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Abstract 

The few wetlands that remain in the human-dominated landscape of southern Ontario are 

affected by degradation and conversion to other land use and land cover types. Conversion has 

negative impacts on wetland-provisioned ecosystem services, such as aquatic species habitat, 

water filtration and flood prevention. Impacts on the latter services are especially concerning, 

given the increase of flood events that likely will be exacerbated by a changing climate. 

Stormwater management (SWM) ponds are constructed to control urban runoff, but do not have 

the same form and function as wetlands. This study examined recent (2002-2011) trends and 

drivers of wetland conversion (i.e. wetland loss and SWM pond gain) in seven southern Ontario 

municipalities. Following this, a Markov model was constructed to project future conversion 

given specific land use and land cover types. Network analytical approaches were then used to 

investigate effects of conversion on landscape connectivity. Results show that most wetlands lost 

were smaller than 2 hectares. While the total area of SWM ponds gained was greater than that of 

wetlands lost, the size of the average SWM pond gained was less than the size of the average 

wetland lost. Wetland conversion is projected to continue under all examined land use and land 

cover types, with losses particularly high in extractive and urban land uses. Overall, wetland 

conversion corresponded with decreased connectivity. Wetlands appeared to be more connected 

over the landscape compared to SWM ponds. However, SWM ponds likely acted as stepping-

stones between wetlands and compensated somewhat for connectivity losses. The results provide 

further evidence for the need to halt wetland losses, especially for small wetlands, while showing 

the potential for connectivity improvements by SWM ponds. By conserving wetlands, policy 

makers can help to protect human life and property that rely on the critical ecosystem services 

provided by wetlands.
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1.0 General Introduction 

This chapter serves as an introduction to the overarching concepts that guide this thesis. 

The concepts are further explained in the introduction sections of each data chapter. The first 

sub-section explains the problem context in terms of the significance of wetlands, trends and 

drivers of their loss, and the importance of landscape connectivity. This is followed by a brief 

explanation of this thesis’ purpose in relation to the broader problem context. Lastly, there is an 

overview of the subsequent sections of this thesis, which include the literature review, general 

methodology, two data chapters (manuscripts), and a synthesis chapter.  

 Problem Context 

 Wetlands are unique ecosystems that provide our populations with critical services that are 

not directly replicable by human infrastructure, such as stormwater management (SWM) ponds 

(Rooney et al., 2014; Tixier, Rochfort, Grapentine, Marsalek & Lafont, 2012; Moore, Hunt, 

Burchell & Hathaway, 2011). These services include carbon sequestration and flood prevention, 

meaning that the presence of wetland ecosystems is socio-economically important, especially as 

we progress into a climatically turbulent future (Moudrak, Hutter & Feltmate, 2017). Wetlands 

also provide habitat for a multitude of species that include Ontario’s freshwater turtles and 

amphibians, many of which at considered Species-At-Risk (Government of Ontario, 2018b). The 

swamps, marshes, bogs, and fens of Ontario comprise approximately twenty-five per cent of 

Canada’s wetlands, and six per cent of global wetlands (OMNRF, 2017). As such, these wetlands 

are valuable and unique ecosystems that must be maintained in order to protect our communities 

and valued environmental services.   

 Despite their now-evident importance, wetlands were not always understood as being vital 

and beautiful natural features. Rather, they were seen as dirty areas that were sources of disease, 
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and their drainage was encouraged (Wiebusch & Lant, 2017). Most conversion is estimated to 

have occurred in northern countries over the first half of the twentieth century, and this has resulted 

in the conversion of over 72% of Ontario’s pre-European Settlement wetland extent (Ducks 

Unlimited Canada, 2010; Zedler & Kercher, 2005). Agriculture has been a main driver of wetland 

conversion, as these areas have rich and moist soils that can provide optimal conditions for crop 

growth (Wiebusch & Lant, 2017; Snell, 1987). More recent drivers of wetland loss are urbanization 

and urban sprawl, which has contributed to continued wetland loss, despite policy shifts towards 

the protection of these natural areas (Ducks Unlimited Canada, 2010; Schulte-Hostedde, Walters, 

Powell & Shrubsole, 2007).    

The remaining wetlands in southern Ontario exist in human-dominated landscapes where 

they may be isolated, which can be problematic as wetland species and processes rely on the 

connectivity of these ecosystems (Thorslund et al., 2017; Baxter-Gilbert, Riley, Neufeld, Litzgus 

& Lesbarrères, 2015; Mackinnon, Moore & Brooks, 2005; Haxton, 2000). In the context of 

wetlands, connectivity is vital for both biological and hydrological reasons. Without connectivity, 

species cannot disperse to the habitats that they require throughout their lives, and declines can 

occur due to a subsequent lack of genetic diversity, which is needed for the maintenance of viable 

populations (Haxton, 2000; Reh & Seitz, 1990). When species attempt to disperse, which 

facilitates gene flow, additional species declines result due to the high mortality that is associated 

with dispersal across human infrastructure such as roads (Baxter-Gilbert, Riley, Lesbarrères & 

Litzgus, 2015; Mackinnon et al., 2005). Connectivity also plays a key role in climate change 

adaptation for biodiversity, since the species that we rely on for critical ecosystem services need 

to be able to disperse as their ranges shift to higher latitudes (Opdam & Wascher, 2004; Humphries, 

Thomas & Speakman, 2002) 
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The hydrological connectivity of wetlands is also vital since these ecosystems generally do 

not exist in isolation, but rather, are part of an interconnected system that regulates water balances 

within a hydrologic catchment (Thorslund et al., 2017). The regulation of water balances can help 

prevent flooding, which is a common issue where wetlands have been fragmented by less pervious 

surfaces, and is especially important given the increased threat of flooding that climate change 

brings (Moudrak et al., 2017; Thorslund et al., 2017). An additional result of hydrologic wetland 

connectivity is the maintenance of nutrient balances, as isolated wetlands are more likely to 

accumulate organic matter that can damage water quality (Racchetti et al., 2011). Planning for 

connectivity is critical for the biological and hydrological reasons mentioned, especially as climate 

change has the ability to further fragment sensitive wetland ecosystems via the alteration of 

hydrological regimes (Werner, Johnson & Guntenspergen, 2013; Zedler & Kercher, 2005). 

 Research Purpose  

While Ontario is one of the few provinces for which multiple comprehensive estimates of 

wetland loss exist, none have examined loss more recent than 2002, or for wetlands smaller than 

10 hectares (Ducks Unlimited Canada, 2010; Snell, 1987). Additionally, while we know that SWM 

ponds do not fulfill the same habitat provision role as wetlands, little to no knowledge exists on 

how they may contribute to landscape connectivity (Tixier et al., 2012; Moore et al., 2011). This 

study will fill these gaps in the literature by examining trends and drivers of wetland loss from 

2002-2011 and for wetlands as small as 0.5 hectares. This study also examines changes in 

landscape connectivity over time, and how SWM ponds influence connectivity. This work will 

inform better land use planning through an increased understanding of the state of wetlands and 

how to improve connectivity. The presence and function of wetlands should be of critical 

importance to decision makers, as these issues have broad-ranging impacts on ecosystem services, 
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such as flood mitigation, that human communities rely on now and will continue to even as climate 

change continues to worsen (Moudrak, Hutter & Feltmate, 2017). 

 Thesis Structure 

This is a manuscript-style thesis that includes two manuscripts, or data chapters. Following 

this introductory section, this thesis is structured as follows: 

Chapter 2: Literature Review 

This chapter contains a comprehensive overview of literature relevant to this thesis, which 

is sectioned into an overview of wetland ecosystems, conversion of wetlands, and ecological 

modelling. Conclusions are presented and lead to a discussion of the research questions that guide 

this thesis. 

Chapter 3: Methodology  

This chapter contains an explanation of the methodology used to prepare datasets for 

further analysis in each data chapter. The overall research approach is first introduced and 

discussed, this is followed by information on the study area and site selection within this area. Data 

management is then explained in terms of how data collection and cleaning occurred. 

Chapter 4: Manuscript 1 – Trends and Predictors of Wetland Conversion in Southern 

Ontario Municipalities. 

This chapter presents research on the trends and drivers of recent wetland conversion in 

southern Ontario. In addition to an examination of historical trends, a Markov model is used to 

predict future wetland change given different land use and land cover types. 
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Chapter 5: Manuscript 2 - Connectivity Contributions of Wetlands and Stormwater 

Management Ponds in Urbanized Landscapes. 

This chapter presents research on the contributions of wetlands and SWM ponds to 

landscape connectivity, and how connectivity has changed with recent wetland conversion in 

southern Ontario.  

Chapter 6: Synthesis 

This chapter acts as an overarching discussion of results brought forth in each data chapter. 

The significance and links between these results are first discussed. Then, limitations of this study, 

recommendations of beneficial areas for future research, and areas for change in wetland policy 

are discussed. 
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2.0 Literature Review 

This chapter contains a literature review that lays the foundations for this thesis by 

examining common themes and issues among the relevant bodies of work. This review begins 

with an introduction, which includes the purpose and type of the review, as well as details on the 

methods used to complete it. Subsequent sub-sections contain the key findings, which touch on 

pertinent issues and methods used by existing studies. Following this is a brief summary of the 

most pertinent findings of these. Lastly are the research questions that emerged from this review.  

 Introduction 

2.1.1 Purpose and Type 

According to Creswell (2013), there are typically four types of literature review, with 

each taking one of the following purposes: to integrate what other studies have done and found, 

criticize other studies, build bridges between related topics, and/or identify the central issues in a 

field. Most theses integrate past works (1), then organize the literature into related topics (3), and 

summarize it by identifying central issues (4). This study will use quantitative methods, for 

which literature tends to be summarized at the beginning of the study as a separate section, 

which gives rise to the research questions or hypotheses. This section gives the study context, 

which is revisited in the discussion, when results of the study are compared with the existing 

literature. This is done in each of the data chapter’s discussion sections (Sections 4.5 & 5.5), as 

well as in the “Synthesis” chapter (Section 6.0) 

For a quantitative study, the review should include sections related to the major 

independent and dependent variables, and consider studies that compare these variables. The 

final review should generally be composed of five parts, which include: the introduction, the 

independent variable topics, the dependent variable topic, studies that address both the variables, 
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and a summary. If there are several variables of study, subsections can be used, or focus can be 

placed on the most important variable. When looking for studies that compare the variables, it is 

possible that no literature will exist, identifying a gap where the study can contribute. Lastly, the 

summary should highlight key studies, themes, and suggest the need for study (Creswell, 2013) 

2.1.2 Methodology 

To begin this literature review, I initially synthesized my ideas into three main topics, 

which formed my main search areas. These topics were: land use and land cover change, 

ecological modeling, and habitat creation. These topics were later modified and expanded upon 

to form the various sub-headings found in this review. Broad searches were performed for each 

of these topics and I consulted some of the most highly cited and recent literature for key terms 

and common sources. I compiled lists of key terms for each of these topics, an example being 

that for the sub-subtopic of stormwater management ponds, key terms include: constructed 

wetlands, stormwater, wet ponds, ecosystem services, wetland health, wetland services, and 

ecological engineering. I then used these terms to guide further literature searches, and garnered 

further sources from these.  

Often, the first articles I examined were secondary sources, or reviews, which helped me 

to find the primary literature. This helped me to ensure that I was reading work that is found 

relevant by experts in the field. Additionally, I found different databases and search engines to be 

more useful for different goals. For example, Google Scholar and the University of Waterloo 

Library website were very helpful for quickly finding sources when I already had a citation from 

another piece of literature. However, when I wanted to search in more detail, I mostly focused on 

the use of in-depth databases, such as Scopus, while Google Scholar was often also adequate for 

this purpose. 
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As I selected studies I wished to include, I briefly summarized them, and sectioned my 

summary into the categories suggested by Creswell (2013), which include: context, purpose, 

methodology, results, and critiques. I used a spreadsheet to organize these summaries for each of 

the main themes and their subthemes, which are represented by the subsequent headings.  

 Wetland Ecosystems 

2.2.1 Stormwater Management Ponds 

Modern landscapes are less conducive to water retention than their natural counterparts, 

as agricultural fields and urbanized areas do not allow for the same amount of water infiltration 

as wetlands and forests do (Dietz & Clausen, 2005). In the face of climate change, there is an 

increased importance of stormwater management (SWM), and engineered pond facilities are 

seen as best management practices to remove nutrients and pollutants from water runoff (Tixier 

et al., 2012; Moore et al., 2011). The use of SWM ponds for this purpose is generally preferred 

over using existing wetlands, as stormwater can cause damage to wetlands through hydrologic 

changes, increased sedimentation, and introduction of chemical contaminants (Schulte-Hostedde 

et al., 2007). These facilities have also been presented as a means of increasing available habitat 

for wildlife and might be able to increase connection of the wetland system (Thorslund et al., 

2017; Tixier et al., 2012). However, they do not function exactly as wetlands do, and there is 

potential for them to have deleterious ecological effects (Tixier et al., 2012). 

To examine the ecological risks of such facilities, Moore et al. (2011) compared effluent 

organic nitrogen (ON) concentrations and ON to Total Nitrogen (TN) ratios against untreated 

influent, as well as reference ON data from a singular wetland in Northern Carolina. SWM ponds 

are known to provide phosphorus and nitrogen removal, but ON has been found to persist in 

effluent from these facilities, which is also the case in wetlands that can be an ON source for 
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receiving streams (Hathaway & Hunt, 2010; Pellerin et al., 2004). This persistence of ON points 

towards the possibility of there being an irreducible concentration of ON, due to generation by 

wetland vegetation (Hathaway & Hunt, 2010). Some forms of organic nitrogen, including urea 

and free amino acids, are known to have effects on phytoplankton and bacterial communities, 

which could lead to shifts in their composition (Berman & Bronk, 2003; Berg, Glibert, 

Jorgensen, Balode & Purina, 2001). The Moore et al. (2011) study found that organic nitrogen 

levels were reduced after SWM pond treatment when compared to urban influent, and that these 

features may help to re-establish the balance between organic and inorganic nitrogen forms. This 

study suggests that to examine the biological effects of organic nitrogen effluent, further research 

on the bioavailability of these nutrients is required (Moore et al., 2011). 

Tixier et al. (2012) focused on habitat quality by analyzing a Toronto SWM pond’s 

chemical composition, sediment toxicity, and composition of the benthic community. The 

benthic community test focused on oligochaetes, which are good bioindicators of aquatic 

ecosystem sediment quality and tend to be pollution tolerant. Heavy metal and polycyclic 

aromatic hydrocarbons are known to accumulate in SWM pond sediment (Kamalakkannan, 

Zettel, Goubatchev, Stead-Dexter & Ward, 2004). These compounds were found in high levels in 

the ponds studied by Tixier et al. (2012). Additionally, seasonal concentrations of heavy metals 

in the pond water and chloride accumulation in the sediment pore water likely influenced the 

benthic community’s composition most. This study suggests biomonitoring, especially that 

which includes oligochaetes, as a useful method to better manage these facilities that may be too 

far from natural systems and poor in habitat quality to host biodiverse communities (Tixier et al., 

2012).  



 

10 

 

Due to issues surrounding pollutants, and other biotic and abiotic factors, it is possible 

that SWM ponds may function as ecological traps, which are habitats that species prefer but can 

lower their fitness (Sievers et al, 2018). Clevenot, Carre & Pech (2018) performed a review of 

the factors that may lead to SWM ponds being ecological traps or high-quality breeding habitat 

for amphibians, using 25 publications that looked at the colonization of SWM ponds by 

amphibians in urban or highway areas. They found the main factors that influence ecological 

viability of SWM ponds to be: the shape of ponds, biotic factors (i.e., vegetation), abiotic factors 

(i.e., water level), and water pollutants. However, these authors also determined that due to a low 

number of available publications, more research is needed to be able to draw stronger 

conclusions about the status of SWM ponds as ecological traps (Clevenot, Carre & Pech (2018). 

Further, Sievers et al. (2018) found the first empirical evidence of SWM ponds acting as 

ecological traps for frogs, as tadpoles showed lower survival and less response to predator 

olfactory cues when they were raised in more polluted SWM ponds. They also state that more 

information is needed to determine how SWM ponds act as habitats, so that management 

decisions can be made to mitigate their associated ecological costs (Sievers et al., 2018). 

As discussed, constructed SWM ponds have some similarities to natural wetlands, but are 

generally not equal from a biophysical perspective. There are several types of SWM pond, which 

are outlined by the Ontario Ministry of the Environment (OME) (OME, 2003). Those determined 

to be visually similar enough to a natural wetland were included in this study, and include wet 

ponds, stormwater wetlands and hybrid ponds. Excluded types include dry ponds, which are 

designed to only hold water for up to 24-hours. Wet ponds have the majority of their volume 

comprised by deep water zones, with aquatic plants in approximately 20% of the surface area, in 

perimeter shallow zones. Conversely, stormwater wetlands have the majority (70%) of their area 



 

11 

 

comprised of the shallow zones, and hybrid ponds combine these two in a series, with at least 

50% of the pond’s volume occurring in deep water areas (OME, 2003). 

2.2.2 Wetland-Dependent Species 

Inland wetlands provide critical habitat for a variety of species, which include 

herpetofauna, avifauna, and flora (Quesnelle, Fahrig & Lindsay, 2013; Ashley & Robinson, 

1996). Conversion of wetland habitats and the resulting fragmented landscapes have concomitant 

effects on these species, and can lead to biodiversity decline (Quesnelle et al., 2013). In addition 

to the loss of the physical wetland, these species are impacted by management of adjacent land, 

which could contain additional critical habitats that are required for activities like nesting or 

foraging. Deleterious uses on adjacent land can also have a large impact, as is seen in the case of 

road mortality for species that attempt to disperse across a developed landscape (Quesnelle et al., 

2013). Given their increasing rarity in an urbanizing and agricultural landscape, Southern 

Ontario wetlands hold unique wetland-species relationships for a host of at-risk-species (Findlay 

& Houlahan, 1997; Snell, 1987). 

Herpetofauna 

Ontario is home to a variety of at-risk herpetofauna, including reptiles such as snakes and 

freshwater turtles; and amphibians such as salamanders, skinks, and frogs (Government of 

Ontario, 2018b). Federally, all eight of Ontario’s native freshwater turtle species are listed as at-

risk, with four species of special concern, one threatened species and three endangered species, 

while seven of eight species are listed as at-risk provincially (COSEWIC, 2018; Government of 

Ontario, 2018b). According to Cushman (2006) amphibians are the most threatened with 

extinction of all vertebrates in the current anthropogenic-driven extinction event. This highlights 

the vulnerability of Ontario’s seven endangered amphibian species (Government of Ontario, 
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2018b). Further, among land use-related drivers of extinction, road mortality is a prevalent driver 

of decline among herpetofauna species, especially as it pertains to turtles, who have long life 

histories and tend to be drawn to roadsides for nesting (Thompson, 2015; Patrick, Gibbs, 

Popescu & Nelson, 2012; Steen & Gibbs, 2004; Haxton, 2000; Ashley & Robinson, 1996).  

Ashley & Robinson (1996) studied road mortality of amphibians, reptiles, mammals, and 

birds on the Long Point causeway, which is a two-lane paved road adjacent to a Southern 

Ontario protected area. They found temporal variations in mortality, with peaks in the spring and 

fall that are consistent with life history events, such as reproduction and dispersal. Similar results 

were found by Mackinnon et al. (2005) in their study of reptile road mortality near Georgian 

Bay, a major water body in central Ontario. They observed seasonal mortality peaks for both 

turtles and snakes, which corresponded with events such as nesting. Mortality was highest closer 

to the major water body and away from driveways, where human development is dense and there 

is little habitat available. Crossing and mortality patterns were also explained by the proximity to 

adjacent wetland habitat and water crossings, road intersections that increased the road area, and 

buildings that were often located close to water (Mackinnon et al., 2005). 

To prevent road mortality, exclusion and connectivity structures that divert species under 

or over a roadway are now commonly installed along major roadways (Baxter-Gilbert, Riley, 

Neufeld, et al., 2015). Baxter-Gilbert, Riley, Lesbarrères, et al. (2015) studied the effectiveness 

of these structures for turtle mortality mitigation along a major highway expansion in Central 

Ontario, and found no difference in the abundance of turtles on the road between areas with and 

without mitigation. Part of this failure was due to mitigation structures not providing effective 

exclusion, and also being poorly located in relation to existing dispersal corridors. In order for 

these structures to be more effective, they must be located in a manner that is conducive to the 
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spatial ecology of species, and should be made of enduring materials that fully exclude the 

species, such as concrete gravity walls (Baxter-Gilbert, Riley, Neufeld, et al., 2015).   

Avifauna 

Wetlands in Canada provide significant habitat for migratory bird species of continental 

and international importance (Dahl & Watmough, 2007). Relatedly, the Ramsar Convention 

(Section 2.3.2 “Policy”) was initiated by parties concerned about habitat for migratory birds, 

who rely on wetlands such as those in Ontario that are designated as internationally important 

(OMNRF, 2017). Quesnelle et al. (2013) assessed the independent effects of landscape factors 

that are thought to contribute to wetland bird and turtle declines, such as wetland area, 

configuration, and landscape matrix composition. They found that the amount of wetland at a 

landscape-scale was the most important variable for bird species and as such, wetland loss is the 

primary landscape variable associated with the decline of wetland birds (Quesnelle et al., 2013).  

With the creation of wetlands comes the question of species recruitment, especially in 

fragmented landscapes such as those found in Southern Ontario. Pynenburg, Moore & Quinn 

(2017) examined the recruitment of common terns to restored habitat with the use of call 

playbacks and decoy birds. This habitat included artificial islands for nesting purposes. Although 

birds were recruited and successfully nested in the new habitat, Pynenburg et al. (2017) did not 

find evidence of these social attractants being effective, and the main driver for recruitment was 

likely other tern individuals that had nested in the wetland previously. Although this study 

focused on a restored coastal wetland, it suggests that the availability of good-quality artificial 

nesting habitat may be sufficient to re-establish wetland-dependent bird species (Pynenburg et 

al., 2017).  
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Flora 

Plant communities are fundamental to the function of wetlands and the ecosystem 

services that they provide, such as carbon sequestration (Houlahan, Keddy, Makkay & Findlay, 

2006; Zedler & Kercher, 2005). The composition of plant communities and their persistence can 

be dependent on wetland type and adjacent land uses. Houlahan et al. (2006) examined the 

effects of adjacent land uses that include forest cover, road density and building density on the 

species richness and community composition of wetland plants. They found wetland size to be 

the most important predictor of species richness, especially for forest species and rare native 

species, while size had little bearing on the relationship with invasive species. A strong 

relationship existed between land uses 250-300 m from the wetland and species richness, as seed 

propagule sources further than this are likely limited in terms on their ability to impact wetland 

plant communities. However, wetlands also can receive seed sources via migrating waterfowl, 

which Farmer et al. (2017) found to be able to disperse weed seeds up to a potential 2900 km of 

the source, meaning that land uses on areas beyond adjacent lands can impact wetland plant 

communities. Due to a great deal of variation occurring in species composition between 

wetlands, there is a need for a diversity of these ecosystems in order to conserve a landscape’s 

diversity in full (Houlahan et al., 2006). This connects to the importance of small wetlands, 

which Houlahan et al. (2006) found to host the least frequently occurring species, indicating that 

species diversity cannot successfully be conserved by only protecting large wetlands. 

2.2.3 Wetland Connectivity  

It is widely accepted that ecosystem connectivity is critical for biological conservation, as 

without dispersal of animals and plants, breeding and subsequent gene flow among populations 

is greatly reduced (McRae & Beier, 2007; Slatkin, 1987). Isolated populations will eventually 
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lose reproductive fitness as they become inbred and these populations become more susceptible 

to deleterious stochastic events like disease (Saccheri et al., 1998). For this reason, maintaining 

and re-creating landscape connectivity is a conservation priority in many habitats, including 

wetlands (McRae & Beier, 2007; Environment Canada, 2013; Kininmonth, Bergsten & Bodin, 

2015). Unfortunately, many environmental management decisions are focused on wetland 

ecosystems at a local level, without considering these as a landscape-wide system (Thorslund et 

al., 2017).  

Importance of wetland connectivity extends beyond species movement at the landscape 

level, for the hydrologic movement within these ecosystems must also be considered (Thorslund 

et al., 2017). Thorslund et al. (2017) refer to a hydrologically connected system of wetlands and 

their entire catchment as a “wetlandscape” and argue for the need to consider wetland function at 

this large scale. A key reason for this concept is that hydrologic functions such as groundwater 

and evapotranspiration occur within such wetlandscapes, and impacts on one component can be 

felt across the watershed. To evaluate such effects, they examined functional differences between 

individual wetlands and wetlandscapes, performed an expert survey, a hydro-climatic change 

analysis, and general wetland literature review. They generally found a mismatch between the 

scale of wetland research and management, which tends to be too narrow when compared to the 

reality of the broader hydrologic connectivity in these wetlandscape systems (Thorslund et al., 

2017). 

