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Abstract

Monte Carlo simulations are performed on structurally symmetric binary homopolymer blends

over a wide range of invariant polymerization indexes, N̄ . A finite-size scaling analysis reveals

that certain critical exponents deviate from the expected 3D-Ising values as N̄ increases. However,

the deviations are consistent with previous simulations, and can be attributed to the fact that the

system crosses over to mean-field behavior when the molecules become too large relative to the size

of the simulation box. Nevertheless, the finite-size scaling techniques provide precise predictions for

the position of the critical transition. Using a previous calibration of the Flory-Huggins interaction

parameter, χ, we confirm that the critical point scales as (χN)c = 2 + cN̄−1/2 for large N̄ , and

more importantly we are able to extract a reliable estimate, c ≈ 1.5, for the universal constant.
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I. INTRODUCTION

The theory of binary homopolymer blends developed by Flory1 and Huggins2 has long

been a standard topic of polymer textbooks; see Ref. 3 for a recent review. The focus is

typically on structurally symmetric blends involving polymers of the same molecular volume,

vm = N/ρ0, and average end-to-end length, R0 = aN1/2, where ρ−10 is the segment volume,

N is the number of segments in each polymer, and a is the statistical segment length. For

blends of 50:50 composition, the onset of macrophase separation is predicted to occur at a

critical point of (χN)c = 2, where χ is the usual Flory-Huggins interaction parameter.

The Flory-Huggins theory corresponds to the mean-field approximation of the standard

incompressible Gaussian chain model (GCM), upon which most calculations in polymer

theory are based.4,5 Renormalized one-loop (ROL) expansions of the model6–8 have shown

that the mean-field predictions are exact in the infinite molecular-weight limit, and that

deviations for large finite polymers depend on the ratio R3
0/vm = N̄1/2, where N̄ ≡ a6ρ20N

is referred to as the invariant polymerization index. A recent ROL calculation by Qin and

Morse9 predicts

(χN)c = 2 + cN̄−1/2 , (1)

with c = 3.7. The fluctuation correction to mean-field theory is believed to be universal,

but ROL is not expected to provide an accurate estimate of its size, c. The problem is that

the ROL calculation breaks down near the critical point, because it fails to treat the critical

fluctuations properly.

The most straightforward way of accounting for fluctuations is by performing simulations.

A recent simulation by Detcheverry et al.10 has found clear evidence of the N̄−1/2 scaling,

but with a coefficient, c ≈ 10, that is nearly three times the ROL prediction. Technically

speaking, however, it is impossible to directly simulate the GCM, where chains are treated as

one-dimensional elastic threads with zero-range interactions, and consequently Detcheverry

et al. were forced to approximate the GCM. One way to circumvent this problem is to

mathematically transform the GCM into an equivalent field-based model, which just involves

two fields governed by an appropriate Hamiltonian.11 The fluctuating fields can then be

simulated on a three-dimensional grid. Spencer and Matsen12 performed a field-theoretic

simulation (FTS) of this type last year and found reasonable agreement with the N̄−1/2

scaling. However, this time, the coefficient was approximately half the size of the ROL
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prediction.

Since the N̄−1/2 fluctuation correction is supposedly universal, it should hold for any

model, including the bond-fluctuation model (BFM) simulated by Deutsch and Binder13 25

years ago. They located critical points for two variants of the BFM, using accurate finite-size

scaling techniques. Given that the simulations were for a lattice model as opposed to the

standard GCM, comparison to Eq. (1) is contingent upon the definition of an effective χ

parameter. Naturally, it must satisfy the requirement that (χN)c → 2 as N →∞.

Müller and Binder14 proposed the definition χ = z(N)α, where α is the interaction energy

between unlike monomers compared to like monomers in units of kBT and z(N) is the average

number of intermolecular contacts a monomer experiences in the athermal limit (i.e., α→ 0).

Using this definition, Müller15,16 showed that both variants of the BFM produced consistent

results with c ≈ 4, which is close to the ROL prediction. However, Qin and Morse9 pointed

out that this definition of χ depends on the size of the molecules, N , which contradicts our

expectation that χ should depend solely on the interactions between monomers and not on

quantities related to the architecture of the molecules. With this in mind, they reanalyzed

the BFM simulations using the definition χ = z∞α, where z∞ = limN→∞ z(N). When doing

so, the fluctuation correction turned out to be very small and showed no signs of universality

nor the expected N̄−1/2 scaling. Qin and Morse suggested the problem might be because χ

should, in fact, be a nonlinear function of α, which only reduces to χ ≈ z∞α for small α.

