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Abstract

Recent work in semantic segmentation research for autonomous vehicles has shifted
towards multimodal techniques. The driving factor behind this is a lack of reliable and
ample ground truth annotation data of real-world adverse weather and lighting conditions.
Human labeling of such adverse conditions is oftentimes erroneous and very expensive.
However, it is a worthwhile endeavour to identify ways to make unimodal semantic seg-
mentation networks more robust. It encourages cost reduction through reduced reliance
on sensor fusion. Also, a more robust unimodal network can be used towards multimodal
techniques for increased overall system performance.

The objective of this thesis is to converge upon a synthetic dataset generation method
and testing framework that is conducive towards rapid validation of unimodal semantic
segmentation network architectures. We explore multiple avenues of synthetic dataset
generation. Insights gained through these explorations guide us towards designing the
ProcSy method.

ProcSy consists of a procedurally-created, virtual replica of a real-world operational
design domain around the city of Waterloo, Ontario. Ground truth annotations, depth,
and occlusion data can be produced in real-time. The ProcSy method generates repeatable
scenes with quantifiable variations of adverse weather and lighting conditions.

We demonstrate experiments using the ProcSy method on DeepLab v3+, a state-of-
the-art network for unimodal semantic segmentation tasks. We gain insights about the
behaviour of DeepLab on unseen adverse weather conditions. Based on empirical test-
ing, we identify optimization techniques towards data collection for robustly training the
network.
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Chapter 1

Introduction

As human beings, one of our most valuable faculties is the power of vision. Visual per-
ception allows for interpretation of the world around us. We plan actions according to
subjective realities as rendered by our perceptive abilities. Our subjective perception can
be skewed by influence factors such as adverse weather and lighting conditions. During
these moments of reduced visual quality, we rely more on our learned intuition and other
senses to compensate.

1.1 Subjective Perception

Our subjective realities are shaped by experiences and knowledge that we accumulate
since birth. Our understanding of the world around us varies from that of our next-door
neighbour due to differences in individual experiences. For example, whereas some people
may judge the smell of gasoline to be repulsive, I personally find the smell to be nostalgic
because it serves as a reminder of one of my favorite pastimes — riding my motorcycle
down a country-road on a warm summer evening.

In his 1974 journal article, “What Is It Like to Be a Bat?”, Thomas Nagel posits the
uniqueness of subjective experiences of organisms through the use of an extreme comparison
between human beings and bats [52]. Sonar (used by bats) and human vision are two very
different perceptual experiences. As human beings, while we can imagine what navigation
via sonar might be like, we cannot objectively know what a bat’s perspective is. This
reasoning asserts that perception is inherently a subjective experience of the individual.
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For self-driving vehicles, the task of visual perception is greatly simplified. The au-
tonomous vehicle (AV) perception task is constrained to road-going scenes and identifying
traffic semantics in a vehicle’s surroundings. Yet, subjective perception still remains in
this subset perception task as an intractable problem. On a day-to-day basis in reality, an
AV has to objectively contextualize its surroundings in the midst of variational lighting
conditions and adverse weather.

1.2 Semantic Segmentation

Given raw camera imagery, the artificial intelligence (AI) system in an AV is a blank slate.
The system has no subjective understanding of the scene or objects that make up the scene.
The perception stack of the AI has no prior knowledge or experiences to contextualize road
scenes. To rectify this, over the past few decades, road scene understanding from camera
imagery has developed into a few key branches of computer vision (CV) research. The
3 main branches in this regard are image classification, object detection, and semantic
segmentation [78].

Image classification contextualizes an image as a sum of its parts. This is good for
categorizing different classes of images such as high noon, sunset, or nighttime. Image
classification is also used to identify what is in an image, irrespective of where the object
may be within the image.

Object detection is the understanding of where objects are located within an image. In
a road-scene, object detection would identify locations of vehicles and pedestrians. Regions
where objects of interest exist are typically visualized with 2D bounding boxes in image
space. Research also exists in generating 3D bounding boxes given additional scene data
such as stereo imagery [43] or lidar point clouds [39].

The third significant CV research branch is semantic segmentation. This is the act
of assigning class labels to all pixels in an image. For instance, in an image of resolution
2048x1024, full semantic segmentation would consist of labeling 2,097,152 individual pixels.
Section 2.1 digs into the background of unimodal semantic segmentation. Unimodal refers
to the scope of semantic segmentation research that is only reliant on camera imagery.

In AV domain, semantic segmentation enables tasks such as free-space estimation,
whereby drivable and non-drivable areas are identified in image space. Pixel-level de-
tection means that nuanced tasks such as pedestrian pose estimation can be attempted.
Also, by understanding scene-level details from an image frame, the AI can pipe image
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regions to more specialized CV algorithms for refinement. For instance, semantic segmen-
tation can identify image regions with traffic lights and signs. These regions can then be
passed along to a specialized traffic signal detection algorithm.

1.3 Research Motivation

Over the past few years, Deep Neural Network (DNN)s have achieved great results for
unimodal semantic segmentation benchmark tasks (section 2.1). However, adverse lighting
and weather conditions have become a sticking point for these networks. Semantic seg-
mentation networks require consistent and reliable annotation data. As with most DNN
architectures, these networks adhere to the “garbage-in, garbage-out” principle.

Ideal case scenario for research purposes requires perfectly annotated road scenes cap-
tured from the real world. The only way to accomplish this is by employing human
labelers for the task. This has been done for certain benchmark datasets such as CamVid
and Cityscapes with ideal daytime lighting and clear weather conditions [11, 3].

Human labeling of images with adverse weather and lighting is an error-prone task.
Subjective perception of individual labelers differ significantly for scenes with noisy or
dark data. This is a source of labeling bias in ground truth. Due to this, there is a scarcity
of high-quality, ground truth labeled data of real-world adverse weather/lighting scenes.

Human-labeled real world data also lack repeatability, metadata, and quantification
capabilities. It is next to impossible to capture a road scene in the real world multiple
times where the only variation in the scene is weather and/or lighting. It is also very
difficult to quantify scene influence factors such as the amount of rain, the amount of
puddles, and percentage of cloud cover.

1.4 Contributions

Difficulty and scarcity of human-labeled ground truth annotation of real-world road-scene
data (especially of adverse weather/lighting conditions, where subjective perceptions differ
significantly) has led recent semantic segmentation research towards multimodal techniques
of sensor fusion [57, 36, 79]. However, we believe there is great potential in exploring
synthetic methods of generating semantic segmentation datasets.

Aside from the domain adaptation problem inherent to synthetic datasets [87], there are
significant benefits that can be leveraged towards a deeper understanding of unimodal seg-
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mentation network architectures. Synthetic datasets can produce perfect labels, metadata,
and adverse weather/lighting conditions that are repeatable and quantifiable.

The primary contribution of this thesis work is in identifying a synthetic dataset gen-
eration method to efficiently study effects of influence factors on unimodal semantic seg-
mentation DNN architectures.

Towards identifying a viable solution, two separate methods of generating semantic
segmentation datasets are explored (chapters 3 and 4). Namely these methods are URSA
[1] and ProcSy [35]. Benefits and drawbacks of these are summarized in table 5.6.

Human labeling is needed for aspects of URSA dataset creation. We utilize Amazon
Mechanical Turk (AMT) for this. Our insights on the AMT interface is detailed in section
3.3.2. My primary contribution towards this project was in developing a labeling framework
for human labelers. I also designed the data generation pipeline for URSA (figure 3.4).

In generating the ProcSy dataset, procedural modeling is leveraged along with usage
of a physically-based rendering engine. Required background knowledge regarding these
concepts is outlined in sections 2.2 and 2.3. My primary contribution was the entire
data generation pipeline. I identified procedural modeling as a viable option for dataset
generation. I generated the blueprint map for our experimentation and integrated the
generated map assets into our UE4-based rendering ecosystem.

Various experiments are run on the generated datasets to gain further insight on factors
that affect semantic segmentation network performance (chapter 5).

The layout of this thesis is as follows:

- Chapter 2 outlines unimodal semantic segmentation research landscape, procedural mod-
eling paradign, and real-time physically-based rendering.

- Chapter 3 outlines the GTA5-based URSA dataset.

- Chapter 4 explores ProcSy — a novel workflow to replicate real-world operational design
domains for data collection towards building a semantic segmentation reference dataset.

- Chapter 5 analyzes synthetic datasets and influence factors towards understanding effects
on semantic segmentation networks.

- Chapter 6 concludes with a summary of the exploration towards improving semantic
segmentation network robustness. Some observed shortcomings are outlined, and future
directions for this research topic are speculated on.
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Chapter 2

Background

2.1 Unimodal Semantic Segmentation

Semantic segmentation is the domain of CV research where all pixels in a given image frame
are classified. Let alone human beings, this can be a very taxing image processing task even
for sequential hardware such as a central processing unit (CPU). Labeling 2,097,152 pixels
(2048x1024) sequentially is not a practical approach to the problem — especially if said
task needs to be handled real-time in a self-driving car. However, graphics processing unit
(GPU)-based developments in deep neural network architectures over the last 2 decades
have been a boon towards image processing tasks such as this, since network architectures
can be designed in a highly parallelizable manner.

2.1.1 Artificial Neural Networks

The advent of Artificial Neural Network (ANN) can be traced as far back as 1940s. In 1943,
Warren McCulloch and Walter Pitts first formalized the idea of an artificial neuron [46].
Then in 1958, Frank Rosenblatt proposed his seminal work in modeling the perceptron
[62]. Compared to the McCulloch-Pitts model of the neuron, the perceptron was more
robust due to its use of real number inputs and weights instead of booleans. The design of
the perceptron also allowed for learning the weights and biases as opposed to being hand-
crafted. This concept generated a lot of hype in theoretical research of artificial neurons
around the 50s and 60s. ‘Connectionism’ became a buzz-word in the scientific community.

In 1969, Minsky and Papert rather infamously emphasized that single-layer perceptrons
cannot even model the XOR function [47]. This fact, along with the limited technology and
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understanding of training multi-layer perceptrons [32] caused a general disenchantment of
researchers in the field. There was an overall reduction in funding of AI research fields. In
1970s, this contributed towards the first AI-winter.

There came a resurgence in neuron-based AI research in the 1980s. Some of the world’s
top-tier gurus in the field gained their momentum in this decade - Yann LeCun, Yoshua
Bengio, and Geoffrey Hinton to name a few 1. The idea of back-propagation to train multi-
layer networks was popularized in the research world with the seminal work of Rumelhart
et al. [64] (back-propagation was first introduced by Bryson et al. in 1963 [4]).

The 90s saw a second waning of interest in ANNs. Hardware technology necessary for
training ANN models was just not up to par, yielding to demotivating results. Around
the same time, other machine learning approaches such as Support Vector Machine (SVM)
gained a foothold in the scientific community [12].

2.1.2 Deep Neural Networks

In 1998, LeCun et al. published their seminal work on popularizing the Deep Convolutional
Neural Network (CNN) [42] (CNNs were first proposed by Kunihiko Fukushima in 1980
[20]). ANN research saw a significant resurgence thereafter, and came to be known as Deep
Learning.

Around the turn of the century, GPUs became more robust and programmable towards
traditional computation tasks. Training of DNNs became feasible. DNN models trained
by leveraging parallel computation capabilities of GPUs showed significantly better results
than SVMs on classification tasks.

As GPU technology became more capable at handling traditional computation tasks
in a parallelized manner, the process came to be termed as general-purpose computing on
graphics processing units (GPGPU). In 2007, Nvidia Corportation began to invest in an
Application Programming Interface (API), called Compute Unified Device Architecture
(CUDA), to spear-head development of GPGPU programming using their hardware [67].
This turn of events was called the “big bang” of Deep Learning by Nvidia’s CEO Jen-Hsun
Huang [73].

Newer libraries such as Microsoft’s DirectCompute [55] and Khronos Group’s OpenCL
[51] aim to make hardware-vendor-agnostic API layers. However, to this day, Nvidia and
their CUDA architecture remains the dominant player in Deep Learning space.

1Commonly known as the fathers of Deep Learning Revolution, Yann LeCun, Yoshua Bengio, and
Geoffrey Hinton, jointly received the 2018 Turing Award for their significant work in the field.
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2.1.3 Semantic Segmentation Networks

The task of semantic segmentation actually combines image classification and the localiza-
tion aspect of object detection. With image classification DNNs, the deepest convolution
layers carry the resultant values. This is not the case for semantic segmentation. This task
is a balancing act requiring pixel-level classification from features of deeper-level convolu-
tions, and localization of pixel predictions onto a full image space.

The typical approach of DNN-based semantic segmentation is to design encoder-decoder
architectures. The encoder portion of these architectures is similar to classification DNNs.
In classification, input images are downsampled through successive convolution layers. This
process breaks spatial information in images, but increases feature-space understanding for
classification categories. This same functionality is what enables pixel-level classification
portion of the semantic segmentation task.

The task of the decoder portion of semantic segmentation networks is to map classifica-
tions from the encoders back to the full resolution image space. This is typically achieved
by removing the fully connected tail layers of a classification DNN and inserting transposed
convolution layers for upsampling to image resolution.

FCN

In 2015, Long et al. first leveraged the idea of using a modified classification DNN archi-
tecture for semantic segmentation [45]. Their FCN architecture replaces the tail end fully
connected layers with fully convolutional layers to enable input images of arbitrary sizes.
These fully convolutional layers are appended with an upsampling procedure to portray
the final output in image space.

The FCN paper explores different configurations for the upsampling procedure. Long
et al. note that direct upsampling of the final convolution layer (by using a transposed
convolution layer with a stride of 32) produces rough results for object boundaries (figure
2.1). Instead, they propose using fused upsampling for refined object boundaries (figure
2.2). The underlying intuition is that shallower layers preserve more spatial information.

By training with different encoder backbones (AlexNet, VGG16, GoogLeNet [38, 69,
72]), Long et al. conclude that VGG16 achieves best mIoU. VGG16 is a bigger architecture
than AlexNet and GoogLeNet, and hence the inference time is generally longer (∼150ms
more than AlexNet and GoogLeNet). However with a VGG16 backbone, FCN mIoU is
over 10% more than the others. This justifies the trade-off between speed and accuracy in
using FCN-VGG16.

7



Figure 2.1: FCN predictive results at different fused configurations [45]

Figure 2.2: High-level diagram of FCN fusing [68]

SegNet

Later in 2015, Badrinarayanan et al. presented SegNet [2]. They use the same encoder-
decoder approach as FCN. In fact, SegNet’s encoder is topologically identical to VGG16.
The novelty of SegNet is in the way upsampling is done. Their method achieves competitive
inference times as well as most efficient memory usage at the time.