Preston & Bedford (1988) first emphasized the need to examine landscape-scale impacts 

when considering projects that affect a single wetland, due to the potential for individual 

decisions to result in cumulative effects across the wetland system (Thorslund et al., 2017). 

Although the idea of cumulative effects is relatively simple, it is scientifically difficult to 
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evaluate. In order to do so, it is necessary to look at effects on spatial scales that encompass the 

wetland function and extend over a temporal scale that is conducive to the disturbances on these 

(Preston & Bedford, 1988). For example, the habitat support provided by wetlands is based on 

the spatial scale of a species’ range, so the effects of wetland change on habitat connectivity 

would best be evaluated across this species range (Preston & Bedford, 1988).  

 Wetland Conversion 

2.3.1 Trends 

Although it is known that a great deal of the world’s wetlands have been drained, their 

loss has not been well documented (Dahl, 2004; Schulte-Hostedde et al., 2007). Modern 

mapping and Geographic Information System (GIS) methods have allowed for wetland 

evaluation and change analysis to be performed retroactively; however, the lack of a 

standardized approach means that global and regional estimates of loss tend to vary (Dahl & 

Watmough, 2007; Ducks Unlimited Canada, 2010; Zoltai & Vitt, 1995). These inconsistent 

global estimates range anywhere from 5.3 to 12.8 million km2 of wetlands lost worldwide with 

one estimate stating that half of the world’s wetlands as lost (Zedler & Kercher, 2005). The 

majority of this loss is estimated to have occurred in northern countries during the first half of 

the twentieth century, while conversion since the 1950s has increased in tropical and subtropical 

areas. It is also worth noting that even when wetlands have not been converted, a great deal are 

often degraded in terms of ecohydrological functions (Zedler & Kercher, 2005). 

Estimates of wetland loss in the United States were generated by Dahl (1990), who 

compared the pre-colonial wetland extent with the 1980 extent. Pre-colonial estimates were 

based on colonial or state records, land use records that traced the conversion of lands by use 

categories, drainage statistics, the extent of hydric soils, and historical wetland acreage data. 
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National Wetland Inventory data were used for 1980s wetland extent, and although these were 

more complete than colonial estimates, they were fragmented, as some states had incomplete 

data. Findings show that in colonial times, the land currently occupied by the United States 

contained approximately 392 million acres of wetlands, with over half of these (221 million 

acres) in the lower forty-eight states, and just under half (170 million acres) in Alaska (Dahl, 

1990). Over this study’s two-hundred-year period, the lower forty-eight states lost approximately 

53% of these wetlands, while Alaska lost only a fraction of 1% (Dahl, 1990). Overall, twenty-

two states lost 50% or more of their original wetland extent, with the highest percentage loss in 

California (91%) and highest loss by area in Florida (9.3 million acres) (Dahl, 1990).  

Canada is currently home to around a quarter of the world’s wetland area, yet it is 

estimated that approximately 65-85% of the pre-European settlement wetland area has been lost 

(Asselen, Verburg, Vermaat & Janse, 2013). Despite the existence of these prior estimates, work 

is underway to complete a national wetland inventory (Ducks Unlimited Canada, 2019). 

Provinces have created more detailed inventories, which generally include the classification 

criteria put forth by the Canadian National Wetlands Classification system to determine what 

constitutes a wetland (Zoltai & Vitt, 1995). Amani et al. (2019) independently used this system 

to classify Canada’s wetlands with the use of Landsat-8 imagery and image processing 

techniques within the Google Earth Engine. With an overall accuracy of 71%, they estimated that 

36% of Canada is covered by wetlands (Amani et al, 2019). 

Dahl & Watmough (2007) stated that there was a lack of comprehensive and 

scientifically sound data on the status and conversion trends of Canadian wetlands, aside from 

data put forth by several independent, region-specific studies. Since a shared concern for North 

America’s wetlands exists among Canada and the United States, this lacking data is not only 
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problematic for Canada, and it is suggested that a more collaborative cross-border approach 

needs to be taken (Dahl & Watmough, 2007). The Canadian Wildlife Service has implemented a 

monitoring program on the status and trends of wetlands in Canada’s Prairie Ecozone, which 

found an annual loss rate of 0.31% of this area’s wetlands between 1985 and 2001 (Watmough & 

Schmoll, 2007). Work is underway to complete a more comprehensive Canada Wetlands 

Inventory, which will be an important information source that can inform efforts to sustain both 

Canada’s and North America’s wetlands as a whole (Dahl & Watmough, 2007). Some parts of 

this inventory have now been completed for the Boreal and Prairie ecozones and Quebec’s Saint 

Lawrence Lowlands; it is expected that this inventory will be completed nation-wide within five 

years after additional funding is secured (Ducks Unlimited Canada, 2019). 

Consistent with Zoltai & Vitt's (1995) statement that more detailed wetland inventories 

exist provincially than do federally, two comprehensive studies exist of wetland conversion in 

Southern Ontario, by Snell (1987) and Ducks Unlimited Canada (2010). Snell's (1987) study, 

used soil data, land use data, and supplementary information to map wetlands and conversion on 

125 map sheets. Subsequently, Ducks Unlimited Canada (2010) replicated this study using GIS 

techniques but extended their study period up to 2002. Although differences between these 

studies are minor, they are likely based on the somewhat different data sources. An example is 

the use of country soil surveys and quaternary geological data by Ducks Unlimited Canada 

(2010) instead of Canada Land Inventory agricultural capability maps and the National 

Topographic System (Ducks Unlimited Canada, 2010).  

Both of these change studies found that the pre-European settlement extent of wetlands in 

Southern Ontario was roughly 2 million hectares, with the exact area found to be 2.38 million 

hectares (ha) by Snell (1987), and 2.03 million ha by Ducks Unlimited Canada (2010). Snell 



 

19 

 

(1987) found an overall reduction in wetland area equal to 61% of the pre-settlement area by 

1982, with only 0.92 million ha remaining at this time. Meanwhile, Ducks Unlimited Canada 

(2010) found a 72% loss of pre-settlement wetland extent by 2002, equal to 1.4 million ha of 

wetland lost. Although the rate of loss has slowed down in recent history, there were still 70,854 

ha of wetland lost from 1982 to 2002, an average of 3,543 ha per year, or 354 large (10 ha) 

wetlands per year. It is also important to note that the detection limits of these studies mean that 

they provide conservative estimates of wetland loss, for example, Ducks Unlimited Canada's 

(2010) study only included wetlands that were 10 ha or more in area. This means that the 

conversion of smaller wetlands, which still have eco-hydrological significance, were likely 

missed.  

From an overall land use and land cover change perspective, Cheng & Lee (2008) 

examined change in Ontario’s Greenbelt from 1993-2007; this is an area that now contains 

protected green space, but has undergone extensive conversion. Cheng & Lee (2008) used 

Landsat imagery to assess this change, which is an efficient method of surveying landscapes, but 

may have resulted in an underestimation of the actual amount of land use conversion due to the 

imagery’s coarse resolution (28.5 m). Results show prevalent land conversions that include 

urbanization, followed by the creation of golf courses and stone quarries. However, little wetland 

or forest conversion was found, which may be due to the period of study, the location within 

Ontario’s protected Greenbelt, or the resolution-based limitations of LANDSAT data (Section 

2.4.1) (Cheng & Lee, 2008).  
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2.3.2 Drivers  

Management  

A variety of anthropogenic actions related to the management of land use are the driving 

factors for wetland conversion and loss, and include activities related to agriculture, resource 

extraction, and urbanization (Schulte-Hostedde et al., 2007; Dahl, 2004). These activities are 

regulated by the policies discussed in Section 2.3.2 (“Policy”) and the various agencies that are 

tasked with implementing and regulating their use, such as the Ontario Ministry of Natural 

Resources, and the Province’s thirty-six Conservation Authorities (OMNRF, 2017). Wetlands 

were previously thought to be sources of disease and barriers for development, and as such, their 

conversion was encouraged in many countries, including the United States (Wiebusch & Lant, 

2017). With scientific advances has come a shift in the attitudes towards these natural features, 

and a subsequent shift in management with the Canadian focus now resting on having no net loss 

of wetlands (Dahl & Watmough, 2007). However, this does not necessarily mean that wetlands 

are not still drained, and they are still threatened with loss and conversion (Ducks Unlimited 

Canada, 2010). 

The drainage of wetlands for agricultural purposes has been the main driver of wetland 

conversion globally, as they are productive, nutrient-rich environments. Wiebusch & Lant (2017) 

performed an economic analysis of wetland conversion given crop prices in the United States, 

based on the hypothesis that the crop prices must be high enough to offset the cost of drainage, 

which is a time and resource-intensive process. They also examined two drainage-related 

programs, the Agricultural Conservation Program, which existed in the mid-1900s and decreased 

the cost of drainage through subsidies; and the Wetland Reserve Program, which existed after 

1991 and is a lump-sum payment program for wetland conservation. It was found that this shift 
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towards conservation-oriented programs was effective at reducing wetland conversion, while 

short-term increases in crop prices that even occurred during the conservation program period 

could be responsible for an observed net loss of wetlands. This study illustrates that in order to 

prevent agricultural conversions of wetlands, policy makers must generally be able to offer a 

benefit that offsets any gain a farmer may receive from converting a wetland (Wiebusch & Lant, 

2017). 

One resource industry in Southern Ontario is the aggregate industry, which Cheng & Lee 

(2008) found to account for 13% of all general land conversion from 1993 to 2007 within what is 

now Ontario’s Greenbelt, via the creation of gravel pits and quarries. At a much smaller 

percentage than for overall land conversion, Ducks Unlimited Canada (2010) found that resource 

activities only accounted for a total of 1.4% of all wetland conversions from the pre-European 

settlement wetland extent to 2002. Of this 1.4%, 1.3% of this was attributable to tree plantations, 

leaving only 0.1% of wetland conversions attributed to extractive industries like the aggregate 

industry. On the other hand, aggregate operations can also result in wetland construction during 

the rehabilitation phase. Santoul, Gaujard, Angélibert, Mastrorillo & Céréghino (2009) found 

these types of constructed wetlands to support water birds and increase ecological connectivity 

by acting as intermediate steps between wetlands. 

Urbanization is a prominent process that Cheng & Lee (2008) found to account for 68% 

of all land conversion in their study, and can generally be a key driver of wetland loss (Schulte-

Hostedde et al., 2007). Although Ducks Unlimited Canada (2010) only found built-up areas to 

account for 4.2% of converted wetlands of Southern Ontario, more than 50% of these 

conversions occurred in the Metropolitan areas of Toronto and Peele, which are within the 

rapidly growing Golden Horseshoe Region. This study focused on large wetlands, so it is very 
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possible that smaller wetlands are being lost at a higher rate in urbanizing areas (Ducks 

Unlimited Canada, 2010). While wetlands are lost through urbanization, this process also leads 

to the implementation of SWM, with the primary objective of controlling sedimentation and 

erosion during construction in order to manage the quality of downstream waters afterwards 

(Schulte-Hostedde et al., 2007). Due to the potential negative effects of stormwater quantity and 

contamination on wetlands, they are generally not permitted for this use in Ontario, and the 

management of SWM ponds is implemented through specific sub-watershed, site and 

subdivision, and SWM plans. With OME’s (2003) SWM design guidelines, the focus of SWM 

transitioned from being purely flood-control-oriented, to water-quality-oriented, including design 

guidelines for naturalized features (OME, 2003; Schulte-Hostedde et al., 2007).  

Policy 

Globally, wetland conservation is governed by the Ramsar convention, which has 170 

contracting parties member states and 2,331 wetland sites of international importance, this 

amounts to a total area of 249,591,447 hectares (Ramsar Convention Secretariat, 2018a, 2018b). 

These wetlands of international importance are designated based on standardized criteria, 

including if the wetland contains a rare, representative, or unique example of a wetland type 

within the biographic region; or, meets criteria to conserve biological diversity based on 

ecological communities, water birds, fish, or other taxa (Ramsar Convention Secretariat, 2014). 

Canada signed the Ramsar Convention in 1981, forming an agreement to use wetland resources 

sustainably, designate internationally important wetlands, and conserve them (Schulte-Hostedde 

et al., 2007). Although there are thirty-six Ramsar sites in Canada, Schulte-Hostedde et al., 

(2007) state that these sites are only representative of a small portion of Canada’s wetlands, for 
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which Environment Canada is responsible, while the rest fall under the jurisdiction of provincial 

and municipal governments (Dahl & Watmough, 2007). 

Canadian policy takes a “no net loss” approach to wetland conservation, which allows for 

offsetting of wetland losses through the creation of constructed wetlands elsewhere on the 

landscape (Dahl & Watmough, 2007). This is also the approach that was historically taken in the 

United States (Dahl & Watmough, 2007). However, in 2004, wetland policy in the United States 

changed to include a desire for increased wetland quantity and quality as well as retention of 

wetland function. Dahl & Watmough (2007) found that these policies were effective in 

promoting a net wetland gain from 1998-2004.  

Policies that focus on this type of wetland offsetting are criticized for a variety of reasons, 

including that they simplify wetlands to their area alone, allowing them to be replaced with 

features that are inadequate in terms of their biophysical functionality (Bendor, 2009). More 

specific to Canada, the Federal Policy on Wetland Conservation aims to “promote the 

conservation of Canada’s wetlands to sustain their ecological and socio-economic functions, now 

and in the future” (Government of Canada, 1991). Within this policy, offsetting of wetland 

function is facilitated by the goal to have “no net loss of wetland functions on all federal lands 

and waters” (Government of Canada, 1991). However, in their discussion of restoration, 

creation, and recovery of U.S. wetlands, Kentula (n.d.) states that the functional replacement of 

wetlands has generally not been demonstrated, and that restoration of damaged or destroyed 

wetlands is more likely to be successful than wetland offsetting. 

In the Province of Ontario, wetland management is governed by a variety of legislative 

tools, which began to be developed in 1981 (Schulte-Hostedde et al., 2007). The initial system 

had three phases to its completion, which began with the 1984 establishment of the Ontario 
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Wetland Evaluation System (OWES); a 1981 policy under the Planning Act; and lastly, a host of 

incentive-, education-, and strategic direction-focused programs and partnerships. Through their 

analysis of Ontario Wetland Policy, Schulte-Hostedde et al. (2007) found that there has been 

incremental improvement of wetland protection, but the OWES fails to include wetlands smaller 

than 2 ha in most instances, despite these wetlands being important from a landscape-perspective 

(Thorslund et al., 2017). Today, wetlands in Ontario are governed by over twenty pieces of 

legislation that are implemented by agencies that include the federal and provincial governments, 

conservation authorities, and municipalities. A wetland conservation strategy was proposed for 

the province by OMNRF (2017), but there is no one provincial policy currently covering 

wetlands (Warren, 2014). 

The main provincial legislation for wetlands on private land comes through the 2014 

Provincial Policy Statement, under the Planning Act (Government of Ontario, 2019d). This 

policy protects wetlands designated by the OWES as “Provincially Significant” from both 

development and site alteration based on their location (OMNRF, 2017). Such locations include 

Ecoregions 5E, 6E, and 7E, coastal wetlands, and other locations where alteration is only 

permitted if there will be no negative impacts on the wetland or is ecological function, such as in 

the Canadian Shield north of Ecoregions 5E, 6E, and 7E (Government of Ontario, 2019d). 

However, these provisions in the Provincial Policy Statement only lead to the protection of 

approximately a third of Ontario’s wetlands (Warren, 2014). Another provincial policy that 

regulates wetland conservation in Ontario is section 28 of the Conservation Authorities Act, 

which gives power to the Province’s thirty-six Conservation Authorities to “prohibit, regulate, or 

require permission” for development that may interfere with wetlands (Government of Ontario, 

2019a; Rich, 2014). 
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As discussed (Section 2.3.2 “Management”), drainage for agriculture is a predominant 

driver of wetland loss, and is regulated provincially in Canada (Walters & Shrubsole, 2005). In 

Ontario, drainage is dictated by legislation that includes the Drainage Act, which facilitates the 

creation of drainage works, but does not specifically acknowledge wetlands (Ducks Unlimited 

Canada, Earthroots, EcoJustice & Ontario Nature, 2012; Government of Ontario, 2018a). This 

act allows for removal of natural features like wetlands if the removal leads to an “improvement” 

of land, such as increased crop production. However, some protection may come through the 

mandate that Conservation Authorities be informed of drainage works (Walters & Shrubsole, 

2005). Review of the Drainage Act occurred in 1972 and recommendations involved there being 

a need to incorporate environmental impact statements and cost-benefit analyses to improve 

outcomes in terms of wetland conservation. However, these recommendations were replaced 

with a mechanism that involves referral to wetland stakeholders, including Conservation 

Authorities, who have regulatory and bargaining power. Although this process was implemented, 

such regulation through the Drainage Act has had a limited influence on wetland conservation, 

and losses have continued on private land (Walters & Shrubsole, 2005).   

Regional plans also play a role for wetland protection in Ontario, with relevant 

instruments including: the Niagara Escarpment Planning and Development Act and Plan, the 

Oak Ridges Moraine Conservation Act and Plan, the Greenbelt Act and Plan, Places to Grow 

Act, the Growth Plan for the Greater Golden Horseshoe, the Lake Simcoe Protection Act and 

Plan, and Municipal Official Plans (Ducks Unlimited Canada et al., 2012). As one of the largest 

examples of these plans, the Greenbelt Plan spans a total area of 720,000 ha and surrounds a 

great deal of Ontario’s highly populated Golden Horseshoe Region, including lands previously 

designated with the Oak Ridges Moraine and Niagara Escarpment Plans. This plan was primarily 
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generated to protect sensitive environmental and agricultural land from urban sprawl and takes a 

systems-based approach to planning in order to restore and reconnect natural features in order to 

retain their ecosystem services. Ducks Unlimited Canada et al. (2012) examined the protection of 

wetlands within the Greenbelt, and found that land use policies in this region are more effective 

at protecting wetlands from development than in other areas of the Province. 

As the policy approach to wetland management in Ontario is somewhat complex and 

fragmented, other pieces of legislation do exist that somewhat indirectly impact the conservation 

of wetlands (Ducks Unlimited Canada et al., 2012). These include the Endangered Species Act, 

Environmental Assessment Act, Aggregate Resources Act, and Ontario Water Resources Act. An 

example of this indirect approach to conservation exists in the case of the Endangered Species 

Act’s prohibition for the damage or destruction of species-at-risk habitat, which includes 

wetland-dependent species (Section 2.2.2) (Ducks Unlimited Canada et al., 2012). Additional 

wetland protection also comes in the form of stewardship programs for private land that include 

the Conservation Lands Tax Incentive Program, which offers 100% property tax exemptions for 

eligible natural heritage features on private property (Government of Ontario, 2019b). Eligible 

features include areas of natural and scientific interest, Niagara Escarpment Natural Areas, 

endangered species habitat, provincially significant wetlands and community conservation lands 

(Government of Ontario, 2019b).  

Climate Change  

In addition to anthropogenic drivers of loss, there is evidence that wetland ecosystems are 

likely to be vulnerable to the effects of climate change, especially due to the alterations of water 

volume, which impacts wetland area and integrity (Zedler & Kercher, 2005). Although they are 

not the focus of this thesis, coastal wetlands are likely to be particularly affected by sea level 
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rises from climate change, which can reduce shoreline vegetation and subsequently impact 

fisheries habitat and the ability of shorelines to further mediate sea level rises. Coastline 

subsidence may even affect upland freshwater wetlands as rising saltwater mixes with them, 

making it unlikely for freshwater species to persist in affected areas (Zedler & Kercher, 2005).  

Werner, Johnson & Guntenspergen (2013) examined the effects of recent warming on 

wetlands in the Prairie Pothole Region of North America, using a hindcast approach between two 

time periods (1946-1975 and 1976-2005). They used the “wetlandscape” model to simulate 

historic wetland conditions, including wetland surface water, groundwater and vegetation 

dynamics, and then determined if this warming has been able to impact wetland function. In this 

model, the interaction between climate and wetland function was evaluated as wetland 

productivity through the cover cycle index. This index was based on two equally weighted 

variables: the proportion of time spent in a hemi-marsh stage, and the mean number of cover 

cycle state changes. Results of this model showed that recent warming was sufficient to shift 

trends towards shortened hydroperiods and less dynamic vegetation cycling, leading to lowered 

wetland productivity in some parts of the Prairie Pothole Region, including the Canadian 

prairies. As a result of climatic shifts, a 7% increase in low-productivity wetlands was observed 

in the middle of the study area (Werner et al., 2013).  

This link between climate change and wetland loss is mirrored by findings by Opdam & 

Wascher (2004), who related climate change to ecological fragmentation, which is defined as the 

breaking apart of habitat (Moore, 1962; Curtis, 1956). They found that an increased frequency of 

extreme weather events was likely to broaden landscape gaps and restrict ecological ranges, 

especially in generally fragmented landscapes (Opdam & Wascher, 2004). These findings are 

relevant for wetlands in the Prairie Pothole Region, which have been degraded through 
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conversion for agricultural and urban land uses (Werner et al., 2013). If this degradation had not 

occurred, the observed shift of favourable climatic conditions to these more degraded regions 

could have led to increased wetland productivity that may have offset the observed productivity 

decreases (Werner et al., 2013).  

It is important to note that while climate change is likely to have negative impacts on 

species, which could be due to decreases in connectivity, Fahrig (2019) cautions against the 

automatic assumption of fragmentation as being detrimental to species. This is especially 

important as the observation of fragmentation has been used as a rationale to only conserve large, 

contiguous habitats, which ignores the value of small habitat patches (Fahrig, 2019). A key flaw 

of the fragmentation concept is that it has been largely based on the extrapolation of patch-scale 

patterns and island biogeography theory to landscape effects (Fahrig 2019; Fahrig et al., 2018). 

Fahrig et al. (2018) state that more landscape-scale empirical studies of the effects of 

fragmentation are required to determine what the actual effects of fragmentation are on 

biodiversity. In general, there is no substantiated evidence that groups of many small habitat 

patches have lower ecological value than fewer large, contiguous patches (Fahrig et al., 2019).  

 Ecological Modelling 

Ecological models are a representation of reality that help us to interpret ecological 

processes and predict how they may change in the future (Whittingham, Stephens, Bradbury & 

Freckleton, 2006; DeAngelis & Waterhouse, 1987). Data are generally collected in an 

observational manner and it is difficult to determine what factors explain the data, so description 

of the system is limited to models that are most consistent with observations (Whittingham et al., 

2006). One of the most common methods of ecological modelling can be found in multiple 

regression, a general linear model with multiple predictors. The most ideal models tend to be 
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those that are most parsimonious and generalizable, meaning that they are simplified in terms of 

the number of variables, while still agreeing with the data. A general method of achieving such 

parsimony in multiple regression is via stepwise multiple regression, which is a widespread 

approach to variable selection that is supported by many statistical packages. Whittingham et al. 

(2006) found that approximately half of studies that applied multiple regression used stepwise 

multiple regression, despite downsides that include: biased parameter estimation, inconsistent 

model selection algorithms, and an inappropriate reliance on a single model. Although there are 

many approaches to modelling, this example demonstrates that statistical methods should be 

approached with caution and alternate approaches should be considered and tested (Whittingham 

et al., 2006).  

2.4.1 Scale 

The issue of scale in ecological research is multifaceted, as ecological phenomena 

generally occur over a wide spatiotemporal scale, while studies can often only measure much 

narrower scales, and an issue exists when attempting to generalize patterns measured at these 

scales to the broader reality (Schneider, 2001). Despite this, a great deal of research still models 

phenomena such as population dynamics as though they are closed systems, while it is known 

that populations tend to interact over the landscape, in networks known as metacommunities 

(Leibold et al., 2004). Similarly, it is well understood that wetland dynamics extend far beyond 

the scale of individual wetlands, as these systems are connected to large-scale water fluxes and 

influence landscape functionality from an ecological perspective (Thorslund et al., 2017). This is 

especially problematic when it comes to wetland management, as decisions tend to be made at 

the scale of individual wetlands, without considering if such solutions may be effective on a 

landscape scale. However, there is potential to expand the scale at which wetland management 



 

30 

 

operates by combining ground-based measurement, modelling and statistics, and remote sensing 

and GIS, to a scale that Thorslund et al. (2017) refer to as the “wetlandscape” (Section 2.2.3). 

A consideration of spatial scale specific to modelling and GIS occurs when it comes to 

the resolution-based limitations of data used for wetland classification, which can have a 

significant effect on the accuracy of wetland delineation, and this is especially true for inland 

freshwater wetlands (Klemas, 2011). Advances in remote sensing technologies have made the 

delineation of such wetlands more practical, such as the advent of high-resolution imagers to 

map small and patchy upstream wetlands. Additional technologies exist to enhance remote 

sensing, such as Synthetic Aperture Radars that can help to distinguish forested wetlands from 

upland forests. Klemas (2011) reviewed uses of remote sensing technologies for wetland 

delineation, and found that the most effective method of determining long-term trends and short-

term changes in wetland vegetation and hydrology comes through a combination of satellite and 

aircraft imagery combined with fieldwork. However, it should be noted that the use of high 

resolution imagery for large wetland areas or entire watersheds can be infeasible from a cost 

perspective, and it may be better to map these areas at medium-resolution and have critical areas 

examined at a higher resolution (Klemas, 2011). 