The justification for using a nonlinear χ has now been nicely illustrated in simulations of

symmetric diblock copolymer melts by Morse and coworkers.18,19 Their calibration of χ(α)

was obtained by matching the disordered-state structure function, S(q), of the simulations

to that of ROL under the constraint χ(α) → z∞α in the athermal limit. When expressed

in terms of the nonlinear χ, the order-disorder transitions, (χN)ODT, from five distinct

simulation models reduced to a universal function of N̄ . With this improved way of defining

χ, simulations have now been able to accurately predict experimental results.20

Here, we attempt to determine an accurate value of the coefficient, c, in Eq. (1) with

simulation. Given that c is universal, there is no need to choose a physically realistic model.

Therefore, we select the lattice model originally introduced by Vassiliev and Matsen.21 Not

only is it extraordinarily simple, the model has already been accurately calibrated in Ref.

18. Therefore, we just need to locate the critical points for a series of different chain lengths,

which we do following a similar finite-size scaling analysis to that of Deutsch and Binder.13
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II. SIMULATION METHOD

This section describes our Monte Carlo simulation for a binary blend of nA A-type and nB

B-type polymers, each consisting of N beads (or monomers). To simplify the simulation, the

polymers are restricted to a periodic fcc lattice with a maximum of one monomer per lattice

site and bonded monomers occupying nearest-neighbor sites. The fcc lattice is created by

taking a simple-cubic L×L×L lattice and deleting every second site. For convenience, the

nearest-neighbor spacing, b, is set to 21/6 = 1.122, such that the volume of the system, V ,

equals the total number of lattice sites, L3/2. To allow room for the polymers to move, the

lattice is only filled to a monomer density of ρ0 ≡ nN/V = 0.8, where n = nA+nB. Molecular

interactions are limited to neighboring A and B monomers, for which the interaction energy

is εAB.

This model has already been accurately calibrated in Ref. 18 from a simulation on diblock

copolymer melts. From that, we know that its statistical segment length is a = 1.233b =

1.384, which implies N̄ = 4.506N . Furthermore, the study found that the Flory-Huggins

interaction parameter is well approximated by

χ(α) =
z∞α + c1α

2

1 + c2α
, (2)

where α ≡ εAB/kBT and z∞ = 4.897 was determined by evaluating the number of inter-

molecular contacts at α = 0. The fitting parameters, c1 = 88.5 and c2 = 8.30, were obtained

by matching the peak in the structure function, S(q∗), from the simulation to that of ROL

across the entire disordered phase for seven different chain lengths ranging from N = 20 to

180.

Our current simulation on a binary homopolymer blend is performed in a semi-grand

canonical ensemble, where the total number of molecules is fixed but the difference, m =

(nA − nB)/n, is permitted to fluctuate. This is done by allowing each molecule to swap

between types A and B. In addition, the molecules can also move by undergoing slithering

snake and crankshaft steps.21 The swap, slithering snake and crankshaft moves are attempted

with relative frequencies of 3/N :1:1, such that a similar amount of computational time is

spent on each. The attempted moves are accepted or rejected using the standard Metropolis

algorithm.

As usual, a simulation starts with a large number of Monte Carlo steps (MCS) per

monomer (typically 106) to equilibrate the system, followed by an even larger number (typ-
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ically 107) over which statistics are collected for various observables. Each observable, Ô, is

generally sampled once every 20 MCS per monomer. In order to reduce the computational

effort, we employ Monte Carlo reweighting,22,23 where Ô and the number of AB contacts,

nAB, are stored over one long simulation at some α0. The ensemble average of Ô at α is

then given by

〈Ô〉 =

∑
i Ôi exp (nAB,i(α− α0))∑
i exp (nAB,i(α− α0))

, (3)

Not surprisingly, the reweighing will fail if α differs too much from α0. Fortunately, reweight-

ing works particularly well near a critical point, αc, due to the broad distribution of con-

figurations resulting from the critical fluctuations. To be absolutely safe, we repeat the

simulation if our initial choice of α0 differs from αc by more than 0.5%.

