS) node is the main component responsi-
ble for providing the road network to other modules within the autonomous stack. The
responsibilities of the map server also include mission planning, and route generation. Ad-
ditionally the map server provides a service for querying the current lanelet that the vehicle
is located in.

As mentioned earlier, in section 2.1.3 mission planning is associated with higher level
route planning more similar than others to human level planning. Consequently, the mis-
sion plan is directly input from the user. The mission is specified in GPS Exchange Format
(GPX) format and contains an ordered list of nodes. These nodes represent goal points
and the order in how they should be reached. The nodes in the mission plan must be
within the boundary of a lanelet polygon in order to localize it within the map.

The complete lanelet map is another input to the map server and is parsed into semantic
elements. Next, left, right, and previous connection references in the map connect lanelets
into a graph that can be searched using common graph search algorithms. Dijkstra’s
algorithm [15] is implemented to find the shortest path from one goal point to the next.
Edges in the graph get their length directly from the length of the lanelet. This length can

10

<relation id=’-1145343’ visible=’true’>

<member type=’node’ ref=’-1130597’ role=’position’ />

<member type=’way’ ref=’-1145323’ role=’stop_line’ />

<tag k=’regulation’ v=’stop’ />

<tag k=’type’ v=’regulatory_element’ />

</relation>

Figure 2.6: Stop sign xml representation

be augmented with additional information such as speed limit, or typical traffic congestion.
Graph search algorithms are frequently improving, with recent proposals include ALT*
[21], and REACH [22]. For the size and scope of the graphs that are used in this system,
Dijkstra’s algorithm is sufficient.

The global path is constructed by concatenating the center line points of lanelets found
by Dijkstra’s algorithm. The global path contains points from the very first lanelet to the
very last lanelet. A semi global path contains only the next points within a configurable
distance from ego’s position. The purpose of the semi-global path is to prevent the path
input to the motion/local planner from crossing itself. For example, if the global path
resembles a figure 8 loop, the path crosses itself in the middle. The semi-global path would
only make available enough points for motion planning but limited to prevent the path
from crossing itself. Figure 2.7 shows the difference between global path and semi global
path.

2.1.3 Mission Planning, Routing, and Navigation

Mission planning generally operates at the level of human communication [42]. Mission
planning makes decisions at the highest level for example getting off at the next ramp on
a freeway or making a left turn at the next intersection. This means it is most suitable for
direct interaction with the passengers. Depending on system architecture mission planning
can be further divided into finer decisions at the lane level. Routing and navigation for
example makes more local decisions such as ”merge into the left lane in the next 300
meters”.

11

(a) (b)

Figure 2.7: Comparison between global path (a) and semi global path (b) on a Colby Drive
lanelet map. Path is depicted as a green line.

2.1.4 Behavior Planning

Behavior planning receives information from the subsystems above and makes decisions
to execute the mission generated by the mission planner [42]. In the context of the ego
vehicle’s local decision making, behavior planner outputs relatively higher level maneuvers
that are further interpreted to produce vehicle control. A loose analogy to manual driving
are decisions that a person would make when cruising down a freeway. Decisions such as
slow down to maintain distance from a leading vehicle or overtake leading vehicle because it
is too slow. The number of available maneuvers and their function are a design specification
but may include for example: stop, continue in current lane, left lane change, right lane
change, and follow leading vehicle. Behavior planning is one of the main subsystems related
to handling pedestrians at crosswalks.

Maneuvers instruct the local planner through a number of different ways. Behav-
ior planning consumes the abstract environment around ego represented by the map and
dynamic objects provided by the tracking system. These features are summarized and
converted into a format containing a set of predicates further abstracting the environment.
Predicates are then processed through a set of rules in a system known as the rule en-
gine and returns a maneuver depending on the rules that are satisfied by the predicates
it receives. Decisions provided by the rule engine are further packaged with auxiliary in-
formation to finally produce one of many maneuvers available by the behavior planner.

12

Complete documentation of the rule engine for behavior planning is available at [7].

Maneuvers

1. Track Speed : This maneuver is the most common as it is what instructs the motion
planner to drive toward the goal. This behavior provides a target speed to track,
generally the speed limit of the road. Since this behavior is not concerned with other
road users or the state of the road, it is least constrained and is of lowest priority.

2. Decelerate to stop: This maneuver is intended for purposes of non urgent stopping.
An example of when it might be used is gradual stopping for a stop sign. This
behavior is packaged with a stopping point where ego vehicle’s speed should be 0
once it reaches the point.

3. Stop: This maneuver is intended to keep the vehicle stationary once it has stopped
moving. The implicit stopping point packaged with this maneuver is the current
location of the vehicle.

4. Yield : This maneuver is intended for scenarios where the ego vehicle does not have
the right of way. An example of where this might occur is at stop sign intersections.
This maneuver is packaged with a list of dynamic objects that ego should yield to.
Packaging dynamic objects help during debugging to explain why the system decided
to stop.

5. Parked vehicle avoid : This maneuver is intended to overtake vehicles that are parked
by the side of the road blocking the ego vehicle’s path. The message is associated
with a list of vehicles that are marked as parked.

6. Lead vehicle follow : This maneuver is intended for following a vehicle that is directly
in front of ego. It differs from track speed in that it must also consider the distance
from the lead vehicle as well as the speed limit.

7. Emergency stop: This maneuver is designed to represent edge cases where the state
of predicates are foreign in the rule engine’s predicate domain. An example of a
predicate state that may trigger this maneuver is when a pedestrian is not localized.
Consequently, the rule engine does not know where the pedestrian is so decisions
cannot be safely made.

13

Rules

The rule engine is a system based around a collection of rules that evaluate its input
predicates independently and collectively vote for a final output maneuver. Its architecture
is based off the lambda architecture [39]. Approximately 150 rules map abstract states to
maneuvers together forming expectations, constraints, and overall decision making. Below
are 2 examples that demonstrate how rules operate on predicates provided by behavior
planning.

Figure 2.8 is an example of one of the rules designed for managing 4-way stop sign
intersections. The rule is defined by an identifier, a target maneuver, a description, and
the qualifying state of predicates that triggers the rule. One of the predicates included
indicates approaching an intersection. The approaching predicate is further discussed with
respect to crosswalks in section 3.2.1 and 3.2.1. Another predicate under the travel group
indicates the affecting regulation is a stop sign. The rule translates to: under the condition
that ego is approaching an intersection and is affected by a stop sign, the target maneuver
voted for by this rule is decelerate to halt. If the decelerate to halt maneuver is selected
resulting from this rule’s vote, the maneuver is packaged with additional details. The
decelerate to halt maneuver is packaged with a stopping point as mentioned in section
2.1.4.

Figure 2.8: Simplest rule handling stop sign regulation at an intersection

14

Figure 2.9 is one of many rules regarding model integrity. This rule excludes the pos-
sibility of more than 1 dynamic object (vehicle/pedestrian) marked as the leading object.
It is certainly possible in the real world to see 2 vehicles driving side by side in the same
lane if it is wide enough however this rule explicitly limits the system and does not handle
that scenario. Anything that exceeds the expectations of the rule engine may be a source
of a bug or unexpected behavior.

Figure 2.9: An example model integrity rule

With around 150 rules voting for output maneuvers, the rule engine decides on the
final output by look-up in a precedence table where the maneuvers are ordered based on
urgency. Maneuvers of higher urgency are chosen over ones of lower urgency regardless of
the number of votes. A single vote for a more urgent maneuver such as emergency stop is
selected over many votes for a less urgent one like track speed. If RMI1 in figure 2.9 and
RIS3 in figure 2.8 are both triggered, emergency stop is ultimately the output maneuver
because emergency stop has higher precedence over decelerate to halt. The ordering of
maneuvers is listed below from highest precedence first to least:

15

1. Emergency stop

2. Stop

3. Yield

4. Decelerate to halt

5. Overtake vehicle

6. Follow leader

7. Track speed

2.1.5 Motion / Local Planning

Motion planning refers to the lowest level software control in the conventional autonomous
stack [42]. We do not consider the vehicle’s internal control systems interconnected by the
LIN or CAN bus to be apart of the autonomous stack since they preexist the autonomous
vehicle era and is present regardless of whether or not the vehicle is autonomous.

Local planning aims to execute maneuvers dictated by behavior planning. It converts
high level command to low level command by controlling steering and acceleration. This
is usually where non-holonomic constraints and kinematic models are used to generate
feasible paths that can be physically executed. Passenger comfort can be incorporated at
this level as constraints and requirements such as: maximum lateral acceleration, maximum
or nominal longitudinal acceleration, collision avoidance, safety, and comfort to name a
few.

16

Chapter 3

Mapping and Behavior Planning for
Pedestrian Crosswalks

A crosswalk in the context of this thesis is defined as a cross sectional area of the drivable
lanes that are clearly marked for pedestrians to cross from one side of the road to the
other. In general, crosswalks may be supported by overhead lights which may be activated
by pedestrians. These crosswalks are out of the scope of this discussion because the current
system does not rely on perceiving flashing signal lights. The MTO identifies a crosswalk
by pedestrian crossing signs, pavement markings, and lights. Figure 3.1 show the 4 types
of pedestrian crossovers present in Ontario. Only the upper right crosswalk configuration
is considered as the other three have some form of light signal.

The majority of interaction the autonomous vehicle faces at crosswalks involve pedes-
trians. There is always the possibility in any case of encountering other road users such
as following other vehicles, cyclists, and pedestrians on scooters or skateboards. Although
the current state of the rule engine is capable of vehicle following, interaction with pedes-
trians is the main topic with vehicle following as a minor extension. Additional variation
of crosswalks sometimes do not span across the entire width of the road. The crosswalks
considered in the following discussion refer to only those that span from one side of the
road to the other. The specificity of type of crosswalk that is handled is because it is the
only type of crosswalk that is present in the considered Operational Design Domain and
on Ring Road at the University of Waterloo. Absence of any light signalling also provides
pure pedestrian-driver interaction.

The expectation is that pedestrians within range of a crosswalk can choose to either
cross or not cross. Pedestrians that choose to cross the road are expected to use the nearest

17

Figure 3.1: 4 Types of pedestrian crossovers in Ontario [41]

crosswalk instead of jaywalking. Jaywalking is loosely defined as crossing the road farther
than approximately 1 meters from the edge of the marked boundary of a crosswalk. Some
uncommon but not impossible scenarios include sprinting across the crosswalk, pedestrian
stopping on the road while crossing, and pedestrian walking back and forth on the road
along the crosswalk. Scenarios are further discussed in section 4.