In SegNet, the decoder layers mirror the structure of the VGG16-based encoder layers
(figure 2.3). Max-pooling indices from the encoder layers are stored. In the decoder
layers, upsampling is not done using transposed convolutions. Instead, the stored max-
pool indices from mirrored encoder layers are used to upsample from decoder layers. This
negates the need for upsample layers to learn parameters. Hence, end-to-end training for
SegNet requires fewer trainable parameters and converges faster than FCN.

Due to the unorthodox decoder architecture using max-pool indices, SegNet implemen-

8



Figure 2.3: Encoder-decoder architecture of SegNet [2]

tations tend to have slightly slower (∼100ms) inference times than FCN. On the memory
side, SegNet has around two-third the GPU memory footprint of FCN during training and
inference. SegNet model size can be close to just 20% of FCN.

DeepLabv3+

Google’s DeepLab has been a mainstay in semantic segmentation research since it was
first proposed in 2014 [5]. The team has been iteratively improving on the model over the
years. The latest version, DeepLab v3+ [6], is currently ranked amongst state-of-the-art
for Cityscapes dataset’s semantic segmentation task with a 82.1% mIoU score.

The success of the DeepLab network is credited to its usage of Atrous Spatial Pyra-
mid Pooling (ASPP) architecture in conjunction with the aforementioned encoder-decoder
architecture. The intuition behind spatial pyramid pooling is that objects should be seen
at multiple scales by the network. Let’s imagine that a training dataset contains some
images with trains, but these trains exist at a distance such that they appear small in the
image. During inference time, if a train is seen much closer to the screen, the network will
perform poorly. With spatial pyramid pooling, incoming features are probed at multiple
field-of-view rates. This captures multi-scale information during training, so the network
is ultimately more scale invariant.

However, spatial pyramid pooling with multiple instances of the same architecture is
expensive in terms of computation and memory. Atrous convolutions is a generalized
version of the traditional convolution operation. A rate parameter is introduced to control
the effective field-of-view, whereby a rate of 1 is equivalent to a traditional convolution.
Atrous convolutions applied towards spatial pyramid pooling reduces the computation and
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memory overhead.

Figure 2.4: Encoder-decoder architecture of DeepLab v3+ [6]

Taking a page from inception modules [8], DeepLab also makes use of depthwise separa-
ble convolutions in place of max pooling operations to reduce the amount of computation.
DeepLab uses a ResNet architecture modified with atrous convolutions as its feature ex-
tractor to retain more spatial context in deeper layers. ASPP and bilinear upsampling is
used prior to the decoder layers. The decoder combines ASPP output (upsampled by 4x)
with encoder features from a layer with equivalent spatial dimensions (figure 2.4). This is
similar to FCN stitching shallower layer outputs for better object boundaries.

State-of-the-art DeepLab architecture uses a modified ResNet-101 or Xception encoder
backbone to achieve high mIoU performance values. For our experiments in chapter 5, we
opt to use ResNet-50 as this backbone allows for faster training iterations. This is sufficient
for our experiments because we are interested in the relative metric differences rather than
state-of-the-art mIoU scores.
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2.1.4 Semantic Segmentation Datasets

Real-world Datasets

Standardized and publicly available datasets pertaining to semantic segmentation research
have been around since 2008. Brostow et al. first introduced the CamVid Dataset [3].
This dataset is mostly collected around Cambridge, UK. Image frames are captured at
960×720 pixel resolution. Each frame in the dataset took an average of 60 minutes to be
labeled by trusted human labelers. The dataset contains 701 finely annotated images with
32 different label categories. Only about 11 of these label categories are usable towards
training neural networks due to the very limited size of the dataset. There is very little
variation in the environments, lighting, and weather represented by CamVid dataset.

Introduced in 2015, Cityscapes Dataset was a significant step forward in terms of scale
and quality of provided data [11]. The dataset is aggregated with road scenes from 50
different cities around Germany, Switzerland, and France. Cityscapes image frames are
2048×1024 pixels — an order of magnitude better quality than CamVid. Human labeling
time for each frame was around 90 minutes on average. This dataset contains 5,000 finely-
annotated and 20,000 coarsely-annotated images with 30 label categories. Like CamVid,
the Cityscapes Dataset lacks quantifiable lighting and weather variations. Also, 5,000
images is still a relatively small amount of data.

Published in 2017, the Raincouver dataset [77] is the first public dataset containing
rainy driving scenes at different hours of the day. This dataset contains only 326 finely-
annotated. The dataset has been generated in such a way as to complement the aforemen-
tioned Cityscapes dataset.

Berkeley Deep Drive (BDD100K) [86] provides a finely-annotated dataset containing
5,683 images. Although equal in quantity to Cityscapes, this dataset has a lot more
weather and lighting variations. However, the BDD100K dataset is known to contain
labeling inconsistencies, especially in darker regions of images — a causation of subjective
perception [65]. BDD100K also does not contain metadata to quantify the weather and
lighting variations in its scenes.

Mapillary Vistas, published in 2018 [54], contains 25,000 finely-annotated, non-temporal
images from various geographical locations and weather conditions. This dataset provides
the annotation granularity of 66 different classes. However, similar to BDD100K, Map-
illary Vistas provides no way to identify or quantify the weather and lighting variations
presented in its scenes. Mapillary Vistas used the same sort of human labeling technique
as Cityscapes, averaging at 94 minutes of labeling time per image frame.
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Synthetic Datasets

The time, labeling cost, and inaccuracies of real-world semantic segmentation ground truth
data have motivated researchers to explore dataset generation through synthetic means. To
that end, promising results began to appear in 2016. Ros et al. published their SYNTHIA
dataset [61]. The base dataset consists of 13,400 random, road-scene annotated images with
various lighting and weather conditions, at a resolution of 1280×400 pixels. This dataset
is generated using the Unity game development platform, so more road scene imagery can
be generated on demand without additional annotation cost. In 2017, the dataset was
appended with 2,224 new images representing a San Francisco-like environment [28].

Virtual KITTI, also released in 2016, is a re-creation of the KITTI dataset in a simu-
lation environment [24, 21]. Like SYNTHIA, Virtual KITTI is also built with the Unity
game development platform. Here, real-world KITTI video sequences are used as input
to generate realistic-looking proxies in the virtual world. The dataset currently has over
21,000 frames [53], at a resolution of around 1242×375 pixels. This is comprised of 5 cloned
worlds with 8 different weather and lighting variations for each.

While custom-built simulators provide flexibility and control over dataset generation,
they suffer from a lack of detail and realism in comparison to those found in sandbox video
games. Richter et al. performed a crowd-sourced (AMT), Turing-like experiment between
SYNTHIA, Virtual KITTI, and their dataset (PFB) [59]. The experiment results showed
that AMT workers found the PFB dataset to be more representative of the appearance of
Cityscapes dataset than either SYNTHIA or Virtual KITTI.

PFB dataset was generated from the GTA5 video game world [59, 60]. Using a pro-
cess called detouring (detailed in section 3.2), their research contains over 254,000 la-
beled frames, at a resolution of 1914×1052 pixels. To label 25,000 frames, their pseudo-
automated labeler takes around 49 hours with some apparent labeling inconsistencies.
Another drawback to this method of dataset generation is the challenge in decoupling the
resource-shared optimization employed by the game world (for example, texture on side of
a building wall can appear on a sidewalk). The bottom line is that GTA5 game world is
not designed for perfect semantic segmentation data extraction.

2.2 Procedural Modeling

Procedural modeling is a blanket term in computer graphics for creating complex 2D and
3D patterns from a set of rules. L-systems, fractals, and generative modeling are all
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examples of procedural modeling techniques. There are some unique advantages of using
procedural modeling to generate complex geometry. For one thing, the procedure employed
can be repeatable given a static initial seed. This can be great for storing a large amount
of geometric information as a set of rules instead of actual mesh geometry. In fact, modern
video games such as Horizon Zero Dawn does exactly this (figure 2.5).

Figure 2.5: Modern blockbuster video games use procedural modeling techniques to con-
serve memory footprint [49]; image on the left shows an in-game render of a procedurally
generated biome in Horizon Zero Dawn; image on the right shows a topographical density
map axiom of an in-game area; axiom density tiles are approximately ∼4 mb/km2, Hori-
zon Zero Dawn’s entire map size is roughly 13 km2, and memory footprint for the game’s
procedural world map is about 52 mb — a miniscule number for a big-budget video game

Procedural modeling can also significantly reduce the time and human effort necessary
to model a massive urban environment. To this end, our focus is on procedural modeling
approaches that are derived from Lindenmayer systems.

2.2.1 L-systems

Lindenmayer system (L-system) is a type of formal grammar that lets us describe complex
shapes and patterns through iterations that apply parallel rewrites to previous iterations.
L-systems are used in mathematics to simplify the description of self-similar fractals. Fa-
mous structures such as the Sierpinski triangle can be described using elegant L-system
definitions [48].

Aristid Lindenmayer was a 20th century theoretical biologist and botanist. He wished
to mathematically model the development process of plant cells and structures. His seminal
work in this field was formalized in the Journal of Theoretical Biology in 1968 [44]. This
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became the foundation of L-system definitions. The system was later extended to have the
representation ability of complex branch structures.

L = (V, ω, P ) (2.1)

L-systems are generalized as the tuple in equation 2.1. V is the system’s alphabet
consisting of terminal and variable symbols. ω refers to the axiom — a sentence defined by
symbols from alphabet V . P is a set of production rules that are used to mutate symbols
in the axiom.

An L-system progression can be illustrated using the aforementioned Sierpinski triangle
example as such:

V = {F,G,+,−},
ω = F −G−G,

P = {F −→ F −G+ F +G− F,G −→ GG}
(2.2)

If we associate this L-system with turtle graphics [25], we can draw the Sierpinski
triangle. F and G are variables indicating forward movement of distance proportional to
inverse of the iteration step, where iterations are even numbers. Angle of the turtle is
controlled by terminal symbols + and −, defining ±120◦ counter-clockwise respectively.
With this understanding, figure 2.6 shows the result of iterating over the L-system using
turtle graphics.

2.2.2 Shape Grammar

Shape grammars are formal grammars that are conceptually similar to L-systems. Used
properly, shape grammars can be powerful mechanisms to facilitate architectural design
workflows. Interpreting L-systems with turtle graphics (figure 2.6) is an example of geo-
metric representation potentials inherent to these sort of formal grammars.

First proposed by Stiny and Gips in 1971 [71], shape grammars are a form of visual
computation. When designing a shape grammar, the designer creates a system for design,
which can then generate many parametrized variations.

Shape grammars differ from L-systems in some key ways. Instead of using language
symbols to represent variables and terminals, shape grammars use shape primitives as the
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Figure 2.6: Snapshot of 3 turtle graphics states of Sierpinski triangle L-system as defined
by equation 2.2; the iteration step is indicated by n; the turtle starts its movement facing
vertically from the bottom-left triangle corner; length of triangle sides = 1/n [84]

basis for alphabet. These shapes can be one, two, or three dimensional depending on
context. Shape grammars can also be composed of mixed dimensionality depending on
iteration logic proposed by production rules.

Another key difference between shape grammars and L-systems is the sequential nature
of shape grammar iterations. L-systems are iterated with parallel rewrites/mutations of
its axiom. This is great for visualizing growth. For instance, L-systems work very well to
create a timelapse of a plan life. Also, extended L-systems can be used to model urban
sprawl over time. In contrast, shape grammars iterate sequentially. This means that each
iteration relies on the resultant state of the previous iteration. This lends itself very well
to the creation of buildings and other architecture at various LOD as seen in figure 2.7.

2.2.3 CityEngine

In 2001, Parish and Müller presented a hybrid procedural modeling approach for large
urban environments [56]. They point to Wegener’s work in suggesting that an urban envi-
ronment can be split into functional subsystems [82]. Of these subsystems, road networks,
land use, and housing are the slowest to change in an urban environment. With this insight,
Parish and Müller propose that modeling an urban environment can be distilled down to
3 core tasks: traffic/road network, lot subdivision, and buildings (figure 2.8).
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Figure 2.7: Five LOD-level iterations using CGA shape grammar for a skyscraper [56]

Figure 2.8: CityEngine procedural modeling pipeline [18]
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CityEngine is a 3D modeling program built around the modeling paradigm that Parish
and Müller proposed. It is primarily used to generate large, urban environments. CityEngine
has found a niche within many different industries — urban planning, architecture, block-
buster movies, game development, etc.

The program’s workflow contains its own rule scripting language called CGA, which
is based on shape grammar. Using CityEngine’s default CGA rules (or even custom-
scripted ones) in combination with geographical (elevation, land, water, vegetation, etc.)
and sociostatistical (street networks, zone maps, population density, etc.) data priors, a
user can create semblances of a city environment in a matter of minutes.

Road Networks

To procedurally generate road networks, CityEngine ingests data priors from sources such
as OpenStreetMap. This process is detailed in section 4.1. It then uses an extended L-
system to generate a road network graph with the likeness of the data presented to it. The
benefit of this graph network is that it allows for creation and modification of lots/parcels
by leveraging L-system paradigms.

The parallel rewriting nature of standard L-system strings means that parameters em-
bedded in the axiom string are mutated iteratively based on production rules. In a complex
L-system, these mutations can easily get out of hand after a few iterations due to an ex-
cessive amount of parameters contained within the string.

With embedded parameters, modifications to the L-system become difficult. When
new constraints are added, any successive rules need to be rewritten. For a development
program such as CityEngine, this can be very compute-intensive and cumbersome. To
this end, Parish and Müller propose to migrate parameters from the core L-system string
to external functions. Their extended version of L-system strings only contain generic
templates, which they call ideal successors. The external functions adhere to global goals
and local constraints to operate on these ideal successors [56].

Lot Formations

Closed loops of a street network graph are referred to in CityEngine as blocks or parcels.
These blocks need to be subdivided into lot-like shapes for architecture placements. These
lot-like shapes are constrained to be convex polygons, primarily rectangles. To achieve
this, CityEngine uses a recursive division algorithm that splits along the longest parallel
edges.
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Buildings

Blocks are first sufficiently subdivided into convex polygon lots. Then buildings and other
architecture are procedurally created. To generate architectural models, CityEngine uses
CGA shapes [50]. Unlike standard L-systems, CGA shapes rely on a sequential application
of rules in order to specify structure. This is similar in scope to Chomsky grammars [9].