III. RESULTS

Several different methods will be used to determine the critical points, αc, for a series

of polymerizations ranging from N = 10 to 320. Because the correlation length diverges

as α → αc, the finite size of the simulation box will affect results no matter how large

its width, Lb/
√

2 = 0.793L, is relative to the average end-to-end length of the polymers,

R0 = 1.384N1/2. Therefore, the only way to obtain αc accurately is by employing finite-

scaling techniques, whereby simulations are performed over a range of system sizes, L. The

analysis turns out to be very sensitive to polymer density, and consequently L has to be

strictly limited to values for which ρ0 is exactly 0.8.

The usual way of accounting for finite-size effects is to plot the Binder (or fourth-order)

cumulant24

U4,2 = 1− 〈m4〉
3〈m2〉2

, (4)

for different L. Figure 1(a) shows sample results for N = 40, demonstrating the expected

behavior where the curves cross at a fixed point, which in this case identifies the critical

point as αc = 0.0100057. Figure 1(b) replots the data with the temperature axis scaled by

L1/ν , where ν = 0.62997 is the critical exponent of the correlation length for the 3D-Ising

universality class. The near perfect collapse of the curves implies that the finite-size scaling

is working properly. This scaling behavior will fail if L is too small, and indeed we have

omitted our L = 10 results for this precise reason. Analogous plots for other values of N
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FIG. 1: (a) Fourth-order cumulant, U4,2, as a function of α ≡ εAB/kBT , calculated for N = 40

diblocks using simulation boxes of size L = 20 to 80 in steps of 10. The arrow denotes the point

about which the MC reweighting was performed. (b) Results replotted with the temperature axis

scaled by L1/ν , where ν = 0.62997.

are shown in the Appendix, and the resulting critical points from this first method, α
(1)
c , are

listed in Table I.

Researchers often choose to examine the second-order cumulant

U2,1 =
〈m2〉
〈|m|〉2

, (5)

because it involves smaller moments of m, for which the statistics tend to be more accurate.13

Figure 2 shows analogous plots to Fig. 1 using this alternative cumulant. There is again

an excellent collapse of the curves in Fig. 2(b). The resulting critical points of this second

approach, α
(2)
c , which are tabulated in Table I for the various N , agree with those of the

Binder cumulant to about four digits of accuracy. The agreement implies that the moments

of m, including the fourth-order one, are all accurate, which testifies to the quality of our

statistics.

To be absolutely certain that our simulation is behaving correctly, we consider one further
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TABLE I: Critical points, α
(i)
c , determined from the fourth-order cumulant (i = 1), the second-order

cumulant (i = 2), and the peak in the susceptibility (i = 3) for chains of different polymerization,

N .

N α
(1)
c α

(2)
c α

(3)
c

10 0.036711 0.036702 0.036736

20 0.019379 0.019378 0.019378

40 0.010006 0.010004 0.010010

80 0.005092 0.005091 0.005096

160 0.002567 0.002567 0.002570

320 0.001288 0.001287 0.001291
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FIG. 2: Analogous plots to those of Fig. 1 for the second-order cumulant, U2,1.

technique for finding the critical point that involves the susceptibility

χ|m| ≡
∂

∂µ
〈|m|〉

∣∣∣∣
µ=0

=
n

kBT

(
〈m2〉 − 〈|m|〉2

)
, (6)

where µ is a chemical potential that couples to |nA − nB|. The first step is to locate the

position of its maximum, αmax, for a series of system sizes, L, as demonstrated in Fig. 3(a)
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FIG. 3: (a) Susceptibility, χ|m|, as a function of α, calculated for N = 40 diblocks using simulation

boxes of size L = 20 to 80 in steps of 10. (b) Position of the maximum, αmax, plotted as a function

of system size scaled with the critical exponent ν. The straight line denotes the extrapolation to

infinite L used to estimate αc.

for polymers of length N = 40. The maximum is then plotted as a function of L−1/ν and

linearly extrapolated to L → ∞, as shown in Fig. 3(b). In this case, the data does not

become linear until L >∼ 40, whereas the cumulants began to scale accurately for L >∼ 20.

