
New Convolutional Neural Network
Topology with Compressed

Information to Enhance Accuracy for
Image Classification Task

by

Yanbing Jiang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Yanbing Jiang 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Source coding and deep learning are two major branches in the field of information
processing. Source coding encodes information that can be summarised with patterns into
certain representation without semantic consideration. On the other hand, deep learning
utilises multi-layers of representations with increasing levels of abstraction to learn the
patterns that cannot be summarised easily. What is interesting is that source coding itself
makes great contributions to the field of deep learning. The key that makes deep learning
successful is the inclusion of cascading non-linear layers that help the network to abstract
multi-level features. Source coding, such as image compression, contains fundamental non-
linear operations including quantisation and rounding. How the non-linearity from the
compression could further help deep learning is the inspiration of this research even though
common sense tells us that compression usually results a worse ability to do recognition.
This paper proposes the idea of integrating source coding and deep learning to have better
accuracy performance in image classification.

Image classification is one of the most popular tasks in the field of deep learning.
Based on human visions perception to classify object(s) in images, when the images are
compressed, such as by JPEG, the humans recognition ability deteriorates. Nonetheless,
it is not usually the case in machine’s perspective. Compressed images may be recognised
better by machine based on our observation. In order to improve the accuracy of image
recognition, this study focuses on improving the pre-processing operation before image
input into the neural network. At the meantime, we proposed a new Convolutional Neural
Network (CNN) topology, which absorbs original input along with its various compressed
versions. JPEG image compression is friendly for human when the images are compressed
with higher quality. However, what level of the compressed image is machine friendly
is uncertain. This topology facilitates the compressed information across the compression
inputs from low to high qualities and lets the machine to learn from all potential compressed
information by itself. We trained the topology with proposed Block-by-block training
method and were able to increase the accuracy of state-of-art CNN for image classification:
0.374% increase in Top-1 accuracy, 0.346% increase in Top-5 accuracy in terms of Inception
V3 model and 0.39% increase in Top-1 accuracy and 0.228% increase in Top-5 accuracy in
terms of ResNet-50 V2 model.

What’s more, we can state that compression can highlight the contrast of the objects
and discard interference information which helps our topology improve the accuracy of
image classification based on visual observations. Furthermore, we believe the accuracy
performance could be even more outstanding if our topology is applied to the state-of-art
EfficientNet (published May 2019).

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor, Prof. En-hui
Yang. His insightful guidance, patience, motivation and all precious support helped me
establish the direction of my research and led my moving forward with my studies in depth.
It is he who always encourages me to think deep and precisely and direct me to this great
direction. I have learned a lot from him and knowledge in the field.

I would like to thank Professors who taught me courses and gave me precious knowledge:
Oleg Michailovich, Zhou Wang, Ravi Mazumdar, Mohamed Oussama Damen, Shai Ben-
David, Gordon Agnew, and Jochen Koenemann. I gained a lot from their excellent lectures,
which built me fundamental knowledge for my research works.

I would like to thank Prof. Oleg Michailovich and Prof. Zhou Wang for being the
readers of this thesis and giving me valuable comments and suggestions.

I would also like to thank my colleague in the multimedia communication lab, Hossam
Amer, for his continuous support. I have gained a lot of new knowledge, thoughts, and
useful suggestions from him through discussions during my research process.

Last but not least, I would like to thank my parents, Mr. Lixin Jiang and Mrs. Ying
Xu, and my girlfriend, Yujia Guo, for their unlimited support, understanding, and encour-
agement.

iv

Table of Contents

List of Tables viii

List of Figures x

Abbreviations xiii

1 Introduction 1

1.1 Research Motivations and Question Description 1

1.2 Research Contributions . 3

1.3 Thesis Organisation . 4

2 Background 6

2.1 Overview of JPEG Image Compression . 6

2.2 Image Classification with Deep Learning 8

2.2.1 Overview of Deep Learning . 8

2.2.2 Task of Image Classification . 10

2.3 Convolutional Neural Network . 11

2.3.1 Convolution Layer . 12

2.3.2 Non-linear Layer . 13

2.3.3 Pooling Layer . 14

2.3.4 Fully Connected Layer . 15

v

2.4 State-of-the-art CNN Architecture . 15

2.4.1 Inception Network . 15

2.4.2 Residual Network . 21

2.5 Summary . 24

3 New CNN Topology for Image Classification 26

3.1 Overview . 26

3.2 Architecture Design . 26

3.3 Performance Metrics . 29

3.4 Training Strategies . 30

3.4.1 Training Methodology . 30

3.4.2 Parameter Sharing . 33

3.5 Limitations of the new CNN topology . 34

3.6 Summary . 34

4 Experiment and Analysis 37

4.1 Data Preparation Efficiency Contribution 37

4.1.1 Dense Data Representation . 37

4.1.2 TFRecord Data Storage Type . 38

4.2 Graphic Processing Unit (GPU) Utilisation 40

4.2.1 Multi-GPU Utilisation . 40

4.2.2 Pipelining Configuration . 41

4.2.3 Queue Runner . 41

4.3 Full Results . 42

4.3.1 Experiment on Inception V3 Model 42

4.3.2 Experiment on ResNet-50 V2 Model 44

4.3.3 Experiment Results Conclusion . 45

4.4 Analysis and Observations on the Results 46

vi

5 Conclusion and Future Works 57

5.1 Conclusion . 57

5.2 Future Works . 58

5.2.1 Efficient Resource Utilisation Improvement 58

5.2.2 Application On Other Models And Machine Learning Tasks 60

5.2.3 Training with Different Compressed Input 60

References 61

APPENDICES 63

A Archtecture of experimented model 64

A.1 Inception V3 . 64

A.2 ResNet-50 V2 . 66

vii

List of Tables

2.1 Some of the State of art models’ performace in ImageNet ImageNet Large
Scale Visual Recognition Competition (ILSVRC)-2012 image classification
task. Results up to one digital place. 11

3.1 Confusion Matrix for 2 categories. 30

3.2 Performance comparison between NVIDIA R© Tesla R© P100 and NVIDIA R©

GeForce R© RTX 2080 Ti based on the three major benchmarks. 31

4.1 Average percentage of zeroes in the sample training bottleneck from node
mixed 1 to mixed 9, the percentage of zeroes is at least 50% 38

4.2 Approximate TFRecord file size for the Mixed node that we trained on. All
files’ size is not too large. The size of TFRecord file size is also proportional
to the bottleneck size. 40

4.3 Time consumption comparison before and after applying TFRecord, Pipelin-
ing and Queue Runner. 42

4.4 Top-1 Performance for last 4 blocks’ training on Inception V3 Model. . . . 43

4.5 Top-5 Performance for last 4 blocks’ training on Inception V3 Model. . . . 44

4.6 Top-1 Performance for last 2 blocks’ training on ResNet-50 V2 Model. . . . 45

4.7 Top-5 Performance for last 2 blocks’ training on ResNet-50 V2 Model. . . . 45

4.8 Number of Type A and Type B images when comparing the CNN topology
after training Fully Connected block and the original default model 47

4.9 Accuracy comparsion between ground truth label ”brambling, Fringilla mon-
tifringilla” and confusion label junco, snowbird on image #651 in the vali-
dation set of ImageNet ILSVRC-2012. 49

viii

4.10 Accuracy comparsion between ground truth label ”lynx, catamount” and
confusion label gazelle on image #898 in the validation set of ImageNet
ILSVRC-2012. 52

4.11 Accuracy comparison between ground truth label ”ski” and interference ob-
ject label alp on image #568 in the validation set of ImageNet ILSVRC-2012. 53

4.12 Accuracy comparison between ground truth label ”Ibizan hound, Ibizan
Podenco” and interference object label tub, vat or ”bathtub, bathing tub,
bath, tub” on image #115 in the validation set of ImageNet ILSVRC-2012. 56

ix

List of Figures

1.1 (a) original image #115 with object Ibizan hound from ImageNet ILSVRC-
2012 validation set; (b) Compressed version of (a) by JPEG with Quality
Factor = 10. 2

1.2 (a) original image #2 with object alp from ImageNet ILSVRC-2012 vali-
dation set; (b) Compressed version of (a) by JPEG with Quality Factor =
40. 2

2.1 (a) ReLu Function Plot; (b) Sigmoid Function Plot; (c) tanh Function Plot 14

2.2 Inception Block [3] . 17

2.3 (a) the Inception block without symmetric factorisation; (b) the Inception
block that replace the 5× 5 kernel by two 3× 3 kernels [28] 19

2.4 (a) the Inception block without symmetric factorisation; (b) the Inception
block that replace the 5× 5 kernel by one 1× 5 kernel and one 5× 1 kernel
modified from [28] . 20

2.5 Auxiliary Classifier that added in the Inception V3. Modified from [28]. . . 21

2.6 (a) Grid size reduction by pooling before convolution, which will loss a lot of
information; (b) Grid size reduction by pooling after convolution, which will
greatly increase the amount of calculations; (c) The parallel style to reduce
the grid size which solves the issue from (a) and (b). Modified from [28]. . 22

2.7 An example block of Residual Inception block with a residual short as high-
lighted [27]. 23

2.8 Training and testing error trends over time with dataset CIFAR-10 over
normal 20 layer and 56 layers CNN. The deeper the CNN, the worse the
result. [9]. 24

x

2.9 Residual block in the ResNet. Modified from [9]. 24

3.1 The original Quality Factor (QF) distribution in the training set of imageNet
ILSVRC-2012 . 27

3.2 (a) original image #4 with object soup bowl hound from ImageNet ILSVRC-
2012 validation set; (b) Compressed version of (a) by JPEG with Quality
Factor = 100. Orignal image has a quanlity factor = 100, (b) and (a) has
barely no difference in human’s vision system 28

3.3 Typical reliationship between model capacity and training and testing error.
It could be found out that when the capacity of a model becomes larger, the
testing or generalisation error becomes bigger. The gap between training
error and generalisation error becomes bigger as well as overfitting becomes
more serious [8]. 32

3.4 Block-by-block training that based on transfer learning flowchart. 35

3.5 New Convolutional Neural Network (CNN) topology. 36

4.1 (a) shows the timeline without pipelining configuration, the GPUs are al-
ways waiting for the CPUs to finish the work; (b) shows the timeline with
pipelining configuration, even there is still idle time, the idle time dramat-
ically reduced. The reason that the GPUs always have idel time is due to
the fact that the processing time for GPUs are much shorter than CPUs. [22] 42

4.2 Inception V3 Top-1 accuracy trend after training the first 4 blocks. 44

4.3 ResNet-50 V2 Top-1 accuracy trend after training the first 2 blocks. 46

4.4 (a) Original #651 image from validation set with ground truth ”brambling,
Fringilla montifringilla”; (b) Compressed Version of (a) with Quality Factor
= 10 . 48

4.5 Example image with ground truth ”junco, snowbird” from the training set
of ImageNet ILSVRC-2012. 49

4.6 (a) Original #898 image from validation set with ground truth ”lynx, cata-
mount”; (b) Compressed Version of (a) with Quality Factor = 10. Both
with body part zoomed in the compare the contrast. 50

4.7 (a) Original #898 image from validation set with ground truth ”lynx, cata-
mount”; (b) Compressed Version of (a) with Quality Factor = 10. Both
with ears’ part zoomed in. 51

xi

4.8 Example image with ground truth ”gazelle” from the training set of Ima-
geNet ILSVRC-2012. 52

4.9 (a) Original #568 image from validation set with ground truth ”ski”; (b)
Compressed Version of (a) with Quality Factor = 10. 53

4.10 (a) Original #115 image from validation set with ground truth ”Ibizan
hound, Ibizan Podenco”; (b) Compressed Version of (a) with Quality Factor
= 10. Both with white surface part zoomed in. Both with part of the dog’s
outline zoomed in. 54

4.11 (a) Original #115 image from validation set with ground truth ”Ibizan
hound, Ibizan Podenco”; (b) Compressed Version of (a) with Quality Factor
= 10. Both with white surface part zoomed in. 55

4.12 Example image with ground truth ”tub, vat” from the training set of Ima-
geNet ILSVRC-2012. 55

5.1 (a) Original image #153 with object iguana from ImageNet ILSVRC-2012
validation set; (b) Transparent Composite Model (TCM) applied on (a), it
could be found out that the object with many edges is successfully reserved
and the background is compressed heavily and have serious visible block effect. 59

5.2 (a) Original image #67 with object tusker from ImageNet ILSVRC-2012
validation set; (b) TCM applied on (a), the key for identification, the nose
and the teeth is highlighted while masking the smooth body part make the
model more confident . 59

