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Abstract 3
Field-theoretic simulations (FTS) are performed c@er blends of A- and B-type homopoly-

mers of polymerization Nj, and symmetric AB diblegk depolymer of polymerization N.. Unlike
ree=di

previous studies, our FTS are conducted in nsional space, with the help of two new
semi-grand canonical ensembles. Motivateg{f&ﬁrst experiment to discover bicontinuous mi-
croemulsion (BuE) in the PE-PEP sysbey We\ nsider molecules of high molecular weight with
size ratios of a = Ny /N, = 0.1, 0.2 0.450ur focus is on the A+B coexistence between the two
homopolymer-rich phases in th olymer region of the phase diagram. The Scott line, at

which the A+B phases mixto form a‘disordered (DIS) melt with increasing temperature (or de-

creasing ), is accurate
copolymer aﬁect?, int
zero. Although ariso

effects are rel tiv%lﬁ:@ﬂuctuations do nevertheless produce the observed ByE that is absent in

ermined using finite-size scaling techniques. We also examine how the

tween the A+B phases, reducing the interfacial tension towards

with self-consistent field theory (SCFT) illustrate that fluctuations

the SCF pheye ram. Furthermore, we find evidence of three-phase A+B+BuFE coexistence,

which h béen missed in the original as well as subsequent experiments.

)

)
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AB diblock copolymers are known for their ability to compatiblize immiscible A+B ho-
mopolymers, in the same way surfactants cause water and oil to mix. The compatiblization
results due to an accumulation of copolymer at the interfaces between the A- and B-rich
phases,! which reduces the interfacial tension responsible for ma(é‘; se separation.? The
potential for creating polymeric alloys has motivated a cons rale amount of research.
This has become particularly important in the recent quest to“ereate sustainable materials
endowed with properties that are competitive with tradi@lpl&st cs and elastomers. The
model system for these studies has been symmetric blends involying homopolymers of equal
polymerization, N, and copolymers with two blogks o ua)polymerization, N./2. 1deally,
the A and B segments should have the same gtati 'ca‘ljength, a, in order to complete the
symmetry. Note that we follow the convention re-all segments are defined to have the
same volume, p, . \

Broseta and Fredrickson® classified the different behaviors of these ternary blends ac-
cording to mean field theory. In the }ct;y homopolymer limit, the disordered (DIS) melts

S
macrophase separate to produce cogxistence at the critical point (xVg,). = 2, where x

is the usual Flory-Huggins pa\ specifying the incompatibility of the unlike segments.
As copolymer is added, the transition shifts to (YN,). = 2/(1 — ¢.), where ¢, is the volume

fraction of copolymer size\ratios of @« = N, /N, < 1, the transition, referred to as the

Scott line,” terminafes iufa Lifshitz critical point at ¢.rp = 2a%/(1+2a2). Beyond that, the
DIS phase trans‘oj 1S to I{eriodic lamellar (LAM) phase [see dotted curves in Fig. 1(b)].
Mean fiel t@hather self-consistent field theory (SCFT), however, is only accurate
in the infidite molgcular-weight limit. The fluctuation corrections to it are controlled by the
invariant polymerization indexes (e.g., Ny, = a®p3Ny,). Although the corrections are generally
small\ they secome significant near the order-disorder transition (ODT) causing a shift

téwards so

temperature (or higher x). In the case of the Scott line, the fluctuations also

chahge the critical exponents,®® and in the case of the LAM/DIS boundary, they change the

-alisition from continuous to discontinuous.!®! Fluctuations are expected to be particularly
important near the Lifshitz point,>* because of its large critical dimensions. The upper
critical dimension, below which mean field theory becomes inaccurate, is eight as compared

to four for the Scott line.* Furthermore, the lower critical dimension is believed to be four,>®
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Publishiwfich implies that the Lifshitz point should, in fact, be destroyed by fluctuations in three-
dimensional space.

The critical behavior of the Lifshitz point was first investigated by Bates et al.l? for

blends of polyethylene (PE) and polyethylenepropylene (PEP) with o = 0.208. (This choice

of a roughly matches the ODT of neat diblock copolymer melts, (%’c)ODT ~ 10.5, with the

critical point of binary hompolymer blends, (xNj,). ~ 2, such t 1 T can be accessed

nénts to within 1°C of
d"‘be well described by SCF'T

over the full composition range, 0 < ¢, < 1.) Bates et al. gbseryed small-angle scattering
consistent with a Lifshitz point exhibiting mean-field criti N

the apparent transition. Although the PE-PEP system s
given the large Nj, ~ 5000,"® Lifshitz points simply cannot qscis in three dimensions. They
suggested that fluctuations must, in reality, pushfthe Litshitz point to T = 0 leaving behind
a channel of strongly-structured DIS phase, ref kg‘to ;lecontmuous microemulsion (BuE)
by the surfactant community.** &\\D

Two years later, Bates et al.’ c \1\the roposed behavior [see Fig. 1(a)]. As
expected, the position of the BuE ghann orresponded well with the mean-field Lifshitz

ents'% 23 have observed analogous behavior in a

point, ¢.rp = 0.080. Subseque
wide range of chemically different Sy . These studies found stronger fluctuation effects

16,17

for lower values of Ny, in partic}& crossover towards the Lifshitz critical exponents

and a widening of the It should be noted, however, that an increased width

annel
sult Jfrom asymmetries in the system (i.e., mismatches in the
homopolymer si g copylymer blocks and/or the segment lengths),'® which will exist to
a

of the channel can
some extent in al experimental system.