Jaywalking is similar to using a crosswalk in that pedestrians leave one side of the road
to get to the other however they are different with respect to the right of way. Pedestrians
have the right of way where pedestrians can be expected with higher likelihood of crossing
at crosswalks. With jaywalking on the other hand, the autonomous vehicle has the right
of way and follows a different driving policy because pedestrians are expected to wait at
the edge of the road. This chapter aims at handling common crosswalk scenarios while
considering the possibility of unlikely scenarios. Explicit jaywalking is not included in the

18

scope of this thesis.

3.1 Map representation of crosswalks

Lanelets2 [43] briefly describe pedestrian crosswalks represented as lanelets elements with
a left and right way/linestring without explicit example. This section introduces the cross-
walk designed as a regulatory element with supporting detail.

Crosswalks are represented in the lanelet map by a minimum number of elements, in-
cluding only those that are present on the road. Crosswalks contain 2 boundary edges that
outline the area of the road where pedestrians can cross as well as stop lines where the
vehicles should stop for pedestrians. Figure 3.2 and 3.3 shows the 4 ways that together
represent a crosswalk. In the lanelet map, crosswalks are regulatory elements that are
referenced by the lanelets they affect. On Ring Road, a standalone crosswalk is referenced
by two lanelets, one in either direction because Ring Road is a 2 lane road. Since the
crosswalk regulatory element contains two stop lines, behavior planning is responsible for
identifying the relevant stop line affecting ego. To account for pedestrians that walk near
the crosswalk but outside of its ground marking, crosswalk bounds are relaxed by approx-
imately 1 meter on both sides. Figure 3.2 shows 4 different lanelets that are separated by
the stop lines creating a staggered result.

Alternatively, it would be simpler for behavior planning to represent a crosswalk on Ring
Road with 2 separate regulatory elements, each one affecting their own respective lanelet.
Using this representation, there would be a 1 to 1 relation between stop line and regulatory
element. This eliminates the burden on behavior planning to identify which stop line affects
ego’s current lanelet. The trade off between detail in the map and additional processing
in the behavior planner is between map complexity, and behavior planning complexity. A
single regulatory element per crosswalk is chosen because it maintains consistency between
the map and real world.

3.2 Behavior planning for Crosswalks

The main goal for navigating through crosswalks is to identify when an area is free for ego
to drive through. There are many possible strategies that accomplish the task, for instance,
waiting until the crosswalk is clear first before proceeding. The selected approach is based
on windows of time; crossing only when ego’s window of time does not overlap with any

19

Figure 3.2: A crosswalk highlighted in JOSM including 2 stop line members and 2 reference
members

pedestrians’ window of time. To carry out this approach, 2 main predicates are used to
abstract the environment for the rule engine to consume. The predicates are converted
into windows of time and checked for conflict.

3.2.1 Environment Abstraction Predicates

Predicate design balances complexity between predicate generation from the sensed envi-
ronment and predicate evaluation in the rule engine. For the purpose of pedestrian cross-
walks, two main predicates are identified to reduce scenarios into an easily manageable
scope.

The predicates rely on a number of special reference points. Figure 3.4 is a crosswalk
annotated with these reference points. Crosswalk entrance points (yellow) are the center
points between the 2 bounds of the crosswalk on either side of the road. The crosswalk

20

<relation id=’-1110798’>

<member type=’way’ ref=’-1110642’ role=’reference’ />

<member type=’way’ ref=’-1110643’ role=’reference’ />

<member type=’way’ ref=’-1110645’ role=’stop_line’ />

<member type=’way’ ref=’-1110644’ role=’stop_line’ />

<tag k=’elevation’ v=’298.0’ />

<tag k=’regulation’ v=’pedestrian_crossing’ />

<tag k=’type’ v=’regulatory_element’ />

</relation>

Figure 3.3: Lanelet crosswalk in XML representation

center point (green) is calculated from the average of the 2 crosswalk entrance points. The
red points along the top and bottom edge of the crosswalk are used to calculate the exit
time of crossing pedestrians. Their usage and further detail is discussed in the next section.

Figure 3.4: Crosswalk with reference points marked

Predicate - Time for pedestrians in the crosswalk to exit

One of the main predicates is the estimated amount of time for currently crossing pedes-
trians to exit the crosswalk area. In this context, the crosswalk area may refer to the
entire crosswalk or only part of it that is closer to ego. Depending on parameters discussed
in later sections, the crosswalk area refers to an area that is deemed relevant. The first
challenge is identifying pedestrians on the crosswalk. An attempt at this based on the
principle of dot products uses 2 unit vectors. One from each crosswalk entrance point is
drawn toward the pedestrian. The dot product between these 2 vectors is negative when
the pedestrian is on the roadway and positive when it is off the roadway. This is illustrated
in figure 3.5.

21

Figure 3.5: Crosswalk with unit vectors (black arrows) pointing from entrance points
(yellow) toward pedestrian (black circle)

In theory, the dot product polarity successfully identifies the position of a pedestrian;
however, in practice road geometry is not exactly rectangular. In reality, crosswalks are
parallelograms and sometimes distorted closer toward trapezoids. This approach fails to
identify pedestrians on the crosswalk shown in figure 3.6.

Figure 3.6: Exaggerated crosswalk where dot products of unit vectors are positive

Another approach for determining whether a pedestrian is on the crosswalk is with
methods of computational geometry, determining whether the pedestrian lies within the
area of the polygon enclosed by the crosswalk boundary ways. The even-odd rule states
that a point P is within the polygon if a straight line projected in any direction from P
crosses the polygon boundary an odd number of times under the condition that the line
does not pass through any vertex. A pedestrian is not on the crosswalk if a line projected
from P crosses the polygon boundary an even number of times. Another strategy is called
“non-zero winding”; where a straight line is projected again from the pedestrian point P. In
the winding strategy, the direction of each edge of the polygon is used. For each clockwise
intersection of the polygon edge with the straight line projection, add 1. Subtract 1 for
each counter-clockwise intersection. If the value after all intersections with the curve is
0, the point is in the polygon. Figure 3.7 illustrates both strategies. In the implemented
source code, point in a polygon is computed using the boost geometry library [3] with the
default “non-zero winding” strategy. A pedestrian on the edge of the crosswalk polygon is
considered to be on the crosswalk.

The crosswalk is split longitudinally along the road into 2 sides: ego’s side of the road

22

and other side of the road. Ego’s side of the road is the side of crosswalk where ego would
enter as it drives through the crosswalk. The boundary between the 2 sides is determined
by 2 points, 1 along each crosswalk bounding way. Figure 3.8 shows a crosswalk boundary
with reference points A and B. A point along this boundary is selected based on parameter
theta with the affine combination in equation 3.1. The same parameter theta selects the
point along the other boundary. The side of A is selected to be further away from ego. In
the figure, ego would be traveling upward along the right side. These 2 resulting points
dictate the position of the boundary line between ego’s side of the crosswalk and the other
side.

P = θA+ (1− θ)B (3.1)

With regards to crossing pedestrians, there are 4 categories illustrated in Figure 3.9:
2 directions and 2 sides of the crosswalk allowing for 4 total combinations. The figure
illustrates the ego vehicle on the right side of the road and the crosswalk divided between
ego’s side of the road and the other side. Pedestrian 1 and 3 are on the side away from
ego separated by the line drawn across the points acquired from above. Pedestrian 3 can
be safely ignored since it is not on ego’s side of the road and walking away from ego. Note
that MTO suggests that vehicles should yield for pedestrians throughout the entire span
of the crosswalk from curb to curb. Adjusting the parameter theta in equation 3.1 allows
the ego vehicle to drive with a range of behavior. Pedestrian 4 is considered to be off
the crosswalk by the time it reaches the dividing line between ego’s side and other side.
Pedestrians 1 and 2 are considered to be off the crosswalk when they reach the right edge
of the crosswalk. Pedestrians are considered stopped when their speed is below the tracker
noise threshold of 0.3 meters per second. In this case, a stopped pedestrian on ego’s side
of the road produces an infinite time to exit while a stopped pedestrian on the other side
produces a time to exit of 0. Consequently, a pedestrian stopped on ego’s side of the road
causes ego to wait indefinitely and a stopped pedestrian on the other side of the road is
ignored. Since the algorithm operates at 10 Hz, as soon as the pedestrian begins moving,
it will be allocated a reasonable time to exit crosswalk and no longer ignored. When a
pedestrian enters the crosswalk area, a time to exit crosswalk is computed.

Time is computed as the distance over velocity outlined in equation 3.2 where distance
d is the shortest distance between a point to a line. The velocity v used in computing
time is the component of pedestrian velocity along the vector from one crosswalk entrance
to the other. This works ideally for perfectly rectangular crosswalks and works well as an
approximation for crosswalks resembling more of a trapezoid.

23

t =
d

v
(3.2)

When there are multiple pedestrians crossing simultaneously, the time to finish crossing
is computed for each and the max is taken. By considering only the maximum time to
finish crossing, all pedestrians that are crossing are abstracted to a single variable. When
there are no pedestrians currently crossing the crosswalk, a default value of 0 seconds is
set to represent the empty crosswalk.

Predicate - Time for pedestrians to enter crosswalk

The other main predicate is the estimated time for a pedestrian to enter the crosswalk.
This predicate allows the rule engine to determine whether there is enough time for ego to
drive through the crosswalk before any pedestrian enters.

The first step is to identify pedestrians around a crosswalk that may potentially cross.
A semicircle is drawn around each crosswalk entrance for determining whether to ignore
detected pedestrians or not. Figure 3.10 illustrates a crosswalk with a semicircle shown on
the left side.

Pedestrians that are not in the area bounded by the semicircles are excluded from fur-
ther consideration. Since the semicircle is not explicitly marked in the map, it is extrapo-
lated from the yellow entrance reference points in figure 3.4. This is effectively achieved by
the intersection of 2 sets. The polarity of the dot product between a unit vector from one
crosswalk entrance to the other and another unit vector from the crosswalk entrance to the
pedestrian position selects the half space off of the road. If the dot product is positive, then
the pedestrian is unlikely to be on the roadway. If also the distance of the pedestrian from
the closest entrance center point is within a certain value, then the pedestrian is within
a circle around the closest crosswalk entrance. Consequently, the pedestrian is within the
area of the semicircle. The same operation is done on both sides by swapping the roles of
the control points.

