
Fluctuation effects in blends of A+B homopolymers with AB

diblock copolymer

Russell K. W. Spencer∗ and Mark W. Matsen†

Department of Chemical Engineering,

Department of Physics & Astronomy,

and Waterloo Institute for Nanotechnology,

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Dated: April 30, 2018)

Abstract

Field-theoretic simulations (FTS) are performed on ternary blends of A- and B-type homopoly-

mers of polymerization Nh and symmetric AB diblock copolymer of polymerization Nc. Unlike

previous studies, our FTS are conducted in three-dimensional space, with the help of two new

semi-grand canonical ensembles. Motivated by the first experiment to discover bicontinuous mi-

croemulsion (BµE) in the PE-PEP system, we consider molecules of high molecular weight with

size ratios of α ≡ Nh/Nc = 0.1, 0.2 and 0.4. Our focus is on the A+B coexistence between the two

homopolymer-rich phases in the low-copolymer region of the phase diagram. The Scott line, at

which the A+B phases mix to form a disordered (DIS) melt with increasing temperature (or de-

creasing χ), is accurately determined using finite-size scaling techniques. We also examine how the

copolymer affects the interface between the A+B phases, reducing the interfacial tension towards

zero. Although comparisons with self-consistent field theory (SCFT) illustrate that fluctuations

effects are relatively small, fluctuations do nevertheless produce the observed BµE that is absent in

the SCFT phase diagram. Furthermore, we find evidence of three-phase A+B+BµE coexistence,

which may have been missed in the original as well as subsequent experiments.
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I. INTRODUCTION

AB diblock copolymers are known for their ability to compatiblize immiscible A+B ho-

mopolymers, in the same way surfactants cause water and oil to mix. The compatiblization

results due to an accumulation of copolymer at the interfaces between the A- and B-rich

phases,1 which reduces the interfacial tension responsible for macrophase separation.2 The

potential for creating polymeric alloys has motivated a considerable amount of research.

This has become particularly important in the recent quest to create sustainable materials

endowed with properties that are competitive with traditional plastics and elastomers. The

model system for these studies has been symmetric blends involving homopolymers of equal

polymerization, Nh, and copolymers with two blocks of equal polymerization, Nc/2. Ideally,

the A and B segments should have the same statistical length, a, in order to complete the

symmetry. Note that we follow the convention where all segments are defined to have the

same volume, ρ−1
0 .

Broseta and Fredrickson3 classified the different behaviors of these ternary blends ac-

cording to mean field theory. In the binary homopolymer limit, the disordered (DIS) melts

macrophase separate to produce A+B coexistence at the critical point (χNh)c = 2, where χ

is the usual Flory-Huggins parameter specifying the incompatibility of the unlike segments.

As copolymer is added, the transition shifts to (χNh)c = 2/(1− ϕ̄c), where ϕ̄c is the volume

fraction of copolymer. For size ratios of α ≡ Nh/Nc < 1, the transition, referred to as the

Scott line,7 terminates in a Lifshitz critical point at ϕ̄c,LP = 2α2/(1+2α2). Beyond that, the

DIS phase transforms to a periodic lamellar (LAM) phase [see dotted curves in Fig. 1(b)].

Mean field theory or rather self-consistent field theory (SCFT), however, is only accurate

in the infinite molecular-weight limit. The fluctuation corrections to it are controlled by the

invariant polymerization indexes (e.g., N̄h ≡ a6ρ20Nh). Although the corrections are generally

small, they become significant near the order-disorder transition (ODT) causing a shift

towards lower temperature (or higher χ). In the case of the Scott line, the fluctuations also

change the critical exponents,8,9 and in the case of the LAM/DIS boundary, they change the

transition from continuous to discontinuous.10,11 Fluctuations are expected to be particularly

important near the Lifshitz point,3,4 because of its large critical dimensions. The upper

critical dimension, below which mean field theory becomes inaccurate, is eight as compared

to four for the Scott line.4 Furthermore, the lower critical dimension is believed to be four,5,6
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which implies that the Lifshitz point should, in fact, be destroyed by fluctuations in three-

dimensional space.

The critical behavior of the Lifshitz point was first investigated by Bates et al.12 for

blends of polyethylene (PE) and polyethylenepropylene (PEP) with α = 0.208. (This choice

of α roughly matches the ODT of neat diblock copolymer melts, (χNc)ODT ≈ 10.5, with the

critical point of binary hompolymer blends, (χNh)c ≈ 2, such that the ODT can be accessed

over the full composition range, 0 ≤ ϕ̄c ≤ 1.) Bates et al. observed small-angle scattering

consistent with a Lifshitz point exhibiting mean-field critical exponents to within 1◦C of

the apparent transition. Although the PE-PEP system should be well described by SCFT

given the large N̄h ≈ 5000,13 Lifshitz points simply cannot exist in three dimensions. They

suggested that fluctuations must, in reality, push the Lifshitz point to T = 0 leaving behind

a channel of strongly-structured DIS phase, referred to as bicontinuous microemulsion (BµE)

by the surfactant community.14

Two years later, Bates et al.15 confirmed the proposed behavior [see Fig. 1(a)]. As

expected, the position of the BµE channel corresponded well with the mean-field Lifshitz

point, ϕ̄c,LP = 0.080. Subsequent experiments16–23 have observed analogous behavior in a

wide range of chemically different systems. These studies found stronger fluctuation effects

for lower values of N̄h, in particular, a crossover towards the Lifshitz critical exponents16,17

and a widening of the BµE channel.18 It should be noted, however, that an increased width

of the channel can also result from asymmetries in the system (i.e., mismatches in the

homopolymer sizes, the copolymer blocks and/or the segment lengths),19 which will exist to

some extent in any real experimental system.

After Bates et al. proposed the BµE channel but before they actually discovered it, Müller

and Schick24 observed BµE in Monte Carlo (MC) simulations of the bond-fluctuation model.

To avoid technical difficulties of conducting simulations in the grand canonical ensemble,

they restricted their study to α = 1, which allowed them to use a semi-grand canonical

ensemble whereby polymers could switch among the different types. Computational costs

also restricted their simulations to short polymers with N̄h = 145.25 Not surprisingly, their

phase diagram differed considerably from the experimental one, both quantitatively and

qualitatively. In particular, their Scott line ended at an ordinary tricritical point, beyond

which they found three-phase A+B+BµE coexistence followed by A+B+LAM coexistence.

Düchs et al.26 later examined blends for α = 0.2 using field-theoretic simulations (FTS),
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FIG. 1: Phase diagrams for ternary blends obtained (a) experimentally15 for PE-PEP with α =

0.208 and (b) theoretically27 from 2D FTS (symbols) and SCFT (dotted curves) with α = 0.2. The

diagrams include two-phase (A+B) coexistence, an ordered lamellar (LAM) phase and a disorder

(DIS) phase, part of which is classified as bicontinuous microemulsion (BµE). The SCFT diagram

also includes a narrow region of three-phase A+B+LAM coexistence (unlabeled) extending down

from a Lifshitz critical point (solid dot). Note that the χNh-axis of the simulation/theory diagram

is inverted for easier comparison to the experimental one.

which do not suffer from the problems described above. They are ideally suited to handle

large invariant polymerization indexes, and the grand canonical ensemble can be readily

applied to any value of α. The FTS reproduced the channel of BµE separating the LAM

phase from A+B coexistence, but showed no evidence of A+B+BµE coexistence. Subse-

quent FTS of the DIS phase also provided an approximate boundary separating the region

of weakly-structured melts from that of BµE.27 The resulting phase diagram is compared

to the SCFT prediction in Fig. 1(b). It is important to note, however, that due to compu-

tational demands, these FTS were only performed in two-dimensional space. The authors

acknowledged the limitation of 2D simulations, but that was the best they could do at the

time.