The building production process initializes with shape axioms. Instead of strings in
L-systems, the set of shapes that production rules operate on is termed as a configuration.
During each iteration, a preceding shape is marked as inactive, and a production-based
successor is added to the configuration.

Since the production process is sequential, shapes within a configuration have to be
prioritized. This is done by assigning rule priorities based on shape LOD. So the generation
occurs in such a way that overall LOD geometry can be easily grouped into production
iterations (figure 2.7).

Also, since there is an inherent requirement of structural variation in the procedurally
modeled buildings, rules have an assigned probability. This ensures a stochastic production
process that can be controlled by a seed value.

The generalization of the above concepts are formulated by Müller et al. [50] as such:

id : predecessor : cond successor : prob (2.3)

In equation 2.3, id is a rule identifier. predecessor ε V as portrayed in equation 2.1.
cond is a logical expression. successor takes place of predecessor in the shape hierarchy.
prob represents stochastic likelihood of the rule to execute.

2.3 Real-time Physics-Based Rendering

We need to develop a synthetic dataset generator that strives to achieve perceived realism.
Hence, it is important that we understand how light works in the real world and how light is
simulated on GPU hardware. Game engines and simulators have to mathematically model
the interaction of light with materials in order to render perceptually-realistic scenes onto
a viewer’s screen. Modern game engines attempt to mimic real-world operational design
domain by adhering to the conservation of light energy. In this section, this physically-
based lighting approach is explored and certain shortcuts are identified that assist in real-
time rendering performance.
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2.3.1 Light as an Electromagnetic Wave

In the real world, visual perception is possible due to interaction of light with objects
and particles in the environment. In physics and math, visible light is a subset of the
electromagnetic spectrum — ranging between 390 nm to 700 nm wavelength (figure 2.9).

Figure 2.9: Different categories of electromagnetic waves and their respective range of
wavelengths [30]

Figure 2.10: Top: SPD of ambient white light on a clear noon day (D65); Bottom: RGB
dirac delta SPD that is visibly equivalent to D65 to human eyes [30]
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Typically, light is a collective energy sum of a distribution of wavelengths along visible
band of the electromagnetic spectrum. For instance, figure 2.10 shows the SPD of D65 —
a standardized approximation of the sky color temperature at noon on a clear day [10].

It should be noted that the perception system of human beings cannot distinguish
between light waves representative of top and bottom in figure 2.10 even though the SPD
characteristics of these two waves are vastly different. Our vision systems map an infinite-
dimensional SPD to a three-dimensional color space. Human beings’ subjective perception
of visible light is very lossy and not at all representative of the objective information
contained in most light waves.

When an electromagnetic wave collides with atoms, it polarizes the atoms. This causes
atoms to absorb light energy and eventually release this energy as heat and light. This
emitted light then propagates onward to interact with other objects in the environment.
This atomic-level interaction between light and objects is what characterizes the objects’
visibility properties.

2.3.2 Light as a Ray

As an abstraction to simplify light interaction model for computer graphics, light waves
are represented as rays. The atomic properties of objects are abstracted into reflective
and refractive properties. In 1986, Immel et al. and James Kajiya [33, 31] introduced the
rendering equation 2.4 to model the behavior of light in a simulation environment. This
equation is recursive in nature because light is presumed to bounce around an environment
infinitely.

Lo(p, ωo) = Le(p, ωo) +

∫
Ω

fr(p, ωi, ωo)Li(p, ωi) cos θidωi

p is the position vector of a point in space

ω refers to direction vector of a light ray

Lo(p, ωo) is total radiance towards an output direction from a point

Le(p, ωo) is emitted light energy from the point itself

Ω is the unit hemisphere around surface normal

fr(p, ωi, ωo) is the BRDF function

Li(p, ωi) is radiance of an input direction towards the point

θi is the angle between surface normal and radiance input vector

(2.4)
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In equation 2.4, radiance is a measure of the total observed light energy over an area
over a solid angle, given some radiant intensity. The unit of radiance is watt per steradian
per square meter.

2.3.3 Conservation of Energy

A core concept of physics-based rendering (PBR) is conservation of energy. Outgoing
radiance is never greater than the incoming radiance at a point p, unless the point itself
is a light emitter. Modern rendering engines use a specialized version of the full rendering
equation, called the reflectance equation (2.5).

Lo(p, ωo) =

∫
Ω

fr(p, ωi, ωo)Li(p, ωi) cos θidωi (2.5)

In equation 2.5, the BRDF term fr(p, ωi, ωo) refers to BRDF. This is a function of
the lighting and viewing geometry. It defines a ratio of the amount of radiance that exits
an incident point from the incoming radiance at a given incident angle. There are many
existing BRDFs that serve different purposes depending on time/realism requirements. For
a BRDF to be physically-based, the following properties must be met:

positivity: f(ωi, ωo) ≥ 0

reciprocity: f(ωi, ωo) = f(ωo, ωi)

energy-conserving: ∀ωi,
∫

Ω

f(ωi, ωo) cos θodωo ≤ 1
(2.6)

An example of a non-PBR BRDF is the Phong BRDF (2.7). This function is very fast
to compute, but it is impossible to normalize in an energy-conserving way. Phong BRDF
based rendering can have unpredictable behaviour in different lighting configurations. Of-
tentimes, this means that rendering engineers and artists have to account for these varia-
tions with separate texture and material properties for their renderable objects.

fr(ωi, ωo) =

{
kd + ks

cosP (αr)
cos θi

θi < 90◦

0 otherwise
(2.7)

An example of a PBR-based BRDF is the one used by Unreal Engine 4 — a modified
version of the Cook-Torrance BRDF (2.8).
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fr(ωi, ωo) =

{
kd

c
π

+ ks
DFG

4 cos θiθo
θi < 90◦

0 otherwise

c is the albedo or surface color

D is a Normal Distribution Function approximating microfacets

F is Fresnel equation describing reflection ratio at different surface angles

G is geometry function describing microfacet self-shadowing

(2.8)

2.3.4 Light Interaction with Surfaces

Reflection is defined as the portion of a light ray that bounces off a material surface. This
is characterized by an equality between the angle of incidence of the light ray, θi, and
the corresponding angle of reflection, θr. The color properties of the incident light ray is
retained.

Surfaces that have irregularities with magnitudes smaller than the wavelength of light
can be considered to be perfectly smooth for ray approximations. Such perfectly smooth
surfaces would reflect light rays as seen in figure 2.11.

However, most material surfaces in the real world have microgeometry — irregularities
with magnitudes greater than the wavelength of light. This causes an apparent roughness
of the surfaces (figure 2.12). In a macroscopic sense, this can be modeled as light reflecting
stochastically in a cone shape (figure 2.13). In the BRDF function, this stochastic cone of
reflection is described by the specular term, ks.

Refraction is the ability of light rays to penetrate beyond the surface of objects. Re-
peated collisions with objects’ internal molecules scatter the light ray into smaller rays,
while absorbing rays of specific wavelengths. Eventually, some of the non-absorbed, scat-
tered light rays exit the material surface again irrespective to the initial angle and location
of light ray incidence. This effect is called sub-surface scattering (SSS). Apparent in most
non-metallic material, this is what characterizes the color properties of such objects. In
the BRDF function, stochasticity of the phenomena caused by refraction is captured by
the diffuse term, kd.

2.3.5 Shortcuts for Real-time Performance

With today’s technology, it is impossible to recursively compute the reflectance equation
for every visible point from every screen-space pixel in real-time. This process is called
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Figure 2.11: Ideal reflection/refraction diagram of a light ray [30]

Figure 2.12: Visible surface roughness caused by microgeometry [30]

ray-tracing. Using Monte Carlo importance sampling, offline ray-tracing methods are prac-
tical in the film industry where realism is far more important than real-time performance.
However, for a simulator or video game engine, ray-tracing is not feasible.
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Figure 2.13: Stochastic specular and diffuse distributions in macrogeometry can emulate
effects of surface microgeometry [30]

Epic Games introduced some approximation techniques in their rendering pipeline that
make it possible to achieve real-time rendering performance with PBR. These approxima-
tion techniques revolve around image-based lighting (IBL).

IBL is a shortcut used by real-time rendering engines to approximate the effects of
non-primary light bounces around the environment. The approximation is achieved by
breaking down the reflectance integral equation into diffuse irradiance (equation 2.9) and
specular IBL (equation 2.10).

Lo(p, ωo) = kd
c

π

∫
Ω

Li(p, ωi) cos θidωi (2.9)

Lo(p, ωo) =

∫
Ω

ks
DFG

4 cos θiθo
Li(p, ωi) cos θidωi =

∫
Ω

fr(p, ωi, ωo)Li(p, ωi) cos θidωi (2.10)

The diffuse irradiance equation is approximated by rendering engines using pre-computed
irradiance maps. The equation is discretized as a Riemann sum in polar coordinates (equa-
tion 2.11). An environment cubemap of a region-of-interest is captured. Then the irradi-
ance map is convoluted by discretely sampling the environment cubemap using the Rie-
mann sum-based equation 2.11. This irradiance map is then saved into a texture. During
render time, diffuse irradiance becomes as efficient as a texture lookup (figure 2.14).
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Lo(p, φo, θo) = kd
c

π

1
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n1∑
φ=0

n2∑
θ=0

Li(p, φi, θi) cos(θ) sin(θ)dφdθ (2.11)

Figure 2.14: On the left is an environment cubemap [80]; on the right is the corresponding
irradiance map generated using discretized irradiance Riemann sum equation 2.11

The specular IBL equation can be computationally simplified using split-sum approxi-
mation (equation 2.12), as proposed by Epic Games [34]. The left integral of the split-sum
can be treated similar to diffuse irradiance. In this case, the generated texture is called a
pre-filtered environment map. This consists of environment map at various mipmap levels.
These mipmaps are interpolated to accommodate different roughness values (figure 2.15).

Lo(p, ωo) =

∫
Ω

Li(p, ωi)dωi

∫
Ω

fr(p, ωi, ωo) cos θidωi (2.12)

The right integral of the split-sum can be reduced to a function of cosθi and rough-
ness. Using a quasi-Monte Carlo importance sampling technique, this function can be
pre-computed into a 2D lookup texture (LUT) as in figure 2.16.
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Figure 2.15: Example pre-filter environment map with multiple mipmap levels (courtesy
of [80]); note that the information gradually gets blurrier at smaller mipmap scales

Figure 2.16: Pre-computed BRDF integration map; saved into a two-dimensional lookup
table as a function of cosθ and roughness factor [34]
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Chapter 3

URSA Dataset

One way to generate large-scale synthetic datasets is to leverage existing commercial video
game products. GTA5 has proved to be very useful in this regard. This chapter identifies
GTA5-based dataset collection approaches. We explore the feasibility in using the GTA5
game world and engine towards capturing and quantifying variation in weather and lighting
effects.

My primary contribution towards this project was in developing a labeling framework
for human labelers. I also designed the data generation pipeline for URSA (figure 3.4).

3.1 Introduction to GTA5

GTA5 takes place in the fictional city of Los Santos. This fictional city is a satire of real-
world Los Angeles, California. Famous locations are easily recognizable. For instance, the
famous Hollywood sign is instead Vinewood in the game world, and the in-game replica
of the real-world Griffith Observatory is called Galileo Observatory (figure 3.1). Other
environmental factors of the game world also reflect Southern California vibes, such as flora
and fauna of the area. For all intents and purposes, the game world faithfully resembles
the ODD of the city of LA.

The GTA franchise has a rich history in vehicle-based game missions and exploration.
GTA5 follows suit in this regard with a very robust traffic system and upwards of 300
unique transportation modalities (bicycles, cars, buses, trains, planes, ships, etc.). The
outdoor portion of the game world lends itself very well to data collection of road scenes.
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Figure 3.1: Galileo Observatory is GTA5’s rendition of real-world Griffith Observatory [19]

For this reason, the research community has shown a lot of interest in modifying GTA5
game engine to generate various datasets from object detection to semantic segmentation
[59, 60].

3.1.1 Deferred Shading

GTA5 rendering engine uses a deferred shading pipeline [13]. This is a technique used by
real-time graphics engines to reduce the number of fragment shader lighting operations
that need to be handled per frame.

Let’s first look at the case of traditional rendering pipeline, otherwise known as forward
shading. In this case, all geometry meshes from the scene is handed to the GPU. These
mesh vertices are passed through vertex shaders. Vertex shaders modify the location where
the mesh vertices are visible in the scene. Geometry shaders are then optionally used to
further modify mesh complexity (tessellation, shadow volume extrusions, etc.). Finally, a
fragment shader rasterizes the mesh and applies shading to it based on all light sources in
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the scene. This process then repeats for all other meshes that are in GPU queue for the
frame. The time complexity of the final fragment shader can be represented as

O(num meshes ∗ num lights) = O(n ∗ n) (3.1)

Deferred shading can provide a significant speed-up in render time by deferring the
shading step done by final fragment shader. Prior to this, all meshes in GPU queue are
passed through the 3D shaders and rasterized to screen space. Then the fragment shader
applies lighting to only the visible pixels in the scene. Hence, time complexity of deferred
shading is

O(screen resolution ∗ num lights) = O(n) (3.2)

For a video game such as GTA5, an order of magnitude improvement in rendering time
is crucial when it has to deal with millions of polygons and numerous light sources being
thrown on to the screen, all in real-time with virtually no loading screen.

While performance benefits are great, the main benefit for semantic segmentation re-
search is found in the state of the graphics buffers during deferred rendering. More specifi-
cally, there exists a rasterized layer in the rendering pipeline, which contains mesh, texture,
shader (MTS) values for game objects that are being thrown on to the screen.

3.2 Ground Truth Annotation via Detouring

Richter et al. take advantage of deferred rendering to produce their PFB dataset [60].
They tap into the game resources during render time by using detouring. Detouring is the
act of injecting custom code that intercepts calls to Direct3D API. Using this code, they
are able to sniff out and hash the MTS patches that the game is rendering.

MTS patches can be thought of as super-pixels. A few MTS patches together account
for a scene object in the game. An MTS patch does not contain content from multiple
objects. For instance, a car can be made of a few different MTS patches, but an MTS
patch cannot contain a car and a sidewalk object.

By semantically labeling and propagating MTS patches, data collection from the game
world is achieved for the purposes of semantic segmentation. When a rendered frame is
composed of pre-labeled MTS patches, this annotation process can take around 30 seconds.
Otherwise, labeling a frame with new MTS patches takes 7 seconds on average. According
to Richter et al., this labeling time is at least 500 times faster than human labeling done
for real-world datasets such as Cityscapes.
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3.3 Ground Truth Annotation via URSA Method

30 seconds of annotation time is too long for something that is automated. We can do
better. With this thought in mind, we tackled the challenge of GTA5 hacking with our
own dataset. GTA5 (as well as previous games in the series) has a legion of fans who make
up one of the most creative modding communities in the video game world. We decided
to leverage the resources available for modding the single-player version of the game.