After Bat )l proposed the BuE channel but before they actually discovered it, Miiller
and Schigk** observed BuE in Monte Carlo (MC) simulations of the bond-fluctuation model.
To avpid«tec icél difficulties of conducting simulations in the grand canonical ensemble,

they r trictéi their study to a = 1, which allowed them to use a semi-grand canonical
ﬁ

"emblo)whereby polymers could switch among the different types. Computational costs

‘sl%)r
~

ase diagram differed considerably from the experimental one, both quantitatively and

icted their simulations to short polymers with Nj, = 145.2° Not surprisingly, their

qualitatively. In particular, their Scott line ended at an ordinary tricritical point, beyond
which they found three-phase A+B+BuE coexistence followed by A+B-+LAM coexistence.

Diichs et al.? later examined blends for o = 0.2 using field-theoretic simulations (FTS),
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FIG. 1: Phase diagrams for ternary blends obtained (a) experimenta& or PE-PEP with a =
0.208 and (b) theoretically?” from 2D FTS (symbols) and SCFT (ddfted %i‘ch a =0.2. The
diagrams include two-phase (A+B) coexistence, an ordered lame1h(\i 1) phase and a disorder
(DIS) phase, part of which is classified as bicontinuous micr@i‘)‘{l‘f uE). The SCFT diagram
also includes a narrow region of three-phase A+B+LAM coexistenge (unlabeled) extending down

from a Lifshitz critical point (solid dot). Note that tC.:& h is)f the simulation/theory diagram
is inverted for easier comparison to the experimenta, . ‘)
L

which do not suffer from the problems d ‘W ve. They are ideally suited to handle
large invariant polymerization indexes; afnd.t\e grand canonical ensemble can be readily
applied to any value of . The FT fe%ro ed the channel of BuE separating the LAM
phase from A+B coexistence, bdtgho d?fo evidence of A+B+BuE coexistence. Subse-
quent FTS of the DIS phase 13@ an approximate boundary separating the region
of weakly-structured melts from that of BuE.?" The resulting phase diagram is compared
to the SCFT prediction{in Figy 1(b). It is important to note, however, that due to compu-
tational demands, these

acknowledged tl%liml iopfof 2D simulations, but that was the best they could do at the

ere only performed in two-dimensional space. The authors

time.

Using reten }Velopments in FTS*2 along with the introduction of two new semi-grand
canonical‘en mb}e , we perform the first simulations of symmetric A+B+AB blends in 3D.
The stmulationséare performed for molecular size ratios of « = N, /N, = 0.1,0.2 and 0.4 with
e &@if—relevant sizes corresponding to N, = 10*. The study focuses specifically on
th comﬁatiblization of the A+B homopolymers in the low-¢, region of the phase diagram,

w qults are directly compared to SCF'T in order to assess the significance of fluctuation
etfects.
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This section describes field-theoretic simulations (FTS)3*3! for an incompressible ternary
blend of nj,4 A-type homopolymers, nj,g B-type homopolymers and n. AB diblock copoly-
mers. The formalism is developed for symmetric blends, where all Aiomopolymers have N,
segments and the diblocks are symmetric with NV./2 segments 14; block. Depending
on the ensemble, we either set the homopolymer concentratio QJ&I (i.e., npa = npp) or

their chemical potentials equal. We also assume conformational symmetry, where A and

B segments have the same statistical length, a. Thus, t%polymers have the same

unperturbed end-to-end length, Ry 5 = ay/ Ny, which e use as\Qur unit of length. Note that
we follow the convention where all segments havedhe same \>)lume, Po ! such that the total
volume of the system is V' = Nj,(n, +n./a)/p \Zhﬂre ﬁa: npa+npp and a = Nj, /N,. The

volume fraction of diblock copolymer is ¢, % Q‘V

=

A. Single-chain partition functio&\

In FTS, the main computatio&lg\\is to calculate the partition function, Q,[W_, W,],
for each molecular species (7%\)\ nd ¢) subjected to the external fields, W_(r) and
W, (r), acting on the difference, ¢ (&) = ¢a(r)—¢p(r), and the total, ¢, (r) = pa(r)+¢p(r),
of the A and B concenfrationsy respectively. To do this, we first parameterize the contour
of the polymer by &, where“s/= 0 to 1 for the homopolymers and s = 0 to a~! for the
diblock Copolyn{\; 166 pin the s position of the polymer at r, and calculate partial

partition fungfiomns, ¢,(x, s) and ql(r, s), for the small- and large-s parts of the molecule,

using the gtandard Gaussian-chain model.?? The first of these is obtained by solving the

modified di 1{Sioyequation,

-

0 R3
3 Sh_ MVQ% - (W_£Wi)g, , (1)

o s 6
rward §q s starting from the initial condition ¢,(r,0) = 1. The ‘+’ and ‘-’ signs are used

fo
\Qﬂm A and B portions of the molecule, respectively. The function qi(r, s) is analogous
to g, (r,s), but obtained by propagating from the other end of the molecule. Note that

qi(r7 s) = gy(r,1—s) for homopolymer molecules. Once the partial partition functions have
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Publishihtg 1 calculated, the single-chain partition function for the entire molecule is given by

Q,W_, W] = /qv(r,s)ql;(r, s)dr | (2)

where the integral can be evaluated for any value of s along the chain contour.