2.4.2 State and Transition Models  

State and transition models include a suite of models that are able to describe ecological 

processes in terms of alternative states and the transitions that occur between these. These 

models are able to represent the complex nature of reality that is not grasped by models that 

simplify ecosystems by assuming that there are linear processes and climax communities 

(Briske, Fuhlendorf & Smeins, 2005). An initial ecological application of state and transition 

models occurred in the case of range dynamics by Westoby, Walker & Noy-Meir (1989), who 



 

31 

 

discussed such models and their ability to describe rangelands. Transitions could be prompted by 

natural processes such as climatic events like fire, as well as management events like grazing. 

Under this model, there was no long-term, permanent equilibrium, but rather, a continual process 

that preferred favourable circumstances and avoided unfavourable ones (Westoby et al., 1989).  

Markov models are one approach to state and transition modelling of stochastic processes 

that incorporate the probabilities of a variable staying in one state or moving to another state 

after one time step (Klein, Berg & Dial, 2005). These models are said to be memory-less, 

meaning that the probability of a system being in a particular state at time t depends only on the 

state of the system at time t-1, and not on previous states, which is known as the Markov 

property (Otto & Day, 2007b). A Markov model is described by its full set of transition 

probabilities, which are the probabilities that dictate if a system will be in a given state at some 

time in the future, given that the system was in some other state one time-step prior. An 

important feature of Markov models is that they can have absorbing states, which are states that 

cannot be left once they are reached. An example of this would be death in a model that 

describes progression of a disease (Otto & Day, 2007b).  

There exist several examples of Markov models being applied to studies of landscape 

change, including those that focus particularly on wetland ecosystems. One of these is by Klein 

et al. (2005), who examined change via climatic landscape drying in the Kenai Lowlands of 

South-Central Alaska. They studied several spatial scales, and used a Markov model for a 

regional analysis of overarching drying trends by classifying locations at randomly sampled 

point locations into one of four wetland states: “water”, “wet”, “open”, or “wooded”, with a time 

step of 50 years. Their situation technically violated the Markov property of memorylessness, the 

assumption that transition to another state only depends on the previous state, and an assumption 
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that there is no influence of spatial distribution due to ecological succession indeed being 

spatially dependent. Although the underlying assumptions of Markov models (i.e., 

memorylessness and spatial independence) present theoretical limitations to the applicability of 

these models, they have successfully been used in ecological studies including this one, which 

developed a transition matrix that showed how past drying trends could manifest into the future 

(Klein et al., 2005). An approach to address the suitability of Markov models for specific 

applications is discussed by Muller and Middleton (1994) in their study of land use changes in 

Ontario’s Niagara region. These authors emphasize the need to determine that land use changes 

are not random prior to applying Markov models, which can be achieved with the use of the Chi-

squared statistic to test if changes are independent from those of previous or subsequent years 

(Muller & Middleton, 1994). 

Another example of the application of Markov models for wetland change studies is 

Zhang et al.'s (2011) study of wetland change in China’s arid Yinchuan Plain. This study used 

wetland distribution maps from 1991 and 1999 to construct a transition probability matrix that 

included the natural wetland states of “river wetland” and “lake wetland”, artificial wetland 

states of “pond wetland” and “paddy wetland”, and the remaining land cover classified as “non-

wetland”. They also used a chi-square test to test the accuracy of the model based on the actual 

and predicted wetland area for 2006, and found the model to be an accurate predictor of wetland 

change. As this model can be used to predict future wetland cover according to current 

management practices, they recommend these models as a means of technical support for 

wetland management decisions (Zhang et al., 2011). 
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2.4.3 Connectivity Models  

Several methods exist that allow for computational landscape connectivity analysis, 

which include network and circuit-based analyses. Network-based approaches involve a graph-

based representation of the landscape as a collection of nodes (i.e. habitat patches) and the links 

between them, which represent a potential path for organism dispersal between two nodes 

(Saura, Estreguil, Mouton & Rodríguez-Freire, 2011; Pascual-Hortal & Saura, 2006). Circuit-

based models can evaluate multiple dispersal corridors simultaneously, which allows them to 

calculate a landscape’s overall resistance to wildlife dispersal (Koen et al., 2010; McRae & 

Beier, 2007). Each of these broad approaches to connectivity modelling comes with their own 

advantages and disadvantages, and differing applicability exists for each. 

Network connectivity analyses provide a balance between the amount of input data 

required and the amount of detail they can provide in terms of connectivity results, making them 

a good tool for application-based connectivity analysis without intensive data requirements 

(Saura et al., 2011). These graph theory based models are also computationally powerful and can 

overcome the limitations that may occur when analyses are attempted on large datasets (Pascual-

Hortal & Saura, 2006). Within network-based approaches, there are multiple indices available 

for analysis, and each has differing characteristics, complexity, and limitations (Saura et al., 

2011).  

As a variety of graph-based connectivity indices exist, Pascual-Hortal & Saura (2006) 

systematically reviewed ten, in order to better understand the behaviour of each. This included 

how sensitive each index is to spatial changes, such as habitat node and dispersal corridor loss, as 

well as how effective each is for identifying the landscape elements that are vital for the overall 

conservation of habitat. They used their critique of existing indices to present a new index, the 
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integral index of connectivity. This index is most balanced in terms of the elements they 

analysed, with one consideration being the defined and bounded range (0 to 1). They also 

suggest that connectivity should be better considered in terms of habitat availability, where 

habitat nodes are considered as a place where connectivity exists, and both the area and 

connectivity of habitat patches are considered in the same analysis (Pascual-Hortal & Saura, 

2006).  

In their study of seascape connectivity in a Great Barrier Reef reserve, Engelhard et al. 

(2017) calculated the network-based Probability of Connectivity (PC) index, using Conefor 2.6 

software (Saura & Torné, 2012). PC is seen as one of the more comprehensive and robust indices 

available, as it considers connectivity at the node-level while using the concept of habitat 

availability (Engelhard et al., 2017; Saura et al., 2011). This index considers connectivity both 

within and among nodes, and the connectivity value of each individual node (dPC) is the change 

in PC when the node is removed from the analysis (Engelhard et al., 2017). The results of this 

study show that the Probability of Connectivity (dPC) explained 51-60% of species diversity for 

fish with intermediate home ranges, while species diversity of fish with small home ranges was 

best explained within nodes, by the dPCintra component of PC. This study provides an example 

of the feasible use of network analysis, applied to the planning of more functionally effective 

conservation areas (Engelhard et al., 2017).  

Circuit theory has traditionally been used for connectivity analyses of neural, social and 

other networks, and has more recently been used for gene flow modelling (McRae et al., 2008). 

This theory is based on electrical networks, where nodes are connected by resistors and lower 

resistance results in higher current flow (Klein & Randić, 1993; McRae et al., 2008). In these 

networks, connectivity increases with the number of pathways available, as is the case in 
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landscape ecology (McRae et al., 2008). These models integrate random walk theory, and predict 

dispersal success by random walkers, the organism of interest (McRae et al., 2008). However, 

there are of course some limitations to this method, including that it does not represent 

movement that occurs only in one direction, while actual movement may be biased in direction. 

Despite existing limitations, circuit-theory-based models still have great potential when applied 

to problems of landscape ecology (Koen et al., 2010; McRae et al., 2008). 

One study that used circuit theory for an ecological application is by McRae & Beier 

(2007), who evaluated the effectiveness of a circuit-theory-based model when applied to 

threatened mammal and tree species. They found that this model consistently achieved a better 

fit than more traditional methods, especially for the mammal species, wolverines. Results were 

also improved by incorporating the shape of a species’ range, which has not been considered by 

most other studies, but ignoring this factor creates the potential for connectivity predictions to be 

biased. Lastly, they also found that barriers to dispersal may be exaggerated by connectivity 

analyses, which can again be improved by including a species’ range shape (McRae & Beier, 

2007). 

In their landscape-level study, Koen, Garroway, Wilson & Bowman (2010) focused soley 

on the use of a circuit-theory-based connectivity model, with CIRCUITSCAPE 3.5 software 

(McRae, Shah & Mohapatra, 2015). This study was focused on the issue of map boundaries 

when employing these methods, as there is potential to create an artificial barrier to dispersal, 

causing sites at the boundary to be represented as less connected than in the interior. Koen, 

Garroway, Wilson & Bowman (2010) found that landscape resistance was increased for maps 

with set boundaries, but decreased for those with a buffer composed of actual or randomized 

landscape data. Their study does show the applicability of circuit theory to spatial data, but 
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illustrates a key consideration for the user, artificial boundary mitigation. Overall, circuit theory 

is shown to be a method with high applicability for studies of landscape connectivity (Koen et 

al., 2010). 

 Summary of Findings 

Key findings have emerged under each of the major topics of this review (wetland 

ecosystems, wetland conversion, and ecological modelling) and these are summarized in State 

and transition models (i.e. Markov models) quantify the probability of transitions occurring 

between different states (Zhang et al., 2011; Otto & Day, 2007b; Briske et al., 2005; Klein et al., 

2005). The Markov property states that transitions depend only on the state one-time step 

previous (Otto & Day, 2007b; Klein et al., 2005). However, this assumption is not usually tested, 

but rather, treated as a potential limitation of the study in case the assumption might not be met 

(Klein et al., 2005). 

Connectivity models allow for computational analyses of movement across a given 

landscape. Graph-theory based approaches represent this landscape as a set of nodes (i.e. habitat 

patches) and edges, which represent dispersal paths between a given set of nodes (Saura et al., 

2011; Pascual-Hortal & Saura, 2006). These models are generally informative for the purposes 

of ecological management, with multiple indices available for analysis, and without the heavy 

computational demands of other models (Saura et al., 2011; Pascual-Hortal & Saura, 2006). 

Meanwhile, circuit-theory based approaches can be used to examine connectivity in greater 

detail, by calculating the landscape’s resistance to dispersal (Koen et al., 2010; McRae & Beier, 

2007). Overall, the state and transition approach to modelling is used to examine research 

question 1 through Chapter 4.0, and connectivity models are used to address research question 2 

through Chapter 5.
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Table 2-1. In the following paragraphs, these findings are both summarized, and 

discussed in terms of their relationship to the research questions (Section 2.6).   

Firstly, for the topic of wetland ecosystems, it was found that SWM ponds are 

constructed to mitigate flood risk in urban and peri-urban areas, which is a service that lost 

wetlands would normally offer (Tixier et al., 2012; Moore et al., 2011; Schulte-Hostedde et al., 

2007). However, SWM ponds are not biophysically equal to wetlands, as they have a different 

form, contain contaminants, and may function as ecological traps (Clevenot, Carre & Pech, 

2018; Sievers et al., 2018; Tixier et al., 2012; Moore et al., 2011; Kamalakkannan et al., 2004). 

While literature is available on the biophysical function of SWM ponds, it is somewhat limited, 

especially in terms of their function as ecological traps (Clevenot, Carre & Pech, 2018; Sievers et 

al., 2018). This means that the impact of SWM ponds on wetland-dependent species like 

Ontario’s at-risk herpetofauna is somewhat unclear. There was very little to no literature 

available on the landscape-level function of SWM ponds, and it is unclear how they impact 

connectivity, which is an important factor for the normal functioning of ecological and 

hydrological process (Thorslund et al., 2017; Kinninmonth et al., 2015; McRae & Beier, 2007; 

Saccheri et al., 1998; Slatkin, 1987). There was also little information available on the 

connectivity of southern Ontario’s remaining wetlands, warranting the examination of the 

connectivity of both SWM ponds and wetlands (see research question 2). 

Secondly, for the topic of wetland conversion, it was found that while two estimates of 

wetland conversion exist for southern Ontario, by Ducks Unlimited Canada (2010) and Snell 

(1987), wetland conversion estimates are generally inconsistent and incomplete (Ducks 

Unlimited Canada, 2010; Dahl & Watmough, 2007; Zedler & Kercher, 2005; Dahl, 2004; Dahl, 

1990). For example, while Ducks Unlimited Canada (2010) found that less than 28% of 
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Ontario’s pre-European settlement wetland extent still existed in 2002, this only included loss of 

wetlands that were at least 10 ha. As such, an investigation of the conversion of small wetlands is 

included in research question 1. An existing lack of coordinated policy to protect small wetlands 

in Ontario, as discussed by OMNRF (2017), Schulte-Hostedde et al. (2007), and Ducks 

Unlimited Canada et al. (2012), makes it probable that both continued wetland loss and a high 

magnitude of small wetland loss will be observed. It is also clear that key drivers of wetland 

conversion in North America have generally included agriculture, resource extraction, and 

urbanization, which is why spatial factors were included in research question 1 (Wiebusch & 

Lant, 2017; Ducks Unlimited Canada, 2010; Schulte-Hostedde et al., 2007; Dahl, 2004). Lastly, 

while not explicitly related to the research questions, the potential of climate change to further 

exacerbate wetland loss, as suggested by Werner et al. (2013), Zelder & Kercher (2005), and 

Opdam & Wascher (2004), highlights the importance of conserving wetlands and the 

irreplaceable ecosystem services that they offer. 

Lastly, the topic of ecological modelling guided how the research questions are explored, 

which is discussed further in the methods sections of Chapter 4.0 and 5.0. Ecological models are 

a deductive approach to explaining real-world processes and predicting how they may change in 

the future, which limits their generalizability and ability to account for real-world factors such as 

economics and stochastic events (Whittingham, Stephens, Bradbury & Freckleton, 2006; 

Schneider, 2001; DeAngelis & Waterhouse, 1987). State and transition models (i.e. Markov 

models) quantify the probability of transitions occurring between different states (Zhang et al., 

2011; Otto & Day, 2007b; Briske et al., 2005; Klein et al., 2005). The Markov property states 

that transitions depend only on the state one-time step previous (Otto & Day, 2007b; Klein et al., 
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2005). However, this assumption is not usually tested, but rather, treated as a potential limitation 

of the study in case the assumption might not be met (Klein et al., 2005). 

Connectivity models allow for computational analyses of movement across a given 

landscape. Graph-theory based approaches represent this landscape as a set of nodes (i.e. habitat 

patches) and edges, which represent dispersal paths between a given set of nodes (Saura et al., 

2011; Pascual-Hortal & Saura, 2006). These models are generally informative for the purposes 

of ecological management, with multiple indices available for analysis, and without the heavy 

computational demands of other models (Saura et al., 2011; Pascual-Hortal & Saura, 2006). 

Meanwhile, circuit-theory based approaches can be used to examine connectivity in greater 

detail, by calculating the landscape’s resistance to dispersal (Koen et al., 2010; McRae & Beier, 

2007). Overall, the state and transition approach to modelling is used to examine research 

question 1 through Chapter 4.0, and connectivity models are used to address research question 2 

through Chapter 5.
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Table 2-1. Summary of literature review findings. 

Topic Key Findings 

Wetland 

Ecosystems 

1)  SWM ponds are constructed to compensate for the flood mitigation function 

that lost wetlands can no longer offer, but are not biophysically equal to wetlands. 

2) Southern Ontario is home to a variety of wetland dependent species, including 

herpetofauna and avifauna that are at-risk from habitat loss.  

3) Wetland connectivity is imperative for the ecohydrological function at the 

landscape-scale, the loss of wetlands can lead to cumulative effects at this scale. 

Wetland 

Conversion 

4) Estimates of wetland conversion are generally conservative, but approximately 

two-thirds of Southern Ontario’s pre-European settlement wetlands have been 

lost. 

5) Land management activities that lead to wetland conversion include 

agriculture, resource extraction, and urbanization.  

6) Wetland conservation policies are relatively recent instruments in Ontario and 

wetlands are governed by a suite of over twenty pieces of legislation. 

7) Climate change is likely to further drive wetland loss, especially in regions that 

are already degraded. 

Ecological 

Modelling 

8) Ecological models are a representation of reality that can be used to explain 

processes, but should be approached with caution. 

9) State and transition models (i.e. Markov models), are used to quantify the 

probability of transitions occuring between given states and can be used to model 

wetland conversion.  

10) Connectivity models can simulate potential movement across the landscape, 

main modes of connectivity modelling include graph- and circuit-flow-based 

approaches.  
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 Research Questions  

As discussed in the previous literature summary, the following questions emerged from 

this literature review: 

1) How has the composition and abundance of wetlands in Southern Ontario 

changed. Has the creation of SWM ponds had any effect on their presence? As discussed, 

Ontario has experienced extensive wetland conversion; however, little work has examined this 

change specifically for smaller wetlands and SWM ponds. I expect to find loss of wetlands that 

is similar to or greater than known recent trends, and that this loss will be greater than the 

creation of SWM ponds. I also expect that losses will continue to be likely, and potentially 

impacted by spatial factors such as wetland size or proximity to an urban centre. 

2) How does the current wetland landscape function from an ecological connectivity 

perspective? Do SWM ponds have any influence on this connectivity? As discussed, many 

wetlands have been lost to urbanization and agriculture, while SWM ponds have been created in 

urbanizing regions. I expect that these SWM ponds have increased landscape connectivity, but 

not to a level that can compensate for the wetlands that have been lost. I also expect that there 

will be some density of SWM ponds required for there to be a positive influence on connectivity, 

alongside a threshold of wetland loss at which the landscape becomes disconnected. 
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3.0 Methodology  

This chapter contains an explanation of the methodology used to prepare datasets that are 

further analyzed in both of the data chapters (Section 4.0 & 5.0). The overall research approach 

is first introduced, and briefly discussed. This is then followed by information on the broad study 

area, and site selection within this area. Then, information on data management is presented, 

including data collection and cleaning. Specific methods used for relevant modelling and 

analysis are contained within each data chapter’s methods section (Section 4.3 & 5.3).  

 Research Approach 

This study uses quantitative methodology, which is one of the three general approaches to 

research, in addition to qualitative and mixed-methods research (Creswell, 2013). This approach 

generally examines the relationship between variables that can be measured in a numerical 

fashion. Throughout this process, the quantitative researcher tests theory in a deductive manner, 

with it broken down into hypotheses or research questions, variables used to test the hypotheses, 

and statistical analyses of results to determine if the hypotheses are supported by the data or are 

not. Additionally, quantitative research generally attempts to produce results that can be 

generalized at a greater spatiotemporal scale, and these results should be replicable (Creswell, 

2013). The overarching research questions for this thesis are outlined in Section 2.6, while more 

specific questions are contained within each data chapter’s introduction (Section 4.2 & 5.2). 

3.1.1 Study Area 

This study is focused within Southern Ontario and municipalities within this broad area. 

This is the same general area that was examined by Ducks Unlimited Canada's (2010) and Snell's 

(1987) studies of wetland conversion, as it has been subject to a great deal of developmental and 
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agricultural pressures. These pressures have led to an estimated 72% of the pre-European 

settlement wetland extent being lost as of 2002 (Ducks Unlimited Canada, 2010).  

Assessments of data availability indicated that stormwater management (SWM) pond 

datasets were the limiting factor to what specific study areas could be examined, as these were 

available at the municipal level and distributed by the municipalities themselves. Therefore, 

municipalities were included in the study only if they had publicly available SWM pond data that 

contained the pond type and year of construction. This data was successfully gathered for a total 

of seven municipalities, which include the City of Cambridge, City of Kitchener, City of London, 

City of Markham, City of Vaughan, City of Waterloo, and Town of Whitby (Figure 3-1 & Table 

3-1). Other relevant datasets (Table 3-2), including: wetlands, wetland change, and aerial imagery 

were available for all of Southern Ontario.  

Table 3-1. Population and land-based statistics for the study area. Area is based on lower-tier 

municipal boundaries, obtained from Land Information Ontario (2017) and calculated in ArcGIS. 

All other statistics were obtained from Statistics Canada (2019). 

Municipality 
Area 

(ha) 

Population Population 

density/km2 

(2011) 
2001 2011 % change 

City of Cambridge 11588.30 110,372 126,750 13.61 1,121.7 

City of Kitchener 13821.13 190,399 219,153 14.05 1,602.1 

City of London 42320.21 336,539 366,151 8.40 870.6 

City of Markham 21268.42 208,615 301,709 35.59 1,419.3 

City of Vaughan 27425.23 182,022 288,301 44.49 1,054.0 

City of Waterloo 6517.51 86,543 98,780 12.55 1,542.9 

Town of Whitby 14882.89 87,413 122,022 31.13 832.7 
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Figure 3-1. Map of the study area including the municipalities, most current wetland extent, and 

waterbodies, where the mixedwood plains ecozone encompasses all of southern Ontario. 
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 Data Management 

3.2.1 Collection 

Open-source data (Table 3-2) were used for this study, which were collected from 

sources that included Land Information Ontario (LIO)’s Metadata Management Tool, Scholars 

GeoPortal, municipal open data portals, and direct communication with municipalities (LIO, 

2017; OCUL, 2018). When considering the completeness of this data, it is important to note that 

minimum spatial detection limits exist for remotely sensed data, below which features can not be 

reliably detected. As an example, the minimum mappable unit of the wetland change inventory 

(Table 3-2, SOLRIS 2.0) is 0.5 ha, meaning that changes in wetlands, or sections of wetlands 

smaller than 0.5 ha, may have been omitted (OMNRF, 2015). Additionally, there may be a slight 

discrepancy between the features detected by the change inventory and the wetland and SWM 

pond datasets. This is because the wetland and SWM pond datasets are based on a combination 

of field and remote data, which would allow for the detection of smaller features than remote 

data alone does.  

Although active maintenance is ongoing for the wetland dataset, prior to 2011 this dataset 

only included wetlands that had been evaluated by the Ontario Wetland Evaluation System to 

determine if they were considered “provincially significant” (Government of Ontario, 2014). 

Criteria that determine provincial significance include biophysical characteristics, such as 

vegetation communities; as well as the wetland’s size, as wetlands smaller than 2 ha are 

generally not evaluated (Government of Ontario, 2014). Management of this provincial wetland 

dataset is ongoing, and despite recent efforts to make it more complete with the 2011 Wetland 

Consolidation project, it may not include every wetland (LIO, 2017).
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Table 3-2. Metadata for the data used in this study, including the source, format, resolution, and 

date of collection, where applicable. 

Category Dataset Creator Source Form Resolution Date 

SWM Ponds Various Municipalities 

Municipal 

Open 

Data 

Vector 

(shp) 
n/a 

to 

2010 

Wetlands Wetland 
OMNRF Provincial 

Mapping Unit 
LIO 

Vector 

(shp) 
n/a 2013 

Wetland 

Change  

Southern Ontario 

Land Resource 

Information 

System (SOLRIS) 

v2.0 

OMNRF LIO 
Vector 

(shp) 
n/a 2011 

Aerial  

Imagery 

Greater Toronto 

Area (GTA) 

Orthophotography 

Project 2013 

OMNRF Spatial 

Data Support Unit 

Scholars 

GeoPortal 

Raster 

(JPG 

2000) 

20cm 

Apr/

May 

2013 

Southwestern 

Ontario 

Orthophotography 

Project (SWOOP) 

2015 

OMNRF 
Scholars 

GeoPortal 

Raster 

(JPG 

2000) 

20cm 

Apr/

May 

2015 

Land Cover  

SOLRIS v1.2 OMNRF LIO 
Vector 

(shp) 

n/a 
2000-

2002 

SOLRIS v2.0 MNRF LIO n/a 
2009-

2011 

 

3.2.2 Cleaning 

Change Periods  

The time periods used in this study correspond to the detection and change periods used 

by the creators of the SOLRIS 2.0 change inventory and a categorization of these dates alongside 

the included SWM pond construction dates can be found in Table 3-3. Detection dates 

correspond to approximately 2002 (t=0), 2005/2006 (t=1), and 2011 (t=2). Within the SOLRIS 

dataset, the change from t=0 to t=1 corresponded to change period 1, while the change from t=1 

to t=2 corresponded to change period 2. Specific dates differed somewhat by municipality, as the 

imagery used for the SOLRIS change inventory differed by region. This is the case at t=1, when 
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some municipalities fell within the boundaries of imagery from 2005, and others within that from 

2006 (Table 3-3). The SWM pond datasets that were chosen for this study had to include 

construction dates for the majority of ponds, and these dates were used to include SWM ponds at 

the different time steps, where t=0 includes construction dates up to 2002, t=1 up to 2004/2005 

(depending on the municipality), and t=2 up to 2010. However, in few instances, individual 

ponds within a dataset did not have a construction date, and these were excluded from the study.  

Table 3-3. Time steps with included SOLRIS detection dates and included SWM pond 

construction dates, by municipality. 