3.3.1 Method Overview

The core idea behind our URSA dataset is preemptively labeling all relevant game resources
before beginning the data collection process. This way, we are able to generate, in real-time,
a virtually infinite amount of data points from the game world for semantic segmentation
research.

To achieve this, we created a modded copy of all road-scene game resources. Using
Rockstar Editor [23], we first record and render over-the-hood footage of vehicles driving
around in the stock game environment. We then load our modded game resources and
re-render the recording, producing the corresponding ground truth annotations.

In our process, instead of aforementioned MTS values, we identify frame super-pixels
with FMSS values. Having access to in-game assets grants us access to the persistent
storage locations of textures, which is not possible with detouring method. The FMSS cor-
relation results in 1,178,355 unique game resources. Of these, many are used for cutscenes,
in-door gameplay, and otherwise scenes that are non-relevant to road-going events.

We identified that a total of 56,540 FMSS values are relevant for road-scene semantic
segmentation, less than 5% of all FMSS assets. Even still, this is a significant amount of
resources that are required to be hand-labeled. This is not time-feasible for a small group
of graduate students.

3.3.2 Amazon Mechanical Turk

We employed workers from AMT. For this, we created a web-based labeling framework
using JavaScript. The user interface (UI) is shown in figure 3.2.
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Figure 3.2: Web-based interface exposed to Amazon Mechanical Turk workers to efficiently
label road-going FMSS values that were captured from the game world [1]

Task Setup

From the game world, we established that there exists a set of 3,388 scenes that has full
coverage of the 56,540 road-scene FMSS values [1]. We had to be careful about the design
of our tasks to find the right balance between worker satisfaction and label reliability. This
task is inherently a task of subjective perception.

AMT tasks are time-sensitive with variable costs depending on task requesters. Workers
are paid based on requesters’ task acceptance criteria. An unsuccessfully submitted task
by a worker can be rejected by the requester, hence penalizing the worker’s rating.

Manually invigilating 3,388 unique tasks to verify annotations is almost as complex as
the initial task. Instead we automate most of the invigilation by relying on a majority
voting scheme. This has a two-fold benefit. The first is that workers reliability score
is determined organically by the labels provided by other workers. The second is that
the more votes accumulated towards the labels of FMSS values, the less effect subjective
perception has in biasing our data.
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As oracles, we hand-labeled a random sample of 200 FMSS values. We then designed
a preliminary experiment with scenes containing these 200 samples. Through performance
analysis of the labeling UI and AMT, we empirically determined that an average of 6-7
votes were needed per FMSS to achieve 75% label accuracy against the oracle labels. This
is demonstrated in figure 3.3.

Figure 3.3: Cost-benefit visualization of Amazon Mechanical Turk worker votes

Data Labeling Analytics

With these priors about our labeling UI and AMT dynamics, we designed 2,312 tasks by
various groupings of the 3,388 scenes. This means that, on average, each scene was repeated
1.465 times. Also, we identified that each FMSS value in question repeats about 4.21 times
on average (with a median of 3) in the set of 3,388 scenes. Hence, with 2,312 tasks we
average about 6.97 votes per FMSS value. This provided us with near 75% confidence with
the AMT workers using our labeling tool.

Another noteworthy detail about our AMT tasks setup is that there were an average
of 3.34 scenes with 30.46 FMSS values to be labeled per task (median of 3 scenes with 30
FMSS values). $0.97 was paid out on average. We experimented with paying $0.77 with 24
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minute time limit, $0.96 with 26 minute time limit, and $1.20 with 38 minute time limit.
Of these amounts, 20% of the fees go to AMT service and the rest is given to the worker.

Worker productivity was best with the $1.20 setup, as it gave the workers a stress-
free environment. Average time-to-completion was 12.19 minutes with a median time-to-
completion of 10.65 minutes. Prior research on AMT indicates that median wage of AMT
workers is about $2/hour [27]. Our budget allocated towards the AMT labeling task aligns
with this prior research.

3.3.3 Data Generation

Figure 3.4 shows a high-level overview of data generation using our URSA method. The
labeling process, done by oracles and Amazon Mechanical Turk workers, is covered in the
Labeler System of the URSA pipeline.

Scene Recorders simulate dashboard cameras placed on road-going, in-game vehicles.
The AI is set to drive these vehicles along main roadways throughout the game world.
This is achieved via a popular community mod called DeepGTAV [63].

As mentioned in section 3.3.1, gameplay clips are recorded with Rockstar Editor’s in-
game recording feature [22]. Rockstar Editor allows for offline, high quality rendering of
pre-recorded scenes from the game world. Essentially, this removes the real-time rendering
constraint on the game engine. As a result, scenes can be rendered with more realistic
shader and lighting details. Characteristic nuances such as chromatic aberration and lens
distortion can be removed in this offline rendering mode. This rendering task is delegated
to the Realistic Renderers in figure 3.4.

Realistic shaders and lighting models cannot be used to render ground truth data.
In fact, the ground truth rendering has to be stripped down to the barebones of the
graphics engine. Texture blending shaders, self-shadowing effects, lens flares, etc. need to
be removed to let ground truth annotations render without any artifacts. The modded
texture pack generated via the Labeler System also has to be swapped in for ground truth
rendering. This rendering task is delegated to Ground Truth Renderers.

Finally, the accumulation of rendered output data is stored on a server computer with a
RAID 5 storage setup. A daemon script on this server prunes and sanity checks the stored
dataset. Using this parallel data collection and rendering process, the URSA dataset is
generated within 63 hours. This consists of 1,355,568 RGB images and their corresponding
ground truth annotations.
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Figure 3.4: URSA dataset generation pipeline

3.3.4 Influence Factor Variations

GTA5 has scripted weather variations. There are 13 different usable preset weather config-
urations in the game world. Namely, these are “CLEAR”, “EXTRASUNNY”, “CLOUDS”,
“OVERCAST”, “RAIN”, “CLEARING”, “THUNDER”, “SMOG”, “FOGGY”, “SNOW-
LIGHT”, “BLIZZARD”, “NEUTRAL”, and “SNOW”. Figure 3.5 shows previews of these.
The game engine works such that shaders, texture lookups, etc. all adhere to the state of
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the game weather. For instance, the textures in figure 3.6 apply to the same material but
during different weather conditions.

Figure 3.5: GTA5 weather configuration previews [83]

The game engine circulates through these weather configurations based on its time
logic and scripted events. GTA5 game engine understands the transitions between cer-
tain weather configurations and has scripted behaviour as such. Some transitions are
impossible. For example, the game world does not naturally switch from “BLIZZARD” to
“EXTRASUNNY”. When this is forced using a mod, there is a visible flash on-screen akin
to being overexposed to light when leaving a tunnel. This creates difficulties in shifting
between different weather configurations during data collection.
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Figure 3.6: Example texture variations used in GTA5; left is used in summer weather
configurations, right is used during winter

Worth noting is the fact that the game engine does not easily allow for modulating
a specific weather parameter. For example, there is no simple way to quantifiably and
uniquely (without affecting other influence factors) vary the amount of cloud coverage.
The position of the Sun in the game world is also locked along its orbital axis. The only
variable that directly influences Sun position is the time of day. This makes it problematic
to capture the Sun’s angle and shadows with respect to the view camera for data collection.

The biggest drawback towards capturing influence factor effects using the URSA method
is in using Rockstar Editor. Once a scene is recorded from the game world, the weather
parameters and Sun positions are baked into the recording. Our understanding is that
this is done to reduce file sizes of the recordings. In essence, to collect data with different
influence factors, new scenes have to be recorded from the game world with the specified
weather and time-of-day variations. This means that scenes are not easily reproducible
due to the pseudo-random events in the game world.
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Chapter 4

ProcSy Dataset

Figure 4.1: Generation pipeline for ProcSy dataset: (a) data priors are used for procedural
modeling; (b) CityEngine is used to generate three-dimensional, procedural world map; (c)
UE4 and CARLA are used for realistic lighting and weather effects; (d) dataset generation
through CARLA is controlled via Python-based scripting; (e) each frame of our dataset
have the outlined images rendered [35]

In this chapter, we expand on the methods and experiments discussed in our ProcSy
dataset paper [35].
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The name “ProcSy” (pronounced “proxy”) is an amalgamation of two words — “pro-
cedural” and “synthetic”. “Procedural” is an homage to the method of 3D modeling that
is used to generate the environment. “Synthetic” is in reference to the dataset being
generated from a virtually created world as opposed to being collected from the real world.

The goal behind ProcSy was to generate a dataset with quantifiable scene variations.
Instead of temporal frames, where objects are in motion such as in our URSA dataset,
we collect data by teleporting the camera around the 3D world. This allows us to collect
data without the need of creating AI and animations for the virtual world objects to move
around. This reduced the challenge at hand of making a virtual world from scratch for the
purposes of semantic segmentation research towards influence factor variations.

My primary contribution was the entire data generation pipeline. I identified procedural
modeling as a viable option for dataset generation. I generated the blueprint map for our
experimentation and integrated the generated map assets into our UE4-based rendering
ecosystem.

4.1 CityEngine Workflow

To generate the virtual environment, we make extensive use of CityEngine. As discussed
in section 2.2, CityEngine employs procedural modeling methodologies to enable a small
group of users to quickly generate reproducible, massive, city-like environments. We first
need to feed CityEngine with prior data for this model generation.

4.1.1 Data Priors

We pick a 3km2 region of Waterloo, Ontario (figure 4.2). This area was picked because of
its relevance to our overarching Autonomoose research project [74]. Bathurst Drive and
Colby Drive loops are heavily used to test various aspects of the Autonomoose platform.
So it makes sense to use this hotspot as the initial blueprint for a synthetic semantic
segmentation dataset. Data priors for CityEngine are accumulated from various sources.

OpenStreetMap

The first prior to be used is OpenStreetMap [26]. Primary road networks and building foot-
prints data are gathered from this crowd-sourced mapping platform (figure 4.2). Ideally,
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Figure 4.2: View of the 3km2 region-of-interest of Waterloo, Ontario for our ProcSy dataset
as seen on openstreetmap.org online map [26]; Bathurst Drive and Colby Drive loops are
captured in this region; the region also features a highway overpass (seen in red)
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we require High Definition map data to closely represent our AI. Such lane-level details as
lane width and banking angles are not expressed in OpenStreetMap data. However, there
are currently no standardized and open-source high definition maps available for the scope
of a graduate student research project.

City of Waterloo Open Data

Figure 4.3: Building height data provided by City Of Waterloo [81]
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City of Waterloo Open Data provides more specific details about our map region-of-
interest [81]. OpenStreetMap does not provide accurate representation of building heights
around Waterloo, Ontario. This is collected from the Building Footprints dataset (figure
4.3). This dataset provides consistent height representations in units of number of storeys.

Figure 4.4: Tree plantation data provided by City Of Waterloo [81]

Another Waterloo dataset that we use is Street Tree Inventory (figure 4.4). This dataset
provides street planting locations and types of trees that are managed by the City of
Waterloo. CityEngine has 3D representations of around 80 different types of trees in its
renderable assets library (figure 4.5). We gather the Waterloo data, and using a Python
script, we map tree types to those represented by CityEngine. This allows for quickly
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Figure 4.5: Sample 3D tree and plant models that are used by CityEngine for populating
environment with vegetation [17]

populating the virtual environment with references to existing real-world plantations. We
further populate the virtual environment with greenery in city parcels where there exist
fertile terrain.

Digital Elevation Model

A third data point that can be used for environment generation is height map data. Digital
Elevation Model (DEM) can be acquired from various sources. Scholars GeoPortal is
one such source [29]. Organized by the Ontario Council of University Libraries (OCUL),
Scholars GeoPortal allows academic researchers and students to query for geospatial data
such as DEMs. The relative elevation differences within our region-of-interest are negligible.
As a complexity minimization effort, we opt to consider the base terrain of our virtual world
to be flat.
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Figure 4.6: Mid-level zoom of Bathurst Drive as provided by Esri satellite imagery [16];
higher magnification allows for distinguishing lane-level features such number of lanes and
width of lanes
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Reference Satellite Imagery

CityEngine stitches data priors together in order to create a three-dimensional representa-
tion of the real-world counterpart. For ProcSy, it took about one-person hour to identify
and collect the relevant priors that have been outlined.

Due to data unavailability, CityEngine cannot automatically create exact road network
layouts. As mentioned previously, a potential solution may be to use high-definition (HD)
maps with lane-level details. However, HD map data in an open-source format is still
not readily available in the public domain. Currently, the most cost-effective approach
to this problem is using openly available satellite imagery of road networks. Thus, we
used satellite imagery provided by ESRI as reference to manually adjust road graphs in
CityEngine (figure 4.6).

The time-consuming aspect of procedural modeling is to restructure road networks by
accounting for lane-level details. This step took one person approximately 40 hours for the
3 km2 geographical area. Details such as number of lanes, street/lane-width, and heights
of overpasses had to be reconstructed or featured in manually.

4.1.2 Asset Generation

After the base layers are generated using data priors and satellite reference imagery, we
create new layers in the CityEngine workflow to populate the environment with statically
placed pedestrian and vehicle assets. Out of the box, CityEngine provides low polygon
pedestrian and vehicle mesh models that can be freely used.

Pedestrians

There are 31 different pedestrian mesh models used in our dataset (22 adult males and
9 adult females). As can be seen in figure 4.7, the meshes represent a wide variety of
standing/moving poses. These mesh models are randomized by CityEngine and populated
along sidewalks and lots. The distribution of pedestrians is controlled by weights assigned
to road network edges. For instance, a bigger road is likely to be populated with more
pedestrians along its sidewalks than a small back-alley path.
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Figure 4.7: Low-poly out-of-the-box pedestrian models provided by CityEngine

Low-poly Vehicles

CityEngine provides 43 different vehicle models (40 small vehicles and 3 large vehicles) of
low polygon count (figure 4.8). Using a similar procedure as that for pedestrians, these
vehicles are populated on the roads and parking lots.