Pedestrians that fall within the semicircles are further filtered based on direction of
travel. Only movement is examined for this filter because it is the only reliable input
available. Other studies investigating whether a pedestrian will enter the road use learned
models to predict future trajectory [20, 48, 26]. Pedestrians moving away from the cross-
walk suggest they will not enter. The classification of a pedestrian moving toward or away
from the crosswalk is determined by its velocity component in the direction toward the
center of the crosswalk. Equation 3.3 is used to compute the component shown in Figure

24

3.11. Vector a points from the pedestrian position to the center of the crosswalk and is
shown as the solid arrow in Figure 3.11. Vector b is the pedestrian velocity vector shown as
the dotted arrow. When a pedestrian’s velocity is on the scale of measurement noise, i.e.
less than 0.3 meters per second, it is not excluded. This is useful for identifying pedestrians
waiting to cross.

comp~a~b =
~a ·~b
|~a|

(3.3)

The list of qualifying pedestrians is then analyzed for approximating the time to enter
crosswalk predicate. The operation is instantaneous extrapolation of velocity at the oper-
ating frequency of behavior planning which is around 10 Hz. Similarly for approximating
time for pedestrians to finish crossing, the entering time estimate is computed by equation
3.2.

Distance to the crosswalk is expressed by the shortest distance to a circle centered at the
crosswalk center with a configurable radius. Figure 3.12 illustrates an example of a circle
centered at the crosswalk. The radius is another configurable parameter that facilitates
the selection of driving assertiveness.

This formulation of distance accounts for pedestrian paths that slightly cut the corner
when entering the crosswalk since the size of the crosswalk is effectively expanded to cover
those corners. This formulation along with the slightly expanded crosswalk boundaries
captures a smooth transition from off-road to crosswalk without gaps in between. Notice
in Figure 3.12 there is a section of the circle that overlaps with the sidewalk. This area is
important for the other auxiliary predicates discussed below.

Estimation of time to enter crosswalk is done for each filtered pedestrian and the min-
imum time is selected. Since only one time is truly relevant, the simplification to one
variable alleviates the rule engine from having to accommodate for an arbitrary number of
pedestrians. When there are no pedestrians around the crosswalk entrances, the estimated
time to enter defaults to a large number.

Auxiliary Predicates - Pedestrians

Dynamic objects around crosswalks are localized with respect to the crosswalk to provide
the rule engine with additional information for making decisions. The three main predicates
for localizing dynamic objects are approaching, at, and on.

25

As the name suggests, the approaching predicate identifies an area where a pedestrian
is considered as approaching. All pedestrians in the semicircle areas around a crosswalk’s
entrance described in section 3.2.1 are considered as approaching the crosswalk. This does
not translate to an overly conservative driving policy because of the other predicates in
place.

The at and on predicates originate from the use case of intersections. A vehicle deemed
to be at an intersection is one that is at the boundary of the intersection area whereas a
vehicle that is on the intersection is within the intersection area. The definition of the
intersection area is not relevant to crosswalks.

All pedestrians that are within the semicircle areas of crosswalks are assigned the ap-
proaching crosswalk predicate with an exception. Pedestrians that are within the semicircle
area and within the circle centered at the crosswalk center are assigned as at crosswalk.
Particular interest is paid to pedestrians that are at the crosswalk. Firstly, when a pedes-
trian is close enough to the entrance of a crosswalk, it is assumed the pedestrian intends
to cross and is waiting. When a pedestrian is at the crosswalk and not walking away from
the crosswalk, the time to enter for that pedestrian is by default 0 seconds. This forces the
autonomous vehicle to stop for the waiting pedestrian. Again, this does not directly result
in an overly conservative driving policy when considering pedestrians that are leaving the
crosswalk because of how pedestrians are filtered. Advanced methods relying on alternative
means of perception incorporate features like body language [31] and may produce more
realistic behavior. Pedestrians that have recently left the crosswalk will also step into the
at crosswalk zone but they are removed from consideration so they are not marked with
at crosswalk.

Pedestrians are labelled as on crosswalk when they satisfy the same conditions dis-
cussed in section 3.2.1. Figure 3.13 shows the 3 regions where pedestrians are marked as
approaching, at, and on crosswalk.

Auxiliary Predicates - Vehicles

Approaching, at, and on are used to localize vehicles around crosswalks as well. Vehicles
are assigned approaching a crosswalk when the lanelet they are currently in has a cross-
walk regulatory element affecting it and the vehicle is within a certain distance from the
crosswalk stopping line. Study has shown that drivers respond to jaywalkers at around 26
meters away [59] therefore, vehicles are set to be approaching a crosswalk when they are
within 30 meters before the stopping line.

26

A vehicle is at a crosswalk when it is within 5 meters before the crosswalk stopping
line. Because the crosswalk regulatory element has multiple stopping lines, the relevant
line is found by closest distance from ego. The uncertainty is a consequence of representing
a crosswalk by only 1 regulatory element. A vehicle is set to be on the crosswalk when
it is within 10 meters after the stop line of that crosswalk but can be set to be dynamic
depending on crosswalk width. Since lanelets end at crosswalk stop lines, this is equivalent
to 10 meters within the start of the next lanelet. Figure 3.14 illustrates the areas of interest
for vehicle crosswalk localization on a 2 lane road for both directions.

3.3 Rules for Crosswalks

The rule engine combines desirable action in mini scenarios together to form the final
driving policy. Rules are translations of common sense reasoning in specifically defined
environment states. For instance, it is common sense to drive through a crosswalk when
it is free, and to stop when it is not. This behavior is embedded in rules with the use of
the two main predicates from section 3.2.1.

Before the main predicates are sent to the rule engine, the times are converted into a
time spans that represent when the crosswalk is busy. In the case of no pedestrians currently
crossing, the time range is [time to enter, inf]. Infinity is used as the upper bound because
it is uncertain when the pedestrian will finish crossing. When the pedestrian enters the
crosswalk, the time to finish crossing predicate takes over. This leaves an opening for ego
to cross before the pedestrian reaches the crosswalk if the time to enter is large enough. If
there are no pedestrians entering the crosswalk, the range is reduced to [inf, inf] effectively
leaving the crosswalk completely open to cross. When a pedestrian is currently crossing
and is expected to leave the crosswalk before any new pedestrians enter, the time ranges
are [0, time to cross] and [time to enter, INF]. 0 is the lower bound representing the current
time and the time to cross blocks the crosswalk. If a pedestrian A is currently crossing and
a new pedestrian B is expected to enter before A finishes, the time range is set to [0, INF].
The pseudo code is displayed in algorithm 1. The windows of time are implemented as a
list of lower bounds and a list of upper bounds. A lower bound state of [0, 10] and upper
bound state of [5, INF] means the crosswalk is busy from 0 to 5 seconds, free from 5 to
10 seconds, and busy again from 10 seconds to infinity. Figure 3.15 illustrates a potential
state with 2 busy windows of time.

The implementation with multiple time ranges make extension for crosswalks at in-
tersections feasible. Additional blocking time ranges can be appended for each crosswalk

27

Algorithm 1 Convert to range

1: procedure Convert to Range(timetoenter, timetoexit)
2: lowerbounds← []
3: upperbounds← []
4: if timetoexit == 0 then . No pedestrians crossing
5: lowerbounds.pushback(timetoenter)
6: upperbounds.pushback(INF)
7: else
8: if timetoexit < timetoenter then . Ped exits crosswalk before another enters
9: lowerbounds.pushback(0)

10: lowerbounds.pushback(timetoenter)
11: upperbounds.pushback(timetoexit)
12: upperbounds.pushback(INF)
13: else . Ped enters crosswalk before currently crossing exits
14: lowerbounds.pushback(0)
15: upperbounds.pushback(INF)
16: end if
17: end if
18: end procedure

28

affecting ego’s path and the list of blocking windows of time would determine when ego
can cross.

3.3.1 Predicate State and Maneuvers

All crosswalk rules are available in appendix B. These rules map predicate states to maneu-
vers in the rule engine. There are seven rules specifically designed for handling crosswalk
predicates.

RCW1 selects the track speed maneuver with reduced speed when ego is in the ap-
proaching, at, or on areas described in section 3.2.1. The purpose of reducing speed around
crosswalks is to provide the perception and tracking system additional time to process its
inputs. The resulting behavior is similar to a human driver that slows down and carefully
evaluates the environment before proceeding.

RCW2 selects the decelerate to halt maneuver when ego is in the approaching area of
a crosswalk and the crosswalk area is occupied by the time ego would cross. The goal of
this rule is to gently bring ego to a complete stop by the time it reaches the stop line.

RCW3 selects the yield maneuver when ego is sufficiently slow enough at the crosswalk
stop line and the crosswalk area is occupied by the time ego would cross. Since yield is
meant to provide explicit explanation for why ego is stopped, it is a separate rule from
RCW2.

In a similar state to RCW3, RCW4 selects the emergency-stop maneuver when ego is
in the at area of the crosswalk with velocity too high to stop safely. Since the speed is
higher than expected at the stop line, this results in an immediate hard brake.

RCW5 selects the emergency-stop maneuver when the crosswalk is occupied and ego is
already in the on crosswalk area. Emergency stop is selected because ego should never be
on the crosswalk at the same time when the crosswalk is occupied by pedestrians.

RCW6 selects the follow-leader maneuver when following a vehicle around a crosswalk.
The purpose of this rule is to combine vehicle following with a reduced speed limit. As
opposed to regular vehicle following, this rule imposes an additional constraint of reduced
speed around crosswalks.

RCW7 selects the decelerate-to-halt maneuver when following a vehicle and the time
windows conflict with pedestrians. In the case of the lead vehicle driving through the
crosswalk, instead of following the vehicle blindly, this rule evaluates whether ego should
stop for pedestrians.

29

Figure 3.7: Even-odd strategy (left); Non-zero winding strategy (right) for determining
point in polygon

30

Figure 3.8: Labeled reference points in equation 3.1

Figure 3.9: Four combinations of pedestrian position and walking direction

31

Figure 3.10: Crosswalk with a pedestrian in semicircle area shown on one side and relevant
unit vectors

32

Figure 3.11: Vectors used for determining velocity component toward crosswalk. Dotted
arrow is real pedestrian velocity; Solid arrow is auxiliary for computing component vector

Figure 3.12: Configurable radius circle centered at the middle of the crosswalk

33

Figure 3.13: A: Approaching; B: At; C: On

Figure 3.14: A: Approaching; B: At; C: On for vehicles around crosswalks

34

Figure 3.15: Time range when crosswalk is occupied; A: Currently crossing pedestrian; B:
Other pedestrian enters crosswalk; C: Time for ego to reach crosswalk and cross

35

Chapter 4

Observations

4.1 Simulation

Simulation is an important method in testing behavior planning performance. It allows
for quick testing and debugging turnaround, leaving out hardware related issues. Faster
turn around and iterations in the development cycle allows for quicker bug identification
and fixes.