B. Total partition function

NH N, H?
kgTpo  ksTpo

where H€ is the free energy corresponding to a sy termof n -interacting molecules subjected
to W_(r) and W, (r), and as such is expressed ter@f Q.. As in SCFT, H? is the only
part of the Hamiltonian that depends on tw ensemble. The Appendix outlines its
derivation for the canonical (can) ense blﬁ,\{

N, HE

_ hm7can

and for the grand canonical (gc) e emble
= —Qna — Qnp — 2Q. 5
BTPO ©)
where z = exp ﬁx the fugacity and p is the chemical potential of the copolymer
relative to thét ofjthe

mopolymers.

i ion tosghe standard canonical and grand canonical ensembles, the Appendix also

derivego ]

r two new semi-grand canonical ensembles. The first (sgel) allows nj4 and

nug t ﬂuctdjnte while constraining n, = npa + npp and n.. Its Hamiltonian is given by

Q Niflies (1 g 51 6
S rpTpoy — (1 9 n(@ua+ Qup) — ageIn(Qe) - (6)
S

e second (sgc2) allows nj, and n. to fluctuate under the constraint nps = npp. Its

Hamiltonian is

NhH gC2

knT oo = =2/ QnaQnp — 2Q. . (7)
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7~ / exp (-%) DW DW, (8)

is obtained by performing functional integrals over the fields. To evaluate the energy per
unit kg7 in the Boltzmann weight, we need to multiply Eq. (3) b
o _ VN

_ D, 9

Ny, Rah ’ \T ©)

which is where the invariant polymerization index, Ny, Q@& S. All the simulations
Q

in this study are performed with N, = 10%.

C. Saddle-point approximation ‘)

! -
FTS are complicated by the fact that M n imaginary-valued function, which in
&u

turn makes the Hamiltonian a complex® antity. As a result, the Boltzmann weight,

exp(—H/kgT), is no longer positive definite, and therefore standard simulation methods are

not applicable. Fredrickson and%ow\omer@ have dealt with this by performing complex
1

Langevin simulations (CL—F’% tead, follow the strategy proposed by Schmid and
26,27

coworkers, whereby the functional integration over W, (r) in Eq. (8) is performed using
the saddle-point appro n;%;v This is done by evaluating H[W_, W] at its saddle-point
with respect to W‘Q\)N\hl e denote by w,(r). Fortunately, wy(r) turns out to be a
real-valued func?{n, which #hierefore permits standard Monte Carlo simulations (MC-FTS).

The saddl pe)Mroximation enforces the incompressibility condition, 95+(r) =1, in

the mean-fiel proximation,

y.
Q V. b4 (1) = palr) + dpp(r) + do(r) =1, (10)
- ).

3 o, (r) = C’v/qv(r,s)ql(r, s)ds (11)
\?haaverage concentration of y-type molecules in the system of non-interacting molecules.
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( (1_<£c)v

m s fOI' can ,

Qra+QnB

\/ gﬁ ,  for sg€2 \
\ hA ﬁ\
The analogous coefficient for B-type homopolymer, B-,\ is (Sb
‘hA’ and ‘hB’. That of the copolymer is (_.

s-,\for gc

1, for gc ,
Chat = /\ (12)
A=)V , for sgcl | 3

ined by swapping the labels

(13)

oo for sgcl |,
, for sgc2 .
Each time W_(r) i ‘;(%: reevaluate w, (r) with Anderson mixing®® such that

f Fyri

sg{Q, regardless of the fields. In particular, the total amount material is

explic cor&trained in the canonical and first semi-grand canonical ensembles. As a result,
7%] 1s unaffected by additive constants to w, (r), which allows us to fix its average
zero. Furthermore, accurate results are obtained with a modest error tolerance of
£10-, However, for the grand canonical and second semi-grand canonical ensembles,
the amount of material is controlled by w, (r) and a higher error tolerance of ¢ = 1077 is

required to achieve similar accuracy.
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The FTS are performed in simulation boxes with sides of lengths L,, L, and L, (ie.,
V = L,L,L,). We generally apply periodic boundary conditions, but for the purposes of
creating a single A/B interface we also make use of reflecting boundary conditions. For
computational purposes, the fields, W_(r) and w,(r), are deﬁne(o\'s%ilscrete grid with
uniform spacings of A,, A, and A, in the three respective (ﬁ)ns. ne might expect
results to converge as A, — 0, but instead they exhibit an ultzaviolet (UV) divergence.®”
Fortunately, for polymers of high molecular weight, thig rgerice can be removed by

expressing results in terms of an effective Flory-Hugdins y parameter, defined by

% _7:?’250_];/ /(é -/s}+%2dk/22’ (15)

where A, = /A, is the wavevector cutoffK‘c%t -firection. Here, we choose equal grid

spacings, A, for all three dimensions, in w

X _ 1S 0 (16)

Note that our simulations are al fo

which y = 0.938ys. \\

E. Monte Carlo algorith

£
Each Monte Carlo (MCS) involves making a small change to W_(r), followed by the
reevaluation o uémhe moves are accepted or rejected based on the standard Metropolis

criterion. canonical and second semi-grand canonical ensembles, we alternate be-

oves: one in real space where W_(r) is changed at each grid point by
amoufits selected from a uniform distribution, and another in Fourier space where W_ (k)
at' each wavevector with a probability proportional to the RPA structure func-
(k), corresponding to a binary homopolymer blend of yN;, = 1.8. For the grand
hz?omca and first semi-grand canonical ensembles, we include a third move that changes

(r) by a constant chosen from a uniform distribution. The amplitude of each move is
adjusted during the beginning of the equilibration period to achieve an acceptance rate of
~ 40%. We typically use 105> MCS to equilibrate the system, followed by 10¢ — 10" MCS for

the collection of statistics. Observables are sampled once every 40 MCS.