CityEngine-provided mesh models have a polygon count that is an order of magnitude
less than that of commercial video games such as GTA5. The small vehicles have an
average of 1,880 polygons (median of 1,729 polygons). Large vehicles have an average of
6,243 polygons (median of 7,180 polygons).
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Figure 4.8: A sample of low-poly out-of-the-box vehicle models provided by CityEngine

GTA5 High Fidelity Vehicles

Using tools from GTA5’s modding community, we extract mesh models from the single-
player GTA5 game. A total of 202 relevant vehicle models are extracted — 155 small
vehicles and 47 large vehicles (figure 4.9).

GTA5 has various LOD models of these vehicles that are strategically used by the
game engine for run-time optimization. We forgo the use of high fidelity LOD models in
favor of standard models. HD models are an order of magnitude greater in polygon counts
than their standard counterparts. This would be very taxing for rendering our synthetic
environment without sophisticated LOD management.

We note that small GTA5 vehicles have an average of 19,379 polygons (median of
18,921 polygons) and large vehicles have 19,322 polygons (median of 19,125 polygons).
This shows the order of magnitude difference in mesh model fidelity between GTA5 and
CityEngine. We populate the static environment by sampling from these GTA5 vehicles.
This new population of vehicles is saved on a different layer in CityEngine’s workflow than
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Figure 4.9: A sample of high fidelity vehicles from GTA5 game world

that generated by use of CityEngine vehicles.

4.2 Unreal Engine 4 Workflow

Once the CityEngine workflow layers have been completed, we are ready to progress to
the next step in the pipeline — importing into UE4 (4.1c). Unreal Engine is a video
game engine developed by Epic Games [66]. Initially released in 1998, the engine has
gone through significant advancements in the past two decades to become one of the most
utilized game engines in the world.

Developed since 2003, UE4 saw free-to-use, source-available release in 2015. This en-
abled students and researchers to jump on board the platform and design virtual worlds to
fit their needs. One such research project serves as a key motivator for the use of UE4 in
our research — the CARLA open-source simulator for autonomous driving research. This
simulator is discussed in section 4.2.1.
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Figure 4.10: ProcSy dataset sample frame: (a) RGB image, (b) GTID image, (c) depth
map, (d) 1 occlusion map [35]

CityEngine uses a traditional rendering approach with a specific set of goals catered
towards its workflow. For instance, generating large city environments oftentimes requires
handling a massive amount of polygons on screen — in the order of a few hundred million
polygons. CityEngine does not focus on realistic lighting models. Instead, more emphasis is
put towards a smoother, real-time workflow experience for its users. As such, asset materi-
als and textures look rather primitive compared to the quality achievable with sophisticated
rendering methods such as that provided by UE4. Among its many advancements, UE4
uses a physically based lighting and material workflow [34]. This is discussed in section
2.3.

4.2.1 Introduction to CARLA

In 2017, Dosovitskiy et al. introduced their work in developing an open-source simulator
for autonomous driving research [15]. CARLA was created with the intent of supporting
training and validation of autonomous driving systems. The CARLA project provides a
plethora of freely usable digital assets such as buildings and vehicle models. CARLA also
provides their server-client protocol and project source code.
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4.2.2 Depth

UE4 provides access to the game world’s depth buffer. CARLA has code to spawn depth
camera object that can be invoked by Python-based server-client API. In terms of camera
movement, this special camera can be a parasitic clone of the realistic game world RGB
camera. However, its output generates Portable Network Graphics (PNG) files with depth
encoded into the RGB channels.

UE4 stores its depth values with 32-bit floating point precision. Let us call this stored
depth value d, which carries values within the range of [0, 1]. World depth z is represented
in d by a linear transformation of the reciprocal 1/z.

d = a

(
1

z

)
+ b (4.1)

In equation 4.1, a and b are constants that are representative of the near and far
clipping planes of the rendered scene. Reciprocal world depth is used because it makes
hardware rasterization a simple process due to the fact that straight lines are preserved
by the transformation [58]. The projection matrix of 1/z can be easily chained with other
matrix operations. On top of this, interpolation of d on polygons remains linear during
screen space rasterization, hence easily computed.

Another point to note about the relation between z and d is that near and far clipping
planes are in reversed order (figure 4.11). Far-away objects lie closer to 0 and nearby
objects are represented by values closer to 1. Reversed Z buffer is a commonly used trick
by game engines to avoid z-fighting that would otherwise be seen when distant polygons
visibly flicker due to lack of depth resolution. There is an increased precision for values
that are closer to 0, which lends itself well to discriminating depth values that are farther
away. Values closer to the screen are easier to distinguish, hence this precision is not as
necessary. So these values are mapped closer to 1, where less precision is permitted. This
idea is explored in detail by Lapidous et al. [40].

When CARLA outputs depth value, it first scales the floating point value in the range
of [0, 1] to a 24-bit integer representation in the range of [0, 2553 − 1]. This value is then
split into RGB channels of a PNG image and stored alongside realistic and ground truth
annotation images (figure 4.10c).

4.2.3 Ground Truth Annotations

We leverage the CARLA team’s work on synthetic semantic segmentation annotations.
We use version 0.9.2 of the CARLA project. UE4 makes use of many buffers that can be
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Figure 4.11: Visualization of increased precision of d around 0 and corresponding to the
near plane as d approaches 1; note that ticks along y-axis are in alignment with corre-
sponding ticks on the 1/z curve [58]

used for a variety of reasons. These include base color, depth, roughness, specular, surface
normals, etc. Another buffer that UE4 exposes to developers is a custom stencil buffer.
This lets developers tag game world objects with numeric IDs (figure 4.12).

The CARLA team saw potential in using the custom stencil buffer to automatically
generate ground truth annotations for the corresponding realistically rendered frames. Es-
sentially, they provide a simplified method by which assets organized into a specific folder
structure get tagged with the associated identification value for that folder (figure 4.12).

Using a Python-based script, a semantic segmentation camera object is created similar
to the aforementioned depth camera (section 4.2.2). This modified camera can generate
ground truth annotations based on asset tags (figure 4.10b). A drawback of this method
of annotation is the inability to have instance-level or panoptic segmentation [37].
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Figure 4.12: UE4 custom stencil buffer visualization showing asset tag values as predicated
by folder organization; folders highlighted in yellow represent semantic classes that have
tag associations in CARLA code modifications for ProcSy [15]

4.2.4 Vehicle Instances

We explore a method of generating instance-level segmentation for the vehicle class. Similar
to the depth and custom stencil buffers, UE4 has the capability of rendering metallic
material buffer output. With knowledge of UE4’s usage of PBR materials (section 2.3),
we modify the purpose of UE4’s metallic buffer output for our needs. Unique vehicle mesh
models are assigned different specularity values. This means that the metallic buffer output
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for these vehicle mesh models would represent the specularity associated to them. With
different specularity values, a different metallic buffer id is assigned to each vehicle model.
All instances of a vehicle model share the same metallic buffer id. Thus, not every vehicle
is uniquely represented in this way, rather they are seen in grouped instances (an example
can be seen in the bus model occlusion map of figure 4.10).

As an added effort towards true instance segmentation, we create a post-effect edge de-
tection filter material with a combination of Sobel and Laplacian edge detection algorithms
[76]. The resulting edges can be used to further break up instance groups into individual
instances. This is seen as the blue edge lines in figure 4.13’s packed channel-packed ground
truth annotations, vehicle per-model instance ids, and edge detections (GT ID) image.

We encode ground truth annotations, vehicle per-model instance ids, and edge detec-
tions in the same PNG file (called the GT ID image in Fig. 4.1e), where each takes up
one of the RGB channels (figure 4.13). This is done as a space saving measure. For our
dataset of 11,000 frames, ground truth annotations took around 786 MB of space. Output
of vehicle instances camera produced another 171.2 MB worth of data. After RGB channel
packing with PNG compression level 9 (loss-less compression format), we achieved a final
memory footprint of only 553.6 MB. Channel packing compressed the storage footprint of
our data to around 58% of its original space requirements.

4.2.5 Occlusion Maps

In UE4, there are two different depth buffers at our disposal. The scene depth buffer was
mentioned in section 4.2.2. UE4 exposes a secondary depth buffer similar to its custom
stencil buffer (section 4.2.3). This second depth buffer is appropriately called the custom
depth buffer. We can manipulate objects to be visible or invisible in the custom depth
buffer. We remove every world object from the custom depth buffer, then iterate over
visibility of individual vehicle models in the custom depth buffer.

We create a post-effects filter material to generate occlusion maps of vehicle models by
masking scene depth with only the region visible in custom depth. The occluded portion
in this masked region corresponds to all pixels in scene depth that do not equal to the
corresponding pixel in custom depth. The filter outputs the entire object-of-interest in the
R channel. The G channel contains region of the scene that occludes the object-of-interest
(figure 4.10). We create a CARLA special camera object that generates this occlusion map
output in PNG format.

Using this post-effects material, we iterate over each of the unique vehicle models, make
that vehicle model visible in custom depth buffer, output occlusions for each frame that
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Figure 4.13: RGB channel packing of ProcSy dataset; R channel contains ground truth
annotations (section 4.2.3); G channel contains vehicle model instancing (section 4.2.4); B
channel contains edge detection

contains that vehicle model, then again remove that vehicle model from the custom depth
buffer. For each frame of our ProcSy dataset, we have a folder containing n occlusion
maps, where n is the number of different vehicle models that appear in frame. We ignore
objects that are farther than 10,000 game world units from the screen. These occlusion
maps are used towards our experimentation of the ProcSy dataset (section 5.3).

4.2.6 Data Selection

From the static world that is generated, images can be captured from anywhere. We are
only interested in images that are captured from a road-driving perspective. So, there
is a need to add logic to the simulator/data collection pipeline such that scenes that are
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Figure 4.14: Path nodes graph in sandbox games such as GTA5

captured only acquire road scene imagery.

A robust way to ensure road-facing camera placements is by creating a spline graph of
the entire road network. This can serve multiple purposes. Using UE4 Blueprints, data
collection cameras can be spawned along the spline graph. These spline graphs can also
serve as routes for traffic simulation in the environment. In fact, this is how macroscopic
traffic simulation is handled in sandbox games like GTA5 (figure 4.14).

Manual spline creation for camera placements can be a very time-consuming process. It
is essentially the same task as that outlined in section 4.1.1. Instead, another approach can
be taken, whereby CityEngine exports path metadata along with the environment models.
However, this would require significant know-how of the CityEngine custom CGA scripting
language. So this method of spline creation has been kept out of scope for this thesis.

Ultimately, the approach taken to generate camera spawn locations relies on a binary
mask of the 3km2 region’s road map (figure 4.15). This binary mask is derived from a
top-down render of the region in UE4 Editor. In its captured resolution of 4545×4541
pixels, there are 1,349,841 distinguishable white pixels that can be chosen. These white
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pixels represent road-going locations of the map.

At each white pixel, we need to find good scenes that are road-facing. It is of no use
if the camera is on a white pixel, but is facing towards a building wall on the side of the
road. We derive a brute-force, line-traced search to find the top 2 optimal orientations at
each white pixel that ensures road-scene visibility.

The line trace algorithm works as such. For each white pixel, for each angle between
0◦ and 360◦, we trace a line starting from the pixel going in the direction of angle until
a non-white pixel is reached. By keeping track of the lengths of these line traces, we can
determine the angles with the most promising road-scene view. A longer, unobstructed
line track is assumed to be a more promising orientation.

Note that an underlying assumption is that the map is a flat terrain. Data collection
using this binary mask approach does not work well if map regions are generated using
elevation data priors as discussed in section 4.1.1. Also, in our map region, the overpass
areas and associated on/off ramps are problematic data collection regions. We simply
filter out data generated from these regions. This method is also not designed to allow
for temporal data collection. With an extended research timeline, the more robust spline
graph method should be explored for camera spawn points.

From the established set of 1,349,841 road scenes, uniform random samples were taken.
These scenes were quickly rendered using a low resolution render pass. With a human-
in-the-loop identification process, bad scenes were discarded. A scene was defined as bad
if it caused clipping issues with static vehicles, pedestrians, or other assets placed in the
environment. Once 11,000 clean frames were identified, this was established to be the core
of the ProcSy dataset.

The ProcSy dataset was split into a training set of 8000 frames, a validation set of 2000
frames, and a test set of 1000 frames. In Fig. 4.15, frames from the bottom-right quadrant
were used for validation and test sets. Frames from the other 3 quadrants were used for
the training set. We rendered the entire dataset with Cityscapes resolution (2048×1024
pixels) and annotation scheme. For each of our rendered frame, we have the following
output: RGB image (2.5mb), GT ID image (50kb), depth map (790kb), and an occlusion
maps folder (approx. 60kb) containing n images where n refers to the number of unique
vehicles that appear in the frame (Fig. 4.1e).

4.2.7 Influence Factors Variations

A clear strength of synthetic semantic segmentation datasets, more specifically those based
in simulators, is the ability to control and bias the dataset to fit specific needs (figure 4.16).
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Figure 4.15: Binary mask representing road-going pixels (white) of the 3 km2 map region-
of-interest (figure 4.2) in top-down view [35]
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Figure 4.16: Weather variations showing intensity levels in 3 categories — rain, cloud, and
puddles; the variation ranges explored are 25%, 50%, 75%, and 100%; note that the scene
is captured with the Sun positioned at a high-noon angle, hence causing a visible glare on
the car near center of screen

For the ProcSy dataset, we vary the Sun light and weather effects. These are termed as
influence factors. Our key experimental goals is to study the robustness of a neural network
against quantified variations of influence factors (further discussed in section 5.3).

We use CARLA’s capability to generate depth maps (section 4.2.2) and occlusion maps
for vehicle class (section 4.2.5). Along with these gbuffer-based influence factors, we also
focus on variations in environmental factors. UE4 employs energy-conservation based
lighting models and PBR-based rendering techniques (section 2.3). This allows for easy
access to a level of realism in rendered scenes that is simply not possible with the rendering
engine of CityEngine.

CityEngine has a very different goal for its UI. Users need to be able to see macroscopic
views of a city-scale group of polygons. The polygon count on screen can regularly be
upwards of a million. At this scale, the user is not interested in a realistic and expensive
lighting model. CityEngine uses a simplistic BRDF and rendering solution to allow for a
smooth workflow for its users. UE4’s BRDF is far more robust towards achieving better
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realism of scenes.

CARLA, as of version 0.9.1, introduced server-client API calls to easily modify weather
parameters and Sun position in real-time (Fig. 4.1d). For ProcSy, we selected three weather
influence factors, namely rain, cloud, and puddle deposits (accumulation of water on road
pavement). For each of these factors, we generate data for five different intensity levels of
0%, 25%, 50%, 75%, and 100%. These quantities are based on CARLA’s predefined range
values for the weather parameters.