5.3 Different applications of proposed topology in three perspectives: input
source coding method, CNN model and the task scenarios. 60

A.1 Later blocks of Inception V3 model with mixed 10 block zoomed in to show
the Inception block details. 64

A.2 Overview of Inception V3 model with the name of each block. 65

A.3 Overview of Inception V3 model with the name of each block with block 4
zoomed in to show the ResNet block details. 66

xii

Abbreviations

AI Artificial Intelligence 8, 9

CNN Convolutional Neural Network xi, xii, 2–6, 11–17, 19–22, 24–26, 28–30, 33, 34, 36,
37, 42–46, 57, 58, 60

DCT Discrete Cosine Transform 6, 7

FN False Negative 29, 30

FP False Positive 29, 30

ILSVRC ImageNet Large Scale Visual Recognition Competition viii, ix, xi, xii, 4, 10, 11,
21, 23, 27, 28, 30, 37, 41, 42, 45, 49, 51–53, 55, 59

JPEG Joint Photographic Experts Group 1, 3, 4, 6–8, 24, 26–28, 52, 54, 60

QF Quality Factor xi, 2, 3, 7, 8, 27, 28, 48–52

ReLu Rectified Linear Units 3, 13, 18

ResNet Residual Network 15, 21–23, 37, 43, 57

RLE Run Length Encoder 8

SGD Stochastic Gradient Descent 32

TCM Transparent Composite Model xii, 58, 59

TN True Negative 29, 30

TP True Positive 29, 30

xiii

Chapter 1

Introduction

1.1 Research Motivations and Question Description

Source coding and deep learning are two major branches in the field of information pro-
cessing. Source coding encodes information that can be summarised with patterns into
certain representation without semantic consideration. On the other hand, deep learning
utilises multi-layers of representations with increasing levels of abstraction to learn the
patterns that cannot be summarised easily. What is interesting is that source coding itself
makes great contributions to the field of deep learning. Therefore, deep learning can be
understood as a learning form of source coding. Source coding provides “raw data” input
to deep learning. Therefore, whether source coding method, such as compression, can help
deep learning to perform better is worth being studied.

In deep learning, image classification is one of the most challenging tasks. Current
research works are developing quickly and have achieved a high level. This task more
or less dependent on the input images. One of the most famous image source coding
formats or compression methods is Joint Photographic Experts Group (JPEG). For the
most famous dataset of image classification, ImageNet, all data inside is in the format of
JPEG. However, this well-know lossy image compression format is designed and proposed
for human’s vision. When an image is compressed more in JPEG format, human’s ability
to recognisw the object(s) in this image will drop dramatically.

However, what compression level could get the best accuracy performance is uncertain
based on the observation by H. Amer et al. [1]. Consider the following pair of images in
Figure 1.1, which are an original image with a dog (ground truth label: Ibizan hound, Ibizan

1

(a) (b)

Figure 1.1: (a) original image #115 with object Ibizan hound from ImageNet ILSVRC-2012
validation set; (b) Compressed version of (a) by JPEG with Quality Factor = 10.

(a) (b)

Figure 1.2: (a) original image #2 with object alp from ImageNet ILSVRC-2012 validation
set; (b) Compressed version of (a) by JPEG with Quality Factor = 40.

Podenco) and its JPEG compressed version with QF (concept of QF will be introduced in
Section 2.1) equals to 10, which is compressed heavily:

It is obvious from human eyes that the original image is easier to identify. However,
the machine (based on Google’s Inception V3 image classification CNN) has only 9.9%
confidence on the ground truth while 70.6% confidence on the QF = 10 compressed version.

2

Thus, the machine, in this case, has more confidence in the compressed version. Until here,
it can be found out based on the observation that source coding that takes human’s vision
into account is not actually the best source coding for machines. However, for the image
in Figure 1.2, with QF equals to 40, which is compressed moderately, make the machine
has the highest confidence level instead. As we could see from these examples, the best
JPEG compression quality factor that is suitable for machine is uncertain. This further
confirms the observation in [1]. The way how to use compressed information to improve
the machine’s prediction becomes interesting to discover.

In the field of machine learning, the concept of non-linearity is important for the fol-
lowing reason. Consider a neural network with two layers which has an input x. If only
linear operations are applied (e.g. standard fully connected layer with only weights and
biases applied), the output of the first layer will be W1x+ b1 and the output of the second
layer will be W2(W1x + b1) + b2 = W2W1x + W2b1 + b2. If we denote W2W1 = W3 and
W2b1 +b2 = b3, the output of the second layer becomes W3x+b3, which is still linear. Even
we have hundreds of thousands of layers, the final output is still in the form of Wx + b.
The performance will be the same as one linear layer, and the features extracted from the
thousands of layers will be same as the these extracted from only one layer. By adding
non-linearity into the neural network, the interactions between layers can create different
feature combinations with the same amount of layers. It makes the machine has better
ability to learn more features. At the output layer, different designed features’ expressions
will be got. There are few popular operations that play a role of non-linearity such as Rec-
tified Linear Units (ReLu). With them, the machine is able to be trained and performed
better.

Compression usually contains several non-linear operations such as rounding and quan-
tisation. As stated, non-linearity is crucial for the deep learning. Thus, how compression
could help deep learning, especially for the task of image classification, becomes worth to
be explored.

1.2 Research Contributions

In this thesis, we proposed a new CNN topology that is able to input the compressed images
into the CNN and increase the accuracy performance in both Top-1 and Top-5 perspective.
This proposed CNN topology can be applied to state-of-the-art image classification CNN
such as Inception network and Residual network. Due to the fact that which human-
friendly compression quality in JPEG is the best for machine is unknown, this topology
absorbs a range of qualities for the compressed images from low to high quality. By this,

3

the CNN topology can absorb and learn the important information from the compressed
images itself, which, as a result, is able to give a better accuracy performance.

To compare the performance with the state-of-the-art image classification CNN, the new
topology is applied to Inception V3 for Inception network and ResNet-50 V2 for Residual
network. The famous ImageNet ILSVRC-2012 dataset was used during the experiments. In
order to have a valid benchmark, the validation Top-1 and Top-5 accuracy results for both
Inception V3 and ResNet-50 V2 were reproduced based on the official frozen models. Then,
we built and implemented the new topology on Inception V3 and ResNet-50 V2 and trained
the last few layers by transfer learning-based block-by-block training technique. The results
show that this topology does have the ability to increase the accuracy performance even
though we only trained the last few layers for each model due to computational resources’
limitation.

In addition, some explorations are executed to provide important insights into why
input original images along with its compressed versions have better accuracy performance
than input original images only. By visually comparing the images between the original
image and its compressed version that has the best performance, it could be found out
that compressed images more or less perform a function of texture adder and highlighting
the main object(s), which obviously help the machine to have better accuracy performance
in terms of image classification task.

1.3 Thesis Organisation

The rest of the thesis will be organised as follows:

In Chapter 2, some background knowledge will be given. The brief overview of the
JPEG image compression method will be presented. Then, the overview of deep learning,
the task of image classification and the famous dataset ImageNet will be introduced. The
detail of the CNN including the functionality and properties of the convolution layer, the
non-linear layer, the pooling layer, and the fully connected layer will be demonstrated. Af-
ter that, the state-of-the-art CNN architecture for image classification including Inception
network and Residual network will be described.

In Chapter 3, the new CNN topology will be proposed. The details of the architecture
will be explained and demonstrated. They include the purpose of such design, how com-
pressed feature would be utilised, how the model is going to be trained and evaluated and
so forth. Furthermore, self-reflection over the model will be done as well to discuss the
drawbacks and the limitations of such design.

4

In Chapter 4, experimental results over the two types of image classification CNN
architecture type (Inception V3 for Inception network, ResNet-50 V2 for Residual network)
will be shown in detail with the comparison with the benchmarks. Also, the experiment
performance contributions including an efficient way to process data (either training or
validation data) and a better way to utilise computational resources such as GPU and
CPU will be explained in detail. In addition, insights into why compressed images could
contribute better image classification results with our new topology will be discussed with
examples.

In the last Chapter 5, we will make a summary of the thesis and discuss several potential
paths for future works related to this interesting topic.

5

Chapter 2

Background

In this chapter, we will go over some background materials and topics related to this re-
search thesis. We will start with an overview of one of the most common image compression
formats called JPEG. Then, we will talk about the deep learning in the field of computer
vision, especially the task of image classification and describe the details inside a CNN.
After that, we will describe and review two state-of-the-art CNN architectures utilised for
the task of image classification that we also utilise during our evaluation experiments.

2.1 Overview of JPEG Image Compression

JPEG is one of the most popular image compression formats utilised in our daily life. It
contains several different modes such as Baseline, Baseline Optimised and Progressive. In
this section, we will go over the most common mode, which is Baseline. JPEG baseline
compression (short denoted as JPEG from now) was published and became popular since
1993 [30]. JPEG is a lossy compression method based on Discrete Cosine Transform (DCT).
This transformation plays a similar role as famous Fourier transform does which transforms
the information in spatial domain into frequency domain. The purpose to do that is the
human visual system is prone to discard high-frequency information such as sharp edges
and color hue in images [2]. A process called quantisation, which is a non-linear operation
is applied in the frequency domain to discard extra ’useless’ high-frequency information.
Now, let us view JPEG in detail.

JPEG encoder starts the process by dividing the image into 8×8 blocks in each channel
(RGB images have 3 channels with Red, Green, and Blue). Then, each block will operate
the following operations:

6

• DCT transforms each block from 2D spatial domain to frequency domain. The
mathematics formula is given by:

Gu,v =
1

4
α(u)α(v)

7∑
x=0

7∑
y=0

gx,ycos[
(2x+ 1)uπ

16
]cos[

(2y + 1)vπ

16
] (2.1)

where u ∈ [0, 7] and v ∈ [0, 7] are horizontal and vertical spatial coordinate in
frequency domain; Gu,v is the DCT coefficient at coordinate (u, v); gx,y is the spatial
domain value at coordinate (x, y); α(·) is a normalizing scale factor to make the
transformation orthogonal. After DCT, low frequency element will be located at the
left top corner of the 8× 8 block.

• Quantisation, which is the most important non-linear operations in JPEG that de-
termines the quality of a picture, is applied after DCT. Since human eyes are more
sensitive to low frequency information such as brightness difference over a large area,
high frequency parts of each block could be more or less discarded without influence
the visual feelings on the image. Following shows an example of default quantisation
table for luminance:

Q =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

(2.2)

and the quantisated coefficient is calculated as:

Bu,v = [
Gu,v

Qu,v

] for u ∈ [0, 7] and v ∈ [0, 7] (2.3)

Where [x] denotes the rounding. We notice from the default luminance quantisation
matrix that the high-frequency portion that located in the right bottom corner are
quantised more. Depending on the degree of compression or the quality of the image,
the quantisation coefficient could be modified correspondingly. In addition, there
is a term called QF that numerically describes the quality of an image and has a
certain relationship with the quantisation matrix. QF ranges from 1 to 100 with 100

7

represents the best image quality while 1 represents the worst. Given a QF, the new
quantisation matrix can be calculated based on the default quantisation matrix with
Equation 2.2 [5]:

QN i,j = round(
50 + S ×Qi,j

100
) (2.4)

where QNi,j denotes the New Quantisation matrix processed from the default quan-
tisation matrix with a certain QF and parameter S equals to 5000/QF if QF < 50
and 200− 2×QF otherwise.

• Then, 2D frequency block is reordered to 1D by the zigzag pattern with the lowest
frequency in the front, highest at the end. In this process, Run Length Encoder (RLE)
is utilised for efficient encoding by only recording the length of the long sequence of
the same value. For instance, after quantisation, there might be a lot of zeroes at
the tail part of the 1D sequence, we could only record zero itself and the length of
zeroes that appear in the sequence.

• At the end, Huffman coding is applied to finish the process in order to save more
space. By doing Huffman coding, the pattern that appears the most frequently will
be finally encoded with the shortest code.

The decoder performs the same operations that the encoder does but reversely. The
quantisation operation plays an important role to remove unimportant information for
human’s vision system. So far, no suitable compression method is developed to keep
important information for the machines. As discovered in Chapter 1, worse quality in
JPEG (i.e. worse in human’s vision perception), may be better in machine’s perception.
This research will utilise JPEG to discover the potential benefits machine is able to get
from compression in the task of image classification.