Dataset t = 0 t = 1 t = 2 Municipalities 

SWM Ponds 

(Construction 

Dates) 

Before and 

Including 2002 

2003-2006 2007-2010 

London, 

Kitchener, 

Cambridge, 

Waterloo 

2003-2005 2006-2010 

Vaughan, 

Markham, 

Whitby 

SOLRIS Change 

Inventory 

(Image/Detection 

Dates) 

Aug 10, 2002 

Aug 2006, Sept 

Cloud 

Replacement 
June 2011 

London, 

Kitchener, 

Cambridge, 

Waterloo 

Aug 2002, Sept 

1999 Cloud 

Replacement 

Aug 2005 Sept 2011 

Vaughan, 

Markham, 

Whitby 

Stormwater Pond Type 

In addition to the construction date requirement, SWM ponds were only included if they 

were deemed to be similar enough to a wetland. As an example, “dry” ponds were excluded from 

this study, as they are designed to only hold water for a maximum of twenty-four hours 

following a storm (OME, 2003). In addition to “dry” SWM ponds, other excluded types include: 
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“Sedimentation/Forebay”, “LID”, “Structure”, “Flood Control”, “Infiltration/Exfiltration”, “Oil 

& Grit Separator”, and “Open Channel”.  

Stormwater Pond Area Correction 

Upon visual inspection of the SWM pond datasets, it became clear that stormwater pond 

boundaries were generally an overrepresentation of the actual stormwater pond area, and often 

included features such as lawns and walkways. To correct their area, all ponds were re-digitized 

using a heads-up digitization method with 20cm resolution aerial imagery from the spring (Table 

3-2), when the ponds were assumed to likely be inundated with water. The heads-up digitization 

method involves manually drawing features that are visible in an imagery dataset. This was done 

in ArcGIS 10.6, using the freehand polygon tool. The pond boundary was generally identified as 

the land-water boundary, except in cases with dense emergent vegetation. When vegetation was 

observed, it was included within the pond boundary, as the steep physical bank edges were 

generally visible around the vegetation.  

Wetland Extent 

 The “clip” geoprocessing tool was used in ArcGIS 10.6 to identify if the wetland change 

inventory and wetland datasets overlapped, and twenty-six instances (out of a total 114 change 

events) of overlap were found. This was a relatively negligible number of overlaps, given that 

the wetland dataset includes over seven thousand features within the study area municipalities. 

However, under the assumption that these change events represent true change and that their 

removal from the wetland dataset was simply overlooked, it was determined that they should be 

removed for the purposes of this project. 

To remove these overlaps, the “clip” tool was employed within an edit session in ArcGIS 

10.6, to clip all change inventory overlaps from the provincial wetland dataset. The resulting 
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dataset represented the post-study-period wetland extent, at t=2. To obtain the pre-conversion 

wetland extent, which would have included the lost wetlands, these change events were added to 

this wetlands dataset from t = 2. This was done using the merge tool in ArcGIS 10.6, and 

occurred in two stages. Firstly, the losses that occurred in period 2 (t=1 to t=2) were added to the 

t=2 wetland dataset, to result in the intermediate wetland extent, at t=1. Secondly, the losses that 

occurred from in period 1 (t=0 to t=1) were added to the t=1 wetland extent, to result in the pre-

study wetland extent, at t=0.  
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 Abstract 

Wetlands provide critical ecosystem services like flood mitigation, yet in southern Ontario’s 

urban and peri-urban areas, most have been destroyed and indirectly replaced with stormwater 

management (SWM) ponds to manage flooding and contaminants. Given projections of climate 

change driven flooding, wetland loss is especially concerning. We examine the loss of wetlands 

and gain of SWM ponds within eight southern Ontario municipalities from 2002-2011. We apply 

a Markov model to project the future extent of wetlands and SWM ponds, both over the 

landscape as a whole and within specific land use and land cover types. We find that most 

wetlands lost were smaller than 2 ha. Although the total area of wetland loss was compensated 

for by the creation of SWM ponds, SWM ponds appeared to be smaller than wetlands. Losses of 

wetlands and gains of SWM ponds are projected to continue into the future under all examined 

land use and land cover types, which include extractive and urban land uses. We show that more 

stringent wetland protection policies are needed to conserve the small wetlands that remain in 

southern Ontario municipalities, to ensure continued provision of wetland-related ecosystem 

services and to protect communities from climatically-exacerbated flooding.  

Key Words: Wetland, Land Use and Land Cover Change, Wetland Policy, Ontario 
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 Introduction 

Across North America, wetlands were historically seen as unpleasant areas that were 

sources of disease, and their drainage was encouraged (Wiebusch & Lant, 2017). This drainage 

predominantly occurred for agricultural purposes, as converted wetlands can provide nutrient-

rich and damp soils that are optimal for crop growth (Snell, 1987; Wiebusch & Lant, 2017). As 

such, less than 28% of southern Ontario’s pre-European settlement wetland extent now remains 

(Ducks Unlimited Canada, 2010). We now know that wetlands provide ecosystem services that 

are critical for the resilience of our communities, and some policy shifts have occurred to avoid 

further losses of wetland area (Schulte-Hostedde, Walters, Powell & Shrubsole, 2007). However, 

while these changes have slowed loss, they have not been sufficient to halt it (Dahl & 

Watmough, 2007; Ducks Unlimited Canada, 2010). 

Development of Ontario’s wetland policies began in 1981, and these now consist of a 

somewhat uncoordinated collection of legislative tools, including the Planning Act, Greenbelt 

Act and Conservation Authorities Act, and their associated regulations (Government of Ontario, 

2005a, 2019a, 2019d; Schulte-Hostedde et al., 2007). It is also problematic that wetland 

management tends to occur at the site-level, despite the potential for singular impacts to be 

echoed through cumulative effects on the landscape (Thorslund et al., 2017). Section 2.1 of the 

Provincial Policy Statement, 2005, precludes development and site alteration within 

“provincially significant wetlands.” The Planning Act allows for the designation of wetlands as 

provincially significant if they meet criteria put forth by the Ontario Wetland Evaluation System 

(Government of Ontario, 2014).  

Assessment of wetland significance is based on biophysical factors such as vegetation 

community type and wetland size, as wetlands smaller than two hectares are generally not 

evaluated (Schulte-Hostedde et al., 2007). Despite their size, small wetlands are important for a 
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variety of reasons, including their tendency to host the least frequently occurring plant species, 

and ability to increase connectivity by acting as stepping stones between other wetland habitats 

(Houlahan, Keddy, Makkay & Findlay, 2006; Keitt, Urban & Milne, 1997). This lack of 

protection for small wetlands is just one example of the inadequacy of policy, and the Ontario 

Wetland Evaluation System in particular, to protect what is left of Ontario’s wetlands (Schulte-

Hostedde et al., 2007). Recognising the threats to Ontario’s wetlands, OMNRF (2017) proposed 

a wetland strategy for 2017-2030 to create a common focus for wetland conservation in the 

province. This strategy advocates for more stringent wetland protections, with the main targets 

aiming for a halt of loss where it has been the greatest, and a gain in wetland area and function 

(OMNRF, 2017). These targets speak directly to the maintenance and enhancement of the 

ecosystem services that are critical for our human and wildlife communities. 

With regard to human life and property, flood mitigation is perhaps one of the most 

visible services offered by wetlands, and is especially pertinent given the potentially detrimental 

damage that will come with storms as climate change continues to worsen (Moudrak, Hutter & 

Feltmate, 2017). As human populations continue to migrate to urban areas that have prevalent 

impervious surfaces, a lack of wetlands to absorb stormwater runoff has become a common 

issue, especially given the monetary implications of flooding (Dietz & Clausen, 2005). In one 

urban test site, Moudrak, Hutter & Feltmate (2017) estimated that flood-related costs could have 

been up to 38 percent lower, or CAD $51.1 million less, if wetlands had been maintained.  

While the majority of wetlands have been lost or degraded, stormwater management 

(SWM) ponds have been installed to manage urban runoff (Ducks Unlimited Canada, 2010; 

Tixier, Rochfort, Grapentine, Marsalek & Lafont, 2012). This process has likely led to a 

conversion of natural wetlands into SWM ponds in urban and peri-urban areas. SWM ponds are 
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designed to hold water for long enough to allow for sediment removal and to prevent flooding, 

thereby protecting wetlands from human-introduced contaminants (OME, 2003). Newer designs 

of SWM ponds usually incorporate habitat features described as “naturalized” to better mimic 

wetlands and increase their habitat value for wetland fauna (Tixier et al., 2012). Importantly, 

even naturalized SWM ponds do not fully replace the habitat provisioning service that wetlands 

provide, due to issues that include toxicity and a form that includes steep bank edges (Moore, 

Hunt, Burchell & Hathaway, 2011; Rooney et al., 2014; Tixier et al., 2012). 

Our study investigates recent (2002-2011) wetland loss and SWM pond gain trends and 

their potential drivers in seven urban/peri-urban municipalities in Southern Ontario. We 

investigate wetlands and SWM ponds of all sizes, with wetland loss likely limited by a minimum 

mapping unit of 0.5 ha. In our investigation, we are building on existing knowledge about large 

(> 10 ha) wetland loss (Ducks Unlimited Canada, 2010; Snell, 1987). First, we examine trends in 

the loss of wetlands and gain of SWM ponds. Second, we combine these trends and drivers to 

project what the future of Ontario’s wetland landscape may be under the status quo. Third, we 

incorporate land use factors to determine what may act as drivers of projected changes. 

As a whole, we aim to inform land use planning that will prevent further loss of wetlands 

and their associated ecosystem services. We present several questions and corresponding 

expectations related to management and policy, which are as follows: 

(1) Has the extent of lost wetlands been fully compensated for by the creation of SWM 

ponds, from an area-based perspective? As Ontario’s wetland policy is somewhat uncoordinated, 

and decisions about wetland management are generally made at the site-level, we expect that net 

loss of wetland area will be observed (OMNRF, 2017; Schulte-Hostedde et al., 2007; Thorslund 

et al., 2017). 
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(2) Has there been a high prevalence of wetland loss among small wetlands? Due to the 

Ontario Wetland Evaluation System’s focus on protecting wetlands larger than 2 ha, we expect a 

disproportionate amount of loss amongst wetlands smaller than 2 ha (Government of Ontario, 

2014). 

(3) Will wetland loss be more probable in areas affected by urbanization and other 

human-dominated land uses than in land uses that may be less intensive? Agriculture is a 

historically dominant driver of wetlands loss, and Ducks Unlimited Canada (2012) found built-

up lands to be a dominant predictor of wetland loss within urban and peri-urban area. As such, 

we expect human-dominated land uses to correspond with greater projected wetland loss (Ducks 

Unlimited Canada, Earthroots, EcoJustice & Ontario Nature, 2012; Snell, 1987; Zedler, 2000). 

 Methods 

Study Area and Spatial Data  

This study uses data on provincial wetland extent and change (Southern Ontario Land 

Resource Information System - SOLRIS 2.0), and SWM pond extent for seven municipalities in 

Southern Ontario (Figure 4-1). All GIS operations are carried out using ArcMap 10.6. These 

municipalities were chosen because of the availability of SWM pond datasets that contain year of 

construction and pond type. The pond type was an important consideration, as not all SWM 

ponds are similar enough to a wetland to constitute comparison to or compensation for wetland 

losses. “Dry” ponds provide one example of this, as they are only designed to hold water for up 

to twenty-four hours after a storm (OME, 2003). As such, only ponds labelled as “wet”, 

“wetland”, hybrid”, or “natural” were included. The distinction between wet, wetland, and 

hybrid ponds is in the depth of these ponds. Wet ponds are deep and contain shallow aquatic 

plant zones around their perimeter, while wetland-type ponds are dominated by shallow zones, 
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and hybrid ponds combine the characteristics of wet and wetland-type ponds (OME, 2003). The 

“natural” pond designation only occurred twice in the dataset, and although wetlands are not 

permitted for use as stormwater ponds under OME (2003), inclusion of these “natural” ponds in 

municipal SWM data may mean that they were previously modified for this purpose. As such, 

these two ponds were retained in the analyses. 

 Visual inspection found that recorded SWM pond boundaries were generally an 

overestimation of the actual pond area. To remedy this, boundaries were redrawn using a heads-

up digitization method, which involved manually re-drawing ponds with 20 cm resolution 

imagery from the spring. It is assumed that ponds are inundated with water at this time, which 

was important as the land-water boundary was chosen to be the SWM pond boundary. The land-

water boundary included emergent vegetation ones, such as cattail or bulrush. Additionally, these 

ponds have steep banks that tended to be visible in the imagery, and this aided in boundary 

delimitation when dense emergent vegetation masked the land-water boundary. 
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Figure 4-1. Map of South-Eastern Ontario with the study area municipalities labelled. Inset 

shows the position of study area municipalities relative to the Great Lakes. Basemap imagery 

source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, 

IGN, IGP, swisstopo, and the GIS User Community. 

 

Temporal Scale 

The temporal scale of this study extends from 2002 to 2011, which is based on detection 

periods of the SOLRIS 2.0 wetland change dataset (OMNRF, 2015). These years were translated 

into time steps, where t = 0 corresponds to the landscape in the year 2002 and includes SWM 

ponds constructed up to this date. Due to the availability of aerial imagery, the next time step, t = 

1 corresponds to the landscape in 2005 in the City of London, City of Kitchener, City of 

Cambridge, and City of Waterloo; and 2006 in the City of Vaughan, City of Markham, and 

Town of Whitby. In this time step (t =1), we included SWM ponds built from 2003 to 2005/06, 

depending on the municipality. The final time step, t = 2 includes change that occurred after t = 
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1, to detection in 2011. The detection in 2011 occurred in June in some municipalities, which 

was early in comparison to the detection at other time steps that occurred in August and 

September. As such, we included only SWM ponds built from 2006/07 up until 2010 are 

included in this time step (t = 2). 

Conditional Probabilities  

Conditional probabilities are used to determine how factors like the time period and 

wetland size may be related to the observed probabilities of wetland loss or SWM pond gain. 

These probabilities describe the relationship between outcomes, where the probability of 

observing outcome A, given that outcome B has happened is denoted as P(A|B). This is 

calculated as the fraction of cases where outcome A also occurs when outcome B occurs, out of 

all occurrences of outcome B (Otto & Day, 2007a). 

State and Transition Model 

 

Figure 4-2. Possible wetland states and transitions used in the Markov model. States are 

represented by ovals and transitions are represented by arrows, where straight black arrows 

represent transitions between states and curled grey arrows represent no state change. 
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A Markov model was used to quantify transition probabilities between three states: 

“wetland”, “non-wetland”, and “SWM pond” (Figure 4-2), using the “msm” package for 

continuous-time Markov modelling by Jackson (2018) in R version 3.5.2 (2018-12-20). Markov 

models quantify the probability of transitions between the given states (Otto & Day, 2007b). The 

Markov property dictates that these models are “memory-less” and transitions only rely on the 

state one-time step previously (Otto & Day, 2007b). We did not test whether this assumption 

holds true for the present study, but following Klein, Berg & Dial (2005), we assumed that the 

Markov property was met. Making this assumption means that our results might be only 

approximately correct (Klein, Berg & Dial, 2005).  

Within the msm package, transition intensities represent the instantaneous risk of a 

feature moving from state r to s, for a given pair of states and time (Jackson, 2018): 

𝑞𝑟𝑠(𝑡, 𝑧(𝑡)) = lim
𝛿𝑡→0

𝑃(𝑠(𝑡 + 𝛿𝑡) = 𝑠|𝑆(𝑡) = 𝑟)

𝛿𝑡
 

The transition intensities for each set of transitions form a matrix, Q, where the rows sum 

to zero and the diagonals are defined by 𝑞𝑟𝑟 = − ∑ 𝑞𝑟𝑠𝑠≠𝑟 . To calculate transition intensities, a 

Qt matrix, with the allowed (q = 1) and prohibited (q = 0) transitions specified, was input to the 

msm package. The “gen.inits = TRUE” option was specified during model fitting to automate the 

calculation of transition intensities (Jackson, 2018):  

𝑄𝑡 = [

𝑞11 𝑞12 𝑞13

𝑞21 𝑞22 𝑞23

𝑞31 𝑞32 𝑞33

] = [
−(𝑞12 + 𝑞13) 𝑞12 𝑞13

0 −𝑞23 𝑞23

0 𝑞32 −𝑞32

] = [
1 1 1
0 1 1
0 1 1

]   

Meanwhile, within msm, the transition probability matrix, P(t), gives the likelihood of a 

transition occurring within a given time (Jackson, 2018). This assumes that Q is constant within 
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the given time interval. P(t) can be calculated as the matrix exponential of the scaled transition 

intensity matrix, where 𝑃(𝑡) = 𝐸𝑥𝑝(𝑡𝑄). However, it is more reliable and faster to calculate P(t) 

analytically for simpler models, including the three-state model used in this study (Jackson, 

2018). For this study, time t transition probabilities that correspond to the given Q are given by: 

𝑝11(𝑡) = 𝑒−(𝑞12+𝑞13)𝑡  

𝑝12(𝑡) =  {

𝑞12

𝑞12 + 𝑞13 − 𝑞23
(𝑒−𝑞23𝑡 − 𝑒−(𝑞12+𝑞13)𝑡)                                                 (𝑞12 + 𝑞13 ≠ 𝑞23)

𝑞12𝑡𝑒(−(𝑞12+𝑞13)𝑡                                                                                             (𝑞12 + 𝑞13 = 𝑞23)

 

𝑝13(𝑡) = {
1 − 𝑒−(𝑞12+𝑞13)𝑡 −

𝑞12

𝑞12 + 𝑞13 − 𝑞23
(𝑒−𝑞23𝑡 − 𝑒−(𝑞12+𝑞13)𝑡)               (𝑞12 + 𝑞13 ≠ 𝑞23)

(−1 + 𝑒(𝑞12+𝑞13)𝑡 − 𝑞12𝑡)𝑒−(𝑞12+𝑞13)𝑡                                                        (𝑞12 + 𝑞13 = 𝑞23)

 

𝑝21(𝑡) = 0 

𝑝22(𝑡) = 𝑒−𝑞23𝑡 

𝑝23(𝑡) = 1 − 𝑒−𝑞23𝑡 

𝑝31(𝑡) = 0 

𝑝32(𝑡) = 1 − 𝑒−𝑞33𝑡 

𝑝33(𝑡) =  𝑒−𝑞33𝑡 (Jackson, 2018) 

 

To prepare data for Markov modelling, landscapes had to be classified under each of the 

three states of interest (wetland, non-wetland, or SWM pond). To do so, the extent of wetlands 

and SWM ponds were merged, and all other areas within the municipal boundary were 

designated as non-wetland. Then, the loss of wetlands for each time period was subtracted and 

gain of SWM ponds was added. The resulting three datasets were rasterized using the “polygon 

to raster” tool, with the maximum combined area option selected and a 50 m cell size resolution 

(OMNRF, 2015).  
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To estimate how probabilities of conversion may be affected by different land use and 

land cover types, SOLRIS land classification data were incorporated into the Markov model as 

covariates. This is possible by modelling transition intensities as a function of the covariate 

variable, z(t) (Jackson, 2018). To incorporate covariates, SOLRIS version 1.2 (t = 0) and 2.0 (t = 

2) land use data were used, alongside the SOLRIS 2.0 change data. This change data was split 

into two time periods, with the first representing change up until t = 1, which was used to 

construct the appropriate landscape at t = 1 by combining the change data up to this point with 

SOLRIS 1.2 data. To achieve this, SOLRIS 1.2 data was first converted to vector format using 

the “raster to polygon tool” with the original geometry preserved. This dataset was then merged 

with the change inventory, using the “FIRST” merge rule, so that data from the change inventory 

was written over the SOLRIS 1.2 data. Following this merge, the data were re-rasterized at the 

original 15 m cell-size-resolution using the “maximum combined area” option and a raster value 

that corresponded to the SOLRIS 1.2 land use categories. This re-rasterized data was then 

resampled to the 50 m cell size resolution using the “majority” option, to maintain consistency 

among the three time-steps. Using the field calculator, land use categories were then 

standardized across all time steps for the land uses and land cover types of interest. These land 

use and land cover types are: forest; extraction; built (impervious and pervious); transportation; 

and the combined tilled and undifferentiated SOLRIS classes, which contain agricultural lands as 

well as others (see Supplementary Information) (OMNRF, 2015; Schulte-Hostedde et al., 2007). 

Lastly, the “extract multi values to points” tool was used to extract the state and land 

use/land cover covariate value at the raster cell centres, for each of the time steps. These data 

were then merged, sorted by point ID and time, and input to the msm model in R. During this 

process, approximately 15 improbable transitions from the non-wetland and SWM pond states to 
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the wetland state were found. As this is a small number of data points when compared to the 

dataset (>1.6 million data points) and these are assumed to be the result of a rasterization error, 

they were manually removed. To remove these points, the misclassified state was changed to be 

the one that prevailed over the majority of time steps. This meant that if a cell were classified as 

a wetland at t = 1 and t = 2, but as a non-wetland at t = 0, t = 0 was assumed to be an error and 

the classification was changed to wetland at all time steps.  

Additionally, no transition from SWM pond to the non-wetland state was observed, but 

this is assumed to be due to the relatively brief time span of the study period itself, rather than 

this state being an absorbing state that can not be exited. To train the Markov model to not 

recognize SWM pond as an absorbing state, one entry was added that showed an additional cell 

transitioning from SWM pond (t = 0), to SWM pond (t = 1), to non-wetland (t = 2). After these 

modifications were made, transition probability matrices were then extracted for each of the 

given land uses at t = 1 and t = 6. These matrices are then used to project the future proportional 

land cover given the effect of each land use, using a standard value of each time step as equal to 

four years, which is the average of all time periods for the input data. This means that t = 6 

corresponds to approximately the year 2026, given that the starting time is 2002. 

 Results 

Historical Wetland Conversion  

For all municipalities combined, the observed number (i.e. frequency) of SWM ponds 

gained from 2002-2011 is 1.6 times greater than the number of wetlands lost (Table 4-1). This 

higher frequency of SWM pond gain remains the case in six of seven municipalities, with the 

exception of the City of London, which has a higher frequency of wetland loss. Additionally, SWM 

pond gain is most prevalent of all municipalities in Kitchener, where four times more SWM ponds 
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were gained than wetlands were lost. Conversely, 2.7 times more wetlands were lost in London 

than SWM ponds gained. 

In total, between 2002 and 2011, the seven study area municipalities lost 95.45 ha of 

wetlands. Over the same period, 111.64 ha of SWM ponds were created, which resulted in a net 

transition from wetlands to SWM ponds of 1.17 times the total area of wetlands lost (Figure 4-3). 

Given that the total study area included 137,823.69 ha of land (Table 4-1), this represents 0.7 % 

of the landscape being converted from wetlands, and 0.8% of the landscape being converted to 

SWM ponds. This remains true in four of the six study area municipalities that experienced 

wetland loss, namely the City of Kitchener, City of Markham, City of Vaughan, and Town of 

Whitby. In these municipalities, the total area of SWM pond gained ranges from being 3.48 

times greater than the area lost (City of Vaughan), to being 1.49 times greater than the area lost 

(City of Whitby). Municipalities that do not mirror this trend include the City of Cambridge and 

City of London, where the total area of SWM pond gain is less than that of wetland loss. This 

trend is more muted in the City of Cambridge, where the total area of wetland loss is only 1.31 

times greater than the area gained, while the City of London experienced wetland loss that is 2.1 

times the total area of SWM pond gained. 

Although the seven municipalities experienced a cumulatively greater gain of SWM 

ponds than loss of wetlands by area (Figure 4-3), the average individual SWM pond created was 

smaller than the size of lost wetlands (Figure 4-4). Importantly, both lost wetlands and gained 

SWM ponds were still small (<2 ha), with an average lost wetland being 0.8 ha and an average 

gained SWM pond being 0.6 ha. However, this trend is only mirrored in three of the seven study 

area municipalities individually (Figure 4-4). Overall, 95.89 % of wetlands lost and SWM ponds 

gained were smaller than 2 ha (Figure 4-5). 
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Table 4-1. Observed number of wetland losses and SWM pond gains from 2002-2011 for the 

study area municipalities. Area is based on lower-tier municipal boundaries, obtained from Land 

Information Ontario (2017) and calculated in ArcGIS. 

 Municipality 
Transition Municipal 

Area (ha) Wetland Loss SWM Pond Gain 

Combined 114 178 137823.69 

City of Cambridge 9 17 11588.30 

City of Kitchener 10 40 13821.13 

City of London 60 22 42320.21 

City of Markham 15 37 21268.42 

City of Vaughan 12 33 27425.23 

City of Waterloo 0 6 6517.51 

Town of Whitby 8 23 14882.89 

 

 

Figure 4-3. Cumulative extent (ha) of observed wetland loss and SWM pond gain over the period 

from 2002-2011 for each of the seven municipalities and their combined total.
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Figure 4-4. Average size (ha) of destroyed wetlands and created SWM ponds over the period 

from 2002-2011 for each municipality individually and their combined total. Error bars represent 

standard errors, see Table 4-1 for sample sizes. 

 

 

Figure 4-5. Box and whisker plot of the sizes of wetland loss and SWM pond gain over the 

period from 2002-2011, for all study area municipalities combined. 
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The majority of loss (> 89%) occurred among small wetlands (< 2 ha, Figure 4-6), for all 

municipalities combined, and for each municipality individually except for the City of Waterloo, 

where no wetland loss was observed during the study period (2002-2011). Furthermore, in three 

of the seven municipalities no wetlands > 2 ha were lost.  