We also use the Sun’s position in the sky as another influence factor (Fig. 4.17),
consisting of the Sun’s azimuth and altitude angles. In order to reduce the amount of
variations to study, we first make note of positions in a road scene frame where the Sun’s
angle and coincident shadow effects are expected to have a meaningful impact. We note
that below the horizon the Sun’s angle is irrelevant. A typical road scene is expected to have
buildings or other architecture along the left and right sides. These generally approach a
vanishing point near center of the frame. Therefore, we identify eight Sun positions within
the frame that represent a V-shape in upper half of the frame.

We also consider four Sun positions outside the frame. The first of these is front and
above (representing a high noon Sun angle). Another is off to the left casting harsh shadows
to the right of scene objects. Another is off to the right, casting harsh shadows to the left.
The last Sun position outside the view of the frame is above and behind the camera, casting
forwards shadows of objects.

With the identified environmental influence factor variations, we have the ability to
create 5×5×5×12=1500 unique RGB images for each frame of our dataset. In total,
ProcSy dataset has the potential to grow to more than 1,500×1,000,000=1,500,000,000
frames of data (this is assuming about 34.98% of the scenes captured from binary mask
data are bad scenes). Rendering all these scenes can be a time consuming process. So
we choose to render specific subsets of this variational influence factor data based on our
experimental needs.
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Figure 4.17: Road scene frame approximately showing the Sun positions in and out of
frame that are considered; red x’s indicate Sun location and corresponding tuples show
azimuth and altitude values used in CARLA [35]
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Chapter 5

Experimental Analysis

This chapter studies various facets of synthetic dataset generation through experimental
analysis. First, we identify the problem of domain shift to the real world (our operational
design domain (ODD) is Cityscapes dataset). We explore fine-tuning methods to mitigate
for this.

We then compare strengths and weaknesses of URSA and ProcSy. We make an argu-
ment for ProcSy justifying its utility despite having lower geometric fidelity overall than
URSA.

Ultimately, we explore 3 experimental setups towards understanding effects of influence
factors on unimodal semantic segmentation model performance. Environmental influence
factors used are amounts of rain, cloud, and puddles. We study effects of depth and
occlusion as well. DeepLab v3+ is used as the testbench for these experiments.

5.1 Adapting to Cityscapes

The ultimate target of semantic segmentation networks is to perform reliably on a real-
world operational design domain. For our research, the scope of this real-world ODD is
the Cityscapes dataset.

We explore performance of DNNs trained purely on synthetic datasets. We identify
the domain gap and reflect on a way to better account for class distribution differences
between training and testing datasets.
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Analysis and discussion follow regarding adaptation to Cityscapes dataset domain via
fine-tuning. We experiment with fine-tuning using various proportions and iterations of
Cityscapes training set.

5.1.1 Class Distribution

The objective of checking class distribution of datasets is to understand how closely the
dataset represents a real-world ODD. In the real world, a DNN may be exposed to any
distribution of classes depending on usage patterns and environmental biases. Thus, gener-
alizing the class distribution of a real-world driving environment is an intractable problem.

To simplify the problem scope to something more quantifiable, we study class distri-
bution of a pre-generated, real-world dataset containing scenery distribution with as much
unbiased data as possible. We use Cityscapes for this purpose, because it contains aggre-
gate data from 50 different European cities. Cityscapes’ ground truth annotation data,
although small (only 5000 images), is well-accepted and relied upon by the research com-
munity (over 1700 citations as of this writing). The class distribution of Cityscapes dataset
can be seen in figure 5.1a. Note that roads, buildings, vegetation, and cars make up over
82% of pixels in Cityscapes dataset.

In comparison to Cityscapes, our generated datasets achieve much better class bal-
ancing. In figure 5.1, it is seen that URSA and ProcSy both have significantly reduced
exposure to buildings, whereas sky is seen more prominently. Cityscapes dataset was col-
lected in European cities with narrow roadways and buildings that are close together. In
contrast, URSA and ProcSy are based on North American roadways. URSA/GTA5 is a
mockery of real-world Los Angeles, while ProcSy uses a region of Waterloo, Ontario as a
reference. In North American ODD, roadways tend to be much wider and buildings more
spread out than the European counterparts — explaining the prominency of sky class in
our datasets.

5.1.2 Closeness to Cityscapes

To validate synthetic datasets’ closeness to Cityscapes dataset, we train FCN, SegNet, and
DeepLab v3+ models (networks described in section 2.1.3). In order to allow for the most
unbiased performance analysis, we use hyper-parameter configurations for these networks
as recommended by the respective authors. We use Cityscapes validation set [11] as the
testing set for our experimental analysis. This validation set consists of 500 labeled frames.
FCN and SegNet are trained for 100,000 iterations each. DeepLab is only trained for 50,000
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Figure 5.1: Dataset distribution of 19 classes
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iterations. The results of training purely on synthetic datasets and testing on Cityscapes
validation set are shown in table 5.1.

FCN SegNet DeepLab
classes CS SY PFB URSA CS SY PFB URSA CS SY PFB ProcSy
road 0.866 0.023 0.214 0.508 0.833 0.009 0.065 0.000 0.978 0.034 0.216 0.039
building 0.727 0.284 0.386 0.472 0.776 0.271 0.452 0.329 0.916 0.451 0.410 0.413
vegetation 0.813 0.315 0.409 0.217 0.842 0.589 0.566 0.153 0.918 0.492 0.542 0.343
car 0.832 0.408 0.560 0.291 0.723 0.238 0.191 0.199 0.936 0.438 0.326 0.357
sidewalk 0.600 0.112 0.216 0.115 0.464 0.034 0.071 0.004 0.826 0.084 0.116 0.078
sky 0.184 0.601 0.596 0.190 0.807 0.548 0.347 0.242 0.942 0.513 0.393 0.430
pole 0.305 0.076 0.000 0.085 0.406 0.098 0.000 0.022 0.594 0.165 0.098 0.074
person 0.614 0.371 0.372 0.295 0.522 0.206 0.306 0.238 0.772 0.360 0.303 0.262
terrain 0.230 0.000 0.070 0.039 0.301 0.000 0.055 0.011 0.589 0.000 0.049 0.033
fence 0.211 0.000 0.047 0.020 0.170 0.000 0.087 0.007 0.560 0.000 0.125 0.000
wall 0.224 0.007 0.000 0.035 0.078 0.005 0.000 0.012 0.503 0.077 0.067 0.040
traffic sign 0.506 0.066 0.077 0.025 0.502 0.031 0.229 0.019 0.725 0.111 0.071 0.000
bicycle 0.588 0.036 0.000 0.000 0.517 0.001 0.000 0.000 0.732 0.031 0.000 0.000
truck 0.213 0.000 0.065 0.008 0.075 0.000 0.004 0.004 0.603 0.000 0.024 0.015
bus 0.454 0.041 0.032 0.023 0.154 0.019 0.019 0.002 0.772 0.085 0.095 0.007
train 0.274 0.000 0.000 0.000 0.042 0.000 0.000 0.000 0.600 0.000 0.000 0.000
traffic light 0.293 0.008 0.102 0.014 0.314 0.027 0.089 0.018 0.622 0.031 0.098 0.000
rider 0.270 0.040 0.000 0.000 0.174 0.000 0.000 0.000 0.541 0.046 0.021 0.000
motorcycle 0.326 0.001 0.091 0.002 0.122 0.000 0.035 0.000 0.489 0.019 0.049 0.000
mIoU 0.449 0.126 0.170 0.123 0.412 0.109 0.132 0.066 0.717 0.155 0.158 0.110

Table 5.1: Experiment results for section 5.1.2; CS columns are for reference, these are
trained on Cityscapes training set

The rows of table 5.1 are ordered by decreasing class frequency in Cityscapes dataset.
We see that Deeplab performs noticeably well when trained with ODD data (71.7% mIoU).
An interesting observation is that the trend of class accuracies in this column roughly
reflects the frequency order of classes in Cityscapes dataset.

More generally, for all of the DNNs trained on ODD dataset, it is seen that road,
building, vegetation, and car classes rank amongst the top-5 class accuracies for that
network. These are the most frequent classes in the Cityscapes dataset. As we noted in
section 5.1.1, these classes make up over 82% of pixels in Cityscapes dataset. So ODD-
trained DNNs become heavily biased towards the 4 classes.

Another observation is with regards to the standard metric for measuring semantic
segmentation network performance, the mIoU. This metric presents equal importance to
performance of all classes, regardless of frequency in the training dataset. This is prob-
lematic in using a different training domain. For example, none of the synthetic datasets
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contain any instances of trains (the transportation medium, not to be confused with train-
ing). Yet, this has a significant penalty on overall mIoU. While mIoU can be useful in
identifying missing class representations during domain shift, this metric does not capture
a true domain shift story of classes that are represented in the training dataset domain.

Table 5.2 shows the same data points using an alternate metric. fwIoU takes into
account the presence of classes in training dataset. Whereas mIoU is a simple mean of
the class accuracies, fwIoU weighs class accuracies based on their appearance frequency in
the data [75]. With the exception of SegNet trained on URSA, we see that our datasets
demonstrate performances similar to those of other synthetic datasets.

SegNet ranks ahead of FCN in terms of Cityscapes-trained model performance (fwIoU
of 75.3% vs CS-FCN’s fwIoU of 74.4%). However, all synthetically trained SegNet models
have worse-performing fwIoU scores than the FCN counterparts. The behavior of URSA-
SegNet is also very unusual (fwIoU of only 8.3%). The ODD of URSA — GTA5 game
world — is the same as PFB, and training hyper-parameters and iterations were ensured to
be the same for both cases. Yet, PFB-SegNet performs at a more respectable fwIoU score
of 20.5%. The other DNNs do not demonstrate this sort of behaviour on our generated
datasets. We conclude that the SegNet architecture itself has poor generalization across
different dataset domains. This is a reflection of a smaller trainable parameter space in
SegNet relative to the other networks. We see in section 5.1.3 that fine-tuning with portions
of Cityscapes dataset is able to mitigate this.

5.1.3 Insights on Fine-Tuning

Fine tuning on the target dataset is a very simple way to adapt to the target domain.
We use Cityscapes training set of 2975 frames for fine-tuning purposes. We study DNN
fine-tuning along two trajectories.

First, we fine-tune on the synthetically-trained DNNs for a fixed number of iterations
(10,000) with various portions of the Cityscapes dataset (25%, 50%, 75%, 100%). We
observer the effects with regards to network mIoU and fwIoU scores.

We then fine-tune the original synthetically-trained DNNs with varying number of
iterations (10,000 or 40,000), while using just around 10% of Cityscapes training dataset
(300 frames).
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FCN SegNet DeepLab
classes CS SY PFB URSA CS SY PFB URSA CS SY PFB ProcSy
road 0.320 0.004 0.054 0.192 0.308 0.002 0.017 0.000 0.362 0.007 0.055 0.003
building 0.165 0.082 0.050 0.024 0.176 0.078 0.059 0.017 0.208 0.130 0.053 0.037
vegetation 0.131 0.033 0.029 0.009 0.136 0.061 0.040 0.006 0.148 0.051 0.038 0.057
car 0.058 0.017 0.091 0.003 0.050 0.010 0.031 0.002 0.065 0.018 0.053 0.002
sidewalk 0.036 0.021 0.018 0.002 0.028 0.006 0.006 0.000 0.049 0.016 0.010 0.001
sky 0.007 0.043 0.083 0.044 0.032 0.039 0.048 0.056 0.037 0.037 0.055 0.117
pole 0.004 0.001 0.000 0.000 0.005 0.001 0.000 0.000 0.008 0.002 0.000 0.000
person 0.008 0.015 0.002 0.000 0.006 0.009 0.002 0.000 0.009 0.015 0.002 0.001
terrain 0.003 0.000 0.002 0.002 0.003 0.000 0.001 0.001 0.007 0.000 0.001 0.006
fence 0.002 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.005 0.000 0.001 0.000
wall 0.001 0.000 0.000 0.002 0.001 0.000 0.000 0.001 0.003 0.000 0.000 0.001
traffic sign 0.003 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.004 0.000 0.000 0.000
bicycle 0.003 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.003 0.000 0.000 0.000
truck 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
bus 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.000
train 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
traffic light 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000
rider 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
motorcycle 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fwIoU 0.744 0.217 0.332 0.279 0.753 0.206 0.205 0.083 0.916 0.278 0.270 0.226

Table 5.2: fwIoU metric analysis for section 5.1.2 experiment

Fixed Training Iterations with Variable Percentage of Cityscapes Training
Dataset

Table 5.3 demonstrates the results of fine-tuning FCN models that were trained with
synthetic datasets (Synthia, PFB, and URSA). Table 5.4 demonstrates the results of fine-
tuning SegNet models that were trained with the same synthetic datasets. In these tables,
the bolded fwIoU scores are a weighted average of Cityscapes and the training dataset’s
class distributions. This is to reflect the class distribution that is seen by the networks
during training. Cityscapes is given a weight of 1/11 since there are 10,000 fine-tuning
iterations over a total of 110,000 iterations. Likewise, the original training dataset is given
a weight of 10/11 due to 100,000 iterations of initial training. This does not factor in effects
of recency bias during the networks’ fine-tuning iterations. So we also calculate fwIoU CS
and fwIoU training to provide a range where true fwIoU would be found.