2.2 Image Classification with Deep Learning

2.2.1 Overview of Deep Learning

Deep learning was introduced into the field of machine learning to further achieve the goal
of Artificial Intelligence (AI). Deep learning is the process to learn the inherent features
and representations of given data. The information obtained during the learning process is
helpful to the interpretation of data such as text, image, and sound. Its ultimate goal is to

8

enable machines to have the same analytical learning ability as human beings to recognise
information such as text, images and sounds [8]. Deep learning enables machines to imitate
human activities such as audiovisual and more or less thinking process. It solves complex
pattern recognition and classification problems and makes great progress in the field of AI.

The concept of deep learning was initially proposed and introduced by G. Hinton from
the University of Toronto in 2006 who stated two crucial points: a) the multi-layer neural
network model has strong feature learning ability and the feature data acquired by the
deep learning model could represent the original data well which will greatly help the task
of classification and b) for the problem that the training of deep neural network is difficult
to reach the optimal level, the layer-by-layer training method (which is similar that the
block-by-block transfer training that we proposed in Section 3.3) can be used to solve it
[10].

In fact, deep learning is to construct a machine learning architecture model with mul-
tiple hidden layers and obtain a large number of more representative feature information
through large-scale data training in order to improve the accuracy of classification and
prediction. The differences between the deep learning model and the traditional shallow
learning model are: a) the structure of the deep learning model contains more layers, and
the number of layers containing hidden neurons is usually more than 5 layers, sometimes
even more than 10 layers and b) deep learning can extract features in detail from low level
to high level by transforming the original input into a new feature space to represent which
makes classification or prediction easier to achieve.

One of the keys that make deep learning success is the addition of non-linearity into
the model. Thanks to the non-linearity, the deep learning model is able to extract richer
features for the model to have better prediction performance. For neural networks, depth
refers to the number of combinations of non-linear operations in the functions obtained
by network learning. Source coding process, such as compression (image compression in
our case), usually contains non-linear operations including rounding, quantisation and so
on. Applying the compression to the images and sending them to the deep learning model
to further aid the model to make a prediction is possible to perform better and motivates
us to discover. Many works have done before to add extra non-linearity inside the model
such as activation function or try to make the model deeper and deeper to contain more
non-linear operations inside the model while compression could add extra non-linearity at
the input stage to assist prediction.

9

2.2.2 Task of Image Classification

Classification is one of the most important task branches in the field of deep learning. In
this type of task, the machine is programmed and revised to specify given inputs to pre-
defined n categories [8]. A common branch of the classification is the image classification,
which asks the machine to identify what the image represents or contains. Human, after
growing from baby, has a certain ability to categorise items he/she sees. We can easily
identify that Figure 1.1 contains a dog. Machines need to learn in order to gain the ability
to categorise pictures as human does. Usually, an image classification model needs to be
built and trained to be that smart. Certain learning algorithms are asked to be developed
to let machine output a function f : Rn → {1..n} [8]. Modern studies have already
done many fantastic works on this task [16][26][28][9]. Usually, image classification models
output the probability of the pre-defined categories that the input images belong to. It
commonly could not output the position of the object.

There are several famous datasets in the field of image classification that people usu-
ally play with. Two of them are going to be introduced here. First of them is the
MNIST database, which stands for Modified National Institute of Standards and Tech-
nology database. This dataset is developed by Y. LeCun, C. Cortes and C. J.C.Burges for
image [17]. It is a dataset that contains only ten categories for handwritten digits from 0
to 9. It has a training set of 60,000 images and a test set of 10,000 images. MNIST is a
relatively entry-level dataset in terms of image classification and is widely used in the field
of deep learning to test a given model’s performance. So far, the best error rate reported
can be only 0.23% by using a hierarchical system of convolutional neural network [4] for
MNIST.

Another famous image classification dataset is introduced in ILSVRC in 2012 [16].
ImageNet ILSVRC-2012 has a 1000 categories for people to classify in total. Its training
set contains around 1.2 million images, the validation set has 50,000 images with 50 images
per category and testing set has 150,000 images. Even the ILSVRC challenge has already
stopped in 2017, this dataset is still widely used as a standard. In our research, the
experiments were done based on the ImageNet ILSVRC-2012. Due to the fact that the
ground truth for the testing set is not officially provided, the validation set was utilised
for comparing with the benchmark. Usually, there are two different types of metrics to
evaluate a model’s performance on ImageNet ILSVRC-2012. One is Top-1 accuracy, which
means the accuracy that the ground truth appears in the top 1 prediction, and another
one is Top-5 accuracy, which represents the percentage of ground truth appears in top
5 predictions. The reason why Top-5 accuracy is introduced is that there are cases that
images contain multiple objects, the ground truth might not always at the rank #1 since

10

the occupational ratio of the ground truth object in the image is low. Currently, the best
performance for ImageNet ILSVRC-2012 is the Efficientnet done by M. Tan and Quoc V.
Le with Top-1 accuracy of 84.4% and Top-5 accuracy of 97.1% [29]. Table 2.1 summarises
the accuracy performance of some of the state of art models.

Model Name Published Year Top-1 Accuracy Top-5 Accuracy

VGG 16 2015 71.5% 89.8%

Inception V1 2014 69.8% 89.9%

Inception V3 2015 77.6% 93.8%

Inception ResNet-V2 2016 80.4% 95.3%

ResNet 50-V2 2016 75.6% 92.8%

ResNet 152 2015 76.8% 93.2%

ResNet-200 V2 2016 79.9% 95.2%

SENet 2017 82.7% 96.2%

GPIPE 2018 84.3% 97.0%

EfficentNet 2019 84.4% 97.1%

Table 2.1: Some of the State of art models’ performace in ImageNet ILSVRC-2012 image
classification task. Results up to one digital place.

2.3 Convolutional Neural Network

CNN was initially proposed by Y. LeCun, who was inspired by the biological brain, in 1988
for computer vision and named it the ”Optimal Brain Damage” regularisation methods
[18]. It is widely used to deal with the task of image classification for the fact that convo-
lution operation could output a given feature from the sliding window and do the feature
extraction, which is important for image classification. Overview of a CNN in the task of
image classification is as follows: an input image is processed by convolution operations,
which contains several steps and then outputs a pre-defined label for that input.

In the machine’s perspective, it ”sees” images as a group of numbers or pixels and
treats these pixel values independently. It initially does not have the ability to consider
and analyse these values together. For typical RGB images, each pixel in each channel is
usually assigned by value ∈ {0, 255}, which only describe the intensity at that position.
With convolution operation, the machine is able to analyse the pixels in a group and extract

11

specific features such as boundaries and curvatures. By multiple convolution operations, a
group of abstract features could be filtered out.

In detail, a CNN passes an image from the input layer. Then it lets the image go
through a sequence of convolution layers which form the abstract feature maps through
the convolution operation. Non-linear activation layers are attached after. They are the
keys to add non-linearities into the feature extraction process and also called detect stage.
Next, pooling layers are connected. They get the output from the non-linear activation
operation and do certain down-sampling spatially. Finally, the data flow through a fully-
connected layer to make the label prediction(s) with simple matrix multiplication and bias
addition.

2.3.1 Convolution Layer

The convolution operation is a special type of linear operation, which simply replace the
general matrix multiplication with convolution operation in the hidden layers [8]. Convo-
lution layer is usually located before any non-linear operation. The matrix of the numbers
(either initial image input or the output from the previous layer) is input into the convolu-
tion layer with a typical convolution as indicated in Equation 2.5. x is referred to the input
of the convolution layer and w is the kernel, or the filter or the sliding window. Usually,
the output is called the feature map.

y(t) =

∫
x(n)w(t− n)dn = (x ∗ w)(t) (2.5)

The kernel moves from the upper left corner of the input matrix. If the output needs to
be defined with a typical spatial dimension, the input might be pre-processed by appending
extra values such are zeros or average of the neighbor values. Then, the kernel multiplies
its value with the input and these multiplications are them summed up. For example,
if a 3 × 3 kernel used, these 9 values will be summarised by only one value after the
convolution operation. The kernel is then moved by a certain step size and continue the
process. This operation, in the beginning, is able to identify features such as edges and
colors. More high-level features could be gained if more such convolution layer is added
into the network.

The reason why convolution is helpful for the image classification performance is because
of three important perspectives: sparse interactions, parameter sharing, and equivariant
representation [8]. Starting from sparse interactions, this describes that each unit of the
output of the convolution layers only interacts with certain input unit(s) [8]. Typically,

12

the kernel size is smaller than the input size. Consider the situation that the input is an
image of 2K image with resolution 3120×1440 which has 4,492,800 pixels in each channel,
the kernel size could meanwhile be only 5× 5, which is much smaller than the input size.
By this, there can be much fewer parameters to operate, reduce memory and make the
computation much more efficient. Parameter sharing represents the characteristic of the
convolution operation that the kernel parameter among all location is the same rather
than separate parameters. During training, only one kernel parameter group needs to
be trained. By this, the storage could be saved while not affecting the running time of
forwarding propagation [8]. Lastly, Equivariant representation means the output is always
changed according to input’s changes. This feature is caused by parameter sharing. Even
based on the same image, if it is rotated or cropped, the same feature should be captured
in different location of the new image. By this, convolution is able to extract the abstract
features independent of the feature location of the input image.

2.3.2 Non-linear Layer

The non-linear layer, which is also called a detect stage, is usually located after the con-
volution layer. It brings one activation function to add the non-linearity property into
the CNN. Some of the popular non-linear activation functions are listed in Equation 2.6,
2.7 and 2.8 with there plot shown in Figure 2.1. As discussed in the Chapter 1, the non-
linearity is important for the neural network to work.The neural network would be not
intense enough even it is very deep with non-linearity.

ReLu(x) = max(0, x) (2.6)

sigmoid(x) =
1

1 + e−x
(2.7)

tanh(x) =
2

1 + e−2x
− 1 (2.8)

Currently, the activation function ReLu, shown in Equation 2.6 is the most popular
one that introduced by G. Hinton. Its training time in terms of gradient descent is much
quicker than the other two types of activation function [16]. With the help of the activation
function, the network becomes more powerful and has better ability to learning patterns
and features rather than only linear features.

13

(a) (b)
(c)

Figure 2.1: (a) ReLu Function Plot; (b) Sigmoid Function Plot; (c) tanh Function Plot

2.3.3 Pooling Layer

The pooling layer is typically appended after the non-linear layer. Pooling operation is
actually another non-linear operation in the CNN as well. Some typical pooling functions
that applied in the pooling layer include max pooling and average pooling. Pooling function
further modifies the output from the detect stage by replacing it at a specific position
with a statistical representation of the neighbor positions and realise the down-sampling
operation. The purpose of the pooling function is to help the output representation become
the approximately invariant translation of the input [8]. This invariant property is crucial
due to the fact that the answer we would like to get is whether a certain abstract feature
is in the input rather than where it is. Since pooling function typically considers a small
range of value and output their statistical representation, a small position shift of the
image would not greatly change the output of the pooling function. It makes the CNN be
able to learn features through each convolution layers instead of learning the position of
the object and utilise the position to make the final prediction(s). As a result, when the
invariant property works properly with pooling, the statistical efficiency of the network
could be significantly improved and less parameter storage is needed [8].

Typically, earlier convolution layers are trying to extract low-level abstract features,
which are details, while later convolution layers extract relatively high-level features [32].
Pooling layer plays an important role to realise this phenomenon. If some low-level fea-
tures are already extracted from the earlier layers, pooling function then plays a role as
compression to discard the details, which are no longer need for analysis and make the
later layers focus on the high-level features.

In addition, pooling layer is able to be utilised to manage the output size. As introduced,
pooling function typically generates the output by considering the neighbor positions. The

14

range of the neighbor positions to be considered could be modified so that the CNN can
get a suitable output size regardless of the input size.

2.3.4 Fully Connected Layer

Usually, the convolution layer, non-linear layer, and pooling layer are nested together
and are considered as a group. Let us denote them as convolution group. With several
convolution groups append one after another, high-level features will be obtained from
the output of the last convolution group. The fully connected layer is usually attached at
the end with the last high-level features as input and output the prediction array. The
prediction array is an array with a size of the number of categories to classify with each
cell has a value of the confidence probability of the corresponding label.

The name ”fully connected” comes from the fact that each neuron from the feature
output (the input of the layer) is connected to the output neurons (the prediction). It
typically utilises matrix multiplication operation to realise this, flatten the matrix and
yield the 1D prediction array, and finish classifying the input image.

2.4 State-of-the-art CNN Architecture

In this section, two of the most famous image classification CNN architectures are going to
be introduced and described in detail, which are Inception network and Residual Network.
Many studies have been done to get better image classification accuracy performance based
on these two CNN architecture styles, as we could found out many candidates of ImageNet
challenge through years utilise these two network as basics and made specific modifications
[11]. Both styles were experimented and evaluated on the newly designed CNN topology,
which will described later in Chapter 3 and 4.