9
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Publishingin order to save computational effort in locating the Scott line, we use Monte Carlo
reweighting®3? to determine the y,Nj-dependence of an observable, O. This is done by
conducting a single simulation at a particular (x,/V,)*, and storing the values of O as well
as

17)

A (
O % is then given by

) = LS Gexp (20 ;
<O>_N20’ p(Nh [(XbNh)* M\Z (18)

—_—

I= /Wz(r)dr

over m configurations of the system.?? The ensemble average

where the normalization constant is*°

m pO -, .
N = exp <— [%— ] Iz-) . 19
iz1 N | (Vi §bNh (19)
! -
Naturally, the accuracy of the reweighting{s’@[ as xpN;, deviates from (x,Np,)*. How-
t

ever, the range of applicability is large Wa points (e.g., the Scott line), due to the

fact that critical fluctuations create ga istribution of configurations.
o

III. RESULTS &\

In this study, we fo{\the two-phase A+B region in Fig. 1. Our calculations are

all performed for honabpolyaners of invariant polymerization index N, = 10*, which roughly
i S

matches the exg?um
Nh/NC ~ 02, WE C

0.4. )

£
A.[ Scott 'ré

)

ﬁ
Our F§S ask is to locate the Scott line separating A+B coexistence from the mixed DIS
tatew

e natural order parameter for this critical transition is the difference in the total

S of Bates et al.'?'315 Although the experiments were only for o =

ongider three different copolymer sizes corresponding to a = 0.1, 0.2 and

Enb*ér of A and B segments, ¢_ = V! [ ¢_(r)dr. The 2D simulations of Diichs et al.?5*7
estimated the transition, (xNVy)., by simply looking for the point of broken symmetry (i.e.,
(¢_) # 0) in a grand canonical simulation. We instead employ a far more accurate finite-

scaling method,*" which identifies the transition by the fixed point where the fourth-order

10
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FIG. 2: Fourth-order cumulant, Uy, plotted for system sizes of L/ R(),/\Z.Q\S(solid), 3.0 (dots),
4.125 (dashes) and 5.25 (dot-dot-dashes). Results are shown for @:itions of ¢. = 0.00, 0.02
and 0.04 at copolymer sizes corresponding to (a) a = 0.1, (b) a =0,2 and,_(c) o = 0.4.
P
_ _—
(92)
U,=1- 3G ) (20)

becomes independent of system size, L. The mo ts‘(?j ¢_ are related to moments of W_

cumulant,

by expressions derived in Ref. 29, where we apph d'The method to binary homopolymer

blends. That study used the grand ca,nonig@gm

canonical (sgcl) ensemble in Eq. (6), ich proves to be far more stable and accurate.
The fixed point is determined by 75‘51115

le, but this time we use the semi-grand

=

1, as a function of YN, for different system

sizes, L, as illustrated in Fig. 3 fo iotls combinations of ¢, and a.. To save computational

effort, the x N,-dependence w. mined by MC reweighting of simulations performed at

(xNp)* = 2.0125, 2.065 2.125 b, = 0.00, 0.02 and 0.04, respectively. Apart from one

exception that will be j%shortly, the curves from the different system sizes cross at a

common point, Wh'%jﬁi (xNp)e. Furthermore, the cumulants collapse when the axes
syst /

are scaled with size using the 3D-Ising exponent v = 0.62997, as demonstrated

previously infRefy 29. "In fact, the collapse is improved now that we are using the sgcl

ensemble, 4
Fi re. omphares the critical points from all our FTS to the mean-field prediction,

= 2&1 — ¢.). Note that there are three independent results from Fig. 2 corre-
spondin inary homopolymer blends (i.e, ¢. = 0). The slight variation in these results,
whi isintirely due to statistical noise, proves to be relatively small. Furthermore, these
cslilts agree well with the universal prediction (xNy). =~ 2 + 1.5Nh_1/2 = 2.015 for binary
blends.? Interestingly, the fluctuation correction to mean-field theory increases considerably
as copolymer is added to the system. Nevertheless, the Scott line remains independent of

the copolymer size, o, to within our statistical accuracy. As discussed previously,®” this

11
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FIG. 3: Critical points, (xVp)., calculated along the Scott line for a/\Ql\firiangles), a=0.2

(circles) and o = 0.4 (squares). The solid curve denotes the me@;pre ction of the Scott
n

line, and the crosses mark the mean-field Lifshitz points for oo = 0. 2: the Lifshitz point for

=04 lies b d th f the plot.
@ ies beyon e range of the plo Q"“‘-
Q
N

f W_(r)] along the Scott line at ¢, = 0.04 and

FIG. 4: Typical configurations [i.e., densi
) a=0.1, (b) a=0.2 and (c) a = 0.4. The size

xNp, = 2.1 for copolymer sizes correspo ?hﬂ$ to
.

of the simulation box is L = 5.25R($\\

independence provides Conﬁrm\ai%

\bhat the effect of copolymer on (xN,). is primarily

entropic.

The failure of th

T emble§ a strongly-segregated microemulsion-like morphology. Naturally, the occurrence
hfj}g morphology is only possible when the simulation box is sufficiently large relative
to its domain size, which explains why the cumulants for the two smaller systems remain
consistent with a critical point at x N, ~ 2.1.

The anomalous behavior of the cumulants implies that we have overrun the end of the

Scott line, which contradicts the suggestion by Fig. 1 that the Scott line extends to 7' = 0.