The simulator used to debug and demonstrate driving behavior is based on Unreal En-
gine developed by Epic Games [18]. Originally developed for first person shooter games,
the engine contains a vast variety of features which have been successfully used for other
genres. A ROS wrapper is built around the base unreal engine system so that ROS mes-
sages can interface with the game engine. The simulator emulates realistic vehicle control
dynamics modelled directly using data collected from the real car [57, 27]. The simulator
provides only what is necessary as inputs to the autonomous stack. A satellite image is
layered on the ground plane to provide general reference of where the ego vehicle is lo-
cated. The lanelet map is then overlaid on top of the satellite image to visualize how the
autonomous vehicle behaves relative to the road map. What is important is how ego drives
with respect to the lanelet map rather than with respect to the satellite image. There is
a visible offset between the satellite image and lanelet map but since the satellite image is
not perceived by the stack, the offset is irrelevant.

In simulation, pedestrians and vehicles are dynamic obstacles that move discretely over
time steps. Although it isn’t identical to real world continuous movement, it is suitable
because perception in the real world ultimately discretizes tracked object motion. For the

36

sake of analyzing behavior planning performance, stack perception is not used. Pedestrian
and vehicle states are input directly from the simulator to the tracker module. This elimi-
nates errors introduced by false detections and missed detections. Scenarios are described
in a format known as GeoScenarios [44]. Dynamic objects follow preplanned trajectories
where every point in the trajectory can be assigned individual speed and acceleration char-
acteristics. Additionally, triggers facilitate synchronization of interaction between agents
and ego. Triggers are simply events that orchestrate other events. The common use case
of a trigger is to specify that when ego reaches a particular destination, another agent will
begin to move along its specified trajectory.

Pedestrian walking speeds in the hand crafted scenarios described below are selected
from studies that observed unobstructed pedestrian motion as well as pedestrians behavior
around crosswalks. [24, 58]. Figure 4.1 illustrate the distribution of walking speeds of
unobstructed pedestrians [58]. The assumption made here is that the reasonable person
will belong somewhere in the distribution so most pedestrian speeds are selected from the
range. Some imagined extreme scenarios are also tested.

Figure 4.1: Distribution of walking speeds. Frequency distribution of individual pedestri-
ans’ walking speeds averaged across the survey area (n = 2613). The data are distributed
normally about the mean (1.47m

s
), with a standard deviation of (0.299m

s
) [58]

37

4.1.1 Defining Scenarios

GeoScenario is a framework for defining scenarios based on latitude-longitude coordinates.
Individual test cases allow control over agents and their interactions at the level of velocity
and acceleration. A basic GeoScenario contains an ego starting position and a number of
ordered goal points. The ego vehicle spawns at the starting point and the test is successfully
completed after each defined goal point is reached in order.

A GeoScenario is specified in osm format like the lanelet map and is easily configurable
in JOSM. A pedestrian is defined as a single node with specific key value pairs that describes
it. One of the key value pairs assigned to a pedestrian is the fixed path it follows. A path
is defined as a set of nodes which can either represent a basic path or a trajectory. A
basic path is traversed by the pedestrian with a constant speed specified as one of the
pedestrian’s key value pairs. A trajectory is defined by points that each have their own
target speed and acceleration values. The agent attempts to match the specified speed and
acceleration when it reaches a point along the trajectory. Realistic pedestrian movement
can be simulated with enough resolution in distance between points and differences in
target speeds. Simulated vehicles are similar to pedestrians except for their bounding
boxes and rendered model is a vehicle instead of a person. Figure 4.2 shows an example of
what a GeoScenario looks like in JOSM. Triggers are defined as owner-target pairs where
the targets’ behavior is dependant on the relation between the owner and the trigger point.
The triggers used in the following scenarios are location triggers between ego and the trigger
point. This means that target pedestrians and vehicles begin to move when ego reaches
the trigger point. This mechanism gives control over how ego interacts with agents.

Simulation in Unreal Engine provides perfect sensing in terms of agents’ positions;
however, the tracker is still responsible for estimating higher order features like velocity
and acceleration. Perception using AVOD [33] is available on the real vehicle but is not
used in simulation. Instead, the simulator provides exact bounding boxes to the tracking
system. Consequently location of all entities in the environment is known exactly with the
exception of entities that are out of line of sight from ego. To emulate occluded agents, an
object bounding box is available to ego if the center point of the object is unobstructed in
the line of sight from ego’s center point. When out of line of sight, the object no longer
reports a bounding box to the tracker. This is where perception may differ by providing
a bounding box even when the agent is mostly occluded. With perfect perception, the
tracker is able to provide velocities with less than 0.3 meters per second error.

38

Figure 4.2: A sample GeoScenario of a large group crossing a crosswalk in front of ego

4.1.2 Hand Crafted Test Suite

The following is a number of imagined scenarios created to test the behavior of the au-
tonomous vehicle following the behavior planning policy discussed in previous chapters.
Each scenario described in this section tests a particular aspect of the pedestrian cross-
walk. Since the set of all possible scenarios is limited by the imagination, there will be
many that are not included. The tests below cover both common and some uncommon
scenarios imagined in the context of Ring Road at the University of Waterloo. All scenarios
are executed on a 2 lane road. The crosswalk dimension is 3 meters wide and 9 meters
long from one side of the road to the other. As mentioned in section 3.1, the crosswalk
boundary in the map is expanded to 5 meters wide to account for pedestrians that don’t
walk exactly within pavement marking. In the following scenario descriptions, the use of
a reasonable person describes the expected behavior of a hypothetical driver subjected to
these scenarios. The term is not well defined as with the criminal law equivalent and is
based solely on my understanding of the law and experiences. Recordings of simulated
results can be found at reference [10].

39

Minimum Gap

A fundamental metric that evaluates driving assertiveness in the context of crosswalks is
the minimum gap between pedestrians that a driving policy can navigate between. In
this scenario, the autonomous vehicle is initially stationary 6 meters from the edge of the
crosswalk road marking. Pedestrians walk from the right to the left side with a constant
gap in between them with speed varying from 0.55m

s
up to 2.15m

s
across multiple test cases

selected from figure 4.1. The expected result is a linear relation between pedestrian walking
speed and minimum gap distance. As pedestrians walk faster, a larger gap between them is
required in order to drive through the crosswalk without collision. Figure 4.3 illustrates the
observations made with pedestrian speeds with 0.25m

s
increments. The effect of sliding the

crosswalk division line with parameter theta as discussed in section 3.2.1 is seen to provide
about a 5 meter difference between most assertive and most conservative behavior. What
is most important here is the linear relation and effect of parameterizing behavior. The
exact gap is dependent on how quickly the underlying controller accelerates the vehicle, as
well as how far away the vehicle is stopped from the edge of the crosswalk.

Empty Crosswalk

This scenario is the simplest and provides a baseline reference of how the system behaves
when it is unobstructed. The start position is on one side of a crosswalk and the end
position is on the other side of the crosswalk. A reasonable person is expected to drive
about the speed limit of the road and may potentially slow down slightly depending on
visibility or obstruction to surrounding pedestrians. Since the scene is completely free of
obstructions, a reasonable person is not expected to slow down. The autonomous system
behaves as expected, with a lowering of maximum speed when it is within 30 meters of the
crosswalk. It cruises along the road and passes without stopping.

100 Meter Dash

The 100 meter dash scenario simulates a pedestrian sprinting across the crosswalk at 44
kph. The autonomous vehicle travels at the speed limit of 30 kph toward the crosswalk.
The sprinter is originally stationary and is triggered to cross the crosswalk when ego is 11
meters from the crosswalk stop line. 11 meters is chosen so that the pedestrian reaches
the road when the vehicle is at the stop line. 44 kph was chosen because it is the top
speed of Usain Bolt, and is unlikely to be topped by most pedestrians around ring road.
The sprinter motion is not realistic in that its speed immediately jumps from stationary

40

Figure 4.3: Pedestrians walking speeds vs. minimum gap distance for ego to cross

to 44 kph once the trigger is activated. It is uncertain whether a reasonable driver would
even notice the sprinter when they are already 11 meters from the stop line. If the driver
does see a pedestrian sprinting in their peripheral vision, they may slam on the brake and
come to a complete stop in 6 meters [54] at 30 kph. Alternatively, it is much more likely
that the driver will not notice the sprinter and continue. The behavior planner responds
to the pedestrian by switching behavior from track speed to decelerate to halt and local
path planning steers slightly away from the pedestrian on the crosswalk.

Single Pedestrian Cross

The scenario involves a single pedestrian crossing the road from right to left and the
vehicle begins stationary at the stop line. Although the MTO suggests that drivers wait
for pedestrians to completely finish crossing before going, a reasonable person is expected
to accelerate when the risk of collision is negligible. A reasonable person can expect the
pedestrian to also be a reasonable person. While crossing the crosswalk it is unlikely for the

41

pedestrian to change their current velocity, so a driver may feel comfortable in accelerating
after the pedestrian has passed the area in front of the car. It is commonplace to see vehicles
on Ring Road accelerate from a stationary position before the crosswalk area is completely
clear. The parameter in section 3.2.1 effectively controls the assertiveness for crossing
when a pedestrian is walking toward the side away from ego. In the test, the parameter
is set so that the boundary divides the crosswalk in half. MTO states that drivers must
yield for pedestrians throughout the entire span of a pedestrian crossing. Like stopping at
stop signs for 3 full seconds, it is in general too conservative and realistically obeyed by
almost no one. On a road with dense pedestrian traffic, strictly following the rule results in
little driving progress. The desired behavior of ego is to track speed when the pedestrian
crosses the boundary set by the parameter. Qualitative analysis shows when set to the
most assertive setting (halve the crosswalk), it is safe without collision and reasonable.

Pedestrians Do Not Cross

In this scenario, many pedestrians are walking on the sidewalk along the road and none of
them cross. A reasonable person in this scenario is expected to be cautious of the many
pedestrians that may potentially step on the crosswalk. Since the driver is approaching
a designated pedestrian crossing, they may slow down in case any pedestrians decide to
cross. Once the driver gets close enough to the crosswalk to safely pass without collision,
they would return to the speed limit of the road. Behavior planning for this scenario is
effectively the same as an empty crosswalk. The vehicle accelerates to the speed limit of
20 kph and decelerates when it is within 30 meters from the stop line. Since the calculated
time to enter for all nearby pedestrians do not interfere with the time range for ego to
cross, the maneuver does not switch from track speed. The radius of the circle in section
3.2.1 can be expanded for a more conservative driving style. When the radius of the circle
extends past the edge of the road onto the sidewalk by 2 meters, some nearby pedestrians
end up in the radius causing ego to decelerate to halt. After the pedestrians move out of
the at zone, ego returns to tracking speed. Figure 4.4 shows the maneuver decelerate to
stop is selected when the radius is extended to 2 meters.