Analogous plots for the larger N are shown in the Appendix. Although the predictions of

this third method, α
(3)
c , tabulated in Table I, are in good agreement with those obtained

from the cumulants, we expect them to be less accurate in general given the need for larger

system sizes.

So far, the scaling behavior appears to be consistent with the 3D-Ising universality class,

in particular the value of ν. However, the fixed points of the two cumulants do not match

the literature value, U∗4,2 = 0.4652,25 and the value, U∗2,1 = 1.23, we obtained by simulating

the 3D-Ising model (i.e., N = 1 and ρ0 = 1). Table II illustrates the discrepancy for N = 40

by tabulating the crossing points for subsequent pairs (L1, L2) of system sizes up to 7.2 times

R0. To within the resolution of our statistical accuracy, the U∗’s appear to plateau with no
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TABLE II: Crossing points (α∗, U∗) of the fourth- and second-order cumulants in Figs. 1(a) and

2(a), respectively, for subsequent pairs of system sizes, L1 and L2.

L1 L2 α∗4,2 U∗4,2 α∗2,1 U∗2,1

10 20 0.010371 0.5042 0.010162 1.2323

20 30 0.010042 0.4568 0.010020 1.2557

30 40 0.010012 0.4479 0.010007 1.2599

40 50 0.010006 0.4451 0.010005 1.2606

50 60 0.010005 0.4445 0.010004 1.2617

60 70 0.010006 0.4451 0.010005 1.2608

70 80 0.010006 0.4452 0.010004 1.2613

hint of approaching the expected values. This same departure from the 3D-Ising values has,

in fact, been observed in all polymer simulations,12–14 and is attributed to the large number

of intermolecular contacts among high molecular-weight polymers, which tends to suppress

fluctuation effects. Consequently, as N increases, the apparent U∗4,2 tends toward the mean-

field value of 0.2705.26 Indeed, the fixed point is reduced to 0.39 by the time N = 320; see

Fig. 11 in the Appendix.

The polymeric nature of the system also tends to push certain critical exponents from

their 3D-Ising value toward their mean-field value. This is evident from the behavior of the

order parameter, 〈|m|〉. Deutsch and Binder13 showed that its value at the critical point

should scale as

〈|m|〉c ∝ Nβ/ν−1/2L−β/ν . (7)

Figure 4(a) confirms the power-law dependence on L, but finds that the effective exponent,

−β/ν, tabulated in Table III shifts away from the 3D-Ising value of -0.518 toward the mean-

field value of -0.75 as N increases, as has been observed in previous studies.13,14 Despite the

shift in the exponent, Deutsch and Binder argued that 〈|m|〉cN1/2 should remain a function

of L/N . Figure 4(b) shows that this scaling is indeed satisfied by our results, as was the

case for their simulations.

Analogous behavior also occurs for the susceptibility, χ|m|. Deutsch and Binder13 showed

that the peak susceptibility from Fig. 3(a) should scale as

χmax
|m| ∝ N [−γ+4β−3ν]/3νLγ/ν . (8)
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FIG. 4: Order parameter at the critical point, 〈|m|〉c, as a function of system size, L, for different

polymerizations, N . The slopes in the logarithmic plot (a) provide the ratio of critical exponents,

β/ν, tabulated in Table III, and the collapse of the data in the linear plot (b) confirms the N

dependence of Eq. (7).

TABLE III: Critical exponents extracted from Figs. 4(a), 5(a) and 6, for chains of different

polymerization, N . The top row quotes their 3D-Ising values.

N β/ν γ/ν (2β + γ)/ν (1− α)/ν

3D-Ising 0.518 1.964 3.000 1.413

10 0.539 1.974 3.052 1.411

20 0.520 1.950 2.990 1.410

40 0.548 1.919 3.016 1.410

80 0.568 1.898 3.034 1.413

160 0.597 1.826 3.021 1.413

320 0.614 1.822 3.050 1.413
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FIG. 5: Peak susceptibility, χmax
|m| , as a function of system size, L, for different polymerizations,

N . The slopes in the logarithmic plot (a) provide the ratio of critical exponents, γ/ν, tabulated in

Table III, and the collapse of the data in the linear plot (b) confirms the N dependence of Eq. (8).