12
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FIG. 5: Adsorption isotherms for (a) different segregations at a = 0.2 é\%ifferent copolymer
of o

sizes at x N = 3. Solid curves denote SCF'T predictions, and the sQne at small ¢, confirms

the relationship in Eq. (21). \

On the otherhand, this is somewhat consistent with theane field prediction that it termi-
nates at ¢.rp = 0.0196 for & = 0.1. The observationof B@—type configurations like that
of Fig. 4(a) suggests that the Scott line ends ﬁn ordinary tricritical point followed by
A+B+BuE coexistence, rather than a Lifshitz etitical point followed by A+B+LAM coex-
istence as predicted by SCFT.>?" In prinai K\f@e—size scaling analysis could locate the
tricritical point, but it would require GMI‘ systems sizes and exceptionally accurate

statistics,*? which is beyond the sc of thig paper. In any case, we will encounter more

compelling evidence for A+B+B&§miﬁce in the next section.
B. Adsorption Isotherr&

For the remainder/of t )er, the bulk copolymer concentration, ¢., will be controlled
by adjusting thzhe 'C/al I}Dtential, p. Figure 5 shows some adsorption isotherms, which
allows one to coitvertibetween 1 and ¢,. They are evaluated in the grand canonical ensemble

by increasin Dsmaﬂ increments, equilibrating and then collecting statistics for ¢.. The

FTS results agree*well with SCFT (solid curves), which implies that fluctuation effects are

relatige\}fin 4 these low copolymer concentrations. Note that the concentrations are
n

24

plotte aSogarithmic scale in order to demonstrate the dependence,

-

) G o explufkaT) @)
\ )
ich proves to be accurate for this limited range of ¢..

On closer examination of Fig. 5(a), we see that the copolymer concentration in the
A+B coexistence region (i.e., YN, 2 2.015) begins to increase more rapidly with u at

$. ~ 0.1. Figure 6 extends the plots for yN;, = 2.4 and 3.0 to larger ju, revealing a

13
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FIG. 6: Adsorption isotherms calculated for a = 0.2 with (a) xVp é%d (b) xV;, = 3.0.
he i

The dots and crosses are from simulations where g is incremented in ) positive and negative
ce,

directions, respectively. The hysteresis loops imply phase coexi hile the representative

configurations taken from the upper and lower branches (im@@s&t A+B+BuE coexistence.

—-—

sudden jump in ¢, similar to what was observed Miiﬁyr and Schick.?* Interestingly,
combining the data obtained by increasing u (s id do s) with equivalent data obtained by
decreasing p (crosses) produces well-defined hy resigj}ops, which implies the existence of
a discontinuous phase transition. The ins tw mple configurations from the low- and
high-copolymer branches of the adsorﬁ}gllerms, which provides compelling evidence
that the phase transition correspon {%th -phase A+B+BuE coexistence.

Although the phase transitiofl ynu bectr somewhere within the hysteresis loops, we
cannot say exactly where. xst loops could be narrowed by equilibrating the
system for more MCS at ea,clr:i\au%‘ 1, but not sufficiently to obtain the transition accu-
rately. This could be co‘rrbiﬁhed by using, for example, thermodynamic integration34*
or a Gibbs ensemble® Howeyet, the simulation boxes would have to be considerably larger
than the domain ize of the/BuE phase to avoid significant finite-size effects. Nevertheless,
the particle-b d}ﬂ{la‘cions of Miiller and Schick?® suggest that the transition can be
estimated by t}oin‘c where the interfacial tension, o, between the two homopolymer-rich
phases béepmbs zero. As we show in the next section, o — 0 at u/kgT ~ 1.4 for YN}, = 3,
which{ implies thiat the binodals of the A+B+4BuE region are ¢, ~ 0.02 and 0.16. Note that
thissestimated width is considerably larger than that of the A+B-+LAM region predicted by

SGET .2y
\

A /B interface

Our attention now turns to the A/B interface between the coexisting A+B phases. For

this, we use the second semi-grand canonical (sgc2) ensemble, which balances the amount

14
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FIG. 7: A-segment (circles) and copolymer (crosses) concentration pr wed across an A/B
interface at YN, = 3.0 for (a) « = 0.1, (b) @« = 0.2 and (¢) a = ote that the simulation

boxes extend well beyond the range of the plots. Solid curves der%\gs\ T predictions.

of A- and B-type homopolymers while allowing the total.a unt of homopolymer (and thus
copolymer) to fluctuate. To create a single interface erpengicular to the z-axis, we switch
the boundary condition in the z-direction from eriodic reflecting and use a simulation
box with L, > L, = L.. Balancing the amount*ef hompopolymers constrains the interface to
the center of the box (defined as x = 0) d owing the amount of copolymer to fluctuate
reduces finite-size effects.

Although the concentrations, ¢, bt ed from the propagators in Eq. (11) have no
physical meaning in FTS, their 1se averages are equal to those of the instantaneous
concentrations, ¢.(r).3016 Us , e evaluate the copolymer profile, (¢,(z)), across
the A/B interface by spatlally averaging ¢.(r) over y and z and then ensemble averaging
over a simulation. Simi rl«BSA segment concentration, <¢A(x)>, is obtained by averaging

Ona(r) + gbcA(r) where @A s given by Eq. (11) with the s-integration performed over
the A block. { y.

The copoly sses) and A-segment (circles) concentration profiles are shown in Fig.

7 at xN, ifferent copolymer sizes, a. Note that the length of the simulation box is

chosen 1 ou (L, = 18Ry, for a« = 0.1 and L, = 9Ry, for o = 0.2 and 0.4) to reach

bulk ¢on entr ons at the edges. The FTS results all agree reasonably well with SCFT
lid cagyves 1nd1cat1ng that fluctuation effects are relatively minor.

The éj(cess copolymer concentration, (¢c(x)> — ¢, is reasonably narrow for a = 0.2

Yi'ﬂﬁ 0\ , which is indicative of the mushroom regime where the copolymers remain relatively

ungtretched. In contrast, the profile is much wider for a = 0.1, indicating that the copolymer

blocks are forming stretched brushes, albeit wet brushes given that the maximum copolymer

concentration is only about 20%.