The continued loss of small wetlands is also evident in the overall probabilities of state 

change given wetland size (Figure 4-7). The gain of small (< 2 ha) SWM ponds is incrementally 

more probable than the loss of similarly sized wetlands, while this incremental difference is 

mirrored in the slightly greater probability of large (> 2 ha) wetlands being destroyed than the 

probability of large SWM ponds being created. These probabilities change only slightly 

throughout the study period, with a decreased probability of SWM pond gain and increased 

probability of wetland loss during the second half of the study period (Figure 4-8). 

 

Figure 4-6. Percentage of wetlands lost over the period from 2002-2011 by wetland size (less 

than or greater than 2 ha) for individual municipalities and all municipalities combined by 

averaging. Note that no wetlands were lost in the Municipality of Waterloo during this period. 

See Table 4-1 for sample sizes.
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Figure 4-7. Wetland loss and SWM pond gain separated by the percentages of change that 

occurred among small (< 2 ha) and large (> 2 ha) features that were converted. Conversion 

occurred over the period from 2002-2011 and is for the wetland loss and SWM pond gain that 

occurred among all study area municipalities combined. See Table 4-1 for sample sizes. 

 

 

Figure 4-8. Wetland loss and SWM pond gain as a percent of the overall change during the 

period from 2002-2011, in addition to conditional probabilities given the time period, for all 

municipalities combined. Period 1 = 2002-2005/2006, and period 2 = 2005/2006-2011.  
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Projected Wetland Conversion  

A Pearson-type test for the goodness of fit for the Markov model reveals that this model 

fits the data well, as indicated by non-significant differences between the observed and expected 

number of transitions between each set of states, and small deviance values for these transitions 

(Table 4-2). An initially generated simple Markov model (i.e. without the individual 

consideration of land use and land cover covariates) suggests that wetland area will likely 

continue to be lost in the future (Table 4-3). Under these conditions, by 2020-2032 there is a 

4.66% projected probability of any wetland having been converted to non-wetland (Table 4-3). 

Meanwhile, the probability of SWM pond generation is expected to increase the total area of 

SWM ponds by 2.94 times their original area (Table 4-3).   

When land use and land cover covariates are incorporated into the model, differences are 

seen in terms of the expected area of wetlands and SWM ponds by t = 6, or approximately 2026 

(Figure 4-9). Wetland area will likely decrease the most if the effect of the “Extraction” land use 

was applied across the landscape, while all other covariates show slightly less wetland loss than 

when all land use and land covers are considered. Meanwhile, SWM pond gain is expected to be 

the greatest if the effect of the “Undifferentiated & Tilled” land use were applied across the 

landscape. SWM pond gain is expected to be of lower magnitude when the individual effects of 

all other land use and land cover covariates are considered, compared to the aggregated effect of 

all land use and land covers. The smallest projected area of SWM ponds is expected if the effect 

of “Extraction” and “Transportation” land uses were applied across the landscape.
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Table 4-2. Pearson-type statistics, which give the goodness-of-fit for the general model without 

land use covariates included. “Obs.” is the observed number of transitions, “Exp.” is the 

expected number of transitions, and “Dev.” is the deviance between observed and expected 

values. 

   

Table 4-3. Total wetland area (ha*100) at the beginning of the study period (2002), versus the 

projected wetland area in approximately 2026 (t=6), where one time-step equals approximately 4 

years, based on Markov model-projected transition probabilities and the original wetland extent. 

 
 Wetlands SWM Ponds 

Area (ha) 
Original (2002) 9370.72 151.06 

Projected (2026) 8932.63 444.82 

Initial 

State 

Present 

State 

Time = 1  Time = 2 

Obs. Exp. Dev.  Obs. Exp. Dev. 

Wetland 

Wetland 
22054 22062.24 -0.003  21887 21878.71 0.003 

Non-

Wetland 185 176.227 0.437 
 

166 174.761 -0.439 

SWM 

pond 
0 0.531 -0.531 

 
1 0.526 0.427 

Non-

Wetland 

Non-

Wetland 533240 528373.1 < -0.001 
 

528370 528367.1 <0.001 

SWM 

pond 
191 187.947 0.050 

 
185 187.945 -0.046 

SWM 

pond 

Non-

Wetland 0 0.417 -0.417 
 

1 0.582 0.300 

SWM 

pond 
484 483.583 <0.001 

 
674 674.418 <0.001 

Statistic 2.653   

P 0.617   

DF Lower 4   

DF Upper 8   
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Table 4-4. Projected proportion of land use and land cover change from the initial state in 2002 (t = 0) to the present/projected state in 

2005/06 (t = 1) and approximately 2026 (t = 6). Projected land use and land cover change is shown for all cases with and without the 

consideration of land use and land cover covariates. 

Initial State (t=0) → Wetland  Non-Wetland  SWM pond 

Present State  

(t=1 or t=6) → 
Wetland 

Non-

Wetland 

SWM 

pond 
 

Non-

Wetland 

SWM 

pond 
 

Non-

Wetland 

SWM 

pond 

All Land Use and 

Land Cover 

Covariates 

P(t=1) 0.992 0.008 <0.001  ~1.000 <0.001  0.001 0.999 

P(t=6) 0.953 0.047 <0.001 
 

0.998 0.002 
 

0.005 0.995 

Forest  
P(t=1) 0.996 0.004 <0.001  ~1.000 <0.001  <0.001 ~1.000 

P(t=6) 0.977 0.023 <0.001  0.999 0.001  <0.001 ~1.000 

Transportation  
P(t=1) 0.996 0.004 <0.001  ~1.000 <0.001  0.001 0.999 

P(t=6) 0.976 0.024 <0.001  ~1.000 <0.001  0.004 0.996 

Built  
P(t=1) 0.996 0.004 <0.001  ~1.000 <0.001  <0.001 ~1.000 

P(t=6) 0.979 0.021 <0.001  0.999 0.001  <0.001 ~1.000 

Pervious 
P(t=1) 0.997 0.003 <0.001  ~1.000 <0.000  <0.001 ~1.000 

P(t=6) 0.984 0.016 <0.001  0.999 0.001  <0.001 ~1.000 

Impervious 
P(t=1) 0.995 0.005 <0.001  ~1.000 <0.001  <0.001 ~1.000 

P(t=6) 0.967 0.032 <0.001  0.999 0.001  <0.001 ~1.000 

Extraction  
P(t=1) 0.968 0.032 <0.001  ~1.000 <0.001  <0.001 ~1.000 

P(t=6) 0.821 0.179 <0.001  ~1.000 <0.001  0.001 0.999 

Undifferentiated & 

Tilled 

P(t=1) 0.998 0.002 <0.001  0.999 0.001  <0.001 ~1.000 

P(t=6) 0.986 0.014 <0.001  0.997 0.003  <0.001 ~1.000 
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Figure 4-9. Projected total area (ha*100) of wetlands and SWM ponds in approximately 2026 

(t=6, where one time-step equals approximately 4 years and the starting year is 2002), based on 

Markov-model calculated transition probabilities. Projections are calculated both with and 

without the effect of land use and land cover covariates considered. 

 

 Discussion 

First, we examined trends in the loss of wetlands and gain of SWM ponds in seven 

southern Ontario municipalities between 2002-2011. We found a total of 95.45 ha of wetland 

loss, most of which was concentrated among small wetlands (< 2 ha). Under the Ontario Wetland 

Evaluation System, these small wetlands are generally not considered for Provincially 

Significant Wetland status, and are therefore not protected under the Planning Act (Government 

of Ontario, 2014, 2019; Schulte-Hostedde et al., 2007). While this loss occurred, there were also 

111.64 ha of SWM ponds created, which indicates that no net loss of area was observed for 

combined wetlands and SWM ponds. Although this trend of greater area of SWM ponds gained 

than wetlands lost was observed in most municipalities, the created SWM ponds tended to be 
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smaller than the lost wetlands. Also important to note is that SWM ponds are generally not equal 

to wetlands in ecohydrological function (see “Historical Wetland Conversion”).  

Second, we combined the trends of wetland loss and SWM pond creation to predict what 

the future of Ontario’s wetland landscape may be under the status quo. Assuming current trends 

of conversion persist, we expect that by 2026, 438.09 ha of wetlands will be lost and 293.76 ha 

of SWM ponds will be created. These estimates are based on probabilities of conversion and the 

original (2002) wetland, SWM pond, and non-wetland extent. The greater total wetland loss than 

SWM pond gain is expected because these estimates also include conversion to and from non-

wetland land uses. Given the observed trends, it is expected that the majority of this change will 

continue to occur among small wetlands and SWM ponds (< 2 ha).  

Third, we incorporated land use and land cover types to determine what may act as 

drivers of the projected wetland loss and SWM pond gain. The greatest of wetland loss is 

expected within the “Extraction” land use. Although this land classification may include both 

aggregate and peat extraction, Cheng & Lee (2008) found aggregate extraction (pits/quarries) to 

be a significant cause for land use conversion in Southern Ontario’s Greenbelt (OMNRF, 2015). 

Given that Ducks Unlimited Canada (2010) found that only 28% of Southern Ontario’s wetlands 

remain, it is unlikely that significant peat extraction is taking place within the study area, 

meaning that the projected conversion can likely be attributed to aggregate extraction. After the 

“Extraction” land use, the next greatest wetland losses are projected when the effect of the “Built 

(impervious)” land use is considered. Conversely, the greatest SWM pond gain is projected to 

occur within the “Undifferentiated & Tilled” land use, which includes agricultural lands, urban 

brownfields, and others. 
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Historical Wetland Conversion  

First, the total area of SWM ponds gained was greater than the total area of wetlands lost. 

This was unexpected finding because of the uncoordinated wetland policy approach in Ontario 

that does not amount to an overarching strategy in response to wetland losses (Ducks Unlimited 

Canada et al., 2012). In fact, there is no evidence that the gain of SWM ponds was directly 

connected to losses of wetlands. Additionally, while in most municipalities SWM pond gains 

were higher than wetland losses, this was not the case in London. 

Schulte-Hostedde et al. (2007) found that the implementation of protection was difficult 

for wetlands designated as “Locally Significant” in London, partially as most of these wetlands 

were zoned as Agriculture. This finding indicates a link between wetland conversion and 

municipal-level policies, which were not directly examined in this study. Further, Section 2.1.7 

of the Provincial Policy Statement (2005) stated that “nothing in Policy 2.1 is intended to limit 

the ability of existing agricultural uses to continue.” This supports the strength of agricultural 

land zoning as it predominates over local significance designation for wetlands, especially in 

agriculturally dominant municipalities like London (Government of Ontario, 2005b). 

Second, and as expected, wetland loss was concentrated among small wetlands, likely 

due to the failure of the Ontario Wetland Evaluation System to protect wetlands smaller than 2 

ha (Government of Ontario, 2014; Schulte-Hostedde et al., 2007). This finding is concerning 

both ecologically and hydrologically. From an ecological perspective, small wetlands are 

valuable for the maintenance of biodiversity, as discussed by Semlitsch & Bodie (1998) and 

supported by Houlahan et al.’s (2006) finding that these wetlands tend to host the least frequently 

occurring plant species. Further, Keitt et al. (1997) found that small habitat patches (i.e. 

wetlands) show large per-area contributions to connectivity, meaning that they may be able to act 
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as stepping stones between larger wetlands, thereby playing an important role in ecologically-

important landscape connectivity (Saura, Bodin & Fortin, 2014).  

From a hydrologic perspective, small and geographically isolated wetlands are important 

for water retention and infiltration, and have a strong influence on downstream water quality 

(Marton et al., 2015; McLaughlin, Kaplan & Cohen, 2014). The retention and infiltration 

capacity of small wetlands is supported by McLaughlin et al.'s (2014) simulation of water 

dynamics in geographically isolated wetlands, which highlights these wetland’s ability to reduce 

variability in the water table and in base flow. Through a survey of literature, Marton et al. 

(2015) found that these wetlands support disproportionately high rates of biogeochemical 

processing, given the size of their perimeters relative to area. This finding highlights the 

importance of small and isolated wetlands to reduce loads of nutrients, pollutants, and sediment 

to downstream waters, and the overall need to preserve these ecosystems (Marton et al., 2015).  

The observed loss of small wetlands aligns with critiques of the Ontario Wetland 

Evaluation System that were discussed by Schulte-Hostedde et al. (2007). These include the 

failure to protect small wetlands, provide regular monitoring, the presence of an unclear rating 

system for wetland significance, and the fact that there are wetlands that have yet to be evaluated 

(Schulte-Hostedde et al., 2007). This trend of small wetland loss, and sparse protection for such 

wetlands aligns with broader trends across North America (Goldberg & Reiss, 2016; Serran & 

Creed, 2015; Semlitsch & Bodie, 1998). As such, Semlitsch & Bodie (1998) argue for the need 

to preserve wetlands as small as 0.2 ha, until more information is available on the biological 

implications of their loss. This recommendation aligns with Creed et al. (2017), who advocate 

for a default protection strategy for regions with high historic loss of vulnerable waters, as is the 

case for southern Ontario’s wetlands (Ducks Unlimited Canada, 2010; Snell, 1987).  
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It also appears that these lost small wetlands are being replaced by even smaller SWM 

ponds, as indicated by the lower average area of gained SWM ponds. However, this observation 

could be an artefact, partially due to the minimum mapping unit constraint that exists for the 

wetland datasets (see “limitations”) (OMNRF, 2015). Regardless, this trend towards the 

increased presence of small SWM ponds could have implications for biodiversity, as small and 

large habitats (i.e. wetlands) are known to hold different ecological roles (Keitt et al., 1997; 

Uden, Hellman, Angeler & Allen, 2014). More specifically, the increased occurrence of smaller 

SWM ponds may be the result of landscape fragmentation. Curtis (1956) and Moore (1962) 

defined fragmentation as the breaking apart of habitat, and this concept has generally been 

accepted to be a factor in species decline (Fahrig, 2019; Baxter-Gilbert, Riley, Lesbarrères & 

Litzgus, 2015; Keitt et al., 1997). Goldberg & Reiss (2016) discuss landscape fragmentation and 

overall re-organization of the landscape as a concerning result of no-net-loss policies, such as 

those proposed for Ontario by OMNRF (2017).  

Despite the discussed concerns about fragmentation, Fahrig (2019) cautions that 

fragmentation is not unequivocally detrimental to species. In fact, they argue that fragmentation 

often has weak, positive effects on species, and that small habitats that exist in fragmented 

landscapes remain beneficial for conservation (Fahrig, 2019). Fahrig’s (2019) argument bolsters 

support for the need to conserve small natural wetlands. Nevertheless, the observed trends of 

wetland loss and the creation of SWM ponds still likely indicate a potential negative trend for 

species, due to the lower biophysical quality of SWM ponds compared to wetlands (Clevenot, 

Carre & Pech. 2018; Sievers et al., 2018; Tixier et al., 2012; Moore et al., 2011).  

Emphasizing the importance of small habitat patches, these features are known to have a 

potentially important role as stepping-stones to enhance landscape connectivity (Saura et al., 
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2014). It is possible that both small wetlands and SWM ponds could fulfill this stepping-stone 

role (Saura et al., 2014). However, it is unclear if small conserved wetlands or created SWM 

ponds would act as stepping-stones in a landscape that may not have larger wetlands remaining 

for them to connect (Ducks Unlimited Canada, 2010; Snell, 1987) 

Overall, the results from the current study on past wetland conversion points towards 

several areas for future research. As there is no evidence to support a direct link between the gain 

of SWM ponds and loss of wetlands, an examination on documentation of such decisions may be 

warranted. Since research by Schulte-Hostedde et al. (2007) found a link between wetland 

protection difficulties and zoning, and the current study found municipal-scale differences in 

wetland conversion, these trends may be best investigated through an analysis of Zoning By-

Laws and Official Plans. To capture more accurate rates of conversion, a greater variety of 

constructed ponds could be examined. This includes ponds on agricultural fields, such as the 

agricultural irrigation reuse pits examined by Uden et al. (2014) in their study of connectivity. 

There is also an opportunity to examine if small wetlands and SWM ponds fulfill the potential 

stepping-stone role that they may hold, given that there may be few large wetlands remaining for 

them to connect (Saura et al., 2014; Ducks Unlimited Canada, 2010; Snell 1987). 

Projected Wetland Conversion 

The increased wetland conversion expected under extractive and urban land uses supports 

the expectation that wetland loss would be more probable in human-dominated land uses. This 

also aligns with Ducks Unlimited Canada’s (2010) finding of built-up lands as a significant 

factor for wetland loss within a highly urban region of southern Ontario (Golden Horseshoe 

Region). The dominance of urbanization within our study area is supported by Cheng & Lee’s 

(2008) finding that change to urban/built-up land uses was the most significant land conversion 
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in Ontario’s Greenbelt from 1993 to 2007, including conversion from high-value agricultural 

land. 

As aggregate extraction is considered by the Provincial Policy Statement to be an interim 

land use for which remediation/rehabilitation should occur, the relatively low magnitude of 

projected SWM pond gain in connection to extractive land uses is somewhat surprising 

(Government of Ontario, 1997). This surprising result might be addressed by revisiting the fairly 

restrictive inclusion criteria for constructed pond types in the current study. If inclusion criteria 

would have been broader and additional pond types were considered in this analysis, more pond 

creation may have been observed. Further research in this direction could better examine the 

efficacy of extractive rehabilitation in terms of the preservation of wetland area, as it is known 

that aggregate extraction sites that are adequately rehabilitated as constructed wetlands can help 

to preserve biodiversity (Santoul, Gaujard, Angélibert, Mastrorillo & Céréghino, 2009). Given 

trends found by Cheng & Lee (2008) of urbanization in southern Ontario, aggregate extraction is 

likely to continue alongside demand for building materials, meaning that the effect of this land 

use on wetland loss is likely to continue. This emphasizes the importance of work to preserve 

and improve rehabilitation of biodiversity-supporting wetlands in post-extractive areas. 

The trend towards urbanization in Southern Ontario may also explain why a relatively 

low magnitude of wetland loss is projected for the “Undifferentiated & Tilled” land use, which 

includes agriculture. Given findings by Ducks Unlimited Canada  (2010) and Snell (1987) that 

agriculture has acted as a significant driver of Ontario’s wetland loss in the past, it would be 

expected that wetland losses would be greater if the individual effect of agricultural land uses 

could be examined. However, the individual examination of agricultural land uses was not 

possible as the “Undifferentiated” land use also includes urban brownfields, power line corridors, 
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the edge of transportation corridors, and forest clearings, while the “Tilled” class was not 

available at all time steps (Ducks Unlimited Canada, 2010; OMNRF, 2015). Regardless, it is 

possible that these loss projections are lower than expected as a majority of wetlands have 

already been lost to agriculture in Southern Ontario (Ducks Unlimited Canada, 2010; Snell, 

1987). It is also possible that as a result of urbanization, agriculturally-induced wetland loss may 

be occurring further outside of historical limits, as conversion to agricultural lands is no longer 

predominant within the study area (Cheng & Lee, 2008). This potential side-effect of urban 

sprawl may warrant further study and action to prevent the continued loss of wetlands in areas 

that have historically not seen as much wetland conversion as Southern Ontario. 

The lower magnitude of loss projected among the “Built (pervious)”, and 

“Transportation” land uses fail to support expectations to the same degree as the discussed land 

uses. As the “Undifferentiated” class includes the edge of transportation corridors, it is possible 

that wetland losses caused by construction of roadways are being accounted for outside of the 

“Transportation” class (Ducks Unlimited Canada, 2010; OMNRF, 2015). Other studies, 

including Ducks Unlimited Canada (2010) did not examine the “Transportation” SOLRIS class 

specifically, and overall, results for this land use are somewhat inconclusive. Despite the “Built” 

land use having high projected loss, pervious built lands have less projected loss than impervious 

built lands. A possible reason for the relative preservation of wetlands within these pervious 

urban areas could be their recognized utility for water infiltration in an urban environment, 

despite the direct use of wetlands for SWM purposes being prohibited in Ontario (OME, 2003; 

Schulte-Hostedde et al., 2007).  

Although the magnitude of projected SWM pond creation among the “Undifferentiated & 

Tilled” land use was unexpected, such lands may provide an opportunity for SWM pond 
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creation, especially given the need for SWM with the predominant conversion of agricultural 

lands for urban land uses that was found by Cheng & Lee (2008). The opportunistic nature of 

certain lands for SWM pond creation may also provide an explanation for the relatively high 

projected creation of SWM ponds when the effect of the “Forest” land cover is considered. It is 

possible that conversion is occurring in unprotected forests for the creation of SWM ponds, 

which is another concerning potential effect of urban sprawl that may warrant further study.  

It is again possible that an even higher rate of SWM pond creation would be observed in 

the “Undifferentiated & Tilled” land use if additional pond types were considered. The relatively 

high magnitude of SWM pond generation when the effects of all “Built” land uses are considered 

appears to be reasonable, as SWM is implemented to counteract effects of urban runoff (Schulte-

Hostedde et al., 2007). Meanwhile, the low magnitude of SWM pond creation when the effect of 

the “Transportation” land use is considered may simply be due to this being an inappropriate 

location for an SWM pond. Overall, the projected wetland conversion results from the Markov 

model are informative in terms of where wetland losses and SWM pond gains may continue to 

be the greatest, and where prioritization may be necessary to preserve wetland area. 

Limitations 

In addition to those discussed previously, there are limitations that are inherent to remote 

sensing and GIS methods used in our study, which can generally be improved with on-ground 

verification (Dahl, 2004). Such limitations are evident in the minimum mapping unit (MMU) of 

data used that includes the SOLRIS 2.0 change inventory, which could not reliably detect land 

use and land cover changes smaller than 0.5 ha (OMNRF, 2015). This is an improvement in 

comparison to the 10 ha minimum detection limit in Ducks Unlimited Canada’s (2010), and 

Snell’s (1987) studies of wetland loss. However, given that nearly all loss occurred in wetlands 
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smaller than 2 ha and only change greater than 0.5 ha could be reliably detected, our results are 

still likely underestimates of actual change. This is a concern mirrored by Cheng & Lee (2008) 

and Ducks Unlimited Canada (2010). The conservative nature of wetland loss estimates should 

be a key consideration for practitioners, who should not use them to substantiate further wetland 

loss. 

Additionally, the predictive approach we took to modelling projected wetland loss and 

SWM pond gain entails some uncertainty. In general, models are a simplified version of reality 

that help us to interpret processes and predict how they may change under future scenarios 

(DeAngelis & Waterhouse, 1987; Whittingham, Stephens, Bradbury & Freckleton, 2006). While 

the Markov model used in this study is informative, a variety of factors beyond its scope, such as 

policy, economics, and climate, have the ability to modify future patterns of wetland conversion 

(Dahl & Watmough, 2007; Werner, Johnson & Guntenspergen, 2013; Wiebusch & Lant, 2017). 

Further, our assumption that the Markov property was true for our data potentially rendered the 

results from the current study only approximately correct. However, it is common for this 

assumption to not be tested and instead be treated as a model limitation, as discussed by Koen et 

al. (2010). 

Further, some variation is present in the time steps used to calculate projections, which 

we calculated based on a transition probability matrix for six time-steps from the original (2002). 

The average time step of the input data was approximately four years, but this varied based on 

the availability of imagery for the SOLRIS 2.0 change inventory, and thus, projections do not 

correspond exactly to the year 2026 (OMNRF, 2015). While the Markov model may be 

informative for applications like the prioritization of land uses within which wetland 
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conservation is needed, these limitations should be kept in mind, and results should not be used 

to justify any further wetland conversion. 

 Conclusion 

Our results show a continued loss of wetlands, with trends towards their replacement by 

SWM ponds. Losses are concentrated among wetlands that are generally not protected by 

provincial policies because of their small size, and even then, this is likely an underestimate due 

to technical limitations preventing the detection of change events smaller than 0.5 ha. Loss of 

wetlands is likely to continue, and may be most likely in areas with extractive and urban land 

uses. Conversely, SWM pond gain appears to be most likely in a class of land uses that include 

agriculture, urban areas, and forested areas. We project continued loss of wetlands, which is 

especially problematic given the small fraction of historical wetlands that remain in southern 

Ontario and the critical role these ecosystems play in flood retention, a key consideration in the 

context of climate change adaptation planning. To protect human life and property from pressing 

issues that include the increased likelihood of flooding as climate change progresses, policy and 

decision makers should prioritize the protection of all wetlands, including small wetlands, in 

addition to constructing SWM ponds to manage urban runoff.  



 

 

81 

5.0 Manuscript 2 - Connectivity Contributions of Wetlands and 

Stormwater Management Ponds in Urbanized Landscapes.  