Using recent developments in FTS28,29 along with the introduction of two new semi-grand

canonical ensembles, we perform the first simulations of symmetric A+B+AB blends in 3D.

The simulations are performed for molecular size ratios of α ≡ Nh/Nc = 0.1, 0.2 and 0.4 with

experimentally-relevant sizes corresponding to N̄h = 104. The study focuses specifically on

the compatiblization of the A+B homopolymers in the low-ϕ̄c region of the phase diagram,

and results are directly compared to SCFT in order to assess the significance of fluctuation

effects.
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II. SIMULATION METHOD

This section describes field-theoretic simulations (FTS)30,31 for an incompressible ternary

blend of nhA A-type homopolymers, nhB B-type homopolymers and nc AB diblock copoly-

mers. The formalism is developed for symmetric blends, where all homopolymers have Nh

segments and the diblocks are symmetric with Nc/2 segments in each block. Depending

on the ensemble, we either set the homopolymer concentrations equal (i.e., nhA = nhB) or

their chemical potentials equal. We also assume conformational symmetry, where A and

B segments have the same statistical length, a. Thus, both homopolymers have the same

unperturbed end-to-end length, R0,h = a
√
Nh, which we use as our unit of length. Note that

we follow the convention where all segments have the same volume, ρ−1
0 , such that the total

volume of the system is V = Nh(nh+nc/α)/ρ0, where nh = nhA+nhB and α = Nh/Nc. The

volume fraction of diblock copolymer is ϕ̄c = ncNc/ρ0V .

A. Single-chain partition functions

In FTS, the main computational task is to calculate the partition function, Qγ[W−,W+],

for each molecular species (γ = hA, hB and c) subjected to the external fields, W−(r) and

W+(r), acting on the difference, ϕ̂−(r) = ϕ̂A(r)−ϕ̂B(r), and the total, ϕ̂+(r) = ϕ̂A(r)+ϕ̂B(r),

of the A and B concentrations, respectively. To do this, we first parameterize the contour

of the polymer by s, where s = 0 to 1 for the homopolymers and s = 0 to α−1 for the

diblock copolymer. We then pin the s position of the polymer at r, and calculate partial

partition functions, qγ(r, s) and q†γ(r, s), for the small- and large-s parts of the molecule,

using the standard Gaussian-chain model.32 The first of these is obtained by solving the

modified diffusion equation,

∂qγ
∂s

=
R2

0,h

6
∇2qγ − (W− ±W+)qγ , (1)

forward in s starting from the initial condition qγ(r, 0) = 1. The ‘+’ and ‘−’ signs are used

for the A and B portions of the molecule, respectively. The function q†γ(r, s) is analogous

to qγ(r, s), but obtained by propagating from the other end of the molecule. Note that

q†γ(r, s) = qγ(r, 1− s) for homopolymer molecules. Once the partial partition functions have
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been calculated, the single-chain partition function for the entire molecule is given by

Qγ[W−,W+] =

∫
qγ(r, s)q

†
γ(r, s)dr , (2)

where the integral can be evaluated for any value of s along the chain contour.

B. Total partition function

The Hamiltonian, H[W−,W+], for FTS takes the simple form,30

NhH

kBTρ0
=
NhH

Q

kBTρ0
+

∫ (
W 2

−(r)

χbNh

−W+(r)

)
dr , (3)

whereHQ is the free energy corresponding to a system of non-interacting molecules subjected

to W−(r) and W+(r), and as such is expressed in terms of Qγ. As in SCFT, HQ is the only

part of the Hamiltonian that depends on the type of ensemble. The Appendix outlines its

derivation for the canonical (can) ensemble,33

NhH
Q
can

kBTρ0V
= −1− ϕ̄c

2
ln(QhA)−

1− ϕ̄c
2

ln(QhB)

−αϕ̄c ln(Qc) , (4)

and for the grand canonical (gc) ensemble,34

NhH
Q
gc

kBTρ0
= −QhA −QhB − zQc , (5)

where z = exp(µ/kBT ) is the fugacity and µ is the chemical potential of the copolymer

relative to that of the homopolymers.

In addition to the standard canonical and grand canonical ensembles, the Appendix also

derives HQ for two new semi-grand canonical ensembles. The first (sgc1) allows nhA and

nhB to fluctuate while constraining nh = nhA + nhB and nc. Its Hamiltonian is given by

NhH
Q
sgc1

kBTρ0V
= −(1− ϕ̄c) ln(QhA +QhB)− αϕ̄c ln(Qc) . (6)

The second (sgc2) allows nh and nc to fluctuate under the constraint nhA = nhB. Its

Hamiltonian is
NhH

Q
sgc2

kBTρ0
= −2

√
QhAQhB − zQc . (7)
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For a given Hamiltonian, H[W−,W+], the partition function for the system,

Z ∼
∫

exp

(
−H[W−,W+]

kBT

)
DW−DW+ , (8)

is obtained by performing functional integrals over the fields. To evaluate the energy per

unit kBT in the Boltzmann weight, we need to multiply Eq. (3) by

ρ0
Nh

=

√
N̄h

R3
0,h

, (9)

which is where the invariant polymerization index, N̄h, enters the FTS. All the simulations

in this study are performed with N̄h = 104.

C. Saddle-point approximation

FTS are complicated by the fact that W+(r) is an imaginary-valued function, which in

turn makes the Hamiltonian a complex-valued quantity. As a result, the Boltzmann weight,

exp(−H/kBT ), is no longer positive definite, and therefore standard simulation methods are

not applicable. Fredrickson and coworkers30 have dealt with this by performing complex

Langevin simulations (CL-FTS). We, instead, follow the strategy proposed by Schmid and

coworkers,26,27 whereby the functional integration over W+(r) in Eq. (8) is performed using

the saddle-point approximation. This is done by evaluating H[W−,W+] at its saddle-point

with respect to W+(r), which we denote by w+(r). Fortunately, w+(r) turns out to be a

real-valued function, which therefore permits standard Monte Carlo simulations (MC-FTS).

The saddle-point approximation enforces the incompressibility condition, ϕ̂+(r) = 1, in

the mean-field approximation,

ϕ+(r) ≡ ϕhA(r) + ϕhB(r) + ϕc(r) = 1 , (10)

where

ϕγ(r) = Cγ

∫
qγ(r, s)q

†
γ(r, s)ds (11)

is the average concentration of γ-type molecules in the system of non-interacting molecules.
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The coefficient for A-type homopolymer in the different ensembles is

ChA =



(1−ϕ̄c)V
2QhA

, for can ,

1 , for gc ,

(1−ϕ̄c)V
QhA+QhB

, for sgc1 ,

√
QhB

QhA
, for sgc2 .

(12)

The analogous coefficient for B-type homopolymer, ChB, is obtained by swapping the labels

‘hA’ and ‘hB’. That of the copolymer is

Cc =



αϕ̄cV
Qc

, for can ,

z , for gc ,

αϕ̄cV
Qc

, for sgc1 ,

z , for sgc2 .