The A-segment concentration fits well to the wusual sigmodial profile,

15
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FIG. 8: Interfacial width, wy, calculated at x N, = 3 for o = 0.1 (triaé&{{ 0.2 (circles) and

a = 0.4 (squares). Solid curves denote SCFT predictions. Q
Q‘“
Q

o)

FIG. 9: Interfacial tension, o, calculated at xy/N, =3 for

a = 0.4 (squares). Solid curves denote SCF’I\{ tio

.1 (triangles), a = 0.2 (circles) and

(pa(x)) o [tanh(2x/wy) + 1], wher m parameter w; represents the interfa-

cial width. Figure 8 plots the change wl‘f@)r XN, = 3 as copolymers of different sizes are

added to the blend. The lar es&}&z er (o = 0.1) causes a modest narrowing of the

interface implying an enhance \th'nsegregation, while the shorter copolymers (o = 0.2

and 0.4) have the opp i(%%atct. he SCFT predictions (solid curves) agree well with
e

the FTS. We might Mave ed some broadening of the interface relative to the SCFT

predictions due g c '(larywave fluctuations,*®*” but we see no evidence of this. This
is undoubtedly. becauge t

lateral dim 'Q, L, = L. = 3Ry, of our simulation boxes. It should be feasible to

fluctuations are suppressed as a result of the relatively small

extend odr F'PS to'systems of sufficient size to study the capillary waves, but that is beyond
the sgbpe-of ‘s’lxnitial study.
ree &ergy of the coexisting A+B phases has the form F' = fyV + 0A, where

Th
&Kis:?se energy density in the bulk, o is the A/B interfacial tension, V' = L, L, L, is the
unie-of the system and A = V/L, is the area of the interface. From this, it immediate

~
lows that

(22)

g =

CL2OF L2 /OHge
V 0L, kgTV \ 0L, ’

where the derivative with respect to L, is performed at constant volume.**%° In FTS, the

16
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FIG. 10: Test of the Gibbs adsorption isotherm, Eq. (24), for « = 0.1 Bqﬁh a = 0.2 (circles)
d with open and closed

and o = 0.4 (squares). The left and right sides of the equation ar ot e
symbols, respectively. Solid curves denote SCF'T predictions.

derivate of the Hamiltonian has a nice analytical expresgio

Nh a[_[sch _
kgTpy OL, L)
9Q.
_ 4 9n QFp _ zi : (23)
B L:r 8Laz
in terms of derivatives of ()., which in t 1 Nave.analytical expressions provided in Refs. 44

and 45. Normally, a change in L, at ﬁhﬁa&t would have to be accompanied by a change

in xp, so as to keep the effective ns ant. Thus, Eq. (23) would, in general, require an

additional term proportional ‘KSGH ative Oy,/0L,.** However, this derivative becomes

zero when the grid resolution, A, , s ,the same in all three dimensions.

sizes, a. As expected, the addition of copolymer drives the tension towards zero. Referring
to Fig. 5(b), th h&io& 4omes zero at ¢, ~ 0.15, 0.020 and 0.0001 for o = 0.4, 0.2 and
0.1, respectivély, €onsistent with the understanding that longer copolymers have a stronger

compatibi atio ower.® Again, the FTS results agree well with SCFT (solid curves). The

most 81gn1 nt gdfference is in the binary limit (i.e., ¢, = 0), where the SCFT underesti-
mates, the t 1sion by about 10%. Naturally, our FTS values of o will be affected by the

s p?esm f capillary waves, but previous simulations have shown the effect to be very

\W‘e.conclude our study by checking the accuracy of our FTS in regards to the Gibbs
adSorption isotherm,!?4

(24)
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O,

m [ ((@ulo)) ~ e 25
obtained from Fig. 7 to the rate the surface tension changes in Fig. 8. To reduce statistical
noise, the value of do/du at a given value of p is obtained froMi a quadratic fit to the

data point at p plus the three data points to either side. e\ﬁopo ner excess (solid
compared in Fig. 10 at

symbols) and the derivate of the surface tension (open Symb%
S

)
XN, = 3 for the three different values of a. The agreement is sighificantly better than that

obtained in the particle-based simulations of Miiller a (i_‘Sc i k?‘“because we are employing
an incompressible model. In fact, the SCFT results (golid %II“VGS) are found to satisfy Eq.

(24) perfectly. As before, SCFT agrees well wi h our , reconfirming that fluctuation

effects on the A/B interface are negligible at /%:\1 4‘.)
\

IV. DISCUSSION

51,52 and

the previous FTS of ternary A+B+AB blends?%2”
from 2D to 3D. In standard pa \clbﬂbased simulations, changing the dimensionality affects
the number of intermoleéitar contacts, which in turn impacts the level of fluctuations. For-
tunately, the chain c (gf\bﬁ (i.e., po/Ny) is one of the control parameters in FTS, and
so this effect can‘b/ t{ally/accounted for in 2D simulations. However, the details of critical
S thei

two new ensembles, we have exte

With the help of increased COQ%FH\FOWGI, improved numerical algorithms

transitions (e. critieal exponents) will nevertheless be affected by the dimensionality
of the syste @thermore, dimensionality will also affect the modes available to a fluctu-
in, for example, the BuE morphology. Thus, the only way to obtain

ating A/, interfa
quantifative e}{able results is to perform simulations in the appropriate dimension.
ugh