We notice that fine-tuning with just 25% of Cityscapes training set for 10,000 iterations
drastically improves all DNN models’ mIoU and fwIoU scores. The problematic URSA-
SegNet model shows especially impressive results as its mIoU and fwIoU increase by 460%
and 641% respectively. There is unanimous improvement on both networks by introducing
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Train Only FT-25% FT-50% FT-75% FT-100%
class name CS SY PFB URSA SY PFB URSA SY PFB URSA SY PFB URSA SY PFB URSA
road 0.866 0.023 0.214 0.508 0.728 0.875 0.902 0.807 0.893 0.915 0.812 0.882 0.917 0.814 0.882 0.911
building 0.727 0.284 0.386 0.472 0.721 0.759 0.758 0.731 0.776 0.764 0.721 0.771 0.758 0.732 0.767 0.762
vegetation 0.813 0.315 0.409 0.217 0.655 0.815 0.853 0.728 0.844 0.855 0.730 0.829 0.849 0.732 0.833 0.856
car 0.832 0.408 0.560 0.291 0.767 0.808 0.798 0.785 0.812 0.810 0.795 0.823 0.820 0.799 0.829 0.823
sidewalk 0.600 0.112 0.216 0.115 0.500 0.558 0.538 0.526 0.558 0.564 0.536 0.585 0.580 0.538 0.599 0.586
sky 0.184 0.601 0.596 0.190 0.388 0.376 0.487 0.388 0.455 0.486 0.286 0.423 0.426 0.336 0.415 0.422
pole 0.305 0.076 0.000 0.085 0.261 0.251 0.272 0.280 0.254 0.279 0.287 0.270 0.292 0.287 0.269 0.292
person 0.614 0.371 0.372 0.295 0.609 0.600 0.579 0.584 0.587 0.584 0.604 0.593 0.594 0.611 0.606 0.598
terrain 0.230 0.000 0.070 0.039 0.218 0.216 0.258 0.281 0.207 0.324 0.324 0.214 0.319 0.307 0.196 0.233
fence 0.211 0.000 0.047 0.020 0.172 0.158 0.183 0.243 0.222 0.246 0.249 0.215 0.263 0.252 0.239 0.279
wall 0.224 0.007 0.000 0.035 0.145 0.172 0.198 0.158 0.173 0.189 0.169 0.189 0.189 0.182 0.201 0.205
traffic sign 0.506 0.066 0.077 0.025 0.393 0.419 0.358 0.432 0.442 0.387 0.448 0.441 0.396 0.455 0.457 0.407
bicycle 0.588 0.036 0.000 0.000 0.514 0.574 0.545 0.491 0.565 0.560 0.502 0.566 0.560 0.525 0.580 0.569
truck 0.213 0.000 0.065 0.008 0.128 0.195 0.224 0.136 0.220 0.242 0.153 0.248 0.266 0.154 0.260 0.289
bus 0.454 0.041 0.032 0.023 0.147 0.247 0.236 0.174 0.271 0.202 0.203 0.322 0.277 0.219 0.330 0.338
train 0.274 0.000 0.000 0.000 0.066 0.100 0.207 0.136 0.214 0.246 0.165 0.233 0.289 0.181 0.250 0.276
traffic light 0.293 0.008 0.102 0.014 0.183 0.217 0.196 0.181 0.234 0.235 0.175 0.238 0.226 0.166 0.218 0.222
rider 0.270 0.040 0.000 0.000 0.253 0.171 0.138 0.239 0.185 0.174 0.229 0.184 0.165 0.233 0.179 0.164
motorcycle 0.326 0.001 0.091 0.002 0.227 0.300 0.292 0.200 0.305 0.288 0.213 0.317 0.306 0.224 0.326 0.310
mIoU 0.449 0.126 0.170 0.123 0.372 0.411 0.422 0.395 0.432 0.439 0.400 0.439 0.447 0.408 0.444 0.449
fwIoU 0.744 0.217 0.332 0.279 0.612 0.641 0.597 0.645 0.662 0.606 0.640 0.659 0.595 0.649 0.660 0.589
fwIoU (CS) 0.659 0.754 0.773 0.707 0.774 0.784 0.705 0.768 0.782 0.711 0.769 0.782
fwIoU (training) 0.607 0.630 0.579 0.639 0.651 0.589 0.634 0.648 0.576 0.642 0.649 0.570

Table 5.3: Results of FCN fine-tuning experiments on Cityscapes (CS), Synthia (SY),
Playing for Benchmarks (PFB), and URSA

Train Only FT-25% FT-50% FT-75% FT-100%
class name CS SY PFB URSA SY PFB URSA SY PFB URSA SY PFB URSA SY PFB URSA
road 0.833 0.009 0.065 0.000 0.739 0.650 0.815 0.676 0.694 0.759 0.610 0.604 0.684 0.641 0.659 0.695
building 0.776 0.271 0.452 0.329 0.726 0.702 0.754 0.714 0.734 0.768 0.730 0.735 0.772 0.717 0.736 0.773
vegetation 0.842 0.589 0.566 0.153 0.778 0.815 0.843 0.735 0.784 0.828 0.710 0.745 0.823 0.702 0.748 0.813
car 0.723 0.238 0.191 0.199 0.635 0.675 0.684 0.681 0.692 0.675 0.695 0.642 0.694 0.638 0.668 0.700
sidewalk 0.464 0.034 0.071 0.004 0.403 0.372 0.447 0.347 0.351 0.443 0.325 0.298 0.422 0.334 0.327 0.429
sky 0.807 0.548 0.347 0.242 0.765 0.723 0.800 0.693 0.812 0.776 0.694 0.773 0.813 0.675 0.787 0.834
pole 0.406 0.098 0.000 0.022 0.380 0.312 0.362 0.384 0.309 0.387 0.397 0.304 0.397 0.390 0.303 0.399
person 0.522 0.206 0.306 0.238 0.523 0.551 0.516 0.506 0.556 0.486 0.480 0.556 0.518 0.466 0.572 0.520
terrain 0.301 0.000 0.055 0.011 0.112 0.147 0.184 0.089 0.163 0.161 0.066 0.130 0.122 0.081 0.140 0.120
fence 0.170 0.000 0.087 0.007 0.154 0.176 0.109 0.166 0.206 0.110 0.190 0.206 0.117 0.185 0.213 0.129
wall 0.078 0.005 0.000 0.012 0.093 0.045 0.068 0.101 0.057 0.084 0.098 0.053 0.078 0.098 0.056 0.074
traffic sign 0.502 0.031 0.229 0.019 0.364 0.493 0.390 0.362 0.483 0.397 0.444 0.498 0.445 0.449 0.508 0.459
bicycle 0.517 0.001 0.000 0.000 0.481 0.324 0.397 0.545 0.338 0.382 0.553 0.334 0.406 0.553 0.363 0.388
truck 0.075 0.000 0.004 0.004 0.037 0.041 0.049 0.005 0.070 0.056 0.007 0.063 0.056 0.009 0.079 0.071
bus 0.154 0.019 0.019 0.002 0.048 0.062 0.061 0.096 0.100 0.074 0.122 0.109 0.155 0.118 0.117 0.182
train 0.042 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.028 0.000 0.000 0.078 0.000 0.000 0.085
traffic light 0.314 0.027 0.089 0.018 0.242 0.260 0.318 0.317 0.311 0.354 0.351 0.323 0.372 0.361 0.351 0.382
rider 0.174 0.000 0.000 0.000 0.171 0.131 0.084 0.204 0.170 0.077 0.228 0.184 0.170 0.245 0.205 0.172
motorcycle 0.122 0.000 0.035 0.000 0.128 0.156 0.113 0.159 0.135 0.113 0.182 0.110 0.143 0.187 0.124 0.147
mIoU 0.412 0.109 0.132 0.066 0.357 0.349 0.370 0.357 0.367 0.366 0.362 0.351 0.382 0.360 0.366 0.388
fwIoU 0.753 0.206 0.205 0.083 0.627 0.574 0.614 0.593 0.602 0.588 0.578 0.558 0.565 0.577 0.582 0.574
fwIoU (CS) 0.681 0.648 0.734 0.646 0.671 0.712 0.621 0.623 0.687 0.624 0.649 0.691
fwIoU (training) 0.621 0.567 0.602 0.588 0.596 0.575 0.574 0.551 0.553 0.573 0.575 0.562

Table 5.4: Results of SegNet fine-tuning experiments on Cityscapes (CS), Synthia (SY),
Playing for Benchmarks (PFB), and URSA
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just 25% of Cityscapes training data for fine-tuning.

In contrast, the successive additions of 50%, 75%, and 100% of Cityscapes training data
demonstrate next to little effect on the DNNs’ performance scores. Performance scores even
see a reduction in the case of SegNet. This can be attributed to SegNet’s smaller parameter
space. fwIoU scores for all fine-tuned models tend to stagnate around the fwIoU of the
respective DNN’s 25% fine-tuned model.

Variable Training Iterations with Fixed Percentage of Cityscapes Training
Dataset

Table 5.5 demonstrates fine-tuning results of DeepLab that was pre-trained on our ProcSy
dataset. The fine-tuning experiments are run with just around 300 randomly-sampled im-
ages from Cityscapes training set. We first capture results of training for 10,000 iterations.
We then proceed with training until 40,000 iterations and capture the results again.

We again observe a significant improvement in both mIoU and fwIoU scores over the
first 10,000 iterations of fine-tuning (averaging around 229% increase in mIoU and 217%
increase in fwIoU). This is impressive because we are using just 10% of the Cityscapes
training set.

What is more noteworthy is the phenomenon that is seen through the fwIoU scores.
The progression of fwIoU bold and fwIoU CS signify that as fine-tuning proceeds with
a small subset of Cityscapes training set, the network weights are improving gradually
towards Cityscapes target domain.

5.1.4 Summary

It is not necessary to use the full extent of a target dataset domain for good domain
adaptation. While this gives the highest possible results at a set number of fine-tune
iterations, the performance gains seen are sub-optimal. In the real world, data can be
gathered boundlessly. It is not possible to train semantic segmentation networks without
an upper bound on the training dataset.

From experiments in this section, we understand that unimodal semantic segmentation
network architectures have a diminishing return of performance with respect to increasing
the amount of data used for fine-tuning. With this intuition, we can identify an optimal
amount of data to be acquired from a target domain for fine-tuning a DNN.
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In order to do this, we first fix the number of training iterations as in section 5.1.3
experiment. Using a surrogate target real-world dataset such as Cityscapes, we identify the
point of diminishing return. Using this amount of the surrogate dataset, we proceed with
the experiment in section 5.1.3 to find the point of diminishing return for an ideal number
of fine-tuning iterations for the respective DNN. This is an efficient way to alleviate the
domain adaptation problem from a generated synthetic dataset towards a target domain.

IoU (%) of DeepLabv3+ tested on Cityscapes validation set
ProcSy w/ CityEngine vehicles ProcSy w/ GTA5 vehicles

classes CS no FT 10k FT 40k FT no FT 10k FT 40k FT
road 97.80 3.90 92.30 92.90 1.30 91.20 91.80
building 91.60 41.30 78.00 81.20 39.80 78.30 80.80
vegetation 91.80 34.30 84.40 86.00 38.00 84.40 86.00
car 93.60 35.70 73.00 77.70 6.40 70.80 76.00
sidewalk 82.60 7.80 55.20 58.10 1.60 51.60 55.50
sky 94.20 43.00 75.10 82.10 50.30 79.40 83.10
pole 59.40 7.40 32.80 37.40 5.00 35.00 38.50
person 77.20 26.20 46.60 49.90 7.60 48.10 50.10
terrain 58.90 3.30 29.30 34.50 6.60 28.00 31.40
fence 56.00 0.00 0.00 12.70 0.00 0.40 14.60
wall 50.30 4.00 14.10 17.00 1.80 16.60 14.30
traffic sign 72.50 0.00 0.00 6.20 0.00 0.40 17.50
bicycle 73.20 0.00 8.40 28.60 0.00 5.10 27.40
truck 60.30 1.50 1.20 10.70 0.40 1.90 9.70
bus 77.20 0.70 11.10 9.00 1.00 0.10 1.50
train 60.00 0.00 0.00 0.20 0.00 0.00 6.50
traffic light 62.20 0.00 0.00 4.90 0.00 0.00 2.80
rider 54.10 0.00 1.40 0.10 0.00 0.00 0.10
motorcycle 48.90 0.00 0.00 0.00 0.00 0.00 0.00
mIoU 71.70 11.00 31.70 36.30 8.40 31.10 36.20
fwIoU 91.55 22.06 70.48 75.90 22.56 70.89 75.47
fwIoU (CS) 78.23 80.66 77.70 79.95
fwIoU (ProcSy) 68.93 72.09 69.53 71.88

Table 5.5: Results of DeepLab v3+ fine-tuning iteration experiments on ProcSy datasets;
fine-tune iterations are done with 10% of Cityscapes (CS) training set
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5.2 Comparing URSA and ProcSy

Chapters 3 and 4 explore two very different methods of generating ground truth annotation
data for semantic segmentation research. In this section, we explore the merits of each
method towards our research goals. We gain an insight regarding the mesh geometry
complexity with respect to perceived realism and domain transfer capabilities.

5.2.1 Strengths and Weaknesses

Towards comparing the merits of the two dataset generation methods, we establish a set of
metrics that are relevant to the task of semantic segmentation research. These are ordered
in terms of importance towards our ultimate goal of a dataset generator that can flexibly
produce annotation data for varying influence factors. Table 5.6 shows this comparison.
Justifications are given for the winning choice for each metric. Where applicable, references
are made to appropriate sections of this thesis.

A quick glance at table 5.6 shows that there is an overall draw between the two dataset
generation methods. There are meritable benefits and concerning drawbacks to each
method. For our goals, ProcSy is a clear fit. This is due to the fact that ProcSy method
has perfect ground truth annotations, and lets us create quantifiable influence factor vari-
ations with relative ease. Also, it is observed to be much cheaper than URSA. This can
be hugely beneficial for research teams.

Perceived realism is a metric where URSA has a significant leverage over ProcSy. Rock-
star Games spent multiple years of development time to faithfully create a replica of real-
world Los Angeles in the game world (section 3.1). As useful as procedural modeling is to
quickly generate a map region for rapid prototyping, the scene realism and nuances found
in GTA5 is not achievable. If such was the case, then developers at Rockstar Games surely
would have used the method to make their lives easier.

ProcSy shines with respect to URSA when it comes to adapting to a new ODD. GTA5
game world, Los Santos, is populated with Southern California-like architecture, flora,
and fauna. Reverse-engineering the game world and its myriad assets in order to inject a
completely different ODD (let’s say a Brazilian favela) requires an insurmountable amount
of work that is out-of-scope of a master’s research project. As mentioned, procedural
generation via CityEngine can be leveraged for this purpose. Swapping out world resources
in the UE4 environment is trivial to do as it is one of the primary functionalities of a game
engine editor.
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metric URSA ProcSy justification

cost X

AMT labeling cost of GTA5 data was
$2448.15 USD. ProcSy is virtually
cost-less (UE4 is free-to-use; CityEngine
has a free 30-day trial period).

ground truth annotations X
ProcSy has perfect labels (4.2.3). GTA5
annotation methods provide flawed and
incomplete results (3.2 and 3.3).

influence factors X
As per sections 3.3.4 and 4.2.7, ProcSy
is the clear winner here.

perceived realism X GTA5 looks much more life-like.

mesh geometry fidelity X
GTA5 mesh models have an order of
magnitude higher fidelity than ProcSy
(4.1.2).

choice of ODD X
It is not trivial to replace the game world
in GTA5. ProcSy is fully versatile in this
regard.

depth X X
Both methods grant access to depth
buffers.

occlusion maps X
ProcSy allows for producing occlusion
map data, GTA5 does not.

terrain elevation X
GTA5 is a mockery of real-world LA
including hills, valleys, and mountains.
ProcSy base map is flat (4.1.1).

nighttime scenery X
GTA5 nighttime scenes have emissive
windows, car lights, streetlamps, etc.
ProcSy only has Sun as its light source.

temporal data X
ProcSy world is strictly static. GTA5 is a
full-fledged game with a dynamic world.