(13)

Each time W−(r) is changed, we reevaluate w+(r) with Anderson mixing36 such that[
1

V

∫
(ϕ+(r)− 1)2dr

]1/2
< ϵ . (14)

One can readily show that the integrated concentrations are consistent with the different

ensembles. For instance,
∫
ϕhA(r)dr +

∫
ϕhB(r)dr = V (1 − ϕ̄c) in sgc1 and

∫
ϕhA(r)dr =∫

ϕhB(r)dr in sgc2, regardless of the fields. In particular, the total amount material is

explicitly constrained in the canonical and first semi-grand canonical ensembles. As a result,

H[W−, w+] is unaffected by additive constants to w+(r), which allows us to fix its average

value to zero. Furthermore, accurate results are obtained with a modest error tolerance of

ϵ = 10−4. However, for the grand canonical and second semi-grand canonical ensembles,

the amount of material is controlled by w+(r) and a higher error tolerance of ϵ = 10−7 is

required to achieve similar accuracy.
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D. Ultraviolet divergence

The FTS are performed in simulation boxes with sides of lengths Lx, Ly and Lz (i.e.,

V = LxLyLz). We generally apply periodic boundary conditions, but for the purposes of

creating a single A/B interface we also make use of reflecting boundary conditions. For

computational purposes, the fields, W−(r) and w+(r), are defined on a discrete grid with

uniform spacings of ∆x, ∆y and ∆z in the three respective directions. One might expect

results to converge as ∆ν → 0, but instead they exhibit an ultraviolet (UV) divergence.37

Fortunately, for polymers of high molecular weight, this divergence can be removed by

expressing results in terms of an effective Flory-Huggins χ parameter, defined by

χ

χb
= 1− 12R0,h

π3
√
N̄h

∫ Λz

0

∫ Λy

0

∫ Λx

0

dkxdkydkz
k2x + k2y + k2z

, (15)

where Λν = π/∆ν is the wavevector cutoff in the ν-direction. Here, we choose equal grid

spacings, ∆, for all three dimensions, in which case28

χ

χb
= 1− 2.333√

N̄h

R0,h

∆
. (16)

Note that our simulations are all performed with the same resolution of ∆ = 0.375R0,h, for

which χ = 0.938χb.

E. Monte Carlo algorithm

Each Monte Carlo step (MCS) involves making a small change to W−(r), followed by the

reevaluation of w+(r). The moves are accepted or rejected based on the standard Metropolis

criterion. For the canonical and second semi-grand canonical ensembles, we alternate be-

tween two kinds of moves: one in real space where W−(r) is changed at each grid point by

amounts selected from a uniform distribution, and another in Fourier space where W−(k)

is changed at each wavevector with a probability proportional to the RPA structure func-

tion, SRPA(k), corresponding to a binary homopolymer blend of χNh = 1.8. For the grand

canonical and first semi-grand canonical ensembles, we include a third move that changes

W−(r) by a constant chosen from a uniform distribution. The amplitude of each move is

adjusted during the beginning of the equilibration period to achieve an acceptance rate of

∼ 40%. We typically use 105 MCS to equilibrate the system, followed by 106 − 107 MCS for

the collection of statistics. Observables are sampled once every 40 MCS.
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In order to save computational effort in locating the Scott line, we use Monte Carlo

reweighting38,39 to determine the χbNh-dependence of an observable, Ô. This is done by

conducting a single simulation at a particular (χbNh)
∗, and storing the values of Ô as well

as

Î ≡
∫
W 2

−(r)dr (17)

over m configurations of the system.29 The ensemble average of Ô at χbNh is then given by

⟨Ô⟩ = 1

N

m∑
i=1

Ôi exp

(
ρ0
Nh

[
1

(χbNh)∗
− 1

χbNh

]
Îi

)
, (18)

where the normalization constant is40

N =
m∑
i=1

exp

(
ρ0
Nh

[
1

(χbNh)∗
− 1

χbNh

]
Îi

)
. (19)

Naturally, the accuracy of the reweighting decreases as χbNh deviates from (χbNh)
∗. How-

ever, the range of applicability is large near critical points (e.g., the Scott line), due to the

fact that critical fluctuations create a broad distribution of configurations.

III. RESULTS

In this study, we focus on the two-phase A+B region in Fig. 1. Our calculations are

all performed for homopolymers of invariant polymerization index N̄h = 104, which roughly

matches the experiments of Bates et al.12,13,15 Although the experiments were only for α ≡

Nh/Nc ≈ 0.2, we consider three different copolymer sizes corresponding to α = 0.1, 0.2 and

0.4.

A. Scott line

Our first task is to locate the Scott line separating A+B coexistence from the mixed DIS

state. The natural order parameter for this critical transition is the difference in the total

number of A and B segments, ϕ̄− = V −1
∫
ϕ̂−(r)dr. The 2D simulations of Düchs et al.26,27

estimated the transition, (χNh)c, by simply looking for the point of broken symmetry (i.e.,

⟨ϕ̄−⟩ ̸= 0) in a grand canonical simulation. We instead employ a far more accurate finite-

scaling method,41 which identifies the transition by the fixed point where the fourth-order
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FIG. 2: Fourth-order cumulant, UL, plotted for system sizes of L/R0,h = 2.25 (solid), 3.0 (dots),

4.125 (dashes) and 5.25 (dot-dot-dashes). Results are shown for compositions of ϕ̄c = 0.00, 0.02

and 0.04 at copolymer sizes corresponding to (a) α = 0.1, (b) α = 0.2 and (c) α = 0.4.

cumulant,

UL = 1−
⟨
ϕ̄4
−
⟩

3⟨ϕ̄2
−⟩2

, (20)

becomes independent of system size, L. The moments of ϕ̄− are related to moments of W̄−

by expressions derived in Ref. 29, where we applied the method to binary homopolymer

blends. That study used the grand canonical ensemble, but this time we use the semi-grand

canonical (sgc1) ensemble in Eq. (6), which proves to be far more stable and accurate.

The fixed point is determined by plotting UL as a function of χNh for different system

sizes, L, as illustrated in Fig. 3 for various combinations of ϕ̄c and α. To save computational

effort, the χNh-dependence was determined by MC reweighting of simulations performed at

(χNh)
∗ = 2.0125, 2.065 and 2.125 for ϕ̄c = 0.00, 0.02 and 0.04, respectively. Apart from one

exception that will be discussed shortly, the curves from the different system sizes cross at a

common point, which identifies (χNh)c. Furthermore, the cumulants collapse when the axes

are scaled with the system size using the 3D-Ising exponent ν = 0.62997, as demonstrated

previously in Ref. 29. In fact, the collapse is improved now that we are using the sgc1

ensemble.

Figure 3 compares the critical points from all our FTS to the mean-field prediction,

(χNh)c = 2/(1 − ϕ̄c). Note that there are three independent results from Fig. 2 corre-

sponding to binary homopolymer blends (i.e, ϕc = 0). The slight variation in these results,

which is entirely due to statistical noise, proves to be relatively small. Furthermore, these

results agree well with the universal prediction (χNh)c ≈ 2 + 1.5N̄
−1/2
h = 2.015 for binary

blends.9 Interestingly, the fluctuation correction to mean-field theory increases considerably

as copolymer is added to the system. Nevertheless, the Scott line remains independent of

the copolymer size, α, to within our statistical accuracy. As discussed previously,3,7 this

11
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FIG. 3: Critical points, (χNh)c, calculated along the Scott line for α = 0.1 (triangles), α = 0.2

(circles) and α = 0.4 (squares). The solid curve denotes the mean-field prediction of the Scott

line, and the crosses mark the mean-field Lifshitz points for α = 0.1 and 0.2; the Lifshitz point for

α = 0.4 lies beyond the range of the plot.