Figure 5(a) confirms the expected power-law dependence on L, but again the effective ex-

ponent, γ/ν, tabulated in Table III, shifts away from the 3D-Ising value of 1.964 as N

increases.13,14 Interestingly,γ/ν tracks the shift in β/ν so as to maintain the hyperscaling

relation

2
β

ν
+
γ

ν
= 3 , (9)

as confirmed in Table III as well as in the previous study of Deutsch and Binder. Given

the hyperscaling, Deutsch and Binder argued that χmax
|m| N

2/L3 should depend only on the

ratio L/N . Figure 5(b) confirms that our data collapses reasonably well when scaled in this

manner, as was the case for the simulations of Deutsch and Binder.

We perform one further check of our results by examining the average internal energy at

the critical point, which is expected to vary with system size, L, as29

〈E〉c = a1 + a2L
−(1−α)/ν , (10)

where α is the critical exponent corresponding to the heat capacity (not to be confused
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FIG. 6: Average internal energy at the critical point, 〈E〉c, as a function of system size, L, for

polymers of length N = 40. The curve is a fit to Eq. (10), which provides the value of (1−α)/ν in

Table III. Note: the conventional symbol for the critical exponent α should not be confused with

our interaction parameter, α ≡ εAB/kBT .
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FIG. 7: The three estimates of the critical transitions from Table I plotted in terms of the nonlinear

χ(α) in Eq. (2) and the invariant polymerization index N̄ = 4.506N . The solid curve denotes the

empirical fit in Eq. (11).

with the interaction strength α = εAB/kBT ). Figure 6 shows a three-parameter fit to our

simulation data for N = 40, which gives (1 − α)/ν = 1.410 in good agreement with the

3D-Ising value of 1.413. The exponents obtained from fitting the data for the other chain

lengths, tabulated in Table III, exhibit similar agreement. Given that 〈E〉 needs to be

evaluated at the critical point for this to work, the agreement is further evidence that our

estimates of αc are accurate.

Now that we are fully confident in the critical points tabulated in Table I, Fig. 7 plots the

results in terms of (χN)c and the invariant polymerization index, N̄ , using the calibration

12

http://dx.doi.org/10.1063/1.4995260


of χ(α) in Eq. (2) and N̄ = 4.506N . The solid curve in Fig. 7 denotes a three-parameter

fit,

(χN)c = 2 + 1.47N̄−1/2 + 4.8N̄−1 , (11)

to the N ≥ 20 predictions from the two cumulant methods, which we consider slightly more

accurate than the predictions from χ|m|. Note that the first parameter of the fit is actually

1.9998, which accurately rounds to the mean-field prediction of 2. This not only agrees

with the fact that fluctuation effects vanish in the infinite molecular-weight limit, but also

supports the belief that χ does not depend on molecular architecture, given that our χ in

Eq. (2) was derived from simulations on diblock copolymer melts.

IV. DISCUSSION

Our finite-size scaling analysis seems to provide an impressive accuracy of four digits for

the critical points, αc. Of the different methods, we regard the two cumulant ones as the

most accurate, given that the crossing points, α∗, plateau at relatively small system sizes.

For instance, the crossing points in Table II for N = 40 approach a well-defined α∗ = 1.0007

once L >∼ 40. Nevertheless, one could be concerned by the significant deviations in the

U∗’s from their universal 3D-Ising values, as has been the case in previous simulations.12–14

Although the U∗’s must eventually approach their 3D-Ising values, the convergence proves

to be incredibly slow, so much so that any evidence of it in Table II is obscured by our small

statistical inaccuracies. Naturally, one might suspect a similar drift in α∗ as L→∞, but it

is, in fact, impossible for both quantities to simultaneously drift. As L increases, the slope

dU
dα

becomes steeper, constraining the possible deviation between α∗ and αc. By the time

L = 80, the 4% deviation of U∗4,2 from 0.465 in Table II bounds the deviation of α∗ from

αc to approximately 0.003%. Thus, our value of α∗ for N = 40 is an accurate estimate of

αc, even though the system remains too small to exhibit accurate 3D-Ising behavior. We

assume a similar rapid convergence of α∗ → αc for our larger N values.