Alt ur MF-FTS account for fluctuations in the composition field, W_(r), they still
i@e saddle-point approximation for the pressure field, W, (r). In principle, this ap-
\*EXI\ ion could be removed by performing CL-FTS.3%3! Nevertheless, the W_(r) fluctua-
ions are expected to provide the dominant correction to SCFT, and thus the approximation

for W, (r) should be relatively accurate. Indeed, the MC-FTS and CL-FTS results of the
2D simulations in Ref. 26 were indistinguishable. It is also worth noting that the MC-FTS

in that study coped far better with the large fluctuations near the microemulsion region of

18
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Our choice of invariant polymerization index, N, = 10*, roughly matches the PE-PEP
system studied by Bates et al.!*!31% Given this large value, fluctuation effects would normally
be very small. Indeed, the properties of the A /B interface are almost indistinguishable from

the SCFT predictions. However, Fig. 3 demonstrates that the ‘ﬂ{lctuation correction to

the Scott line becomes substantial as copolymer is added. T is)theukeads to the most

notable correction, which is the qualitative change at the end-peiudt of the Scott line. Our
observation of A+B+BuE implies that the Lifshitz criti \\

alim predicted by mean field
e

e Tifshitz point was certain to

theory is replaced by an ordinary tricritical point. In realit
—
be destroyed by fluctuations given that its lower critiGal diménsion is greater than three. Its

replacement by an ordinary critical point is con@ent ih the particle-based simulations

of Miiller and Schick for a = 1 and N;, = 145.% D
Although experiments have observed A% coexistence in blends with a ~ 1,%%3
there has yet to be any experimenta exh’eqce it for a ~ 0.2.123 We suspect that
the experiments observed swollen BuE in place of the more stable three-phase coexistence.
The problem is that the attracti bekﬂ\ﬁ /B interfaces, which would be responsible for
;&%&Q opolymer, is extraordinarily weak.>® The large
hysteresis loops in Fig. 6 can Muted to the same issue. Nevertheless, it might still

be possible to observe A nE in experiments by allowing substantially long annealing
times.

Previous par?#e— dd /srimulations for the Scott line?* and the A/B interface®® also

a swollen BuE phase sheddi

compared their results to SCFT. However, these comparisons are not as definitive as ours,

due to ambi ia in defining an effective y for particle-based simulations.?*1?® Likewise,

the samedssug existg for previous experimental comparisons to SCFT.%? On the other hand,

we hafe s cle réationship between the bare interaction parameter y; used in F'TS and the

effegz_’&i Y t%t should be used when comparing to SCFT.?% We note, though, that the

a%ﬁty in defining y seems to have now been resolved for particle-based simulations!! as
1l &

\% xperiments.®

F?S have various advantages over particle-based simulations. For instance, there is the

option of reflecting boundary conditions as used in our simulation of the A/B interface. In
the particle-based simulations of Miiller and coworkers,?*°° the A /B interface was created

by confining the melt between hard walls that favored A- and B-type monomers. Naturally,
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Publishihzgi walls cause a considerable disruption in the bulk behavior. Admittedly, reflecting
boundaries do as well given that they restrict the possible composition fluctuations, but the
level of disruption is certainly far less.

In particle-based simulations, it is difficult to find space in the simulation box for the

insertion of new molecules, particularly for large polymers, which pénders the grand canon-
ical ensemble problematic. Miiller and Schick?* circumvented this_problem by setting the
polymerization of all their molecules to N = 32. That allowe *@)ﬁemploy a semi-grand
canonical ensemble, whereby molecules were able to sw ctween the three species by a
simple relabeling of the monomer types. Of course, this% their study to a = 1. In
principle, the approach can be extended to blends, -v:hi the ratios of polymerizations

are all integers, by cutting or joining together p@ners hey switch identity.’¢ However,

the computational cost becomes extraordinarysfor raLtE—& greater than three. These issues

render particle-based simulations for a = 0.\%1 0.4 impractical.
In FTS, there is no inherent problem h employing the grand canonical ensemble,

but nevertheless the semi-grand ca nicamles have significant advantages. The sgcl
ensemble explicitly constrains t e“&?amount of material in the system, whereas the
grand canonical ensemble has to&%\&l he amount of material using w, (r). The explicit
constraint increases the speed Nbility of the Anderson-mixing algorithm. The sgc2

ensemble has the advaq“\hat it constrains the position of the A/B interface, whereas

nonical ensemble. These type of advantages could also be

it is free to drift in the grand
useful in SCFT ?lc t{mS/
We have presented our semi-grand ensembles for symmetric blends, but they can be

generalized %)nmetric compositions. A chemical potential difference, p,;, between the

homopolyinerg canwbe incorporated into the sgel ensemble by generalizing the Hamiltonian

to T~ /
KS NhHS%d - 1/2 ~1/2
e = (1= &) In(2,/"Qna + 2z, " Qnp)

Qs ksTpoV
_a(gc ln(Qc) ) (26)

<
\ere 2y = exp(y/kpT). Likewise, the Hamiltonian of the sgc2 ensemble can be generalized

NhHch2_ Qna\" [ Qus \'77
e = () () e o

to
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Publishiftgallow for an asymmetric amount, ¢ = nja/np, of A-type homopolymer. Although the
ensembles can handle asymmetric compositions, they are nevertheless limited to the special
case of Ny4 = Npp. The restriction is because the factorials, ny4! and n,pg!, accounting for
the indistinguishability of like molecules in the partition function must have an appropriate

form so that the sums over nj,4 and ny;p result in closed-form expfgssions (see Appendix).

N

V. SUMMARY

The compatibilization of immiscible A+B homopoly ;D@Qqual size Nj, by symmet-
ric AB diblock copolymers of size N, was investiga ed wit ree-dimensional (3D) field-
theoretic simulations (FTS). The incompressibti: of“the/melt was enforced within the

| -
tivated by the experiments of Bates et al.,'™gve cohsidered molecular sizes corresponding to
a = N,/N,=0.1,0.2 and 0.4 with an inva}m]{p merization index of Nj, = aSp2 N}, = 10%.