Waverley Birch1, Michael Drescher2, Jeremy Pittman3, Rebecca Rooney4 

1, 2 ,3School of Planning, University of Waterloo, Ontario, Canada.  
4Department of Biology, University of Waterloo, Ontario, Canada 
1wsbirch@uwaterloo.ca 

 

 Abstract 

Wetlands in human-dominated landscapes are affected by degradation and destruction, 

which threatens the critical ecosystem services that they provide, such as water retention and 

filtration, and may lead to reduced connectivity of these important ecosystems. While stormwater 

management (SWM) ponds are designed to control urban runoff and contaminants, they do not 

replace the full complement of ecosystem services and function of wetlands. Since landscape 

connectivity influences wetland function and the subsequent ecosystem services provisioned, we 

used a graph-theory-based approach to analyze connectivity of wetlands and SWM ponds in seven 

southern Ontario municipalities. We considered changes in connectivity through time, in addition 

to the effect of SWM ponds on connectivity. We calculated the number of links and number of 

components at the landscape-level, and the probability of connection and two of its components 

(dPCflux and dPCconnector) at the wetland-level. Results suggest that connectivity has decreased 

with wetland loss, while SWM pond construction has improved connectivity. Wetlands appear to 

be more connected over the landscape as a whole, while SWM ponds may act as stepping-stones 

between wetlands. Our results point towards the need to preserve wetlands in order to protect the 

critical ecosystem services they provide, while it may be possible for improvements in connectivity 

to be achieved through strategic placement of SWM ponds. 

Key Words: Landscape Connectivity, Wetland Ecosystems, Wetland Conversion. 
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 Introduction 

Globally, landscapes are now dominated by human populations and associated land uses. 

It is estimated that half of global wetlands have been lost, which is mostly attributable to wetland 

conversion in the global north over the first half of the twentieth century (Zedler & Kercher, 

2005). Wetland loss can lead to a loss of connectivity at the landscape level, which prevents 

species from being able to move between the habitats they may require for different functions 

and life stages, such as foraging or nesting habitat (Thorslund et al., 2017; Haxton, 2000). 

Without connectivity, populations can become isolated, especially due to the high mortality 

associated with dispersal (Baxter-Gilbert, Riley, Lesbarrères & Litzgus, 2015; Mackinnon et al., 

2005; Steen & Gibbs, 2004). Decline of isolated populations can also follow due to a lack of 

gene flow and subsequent reductions in genetic diversity (Reh & Seitz, 1990). 

In southern Ontario, wetlands are ecosystems for which connectivity loss is relevant, as 

there are few remaining (Ducks Unlimited Canada, 2010; Snell, 1987). As wetland loss has been 

poorly documented, estimates generally vary and are often conservative in nature (Dahl, 1990; 

Ducks Unlimited Canada, 2010; Snell, 1987; Zedler & Kercher, 2005). However, at least 72% of 

southern Ontario’s pre-European settlement wetlands have been lost (Ducks Unlimited Canada, 

2010). This loss has been very deliberate, and has generally occurred via drainage for 

agricultural purposes, as well as more recent urbanization and resource extraction (Dahl, 2006; 

Schulte-Hostedde, Walters, Powell & Shrubsole, 2007).  

Wetlands are also vulnerable to the effects of climate change, which can lead to loss of 

wetland area and connectivity (Werner, Johnson & Guntenspergen, 2013; Zedler & Kercher, 

2005). These losses are likely to result from the alteration of water volumes that will occur with 

increases in extreme weather events such as drought and flooding, which may ultimately reduce 

wetland area and integrity (Werner, Johnson & Guntenspergen, 2013; Wright, 2010; Zedler & 
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Kercher, 2005). Meanwhile, large-scale wetland connectivity is critical to allow species to adapt 

to climatic change as their ranges expand towards higher latitudes (Root & Scheider, 2006). 

More locally, connectivity allows populations to re-establish following disturbances that are 

anticipated to increase in frequency and magnitude (Humphries, Thomas & Speakman, 2002; 

Opdam & Wascher, 2004). 

In addition to the potential for wetland loss to result in connectivity loss, the replacement 

of natural ecosystems with less pervious land cover and land use types (e.g., agricultural row 

crops or residential areas) tends to lead to reduced infiltration and retention of stormwater 

(Bronstert, Niehoff & Gerd, 2002). The replacement of these flood-preventing natural 

ecosystems is especially concerning for the resilience of urban communities, given that storm 

events are expected to increase in frequency and magnitude as climate change progresses (Erwin, 

2009; Opdam & Wascher, 2004). To manage flooding in urbanized areas, stormwater 

management (SWM) ponds are often included or mandated in urban site planning (Schulte-

Hostedde et al., 2007). 

Although SWM ponds are effective at retaining urban stormwater, and newer ponds tend 

to include habitat features that are described as “naturalized”, even these ponds are not able to 

fully to replace all functions provided by wetlands (Tixier, Rochfort, Grapentine, Marsalek & 

Lafont, 2012). In addition to water retention during storms, a key function of SWM ponds is to 

allow for contaminant and sediment removal from urban runoff (Tixier et al., 2012; Moore, 

Hunt, Burchell & Hathaway, 2011). This means that SWM ponds tend to accumulate 

contaminants and excess nutrients (Tixier et al., 2012; Moore, Hunt, Burchell & Hathaway, 

2011). The presence of pollutants can affect the ecological quality of these ponds, in addition to 

other biotic and abiotic factors that include pond shape, which has led some authors to question 
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if SWM ponds may function as ecological traps (Clevenot, Carre & Pech, 2018; Sievers et al., 

2018). Sievers et al. (2018) found evidence that SWM ponds can act as ecological traps for 

tadpoles, as they had lower survival, and were less responsive to predator olfactory cues when 

raised in more polluted SWM ponds. This finding indicates the need to mitigate the potential 

ecological costs of SWM ponds, which will require more research on their function as ecological 

traps (Sievers et al., 2018).  

In the context of their hydrologic function, to prevent contaminants from entering 

groundwater, SWM ponds are generally equipped with an underlying impervious liner (OME, 

2003). Although this is a necessary protective measure, it also means that SWM ponds do not 

contribute to groundwater recharge. Conversely, this is a hydrologic function that wetlands 

fulfill, which further indicates that SWM ponds are not biophysically equal to wetlands (Rooney 

et al., 2014). 

While SWM tends to occur at the municipal level, there are a host of policies at various 

levels of government that regulate the protection of wetlands in Ontario. Part of this policy 

system is the Ontario Wetland Evaluation System, which is used to determine if a wetland is 

eligible for designation as “Provincially Significant”. Wetlands that are evaluated and qualify for 

provincial significance are awarded protection under the Planning Act’s Provincial Policy 

Statement (Government of Ontario, 2019c; Schulte-Hostedde et al., 2007). Also under the 

Ontario Wetland Evaluation System, wetlands that meet additional criteria can be considered 

part of a wetland complex if they are within a maximum distance of 750 m from one another 

(Government of Ontario, 2014; Schulte-Hostedde et al., 2007). The formation of a wetland 

complex may be one indicator of connectivity, as these are groupings of wetlands that are 

commonly related and have similarities in their biological, social and/or hydrological function 
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(Government of Ontario, 2014). While the Government of Ontario (2014) did not justify the 

chosen 750 m distance threshold for a wetland complex with empirical data, it is used as a basis 

for management decisions, which makes it a useful threshold distance for our analyses. 

Though it is known that SWM ponds are not of the same habitat quality as wetlands, and 

do not exactly mimic all of their ecological functions, they may contribute to wetland 

connectivity at a landscape level (Moore et al., 2011; Tixier et al., 2012; Uden, Hellman, Angeler 

& Allen, 2014). However, little work has been performed to examine the function of SWM 

ponds from a wetland connectivity perspective, despite the potential impacts of connectivity on 

wetland-provisioned ecosystem services (Moore et al., 2011; Rooney et al., 2014; Tixier et al., 

2012; Uden, Hellman, Angeler & Allen, 2014). To close this knowledge gap, we apply 

ecological connectivity models to determine changes in wetland connectivity at the landscape 

level over time, both for wetlands alone, and with the inclusion of SWM ponds. Our work is 

guided by the following questions: 

(1) Has loss of wetlands over the recent past led to decreases in wetland connectivity at 

the landscape level? Habitat loss is a known driver of connectivity loss, and Ducks Unlimited 

Canada (2010) found that wetlands continue to be lost in Ontario (Cushman, 2006; Haxton, 

2000; Keitt et al., 1997). As such, we expect connectivity to decrease over the study period from 

2002-2011. 

(2) Are SWM ponds less connected to other SWM ponds and wetlands, relative to how 

connected wetlands are to other wetlands and SWM ponds? Little work has examined the 

connectivity contributions of constructed ponds, though it is known that SWM ponds are of 

lesser habitat quality than wetlands (Moore et al., 2011; Rooney et al., 2014; Tixier et al., 2012; 



 

 

86 

Uden et al., 2014). Following this trend, we expect that SWM ponds will be less connected than 

wetlands.  

(3) Has creation of SWM ponds over the recent past led to an increase in wetland 

connectivity at the landscape level, when both wetlands and SWM ponds are considered? Uden 

et al. (2014) found that connectivity increased when agricultural reuse pits were included in their 

analysis, and we expect the same with the inclusion of SWM ponds in our study. 

 Methods  

Study Area  

This study examines wetland change among seven Southern Ontario municipalities, 

including the City of Cambridge, City of Kitchener, City of London, City of Markham, City of 

Vaughan, City of Waterloo, and Town of Whitby (Figure 5-1). These municipalities were chosen 

based on the availability of SWM pond datasets. The broad study area of southern Ontario is 

densely populated, which has caused a great deal of developmental and agricultural pressures for 

natural systems (Cheng & Lee, 2008; Ducks Unlimited Canada, 2010). These pressures have led 

to the loss of over 72 % of the pre-European settlement (prior to 1800) wetland area (Ducks 

Unlimited Canada, 2010; Snell, 1987). Municipalities within this broad study area were chosen 

based on the availability of SWM pond datasets that contained sufficient information for further 

analysis, as explained in “Spatial Data”.  
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Figure 5-1. Map of the study area municipalities within the broader study area of southern 

Ontario. Study area municipalities are those for which SWM pond datasets with the year of 

construction and pond type were available. Basemap source: Esri, Garmin, GEBCO, NOAA, 

NGDC, and other contributors. 

Spatial Data 

To address wetland change, this study combined publicly available data on the provincial 

wetland extent (provincially-amalgamated data from a variety of sources, including Southern 

Ontario Land Resource Inventory System - SOLRIS 2.0), and land use changes (SOLRIS 2.0) 

(OMNRF, 2015). To incorporate the connectivity contributions of SWM ponds, SWM pond data 

that included information on pond type (e.g., wet SWM pond, or dry SWM pond) and year of 

pond construction were obtained from the seven study municipalities in southern Ontario (Figure 

5-1). The SWM pond type is an important factor because not all SWM ponds are similar enough 

to a wetland to be compared to them. For example, dry SWM ponds are only designed to hold 
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water for up to twenty-four hours after a storm (OME, 2003). As such, only ponds labelled as 

“wet”, “wetland”, hybrid”, or “natural” were included. The distinction between wet, wetland, and 

hybrid ponds is in their depth, as wet ponds are deep and there are shallow aquatic plant zones 

around the perimeter, while wetland ponds are dominated by shallow zones, and hybrid ponds 

combine the two types (OME, 2003). The “natural” pond designation only occurred twice in the 

dataset, and although wetlands are not permitted for use as stormwater ponds under OME (2003), 

inclusion of these “natural” ponds in municipal SWM data may mean that they were previously 

modified for this purpose. As such, these two ponds were included in the analyses. 

The minimum mappable unit for SOLRIS 2.0 is 0.5 ha, meaning that features below this 

size could not be reliably detected (OMNRF, 2015). Upon visual inspection, recorded SWM 

pond polygons were found to generally be overestimations of the actual pond area, and it was 

necessary to correct the area of SWM ponds. This correction was achieved via a heads-up 

digitization method that made use of aerial imagery (SWOOP and GTA Orthophotography 

Project) from spring months, when the ponds were assumed to be inundated with water. During 

this process, the Town of Whitby’s dataset was also digitized into polygons, as it came in point 

format. 

Temporal Period  

Overall, the temporal period of this study extends from 2002 to 2011, which is based on 

the study period of the SOLRIS 2.0 land use change inventory and includes three time steps 

(OMNRF, 2015). Spatial data layers were created (Figure 5-2) that represent spatiotemporal 

changes in the combined system of wetlands and SWM ponds (Figure 5-3) for each time step in 

the study period. These time steps are such that t = 0 corresponds to the landscape in the year 2002 

and includes SWM ponds constructed up to this date. Due to the available aerial imagery, the next 
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time step, t = 1 corresponds to the landscape in 2005 in the City of London, City of Kitchener, City 

of Cambridge, and City of Waterloo; and 2006 in the City of Vaughan, City of Markham, and 

Town of Whitby. This time step (t =1) includes SWM ponds built from 2003 to 2005/06, depending 

on the municipality. The final time step, t = 2 includes change that occurred after t = 1, to detection 

in 2011. The wetland change detection in 2011 occurred in June in some municipalities, unlike the 

wetland detection at other time steps, which occurred in August and September. The June detection 

means that a great deal of additional wetland change could still have occurred in 2011, and as such, 

t =2 was only assumed to capture wetland change up to and including 2010, which was detected 

in 2011 and thus represents the landscape at this time. To remain consistent with this detection, 

only SWM ponds built from 2006/07 until 2010 were included in this time step (t = 2). 

.  

Figure 5-2. Illustrated workflow of spatial data layer creation for each time step, including the 

subtraction of wetland loss and addition of SWM ponds by construction year, depending on the 

municipality. 
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Figure 5-3. Illustration of observed spatiotemporal changes that occurred within the combined 

system of wetlands and SWM ponds over the study period.  

Network Analysis  

The graph-theory-based software Conefor 2.6 was used for all connectivity analysis in 

this study (Saura & Torné, 2012). Graph-theoretic models represent the landscape as a set of 

nodes and edges, which are the potential paths that an organism may take to disperse between a 

set of nodes (Saura, Estreguil, Mouton & Rodríguez-Freire, 2011; Pascual-Hortal & Saura, 2006; 

Urban & Keitt, 2001). This method is computationally powerful and also balances the required 

amount of input data and the detail provided by their results (Saura et al., 2011; Pascual-Hortal & 

Saura, 2006). As such, graph-theory based approaches are an effective means for connectivity 

modelling without the intensive data requirements that may come with other methods (Urban & 

Keitt, 2001).  

To prepare data for this analysis, the “ID within distance” tool by Jenness (2016) was 

employed in ArcGIS 10.6 (ESRI, 2017). Within this tool, a maximum distance threshold of 750 
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m was used, with the “calculate from feature edges” option selected. This distance was chosen as 

it is how far wetlands may be from each other in order to be considered a functionally related 

“wetland complex” by the Ontario Wetland Evaluation System (Government of Ontario, 2014). 

These analyses were completed for the wetlands, and for the combined wetland-SWM pond 

systems at each of the three time-steps. Outputs of this analysis are node and distance files, 

where nodes represent habitat patches (i.e. wetlands), and distances represent the possible 

connections between them. 

These outputs were then used to calculate landscape-level and wetland-level connectivity 

indices. Two landscape-level indices were calculated (Figure 5-4), the number of links (NL), and 

number of components (NC), again using the previously mentioned distance threshold of 750 

metres. For the landscape-level indices, greater connection is shown by a greater NL value, 

which represents a larger total number of links between wetland nodes (Saura & Pascual-Hortal, 

2007). Conversely, increasing wetland connectivity at the landscape level corresponds to a 

decreasing NC value. Within this index, a component is a set of wetland nodes where a path 

exists between every wetland pair, while an isolated wetland will make up its own component 

(Saura & Pascual-Hortal, 2007). As such, the most connected wetlands at the landscape-level 

will have NC = 1 (Saura & Pascual-Hortal, 2007).  
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Figure 5-4. Illustration of the links and components formed between and among wetlands, and 

the resulting NL and NC indices. 

 

At the wetland-level, the probability of connection (PC) index, and two of its components 

(dPCflux and dPCconnector) were calculated for the combined system of wetlands and SWM 

ponds at each time step. The results of these analyses were separated by wetlands and SWM 

ponds by joining the resulting table of PC values with the original wetland attributes (i.e. wetland 

type) in ArcGIS. The PC index is focused on individual wetlands, and is defined as the 

probability that two randomly placed points will fall within an interconnected habitat area, based 

on the specified distance threshold (Saura & Rubio, 2010). Values for this index range from zero 

to one, where high values indicate a more connected wetland and are given by:  

𝑃𝐶 =  
∑ ∑ 𝑎𝑖 𝑎𝑗 𝑝𝑖𝑗

∗𝑛
𝑗=1

𝑛
𝑖=1

𝐴𝐿
2      (Saura & Pascual-Hortal, 2007) 

In the context of this study, n is the total number of wetland nodes in landscape, ai and aj 

are area of wetlands i and j, AL is the total area of the analysed landscape, and p*
ij is the 
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maximum product probability of all paths between patches i and j (i.e. the best path). If wetland 

nodes are close enough to one another, the maximum probability path is the direct step between 

the wetlands, but if they are further away, the maximum probability path will likely be 

comprised of several paths through stepping-stone wetlands (Figure 5-5). When two wetlands are 

fully isolated from one another, p*ij = 0 (Saura & Pascual-Hortal, 2007). 

 

 

Figure 5-5. Conceptual illustration of possible connections between wetlands, and the calculation 

of p*ab, which is the maximum product probability (i.e. best path) between wetlands a and b. In 

this example, p*ab results in a greater probability of dispersal with the use of wetland c as a 

stepping stone between a and b, than does the direct dispersal path between a and b (pab) (Saura 

& Pascual-Hortal, 2007). 

Further, the PC index is comprised of three components: dPCintra, dPCflux, and 

dPCconnector, where 𝑑𝑃𝐶 = 𝑑𝑃𝐶𝑖𝑛𝑡𝑟𝑎 + 𝑑𝑃𝐶𝑓𝑙𝑢𝑥 + 𝑑𝑃𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 (Saura & Torné, 2012). 

The PC index ranges in value from zero to one, with increasing values representing improved 

connectivity (Saura & Pascual-Hortal, 2007). The dPCflux and dPCconnector components are 

further analysed in this study, as they are focused on the way a habitat patch (i.e. wetland) 

functions across the landscape (Saura & Rubio, 2010). dPCintra focuses on connectivity within a 

single wetland, which is not the focus of this study, and therefore is not further investigated. The 

dPCflux component represents how connected a given wetland is to other wetlands across the 
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landscape, but does not quantify the importance of that wetland for the maintenance of 

connectivity between others. This index varies based on the area of the given wetland, and its 

position on the landscape. The dPCconnector index represents how important a given wetland is 

as a connector for others, and is not size-dependent (Saura & Rubio, 2010).  

Computation of the PC index is more demanding than the landscape-level indices, and 

the entire study area contained too many data points to make this analysis feasible at this scale 

(Saura & Pascual-Hortal, 2007). As such, these calculations were completed only for the City of 

Markham, which is closest to the average area of all the municipalities (mean municipal area = 

19,689.10 ha, City of Markham area = 21,268.42 ha). PC calculations were completed using the 

previously mentioned 750 m maximum connection distance. The probability value of direct 

dispersal was set equal to 0.5, as is common practice (Herrera, Sabatino, Jaimes & Saura, 2017; 

Saura, Estreguil, Mouton & Rodríguez-Freire, 2011).  

Using ArcMap 10.6, symbology of  dPC index results was displayed as quantities with 

graduated symbols, calculated based on geometrical intervals with three classes, such that the 

same value categories applied to both wetlands and SWM ponds (ESRI, 2017). The geometrical 

interval classification scheme in ArcGIS generates breaks between the classes using a geometric 

series, meaning that a constant coefficient is multiplied to each value (ESRI, 2018). Intervals are 

calculated by subtracting the minimum from maximum values, and the geometric coefficient is 

calculated by dividing the previous interval by the current interval, while this coefficient can 

change to its inverse to optimize class ranges (ESRI, 2008). The geometrical interval method was 

chosen as it is designed for continuous data and ensures that classes remain consistent by 

minimizing the square sum of elements per class (ESRI, 2018). This ensures that each class 

contains approximately the same number of values, and maintains a consistent change between 
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each class interval (ESRI, 2018). The classified dPC values were then labelled such that the 

lowest category (dPC = 0.000001 – 0.028627) represented wetlands that were defined as being 

the “least connected” and highest category (dPC = 0.255194 – 2.048408) represented wetlands 

that were the “most connected” (Figure 5-12). 

Statistics  

All statistical tests were performed in R statistical software version 3.5.2, using an alpha 

level of 0.05 (R Core Team, 2018). Tests were performed to examine differences in connectivity 

between wetlands and the combined wetland-SWM pond system, as well as over the three time-

steps for each wetland system. The Pearson’s Chi-Square test of independence was used to test 

for significant differences in the frequency-based NC and NL indices. The probability-based 

dPC, dPCflux, and dPCconnector indices, and the area of wetlands and SWM ponds in the City 

of Markham produced numerical values that did not follow a normal distribution, which was 

determined using the Shapiro-Wilks test of normality. As such, non-parametric tests were used. 

The Wilcoxon rank sum test was used to test for a difference between the mean probability 

indices of the two wetland types (wetlands and SWM ponds), as well as for differences between 

the mean area of each wetland type. The Kruskal-Wallis test was used to test for differences in 

the PC index components over time for each of the two wetland types. 

 Results 

Over the nine-year study period from 2002-2011, wetland losses resulted in a 1.51 % (n = 

114) decrease in the number of nodes (i.e., wetlands) for the wetland system (Table 5-1). 

Conversely, over the same period, SWM pond gains resulted in a 73.55 % (n = 178) increase in 

the number of nodes (i.e. SWM ponds) for the SWM pond system (Table 5-1). For the wetland-
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SWM pond system, an overall increase of 0.82 % (n = 64) was observed in the number of nodes 

(Table 5-1). 

Table 5-1. Observed number of nodes (i.e., wetlands) for wetlands, SWM ponds, and the 

combined wetlands and SWM ponds. Numbers are given for three times over the study period 

(2002-2011), for the aggregate of study area municipalities in southern Ontario. 

Year 
Number of Nodes 

Wetlands SWM Ponds Wetlands and SWM Ponds 

2002 7556 242 7798 

2005/06 7482 334 7816 

2011 7442 420 7862 

 

Landscape Connectivity  

Over the nine-year study period, there was a significant decline in NL (i.e., number of 

links) of 1.04 % for the wetland system (X2 (2, n = 3) = 8.124, p = 0.017) (Figure 5-6, Table 5-2). 

A non-significant increase of 0.60 % in NL occurred for the combined system of wetlands and 

SWM ponds (X2 (2, n = 3) = 2.724, p = 0.256) (Figure 5-6, Table 5-2). Additionally, a significant 

difference (X2 (2, n = 6) = 10.218, p = 0.006) was found between the decreasing NL of the wetland 

system and the increasing NL of the combined system (Table 5-3).  

The NC (i.e., number of components) of the wetland system decreased by 17.31 % from 

the start to the end of the study period. However, this decrease was non-significant (X2 (2, n = 3) 

= 1.705, p = 0.426) (Figure 5-7, Table 5-2). For the combined system of wetlands and SWM ponds, 

a significant increase of 52.03% in NC was found (X2 (2, n = 3) = 31.764, p < 0.001) (Figure 5-7, 

Table 5-2). Additionally, a significant difference existed between the non-significant decrease in 

NC for wetlands and the significant increase in NC for the combined wetlands and SWM ponds 

(X2 (2, n = 6) = 14.040, p = 0.001) (Table 5-3). 
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Figure 5-6. Change in the number of links (NL index) versus time for wetlands, and the 

combination of wetlands and SWM ponds from 2002-2011. Results are for the entire study area, 

which is comprised of seven municipalities in Southern Ontario, and a higher NL index indicates 

a more connected landscape.
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Figure 5-7. Change in the number of components (NC index) versus time for wetlands and the 

combination of wetlands and SWM ponds from 2002-2011. Results are for the entire study area, 

which is comprised of seven municipalities in Southern Ontario, and a lower NC index indicates 

a more connected landscape. 

 

Table 5-2. Chi-square test results for differences between the number of links (NL), and number 

of components (NC) over three time-steps for wetlands and the combined system of wetlands 

and SWM ponds. Results are for the entire study area, which is comprised of seven 

municipalities in Southern Ontario from 2002-2011. A higher NL and lower NC index represent 

a more connected landscape, * indicates statistical significance at p < 0.05, *** indicates 

statistical significance at p < 0.001 and ns indicates a non-significant result. 

 

Wetlands Wetlands and SWM Ponds 

2002 2005/06 2011 2002 2005/06 2011 

NL 149109 148235 147561 152609 153025 153521 

X2 8.124 2.724 

D.F. 2 2 

P 0.017* 0.256ns 

NC 104 95 86 296 374 450 

X2 1.705 31.764 

D.F. 2 2 

P 0.426ns <0.001*** 
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Table 5-3. Chi-square test results for differences in number of links (NL), and number of 

components (NC), between wetlands and the combination of wetlands and SWM ponds. Results 

are for the entire study area, which is comprised of seven municipalities in Southern Ontario 

from 2002-2011. A higher NL and lower NC index represent a more connected landscape, * 

indicates statistical significance at p < 0.05. 