2.4.1 Inception Network

The development of Inception network could be divided into four stages from the intro-
duction of Inception, addition of batch normalisation technique, optimisation of inception
and combination with Residual Network (ResNet). Each stage with name Inception V1,
Inception V2, Inception V3, Inception ResNet V2 correspondingly.

15

Inception V1

Inception network is an important milestone in the development of CNN classifier. Before
the existence of Inception, most popular CNN architecture building strategy was just to
stack as many convolution layers as possible in order to make the network deeper, hoping
to get better accuracy performance. However, simply making the architecture deeper may
cause issues as follows:

• There would be too many parameters which can cause overfitting phenomenon [8];

• The backward propagation value would become close to zero when approaching the
input if the depth of the CNN becomes deeper. The gradient vanishment could easily
happen. This phenomenon is explained with an example below;

• The computational resources required for training deeper CNN would be much larger
than shallow CNN.

Gradient Vanishment Example

Suppose the activation function is CNN is Sigmoid 1
1+e−x with parameter e−x = 1,

the derivative of Sigmoid will be

e−x

(1 + e−x)2
=

1

4

when we do the back propagation. If we have many layers (denote the number of
layer as n) of such Sigmoid activation function, the parameter update will be vanish
easily:

lim
n→∞

(
1

4
) = 0

Inception increases the performance by touching the core architecture rather than the
depth of the architecture. The author of the paper believes that the solution to the
problem listed above is to change full connection to the sparse connection. Convolution
layer is a sparse connection. However, the efficiency of numerical calculations of asymmetric
sparse data is low due to the fact that the hardware is optimised for dense matrix, so it
is necessary to find the optimal local sparse structure which can be approximated by
convolution network. In addition, this architecture can be implemented with existing
density matrix computing hardware, and the result is Inception [3].

16

Figure 2.2 shows how the proposed Inception block looks like. We believed that the
reason why Inception block could help is that such block is about to capture multiple
different abstract features by having different size of the receptive field at the same level.
Utilising certain 5× 5 kernel size allows the Inception block to capture features that cover
relatively larger areas. It was pointed out that the number of neurons at each step is
significantly increased, and the computational complexity is not unlimited by reducing the
dimension of larger blocks before convolution with 1 × 1 kernels [3]. Inception V1 finally
gets 89.9% Top-5 accuracy performance in ImageNet challenge.

Figure 2.2: Inception Block [3]

Inception V2

The key upgrade for this generation of Inception is adding Batch Normalisation into the
architecture. The main purpose of batch normalisation is to solve an issue called Internal
Covariate Shift [13]. This issue happens while updating of the parameters at each layer
during the training process. For a CNN, the input of layer n is the output of layer n−1. The
parameters will be changed at each training step. Since the parameters of the previous
layers always change, the distribution of each layers inputs changes during the training
process even with the same input for the CNN. This slows down the training by requiring
lower learning rates and careful parameter initialisation. This also makes it hard to train
models with saturating non-linearity [13]. Intuitively, in order to solve this problem, make
sure the output from each layer for each batch of the data have the same distribution is
the solution. Batch normalisation realises this by making the normalisation of the output
of each layer to Gaussian distribution with N(0, 1) as illustrated in Algorithm 1.

Overall, with batch normalisation, the input distribution at each layer is able to remain
the same (Gaussian distribution). As a result, the gradient vanishment can be resolved

17

Algorithm 1 Batch Normalisation that solves Internal Covariate Shift [13]

Input: A batch of input B = {x1, ..., xn}; Trainable variables: β, γ

Output: Normalised output yi = BNβ,γ(xi)

1: µB ← 1
m

∑m
i=1 xi . Batch mean

2: σ2
B ← 1

m

∑m
i=1(xi − µB)2 . Batch variance

3: x̂i ← xi−µB√
σ2
B+ε

. Normalisation

4: yi ← γx̂i + β ≡ BNβ,γ(xi) . Scale and Shift

and speed up the training process simultaneously. However, there raises another question
that why do we need to scale and shift at the last step of batch normalisation. Consider
the popular used activation function ReLu with expression f(x) = max(0, x) and its plot
is as shown in Figure 2.1a. As we could see, the activated part is in the region x ≥ 0.
However, half of the information would not be activated when the layer output is normalised
to centered at zero. This would finally influence the efficiency of the training process.
Therefore, scale variable γ and shift variable β is defined and utilised to adapt the activation
function. Their main role is to find a linear and non-linear equilibrium point. By this, we
can not only enjoy the non-linear expression ability, but also avoid the problem that the
non-linear saturation causes the network convergence to slow down at the end. Overall,
Inception V2 gets 92.2% Top-5 accuracy performance in ImageNet.

Inception V3

The third generation of Inception did further optimisation in the Inception block. The
improvements can be summarised in three perspectives: further factorise convolution kernel
size, utilisation of auxiliary classifier and altering the way to change the size of feature maps
[28].

Starting from the factorisation of convolution kernel size, Inception V3 proposed two
different ways of factorisation of convolution kernel which are symmetric way and asym-
metric way. Symmetric factorisation would replace one convolution kernel with two exactly
the same smaller size kernel. For example, a 5 × 5 kernel could be replaced by two 3 × 3
kernels as shown in Figure 2.3. With this factorisation, the computation resources needed
is only 3+3×3

5×5 = 18/25 = 72% of the one needed for the initial inception block. The overlap
receptive field of the two 3 × 3 kernels could also play the same role as 5 × 5 kernel [28].
Another method is asymmetric factorisation, which replaces the initial kernel with two

18

different size kernel. For instance, a 5×5 kernel is going to be replaced by one 1×5 kernel
and one 5 × 1 kernel, as presented in Figure 2.4. By this, the resources could be further
reduced to 5+5

5×5 = 10/25 = 40%. However, the asymmetric way is not very effective in the
first few layers. However, it has an obvious effect on the intermediate layer with the size
of 12-20 layers [28]. In conclusion, factorisation of convolution kernel could reduce a huge
amount of parameters if there are many Inception blocks. Also, when one convolution
kernel is factorised to two, the depth of the CNN is also increased by one. This could add
an additional layer of non-linearity that could improve the expressive ability of the model
and could handle more spatial features and increase the feature maps’ diversity.

Figure 2.3: (a) the Inception block without symmetric factorisation; (b) the Inception
block that replace the 5× 5 kernel by two 3× 3 kernels [28]

The second improvement is the addition of auxiliary classifier. The auxiliary classifier is
an additional classifier that yields the output from the middle of the model. It was demon-
strated that the auxiliary classifier could help to have better convergence performance and
also stable the training process [19]. We found out why auxiliary classifier could help in
another perspective. Usually, when the CNN is too deep, the gradient vanishment becomes
a serious problem during training. The auxiliary classifier could help to pass the gradient
back effectively to the earlier layers’ parameters, which could avoid gradient vanishment
and speed up the training process. Sometimes, the features abstract from the middle lay-
ers also help to classify objects. By utilising both high-level features and medium level
features to identify the object could make the model more confidence to get the correct re-

19

Figure 2.4: (a) the Inception block without symmetric factorisation; (b) the Inception
block that replace the 5× 5 kernel by one 1× 5 kernel and one 5× 1 kernel modified from
[28]

sult. There is 0.4% Top-1 accuracy and 0.2% Top-5 accuracy improvement if the auxiliary
classifier is added into the Inception model [28].

The third upgrade in Inception V3 is an efficient way of grid size reduction. A common
CNN usually utilises the non-linear operation pooling, either max pooling or average pool-
ing, to detect the output size at each layer. However, there is always a crucial drawback
wherever the pooling is located, either before or after the feature capture with convolution
operation (such as Inception block): If the pooling is put before convolution layer, a lot
of information is going to be discarded before the convolution layers try to capture the
feature due to the fact that pooling plays a role as down-sampling. Fail to capture features
will make the model fail to make the right predictions. On the other hand, if the pooling
is located after the convolution layers, the convolution layers need to double the filter size
in order to remain expressive ability of the features after pooling as shown in Figure 2.6
(b), which will significantly increase the computation time. Inception V3 introduces a way
that has two channels, one is the convolution layer, and the other is the pooling layer. The
feature maps generated by the two parallel channels are the same size. Finally, the result
from the two-channel concatenates together to realise the grid size-reduction [28].

Overall, Inception V3 is able to reach 77.59% Top 1 accuracy and 93.83% Top 5 accuracy
as we ran the ImageNet validation set based on TensorFlow tutorial’s Inception V3 frozen

20

Figure 2.5: Auxiliary Classifier that added in the Inception V3. Modified from [28].

model.

Inception ResNet V2

As ResNet is one of the most popular image classification networks, which will be discussed
in detail in the next section, the latest version of Inception tried to merge Inception network
with ResNet to get the benefits from both of them. As a result, Residual Inception block
was introduced and make the Inception CNN model is able to go over 150 layers and still
have the ability to predict more accurately than Inception V3. Inception ResNet V2 is able
to reach 80.4% Top-1 Accuracy and 95.3% Top-5 Accuracy in the ImageNet ILSVRC-2012
challenge.

2.4.2 Residual Network

Similar to Inception, ResNet was designed to solve the problem that causes by too deep
CNN [9]. If we test a normal CNN with 20 layers and 56 layers, previous common sense
will easily state that the CNN with 56 layers is going to yield better results. However, the
truth is reversed as shown in Figure 2.8. The deeper 56 layers normal CNN performs worse
than the 20 layers one in both training and testing dataset. Hence, not the deeper the
network, the better. Through experiments, it can be found out that with the increasing
network level, the accuracy of the model is continuously improved. When the number

21

Figure 2.6: (a) Grid size reduction by pooling before convolution, which will loss a lot
of information; (b) Grid size reduction by pooling after convolution, which will greatly
increase the amount of calculations; (c) The parallel style to reduce the grid size which
solves the issue from (a) and (b). Modified from [28].

of layers of the network is increased to a certain number, the training accuracy and test
accuracy are rapidly degraded. It indicates that when the network becomes deeper, the
network has become more difficult to train [9]. The reason is the same as the one indicated
in Inception V1: gradient vanishment which makes the parameter in earlier layers could
not be adjusted properly.

ResNet was introduced to solve this problem and help to make the CNN deeper. Con-
sider we have a shallow network (just a few layers) which already reach the saturate sit-
uation inaccuracy. Now, attach some identity mapping layers (y = x or input at layer n
= output at layer n-1) will increase the number of layers of the model and meanwhile will
not increase the error. In other words, the deeper network will not cause worse accuracy
performance. The idea of using identity mapping to transfer the output of the former layer
directly to the latter is the inspiration of ResNet.

Suppose the input of the network is x and the expected output is H(x). Recall that
accuracy performance would be saturate for normal CNN at a certain number of layers and
the way we are able to remain the accuracy while increase the layer is attaching identity
mappings. Thus, in deeper layers, the learning goal becomes to make the output H(x)
become as close as possible to the input x in order not to drop the accuracy performance
of the network. The residual block is demonstrated in Figure 2.9. The proposed residual

22

Figure 2.7: An example block of Residual Inception block with a residual short as high-
lighted [27].

block utilises the shortcut connection, the input x is directly passed to the output without
any modification. The output now could be formulated as H(x) = F (x) + x. If F (x) = 0,
then H(x) = x, which is the identity mapping we would like to see to make the network
deeper. Thus, ResNet is equivalent to changing the learning goal: learning the difference
between the target value H(x) and x which is called the residual F (x) := H(x)− x rather
than learning a complete output mapping from the input. Therefore, the training goal for
the latter layers is to approach the residual result to zero, so that the accuracy does not
decrease while the network becomes deeper.

ResNet is actually a combination of several shallow networks. It does not try to solve
the problem of gradient vanishment but tries to avoid it. It can accelerate the convergence
of the network and have better results for deeper models since it is a combination of several
shallow networks while shallow networks will not have obvious gradient vanishment during
training. The ResNet performance over ImageNet ILSVRC-2012 could be found in Table
2.1.

23

Figure 2.8: Training and testing error trends over time with dataset CIFAR-10 over normal
20 layer and 56 layers CNN. The deeper the CNN, the worse the result. [9].

Figure 2.9: Residual block in the ResNet. Modified from [9].