FIG. 4: Typical configurations [i.e., density plots of W−(r)] along the Scott line at ϕ̄c = 0.04 and

χNh = 2.1 for copolymer sizes corresponding to (a) α = 0.1, (b) α = 0.2 and (c) α = 0.4. The size

of the simulation box is L = 5.25R0,h.

independence provides confirmation that the effect of copolymer on (χNh)c is primarily

entropic.

The failure of the finite-size scaling, which we eluded to above, occurred for α = 0.1 and

ϕ̄c = 0.04 in Fig. 2(a). While the cumulants for the two smaller system sizes cross at the

expected location, (χNh)c ≈ 2.10, consistent with a Scott line that is independent of α, the

cumulants for the larger two systems deviate from this expectation. To help understand

why, Fig. 4 compares sample configurations from the largest L = 5.25R0,h simulation

box at ϕ̄c = 0.04 and χNh = 2.1 for the three different values of α. The configurations for

α = 0.2 and 0.4 exhibit relatively modest fluctuations, whereas the configuration for α = 0.1

resembles a strongly-segregated microemulsion-like morphology. Naturally, the occurrence

of this morphology is only possible when the simulation box is sufficiently large relative

to its domain size, which explains why the cumulants for the two smaller systems remain

consistent with a critical point at χNh ≈ 2.1.

The anomalous behavior of the cumulants implies that we have overrun the end of the

Scott line, which contradicts the suggestion by Fig. 1 that the Scott line extends to T = 0.
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FIG. 5: Adsorption isotherms for (a) different segregations at α = 0.2 and (b) different copolymer

sizes at χNh = 3. Solid curves denote SCFT predictions, and the slope of one at small ϕ̄c confirms

the relationship in Eq. (21).

On the otherhand, this is somewhat consistent with the mean-field prediction that it termi-

nates at ϕ̄c,LP = 0.0196 for α = 0.1. The observation of BµE-type configurations like that

of Fig. 4(a) suggests that the Scott line ends at an ordinary tricritical point followed by

A+B+BµE coexistence, rather than a Lifshitz critical point followed by A+B+LAM coex-

istence as predicted by SCFT.3,27 In principle, a finite-size scaling analysis could locate the

tricritical point, but it would require much larger systems sizes and exceptionally accurate

statistics,42 which is beyond the scope of this paper. In any case, we will encounter more

compelling evidence for A+B+BµE coexistence in the next section.

B. Adsorption Isotherms

For the remainder of this paper, the bulk copolymer concentration, ϕ̄c, will be controlled

by adjusting the chemical potential, µ. Figure 5 shows some adsorption isotherms, which

allows one to convert between µ and ϕ̄c. They are evaluated in the grand canonical ensemble

by increasing µ in small increments, equilibrating and then collecting statistics for ϕ̄c. The

FTS results agree well with SCFT (solid curves), which implies that fluctuation effects are

relatively small at these low copolymer concentrations. Note that the concentrations are

plotted on a logarithmic scale in order to demonstrate the dependence,24

ϕ̄c ∝ exp(µ/kBT ) , (21)

which proves to be accurate for this limited range of ϕ̄c.

On closer examination of Fig. 5(a), we see that the copolymer concentration in the

A+B coexistence region (i.e., χNh
>∼ 2.015) begins to increase more rapidly with µ at

ϕ̄c ∼ 0.1. Figure 6 extends the plots for χNh = 2.4 and 3.0 to larger µ, revealing a
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FIG. 6: Adsorption isotherms calculated for α = 0.2 with (a) χNh = 2.4 and (b) χNh = 3.0.

The dots and crosses are from simulations where µ is incremented in the positive and negative

directions, respectively. The hysteresis loops imply phase coexistence, while the representative

configurations taken from the upper and lower branches (insets) indicate A+B+BµE coexistence.

sudden jump in ϕ̄c similar to what was observed by Müller and Schick.24 Interestingly,

combining the data obtained by increasing µ (solid dots) with equivalent data obtained by

decreasing µ (crosses) produces well-defined hysteresis loops, which implies the existence of

a discontinuous phase transition. The insets show sample configurations from the low- and

high-copolymer branches of the adsorption isotherms, which provides compelling evidence

that the phase transition corresponds to three-phase A+B+BµE coexistence.

Although the phase transition must occur somewhere within the hysteresis loops, we

cannot say exactly where. The hysteresis loops could be narrowed by equilibrating the

system for more MCS at each value of µ, but not sufficiently to obtain the transition accu-

rately. This could be accomplished by using, for example, thermodynamic integration43,44

or a Gibbs ensemble.45 However, the simulation boxes would have to be considerably larger

than the domain size of the BµE phase to avoid significant finite-size effects. Nevertheless,

the particle-based simulations of Müller and Schick24 suggest that the transition can be

estimated by the point where the interfacial tension, σ, between the two homopolymer-rich

phases becomes zero. As we show in the next section, σ → 0 at µ/kBT ≈ 1.4 for χNh = 3,

which implies that the binodals of the A+B+BµE region are ϕ̄c ≈ 0.02 and 0.16. Note that

this estimated width is considerably larger than that of the A+B+LAM region predicted by

SCFT.27

C. A/B interface

Our attention now turns to the A/B interface between the coexisting A+B phases. For

this, we use the second semi-grand canonical (sgc2) ensemble, which balances the amount
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FIG. 7: A-segment (circles) and copolymer (crosses) concentration profiles plotted across an A/B

interface at χNh = 3.0 for (a) α = 0.1, (b) α = 0.2 and (c) α = 0.4. Note that the simulation

boxes extend well beyond the range of the plots. Solid curves denote SCFT predictions.

of A- and B-type homopolymers while allowing the total amount of homopolymer (and thus

copolymer) to fluctuate. To create a single interface perpendicular to the x-axis, we switch

the boundary condition in the x-direction from periodic to reflecting and use a simulation

box with Lx > Ly = Lz. Balancing the amount of homopolymers constrains the interface to

the center of the box (defined as x = 0), and allowing the amount of copolymer to fluctuate

reduces finite-size effects.

Although the concentrations, ϕγ(r), obtained from the propagators in Eq. (11) have no

physical meaning in FTS, their ensemble averages are equal to those of the instantaneous

concentrations, ϕ̂γ(r).
30,46 Using this fact, we evaluate the copolymer profile, ⟨ϕ̂c(x)⟩, across

the A/B interface by spatially averaging ϕc(r) over y and z and then ensemble averaging

over a simulation. Similarly, the A-segment concentration, ⟨ϕ̂A(x)⟩, is obtained by averaging

ϕhA(r) + ϕcA(r), where ϕcA(r) is given by Eq. (11) with the s-integration performed over

the A block.

The copolymer (crosses) and A-segment (circles) concentration profiles are shown in Fig.

7 at χNh = 3 for different copolymer sizes, α. Note that the length of the simulation box is

chosen large enough (Lx = 18R0,h for α = 0.1 and Lx = 9R0,h for α = 0.2 and 0.4) to reach

bulk concentrations at the edges. The FTS results all agree reasonably well with SCFT

(solid curves), indicating that fluctuation effects are relatively minor.

The excess copolymer concentration, ⟨ϕ̂c(x)⟩ − ϕ̄c, is reasonably narrow for α = 0.2

and 0.4, which is indicative of the mushroom regime where the copolymers remain relatively

unstretched. In contrast, the profile is much wider for α = 0.1, indicating that the copolymer

blocks are forming stretched brushes, albeit wet brushes given that the maximum copolymer

concentration is only about 20%.