Stationary Pedestrian

In this scenario, a pedestrian enters the crosswalk from the left and stops in front of ego,
blocking the path. A variation of the scenario is also tested where a pedestrian walks in from
the left side and stops before blocking ego’s path. In both scenarios, a reasonable driver
is expected to come to a stop at the stop line when the pedestrian enters the crosswalk.

42

Figure 4.4: Unreal simulation of pedestrians walking along the side of the road (radius
extended 2 meters)

When the pedestrian stops and blocks ego’s path indefinitely, a reasonable person may run
out of patience and drive on the wrong side of the road to pass the pedestrian. When
the pedestrian stops and stands on the side of the crosswalk not directly in front of ego,
a reasonable driver may continue along its path. The behavior observed in simulation for
when the vehicle is blocked is indefinite waiting. Planning is not designed to maneuver
onto oncoming traffic lanes so the system has no way of progressing. When the pedestrian
stops on the side away from ego, the system recognizes the pedestrian speed has stopped
and is safe to continue on its path.

Pedestrian Changes Mind

This scenario is described with a pedestrian entering the crosswalk from the left. When
in front of ego, the pedestrian turns around and begins walking back toward the left side.
Before exiting the crosswalk, the pedestrian turns around again and walks toward the right
side. Assuming a reasonable driver, the driver would consequently assume a reasonable
pedestrian. The driver may be confused by the large change in pedestrian velocity and
may take a couple of seconds to understand the scene. After the pedestrian turns back

43

around and exits the crosswalk, the driver is expected to accelerate and continue on its
path. Since this is an uncommon scenario, it is more difficult to imagine what a reasonable
driver do. If abiding by the MTO standard, the driver should remain stationary until the
pedestrian has completely exited the road.

For the first test, the crosswalk divider parameter is set to 0 (split the crosswalk in
half). The system responds to the pedestrian by first decelerating to halt as it enters
the crosswalk from the left. After crossing more than half the crosswalk, the pedestrian
changes direction and starts walking back toward the left. Under the assumption that a
pedestrian will likely continue to exit the crosswalk in the direction of which it moves,
planning determines it is safe to cross and proceeds to accelerate. When the pedestrian
turns back around, the crossing time window for ego is closed and decision returns to stop
until the pedestrian exits the crosswalk. With the most assertive parameter setting, if the
pedestrian repeatedly switches direction across the boundary between ego’s side and other
side of the crosswalk, the system will repeatedly inch forward until it is on the crosswalk
at which point the pedestrian is ignored. When the crosswalk divider parameter is set to
1 (no split) the observed behavior is constant yield until the pedestrian finally exits the
crosswalk.

Large Groups of Pedestrians

In this scenario, a large group of pedestrians enter the crosswalk from the left side while
ego approaches the crosswalk. Before the group completely exits the crosswalk on the right
side, another large group enters from the right side. This scenario aims to test the common
event on Ring Road crosswalks where pedestrians cross in large and frequent groups.

A reasonable driver in this scenario is expected to decelerate to a stop when they see
a lot of traffic on the crosswalk. Because the crosswalk is constantly busy, the driver is
expected to remain stopped until an opening is clear. After the second group exits the
crosswalk, the driver is expected to accelerate and continue on their way.

Since simulation provides perfect perception, the system acknowledges a group of pedes-
trians crossing well before reaching the crosswalk stop line and decides to decelerate to stop.
The time to finish crossing is estimated for each pedestrian currently crossing and the max-
imum is used in calculating obstruction. When the other off roadway group approaches
the crosswalk, the time to enter is approximated simultaneously for each pedestrian. The
earliest time to enter is used for calculating obstruction. Since the time gap is not enough
for ego to cross without collision, the system remains stopped until the last pedestrian of

44

the second large group has passed. Figure 4.5 is a snapshot showing the second group
crossing toward the left and the first group finished crossing on the right.

Figure 4.5: Unreal simulation of pedestrians two large groups crossing

4.2 Real World Data Test Suite

Testing the system on real world data is a method that allows direct comparison of be-
havior between real drivers and the autonomous system. Testing with recorded pedestrian
trajectories is not equivalent to directly testing on hardware because the trajectories do
not react to the autonomous system. The pedestrian will continue to travel along its tra-
jectory even when there is an obstacle placed in front of it in simulation. An unsignalized
pedestrian crosswalk on Ring Road at the University of Waterloo campus is the scene of
the experiment. This crosswalk is one of the main pathways to the campus where the
majority of pedestrians are university students. Figure 4.6 shows a side by side view of the
drone video with trajectories played in simulation.

4.2.1 Data Capture and Annotation

A drone is hovered about 100 meters from the ground above the crosswalk and records
in approximately 10 minute intervals. An hour of video is recorded throughout the day,

45

Figure 4.6: Unreal simulation using trajectories recorded from above

recording times between classes when road traffic is the busiest.

The video is corrected for distortion, stabilized, georeferenced, and annotated with
pedestrian and vehicle position, speed, and acceleration by DataFromSky [13]. The trajec-
tories contain position in latitude-longitude, speed in kilometers per hour, and acceleration
in meters per second.

4.2.2 Metrics and analysis

The goal of the analysis is to quantify exactly when drivers commit to crossing the cross-
walk in relation to pedestrians. One of the metrics that correspond directly with the
algorithm is the pedestrian distance after entry edge (PDAEE). This is the distance of the
pedestrian from the side they entered when a driver decides it is appropriate to cross. In
this scenario, the pedestrian is crossing from right to left in front of the driver on a right
sided driving road. Figure 4.7 shows the metric. For the sake of this analysis, a driver
commits to crossing when their acceleration reaches 0.3 meters per second squared and
never decelerates throughout the crossing. Figure 4.8 shows the result where n = 56 with
a mean of 3.36 meters, and standard deviation of 1.6 meters. Since the road is 8.5 meters
in length, this results shows that drivers on average are comfortable with committing to
cross just after the pedestrian has passed the middle of the lane. Most drivers do not wait
for pedestrians to cross completely before crossing themselves. Comparing this result to
the autonomous algorithm, the average driver is about as assertive as the most assertive

46

setting where the crosswalk is divided into 2 equal halves.

Figure 4.7: PDAEE d when driver commits to crossing

Another metric exploring driver behavior with pedestrians on the crosswalk is the dis-
tance of a pedestrian from the leaving edge of the road (PDFLE). Figure 4.9 illustrates
the pedestrian and driver interaction. Figure 4.10 shows the result where n = 35 with a
mean of 2.21 meters, and standard deviation of 1.15 meters. Since half of a lane is 2.125
meters, drivers on average commit to crossing after the pedestrian has crossed half the
lane. Comparing the average driver behavior to the autonomous algorithm on this metric,
they are about equal.

So far, the scenarios analyzed correspond to pedestrians on the crosswalk. The third
metric: distance-speed before entry edge DSBEE illustrated in Figure 4.11 captures the
distance-speed relation at the moment a driver commits to cross when the pedestrian is
approaching the crosswalk. Figure 4.12 illustrates the interaction where n = 52. When a
pedestrian is close to the crosswalk walking slowly, a driver is comfortable with crossing.
Drivers are not comfortable with crossing when pedestrians are close to the crosswalk and
walking quickly. Some drivers decided to quickly pass the crosswalk maintaining speed
at approximately 20 kph rather than stopping for a pedestrian that is about 2 m away
from the curb walking at 6 kph. Comparing the results of this metric to the autonomous
system, the autonomous system can be configured to be as assertive as the most assertive
drivers. This can be done by reducing the radius of the circle in section 3.2.1 and removing
the reduced maximum speed limit when approaching the crosswalk. The minimum safe
distance is calculated from a scenario where a vehicle is 6.4 meters from the crosswalk

47

Figure 4.8: Histogram of distances shown in figure 4.7. mean=3.36 m; stdev=1.6 m

road marking traveling at 20 kph. 6.4 meters is chosen because it is the distance between
the stop line and the crosswalk road marking. 20 kph is selected arbitrarily as a typical
crosswalk cruise speed.

4.2.3 Real World GeoScenarios

Testing the autonomous algorithm on real world pedestrian behavior is accomplished by
translating video recordings and trajectories into GeoScenarios. The key attributes re-
quired to do so is pedestrian latitude-longitude, instantaneous speed in moments of time,
and time stamps. This section describes several interesting scenarios from the recordings.
Vehicles and cyclists are excluded from the simulation as the main focus is validating the
autonomous driving behavior with respect to pedestrians only. Original trajectories from
video are labelled at 30 Hz but pedestrian trajectories are extracted at 0.5 Hz to limit
the GeoScenario file size. Simulation interpolates between the points to achieve a smooth
trajectory that closely resembles the original. GeoScenario position triggers are used with
time delay to synchronize the start of movement of each pedestrian with the recording.
Without manual additions to pedestrian trajectories, they can only start and end where
they are first and last seen in the video. As a result, they appear frozen before they start

48

Figure 4.9: PDFLE d when driver commits to crossing

walking and after they have crossed the crosswalk. The videos can be found at the same
link [10].

Stream of Pedestrians With Gap

In this scenario a stream of pedestrians cross from right to left in front of a driver stopped
at the stop line. The driver waits until there is a sizable gap between pedestrians and
crosses before all pedestrians have passed. As seen in section 4.2.2, the driver does not
wait for pedestrians to fully cross before passing. The expected behavior of the autonomous
system depends on tuning the assertiveness parameters. The autonomous system is tested
with the crosswalk dividing line set to half of the crosswalk and the result is very similar
to the real driver. The system crosses the crosswalk at almost the exact same time as the
real driver.

Sparse Group of Pedestrians

In this scenario, a group of runners run along the sidewalk without crossing while a couple
pedestrians cross from right to left. There is no vehicle in the scene to compare with actual
driver behavior, but a reasonable person is expected to cross when the last pedestrian has

49

Figure 4.10: Histogram of distances shown in figure 4.9. mean=2.21 m; stdev=1.15 m

crossed halfway. In the simulation, the autonomous system approaches the crosswalk as
pedestrians are on it. Before the last pedestrian crosses, the system nudges forward a
little but stops for the entering pedestrian. The running group does not appear to affect
behavior. The system commits to crossing after the pedestrian is half way across the
crosswalk.

Large Group of Pedestrians

In this scenario, a large group of pedestrians cross the crosswalk with very little gap in
between them. A human driver is waiting at the stop line and commits to cross after the
last pedestrians has crossed half way. The autonomous system waits like the real driver
until the last pedestrians have crossed halfway. Since some of the pedestrian’s trajectories
do not extend away from the edge of the road far enough, the system recognizes a stopped
pedestrian potentially waiting to enter and slows down a little. The system finishes the
cross almost exactly like the driver.