2.5 Summary

In this chapter, we gave an overview of the JPEG image compression in terms of its
operation process and pointed out the fact that the compression is fundamentally non-
linear operation as it contains non-linear operation such as quantisation, which gave us the
inspiration to design the new CNN topology. Then we introduced the image classification
task with deep learning. Here, we gave an overview of deep learning and discussed the
background of the task of image classification with its popular datasets. Then, we discussed
the CNN in detail including its architectures and their purposes respectively. What’s more,
we reviewed two state-of-the-art CNN architecture that currently people utilised in the
task of image classification that we also applied our newly designed topology on, which

24

are Inception network and Residual network. The idea of the new CNN topology for
image classification is all inherited from the concepts presented in this chapter and will be
described further in the following chapters.

25

Chapter 3

New CNN Topology for Image
Classification

3.1 Overview

As discovered previously, it can be found out that the non-linearity is crucial for the ma-
chine to learn richer features. Unlimited linear combination will finally yield a linear com-
bination, which cannot provide any help. Furthermore, compression contains non-linear
operations such as quantisation which is discussed in Section 2.1. To combine the non-
linearity from the compression to the deep learning’s model is one of the crucial motivations
to design the new CNN topology for the image classification task.

In this chapter, we will discuss more about this new CNN topology with its designing
principles in detail. Furthermore, we will introduce a particular training method that let
us get incremental improvements while not over-use the computational resources initially.
Also, the parameter control method named parameter sharing will be introduced and
applied to this topology’s training.

3.2 Architecture Design

From the observations in Chapter 1, we find out that there are cases that images com-
pressed by JPEG have better accuracy performance than the original images. As human’s
vision system is usually not sensitive to high-frequency content, JPEG wipes out the high-
frequency contents to realise compression. Removing them will not influence the visual

26

feeling for human and save the storage simultaneously. However, if we wipe too many
contents in the frequency domain such as the contents in medium frequency or even low
frequency, which produces medium or low-quality images, will influence human’s visual
feeling and judgment on the image contents like the one shown in Figure 1.2. Nevertheless,
the machine may appreciate these changes made by JPEG. Even in a low-quality image,
machine, in some cases, could have better prediction performances. It should be noted
that the better performance on low-quality images is not because the training set contains
many low-quality images and make the CNN get used to them. It was demonstrated that
the images from imageNet ILSVRC are high-resolution [16]. Other than other, images in
the training set are always high-quality as well [7]. It could be found out from the following
histogram that quality of the images from the training set of imageNet ILSVRC-2012 are
high as well. High-quality images dominate the training set while low-quality images rarely
happen.

Figure 3.1: The original QF distribution in the training set of imageNet ILSVRC-2012

It is worth noting that the machine does not have the best prediction performance
based on the same image quality (QF in JPEG) for all images [1]. Figure 1.1, 1.2 and
3.2 show the three example images that machine (based on Inception V3) yields the best

27

accuracy over the ground truth on the low, medium and high quality of the original image
respectively inspired from the observation from H. Amer et al [1]. Figure 1.1 has a best
performance at QF equals to 10, which is low quality. Figure 1.2 has a best accuracy at
QF equals to 40, which is medium quality while 3.2 has QF 100 to have the best result.
Nevertheless, compressed image version may not always improve the accuracy performance.
[1]. Therefore, there is no clue for us to conclude which quality factor of the compressed
image or original image is the best choice for a given image either statistically or from the
information delivered from the image itself.

(a) (b)

Figure 3.2: (a) original image #4 with object soup bowl hound from ImageNet ILSVRC-
2012 validation set; (b) Compressed version of (a) by JPEG with Quality Factor = 100.
Orignal image has a quanlity factor = 100, (b) and (a) has barely no difference in human’s
vision system

As a result, the new CNN topology is designed to tackle this situation. With this
topology, we send the compressed version of the image from high quality to low quality
with a constant quality step. In the case of JPEG compression, we selected the QF =
10:10:100 as inputs for a single image to have a uniform choice on the image quality. Also,
since the benchmark is generated from the original image only, the original image is input
to the network as a branch in order to get the benefit from the compressed images. As a
result, the improvement will be built based on the original benchmark rather than from a
random unknown situation.

Unlike data augmentation, our topology combines the variations of the original input
images in group and process. The main purpose of data augmentation is to enlarge the

28

dataset. The images processed that after a certain operation, such as flip, rotation, crop
and so forth, will become independent images with the same ground truth as the original
image and send into the model to train. Convolution is used to extract features from an
image, major objection’s location difference of the same image will yield different activation.
When we have multiple convolution layers that are cascaded together, which extract a
different level of features, the final output from the last layer will no longer be the same.
By this, the purpose of augmenting the dataset can be realised. In our topology, we would
like to append addition information from the compressed images to the original image in
order to make the topology to have a better decision by utilising these combined activation
generated from the compressed image based on the fact that we observed there are cases
that the compressed version of the images are able to have better prediction performance
than original images.

As illustrated in the architecture in Figure 3.5, all 11 branches, including original
images and 10 compressed images in different qualities, goes through to the SAME CNN
independently and the last high-level activation outputs for all of them are merged by
concatenation operation before sending into the last decision layer. The last decision
layer’s weight size will be adjusted correspondingly and finally yield the prediction vector
(with a size of 1,000 in ImageNet since it has 1,000 categories) which is in the order of its
confidence on all category labels.

3.3 Performance Metrics

The performance metric that we apply to our model is the same as the one that people
commonly use in image classification. In this section, we will introduce that metric, give a
certain definition, and show how we utilise it during evaluations.

The confusion matrix is one of the most common ways utilised to measure the perfor-
mance of a model in the task of image classification. To explain, let us denote 1 as ”True”
and 0 as ”False” in a classification task with only these two labels. There will be four
situations that might happen: a) True Positive (TP): label is 1 and the prediction is also
1; b) True Negative (TN): label is 1 and the prediction is 0 instead; c) False Positive (FP):
label is 0 and the prediction is 1 instead and d) False Negative (FN): label is 0 and the
prediction is also 0. The relationship is summarised in Table 3.1, which is as known as the
confusion matrix. If we have 1,000 categories to classify, such a table would extend to a
size of 1, 000 × 1, 000 correspondingly. The right predictions only appear in the situation
a) and d) which are the diagonal of this matrix. As a result, the accuracy performance of
a given model could be expressed as Equation 3.1.

29

Prediction

Ground Truth
Label 1 - True 0 - False

1 - True TP FP
0 - False FN TN

Table 3.1: Confusion Matrix for 2 categories.

Accuracy =
TP + TN

TP + FP + FN + TN
(3.1)

Furthermore, it can be fallen into two categories in terms of Accuracy, which are Top-1
accuracy and Top-5 accuracy. Top-1 accuracy means the accuracy when we only consider
the rank #1 prediction in the prediction vector. On the other hand, Top-5 accuracy
considers the top 5 predictions. When the ground truth label appears in one of the first 5
predictions, it would be treated as a correct prediction. The reason why Top-5 accuracy
exists is further discussed in Section 4.4. Also, Top-1 accuracy is crucial due to the fact
usually only the rank #1 prediction will be demonstrated as a result to the users in daily
life applications such as Google’s Vision AI and Huawei’s HiVision. The Top-1 accuracy
can reflect the performance better when it is in the application stage. As a result, both
measurements would be utilised in our experiment to have multiple angle comparisons on
the accuracy performance.

3.4 Training Strategies

3.4.1 Training Methodology

Training a raw CNN from scratch (start all parameters from random parameter initialisa-
tion settings) is always painful. It is reported that with two NVIDIA R© Tesla R© P100 GPUs
for training on original Inception V3, the rate of training is 284 images per second [21].
Consider the training set from the ImageNet ILSVRC-2012, which has 1,281,167 images.
The time we need to finish training only one epoch 1 is:

1One Epoch is when a whole dataset is processed (pass forward and backward) the neural network
ONCE.

30

1, 281, 167/284 = 4495.32 secs = 1.24 days (3.2)

Usually, one epoch is not enough to have the best result. Multiple epochs will cost
much longer time for the training. In our situation, we have two NVIDIA R© GeForce R©

RTX 2080 Ti GPUs which are relatively similar to NVIDIA R© Tesla R© P100 GPU. The
main comparison criteria of the GPU for deep learning are a) memory bandwidth which
shows the ability of the GPU to handle a large amount of data; b) clock rate which indicates
how fast can the GPU process data and c) GPU RAM size which shows the capacity the
amount of data GPU can hold one time (i.e. the training batch size). From the comparison
we could say with our GPU environment, we would consume similar length of time if we
would like to train the model from scratch.

Benchmark NVIDIA R© Tesla R© P100 NVIDIA R© GeForce R© RTX 2080 Ti

Memory Bandwidth 732.2 GB/s 616 GB/s

Clock Rate 1329MHz 1545MHz

GPU RAM 16GB 11GB

Table 3.2: Performance comparison between NVIDIA R© Tesla R© P100 and NVIDIA R©

GeForce R© RTX 2080 Ti based on the three major benchmarks.

Here, we alter the training method idea based on the concept of transfer learning.
The fundamental idea behind transfer learning is utilising the pre-trained model’s high-
level feature outputs and re-train the tail parts of the model (such as the prediction part
and last few convolution groups) to solve customised tasks. With this, the training time
to a customised task such as image classification with particular input or categories can
be shortened dramatically. The transfer learning process starts with the bottlenecks’ 2

generation. Then, we treat these bottlenecks as the input of the tail lays’ re-training input
and do the general training process lastly. Our model can be considered as doing the same
task as the original model does with the same categories but with different inputs. To fully
utilise the resource we have, we proposed Block-by-block training which is an extension of
transfer learning.

2Bottleneck is a term we defined as the output of the layers before those need to be re-trained or the
input of the layers that need to be retrained or the input for the trainable blocks for the current node and
TensorFlow Hub calls this an ”image feature vector” [23].

31

Block-by-block Training

We trained our proposed topology with TensorFlow deep learning framework on two
NVIDIA R© GeForce R© RTX 2080 Ti GPUs with standard Stochastic Gradient Descent
(SGD) with a batch size of 100 and last 20 epochs for every block’s training. For both
Inception V3 and ResNet-50 V2, we utilised pre-trained frozen models which are publicly
available as our starting point to training our proposed topology. For each model, we
started with last logits block (usually the fully connected layer or the prediction layer),
we apply the normal transfer learning and we call this as the first training run. The first
training run has a random weights initialisation. After that, we continuously add another
extra tail block to process the training run. Starting from the second training run, we load
the parameters from the previous training run that has the best Top-1 accuracy perfor-
mance and let this as initialisation of the training run and gradually decrease the learning
rate. The number of training runs n can be decided manually or depends on the machine
capacity (e.g. GPUs and CPUs configuration). The detail of the Block-by-block training
process is described as a flowchart shown in Figure 3.4. The overall learning rate schedule
is applied gradually which will be discussed next.

Figure 3.3: Typical reliationship between model capacity and training and testing error.
It could be found out that when the capacity of a model becomes larger, the testing or
generalisation error becomes bigger. The gap between training error and generalisation
error becomes bigger as well as overfitting becomes more serious [8].

32

Learning Rate Schedule

The last prediction block’s training starts with a learning rate of 0.01 by freezing all previ-
ous block. When the validation error for current block reaches a plateau (the phenomenon
of overfitting observed) with the current learning rate, we stop the training of the current
layer and reduce the learning rate by a factor of 10. Each block of training from the second
block will start with the new reduced learning rate as a starting point and continue. We
stop the training of the current block when no improvement happens in terms of valida-
tion error last for one epoch. Overall learning rate schedule was applied as described in
Algorithm 2.

Algorithm 2 Learning Rate Schedule

1: while training not over do
2: if Training the last logits block then
3: LR← 0.01 . Initial setting of the learning rate for 1st block
4: else
5: Unfreeze one more block from the tail of the model
6: LR← LR / 10 . Initial setting of the learning rate for other blocks

7: Evaluate current model save the checkpoint every 2,000 step.
8: if Validation error after evaluation reaches a plateau then
9: Go to Step 1.

3.4.2 Parameter Sharing

As introduced, the 11 branches in the new CNN topology takes the original image and 10
images that compressed in different degree as input and they pass through each branch
independently. Recall that our observations on the example image Figure 1.1, 1.2 and 3.2
are based on the fact that the original image and the compressed image are evaluated based
on the same model rather than the individual model. To be consistent with the settings
in the observation, the parameters across the 11 branches maintain the same (shared). In
other words, the loss is calculated based on the information from the 11 branches, or the
data is passed forward through all 11 branches. However, when updating the parameters,
it only backward passes to one branch and other ten branches simply share the same
parameters with that branch. The data flow of the forward and backward propagation
could be found in the architecture diagram in Figure 3.5.