The focus of our study was on the Scott mig. 1 and the interface between coexisting

mean-field approximation, which allowed us to&st@dard Monte Carlo techniques. Mo-

A+B homopolymer-rich phases. By ¢ \gapugg our FTS results to self-consistent field theory
(SCFT), we were able to access t vel'of fluctuation effects, as controlled by the value of

Ny, \

The simulations of th A%éter ce examined the A-segment profile (¢(r)), the copoly-

mer profile (qgc(r)% the Mterfagial width w;, the interfacial tension ¢ and the copolymer

excess O.. In all _Ahe FTS results agreed well with SCFT, implying that fluctuation
effects on the A4B%uter are negligible at N;, = 10*. Admittedly, capillary-wave fluctua-
tions were s prm our FTS due to the limited size of the simulation boxes, and thus
it would pe 1?6 to conduct further FTS analogous to the particle-based simulations of
Werneret abl’ £

Th ScottSine exhibited a more significant deviation from the SCFT prediction, (xNVg). =
Although it continued to show no dependence on «, fluctuations did cause a

S|
%1 icarit shift towards higher y N, (i.e., lower temperature) that grew in size with the

{lition of copolymer. The most notable deviation from SCFT was the appearance of

thrée-phase coexistence between the A+B homopolymer-rich phases and a bicontinuous
microemulsion (BuE). This implies that the Scott line terminates at an ordinary tricritical

point as opposed to a Lifshitz critical point.?* Although the metastability of the competing
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Publishiplgeses prevented a precise determination of the binodals, it was nevertheless clear that the
A+B+BuE region in Fig. 1(a) is relatively wide. It may have been missed in the experiments
due to insufficient annealing times on account of the high degrees of metastability.

Our application of F'TS to 3D was greatly aided by two new semi-grand canonical ensem-

bles. The first allowed the numbers of A and B homopolymers, 72/ and n,g, to fluctuate
es}the merical efficiency

and stability in calculating the fourth-order cumulant, Uy, use ocate the Scott line, in
comparison to the previous use of the grand canonical ‘%\m

S}i'ﬂed with the ability of FTS

while constraining the total n, = np4 +npp. This greatly impr

he second permitted

ny, to fluctuate under the constraint npa = nup. Thii‘c

to impose reflecting boundaries helped simulate A/B interfaces. Furthermore, the ability
of calculating changes in free energy with resptcﬁ‘ to variations in the dimensions of the
simulation box gave direct access to the surf&%@. Further advantages of FTS over

traditional particle-based simulations will undgoubtedly emerge as this new approach receives

more attention. \
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APPENDI A\KA LTONIANS FOR VARIOUS ENSEMBLES

The ondy partof the field-theoretic Hamiltonian, Eq. (3), that depends on the type of

ensemble 15T “, phe free energy of non-interacting polymers subjected to the external fields,
ﬂ

W_(r), and W§+ ). In the canonical (can) ensemble, where the number of molecules, n.,, of

C

e fl\polg species, 7, is fixed,?3

Hg i Qh Q-
_—can ] ha ¥hbB ¥YC . Al
&\ kBT Il( nhA!nhB!nc! > ( )
Th

Q,’s are the partition functions for single molecules and the factorials account for the
indistinguishability of identical molecules. Given that the n,’s are fixed, the factorials simply

add a constant to HY

o, and therefore can be ignored. Dropping them and using the fact
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Publishitigt npa = npp = (1 — b)poV/2Ny, and n, = ag.poV /Ny, leads directly to the expression in
Eq. (4).
In the grand canonical (gc) ensemble, we include z = exp(u/kgT) to control the copoly-

mer concentration and sum over all possible numbers of molecules, which gives®*

Z (z:ZET”A“ o
(A2)
|
kBT npA=0npp=0nc= nhA nhB
Note that we are effectively setting both homopolymer che tentials equal to zero,

which maintains the symmetry of the blend. Without los of g QSE& y, we can multiply each
Q- by a factor of py/Nj, which adds an irrelevant cénstant $g all the chemical potentials.
Given the identity e* = Y 2"/n!, Eq. (5) immediate follc)fvs.

Lthe’lumbers of A and B homopolymers
are allowed to fluctuate, while the total nu ber L4 + npp is held fixed. In this case,

In our first semi-grand canonical (sgcl) ensem

the Hamiltonian becomes

sgcl - th nhAan
]{?BT x ’th - nhA 'TLC' ’

nA + Qb "hQ"8> ‘

(A3)

\g nh'nc
Note that the sum is evaluated using the Binomial theorem, (z +y)™ = Y Cratym—m),

where C7' = m!/n!( n)! Using the fact n, = (1 — é.)poV/N;, and dropping additive

Eqs (6).
i d/ca,nonical (sgc2) ensemble, we constrain np4 = npp = ny/2. In

In the secondfsemi-g
cases of odd h,“;lexmbers of A and B homopolymers should differ by one rather than

constants, we obtai

equaling half integers. However, this distinction is irrelevant in the thermodynamic limit,

£
and thus t Ha;gﬂltonian becomes
—

Hch2 (QnaQnp)" h/ (2Qc)™
Qs ) kBgT ) (r;o; [(nn/2)"]?n! ’

o~ - on(y 3 WG Lar) a

np=0nc

where we have used the approximation

nh!

[(na/2)1)” & o (A5)
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Publishi,ﬁg vith the grand canonical ensemble, the sums in Eq. (A4) are performed using the Taylor

series of the exponential function, and from that Eq. (7) follows.
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