The A-segment concentration fits well to the usual sigmodial profile,
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FIG. 8: Interfacial width, wI , calculated at χNh = 3 for α = 0.1 (triangles), α = 0.2 (circles) and

α = 0.4 (squares). Solid curves denote SCFT predictions.

FIG. 9: Interfacial tension, σ, calculated at χNh = 3 for α = 0.1 (triangles), α = 0.2 (circles) and

α = 0.4 (squares). Solid curves denote SCFT predictions

⟨ϕA(x)⟩ ∝ [tanh(2x/wI) + 1], where the fitting parameter wI represents the interfa-

cial width. Figure 8 plots the change in wI for χNh = 3 as copolymers of different sizes are

added to the blend. The largest copolymer (α = 0.1) causes a modest narrowing of the

interface implying an enhancement in segregation, while the shorter copolymers (α = 0.2

and 0.4) have the opposite effect. The SCFT predictions (solid curves) agree well with

the FTS. We might have expected some broadening of the interface relative to the SCFT

predictions due to capillary-wave fluctuations,42,47 but we see no evidence of this. This

is undoubtedly because the fluctuations are suppressed as a result of the relatively small

lateral dimensions, Ly = Lz = 3R0,h, of our simulation boxes. It should be feasible to

extend our FTS to systems of sufficient size to study the capillary waves, but that is beyond

the scope of this initial study.

The free energy of the coexisting A+B phases has the form F = fbulkV + σA, where

fbulk is free energy density in the bulk, σ is the A/B interfacial tension, V = LxLyLz is the

volume of the system and A = V/Lx is the area of the interface. From this, it immediate

follows that

σ = −L
2
x

V

∂F

∂Lx
=

L2
x

kBTV

⟨
∂Hsgc2

∂Lx

⟩
, (22)

where the derivative with respect to Lx is performed at constant volume.48,49 In FTS, the
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FIG. 10: Test of the Gibbs adsorption isotherm, Eq. (24), for α = 0.1 (triangles), α = 0.2 (circles)

and α = 0.4 (squares). The left and right sides of the equation are plotted with open and closed

symbols, respectively. Solid curves denote SCFT predictions.

derivate of the Hamiltonian has a nice analytical expression,

Nh

kBTρ0

∂Hsgc2

∂Lx
= −

√
QhB

QhA

∂QhA

∂Lx

−

√
QhA

QhB

∂QhB

∂Lx
− z

∂Qc

∂Lx
, (23)

in terms of derivatives of Qγ, which in turn have analytical expressions provided in Refs. 44

and 45. Normally, a change in Lx at constant V would have to be accompanied by a change

in χb, so as to keep the effective χ constant. Thus, Eq. (23) would, in general, require an

additional term proportional to the derivative ∂χb/∂Lx.
44 However, this derivative becomes

zero when the grid resolution, ∆ν , is the same in all three dimensions.

Figure 9 plots the interfacial tension, σ, at χNh = 3 for our three different copolymer

sizes, α. As expected, the addition of copolymer drives the tension towards zero. Referring

to Fig. 5(b), the tension becomes zero at ϕ̄c ≈ 0.15, 0.020 and 0.0001 for α = 0.4, 0.2 and

0.1, respectively, consistent with the understanding that longer copolymers have a stronger

compatibilzation power.3 Again, the FTS results agree well with SCFT (solid curves). The

most significant difference is in the binary limit (i.e., ϕ̄c = 0), where the SCFT underesti-

mates the tension by about 10%. Naturally, our FTS values of σ will be affected by the

suppression of capillary waves, but previous simulations have shown the effect to be very

small.50

We conclude our study by checking the accuracy of our FTS in regards to the Gibbs

adsorption isotherm,1,24

Θc = −Nc
dσ

dµ
, (24)
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which relates the copolymer excess,

Θc ≡ ρ0

∫
(⟨ϕc(x)⟩ − ϕ̄c)dx , (25)

obtained from Fig. 7 to the rate the surface tension changes in Fig. 8. To reduce statistical

noise, the value of dσ/dµ at a given value of µ is obtained from a quadratic fit to the

data point at µ plus the three data points to either side. The copolymer excess (solid

symbols) and the derivate of the surface tension (open symbols) are compared in Fig. 10 at

χNh = 3 for the three different values of α. The agreement is significantly better than that

obtained in the particle-based simulations of Müller and Schick,24 because we are employing

an incompressible model. In fact, the SCFT results (solid curves) are found to satisfy Eq.

(24) perfectly. As before, SCFT agrees well with our FTS, reconfirming that fluctuation

effects on the A/B interface are negligible at N̄h = 104.

IV. DISCUSSION

With the help of increased computation power, improved numerical algorithms51,52 and

two new ensembles, we have extended the previous FTS of ternary A+B+AB blends26,27

from 2D to 3D. In standard particle-based simulations, changing the dimensionality affects

the number of intermolecular contacts, which in turn impacts the level of fluctuations. For-

tunately, the chain concentration (i.e., ρ0/Nh) is one of the control parameters in FTS, and

so this effect can be partially accounted for in 2D simulations. However, the details of critical

transitions (e.g., their critical exponents) will nevertheless be affected by the dimensionality

of the system. Furthermore, dimensionality will also affect the modes available to a fluctu-

ating A/B interface in, for example, the BµE morphology. Thus, the only way to obtain

quantitatively reliable results is to perform simulations in the appropriate dimension.

Although our MF-FTS account for fluctuations in the composition field, W−(r), they still

invoke the saddle-point approximation for the pressure field, W+(r). In principle, this ap-

proximation could be removed by performing CL-FTS.30,31 Nevertheless, the W−(r) fluctua-

tions are expected to provide the dominant correction to SCFT, and thus the approximation

for W+(r) should be relatively accurate. Indeed, the MC-FTS and CL-FTS results of the

2D simulations in Ref. 26 were indistinguishable. It is also worth noting that the MC-FTS

in that study coped far better with the large fluctuations near the microemulsion region of
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the phase diagram.

Our choice of invariant polymerization index, N̄h = 104, roughly matches the PE-PEP

system studied by Bates et al.12,13,15 Given this large value, fluctuation effects would normally

be very small. Indeed, the properties of the A/B interface are almost indistinguishable from

the SCFT predictions. However, Fig. 3 demonstrates that the fluctuation correction to

the Scott line becomes substantial as copolymer is added. This then leads to the most

notable correction, which is the qualitative change at the end-point of the Scott line. Our

observation of A+B+BµE implies that the Lifshitz critical point predicted by mean field

theory is replaced by an ordinary tricritical point. In reality, the Lifshitz point was certain to

be destroyed by fluctuations given that its lower critical dimension is greater than three. Its

replacement by an ordinary critical point is consistent with the particle-based simulations

of Müller and Schick for α = 1 and N̄h = 145.24

Although experiments have observed A+B+BµE coexistence in blends with α ≈ 1,2,53

there has yet to be any experimental evidence of it for α ≈ 0.2.15–23 We suspect that

the experiments observed swollen BµE in place of the more stable three-phase coexistence.

The problem is that the attraction between A/B interfaces, which would be responsible for

a swollen BµE phase shedding excess homopolymer, is extraordinarily weak.54 The large

hysteresis loops in Fig. 6 can be attributed to the same issue. Nevertheless, it might still

be possible to observe A+B+BµE in experiments by allowing substantially long annealing

times.