33

Additionally, if a model has too many variables or the capacity of a model is too large,
the model is going to be hardly trained. The phenomenon of overfitting could happen easily
as demonstrated in Figure 3.3 [8]. With parameter sharing, we can control the capacity of
the model to be at least the same as the original model.

3.5 Limitations of the new CNN topology

The 11 branches of this topology are needed to input the compressed versions of the original
images. However, this introduces 11 copies of the original CNN models into this new
topology as well. Even though the depth of the topology remains the same as the original
model, it becomes much wider. The total number of parameters in the new topology,
with both trainable and non-trainable, is 11 times the original images. This could easily
make the GPU RAM resource exhausted if we desire to train and evaluate the whole
topology. That is why the Block-by-block training method is applied gradually to see
whether current training run reaches the upper limit of the GPUs’ limitation and not over
use the computational resources initially.

3.6 Summary

In this chapter, we proposed the new CNN topology that can be applied in a general CNN
model in the task of image classification. We have introduced the detail of this topology
design and shown in Figure 3.5 and its principle to input the compressed information to
the topology and get the useful information from the compressed input. Also, the general
performance measurement, accuracy in Top-1 and Top-5 perspective, are defined to mea-
sure the performance of the newly designed topology. A different training strategy called
Block-by-block training, which is based on the concept of transfer learning is proposed
to train this CNN topology. Parameter sharing is defined and applied to the training of
this topology to save computational resources and make the setting of the topology to be
consistent with observations’. The limitations of this topology that it makes the number of
parameters too large for the machine to hold and make it hard to train the whole topology
are also discussed.

34

Figure 3.4: Block-by-block training that based on transfer learning flowchart.

35

Figure 3.5: New CNN topology.

36

Chapter 4

Experiment and Analysis

As designed new CNN topology, we will introduce the experiment details in this chapter.
We will introduce the data preparation and GPU utilisation for the best training perfor-
mance as well as the training and evaluation over the popular image classification dataset:
ImageNet ILSVRC-2012 based on both Inception-type and ResNet-type network. Then,
we will make result comparison with benchmark and analysis the results.

4.1 Data Preparation Efficiency Contribution

4.1.1 Dense Data Representation

As introduced, we chose ImageNet ILSVRC-2012 as our dataset and transfer learning
technique is applied to our training process. Since transfer learning process is applied step
by step to get incremental improvement in terms of accuracy performance, the bottleneck
values are obtained for both training set and validation set at each block’s training. It
was observed that at all pivotal node1, the bottlenecks contain a large portion of zeroes.
For each node, we calculated the average portion of zeroes based on 15-20 bottlenecks
from Inception V3 from both the training set and the validation set as shown in Table
4.1. Each node represents a certain level of the feature that is extracted and learned by
the model. For a certain amount of features, we believe that zeroes mean the input image
does not contain those specific features at that level. It is undeniable that every picture
contains limit information as well as limited features. Majority of the features might not

1The input node for current block’s training

37

be presented in the input, as we could observe in large percentage of zeroes at each pivotal
nodes from Inception V3.

Pivotal Node Name Average Percentage of zeroes

mixed 1 56%

mixed 2 64%

mixed 3 53%

mixed 4 73%

mixed 5 72%

mixed 6 76%

mixed 7 90%

mixed 8 71%

mixed 9 89%

Table 4.1: Average percentage of zeroes in the sample training bottleneck from node
mixed 1 to mixed 9, the percentage of zeroes is at least 50%

As a result, dense representation of the sparse bottleneck array is proposed as demon-
strated in Algorithm 3. At the end of the sparse to dense transformation, two vectors
would be obtained, which stored the non-zero values in order and their corresponding
positions in the bottleneck array respectively. Consider an short array with 20 values
[0, 0, 0, 0, 0, 0, 5, 7, 0, 0, 0, 2, 0, 0, 12, 0, 0, 0, 0, 1], which totally needs 160 bytes in C++. Af-
ter transformed to dense, what we stored are value = [5, 7, 2, 12, 1] and position =
[6, 7, 11, 14, 19], which totally need 80 bytes in C++. By this algorithm, the storage to
save the bottleneck values can dramatically be decreased. The read and write process
can be more efficient, especially in the situation of 1.2 million training images and 50,000
validation images with 10 quality factor version of each (totally (1.2M +50K)×11 ' 14M
images).

4.1.2 TFRecord Data Storage Type

TensorFlow organisation initially recommended to save the bottleneck values one by one
as .txt file for transfer learning [23]. However, the training process usually needs a batch of
data to process together. Opening several .txt files together is not efficient and makes the
training time longer. In 2015, TensorFlow organisation introduced an improvement update
in the architecture while a not well-known component is a new file format called TFRecord

38

Algorithm 3 Bottleneck Values Sparse to Dense Representation

1: procedure Sparse2Dense(Bottleneck vector b)
2: n← bottleneck size - 1
3: value← {} . Non-zero values
4: position← {} . Non-zero positions
5: counter ← 0 . Iteration counter
6: while counter 6= n do
7: if b[counter] 6= 0 then
8: value← {value, b[counter]}
9: position← {position, counter}

10: counter ← counter + 1

[25]. The key of the TFRecord file format is that the data and information are all stored
in binary. With a binary file format, the data is serialised and the reading process (which
usually happens during training) could become significantly efficient especially when the
dataset is extremely large. For a large dataset, we do not want the data fully stored in
the memory. TFRecord also gives a feature to let the data to load partially (e.g. batch
processing during training) and then process. In other word, data in TFRecord could be
called as required, no need to be always in ready condition. In addition, binary data is
able to save the storage [12] [25].

What’s more, TFRecord file format is designed to work more perfectly with the data
pre-processing and pipeline building function inside TensorFlow official framework library.
TFRecord stores the data in sequential style such as the bottleneck values in our experiment
[25] which make the programming easier to extract the necessary information from the
TFRecord file(s).

The recommendation size for each TFRecord file is around 100 - 200 MB each and
should not be too large [25]. We decided to transform the training set bottleneck at each
node to 10240 TFRecord files and 2560 files for the validation set. Table 4.2 summarises
the approximately TFRecord sizes for each Mixed nodes that we trained on.

39

Pivotal Approx. TFRecord Size Approx. TFRecord Size
Node Name for Training set for Validation set

mixed 8 230MB 75MB

mixed 9 230MB 75MB

mixed 10 145MB 42MB

Table 4.2: Approximate TFRecord file size for the Mixed node that we trained on. All files’
size is not too large. The size of TFRecord file size is also proportional to the bottleneck
size.

4.2 Graphic Processing Unit (GPU) Utilisation

4.2.1 Multi-GPU Utilisation

The most common unit in a computer is the Computation Process Unit(CPU). The prop-
erties of the CPU that it has few complex cores and is designed and optimised for a single
thread process makes it not the best choice for machine learning, especially the training
process. During training, either forward propagation or backward propagation, there is a
lot of matrix computation such as matrix multiplication and convolution. For large matrix,
the performance of the training is going to be poor if calculation is done in single-thread
style.

On the other hand, GPU mainly utilised to process graphic data such as images and
videos as its name stated. It has many complex cores and thousands of hundreds of concur-
rent hardware-based threads. With GPU, a single calculation inside matrix multiplication
can be processed in parallel which can improve the performance significantly.

To further improve the performance, multiple GPUs (in our case is 2) are utilised during
training and evaluation process. For each training step, the current batch of training data
is evenly divided by two. Then, those two groups of data perform forward propagation to
calculate the loss and backward propagation to update the parameters independently. By
this, the performance during calculation could be even better than single GPU as more
calculations could be done in parallel.

40

4.2.2 Pipelining Configuration

After implementing two GPUs’ training settings, it was observed that the GPUs’ utilisation
is not high during training. We believed that the GPUs were not performing their best.
After several testings, it was found out that as GPUs perform fast during training and
evaluation, they are always waiting for CPUs to finish preparing the data as the data must
be prepared through CPUs. The CPUs’ performance, again, becomes the bottleneck of
the performance of the training and evaluation. Usually, before the data is sent into the
model to perform training with GPUs, it must be extracted and transformed firstly [22]. A
normal configuration makes the data preparation and training happen one after another.
In another word, when CPUs are preparing the data, the GPUs are idle and doing nothing
but waiting for CPUs to finish their work. This is obviously not efficient at all. In order
to overcome this problem, the pipelining was developed to make the training step and the
pre-processing the data taking place simultaneously. For example, when the GPUs are
doing the training step at step k, the CPUs are preparing the training data for the step
k+1 at the same time. This realises parallel processing in the perspective of task location.
The time consumption by with and without pipelining configuration could clearly be found
in Fig. 4.1.

4.2.3 Queue Runner

Queues are important TensorFlow objects that allow the machine to compute tensors asyn-
chronously using multiple threads [24]. Consider we have a large dataset to process, such
as the training set data from ImageNet ILSVRC-2012, multi-threading and asynchronous
operations could speed the data processing up to another level. As discussed, the common
performance bottleneck during training is that GPUs are always waiting for CPUs to finish
preparing the data. Even with the help from the pipelining, there are still idle time for
GPUs. By utilising the queue, the preparation of the data could be more efficient. While
one thread is preparing the data and push them into a queue, another thread is doing
the same thing and push its data to another queue. The mechanism called Queue Runner
provided by TensorFlow will manage the queues properly to enable the queues to be able
to stop simultaneously and capturing errors.

In order to demonstrate the power of the three techniques could have, we did a small
pre-test by applying them on the official TensorFlow transfer learning tutorial posted file
and comparing the performance [14]. This experiment was done in Windows 8.1 with CPU
Intel(R) Core(TM) i7-5500U and GPU GeForce 940M. It could be found out around 78%

41

Figure 4.1: (a) shows the timeline without pipelining configuration, the GPUs are always
waiting for the CPUs to finish the work; (b) shows the timeline with pipelining configura-
tion, even there is still idle time, the idle time dramatically reduced. The reason that the
GPUs always have idel time is due to the fact that the processing time for GPUs are much
shorter than CPUs. [22]

of the time could be saved with them which would be even more obvious when the queue
runner is applied during training the large ImageNet ILSVRC-2012 dataset.

Item Time Consumed

Default retrain.py 728 seconds
Applied 3 techniques 163 seconds

Table 4.3: Time consumption comparison before and after applying TFRecord, Pipelining
and Queue Runner.

4.3 Full Results

4.3.1 Experiment on Inception V3 Model

Our training experiment on the new designed CNN topology started from applying on
Inception V3 model as Inception is one of the most popular image classification CNN

42

blocks. The reason why we chose Inception V3 rather than Inception ResNet v2, which is
the newest Inception Network version for Inception network’s experiment were that

• Utilising Inception ResNet v2 might not keep pure Inception as our experiment target.
If the experiment results show positive sign, whether this CNN topology is suitable
for Inception is still unknown. It might be benefit from ResNet.

• Inception ResNet v2 contains over 150 layers [27]. If we utilise Block-by-block training
strategy, as discussed in Chapter 3, the process to training all blocks, even one third
of the blocks, will be long and the requirements of the computation resources will be
large, as per the limitation of the new CNN topology.

Four blocks were trained during the experiment which include the blocks with output
nodes Fully Connected, mixed 10, mixed 9, mixed 8 due to the computation resources’
limitation. The architecture details could be found in Figure A.2. While processing training
at each block stage, adaptive learning rate was applied as described in Algorithm 2.

The Top-1 accuracy performance is demonstrated in Table 4.4. After training the block
with output node mixed 8, a gain of 0.374% in Top-1 accuracy was obtained, which was
equivalent to 183 pictures improvements among 50,000 validation images. The overall Top-
1 accuracy trend of this training experiment is drawn in Figure 4.2. The dashed line in the
figure shows the linear regression of the accuracy trend. We believed that the performance
would have a chance to be better if the training could be performed further to earlier blocks.
The best Top-5 accuracy that we are able to reach during the experiment is 94.176% at
mixed 9 stage which is 0.346% improvement equivalent to 173 images.

Block Trained Top-1 Corresponding Top-5
with Node Name Accuracy Accuracy

Default Model 77.59% 93.83%

Fully Connected 77.77% 93.880%

mixed 10 77.896% 94.094%

mixed 9 77.936% 94.11%

mixed 8 77.964% 94.148%

Table 4.4: Top-1 Performance for last 4 blocks’ training on Inception V3 Model.

43

Figure 4.2: Inception V3 Top-1 accuracy trend after training the first 4 blocks.