Although our finite-size scaling analysis showed excellent agreement with the 3D-Ising

exponents ν = 0.62997 and α = 0.11008 in Figs. 1(b), 2(b), 3(b) and 6, one might be

concerned by the sizable deviations in Figs. 4(a) and 5(a) from β = 0.32642 and γ = 1.23707.

However, this was also observed by Deutsch and Binder.13 Not only did they observe similar

sized deviations in β and γ, their exponents continued to satisfy the hyperscaling relation,
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Eq. (9), just as ours did. Deutsch and Binder later illustrated that the slopes of 〈|m|〉c and

χmax
|m| in Figs. 4(a) and 5(a) do, in fact, cross over to the expected 3D-Ising values once the

ratio of L/N is sufficiently large.13,28 Given that the system size at which this happens scales

as N , it simply becomes unfeasible to simulate systems of sufficient size once N >∼ 20.

The precision of our results is evident by the fact the data points in Fig. 7 for N ≥ 20 are

accurately described by the smooth three-parameter fit in Eq. (11), and more importantly

by the fact the first coefficient agrees almost perfectly with the mean-field value. This

bolsters our confidence that 1.47 is a reliable estimate for the slope of (χN)c versus N̄−1/2

in the N̄ → ∞ limit [i.e., the universal coefficient, c, in Eq. (1)]. However, one always

needs to be cautious in extrapolating data, even when the fit appears very accurate. Indeed,

we find significant variation in the fitting parameters depending on how many terms and

how many values of N are included in the fit. For instance, the coefficient of the N̄−1/2

term varied by approximately ±0.1, and therefore we round our estimate of c to 1.5. The

estimated coefficient for the N̄−1 term is considerably less certain. In any case, its value will

not be universal, given that it is sensitive to effects that depend on the number of molecules,

n ∝ N−1, such as any specific details involving the chain ends. Nevertheless, one could hope

that its value is reasonably similar among different systems.

The quality of our estimate, c ≈ 1.5, is naturally dependent upon the accuracy with

which we were able to determine αc. It is likewise dependent on the accuracy with which

N̄ = 4.506N and z∞ = 4.897 were determined in Ref. 18. However, in principle, the value

of c is not affected by the nonlinearity of χ, that is the coefficients c1 and c2 in Eq. (2).30

This is demonstrated in Fig. 8, where we compare (χN)c using the linear χ = z∞α and the

nonlinear χ(α) in Eq. (2). Out of interest, we also plot the critical point using the effective

χ = z(N)α of Müller and Binder.14 In this case, the value of c is affected. Based on the

relation
z(N)

z∞
≈ 1 +

(
6

π

)3/2

N̄−1/2 (12)

derived by Morse and Chung,8 it follows that c increases by 2(6/π)3/2 to a value of 6.75.30

In light of these results, we can now understand the diverse conclusions reached by previous

studies.

Let us start with the simulations of the bond fluctuation model (BFM).13 The analysis

by Müller,15,16 using χ = z(N)α, predicted a value of c ≈ 4 that is not terribly far off of 6.75.
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FIG. 8: Critical transition plotted using different definitions of the Flory-Huggins χ parameter. The

solid curves show the transition as specified by the fit in Eq. (11).30 Stars denote a simulation of

the bond fluctuation model (BFM)16,17 plotted using the two linear definitions of χ, and diamonds

denote results from a field-theoretic simulation (FTS).12

On the other hand, the analysis by Qin and Morse,9 using χ = z∞α, was unable to detect

the N̄−1/2 scaling. As evident from the square symbols in Fig. 8, the same would have been

true in our study had we just used χ = z∞α. With this definition, it becomes necessary

to simulate far larger polymers in order to observe the N̄−1/2 scaling. To further illustrate

the consistency with the BFM, Fig. 8 plots its critical point for N = 64 polymers.16,17 The

two points denoted by stars correspond to the linear definitions of χ with z(N) = 2.44 and

z∞ = 2.10.31 They agree reasonably well with our simulations when the critical point is

plotted in terms of χ = z(N)α and χ = z∞α, respectively. Nevertheless, we should not

expect a precise match, firstly because the comparison is not in terms of the nonlinear χ

and secondly because the N̄−1 contributions to (χN)c are not universal.