  2002 2005/06 2011 

NL 
Wetlands 149109 148235 147561 

Wetlands and SWM Ponds 152609 153025 153521 

X2 10.218 

D.F. 2 

P 0.006* 

NC 
Wetlands 104 95 86 

Wetlands and SWM Ponds 296 374 450 

 X2 14.040 

 D.F. 2 

 P 0.001* 

 

Wetland Connectivity  

In the City of Markham, SWM pond size was clustered around a mean of 1.02 hectares 

(ha) (Table 5-4, Figure 5-8). This was significantly larger than wetlands, which had a mean size 

of 0.72 ha (W (n = 1672) = 72210, p < 0.001). Despite being smaller on average, wetlands had a 

greater number of larger area outlier wetlands than SWM ponds did. 

Results for the PC index and its components should be considered in terms of how a given 

wetland (i.e. wetland or SWM pond) was connected to all other wetlands across the landscape. No 

statistically significant differences were found when the mean dPC index and its components were 

compared over time for wetlands and SWM ponds (Table 5-5). Although this was the case, the 

dPC index appeared to decline somewhat over time for both wetland types (Figure 5-9). This 

overall decrease was very minimal for wetlands, while it was more pronounced for SWM ponds. 

The dPCconnector index remained relatively similar for wetlands, but decreased for SWM ponds 

(Figure 5-10). The dPCflux index remained at a fairly stable value for wetlands, while this index 

increased over time for SWM ponds, opposing the trends seen for other indices (Figure 5-11).  
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Statistically significant differences existed for the mean dPC, dPCconnector and dPCflux 

between wetlands and SWM ponds (Table 5-6). As no significant differences existed for these 

indices over time, they were compared at t = 2 only, which includes all wetland loss and SWM 

pond creation observed over the study period. At this time step, the average dPC index for wetlands 

was 26.64 % higher than for SWM ponds (W (n = 1672) = 64512, p = 0.019). This was similar to 

the difference observed in the dPCflux component, although of a greater magnitude, where the 

dPCflux of wetlands was double that of SWM ponds (W (n = 1672) = 27578, p < 0.001). An 

opposite difference existed for the dPCconnector component, where the value for wetlands was 

very close to zero, and that for SWM ponds was 99.16 % higher (W (n = 69217) = 27578, p < 

0.001). 

When the dPC index was plotted spatially, interesting patterns emerged (Figure 5-13). 

First, the most connected wetlands appeared to be concentrated in the north-west portion of the 

study area, which also appeared to be outside of the most urban portions of the municipality. 

Second, most of the “most connected” wetlands were wetlands, while the “least connected” 

wetlands were both wetlands and SWM ponds. These “most connected” wetlands comprised 11.54 

% of wetlands and 8.70 % of SWM ponds, while the “least connected” wetlands comprised 40.30 

% of wetlands and 55.07 % of SWM ponds. Third, it appeared that the SWM ponds were 

concentrated toward the central areas of the municipality, whereas wetlands more commonly 

occurred along the northern and eastern boundary of the municipality. 
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Figure 5-8. Boxplot of wetland area distribution within the municipal boundary of the City of 

Markham at t = 2 (2011). Area is given in hectares, Nwetlands = 1603, and NSWM ponds = 69.  

 

Table 5-4. Wilcoxon test results for the differences in mean area of wetlands and SWM ponds in 

the City of Markham at t = 2, which corresponds to the year 2011. *** indicates statistical 

significance at p < 0.001. 

  Wetlands SWM ponds 

 Observations 1603 69 

Area (ha) 

Mean  0.7162 1.0174 

SD 1.1720 1.0874 

SE 0.0293 0.1309 

W 72210 

P <0.001*** 
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Table 5-5. Kruskal-Wallis test results for the differences in mean dPC indices (dPC, 

dPCconnector, dPCflux) between three time-steps from 2002-2011 for wetlands and SWM 

ponds. Results are for the City of Markham, where higher values for each of the dPC indices 

represent a more connected wetland, ns indicates a non-significant test result. 

 

Wetlands  SWM Ponds 

2002 2005/06 2011  2002 2005/06 2011 

Observations 1618 1610 1603  32 50 69 

dPC 

Mean 0.1224 0.1223 0.1216  0.1009 0.1039 0.0892 

SD 0.2340 0.2325 0.2296  0.4261 0.3638 0.1489 

SE 0.0058 0.0058 0.0057  0.0753 0.0515 0.0179 

X2 0.3020  5.6927 

D.F. 2  2 

P 0.860 ns  0.058ns 

dPCconnector 

Mean 0.0003 0.0003 0.0003  0.0738 0.0634 0.0314 

SD 0.0077 0.0078 0.0074  0.4004 0.3418 0.0984 

SE 0.0002 0.0002 0.0002  0.0708 0.0483 0.0118 

X2 0.3046  5.5822 

D.F. 2  2 

P 0.8587 ns  0.0614 ns 

dPCflux 

Mean 0.1213 0.1212 0.1205  0.0262 0.0394 0.0567 

SD 0.2314 0.2298 0.2273  0.0358 0.0579 0.0882 

SE 0.0058 0.0057 0.0057  0.0063 0.0082 0.0106 

X2 0.9036  5.2526 

D.F. 2  2 

P 0.637 ns  0.072 ns 
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Table 5-6. Wilcoxon test results for the differences in mean dPC indices (dPC, dPCconnector, 

dPCflux) between the wetland system and the SWM pond system at t = 2, which corresponds to 

the year 2011. Results are for the City of Markham, where higher values for each of the dPC 

indices represent a more connected wetland, *** indicates statistical significance at p<0.001 and 
ns indicates a non-significant result. 

 Wetlands SWM Ponds 

Observations 1603 69 

dPC 

Mean 0.1216 0.0892 

SD 0.2296 0.1489 

SE 0.0057 0.0179 

W 64512 

P 0.019* 

dPCconnector 

Mean 0.0003 0.0314 

SD 0.0074 0.0984 

SE 0.0002 0.0118 

W 69217 

P <0.001*** 

dPCflux 

Mean 0.1205 0.0567 

SD 0.2273 0.0882 

SE 0.0057 0.0106 

W 27578 

P < 0.001*** 
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Figure 5-9. Average dPC index over time (2002-2011) and between wetlands and SWM ponds in 

the City of Markham, where the dPC index shows how connected a wetland is overall, and a 

higher value represents a more connected wetland. Error bars represent standard error, see Table 

5-5 for sample sizes by wetland type and time step.
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Figure 5-10. Average dPCconnector index over time (2002-2011) and between wetlands and 

SWM ponds in the City of Markham, where the dPCconnector index shows how well a wetland 

acts as a connector, or stepping-stone, for other wetlands and a higher value represents a more 

connected wetland. Error bars represent standard error, see Table 5-5 for sample sizes by wetland 

type and time step. 

 

Figure 5-11. Average dPCflux index over time (2002-2011) and between wetlands and SWM 

ponds in the City of Markham, where the dPCflux index shows how connected a wetland is to 

others across the landscape and a higher value represents a more connected wetland. Error bars 

represent standard error, see Table 5-5 for sample sizes by wetland type and time step. 
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Figure 5-12. Spatial distribution of the PC index values for wetlands and SWM ponds in the City 

of Markham in 2011. PC values are categorized into three classes based on geometric groupings, 

where features with dPC values in the lowest class were considered “least connected” and those 

with dPC values in the highest class were considered “most connected”, Nwetlands = 1603, and 

NSWM ponds = 69.  

 Discussion 

Overall, our results show that recent wetland loss has led to a decrease in wetland 

connectivity, as shown by the decrease in the number of links between wetlands (NL) over the 

study period. Across the landscape, SWM ponds were found to be less well connected than 

wetlands, as shown by the lower dPC and dPCflux values. Lastly, the creation of SWM ponds has 

increased connectivity for the combined network of wetlands and SWM ponds. This is shown by 

the higher number of links (NL) for the combined system of wetlands and SWM ponds than for 

wetlands alone, and by the higher dPCconnector values for SWM ponds, which indicates the 

ability of SWM ponds to act as stepping-stones between other wetlands. 
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Landscape Connectivity 

Landscape connectivity loss was shown by a significant decrease in NL of the wetland 

system over the study period. This decrease in connectivity likely follows from the observed 

wetland losses, which has been linked to negative impacts on plant and animal populations 

(Fahrig, 2019; Cushman, 2006; Haxton, 2000; Keitt, Urban & Milne, 1997). Specific to wetland 

loss, Verheijen, Varner & Haukos (2018) studied connectivity in the Rainwater Basin of 

Nebraska (USA), where wetland numbers have decreased by more than 90% of the pre-European 

settlement wetland extent. They found that connectivity decreases resulted from this loss, as 

indicated by an increase of 150 % in the average distance between wetlands and an increase from 

3.5 to 10 km in the overall distance needed to travel through the whole wetland network 

(Verheijen et al., 2018). Because Ducks Unlimited Canada (2010) found that recent rates of 

wetland loss in southern Ontario have declined, connectivity losses in the present study were 

likely not of the same magnitude as found by Verheijen et al. (2018). This is especially pertinent 

since our study only examines loss from 2002-2011, not from pre-European settlement to the 

present. A great deal of wetland loss already occurred prior to 2002, as found by Ducks 

Unlimited Canada (2010), meaning that connectivity declines in the past and over longer time 

scales may have been of a similar magnitude to those found by Verheijen et al. (2018). 

When SWM ponds were considered together with wetlands, increased connectivity was 

shown by a significant increase in NL, relative to the wetland system alone. This improvement of 

connectivity due to SWM ponds is consistent with the work of Uden et al. (2014), who examined 

wetland connectivity in an agricultural region of Nebraska, USA. They found that wetland 

connectivity had decreased from historical conditions, but that present connectivity was 

maintained by agricultural irrigation reuse pits (Uden et al., 2014).  
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Despite the general connectivity improvements made by SWM ponds, results of the 

present study show that the increasing connectivity of the combined wetland system was non-

significant over time. This finding is somewhat surprising, given the magnitude of urban 

expansion and sprawl found by Cheng & Lee (2008) in Ontario’s Greenbelt from 1993-2007, 

which coincides with the present study’s time period and overlaps spatially in many areas. Since 

SWM is implemented in site-planning, a higher rate of SWM pond creation may be expected to 

coincide with this growth (Schulte-Hostedde et al., 2007). While it is possible that SWM pond 

construction rates over a longer period may result in greater connectivity gains, this may not 

functionally make up for the high rates of wetland loss that correspond with urban land uses in 

southern Ontario (Ducks Unlimited Canada, 2010). 

As a lower NC value indicates a connected landscape, the increased NC value for the 

combined wetland system may indicate a loss in connectivity when SWM ponds were 

considered, while the decreased value indicates a connectivity gain for wetlands (Saura & 

Pascual-Hortal, 2007). The results for NC were significant over time for the combined wetland 

system, and for the two systems in comparison to one another. The lower NC value for wetlands 

may be explained if wetland loss took place among wetlands that were previously isolated. 

Isolated wetlands would form their own components, and as such, their loss would lower the NC 

index (Saura & Pascual-Hortal, 2007). This is plausible as it is known that wetlands in southern 

Ontario are now less abundant, and the overall landscape is more human-dominated than 

previously, meaning that remaining wetlands are likely separated by other land uses (Cheng & 

Lee, 2008; Ducks Unlimited Canada, 2010; Snell, 1987).  

Meanwhile, the implied connectivity loss with SWM pond addition, which was indicated 

by the increase in NC, could possibly be due to the spatial distribution of SWM ponds, as it 
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appears that SWM ponds occurred closer to the urban centre than wetlands did. As such, these 

SWM ponds could be too separated from their wetland counterparts to form combined wetland 

complexes with them within the 750 m distance threshold. If this is the case, the results may 

suggest an increasingly disconnected wetland network due to the generation of independent 

wetland complexes, while improved connectivity may be seen within these complexes, as 

indicated by the results for NL.  

Our finding of decreased connectivity with the addition of small habitat patches (i.e., 

SWM ponds) aligns with Fahrig’s (2019) discussion of fragmentation as not necessarily being 

negative for species. In the context of our study, overall connectivity appeared to increase when 

SWM ponds were included in combined wetland complexes. This was despite more components 

being generated in a pattern that may be perceived as being fragmented.  

Further, although we only considered connectivity from a distance-based perspective, the 

presence of impermeable barriers like roads leads to reduced connectivity for dispersing species 

(Baxter-Gilbert, Riley, Neufeld, Litzgus & Lesbarrères, 2015; Mackinnon et al. 2005).  As such, 

wetlands located closer to the urban centres of our study area municipalities were likely less 

connected from the perspective of these dispersing species. 

Wetland Connectivity 

Results of this study show that wetlands and SWM ponds may play different roles in 

connectivity, as indicated by significant differences between each wetland type’s dPC, 

dPCconnector, and dPCflux indices. From an overall perspective, wetlands appear to be more 

connected than SWM ponds, as they had higher dPC values (Saura & Torné, 2012; Saura & 

Pascual-Hortal, 2007). As there were 1603 wetland nodes, and only 69 SWM pond nodes, this 
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finding may be attributable to a greater number of connection opportunities for wetlands. 

Additionally, visual inspection showed that wetlands appeared to be more tightly clustered 

together on the urban periphery, whereas SWM ponds appeared to be more centrally located and 

spaced out from one another.  As our landscape-level results showed that connectivity increased 

with the addition of SWM ponds, this distribution could likely have a positive impact on species 

due to an overall increase of habitat and more uniform connectivity across the landscape.  

The different ways in which wetlands and SWM ponds contribute to connectivity were 

indicated by the examined fractions of the PC index, dPCconnector and dPCflux. Wetlands 

tended to have a higher dPCflux value than SWM ponds, while SWM ponds tended to have a 

higher dPCconnector value. As dPCflux represents how well a wetland is connected to other 

wetlands in the landscape, this indicates that wetlands tend to be more connected on average than 

SWM ponds (Saura & Rubio, 2010). This finding may be explained by the higher proportion of 

wetlands, which appeared to be more tightly clustered together than SWM ponds were. 

Meanwhile, as dPCconnector represents how important a wetland is as a connector for 

others, the higher value for SWM ponds indicates that they tend to act as linkages between other 

wetlands (Saura & Rubio, 2010). This finding may be explained by the tendency of SWM ponds 

to be located in the centre of the study area municipality, where they might form connections 

between wetlands at the periphery of the municipality. Further, the improvement of connectivity 

by SWM ponds is supported by Uden et al.'s (2014) work on connectivity of a wetland landscape 

in an agriculturally-intensive area of Nebraska, USA. They found agricultural irrigation reuse 

pits to maintain or improve connectivity in this landscape. In Uden et al.'s (2014) study, the reuse 

pits were most important as connectors at dispersal distances less than one kilometer. This 

finding could indicate that the connectivity value of SWM ponds may vary at distance thresholds 
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other than the present one of 750 m, and species that disperse greater distances may rely less on 

SWM ponds as connectors. 

The role of SWM ponds as stepping-stone connectors may also be explained by the work 

of Keitt, Urban & Milne (1997), who represented habitat mosaics from the southwestern USA as 

mathematical graphs, in order to quantify connectivity at multiple scales. They found that while 

large habitat patches (i.e. wetlands) had the greatest total contribution to landscape connectivity, 

a number of small patches showed similar contributions when considered per unit area, which 

may have indicated their ability to act as stepping-stones between larger patches (Keitt et al., 

1997). Herrera et al. (2017) also emphasize the importance of small habitat patches as stepping-

stone connectors in their study of grassland connectivity in Argentina, and they found these 

features to be most important for species that disperse long distances. In the present study, the 

average SWM pond was slightly larger than the average wetland, but some larger outlier 

wetlands existed. This finding, coupled with the high dPCconnector values for SWM ponds and 

the mentioned literature, may further support the potential role of SWM ponds to connect larger 

wetlands if they still exist on the landscape. 

From a habitat standpoint, the potential stepping-stone function of these SWM ponds is 

likely positive for the maintenance of biodiversity. Saura, Bodin & Fortin (2014) created a 

generalised network model of habitat connectivity and found that stepping-stone habitat patches 

can be an important factor in species persistence across wide spatiotemporal scales. However, 

stepping-stone habitats must be of sufficient size or quality to be of conservation value, but 

SWM ponds are unlikely to provide optimal habitat for wetland-dependent species (Moore et al., 

2011; Saura et al., 2014; Tixier et al., 2012; Uden et al., 2014). As such, while the results from 
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the current study show that SWM ponds can increase wetland landscape connectivity, they do 

not indicate that SWM ponds are an adequate replacement for wetlands.  

Limitations 

Pascual-Hortal & Saura (2006) describe limitations of the NL and NC indices, which perform 

poorly in terms of correctly identifying the importance of lost patches (i.e. wetlands). A possible 

reason for this limitation could be the failure of these indices to consider patch area. 

Additionally, these indices are only indicative of landscape connectivity among habitat patches. 

The probabilistic indices (PC and its components) further examine connectivity of the patches 

themselves, and these are suited to prioritization of wetlands (habitat nodes) that may maintain 

the landscape’s connectivity (Pascual-Hortal & Saura, 2006; Saura & Rubio, 2010). However, 

due to computational requirements that lead to the PC index being limited to a lower number of 

wetland node inputs, this index could only be computed for the City of Markham (Saura & 

Pascual-Hortal, 2007). The remotely sensed data used in this study come with limitations, and 

should be interpreted with care. As mentioned, the remotely sensed wetland change inventory 

has a minimum mapping unit of 0.5 ha, meaning that the loss of wetlands smaller than this could 

not be reliably detected (OMNRF, 2015). In general, larger minimum mapping units tend to 

mask sparse land cover classes and underestimate landscape diversity (Saura, 2002). It is 

possible that decreases in connectivity may have been greater than observed, had this mapping 

limitation not prevented the potential inclusion of wetlands smaller than 0.5 ha and 

corresponding loss. Additionally, as Keitt et al. (1997) found that smaller patches (i.e. wetlands) 

can generally act as stepping-stone connectors, it is possible that the contribution of wetlands in 

this role (indicated by dPCconnector) may have been greater than observed if smaller wetlands 

had been included. As such, the lack of significant results over time for some indices should not 
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be interpreted as if there were no declines in connectivity, and do not provide justification for 

further wetland loss, especially since the majority of southern Ontario’s wetlands have already 

been destroyed (Ducks Unlimited Canada, 2010; Snell, 1987).  

 Connectivity is one element of wetland function, but it should be kept in mind that there 

are many other functional variables, and the approach taken for this study is deductive in nature. 

One consideration is the 750 m dispersal threshold that was used, which is based on the Ontario 

Wetland Evaluation System’s maximum distance within which a wetland complex can be 

designated (Government of Ontario, 2014a). This is the distance within which the 

interconnectedness of wetlands and their function is considered at the provincial level, which is 

why it was chosen as a general indicator of connectivity for these analyses. However, actual 

dispersal distances of species are known to be variable (Cushman, 2006; Saura & Rubio, 2010). 

Herrera et al. (2017) showed that connectivity, specifically the importance of small habitat 

patches, differed based on dispersal distance, which may indicate the benefit of examining 

dispersal distance in another manner (see “Next Steps”).  

Next Steps 

 As mentioned, differing results may have been observed if a wider range of distance 

thresholds had been analyzed, rather than the overarching 750 m wetland complex definition 

used in the present study (Government of Ontario, 2014; Keitt et al., 1997). Engelhard et al.'s 

(2017) work on seascape connectivity in Australia indicates another approach to dispersal 

distances that could be used for further research. In this approach, they used metrics that were 

based on two important native species that represented a range of other species (Engelhard et al., 

2017). This method combines two others: connectivity metrics that are based on average spatial 

requirements of multiple species, and connectivity based on the requirements of an umbrella 
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species (Engelhard et al., 2017; Minor & Lookingbill, 2010; Olds et al., 2014). In general, it 

would be helpful to compare a range of dispersal thresholds in a sensitivity analysis to determine 

how sensitive the connectivity results are to the choice of a specific dispersal threshold 

(Engelhard et al., 2017).   

A mentioned limitation of this study was the calculation of the PC index, which was only 

able to be completed for one municipality, the City of Markham. While this City is similar to the 

other municipalities from an area-based perspective, a variety of factors, including municipal 

policy, impact wetland conversion and can therefore impact connectivity (Schulte-Hostedde et 

al., 2007). This indicates the need to expand the scale of PC analyses, in addition to the potential 

to also analyse these indices and others in relation to policy, to determine what may drive 

patterns in connectivity at different scales. Such an approach would be consistent with the work 

of Kininmonth, Bergsten & Bodin (2015), who discuss the importance of understanding 

governance structures in order to uphold wetland connectivity in socio-ecological systems. 

Further analyses of spatial connectivity patterns may also be informative, as the most connected 

wetlands appeared to be located in more peripheral parts of the municipality, while the most 

connected SWM ponds appeared to occur closer to the urban core.  

Jurisdictional boundaries are prevalent in wetland planning and work related to 

connectivity, which is evident in the municipality-based approach taken in the present study, but 

are not conducive to the larger scale on which ecological processes function (Kininmonth, 

Bergsten & Bodin, 2015; Thorslund et al., 2017). Kininmonth, Bergsten & Bodin (2015) 

emphasize the need for cross-boundary connectivity management, and discuss the importance of 

coordinators for interjurisdictional wetland connectivity management. Such work further 

supports the need to expand the scale of connectivity analyses, and particularly of probabilistic 
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indices, in order to identify priority sites for connectivity planning beyond municipal boundaries. 

The prioritization of connectivity at such a scale would require the coordination of stakeholders 

at multiple levels, but this approach is most conducive to the maintenance of biodiversity (Cui, 

Zhang & Lei, 2012; Engelhard et al., 2017; Kininmonth et al., 2015). As mentioned, connectivity 

is only indicative of one aspect of wetland function, and should not be used as a sole means of 

conservation planning, but is instead complementary to other functional criteria (Engelhard et al., 

2017). Attum, Lee, Roe & Kingsbury (2008) studied connectivity in relation to the distribution 

of several Ontario herpetofauna species, and found that simple measures of connectivity, like 

distance, may be adequate when examining more common and less vagile species. However, 

additional considerations, such as corridor quality, are needed to conserve less common and 

more vagile species (Attum et al., 2008).  

Study area boundaries are also an important consideration in connectivity analyses due to 

their potential to act as barriers to the modelled dispersal, especially for circuit-theory-based 

analyses (Koen et al., 2010). The potential impact of such barriers is unclear for our graph-

theory-based study, but it is likely that the effect would be reduced if the study area was 

expanded to the watershed scale.  Koen et al. (2010) recommend the use of randomized 

landscape buffers as a solution to the map boundary effect, which is another feasible method that 

could be taken in future research. To determine if the map boundary effect was impacting results, 

a sensitivity analysis could be completed using a variety of randomized buffers. Comparing 

connectivity results obtained with these different buffers would both help to determine if the map 

boundary effect was impacting results, and determine how best to mitigate these effects (Koen et 

al., 2010). 
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In order to take a more holistic approach to conservation, Nel, Reyers, Roux, Impson & 

Cowling (2011) recommend key considerations for the planning of freshwater biodiversity in 

their study of a water management area in South Africa. They suggest the inclusion of 

ecosystems with high ecological integrity, connectivity considerations, priority areas for 

population persistence, and mappable spatial components (Nel et al., 2011). As such, results of 

the present study may be indicative of the potential to incorporate connectivity indices in a 

broader decision-making framework for the conservation of wetlands and allocation of SWM 

ponds. Under such a framework, SWM ponds could be strategically placed to fulfill their 

potential to act as stepping-stones, while prioritizing the conservation of wetlands. 

 Conclusion 

Overall, our results show that connectivity has decreased over the study period with 

continued wetland loss, while this decrease was somewhat remedied by SWM pond creation. 

Overall, wetlands were more connected than SWM ponds, which appear capable of acting as 

stepping-stones between existing wetlands. Declining connectivity is troublesome given that its 

maintenance is a key aspect of ecosystem resilience, which impacts the conservation of 

biodiversity that human populations rely on for critical ecosystem services. This is especially 

concerning given the progression of climate change, as it is only with connectivity that these 

ecosystem service provisioning species will be able to disperse as their ranges expand to higher 

latitudes. As mentioned, the consideration of trans-boundary connectivity is critical, as wetland 

species and processes do not operate only within the jurisdictional constraints within which 

wetland management tends to occur. Moving forward, wetland connectivity may be maintained 

or improved through the preservation of remaining wetlands, and strategic placement of SWM 

ponds, as necessary. 
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6.0 Synthesis 

This chapter serves as a conclusion and synthesis of the two data chapters (i.e. 

manuscripts) that were presented in this thesis. The findings are first re-discussed in terms of 

their significance, limitations, and relation to one another. Then, future recommendations are 

discussed. These recommendations are made in terms of what future research could be 

beneficial, and where policy improvements could be made to result in better wetland 

conservation outcomes. 