Block Trained Top-5 Corresponding Top-1
with Node Name Accuracy Accuracy

Default Model 93.83% 77.59%

Fully Connected 93.936% 77.816%

Mixed 10 94.13% 77.874%

Mixed 9 94.176% 77.856%

Mixed 8 94.158% 77.932%

Table 4.5: Top-5 Performance for last 4 blocks’ training on Inception V3 Model.

4.3.2 Experiment on ResNet-50 V2 Model

As in the experiment of Inception V3, the accuracy in both Top-1 and Top-5 perspective
could yield improvement in the new CNN topology when applying the Block-by-block
transfer learning method. In order to prove the generalisation of this topology of CNN, we
also experimented on one of the Residual networks called ResNet-50 V2 (architecture detail

44

Block Trained
Top-1 Corresponding Top-5

Accuracy Accuracy

Default Model 75.588% 92.828%

Logits Block 75.852% 93.028%

Block 4 75.978% 93.012%

Table 4.6: Top-1 Performance for last 2 blocks’ training on ResNet-50 V2 Model.

Block Trained
Top-5 Corresponding Top-1

Accuracy Accuracy

Default Model 92.828% 75.588%

Logits Block 93.034% 75.788%

Block 4 93.056% 75.866%

Table 4.7: Top-5 Performance for last 2 blocks’ training on ResNet-50 V2 Model.

could be found in Figure A.3. To be consistent, the same manual learning rate adjustment
was applied for this experiment.

In the training experiment on ResNet-50 V2, two blocks were trained inclde the last
logits block and the fourth block because of resources’ limitation. The Top-1 accuracy
results are shown in Table 4.6. The best Top-1 accuracy we were able to obtain was
75.978%, which has 0.39% improvement comparing to the original model benchmark. This
improvement means we get 195 more images to be correct in rank #1 in the ImageNet
ILSVRC-2012 validation set. The corresponding Top-1 accuracy result trend is shown
in Figure 4.3. This trend is similar to the one we drew for the Inception V3 training
experiment. It is expected if keep training earlier blocks with enough resources, the result
is able to keep climbing up. Moreover, in the Top-5 accuracy perspective, the highest
the training process we can reach is 93.056% while training Block 4, which is a 0.228%
improvement.

4.3.3 Experiment Results Conclusion

The new CNN topology applies on both Inception network (Inception V3) and Residual
network (ResNet-50 V2) can both get over 0.3% Top-1 accuracy improvement and relatively
lower improvement in Top-5 accuracy perspective compare to original model’s benchmark

45

Figure 4.3: ResNet-50 V2 Top-1 accuracy trend after training the first 2 blocks.

after training the last few tail blocks. By this, we are able to conclude that the new
CNN topology that digest compressed version of original inputs could further improve the
accuracy performance compare to the original model. In addition, the compressed inputs
contain more or less useful information for the machine to make better predictions in the
task of image classification.

4.4 Analysis and Observations on the Results

We have observed statistically that the compressed images may sometimes help the neural
network to make better predictions. In order to better understand why the compressed
version images help, we give insights for this phenomenon by analyzing the image examples
visually. To begin, we classify all images into three types:

• Type A: Images that our trained model topology predicts the ground truth label at
rank #1 while the original default model fails to do that;

46

• Type B: Images that the original default model predicts the ground truth label at
rank #1 while our trained model topology fails to do that;

• Type C: Images other than Type A and Type B images.

Then, we applied one of the models that we obtained: the trained model topology
after training the Fully Connected Layer in terms of the Inception V3 model (with Top
1 accuracy 77.77%), to classify the images to those three types. The number of images
difference between Type A and Type B, as demonstrated in Table 4.8, is 1, 163−1, 073 = 90
images, which is 90/50, 000 = 0.18% of the whole validation set, which is the improvement
we got during this training: 77.77%− 77.59% = 0.18%

Number of images

Type A 1,163

Type B 1,073

Table 4.8: Number of Type A and Type B images when comparing the CNN topology
after training Fully Connected block and the original default model

In order to understand why compressed version images input to the training help,
we visualised 80 images from Type A to compare the original input and its compressed
version with the best performance independently. Then, we understand them in feature
extraction’s perspective why the compression inputs help the training results. The pictures
in Type A can be categorised into two sub-types: a) confusing labels: there are labels from
pre-defined ground truth list that is similar to each other, the machine makes the wrong
prediction because they select another similar label as prediction; b) multiple objects: there
are cases that the images contain more than one object, the machine will make prediction
based on all of them, which one becomes rank #1 prediction is usually unknown. As a
result, ImageNet image classification challenge introduced Top-5 accuracy to avoid multi-
object confusion. Based on the observed images, 63 out of 80 images belong to confusing
label categories and 17 of them belong to multiple objects and no other situation happens.
We will observe typical images which could represent each of these two sub-types separately
and conclude why compression may help in these two categories.

Confusing Label

Starting with confusing label condition, the image with ground truth ”brambling, Fringilla
montifringilla”, as shown in Figure 4.4. Consider those two images independently, the

47

confidence on the ground truth label based on Inception V3 is only 37.03% and the rank of
the ground truth label is not #1 for the initial original image. Inception V3 model yields
”junco, snowbird” as the #1 prediction with confidence 38.14%. Some juncos do have
a similar color to the brambling as shown in Figure 4.5, but the key difference between
these two types of birds is the texture difference on the wings. It could be found out that
brambling contains more complicated textures while junco’s wings are smoother. Table 4.9
shows the detail of the accuracy difference between the original image and its compressed
version with QF = 10. The compressed version, even with a relatively low quality presents
a higher prediction performance with 71.67% confidence on the ground truth.

By visualizing the difference between the original image and its QF = 10 version, the
block effect caused by the compression, as shown in Figure 4.4b, is able to enhance the
texture effects on the wings. The extra intense textures are generated from the edge of
the blocks caused by compression. With these textures, the machine is more confidence to
categorise this bird to brambling rather than junco due to the fact that the neural network
relies upon the key edge information.

(a) (b)

Figure 4.4: (a) Original #651 image from validation set with ground truth ”brambling,
Fringilla montifringilla”; (b) Compressed Version of (a) with Quality Factor = 10

Other than that, another typical example of the confusing label in Type A is #898
image with ground truth label ”lynx, catamount” from the validation set as shown in

48

Figure 4.5: Example image with ground truth ”junco, snowbird” from the training set of
ImageNet ILSVRC-2012.

Label
Original Image Quality Factor = 10
Rank Accuracy Rank Accuracy

brambling, Fringilla montifringilla 2 37.03% 1 71.67%

junco, snowbird 1 38.14% 2 12.03%

Table 4.9: Accuracy comparsion between ground truth label ”brambling, Fringilla mon-
tifringilla” and confusion label junco, snowbird on image #651 in the validation set of
ImageNet ILSVRC-2012.

Figure 4.7a. Again, we consider the original image and its QF = 10 version individually.
With the original image, the Inception V3 only has 13.15% confidence on the ground truth
label while has strong confidence on another label ”gazelle”. Consider one ”gazelle” images
from the training that demonstrated in Figure 4.8, the main difference between these two
types of object is a gazelle MAY has longhorns on the head while lynx must not have them
if we do not take body features into considerations. Other than that, the body of lynx is
usually not as smooth as gazelle. From Table 4.10, it could be found out that the QF =
10 version performance much better than the original input with 94.23% confidence on the
ground truth label and its confusing label ”gazelle” only has 0.0898% confidence, which is
very low.

Comparing the original input and its low-quality version side by side visually, the

49

contrast of the lynx’s body in QF = 10 version is higher as shown in Figure 4.6. By this,
the lynx object is better highlighted. In ground truth’s perspective, it could be found out
that the long ears part from the lynx is integrated into the background which will no longer
be misunderstood as longhorns as circled in Figure 4.7b thanks to the block effect caused
by the compression. In addition, the block effect introduces extra textures onto the body
of the lynx which further differentiate it from the gazelle even though their body color is
close to each other.

(a) (b)

Figure 4.6: (a) Original #898 image from validation set with ground truth ”lynx, cata-
mount”; (b) Compressed Version of (a) with Quality Factor = 10. Both with body part
zoomed in the compare the contrast.

50

(a) (b)

Figure 4.7: (a) Original #898 image from validation set with ground truth ”lynx, cata-
mount”; (b) Compressed Version of (a) with Quality Factor = 10. Both with ears’ part
zoomed in.

Multiple Objects

In terms of multiple objects condition, let us consider #568 image in the validation set of
ImageNet ILSVRC-2012 in Figure 4.9a. From the image, we could see multiple things in
the image including the mountain, the skiers, trees and so on. The ground truth given by
the dataset is ”ski” and the interference object has a label ”alp”, which is the mountain
in the background. The original image has only confidence of 32.99% on the ground
truth while has 42.51% confidence on the interference alp by Inception V3. Even though
both confidences is not high, it is clear to show that the alp successfully influences the
judgment by the machine to select the ”ski” as its Top-1 prediction. On the other hand, the
compression version of this image with a QF = 10, the ground truth probability increases

51

Figure 4.8: Example image with ground truth ”gazelle” from the training set of ImageNet
ILSVRC-2012.

Label
Original Image Quality Factor = 10
Rank Accuracy Rank Accuracy

lynx, catamount 2 13.15% 1 94.23%

gazelle 1 38.62% 4 0.0898%

Table 4.10: Accuracy comparsion between ground truth label ”lynx, catamount” and con-
fusion label gazelle on image #898 in the validation set of ImageNet ILSVRC-2012.

to 89.64% while the interference label ”alp” has only 8.70% confidence. The detailed
comparison of the accuracy is summarised in Table 4.11.

First of all, the outline of skiers are not heavily distorted which does not seriously
influence the judgment. By this, the skiers’ part in the image becomes more prominent
rather than relatively equivalent importance with the alp in the image, which makes the
machine output much higher confidence on the ground truth object. On the other hand,
the alp part of the image, which is squared is Figure 4.9, can easily be observed in the
original image. However, after compressed with QF = 10, the details of the alp are ruined
by the block effect and can hardly be distinguished in the image. In addition, with the
compression from JPEG, the contrast of skiers’ background is further increased which helps
to highlight the skiers and make the skiers more obvious. This further help to have a better

52

(a) (b)

Figure 4.9: (a) Original #568 image from validation set with ground truth ”ski”; (b)
Compressed Version of (a) with Quality Factor = 10.

Label
Original Image Quality Factor = 10
Rank Accuracy Rank Accuracy

ski 2 32.99% 1 89.64%

alp 1 42.51% 2 8.70%

Table 4.11: Accuracy comparison between ground truth label ”ski” and interference object
label alp on image #568 in the validation set of ImageNet ILSVRC-2012.

prediction.

Another multiple object example is shown earlier in the introduction Chapter in Figure
1.1. It might be unbelievable that this image contains multiple objects as the dog is
obvious enough. Based on Inception V3, there are two other labels that influence the right
judgment: ”tub, vat” and ”bathtub, bathing tub, bath, tub” while the ground truth label
is ”Ibizan hound, Ibizan Podenco”. By observing the training set images with label ”tub,
vat” and ”bathtub, bathing tub, bath, tub”, it was found out that the key feature with two
labels is white SMOOTH surface while some images show only the edge of the tub, some
with the whole tub, some contain people or objects and some are empty. It is worth to
note that in ImageNet ILSVRC-2012 dataset, multiple labels may target the same object
which makes the machine even human hard to distinguish. Figure 4.12 shows an example
image with label ”tub, vat”. The accuracy based on Inception V3 upon those three labels

53

is shown in Table 4.12.

As shown in Figure 4.10, the block effect that in the background decreases the contrast
of the background around the outline of the dog which helps to increase the contrast of
the dog. The dot-like noise in the background is also removed entirely by the block effect
which helps to highlight the dog. Additionally, the smooth white surface is the key that
makes the machine believe it is a tub, the block effect generated by JPEG compression
make the white surface shown in Figure 4.11b no longer smooth. Meanwhile, the dog itself
is still easy to see and the block effect even further supplements extra textures on the dog’s
body. By this, the machine is able to give the right prediction on the ground truth ”Ibizan
hound, Ibizan Podenco”.

(a) (b)

Figure 4.10: (a) Original #115 image from validation set with ground truth ”Ibizan hound,
Ibizan Podenco”; (b) Compressed Version of (a) with Quality Factor = 10. Both with white
surface part zoomed in. Both with part of the dog’s outline zoomed in.