The simulation by Detcheverry et al.10 approximated the Gaussian chain model (GCM)

by discretizing the polymer chains and smearing the interactions. To account for these mod-

ifications, they needed to define an effective χ parameter, which was obtained by matching

the chemical potential for the exchange of A and B molecules to that of mean-field the-

ory. However, this was done at finite values of N , and thus it results in an N -dependent

χ. Indeed, previous simulations14,16 have shown that this definition approximately matches

χ = z(N)α. This is presumably the reason for their large estimate of c ≈ 10, which is not
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so different from 6.75.

The critical points from the field theoretic simulations (FTS) of Spencer and Matsen12

are also shown in Fig. 8. Results for the two largest molecules, N̄ = 104 and 105, agree well

with Eq. (11), but the data point for N̄ = 103 starts to deviate significantly. Spencer has

repeated some of the simulation runs to ensure that the deviation is statistically accurate.32

It is important to note that the FTS has to contend with an ultraviolet divergence as the

spatial resolution, ∆, of the grid upon which the fluctuating fields are represented becomes

finer. The effect of the divergence is to reduce the incompatibility of the A and B molecules,33

and as such it can be removed by defining

χ =

(
1− 2.332R0

N̄1/2∆

)
χb (13)

where χb is the bare interaction parameter used in the simulation (i.e., the equivalent of α).

We suspect that the deviation from Eq. (11) is due to the fact that the effective χ in Eq.

(13) is linear in the bare χb, which is akin to using the linear χ in particle-based simulations.

Indeed, the FTS results are a closer match to the curve for χ = z∞α.

Although we can rationalize all the previous simulation results, it would be extremely

useful to have accurate predictions of (χN)c for other models in terms of the nonlinear χ

in order to confirm the universality of the N̄−1/2 fluctuation correction and to gauge the

importance of the N̄−1 contributions. This could be achieved by simply applying the Morse

calibration of the χ parameter to the two variants of the BFM simulated by Deutsch and

Binder.13 Alternatively, there are several other models that have already been calibrated in

Ref. 18, just waiting to be applied to binary blends. Indeed, Mysona and Morse are in the

process of doing so, and we have been informed that their results appear to be consistent

with ours.34

V. CONCLUSIONS

Precise estimations for the critical point, αc, of symmetric A+B homopolymer blends

were obtained for a simple lattice model using finite-size scaling techniques. Our first two

estimations were obtained from the fixed points, (α∗, U∗), of the fourth- and second-order

cumulants of m = (nA − nB)/(nA + nB) in Eqs. (4) and (5), respectively. In both cases, α∗

provided accurate estimates of αc for relatively small system sizes, L. Our third approach
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extrapolated the peak position, αmax, of the susceptibility χ|m| in Eq. (8) to L → ∞.

This provided a consistent estimate of αc, although the finite-size scaling, αmax ∝ L−1/ν ,

required somewhat larger system sizes. For this reason, we attributed greater accuracy to

the cumulant methods.

The finite-size scaling analysis was largely consistent with the 3D-Ising universality class.

For instance, the impressive collapse of the cumulants in Figs. 1(b) and 2(b) and the

linearity of αmax in Fig. 3(b) was achieved with the 3D-Ising value of ν. Furthermore, the

dependence of the internal energy at the critical point, 〈E〉c, with system size in Fig. 6

also scaled with the expected 3D-Ising exponent. However, the effective critical exponents,

β and γ, determined from Figs. 4(a) and 5(a), respectively, deviated from the 3D-Ising

values toward the mean-field values as N increased, but in such a way so as to maintain the

hyperscaling relation in Eq. (9). This deviation has been observed before,13,14 and results

due to the suppression of fluctuation effects as N̄ → ∞.27,28 To achieve 3D-Ising behavior

requires system sizes beyond what is computationally feasible. Another consequence of the

limited system sizes is that the effective fixed-points of the cumulants, U∗, shift toward

the mean-field values.12–14 Nevertheless, this is expected to have a negligible impact on the

convergence of α∗, and therefore should not compromise our estimates of αc.