Previous particle-based simulations for the Scott line24 and the A/B interface50 also

compared their results to SCFT. However, these comparisons are not as definitive as ours,

due to ambiguities in defining an effective χ for particle-based simulations.9,11,25 Likewise,

the same issue exists for previous experimental comparisons to SCFT.1,2 On the other hand,

we have a clear relationship between the bare interaction parameter χb used in FTS and the

effective χ that should be used when comparing to SCFT.28,29 We note, though, that the

ambiguity in defining χ seems to have now been resolved for particle-based simulations11 as

well as experiments.55

FTS have various advantages over particle-based simulations. For instance, there is the

option of reflecting boundary conditions as used in our simulation of the A/B interface. In

the particle-based simulations of Müller and coworkers,24,50 the A/B interface was created

by confining the melt between hard walls that favored A- and B-type monomers. Naturally,
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hard walls cause a considerable disruption in the bulk behavior. Admittedly, reflecting

boundaries do as well given that they restrict the possible composition fluctuations, but the

level of disruption is certainly far less.

In particle-based simulations, it is difficult to find space in the simulation box for the

insertion of new molecules, particularly for large polymers, which renders the grand canon-

ical ensemble problematic. Müller and Schick24 circumvented this problem by setting the

polymerization of all their molecules to N = 32. That allowed them to employ a semi-grand

canonical ensemble, whereby molecules were able to swap between the three species by a

simple relabeling of the monomer types. Of course, this restricted their study to α = 1. In

principle, the approach can be extended to blends, in which the ratios of polymerizations

are all integers, by cutting or joining together polymers as they switch identity.56 However,

the computational cost becomes extraordinary for ratios greater than three. These issues

render particle-based simulations for α = 0.1, 0.2 and 0.4 impractical.

In FTS, there is no inherent problem with employing the grand canonical ensemble,

but nevertheless the semi-grand canonical ensembles have significant advantages. The sgc1

ensemble explicitly constrains the total amount of material in the system, whereas the

grand canonical ensemble has to control the amount of material using w+(r). The explicit

constraint increases the speed and stability of the Anderson-mixing algorithm. The sgc2

ensemble has the advantage that it constrains the position of the A/B interface, whereas

it is free to drift in the grand canonical ensemble. These type of advantages could also be

useful in SCFT calculations.

We have presented our semi-grand ensembles for symmetric blends, but they can be

generalized to asymmetric compositions. A chemical potential difference, µψ, between the

homopolymers can be incorporated into the sgc1 ensemble by generalizing the Hamiltonian

to

NhH
Q
sgc1

kBTρ0V
= −(1− ϕ̄c) ln(z

1/2
ψ QhA + z

−1/2
ψ QhB)

−αϕ̄c ln(Qc) , (26)

where zψ = exp(µψ/kBT ). Likewise, the Hamiltonian of the sgc2 ensemble can be generalized

to
NhH

Q
sgc2

kBTρ0
= −

(
QhA

ψ

)ψ (
QhB

1− ψ

)(1−ψ)

− zQc , (27)
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to allow for an asymmetric amount, ψ = nhA/nh, of A-type homopolymer. Although the

ensembles can handle asymmetric compositions, they are nevertheless limited to the special

case of NhA = NhB. The restriction is because the factorials, nhA! and nhB!, accounting for

the indistinguishability of like molecules in the partition function must have an appropriate

form so that the sums over nhA and nhB result in closed-form expressions (see Appendix).

V. SUMMARY

The compatibilization of immiscible A+B homopolymers of equal size Nh by symmet-

ric AB diblock copolymers of size Nc was investigated with three-dimensional (3D) field-

theoretic simulations (FTS). The incompressibility of the melt was enforced within the

mean-field approximation, which allowed us to apply standard Monte Carlo techniques. Mo-

tivated by the experiments of Bates et al.,15 we considered molecular sizes corresponding to

α ≡ Nh/Nc = 0.1, 0.2 and 0.4 with an invariant polymerization index of N̄h ≡ a6ρ20Nh = 104.

The focus of our study was on the Scott line in Fig. 1 and the interface between coexisting

A+B homopolymer-rich phases. By comparing our FTS results to self-consistent field theory

(SCFT), we were able to access the level of fluctuation effects, as controlled by the value of

N̄h.

The simulations of the A/B interface examined the A-segment profile ⟨ϕ̂A(r)⟩, the copoly-

mer profile ⟨ϕ̂c(r)⟩, the interfacial width wI , the interfacial tension σ and the copolymer

excess Θc. In all cases, the FTS results agreed well with SCFT, implying that fluctuation

effects on the A/B interface are negligible at N̄h = 104. Admittedly, capillary-wave fluctua-

tions were suppressed in our FTS due to the limited size of the simulation boxes, and thus

it would be useful to conduct further FTS analogous to the particle-based simulations of

Werner et al.50

The Scott line exhibited a more significant deviation from the SCFT prediction, (χNh)c =

2/(1 − ϕ̄c).
3 Although it continued to show no dependence on α, fluctuations did cause a

significant shift towards higher χNh (i.e., lower temperature) that grew in size with the

addition of copolymer. The most notable deviation from SCFT was the appearance of

three-phase coexistence between the A+B homopolymer-rich phases and a bicontinuous

microemulsion (BµE). This implies that the Scott line terminates at an ordinary tricritical

point as opposed to a Lifshitz critical point.24 Although the metastability of the competing
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phases prevented a precise determination of the binodals, it was nevertheless clear that the

A+B+BµE region in Fig. 1(a) is relatively wide. It may have been missed in the experiments

due to insufficient annealing times on account of the high degrees of metastability.

Our application of FTS to 3D was greatly aided by two new semi-grand canonical ensem-

bles. The first allowed the numbers of A and B homopolymers, nhA and nnB, to fluctuate

while constraining the total nh = nhA+nhB. This greatly improved the numerical efficiency

and stability in calculating the fourth-order cumulant, UL, used to locate the Scott line, in

comparison to the previous use of the grand canonical ensemble.29 The second permitted

nh to fluctuate under the constraint nhA = nhB. This combined with the ability of FTS

to impose reflecting boundaries helped simulate A/B interfaces. Furthermore, the ability

of calculating changes in free energy with respect to variations in the dimensions of the

simulation box gave direct access to the surface tension. Further advantages of FTS over

traditional particle-based simulations will undoubtedly emerge as this new approach receives

more attention.
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APPENDIX A: HAMILTONIANS FOR VARIOUS ENSEMBLES

The only part of the field-theoretic Hamiltonian, Eq. (3), that depends on the type of

ensemble is HQ, the free energy of non-interacting polymers subjected to the external fields,

W−(r) and W+(r). In the canonical (can) ensemble, where the number of molecules, nγ, of

each polymer species, γ, is fixed,33

HQ
can

kBT
= − ln

(
QnhA
hA QnhB

hB Qnc
c

nhA!nhB!nc!

)
. (A1)

The Qγ’s are the partition functions for single molecules and the factorials account for the

indistinguishability of identical molecules. Given that the nγ’s are fixed, the factorials simply

add a constant to HQ
can and therefore can be ignored. Dropping them and using the fact
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that nhA = nhB = (1− ϕ̄c)ρ0V/2Nh and nc = αϕ̄cρ0V/Nh leads directly to the expression in

Eq. (4).

In the grand canonical (gc) ensemble, we include z = exp(µ/kBT ) to control the copoly-

mer concentration and sum over all possible numbers of molecules, which gives34

HQ
gc

kBT
= − ln

(
∞∑

nhA=0

∞∑
nhB=0

∞∑
nc=0

QnhA
hA QnhB

hB (zQc)
nc

nhA!nhB!nc!