Table 5.6: Comparison of metrics between URSA and ProcSy dataset generation methods

5.2.2 Using High Fidelity Vehicle Geometry

An interesting metric in table 5.6 is mesh geometry fidelity. Prior intuition suggests that
having access to higher quality mesh models can be a key way to boost a dataset towards
achieving realism. In section 4.1.2, we mention that we are able to extract around 300
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vehicle models from the GTA5 single-player game. We observe that these mesh models
are an order of magnitude greater in polygon-count than CityEngine-provided low-poly
models.

The intuition led us to design an experiment to observe the effects of substituting higher
fidelity mesh geometry for dataset generation. We generate a secondary ProcSy dataset
with GTA5 vehicles (ProcSy-GTA5) in-place of CityEngine ones. Figure 5.1 shows the
respective dataset distribution. Of note is that the distribution is almost identical to the
original ProcSy distribution. One discernible point is that there is a significantly higher
amount of trucks in ProcSy-GTA5.

We then proceed to train DeepLab v3+ in the same way that the original model was
trained for section 5.1.3. The results are quite surprising. Not only did the GTA5 vehicles
fail to provide better generalization to the Cityscapes domain, the network performance
actually degraded from the original with CityEngine vehicles. More specifically, the car
class performance is seen to drop from 35.7% accuracy to just 6.4% (see table 5.5).

Further investigation can provide more insight as to the reason why better quality
mesh models do not account for better domain shift performance. For the scope of this
thesis, this insight validates the use of CityEngine-provided low-poly assets towards dataset
generation and influence factors experiments.

5.2.3 Summary

We pick the ProcSy dataset generation method towards our goal of analyzing influence
factor effects on unimodal semantic segmentation networks. We identify that higher mesh
geometry fidelity is not necessarily a boon for domain adaptation to the real-world. This
insight allows us to proceed designing our method and experiments with out-of-the-box
assets provided by CityEngine.

By comparing URSA and ProcSy, we understand that the two approaches have unique
benefits and drawbacks. The ease of controllability of influence factors is ultimately the
deciding factor towards moving forward with ProcSy.

5.3 Influence Factor Analysis

Here we present three experiments to demonstrate the usage of our ProcSy synthetic
dataset generator for understanding effects of different influence factors on a unimodal
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Figure 5.2: Performance of model A and B with different factors (each row); here, due to
space constraints, we only show samples at 100% level for each influence factor

semantic segmentation model’s performance. For each of the three experiments we give
the experimental objective, details, results, and actions suggested by the results. We use
DeepLab v3+ as the target DNN.

5.3.1 Effects of Environmental Influence Factors

In this experiment, we train and compare the performance of two DeepLab v3+ models. We
train model A with 8000 clean images, and model B is trained with 8000 images with equal
proportion of three influence factors (rain, cloud, and puddles). More precisely, model B’s
training images are split into three equal parts, one per factor. Then each part is split in
five equal sub-parts, one for a different level of the given factor to be applied: 0%, 25%,
50%, 75%, and 100%. Each model is trained with 140,000 iterations with a batch-size of
16 and crop-size of 512×512. The performance of each model is evaluated by testing with
different influence factors. The purpose of this experiment is two-fold. First, we would
like to observe how the influence factors degrade the performance of model A. Second, it is
important to know if model B is able to generalize across different influence factors and is
more robust than model A. Otherwise, we would need to explore more advanced training
methods to improve robustness [88].

In figure 5.3, we show mIoU of two models under different testing conditions, where
all test images have a certain level of an influence factor. For model A, as we increase the

72



Figure 5.3: mIoU for each testing scenarios for two models, A and B; x-axis denotes the
intensity level of a given influence factor in each scenario

level of each influence factor, its performance worsens. Initially, we found it surprising that
cloud and puddle factors decrease the performance more than the rain factor does. The
reason for this is largely due to the model inaccurately predicting sky as another class,
such as car. This kind of error can be seen in figure 5.4, where we plot the IoU of several
classes for each model. For example, in figure 5.4, the IoU values of car and sky classes
reduce significantly with increased clouds compared to the other classes. Similarly, we can
also see that puddles have a strong negative effect on person, car, and road classes, because
the puddle factor creates reflection of objects on the ground.

In contrast to model A, model B has generally stable performance across all influence
factors and at different intensity levels. This suggests that the model can generalize from
the exposure to these factors in training. Figure 5.2 shows samples of each model’s predic-
tion under different situations. We note that there is a small gap in overall and class-wise
performance when testing on clean images. However, this can be explained by the fact
that model B was not trained with as many clean images as model A. Our results show
that model B is more robust than model A.
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Figure 5.4: IoU values for 4 classes: person, sky, car and road; each row corresponds to
each testing scenario (rain, cloud and puddle) and each column corresponds to each class
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Figure 5.5: ‘a-e’ show model’s accuracy on vehicles according to occlusion level and depth;
darker green color corresponds to higher accuracy; ‘f’ shows frequency of vehicles; scales
for these plots are shown in color bars at the right. The color bar for the distribution plot
represents the distribution density.
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5.3.2 Effects of Depth and Occlusion

The ProcSy dataset allows for the assessment of a network’s prediction quality with respect
to depth and occlusion. Performing this analysis on an existing real-world, autonomous
driving dataset such as Cityscapes [11] is difficult since occlusion information is not avail-
able. However, this information generated from a synthetic dataset can help us understand
more about the reliability and weaknesses of a unimodal semantic segmentation model.

In this experiment, we randomly choose 270 ProcSy training dataset images with a total
of 1200 vehicles in the test set. We test these images on model A from the experiment
in section 5.3.1. Similar to Synscapes [85], we divide predicted pixels into subsets of
[0%, 20%], [20%, 40%], [40%, 60%], [60%, 80%], [80%, 100%] according to depth and amount
of occlusion of each vehicle. Then, we calculate accuracy for each subset, after which we use
cubic spline interpolation to get a contour plot. We repeat the same process for different
levels of rain in the images, as shown in figure 5.5a-e. Also, we plot the distribution of
vehicles in the training set according to occlusion and depth (figure 5.5f).

Occlusion Map Artifacts

The vehicle distribution shown in figure 5.5f indicates a source of error in the ProcSy dataset
occlusion maps. Ideally, the distribution should represent a gradient that diminishes as
depth and/or amount of occlusion increases. The beginnings of this pattern is observed
within the zone boxed by [0%, 20%] occlusion and [0%, 60%] depth. However, there is a
characteristic hotspot around 80% occlusion and 50% depth.

Our method of occlusion map generation, as outlined in 4.2.5, involves a hard-stop at
a distance of 10,000 game world units. This distance is used as the 100% depth amount in
figure 5.5. At this distance, vehicles appear very small in the image frame. These vehicles
also tend to have only a few visible pixels, if any. Without the hard-stop implemented, the
line of horizon in occlusion maps would be littered with many such fully or almost-fully
occluded vehicles.

While fully occluded (or almost fully-occluded) vehicles are removed from the horizon,
they are not removed from the dataset at medium depth values. Figure 5.6 shows an exam-
ple image frame where 3 of the vehicle instances are either fully or almost-fully occluded by
surroundings. Existence of fully or highly occluded vehicles around medium depth range is
the root cause for the characteristic hot-spot around 80% occlusion and 50% depth. This
is an indication that a better approach is needed to filter out fully occluded vehicles than
simply relying on a far clipping plane.
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Figure 5.6: Occlusion map of a vehicle showing 3 instances where the vehicle is fully or
highly occluded; yellow indicates occluded pixels; red indicates visible pixels

Insights on Model

In the case of no rain (figure 5.5a), we see that DeepLab performs really well on vehicles
across a wide band of depth and occlusion. This directly reflects DeepLab’s use of atrous
spatial pyramid pooling (section 2.1.3) in its architecture. ASPP allows DeepLab to have
good scale-invariance in predicting object classes. Generally speaking, the model’s accuracy
decreases as both depth and occlusion increases.

We also observe that in the region bounded by [0%, 20%] occlusion and [0%, 60%] depth,
the model’s accuracy is quite stable up until 50% rain amount (figure 5.5c). This region
corresponds to the left-most cluster in the distribution map (figure 5.5f), which is the
expected behaviour of the dataset distribution.

Increasing from 50% rain intensity, we see a phenomenon developing around the region
centered near 40% occlusion and 20% depth. This growing hot-spot characterizes model A’s
weakness in segmenting vehicles in images that are filled with rain noise. This complements
the observation in figure 5.3, which demonstrates a significant degradation of model A’s
overall mIoU performance to increased rain intensity.

5.3.3 Optimizing for Data Collection

Collecting and labeling more data in different weather conditions is the simplest way to
improve a model’s robustness. However, this is a costly and laborious task, and one may
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Figure 5.7: mIoU values for each model of section 5.3.3

want to know the optimal amount of data to collect. We build on our intuition from
experiments in section 5.1.3. With this experiment, we demonstrate that the ProcSy
dataset can be used towards estimating an optimal amount of data to be acquired for
making a model more robust to unimodal semantic segmentation of adverse conditions.

We train and compare the performance of four different models — one with 3000 clean
images, and the other three with the same 3000 clean images plus an additional 100,
500, or 1000 rainy images (each additional set containing an equal amount of images at
a given level: 0%, 25%, 50%, 75%, 100%) respectively. To ensure that rain is the only
differentiating factor in performance of these models, we constrain rainy image generation
by random sampling from just the original 3000 clean images.

The results are shown in figure 5.7. We see that most of the model’s improvement is
obtained by adding just 100 rainy images. For instance, when the amount of rain is 100%,
it improves the performance by 10% (from 61.8% to 71.8% mIoU), whereas adding another
900 rainy images only improves performance by an additional 2%. Also, adding 1000 rainy
images only gives us a slight increase in mIoU compared to adding only 500 images. Since
raindrops cause occlusion effects in the images (a kind of irreducible source of error), this
result suggests that adding more rainy images will likely not further improve the model’s
performance.

From this experiment, we posit that given the metric-based performance requirement
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for a semantic segmentation task, a threshold can be identified (such as 500 images is
good enough, 1000 images is overkill) through rapid training on influence factor variations
of a synthetic dataset. By collecting, annotating, and training real-world data indicated
by the threshold amount, an unimodal semantic segmentation network architecture can
be optimized towards the respective influence factor. Assuming other influence factors to
be orthogonal, experiments run on those can yield similar threshold values. One can use
these thresholds as reasonable estimates for amount of real-world data collection towards
improving the robustness of a given model.

5.3.4 Summary

In this section, we experiment on DeepLab v3+ using influence factor variations from
our ProcSy dataset generation method — namely rain, cloud, and puddles. We see that
increased variations in cloud and puddles affect DeepLab’s performance much more sig-
nificantly than rain. We identify that a root cause is due to the model’s propensity to
mis-classify sky with increase in cloud coverage. For classes that tend to be spatially close
to the ground, increased reflectivity of road surface due to puddles becomes a negative
factor for the model’s performance.

We produce a dataset distribution heatmap for vehicle class relative to depth and
occlusion from image space. For a DeepLab model trained on clean images, we produce
similar heatmaps for model accuracy on rain intensity variations. From these heatmaps, we
gain insight towards the way in which the model fails to classify vehicles as amount of rain
is increased. This experiment also highlights an issue with our occlusion map generation
technique. There is an identifiable need to have a robust way of removing fully occluded
objects from the occlusion map data.

Finally, we expand on our intuition gained through fine-tuning models in section 5.1.3.
We see that for DeepLab, introducing as little as 3% of rainy images in the training set
led to significant gains (around 10%) in the network’s robustness towards such imagery.
In contrast, adding more than 15% of rainy images had diminishing returns on network
performance. We posit that training data for a unimodal semantic segmentation network
can be acquired optimally from the real-world by first gaining such insight from synthetic
influence factor variations.
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Chapter 6

Conclusion

This thesis hones into a synthetic dataset generation method that is conducive to rapid
validation of unimodal semantic segmentation network architectures. The method is ca-
pable of scene repeatability towards generating influence factor variations in the form of
rain, cloud, puddles, and Sun positions. The method also allows for gaining further insight
on DNN behaviour by using depth and occlusion maps.

Existing research in semantic segmentation has progressed towards multimodal tech-
niques due to a lack of quality and quantity of ground truth data for adverse weather and
lighting conditions. To our knowledge, this is the only such research work in this field
that proposes to use synthetic influence factor variations as an empirical measure towards
optimizing the training and robustness of unimodal semantic segmentation networks.

We justify ProcSy dataset’s quality by benchmarking performance against pre-existing
synthetic datasets, including our own GTA5-based URSA dataset. We identify that higher
quality mesh geometry in such synthetic datasets does not necessarily have a direct corre-
lation towards performance against a real-world operational design domain.

We demonstrate the ProcSy method’s usefulness by performing experiments on DeepLab
v3+, a state-of-the-art network for unimodal semantic segmentation tasks. We gain insights
about the network’s behaviour on unseen adverse weather conditions. Based on empirical
testing, we identify a point of diminishing return towards optimizing the network’s training
with additional adverse condition data samples.

Future work extending from this thesis should explore the effects of combining influence
factors. In the scope of this thesis, influence factors such as rain, cloud, and puddles
were treated orthogonally. This was useful in identifying methodologies and validation
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procedures. However, in the real world, these factors work in some combination of each
other.

Further work is needed to generate occlusion maps that are more robust. Our ex-
periments show clear value in studying occlusion data. However, the current approach is
cumbersome and does not produce true instance-level occlusion data. Also, fully occluded
objects remain as undesirable artifacts in current occlusion maps.

Significant next steps of the dataset generation process would be to introduce elevation
data in the procedurally-created world. Also, a time-consuming but worthwhile endeav-
our would be to transition from a static 3D environment to a fully-dynamic world with
camera/traffic movement along roadways and pedestrian animations. This opens up pos-
sibilities for temporal data collection with nuances such as motion blur and greater scene
variation.

A future work to further validate these influence factor studies would be to first annotate
real-world data with and without influence factor variations. By training networks on real-
world data, it can be observed whether the networks behave similarly to ones trained on
synthetic data. The Autonomoose project is poised for data collection towards this goal.
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