Using a previous calibration of our model for diblock copolymer melts,18 Fig. 7 plots the

critical points in terms of (χN)c and N̄ . The fit in Eq. (11) to the simulation data illustrates

that the dominant fluctuation correction scales as N̄−1/2 and that the mean-field result of

2 is recovered in the infinite molecular-weight limit. Given that our χ is determined from

diblock copolymer melts, the latter result strongly supports the notion that χ is independent

of architecture. The fit also provides a reliable estimate, c ≈ 1.5, for what is believed to

be the universal coefficient in Eq. (1). Not only does the value agree with recent field-

theoretic simulations (FTS),12 we are also able to rationalize the previous simulations of the

bond fluctuation model (BFM).13 A previous lack of evidence for the N̄−1/2 scaling can be

attributed to the use of χ = z∞α,9 and the previous prediction of a much larger c can be

attributed to the use of χ = z(N)α.15,16 Although our findings are reasonably consistent

with the present literature, it will be necessary to test other simulation models using the

nonlinear χ to truly establish the universality of c.
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FIG. 9: Finite-size scaling analysis for N = 80 polymers using L = 20 to 70 in steps of 10. (a) Plots

the Binder cumulant, (b) replots the results with a scaled temperature axis, and (c) extrapolates

the peak of the susceptibility to infinite L. The arrow in (a) denotes the point used for the MC

reweighting.
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Appendix

The Results section focused on our simulations at the modest polymerization of N = 40,

for which we were able to consider a wide range of system sizes extending up to 7.2R0.

Here we show analogous results to those of Figs. 1 and 3(b) for the N = 80, 160 and 320

polymers.

Figure 9 displays the finite-scaling analysis used to obtain the estimates of the critical

point for N = 80 in Table I. The top plot (a) shows the Binder cumulants evaluated for a

series of system sizes, L = 20, 30, 40,..., 70, from which the fixed point provides the first

estimate, α
(1)
c . The next plot (b) illustrates the collapse of the curves, when the temperature
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axis is scaled by L1/ν with the 3D-Ising critical exponent, ν = 0.62997. Evidently, the scaling

is not accurate for the smallest system size of L = 20; the curve is slightly above the fixed

point in plot (a) and does not collapse on top of the other curves in plot (b). Note that

the second-order cumulant (not shown) performs similarly and provides a nearly identical

estimate, α
(2)
c . The final estimate, α(3), is obtained in plot (c) by extrapolating the peak

position, αmax, of the susceptibility to infinite L. In this case, L >∼ 40 is required for the

finite-size scaling to become accurate.

Figure 10 repeats the finite-scaling analysis for N = 160 polymers. With these larger

molecules, the system size needs to be a multiple of 20 in order to strictly maintain a polymer

density of ρ0 = 0.8. We know from the N = 80 results that the scaling will not be accurate
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for L = 20, and furthermore it is computationally unfeasible to consider system sizes as

large as L = 100. Therefore, we are limited to L = 40, 60 and 80. Nevertheless, the three

cumulants in Fig. 10(a) produce an unambiguous fixed point, and they accurately collapse

in Fig. 10(b) when scaled with respect to L1/ν . As for the susceptibility, L needs to be about
√

2 times larger than for the N = 80 polymers in Fig. 9(c). Although system sizes of L = 60

and 80 should be sufficient for the finite-size scaling to work, L = 40 is undoubtedly too

small. Indeed, the three data points in Fig. 10(c) do not lie in a straight line, but the largest

two systems sizes do, in fact, extrapolate to a value α
(3)
c consistent with the predictions of

the two cumulant methods.

The results for our largest N = 320 polymers are shown in Fig. 11. The system size is

again limited to L = 40, 60 and 80. Based on our results for the shorter chains, L = 60 and

80 should be more than adequate for the cumulant method, and thus their crossing point is

expected to provide an accurate estimate for αc. This expectation is well supported by the

fact that the L = 40 curve comes rather close to the same crossing point and also by the

fact that all three cumulants collapse reasonably well in Fig. 11(b). As for the susceptibility

method, L = 40 is definitely too small and even L = 60 is somewhat questionable. Therefore,

we might suspect that the linear extrapolation of L = 60 and 80 would fail to provide an

accurate estimate of αc, but in fact α
(3)
c is close to the α

(1)
c and α

(2)
c obtained from the

cumulant methods.
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