)
. (A2)

Note that we are effectively setting both homopolymer chemical potentials equal to zero,

which maintains the symmetry of the blend. Without loss of generality, we can multiply each

Qγ by a factor of ρ0/Nh, which adds an irrelevant constant to all the chemical potentials.

Given the identity ex =
∑

n x
n/n!, Eq. (5) immediately follows.

In our first semi-grand canonical (sgc1) ensemble, the numbers of A and B homopolymers

are allowed to fluctuate, while the total number nh = nhA + nhB is held fixed. In this case,

the Hamiltonian becomes

HQ
sgc1

kBT
= − ln

(
nh∑

nhA=0

QnhA
hA Qnh−nhA

hB Qnc
c

nhA!(nh − nhA)!nc!

)
,

= − ln

(
(QhA +QhB)

nhQnc
c

nh!nc!

)
. (A3)

Note that the sum is evaluated using the Binomial theorem, (x + y)m =
∑

nC
n
mx

ny(m−n),

where Cn
m = m!/n!(m − n)! Using the fact nh = (1 − ϕ̄c)ρ0V/Nh and dropping additive

constants, we obtain Eq. (6).

In the second semi-grand canonical (sgc2) ensemble, we constrain nhA = nhB = nh/2. In

cases of odd nh, the numbers of A and B homopolymers should differ by one rather than

equaling half integers. However, this distinction is irrelevant in the thermodynamic limit,

and thus the Hamiltonian becomes

HQ
sgc2

kBT
= − ln

(
∞∑

nh=0

∞∑
nc=0

(QhAQhB)
nh/2(zQc)

nc

[(nh/2)!]2nc!

)
,

= − ln

(
∞∑

nh=0

∞∑
nc=0

(
2
√
QhAQhB

)nh (zQc)
nc

nh!nc!

)
, (A4)

where we have used the approximation

[(nh/2)!]
2 ≈ nh!

2nh
. (A5)
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As with the grand canonical ensemble, the sums in Eq. (A4) are performed using the Taylor

series of the exponential function, and from that Eq. (7) follows.
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thatslicessymmetricallythroughthisprismatafixed
ratiofPEyfPEP≠1,wherefPEisthevolumefraction
ofthePEhomopolymer.Thiscondition,alongwiththe
volumetricconstraintfPE1fPEP1fPE-PEP≠1,re-
ducesthenumberofthermodynamicvariablestotempera-
tureandthetotalhomopolymervolumefractionfH≠
fPE1fPEP≠12fPE-PEP,andtheseparametersde-
finethetwo-dimensionalphasediagramsshowninFig.1.
Thesolidcurvesintheinsetofthisillustrationwerecal-
culatedusingself-consistentmean-fieldtheory[10,11],as
reportedpreviously[7].

Withinthetemperaturerangecoveredbyourexperi-
ments,mean-fieldtheoryanticipatesthreethermodynamic
regions:asingledisorderedphaseathightemperatures,
twodisorderedliquidphasesrichinPEandPEPathigh
fHandlowtemperatures,andasingleorderedlamel-
larphaseatlowfHandlowtemperatures.Addingho-
mopolymerswellstheflatlamellaetherebyincreasingthe
layerspacing,whichwithinthemean-fieldtheorydiverges
attheunbindingtransition(UT).(Incertainsituations,
suchasatlowtemperaturesorwhenNH$NA-Bnear
thedisorderedstate,separationintotwoorthreephases
maypreemptunbinding[12].)Twolinesofsecond-order
phasetransitionsseparatethehighandlowtemperature
portionsofthetheoreticalphasediagram,intersectingthe
UTatanisotropicLifshitzmulticriticalpoint(LP)[13].
Inthepresentcase,themean-fieldtheory[11]yields
fH,LP≠0.92.

Wehaveusedsmall-angleneutronscattering(SANS)
tocharacterizethephasebehaviorofthesymmetricPE-

FIG.1.PhasebehaviorofsymmetricPE-PEPyPEyPEPmix-
tureswherefHdenotesthevolumefractionofhomopoly-
mer.Symbols()and(d)identifyfirst-andsecond-order
transitions,respectively,andthedashedcurvesdelineatethe
associatedphaseboundaries.Theshadedportionindicatesa
two-phaseregion.Amean-fieldtheoreticalcalculation,repre-
sentedbythesolidcurvesintheinset,locatestheunbinding
transition,andtwolinesofcriticalpointsthatconvergeatan
isotropicLifshitzpoint(LP,e).

PEPyPEyPEPternarymixturesaroundtheLPcomposi-
tion.TheseexperimentswereconductedattheRisøNa-
tionalLaboratory(Roskilde,Denmark)usingestablished
procedures[9].RepresentativeSANSdataacquiredfrom
fH#0.91mixturesat120±CarepresentedinFig.2.
Thisillustrationalsoshowshowthecharacteristicspac-
ingd≠2pyqpvarieswithfH,whereqpisthescatter-
ingwavevectoratthepeakintensity.ForfH#0.89

thesescatteringpatternscontainatleastonehigher-order
reflection,at2qp,consistentwithalamellarmorphology.
Lamellar-to-disordertransitiontemperatureswereassoci-
atedwiththelossofhigher-orderdiffraction,alongwith
distinctchangesinrheologicalproperties[9].Intheory
[14]andpractice[9,15]fluctuationeffectsdestroythe
second-ordercharacterofthisorder-disordertransition,
whichmustalsocreateatwo-phaseregionwhenfH.0.
However,ourexperimentsindicatethatthistwo-phase
windowspanslessthan1±Csincecoexistinglamellarand
disorderedphaseswerenotobserved.Accordingly,anar-
rowchannelhasbeenusedtoidentifythisphaseboundary
inFig.1.

AtfHof0.90and0.91,theSANSpatternscontain
justonepeakovertheentirespanoftemperaturesprobed
(118#T#160

±C),indicativeofadisorderedphaseas
identifiedinFig.1.

QualitativelydifferentSANSpatternswererecorded
for0.916#fH#1.Intheone-phaseregimethese
mixturesproducedstructurefactorsthatvariedsmoothly
fromanOrnstein-Zernike(fH≠1)toaLifshitz

FIG.2.Lamellarspacingdasafucntionofthevolume
fractionofhomopolymerfHneartheorder-disordertransition.
Thesolidcurvewasobtainedusingthemean-fieldtheory[11].
RepresentativeSANSdateobtainedat120±CfromfH≠0.82