50

Figure 4.11: Pedestrian distance d and speed s when driver commits to crossing (DSBEE)

Sparse Pedestrians With Small Gap

This scenario is similar to the first sparse pedestrians with gap scenario except the gap
is smaller. In the scene, a driver approaches the crosswalk with pedestrians crossing and
crosses with a gap of about 9 meters. The entering pedestrian is about 3.5 meters away
from the vehicle when the vehicle is on the crosswalk. The autonomous system successfully
crosses the same gap. The system begins accelerating a little later than the real driver
resulting in a smaller gap between the entering pedestrian and the vehicle.

Conservative Vs. Assertive

This scenario demonstrates the difference between the most assertive setting and the most
conservative setting. The crosswalk dividing line is the only parameter that is changed. In
the most assertive setting, the crosswalk is divided equally in two parts. The crosswalk is
not divided at all in the most conservative setting. In the scene, the human driver waits at
the stop line until the very last pedestrian has crossed half way. In simulation, the most
assertive driving behavior inches forward when there seems to be a gap large enough to
pass. When entering pedestrians get too close, the system stops and waits for another gap.

51

Figure 4.12: Approaching pedestrian distance and speed at the moment when human
drivers commit to cross. Minimum safe distance is with respect to a theoretical vehicle 6.4
m from crosswalk marking travelling at 20 kph.

This repeats until the vehicle is far up enough that a pedestrian walks into the vehicle.
Since the simulation only plays back prerecorded trajectories, the pedestrians cannot react
to different driving behaviors. In the real world, a reasonable pedestrian is expected to
recognize the vehicle is crossing and slow down for it to pass. The most conservative setting
behaves very similar to the real driver by waiting until the very end of the sequence. The
system waits until the pedestrians are almost completely off the crosswalk before crossing.

Pedestrians From Both Sides

This is a common scenario with pedestrians crossing from both sides with small gaps forcing
drivers to wait. In the scenario, pedestrians cross one by one from both sides of the road
and a driver waits to cross at the stop line. The driver crosses at the end of the sequence
when no other pedestrians enter. With the crosswalk divider set to the whole crosswalk,
the autonomous system also waits until the end of the sequence to cross and accelerates

52

just after the human driver begins accelerating.

53

Chapter 5

Conclusion

The pedestrian crosswalk scenario is one of many scenarios an autonomous vehicle can
encounter with each one slightly different from the others. Key features of a crosswalk
scenario can be extracted so that a general approach for handling crosswalks can be made
on the abstraction.

This work builds off of the lanelet representation of road geometry and expresses cross-
walks using a minimal set of elements that are congruent with how they appear in real life.
The simplicity of the crosswalk representation allows it to be applied to all marked pedes-
trian crossings. Reliably known features available from the lanelet map are used to localize
pedestrians and other vehicles to construct an abstraction of the crosswalk scenario. The
abstraction to a few time predicates is a powerful technique that is robust to variability in
number of pedestrians and their velocities.

Adoption of the lanelet map format has been a simple way of providing knowledge
of the drivable road surface with sufficient detail. The process of creating an accurate
and precise lanelet map has proven to be difficult with inherent uncertainty from global
positioning and offsets in satellite images, however. Consequently map procuring requires a
great deal of attention during verification analogous to ground truth labelling for data sets
in the field of machine learning. In theory under ideal conditions, this approach of mapping
works without issue across the entire globe; however, errors from atmospheric delays, multi-
path signal interference, satellite position calculation, and clock correction intermittently
corrupt the reliability of the map. Mapping based off satellite images are associated with
challenges of their own in the process of flattening a globe onto a 2 dimensional, potentially
distorted, image and assigning accurate coordinates to every pixel.

This work also introduces a method of behavior planning for the pedestrian crosswalk

54

scenario. The crosswalk scenario is a relatively simpler one given that the position of
crosswalks are well defined and pedestrian behavior around crosswalks are generally easily
predictable. These constraints reduce the variability of the scenario to a degree where a
carefully engineered solution can handle it. It is intractable to implement a solution for all
possibilities of human imagination; however, the approach described in the work reduces
the infinite set down to a few critical predicates making it appropriate for most scenarios.
Additional effort can be put toward analyzing passenger acceptance of different driving
styles and tuning the assertiveness of behavior planning. For future improvement, single
crosswalk behavior planning can be extended to handle crosswalks at intersections in a
similar way. At a 4 way stop sign intersection for example, the time span specifying when
an area is free to cross can be extended to include multiple instances of crosswalks in ego’s
planned path. For instance, one time span can be calculated for the crosswalk immediately
in front of ego and another time span can be calculated for the crosswalk on the other side
of the intersection.

The challenges associated with mapping are mostly dealt with real time kinematics and
post process verification. Given the experience after working with lanelet maps and global
positioning, it is recommended in future iterations to reduce the dependence for small
details. Instead, it would be better to localize using Global Positioning System (GPS) to
a general area of a prebuilt map and leverage SLAM techniques for finer details like curb
edges. The algorithm introduced in this thesis is one of many possible solutions to a rather
structured problem. It sets a baseline benchmark for future development perhaps with the
use of reinforcement learning or methods that incorporate advanced perception like pose
recognition or trajectory prediction.

55

References

[1] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding
Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K
Asari. The history began from alexnet: a comprehensive survey on deep learning
approaches. arXiv preprint arXiv:1803.01164, 2018.

[2] Pichamon Anantasech and Chotirat Ann Ratanamahatana. Enhanced weighted dy-
namic time warping for time series classification. In Third International Congress on
Information and Communication Technology, pages 655–664. Springer, 2019.

[3] Mateusz Loskot Adam Wulkiewicz Menelaos Karavelas Vissarion Fisikopoulos
Barend Gehrels, Bruno Lalande. Boost Geometry Documentation, 2019 (ac-
cessed 2019-07-03). https://www.boost.org/doc/libs/1_65_1/libs/geometry/

doc/html/index.html.

[4] Sven A Beiker. Legal aspects of autonomous driving. Santa Clara L. Rev., 52:1145,
2012.

[5] Philipp Bender, Julius Ziegler, and Christoph Stiller. Lanelets: Efficient map rep-
resentation for autonomous driving. In 2014 IEEE Intelligent Vehicles Symposium
Proceedings, pages 420–425. IEEE, 2014.

[6] Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In KDD Workshop, 1994.

[7] Frederic Bouchard. Expert System Program Synthesis for Urban Behaviour Planning.
Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 2019.

[8] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. Simultaneous lo-
calization and mapping: A survey of current trends in autonomous driving. IEEE
Transactions on Intelligent Vehicles, 2(3):194–220, 2017.

56

https://www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/index.html
https://www.boost.org/doc/libs/1_65_1/libs/geometry/doc/html/index.html

[9] Xiaohua Cao, Daofan Liu, and Xiaoyu Ren. Detection method for auto guide vehicles
walking deviation based on image thinning and hough transform. Measurement and
Control, page 0020294019833073, 2019.

[10] Edward Chao. Unreal simulations pedestrian at crosswalk, 2019. https://doi.org/
10.5683/SP2/MRMSEY.

[11] Sihan Chen, Libo Huang, and Jie Bai. Robust multi-lane detection and tracking in
temporal-spatial based on particle filtering. Technical report, SAE Technical Paper,
2019.

[12] Jaewoong Choi, Junyoung Lee, Dongwook Kim, Giacomo Soprani, Pietro Cerri, Al-
berto Broggi, and Kyongsu Yi. Environment-detection-and-mapping algorithm for
autonomous driving in rural or off-road environment. IEEE Transactions on Intelli-
gent Transportation Systems, 13(2):974–982, 2012.

[13] DataFromSky. Advanced traffic analysis of aerial video data, 2019 (accessed 2019-08-
10). http://datafromsky.com/.

[14] Li Deng. The mnist database of handwritten digit images for machine learning research
[best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[15] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, Dec 1959.

[16] Berthold Färber. Communication and Communication Problems Between Au-
tonomous Vehicles and Human Drivers, pages 125–144. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016.

[17] Centers for Disease Control and Prevention. Impaired Driving: Get The Facts, 2019
(accessed 2019-07-01). https://www.cdc.gov/motorvehiclesafety/impaired_

driving/impaired-drv_factsheet.html.

[18] Epic Games. Unreal Engine Landing Page, 2019 (accessed 2019-07-03). https://

www.unrealengine.com/en-US/.

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361. IEEE, 2012.

57

https://doi.org/10.5683/SP2/MRMSEY
https://doi.org/10.5683/SP2/MRMSEY
http://datafromsky.com/
https://www.cdc.gov/motorvehiclesafety/impaired_driving/impaired-drv_factsheet.html
https://www.cdc.gov/motorvehiclesafety/impaired_driving/impaired-drv_factsheet.html
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/

[20] T. Gindele, S. Brechtel, and R. Dillmann. Learning driver behavior models from
traffic observations for decision making and planning. IEEE Intelligent Transportation
Systems Magazine, 7(1):69–79, Spring 2015.

[21] Andrew Goldberg and Chris Harrelson. Computing the shortest path: A* search
meets graph theory. Technical Report MSR-TR-2004-24, July 2004.

[22] Andrew V Goldberg, Haim Kaplan, and Renato F Werneck. Better landmarks within
reach. In International Workshop on Experimental and Efficient Algorithms, pages
38–51. Springer, 2007.

[23] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7(4):12–18, 2008.

[24] Mohammed M Hamed. Analysis of pedestrians behavior at pedestrian crossings. Safety
science, 38(1):63–82, 2001.

[25] Y. Hashimoto, Y. Gu, L. Hsu, and S. Kamijo. Probability estimation for pedestrian
crossing intention at signalized crosswalks. In 2015 IEEE International Conference
on Vehicular Electronics and Safety (ICVES), pages 114–119, Nov 2015.

[26] Yoriyoshi Hashimoto, Yanlei Gu, Li-Ta Hsu, and Shunsuke Kamijo. Probability es-
timation for pedestrian crossing intention at signalized crosswalks. In 2015 IEEE
International Conference on Vehicular Electronics and Safety (ICVES), pages 114–
119. IEEE, 2015.

[27] Hosking, Bryce Antony. Modelling and model predictive control of power-split hybrid
powertrains for self-driving vehicles, 2018.

[28] NovAtel Incorporated. VEXXIS Antennas GNSS-502, 2019 (accessed 2019-07-02).
https://www.novatel.com/assets/Documents/Papers/GNSS-502-PS.pdf.

[29] Tesla Incorporated. Tesla Autopilot, 2019 (accessed 2019-07-02). https://www.

tesla.com/en_CA/autopilot.

[30] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda,
and Tsuyoshi Hamada. An open approach to autonomous vehicles. IEEE Micro,
35(6):60–68, 2015.

[31] C. G. Keller and D. M. Gavrila. Will the pedestrian cross? a study on pedestrian path
prediction. IEEE Transactions on Intelligent Transportation Systems, 15(2):494–506,
April 2014.