Summary

Overall, from the observations on the examples, we could say compression MAY help the
machine to improve the accuracy performance by a) utilising the block effect to highlight
and intensify the texture and edge features under the condition that the texture features
are crucial for making correct decision b) increasing the contrast of the image to highlight
the main object and c) utilising the block effect to remove distracting parts in the image
in order to highlight the core object. However, the condition to make the compression

54

(a) (b)

Figure 4.11: (a) Original #115 image from validation set with ground truth ”Ibizan hound,
Ibizan Podenco”; (b) Compressed Version of (a) with Quality Factor = 10. Both with white
surface part zoomed in.

Figure 4.12: Example image with ground truth ”tub, vat” from the training set of ImageNet
ILSVRC-2012.

55

Label
Original Image Quality Factor = 10
Rank Accuracy Rank Accuracy

Ibizan hound, Ibizan Podenco 3 9.95% 1 70.64%

tub, vat 1 23.40% No longer in Top-5

bathtub, bathing tub, bath, tub 2 14.23% 3 2.02%

Table 4.12: Accuracy comparison between ground truth label ”Ibizan hound, Ibizan Po-
denco” and interference object label tub, vat or ”bathtub, bathing tub, bath, tub” on
image #115 in the validation set of ImageNet ILSVRC-2012.

becomes helpful is strict. For example, if the object in the image occupies a relatively
small portion of the image, the block effect caused by compression will ruin the object and
make the machine making a wrong prediction at the end. As a result, the condition when
the compression could help and how compression can be applied to help the machine to
make the right and better prediction are still interesting to be discovered further.

56

Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, we have proposed a new CNN topology which is able to input multiple
compressed versions of original images along with original image. With this topology,
the network is able to digest original and compressed information together to have better
accuracy performance in both Top-1 and Top-5 perspective. In order to see the incremental
improvement for this topology, a Block-by-block transfer learning method was proposed
and applied during our experiments. Instead of training the whole topology, Block-by-block
style transfer learning could catch the upper limit of computational resources and does not
overwhelm the resources initially by this big topology. Our proposed topology is generalised
to be applied to popular image classification CNN networks such Inception network and
Residual network. In terms of Inception, Inception V3 was selected for our experiment.
We are able to get 0.374% improvement in Top-1 accuracy and 0.346% improvement in
Top-5 accuracy comparing to the official benchmark from TensorFlow after training over
four pivotal blocks including the last fully connected layer. On the other hand, ResNet-50
V2 was chosen for the ResNet experiment. Furthermore, an overall 0.39% improvement in
Top-1 accuracy and 0.228% improvement in Top-5 accuracy was achieved compared to the
original benchmark. However, this topology does have a limitation that it has 11 times the
number of parameters in order to absorb different compressed version of images to input
to the model. With this topology, we can use the non-linearity at the input stage from
the compression to enhance the accuracy performance in the task of image classification.
Also, it was found out by the visualisation of improved images that the compression more
or less plays a role as noise remover, smoothing the image content and highlighting the

57

major object’s contrast, which help to make better predictions.

5.2 Future Works

5.2.1 Efficient Resource Utilisation Improvement

The limitation of our new CNN topology, as discussed in Section 3.5, is the number of
parameters and the width of the model is 11 times of the original model. The design
of this topology does not avoid this in order to fully digest compressed information with
different compression quality. If it is possible to design an algorithm to do early fusion of
the compressed and original info and generate an input with only the original image input
size meanwhile maintain the useful information from the compressed images and original
image, the size of the topology could be reduced and also gives similar improvements that
our proposed topology does. Inputting lossy inputs to the machine, which may help the
network’s performance, not only proved in our new topology, but also by Cutout strategy
proposed by T. Devries and G. W. Taylor in 2017. With this strategy, they described a way
called Cutout that randomly masking out square regions of input during training through
data augmentation [6]. With this method, they were able to obtain further accuracy
improvements. Similar to masking certain area of the input, Yang and others designed a
content-adaptive compression method named Transparent Composite Model (TCM). This
method can adjust the level of compression at each block in the image depends on the
energy (or whether these blocks contains edge(s)) [31]. TCM majorly does compression
heavily on smooth blocks and lightly on non-smooth blocks. Such method works fine in
pictures with smooth background and helps to highlight the objects as shown in Figure
5.1. After the TCM operation, the outcome in Figure 5.1b even have better prediction
confidence than original image for Inception V3, which is 92.44% confidence on ground
truth for TCM output versus 90.24% confidence for original input. Similarly, in Figure
5.2, the smooth body is wiped after applying TCM mask and the teeth and the nose are
highlighted. The Inception V3 outputs 87% confidence on the ground truth label ”tucker”
comparing to 81.4% on the original image. It could be concluded that the mask applied
by TCM is target-oriented on saving high energy part on the image (the part with edges)
and mask the smooth part. We suggest applying TCM type mask strategy and apply on
the training process which may be more oriented to increase the accuracy performance.

58

(a) (b)

Figure 5.1: (a) Original image #153 with object iguana from ImageNet ILSVRC-2012
validation set; (b) TCM applied on (a), it could be found out that the object with many
edges is successfully reserved and the background is compressed heavily and have serious
visible block effect.

(a) (b)

Figure 5.2: (a) Original image #67 with object tusker from ImageNet ILSVRC-2012 val-
idation set; (b) TCM applied on (a), the key for identification, the nose and the teeth is
highlighted while masking the smooth body part make the model more confident

59

5.2.2 Application On Other Models And Machine Learning Tasks

According to Table 2.1, the best performance so far for imageNet is produced by Efficient-
Net, which can get 84.1% Top-1 accuracy. Compared to the second-best, which is GPIPE,
only 0.1% improvement was obtained. From the experiment on Inception V3 and ResNet-
50 V2, the improvement by modifying to model with our new CNN topology can get at
least 0.3% improvement in terms of the Top-1 accuracy. We believe that if this topology is
applied to the best EfficientNet model, it could further improve the accuracy performance.

Besides, our experiment so far is limited to the task of image classification which utilises
the dataset from imageNet. In terms of image input, some other tasks such as object
detection, object segmentation and so on could be further experimented to guarantee the
generalisation of this proposed topology. Also, these applications on video input (which is
a sequence of images) could be attempted. A summary of the multiple applications from
different perspectives are summarised in Figure 5.3.

Figure 5.3: Different applications of proposed topology in three perspectives: input source
coding method, CNN model and the task scenarios.

5.2.3 Training with Different Compressed Input

The experiments we have done so far, even in the image classification dataset, only use the
JPEG compression method. Other types of image compression are worth to be attempted
as well such as JPEG-2000, which utilises the wavelet information to do the compression.
Overall it could be found out from the experiments that the loss of information from
compression does not always lead to low prediction performance, especially in machine’s
perspective.

60

References

[1] H. Amer, Y. Jiang, and E. Yang. Image compression helps deep learning. In progress.

[2] Ashutosh Bhown, Soham Mukherjee, Sean Yang, Shubham Chand ak, Irena Fischer-
Hwang, Kedar Tatwawadi, Judith Fan, and Tsachy Weissman. Towards improved
lossy image compression: Human image reconstruction with public-domain images.
arXiv e-prints, page arXiv:1810.11137, Oct 2018.

[3] Yangqing Jia Pierre Sermanet Scott E. Reed Dragomir Anguelov Dumitru Erhan
Vincent Vanhoucke Christian Szegedy, Wei Liu and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014.

[4] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural
networks for image classification. CoRR, abs/1202.2745, 2012.

[5] Rémi Cogranne. Determining JPEG Image Standard Quality Factor from the Quan-
tization Tables. arXiv e-prints, page arXiv:1802.00992, Feb 2018.

[6] Terrance Devries and Graham W. Taylor. Improved regularization of convolutional
neural networks with cutout. CoRR, abs/1708.04552, 2017.

[7] Samuel F. Dodge and Lina J. Karam. Understanding how image quality affects deep
neural networks. CoRR, abs/1604.04004, 2016.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[10] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006.

61

http://www.deeplearningbook.org

[11] imagenet. Imagenet Large Scale Visual Recognition Challenge 2016 (ILSVRC2016).
http://image-net.org/challenges/LSVRC/2016/results. [Online; accessed 06-
July-2019].

[12] Thomas Gamauf in Mostly AI. Tensorflow Records? What they are and how to use
them. https://bit.ly/2n8Wm94, 2018. [Online; accessed 04-July-2019].

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[14] Yanbing Jiang. inception V3 Retrain Fast Input With TFrecord QueueRunner. https:
//bit.ly/2LgnRM6. [Online; created March-2019].

[15] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[17] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[18] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S.
Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 598–
605. Morgan-Kaufmann, 1990.

[19] Chen-Yu Lee, Saining Xie, Patrick W. Gallagher, Zhengyou Zhang, and Zhuowen Tu.
Deeply-supervised nets. CoRR, abs/1409.5185, 2014.

[20] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan. Deepn-jpeg: A
deep neural network favorable jpeg-based image compression framework. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6, June 2018.

[21] Tensorflow Organization. Benchmark. https://www.tensorflow.org/guide/

performance/benchmarks. [Online; accessed 17-July-2019].

[22] Tensorflow Organization. Data Input Pipeline Performance. https://www.

tensorflow.org/guide/performance/datasets. [Online; accessed 05-July-2019].

[23] Tensorflow Organization. How to Retrain an Image Classifier for New Categories.
https://www.tensorflow.org/hub/tutorials/image_retraining. [Online; ac-
cessed 04-July-2019].

62

http://image-net.org/challenges/LSVRC/2016/results
https://bit.ly/2n8Wm94
https://bit.ly/2LgnRM6
https://bit.ly/2LgnRM6
https://www.tensorflow.org/guide/performance/benchmarks
https://www.tensorflow.org/guide/performance/benchmarks
https://www.tensorflow.org/guide/performance/datasets
https://www.tensorflow.org/guide/performance/datasets
https://www.tensorflow.org/hub/tutorials/image_retraining

[24] Tensorflow Organization. tf.train.queuerunner.QueueRunner. https://bit.ly/

2Y2pMJW. [Online; accessed 11-July-2019].

[25] Tensorflow Organization. Using TFRecords and tf.Example. https://www.

tensorflow.org/tutorials/load_data/tf_records, 2015. [Online; accessed 04-
July-2019].

[26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[27] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-
resnet and the impact of residual connections on learning. CoRR, abs/1602.07261,
2016.

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015.

[29] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. CoRR, abs/1905.11946, 2019.

[30] G. K. Wallace. The jpeg still picture compression standard. IEEE Transactions on
Consumer Electronics, 38(1):xviii–xxxiv, Feb 1992.

[31] E. Yang, X. Yu, J. Meng, and C. Sun. Transparent composite model for dct coefficients:
Design and analysis. IEEE Transactions on Image Processing, 23(3):1303–1316, March
2014.

[32] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. CoRR, abs/1311.2901, 2013.

63

https://bit.ly/2Y2pMJW
https://bit.ly/2Y2pMJW
https://www.tensorflow.org/tutorials/load_data/tf_records
https://www.tensorflow.org/tutorials/load_data/tf_records

Appendix A

Archtecture of experimented model

A.1 Inception V3

Figure A.1: Later blocks of Inception V3 model with mixed 10 block zoomed in to show
the Inception block details.

64

Figure A.2: Overview of Inception V3 model with the name of each block.

65

A.2 ResNet-50 V2

Figure A.3: Overview of Inception V3 model with the name of each block with block 4
zoomed in to show the ResNet block details.

66

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Research Motivations and Question Description
	Research Contributions
	Thesis Organisation

	Background
	Overview of JPEG Image Compression
	Image Classification with Deep Learning
	Overview of Deep Learning
	Task of Image Classification

	Convolutional Neural Network
	Convolution Layer
	Non-linear Layer
	Pooling Layer
	Fully Connected Layer

	State-of-the-art CNN Architecture
	Inception Network
	Residual Network

	Summary

	New CNN Topology for Image Classification
	Overview
	Architecture Design
	Performance Metrics
	Training Strategies
	Training Methodology
	Parameter Sharing

	Limitations of the new CNN topology
	Summary

	Experiment and Analysis
	Data Preparation Efficiency Contribution
	Dense Data Representation
	TFRecord Data Storage Type

	Graphic Processing Unit (GPU) Utilisation
	Multi-GPU Utilisation
	Pipelining Configuration
	Queue Runner

	Full Results
	Experiment on Inception V3 Model
	Experiment on ResNet-50 V2 Model
	Experiment Results Conclusion

	Analysis and Observations on the Results

	Conclusion and Future Works
	Conclusion
	Future Works
	Efficient Resource Utilisation Improvement
	Application On Other Models And Machine Learning Tasks
	Training with Different Compressed Input

	References
	APPENDICES
	Archtecture of experimented model
	Inception V3
	ResNet-50 V2