(),0.86(),0.89(),and0.91(d)mixturesareshown
intheinset.Isqdandqrepresenttheintensityandscattering
wavevector,respectively.First-andsecond-orderreflections
areidentifiedbyarrows.Theprincipalpeakpositionfor
the0.88#fH#0.91mixtureswasestablishedusinghigher
resolutionmeasurements(notshownhere).
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that slices symmetrically through this prism at a fixed
ratio fPEyfPEP ≠ 1, where fPE is the volume fraction
of the PE homopolymer. This condition, along with the
volumetric constraint fPE 1 fPEP 1 fPE-PEP ≠ 1, re-
duces the number of thermodynamic variables to tempera-
ture and the total homopolymer volume fraction fH ≠
fPE 1 fPEP ≠ 1 2 fPE-PEP , and these parameters de-
fine the two-dimensional phase diagrams shown in Fig. 1.
The solid curves in the inset of this illustration were cal-
culated using self-consistent mean-field theory [10,11], as
reported previously [7].
Within the temperature range covered by our experi-

ments, mean-field theory anticipates three thermodynamic
regions: a single disordered phase at high temperatures,
two disordered liquid phases rich in PE and PEP at high
fH and low temperatures, and a single ordered lamel-
lar phase at low fH and low temperatures. Adding ho-
mopolymer swells the flat lamellae thereby increasing the
layer spacing, which within the mean-field theory diverges
at the unbinding transition (UT). (In certain situations,
such as at low temperatures or when NH $ NA-B near
the disordered state, separation into two or three phases
may preempt unbinding [12].) Two lines of second-order
phase transitions separate the high and low temperature
portions of the theoretical phase diagram, intersecting the
UT at an isotropic Lifshitz multicritical point (LP) [13].
In the present case, the mean-field theory [11] yields
fH,LP ≠ 0.92.
We have used small-angle neutron scattering (SANS)

to characterize the phase behavior of the symmetric PE-

FIG. 1. Phase behavior of symmetric PE-PEPyPEyPEP mix-
tures where fH denotes the volume fraction of homopoly-
mer. Symbols ( ) and (d) identify first- and second-order
transitions, respectively, and the dashed curves delineate the
associated phase boundaries. The shaded portion indicates a
two-phase region. A mean-field theoretical calculation, repre-
sented by the solid curves in the inset, locates the unbinding
transition, and two lines of critical points that converge at an
isotropic Lifshitz point (LP, e).

PEPyPEyPEP ternary mixtures around the LP composi-
tion. These experiments were conducted at the Risø Na-
tional Laboratory (Roskilde, Denmark) using established
procedures [9]. Representative SANS data acquired from
fH # 0.91 mixtures at 120 ±C are presented in Fig. 2.
This illustration also shows how the characteristic spac-
ing d ≠ 2pyqp varies with fH, where qp is the scatter-
ing wave vector at the peak intensity. For fH # 0.89

these scattering patterns contain at least one higher-order
reflection, at 2qp, consistent with a lamellar morphology.
Lamellar-to-disorder transition temperatures were associ-
ated with the loss of higher-order diffraction, along with
distinct changes in rheological properties [9]. In theory
[14] and practice [9,15] fluctuation effects destroy the
second-order character of this order-disorder transition,
which must also create a two-phase region when fH . 0.
However, our experiments indicate that this two-phase
window spans less than 1 ±C since coexisting lamellar and
disordered phases were not observed. Accordingly, a nar-
row channel has been used to identify this phase boundary
in Fig. 1.
At fH of 0.90 and 0.91, the SANS patterns contain

just one peak over the entire span of temperatures probed
(118 # T # 160

±C), indicative of a disordered phase as
identified in Fig. 1.
Qualitatively different SANS patterns were recorded

for 0.916 # fH # 1. In the one-phase regime these
mixtures produced structure factors that varied smoothly
from an Ornstein-Zernike (fH ≠ 1) to a Lifshitz

FIG. 2. Lamellar spacing d as a fucntion of the volume
fraction of homopolymer fH near the order-disorder transition.
The solid curve was obtained using the mean-field theory [11].
Representative SANS date obtained at 120 ±C from fH ≠ 0.82

( ), 0.86 ( ), 0.89 ( ), and 0.91 (d) mixtures are shown
in the inset. Isqd and q represent the intensity and scattering
wave vector, respectively. First- and second-order reflections
are identified by arrows. The principal peak position for
the 0.88 # fH # 0.91 mixtures was established using higher
resolution measurements (not shown here).
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mensionsonly.Wehopethatthree-dimensionalcalculations
willbecomefeasibleinthefuture.

ACKNOWLEDGMENTS

WethankM.Matsen,V.Ganesan,andG.Fredrickson
forfruitfuldiscussions.Thisworkwassupportedbythe
DeutscheForschungsgemeinschaft!Germany".Thesimula-
tionswerecarriedoutontheCRAYT3EoftheNICinstitute
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APPENDIX:GRAPHICALANALYSIS

Inordertoanalyzeconfigurationsnapshots,itisoften
advantageoustotakethe#̄Adistributionandconvertitscon-
tinuousvalues!between0and1"toblack-and-whitebitmaps
withwhitepixelsfor0$#̄A(x,y)!0.5,andblackpixelsfor
0.5$#̄A(x,y)$1.Fromtheseimages,wecanthenextract
thefollowingparameters.

1.AlgorithmtocalculatethecircumferenceLc
!1"BesidestheoriginalbitmapB1,defineanotherbit-

mapB2,andpaintitwhite,i.e.,setallpixelsto0.
!2"CopyallborderpixelsfromB1toB2.Aborderpixel

isdefinedasonewhichisblack!i.e.,hasavalueof1"and
whosefournearestneighborshaveatleastonewhitepixel
amongthem.

!3"ScanthroughB2fromtheupperlefttothelower
rightcornerandforeachpixelcheckwhetheritisblack.If
so,proceedasfollows:

!i"Ifanypairofadjacentnearest-neighbor!NN"and
next-nearest-neighborpixelsofthecurrentpixelareboth
black,painttheNNpixelwhite.Thisisdonetoprevent
ambiguitiesinthesubsequentsteps.Inpractice,however,
thiscaseisquiterareandbarelychangestheendresult.

!ii"Checkthedistributionofblackpixelsamongthe
nearestandnext-nearestneighborsaccordingtoFig.8and
addthespecifiednumberstothecircumference.

!4"Oncetheentirelatticehasbeenscanned,dividethe
resultby2toaccountfordoublecountinginstep3!ii".

2.AlgorithmtocalculatethecurvaturediameterDC

Thecurvaturediameterofthe!combined"circumference
Lc,ofallblackareasisdefinedas

DCª2!1Lc"ds#dt ds#
2$"1/2

,!A1"

withtthelocal!normalized"tangentvector.Tocalculatethe
quantity

1
Lc

"ds#dt ds#
2

,!A2"

wepursuethefollowingstrategy:
!I.1"Makeaborderpixelbitmapasabove.
!I.2"Scanthebitmapandstopwhenablackpixelis

found.
!I.3"Startadataarray(xj

i,yj
i)forthecoordinates!num-

beredj%0)ofanewlinei%0.
!I.4"Lookfora!nearestornext-nearest"neighborofthe

currentpixel.Inmostcases,therewillbeonlyonepossibil-
itytocontinuetheline.Otherwise,anarbitrarychoiceis
made.

!I.5"Removethecurrentpixelfromthebitmap.Make
theneighboringpixelfromEq.!4"thecurrentpixel.

!I.6"Repeat!I.4–5"untilnoneighborisfoundforthe
currentpixel.Thenterminatethatline.

!I.7"Repeat!I.2–6"untilthebitmaphasbeencleared.
!II.1"Foreachlinei(xj

i,yj
i)&(xj,yj),asdeterminedin

!I.1–7"thatislongerthanthreepoints,setj#1.
!II.2"Calculate%dt/ds%2accordingto

#dt ds#
2

#
dtx

2$dty
2

ds2
,!A3"

FIG.7.Substructureofthemicroemulsion.D'E,defect-driven;G'E,
genuinemicroemulsionmorphology;2#,phase-separatedregion.Thesolid
linesshowthefluctuation-correctedphasediagramofFig.1,thedottedlines
themean-fieldphasediagramandthedashedlineisjustaguidefortheeye.

FIG.8.Localcontributionstothecircumference.Thecurrent!black"pixel
fromstep!3"hereispaintedgray.Alldiagramsaremodulo(/2rotations.
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