 Principle Findings 

Chapter 4 – Trends and Predictors of Recent Wetland Conversion in Southern Ontario 

Municipalities.  

The objective of this chapter was to increase understanding of recent trends of wetland 

conversion (i.e. wetland loss and SWM pond gain) and to project how these trends may continue 

into the future. These projections were also considered in terms of the effects of land use and 

land cover types on wetland conversion, given the prevalence of wetland conversion in certain 

human-dominated land uses (Ducks Unlimited Canada, 2010; Zedler & Kercher, 2005). With 

several more specific questions, this chapter addressed the overarching research question (1): 

how has the composition and abundance of wetlands changed, and has the creation of SWM 

ponds had any significant effect on their presence? The chapter-specific research questions were 

related to wetland management and policy, and are as follows:  

(1) Has the extent of lost wetlands been fully compensated for by the creation of SWM 

ponds, from an area-based perspective? As Ontario’s wetland policy is somewhat uncoordinated, 

and decisions about wetland management are generally made at the site-level, it was expected 
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that net loss of wetlands would be observed (OMNRF, 2017; Schulte-Hostedde et al., 2007; 

Thorslund et al., 2017). 

(2) Has there been a high prevalence of wetland loss among small wetlands? Due to the 

Ontario Wetland Evaluation System’s focus on protecting wetlands larger than 2 ha, it was 

expected that a disproportionate amount of loss would occur amongst wetlands smaller than 2ha 

(Government of Ontario, 2014). 

(3) Will wetland loss be more probable in areas affected by urbanization and other 

human-dominated land uses than in land uses that may be less intensive? Agriculture is a 

historically dominant driver of wetlands loss, and Ducks Unlimited Canada (2012) found built-

up lands to be a dominant factor for wetland loss within urban and peri-urban area. As such, it 

was expected that human-dominated land uses would correspond with greater projected wetland 

loss (Ducks Unlimited Canada, Earthroots, EcoJustice & Ontario Nature, 2012; Snell, 1987; 

Zedler, 2000). 

Loss of wetlands continued over the study period, while replacement by SWM ponds 

occurred from a total-area perspective. However, lost wetlands seemed to be of greater average 

area than the SWM ponds that replaced them. This finding could possibly be the result of a data 

artefact, due to detection limitations that prevented the observation of lost wetlands smaller than 

0.5 ha. However, this finding may also indicate that wetlands were replaced by a greater number 

of relatively smaller SWM ponds. 

Despite the detection limitation mentioned above, the present study was able to detect a 

greater size range of wetland loss events than Ducks Unlimited Canada (2010) and Snell (1987), 

who used a minimum mapping unit of 10 ha. Without being limited to the detection of large 
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wetlands (equal to or larger than 10 ha), the present study found that the majority of lost 

wetlands were smaller than 2 ha. This result reinforces cautioning by Ducks Unlimited Canada 

(2010) that prior wetland loss estimates were conservative in nature and might actually be higher 

than estimated. A higher magnitude of total area wetland loss would likely be observed if it were 

technically possible to detect loss of smaller wetlands.  

The concentration of wetland loss among wetlands smaller than 2 ha reinforces critiques 

of the Ontario Wetland Evaluation System that are discussed by Schulte-Hostedde et al. (2007) 

in their analysis of Ontario’s wetland policy evolution. Despite their limited size, the loss of 

small wetlands is concerning, both because very few wetlands remain on the landscape, and 

because of the critical ecosystem services the remaining wetlands provide (Ducks Unlimited 

Canada, 2010; Houlahan et al., 2006; Snell, 1987). These small wetlands are particularly 

important because of their unique contributions to biodiversity (Houlahan et al., 2006; Semlitsch 

& Bodie, 1998). For example, Houlahan et al. (2006) found that small wetlands tend to host the 

least common species. Meanwhile, small wetlands also have the potential to act as stepping-

stones between larger wetlands and improve overall wetland connectivity, a concept that was 

examined in Chapter 5 (Herrera et al., 2017; Keitt, Urban & Milne, 1997; Saura, Bodin & Fortin, 

2014). 

If wetland management continues under the current policy regime, which includes the 

Ontario Wetland Evaluation System, this study projects that wetland losses will continue into the 

future. Allowing loss to continue is directly contradictory to climate change adaptation and 

mitigation efforts, as wetlands play a critical role both in flood management and carbon 

sequestration (Moudrak, Hutter & Feltmate, 2017; Zedler & Kercher, 2005). Wetland loss is 

projected to be the most magnified in areas with extractive and urban land uses. The projections 
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of greater loss in areas with urban land uses (i.e. “Built Impervious” and “Built Pervious”) are 

consistent with findings presented by Ducks Unlimited Canada (2010). Meanwhile, SWM pond 

gain is projected to be most magnified in areas with a class of land uses that includes agriculture 

(i.e. “Undifferentiated” and “Tilled”), urban land uses, and forested land cover. Further, it is 

possible that the construction of SWM ponds on potential agricultural lands and in forests still 

may be related to urban sprawl, given that SWM ponds are now routinely constructed as part of 

new residential developments (Schulte-Hostedde et al., 2007). Results from a study by Cheng & 

Lee (2008) suggest that urban sprawl is a pertinent concern in parts of the current study area, 

where urban sprawl was found to be a major driver of land conversions. 

Overall, the results of the current study demonstrate that the present policy regime is 

likely insufficient to prevent loss of smaller wetlands that are critical to the ecology and 

hydrology of the area and provide human populations with important ecosystem services 

(Houlahan et al., 2006; Marton et al., 2015; McLaughlin et al., 2014; Semlitsch & Bodie, 1998). 

Greater attention needs to be paid to protecting wetlands of all sizes, but especially small 

wetlands. Although it appears that SWM ponds may currently be compensating for lost wetlands 

by total area, they are unlikely to compensate from a functionality perspective (Moore, Hunt, 

Burchell & Hathaway, 2011; Rooney et al., 2014; Tixier et al., 2012).  

Chapter 5 – Connectivity Contributions of Wetlands and Stormwater Management Ponds 

in Urbanized Landscapes. 

This data chapter built on the results of the previous data chapter by examining the 

functional implications of observed wetland conversion (i.e. wetland loss and SWM pond gain), 

in terms of effects on wetland connectivity across the landscape. The objective of this chapter 

was to increase understanding of how wetland connectivity has changed given recent wetland 
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conversion, and if wetlands and SWM ponds contribute to connectivity in different manners. 

With several more specific questions, this study addressed research question (2); how does the 

current wetland landscape function from an ecological connectivity perspective, and do SWM 

ponds have any influence on connectivity? The chapter-specific research questions were as 

follows: 

(1) Has loss of wetlands over the recent past led to decreases in wetland connectivity at 

the landscape level? Habitat loss is a known driver of connectivity loss, and Ducks Unlimited 

Canada (2010) found that wetlands continue to be lost in Ontario (Cushman, 2006; Haxton, 

2000; Keitt et al., 1997). As such, connectivity was expected to decrease over the study period. 

(2) Are SWM ponds less connected to other SWM ponds and wetlands, relative to how 

connected wetlands are to other wetlands and SWM ponds? Little work has examined the 

connectivity contributions of constructed ponds, though it is known that SWM ponds are of 

lesser habitat quality than wetlands (Moore et al., 2011; Rooney et al., 2014; Tixier et al., 2012; 

Uden et al., 2014). Following this trend, it was expected that SWM ponds would be less 

connected than wetlands.  

(3) Has creation of SWM ponds over the recent past led to an increase in wetland 

connectivity at the landscape level, when both wetlands and SWM ponds are considered? Uden 

et al. (2014) found that connectivity increased when agricultural reuse pits were included in their 

analysis, and the same was expected with the inclusion of SWM ponds in this study. 

The results of this study indicated that connectivity decreased with loss of wetlands, and 

that connectivity increased when SWM ponds were included in the analyses. These trends were 

indicated by a decrease in the NL index (i.e. Number of Links) over time for the wetland system, 
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and increase in NL when SWM ponds were included in analyses (Saura & Pascual-Hortal, 2007). 

Results for the NC index (i.e. Number of Components) for wetlands indicated an increase in the 

number of components when SWM ponds were included in the analysis. Interpretation of the NC 

index in terms of its meaning for connectivity may require a closer examination of the data. For 

example, a decrease in the NC index (i.e., lower number of components) can indicate increasing 

connectivity among components, leading to a lower number of larger components; or it can 

simply indicate loss of components (Saura & Pascual-Hortal, 2007). Visual inspection of the 

spatial arrangement of SWM ponds helped to interpret these results for the current study. The 

findings suggest that SWM ponds were more centrally located within the study area than 

wetlands, which tended to be distributed along the municipal periphery. Given these differences 

in the locations of wetlands and SWM ponds, it is possible that SWM ponds tended to form their 

own, new components, while connectivity of wetlands decreased.  

The PC (i.e. Probability of Connectivity) index was used to analyse connectivity at the 

wetland-level, and was more computationally-intensive than the previously discussed landscape-

level indices (Saura & Pascual-Hortal, 2007). These computational limitations meant that this 

index could only be calculated for one municipality, and the results are preliminary indicators of 

the connectivity roles that wetlands and SWM ponds may play. The PC results suggest that the 

average wetland was more connected over the landscape than the average SWM pond. This 

difference in average connectivity can likely be explained in terms of the greater abundance of 

wetlands relative to SWM ponds, despite the abundance of wetlands being greatly reduced from 

pre-European settlement times (Ducks Unlimited Canada, 2010; Snell, 1987). However, despite 

being less connected on average, SWM ponds may act as stepping-stones and improve 

connectivity between wetlands.  
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Overall, the results of Chapter 5 indicate that losses in wetlands are leading to decreases 

in connectivity. However, the results also suggest that SWM ponds may provide benefits by 

acting as stepping-stones between wetlands. Meanwhile, wetlands appeared to be more 

connected as a whole, compared to SWM ponds. These findings continue to build on evidence 

that Chapter 4 gave for the need to halt wetland loss, but also indicate the potential to improve 

connectivity of remaining wetlands by the creation of SWM ponds.  

6.1.1 Connection of Principle Findings 

The wetland loss and SWM pond gain observed in Chapter 4 was connected to Chapter 5 

through analysis of the functional implications of these changes. Other studies have generally 

found that small habitat patches (i.e. wetlands) can act as stepping stones to maintain landscape 

connectivity (Herrera, Sabatino, Jaimes & Saura, 2017; Keitt, Urban & Milne, 1997). The ability 

of small features to act as stepping-stones is supported by the finding from the present studies 

that SWM ponds, which were small relative to lost wetlands (Chapter 4), likely fulfilled this 

stepping-stone role (Chapter 5). 

Chapter 4 demonstrated that the overall area of SWM pond gain was greater than that of 

wetland loss. As such, there may be some potential for these SWM ponds to be strategically 

placed to improve landscape connectivity in their role as stepping-stones. This potential is further 

supported by Uden, Hellman, Angeler & Allen (2014)’s work in an agriculturally-intensive area 

of Nebraska, USA, which found that connectivity improved when constructed agricultural 

irrigation reuse pits were included in the analysis. However, it is known that SWM ponds are not 

of equal habitat quality to wetlands, and it remains imperative to halt the disproportionate loss of 

small wetlands (< 2 ha) that was observed in Chapter 4 (Moore et al., 2011; Rooney et al., 2014; 

Tixier et al., 2012). 
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 Recommendations 

6.2.1 Limitations and Future Research  

Several areas for future research have emerged from this thesis, including a need to 

expand the spatial extent of these analyses, examine a greater variety of constructed ponds (e.g. 

ponds on agricultural lands), and policy analysis. In Chapter 4, the effects of the limited spatial 

extent on the study results may be most evident in terms of the unexpectedly low magnitude of 

loss projected for areas of the “Undifferentiated & Tilled” class of land use and land cover types. 

This land use class included agriculture, which is a historically dominant driver of wetland loss, 

but the projected wetland losses in the current study were much smaller than expected (Snell, 

1987; Wiebusch & Lant, 2017; Zedler & Kercher, 2005).  

It is possible that agriculture is simply no longer a dominant force of wetland conversion 

in the study area, but may be acting as a driver elsewhere. This notion is supported by the results 

of Cheng & Lee (2008), who found that urban sprawl in southern Ontario has led to the 

conversion of prime agricultural land. This may suggest that urban sprawl may be taking over 

from agriculture as dominant driver of landscape change in southern Ontario. However, 

assuming that urban areas continue to expand into agricultural lands, the lost agricultural areas 

may have to be re-gained elsewhere, such as in northern Ontario (Caldwell & Marr, 2011). It is 

therefore possible that agriculture will lead to wetland loss further outside of past agricultural 

boundaries. The possible expansion of agricultural boundaries is a concern for wetlands in areas 

where the magnitude of wetland losses historically has been lower than found by the studies of 

Ducks Unlimited Canada (2010) and Snell (1987) for southern Ontario. Consequently, improved 

monitoring of wetland conversion should be enforced in areas of potential concern. This includes 

northern Ontario, where wetlands are also threatened by mining, energy development, and 

transportation infrastructure (OMNRF, 2017). 
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Ecological processes do not operate within the jurisdictional constraints they are 

generally managed within, which is relevant in the context of this municipal-boundary-based 

thesis (Kininmonth, Bergsten & Bodin, 2015; Thorslund et al., 2017). The issue of ecological 

scale was most evident in Chapter 5, as real-world wetland connectivity is not limited by 

jurisdictional boundaries. It is also possible that differing connectivity results might have been 

observed if additional municipalities had been analyzed using the PC indices, especially since 

there were municipal-level differences in wetland conversion found in Chapter 4. However, the 

effects of the spatial extent of the study area were also relevant in Chapter 4. Results in this 

chapter suggest that landscape-level wetland losses are mostly driven by urban land uses, while 

other factors may have been more prevalent outside of the boundaries of the largely urbanized 

study area.  

To remedy the constraints that municipal boundaries may have placed on this thesis, 

further research could expand the spatial scale of the current analyses to take an inter-

jurisdictional approach. This could possibly follow watershed boundaries or species ranges, 

which would be more conducive to the way that wetland connectivity operates across the 

landscape. This approach would also be consistent with a more holistic examination of wetland 

loss and could help to mitigate potential issues like the map boundary effect on connectivity 

analyses. Alternatively, map boundary effects could be further mitigated with the use of 

randomized buffers (Koen et al., 2010) Additionally, the consideration of connectivity across 

boundaries could improve adaptation management efforts for wetland-dependent species that 

will need to disperse as their ranges expand to higher latitudes, due to climate change 

(Humphries, Thomas & Speakman, 2002; Opdam & Wascher, 2004). 
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Spatial resolution is also a pertinent consideration when it comes to the detection of 

wetlands and their losses. The minimum mapping unit of wetland area (0.5 ha) for the data used 

in this study likely masked the loss of wetlands smaller than 0.5 ha, and likely led to the 

perception of a generally simplified landscape (OMNRF, 2015; Saura, 2002). This mapping 

limitation is prevalent in wetland management, and ultimately restricts how effectively wetlands 

can be conserved through evidence-based policies (see Section 4.2.2 – Policy) (Creed et al., 

2017). Ultimately, better mapping and inventory of wetland resources is needed for effective 

protection. This is especially pertinent as Walters & Shrubsole (2005) highlight that Ontario’s 

Wetland Evaluation System assumes that all wetlands are identified and delineated through the 

evaluation process. This assumption means that wetlands missed by mapping limitations would 

also miss a chance at being protected by the agencies that review these maps, such as 

conservation authorities and the Ministry of Natural Resources (Walters & Shrubsole, 2005). 

While SWM ponds are a common form of constructed pond within urban and peri-urban 

areas, there is likely a need for further work to include a greater variety of constructed ponds 

within the analyses. Doing so would help to capture more accurate rates of pond creation. One 

example of potential pond types to examine is shown by Uden, Hellman, Angeler & Allen's 

(2014) work, which examined the connectivity contributions of agricultural irrigation reuse pits. 

If the extent of this study were expanded outside of urban and peri-urban areas, as previously 

recommended, the consideration of constructed ponds other than SWM ponds would be 

necessary. 

While the trends observed in the present study were briefly compared and contrasted to 

policy, a comprehensive study of wetland conversion as it relates to policy is likely needed in 

order to improve evidence-based decision-making. In Chapter 4, municipal-level differences in 
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wetland conversion were observed, which could be related to factors such as zoning and official 

plan policies. This is supported by Schulte-Hostedde et al.'s (2007) work, which found 

agricultural zoning in the City of London to be an inhibitor of the protection of Locally 

Significant Wetlands. As such, the loss of wetlands and gain of SWM ponds could be examined 

in relation to the policies that guide conversion. This approach would be pertinent as the present 

results do not indicate whether the observed trends of wetland loss and SWM pond gain are 

deliberate result of policy (see Section 4.2.2 – Policy). Lastly, the effects of policy at the 

municipal- and provincial-level should be examined in their relation to the resulting differences 

in wetland connectivity, to examine the functional implications of these policies. 

6.2.2 Policy 

The results of this study have revealed several wetland policy and management concerns. 

These concerns are mostly related to the failure of current policy regimes to protect small (< 2 

ha) wetlands, and the subsequent need for future policy to be more oriented around the 

conservation of all wetlands, not just large ones. The failure of Ontario’s wetland policy system, 

including the Ontario Wetland Evaluation System, to protect wetlands smaller than 2 ha was 

highlighted in Chapter 4. The disproportionate losses observed among small wetlands is 

concerning, given their importance for the maintenance of biodiversity and hydrological regimes 

(Marton et al., 2015; McLaughlin et al., 2014; Houlahan et al., 2006; Semlitsch & Bodie, 1998).  

Current provincial policy will likely continue to allow the loss of small wetlands, as 

projected in Chapter 4. The “Wetland Conservation Strategy for Ontario 2017-2030” was 

released by OMNRF (2017) under the previous government, attempting to create a more unified 

approach to wetland management in the province. However, the provincial government changed 

in 2018, and it does not appear as if the new government will pursue stricter environmental 



 

 

128 

legislation that could lead to stronger protection of Ontario wetlands. The Wetland Conservation 

Strategy contains some problematic language that could lead to further wetland loss if it is used 

to guide future policies. This language is contained in the key goals of the strategy, which aim 

for a halt in “net loss of wetland area and function where wetland loss has been the greatest” and 

“net gain in wetland area and function where wetland loss has been the greatest” (OMNRF, 

2017). This type of approach, aiming for no net loss but for a net gain of biodiversity, is known 

as biodiversity offsetting (Bull, Suttle, Gordon, Singh & Milner-Gulland, 2013; BBOP, 2012).  

Offsetting can occur in terms of the species composition, habitat structure, ecosystem 

function, and anthropogenic values connected to biodiversity (Bull et al., 2013; BBOP, 2012). 

However, by allowing offsetting to occur, this strategy does not adequately address the loss of 

wetlands. Instead, it reinforces the loss of wetlands in exchange for the creation of SWM ponds, 

which are not a functionally adequate replacement from an ecological or hydrological 

perspective (Rooney et al., 2014; Tixier et al., 2012; Moore et al., 2011). Offsetting strategies are 

controversial; although they may be economically reasonable, they allow for loss of ecosystems. 

The functions and services provided by these ecosystems are generally not fully understood and 

are exchanged for features that have uncertain benefits (Bull et al., 2013). However, what is 

certain is that the benefits provided by SWM ponds are lower compared to natural systems (Bull 

et al., 2013). 

As such, the best approach for the conservation of remaining wetlands in southern 

Ontario is likely a complete protection-based strategy (Creed et al., 2017). This type of strategy 

would protect all wetlands, and is recommended by Creed et al. (2017) as a simple and effective 

means of preventing loss. The protection-based strategy is especially recommended where 

wetlands are not yet adequately mapped and evaluated. This appears to be the case in southern 
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Ontario, as mapping and evaluation is limited for small wetlands (Creed et al., 2017; 

Government of Ontario, 2014). If advancements were made in wetland mapping, such as a 

smaller minimum mapping unit and quantification of wetland function, additional strategies may 

be considered. This includes an effect-based strategy that protects wetlands that may have effects 

on downstream waters, or a function-based strategy that is based on quantified wetland function 

(Creed et al., 2017). However, since wetlands in the study area are already so sparse and 

degraded, evidence points towards the need for the protection-based strategy, to halt further 

wetland loss (Ducks Unlimited Canada, 2010; Snell, 1987).  

Municipal-level differences in wetland conversion point towards the need for policy 

changes in municipalities with the greatest wetland losses, such as the City of London. These 

protections may be based in zoning and official planning, which would require municipal-level 

prioritization of wetland conservation. However, Schulte-Hostedde et al.'s (2007) finding, that 

protection of Locally Significant Wetlands in the City of London was largely ineffective in 

regions zoned as agriculture, also likely relates to provincial policy. This lack of protection may 

have been because Section 2.1.7 of the Provincial Policy Statement (2005), stated that “nothing 

in Policy 2.1 is intended to limit the ability of existing agricultural uses to continue” 

(Government of Ontario, 2005b). The Provincial Policy Statement (2014) retained this language 

in Section 2.1.9 (Government of Ontario, 2019c). This clause prioritizes common agricultural 

practices that include wetland drainage over the conservation of wetlands, and such policy 

should be reviewed, given the pertinent need to conserve what remains of southern Ontario’s 

wetlands. However, the OMMAH (2019) has proposed changes to the Provincial Policy 

Statement and this clause has been retained, which indicates that no increased protection of 

wetlands on agricultural lands is likely under the current, new government. 
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In Ontario, the Drainage Act deals with municipal outlet drainage, which includes 

agricultural drainage (Government of Ontario, 2018a; Walters & Shrubsole, 2005). Provincially 

significant wetlands are protected from urban development under the previously mentioned 

Planning Act’s Provincial Policy Statement (2014), but drainage is not considered development 

(Walters & Shrubsole, 2005). This means that even provincially significant wetlands are not 

provided official protection under the Drainage Act (Government of Ontario, 2018a; 2019c). 

Instead, to protect wetlands against drainage, this Act employs a referral system, which includes 

agencies like Conservation Authorities in the decision-making process regarding impacts of 

drainage works on wetlands (Walters & Shrubsole, 2005).  

Walters & Shrubsole (2005) examined the assumption that this referral system is 

sufficient to prevent the loss of wetland area, and found that it generally was not. 

Recommendations given through the referral process tended not to be followed by agricultural 

operators and wetland loss continued in their study of Zorra Township. Since this Township was 

found to be perceived as progressive in wetland management, Walters & Shrubsole (2005) 

suggested that these issues are likely to be echoed province wide. Given that the referral process 

is the sole means of protection from drainage for wetlands evaluated under the Ontario Wetland 

Evaluation System, this is a concerning circumstance for wetlands of all sizes. This examination 

of the Drainage Act further indicates a need for more regulation in Ontario’s wetland-related 

policy (Government of Ontario, 2018a; Walters & Shrubsole, 2005). 

The need for no further loss of wetlands is especially pertinent, since losses of small 

wetlands can have cumulative effects. However, cumulative effects of wetland losses across 

large spatial extents can be difficult to quantify or predict accurately (Creed et al., 2017; 

Thorslund et al., 2017). Overall, it is recommended to:  
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(1) conduct a review of the Ontario Wetland Evaluation System and consider inclusion of 

wetlands smaller than 2 ha, and;  

(2) move towards no-loss policies for wetlands that would follow a complete protection-

based approach to wetland management (Creed et al., 2017).  

The implementation of no loss policies is especially relevant given the general scarcity of 

wetlands in southern Ontario, as indicated by studies from Ducks Unlimited Canada (2010) and 

Snell (1987). While provincial action is needed, the observed municipal-level differences in 

wetland losses also indicate the potential for municipal action on wetland loss. This could be 

achieved by enacting policies that include the evaluation and protection of locally-significant 

wetlands, especially those not on agricultural lands that may not be addressed within the scope of 

the Provincial Policy Statement or the Drainage Act (Government of Ontario, 2019d; Schulte-

Hostedde et al., 2007; Walters & Shrubsole, 2005). Positive municipal action on the management 

of non-provincially significant wetlands may be strengthened by responsible use of OMMAH’s 

(2019) proposed changes to the provincial policy statement. This may be possible through a new 

clause (2.1.10), which states that “Municipalities may choose to manage wetlands not subject to 

policy 2.1.4 and 2.1.5, in accordance with guidelines developed by the Province.”  

Further, issues such as the Drainage Act’s recommendations-based referral system 

indicate the need for more regulation and oversight in wetland policy. The recommendations-

based referral system is just one example but highlights the fragmented policy approach that 

currently addresses wetland conservation in Ontario. As a whole, strengthened wetland 

conservation measures are critical for the maintenance of biodiversity and hydrological regimes 

(Creed et al., 2017; Houlahan et al., 2006; Marton et al., 2015; Semlitsch & Bodie, 1998). These 
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measures will also help communities adapt to the effects of climate change that include flooding 

risks, which should be a municipal priority (Moudrak et al., 2017). 
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