58

https://www.novatel.com/assets/Documents/Papers/GNSS-502-PS.pdf
https://www.tesla.com/en_CA/autopilot
https://www.tesla.com/en_CA/autopilot

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[33] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3d proposal gen-
eration and object detection from view aggregation. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1–8, Oct 2018.

[34] Shaoshan Liu, Jie Tang, Zhe Zhang, and Jean-Luc Gaudiot. Computer architectures
for autonomous driving. Computer, 50(8):18–25, 2017.

[35] Gaston Maspero. Manual of Egyptian Archaeology and Guide to the Study of Antiq-
uities in Egypt. Grevel, 1895.

[36] Adam Millard-Ball. Pedestrians, autonomous vehicles, and cities. Journal of Planning
Education and Research, 38(1):6–12, 2018.

[37] Anish Mittal and Richard Kwant. Method and apparatus for pixel based lane predic-
tion, February 19 2019. US Patent App. 10/210,403.

[38] Joseph Needham. Science and civilisation in China, volume 5. Cambridge University
Press, 1976.

[39] Tom Occhino, Jing Chen, and Pete Hunt. Hacker way: rethinking app devel-
opment at Facebook. 2014. https://www.youtube.com/watch?v=nYkdrAPrdcw,
https://facebook.github.io/flux/.

[40] Ministry of Natural Resources and Forestry. Geodesy, 2019 (accessed 2019-07-02).
https://www.ontario.ca/page/geodesy.

[41] Ontario Ministry of Transportation. Driving laws for pedestrian crossovers and
school crossings, 2019 (accessed 2019-08-24). http://www.mto.gov.on.ca/english/
safety/pedestrian-safety.shtml.

[42] Ryosuke Okuda, Yuki Kajiwara, and Kazuaki Terashima. A survey of technical trend
of adas and autonomous driving. In Technical Papers of 2014 International Symposium
on VLSI Design, Automation and Test, pages 1–4. IEEE, 2014.

[43] F. Poggenhans, J. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, and M. Mayr.
Lanelet2: A high-definition map framework for the future of automated driving. In
2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 1672–1679, Nov 2018.

59

https://www.ontario.ca/page/geodesy
http://www.mto.gov.on.ca/english/safety/pedestrian-safety.shtml
http://www.mto.gov.on.ca/english/safety/pedestrian-safety.shtml

[44] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. GeoScenario: An open
dsl for autonomous driving scenario representation. In 2019 IEEE Intelligent Vehicles
Symposium (IV), 2019.

[45] A. Rasouli, I. Kotseruba, and J. K. Tsotsos. Agreeing to cross: How drivers and
pedestrians communicate. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages
264–269, June 2017.

[46] D. Rothenbcher, J. Li, D. Sirkin, B. Mok, and W. Ju. Ghost driver: A field study
investigating the interaction between pedestrians and driverless vehicles. In 2016
25th IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 795–802, Aug 2016.

[47] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning represen-
tations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[48] Atri Sarkar, Krzysztof Czarnecki, Matt Angus, Changjian Li, and Steven Waslander.
Trajectory prediction of traffic agents at urban intersections through learned inter-
actions. In 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pages 1–8. IEEE, 2017.

[49] Junaed Sattar and Jiawei Mo. Vehicle lane detection system, March 7 2019. US Patent
App. 16/124,502.

[50] F. Schneemann and I. Gohl. Analyzing driver-pedestrian interaction at crosswalks: A
contribution to autonomous driving in urban environments. In 2016 IEEE Intelligent
Vehicles Symposium (IV), pages 38–43, June 2016.

[51] F. Schneemann and P. Heinemann. Context-based detection of pedestrian crossing
intention for autonomous driving in urban environments. In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 2243–2248, Oct
2016.

[52] Ioan-Alexandru Sucan and Nathaniel Fairfield. Safely navigating crosswalks, Septem-
ber 13 2016. US Patent 9,440,647.

[53] S. M. Thornton, F. E. Lewis, V. Zhang, M. J. Kochenderfer, and J. Christian Gerdes.
Value sensitive design for autonomous vehicle motion planning. In 2018 IEEE Intel-
ligent Vehicles Symposium (IV), pages 1157–1162, June 2018.

60

[54] Random Science Tools. Stopping Distances, 2019 (accessed 2019-07-13). https://

www.random-science-tools.com/physics/stopping-distance.htm.

[55] Association For Safe International Road Travel. Road Safety Facts, 2019 (accessed
2019-07-01). https://www.asirt.org/safe-travel/road-safety-facts/.

[56] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-
tonomous driving in urban environments: Boss and the urban challenge. Journal of
Field Robotics, 25(8):425–466, 2008.

[57] Van Gennip, Matthew. Vehicle dynamic modelling and parameter identification for
an autonomous vehicle, 2018.

[58] Alexandra Willis, Nathalia Gjersoe, Catriona Havard, Jon Kerridge, and Robert
Kukla. Human movement behaviour in urban spaces: Implications for the design
and modelling of effective pedestrian environments. Environment and Planning B:
Planning and Design, 31(6):805–828, 2004.

[59] Yinan Zheng, Thomas Chase, Lily Elefteriadou, Bastian Schroeder, and Virginia P
Sisiopiku. Modeling vehicle–pedestrian interactions outside of crosswalks. Simulation
Modelling Practice and Theory, 59:89–101, 2015.

[60] Julius Ziegler, Philipp Bender, Markus Schreiber, Henning Lategahn, Tobias Strauss,
Christoph Stiller, Thao Dang, Uwe Franke, Nils Appenrodt, Christoph G Keller, et al.
Making bertha drive: An autonomous journey on a historic route. IEEE Intelligent
Transportation Systems Magazine, 6(2):8–20, 2014.

61

https://www.random-science-tools.com/physics/stopping-distance.htm
https://www.random-science-tools.com/physics/stopping-distance.htm
https://www.asirt.org/safe-travel/road-safety-facts/

Appendix

62

Appendix A

Lanelet Map Generation

A.1 Map Generation

The lanelet format having been based off of osm is inherently reliant on GNSS. To satisfy
the basic description of a lanelet node, there must be at least a latitude and longitude with
respect to the World Geodetic System (WGS 84) default datum used in GPS. The number
of techniques for acquiring this data is discussed in the following sections. Fundamentally,
data that is collected are latitude-and-longitude points that determine the position of each
node in the lanelet map. Semantics such as regulation, road network connections, and how
nodes relate to one another are typically incorporated in post processing. Generating a
lanelet map is roughly a 5 step process through a series of automated and manual input
as well as verification. The process was developed and improved as part of this thesis and
include: Road network segmentation planning and labelling, latitude-and-longitude points
acquisition, lanelet assembly through script, fine manual adjustments, and in-vehicle test-
ing. A map can theoretically be crafted completely manually but labeling and automation
significantly reduce production time.

A.1.1 Hardware Based Mapping

This method of map data collection uses the VEXXIS GNSS - 502 antenna [28] installed on
the autonomous vehicle alongside a base station setup. The benefit of direct measurement
using the vehicle is the data that is used for generating the map is theoretically equiva-
lent with the same hardware to the data that is available during run time. This method

63

does not introduce conversion errors between different measurement equipment. Real Time
Kinematics (RTK) enhances the precision of latitude - longitude data from GNSS. Firstly,
a static base station is set up and left to calibrate over a period of time. The base station
continuously receives position estimates over the course of a couple of hours or days de-
pending on the desired accuracy. Since its true position is fixed for the entire duration, it
uses all noisy position estimates and produces a single “true” estimate of its position. Once
it has its “true” position, the difference between every instantaneous position estimate and
“true” position is deemed to be the instantaneous error. All GNSS antennas within about
a 10 kilometer radius of the base station are likely to have reception to the same satellites.
Therefore, the instantaneous error can be applied to any receiver near the base station to
acquire a more precise position. In practice, the setup attenuates the standard deviation
of position to as low as single centimeter accuracy. After the base station has completed
its calibration, another GNSS receiver installed on the vehicle receives satellite positioning
estimate as well as real-time corrections from the base station over radio. Stack coordinate
frame transformations then converts the position from the antenna to the center of the
rear-axle of the vehicle. This position is referred to as the origin point of the base-link
frame.

Labeling - Lane Indicator Counters

Labels provide an interface for organizing individual latitude-and-longitude points into
semantic groups; indicating the start and end of ways, intersections, and lanelets. Seg-
menting the road with labels correspond to segmenting the road network into lanelets.
The first type of labels are Lane Indicator Counters (LIC)s, which are used to distinguish
individual lanes on multilane roads. Additionally, LICs represent the adjacency between
lanes. Numbering starts at 0 with the lane line that divides direction of traffic flow. One
direction of traffic is chosen arbitrarily to be identified with positive numbers and the
other with negative numbers. The polarity is simply to distinguish between direction of
traffic but not the direction itself. Figure A.1 shows how a 4 lane road is labelled with
LICs. Right side lanes are chosen at random to be numbered positively. The polarity of
LIC assignment only matters for unidirectional roads because boundary line 0 is acquired
differently. Consequently, unidirectional roads have only positive LICs.

Labeling - Road Boundaries

Since a lanelet’s properties are invariable throughout the entire length of the lanelet, a
new lanelet begins when road properties change. Lanelets that compose an intersection

64

Figure A.1: Lane indicator counters on a 4 lane road

are uniquely separate from other lanelets therefore all lanelets approaching and leaving an
intersection end and begin at the boundary of the intersection. Part of planning the road
boundary labels is ensuring all segments are identifiable by a unique id.

Data collection using hardware relies on continuous position estimates from the sys-
tem described in section A.1.1. A ROS node subscribes to the global positioning topic
and records a number of properties. To avoid spamming the output file with redundant
positions when the vehicle is stationary, a threshold is set to only record points when the
straight line Euclidean distance from the previously recorded point is at least 1 meter.
The recorded positions correspond to the center of the rear axle; the origin of the base-link
coordinate frame.

In addition to subscribing to the global positioning topic, the ROS node also listens for
strings published on a separate topic. The published labels are tagged along with recorded
points by issuing publish commands on a separate linux terminal. The labels that start
and end a segment are the same. Each segment is identified by a string under the format:
seg x y where x is the unique segment number and y is the LIC number. Segments that
make up an intersection have an additional field seg x y z where z is the unique intersection
number. Segments corresponding to the same intersection identifier are assembled together
as an intersection object. Figure A.2 shows a high level plan around a loop.

65

Figure A.2: Example plan for mapping Colby Drive in Waterloo, Ontario

Labeling - Stop signs

One of the simplest regulatory elements to include in a lanelet map is a stop sign. A stop
regulation is represented by a single point and a 2-point way. The single point represents
the position of the stop sign, and the 2-point way represents the stop line. Stop relations
are captured in the data collection process with labels of the format: stop x where x is the
unique segment number that the stop relation affects. The specific lanes that are affected
are selected by the post processing script. It identifies the side of the road that ends nearest
to the sign position and applies the stop regulation on each lanelet on that side. Capturing
more elaborate regulatory elements involving additional elements is not automated but can
be incorporated in the map with an editor like JOSM.

66

Collection Process

After creating a collection plan including all labels, the lane lines and curb boundaries are
tracked using the wheels of the vehicle. While alternative methods for lane line detection
and localization use cameras and lidars [37, 49, 9, 11], this direct method is sufficient for
constructing small-scale maps for research purposes.

In general, curbs and lane lines are localized by aligning the front right wheel of the
vehicle to the desired position. The front left wheel is used for tracking when the LIC
is 0 on a unidirectional road. Assuming lanes are approximately equal in width, the
dividing lane line on bi-directional roads do not need to be tracked since missing ways can
be interpolated in post processing. Once the vehicle is aligned in the proper position, the
waypoints collection node is started and records both the latitude-longitude position as well
as labels published on the topic /anm waypoint. Labels are published using the command
rostopic pub -1 /anm waypoint std msgs/String A where A is the label i.e. ’seg 1 1’ to
indicate segment 1 with LIC 1. The collecting vehicle drives, tracking a line and if the
road is blocked by a parked vehicle, the label ’blockstart’ is published. After maneuvering
around the blocking vehicle, the label ’blockend’ is published. Points are interpolated at
1 meter intervals for elevation and latitude-longitude between blockstart and blockend.
After reaching the end of a segment, the same label that started the segment is published,
marking the end of the segment.

Stop sign regulations are captured by recording a point near the stop sign and providing
the corresponding label described above. Other regulatory elements requiring additional
information are not easily captured with this method so they are added in JOSM after the
map has been built.

The labelling process described in the previous paragraphs was improved on over mul-
tiple revisions by taking out the labelling from raw data collection. Labels are added in
JOSM resulting in 2 benefits: significant reduction of time in vehicle, and clean lines with-
out interruption. This change changed the collection process to a simple tracking-the-curb
exercise. There is no need to frequently stop for adding labels and introducing position
estimation errors.

A.1.2 Post processing

Post processing automates the majority of the lanelet map building process by parsing the
labels embedded in raw latitude-and-longitude points. Raw data points are stored in GPX
file format and is parsed to extract position and labels. The labels are indicators of where

67

a new way begins and ends. The labels also indicate which ways should represent the left
and right boundary of a lanelet.

Since the recorded position is the origin of the base-link frame, the points are first
projected to the points where the front wheels touch the ground. Depending on the LIC,
the points are either projected to the front right wheel if the LIC is not 0, or to the front
left wheel if it is 0. Since the choice of projecting to one of the wheels is only determined
offline when evaluating labels, the internal frame transforms of the stack from base-link to
front wheels are unavailable. A measurement from base-link to the front wheels provide
the relative heading and distance used for projection. Heading between consecutive points
is calculated, rotated toward either the front left or right wheel, and translated forward
from the center of the rear axle to the wheel while accounting for altitude. Figure A.3
illustrates the point projection process. Imperfections appear with this method of data
collection around sharp right turns. Because of vehicle dynamics, the front right wheel is
incapable of sticking to the curb without the back wheel leaving the road. In practice, this
resulting offset has not been an issue.

Figure A.3: How raw data points are repositioned offline in post processing

Missing ways are automatically generated when adjacent ways are present on both sides.

68

On simple 2 lane roads separated by a single dividing line, only curbs are tracked and the
dividing line is interpolated between the curbs. In similar fashion, lane center lines are
generated from the left and right bound after a lanelet relation is created. The process can
be improved with dynamic time warping [6, 2] to produce equally spaced points aligned
side by side along each way.

Stop lines are marked by finding the closest end of the segment to the recorded stop sign
position. Since the stop label is stop x where x is the segment number, it does not explicitly
identify where the stop line should be drawn. The closest end of the segment to the stop
sign is found and a stop line is defined as 2 points from LIC 0 to the largest in magnitude.
Consequently the stop relation affects all lanelets with the same drive direction.

The rest of post processing builds elements from simpler ones and connects them
together. Ways reference nodes, lanelets reference ways, intersection objects reference
lanelets, and lanelets reference regulatory elements. To represent the road network graph,
the final setup sets the next, previous, left, and right references between lanelets.

Once the lanelet map is built, the map is revised and tested both in JOSM, simulation,
and on the vehicle, and a final automated check for artifacts identifying polylines that
exhibit unnatural properties of angle and distance between points.

A.1.3 Satellite Imagery based data collection

One alternative to using the vehicle as the measurement instrument is collecting latitude-
longitude points from satellite imagery. This method of mapping is tested to compare
against the points collected from direct measurement. An advantage of referencing an
image is that the image remains constant for all data points. So long as there is negligible
distortion in the image, all points are reasonably accurate relative to each other. This
contrasts from direct measurement where every point is more independent because it is
affected by instantaneous reception to satellites. Surrounding buildings can reflect and
block reception to the antenna resulting in greater standard deviation at certain areas of
the map. The disadvantage of using satellite imagery even when it is geo-referenced is that
the image may be out of date with the current state of the road.

For the initial viability test, geodetic benchmarks laid out around the University of
Waterloo are surveyed to confirm their location. These geodetic marks are mapped to
highly accurate longitude, latitude, and elevation available on the national geodetic website
[40]. Plotting the marks’ latitude-longitude on a high definition satellite image allows us
to inspect for image distortion.

69

The ArcGIS software provides highly detailed satellite imagery for plotting points di-
rectly on the curb edge. Figure A.4 shows the curb annotation of a four way stop sign
intersection as an example. In addition, road markings including crosswalks and stop lines
are clearly visible in the satellite image. It can be used for accurate relative positioning
whereas acquiring road markings by positioning the wheel is prone to human error. After
tracking points in the software, map generation progresses similarly as described previously
with point labeling. Since points already track the curb, they do not need to be projected
like in section A.1.2.

Figure A.4: Curb lines traced in ArcGIS with visible road markings

Although the satellite image may possess an overall shift with respect to the real road,
points are geometrically stable. Alignment verification compares the visible curbs in LI-
DAR scans with the map. With post processed GPS correction, the “true” LIDAR scan
of curbs is compared against the map points from satellite image and the entire map is
adjusted to correct for misalignment.

70

The main difference between positions acquired by hardware and points from high
definition satellite imagery is local consistency. Every position recorded by the vehicle
throughout a collection is subject to constant fluctuation in accuracy and satellite recep-
tion. Error is also introduced in the process of transformation from base-link to wheel. It
is also subject to the driver’s ability to track lines consistently. Positions recorded straight
from satellite imagery is locally consistent and does not require further transformation
other than a global shift. In practice, the observed difference between vehicle collection
and image collection is fewer manual adjustments of individual points, and smoother lines
when mapping based on image.

71

Appendix B

Rule Engine Crosswalk Rules

Figure B.1 is a snippet of the source code in the rule engine for identifying time win-
dow conflict. Variable newState.crosswalk.timeTillClear is the upper bound list and new-
State.crosswalk.timeTillPedestrianEnters is the lower bound list described in algorithm 1.

72

const ttc = newState.crosswalk.timeTillClear;

const ttpe = newState.crosswalk.timeTillPedestrianEnters;

if(isNearbyCrosswalk(ego) && ttc.length === ttpe.length) {

const threshold = hasSpeed(ego)

&& __NAVIGATE_CROSSWALK__

|| __NAVIGATE_CROSSWALK_STOP__;

const lowerBound = newState.crosswalk.distance

/ Math.max(KMH_TO_MS(ego.speed), 1);

const range = {

min: lowerBound,

max: lowerBound + threshold

};

const bounds = ttc.map((time, idx) => ({

min: ttpe[idx],

max: time

}));

crosswalkIsConflicted =

!!bounds.find(bound => OVERLAP_BOUND(range, bound));

}

Figure B.1: Rule Engine source code for identifying time window conflict

73

74

75

Glossary

autonomoose Autonomous driving research platform at the University of Waterloo, On-
tario, Canada 7, 8

CAN Controller Area Network 16

DSBEE Pedestrian distance-speed combination before entry edge of roadway ix, 47, 51

ego The autonomous vehicle that the stack operates ix, 7, 11–14, 19, 21, 23, 24, 27, 29,
36–44, 55

GNSS Global Navigation Satellite System 63, 64

LIN Local Interconnect Network 16

node The atomic element of a lanelet. A minimal node defines a latitude and longitude
7, 10, 63

online Something that is executed on-the-fly, processing mostly immediately available
information; not to be confused with the internet 6

osm OpenStreetMap is a collaborative project to create a free editable map of the world
7, 38, 63

PDAEE Pedestrian distance after entry edge of roadway 46

PDFLE Pedestrian distance from leaving edge of roadway 47

way An ordered list of nodes 7, 19

xml eXtensible Markup Language designed to store and transport data 7

76

Abbreviations

GPS Global Positioning System 55, 63, 70

GPX GPS Exchange Format 10, 67

JOSM Java OpenStreetMap Editor viii, 9, 10, 20, 38, 66, 67, 69

LIC Lane Indicator Counters 64, 65, 67–69

LIDAR Light Detection and Ranging 4, 5, 70

MTO Ministry of Transportation of Ontario 2, 17, 23, 41, 42, 44

RADAR Radio Detection and Ranging 5

ROS Robot Operating System 10, 36, 65

RTK Real Time Kinematics 64

SAE Society of Automotive Engineers 1

SLAM Simultaneous Localization and Mapping 6, 55

WGS 84 World Geodetic System 63

77

	List of Figures
	Introduction
	Background
	Autonomous Stack
	Perception and Tracking
	Mapping and Localization
	Mission Planning, Routing, and Navigation
	Behavior Planning
	Motion / Local Planning

	Mapping and Behavior Planning for Pedestrian Crosswalks
	Map representation of crosswalks
	Behavior planning for Crosswalks
	Environment Abstraction Predicates

	Rules for Crosswalks
	Predicate State and Maneuvers

	Observations
	Simulation
	Defining Scenarios
	Hand Crafted Test Suite

	Real World Data Test Suite
	Data Capture and Annotation
	Metrics and analysis
	Real World GeoScenarios

	Conclusion
	References
	APPENDICES
	Lanelet Map Generation
	Map Generation
	Hardware Based Mapping
	Post processing
	Satellite Imagery based data collection

	Rule Engine Crosswalk Rules
	Glossary
	Abbreviations

