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Abstract 

A common anecdotal theory among endurance athletes is that cycling results in fewer 

knee injuries compared to running. This is thought to be due in part to a lower impact ground 

reaction force in cycling, compared to running. Thus, as these endurance athletes age, there is a 

tendency to shift from running participation to cycling participation in order to avoid injury. 

However, the knee has been reported to be the most commonly injured region in both sports, 

with similar injury rates (Clarsen, Krosshaug, & Bahr, 2010; James, 1995). While it has been 

found that cycling does typically result in a lower peak ground reaction force compared to 

running (Gatti et al., 2017), it is unknown how other mechanisms (which could potentially lead 

to injuries such as iliotibial band syndrome and patellofemoral pain syndrome) differ between 

these exercise modalities. There has been an abundance of research conducted assessing the 

impacts of cycling on subsequent running performance (i.e. triathlon performance), specifically 

from a physiological point of view (Heiden & Burnett, 2003; Hue, Le Gallais, Chollet, 

Boussana, & Préfaut, 1998). No study to date, however, has explicitly compared the 

biomechanics of running and cycling. The purpose of the current study was to compare dynamic 

joint stiffness, co-contraction of the muscles surrounding the knee, segment coordination 

variability and iliotibial band impingement measures between walking, running and cycling in 

young, experienced runner/cyclists, in order to elucidate the risk of developing knee injury in 

one activity over the other.  

Fifteen healthy, trained runner/cyclists (11M, 4F, age: 25.1 ± 4.7 years, height: 1.80 ± 

0.1 m, mass: 72.1 ± 8.2 kg) were recruited. Muscle activity for 7 lower limb muscles were 

collected using wireless surface electromyography. External ground reaction forces were 

collected using force plates for the walking and running trials and an instrumented force pedal 



iv 

 

for the cycling trials. 3D kinematics were collected using an active motion capture system. 

Participants performed 6 trials of walking at a self-selected pace, 6 trials of running at a pace 

equivalent to 70% of their maximal heart rate and 6 minutes of cycling at an intensity of 65% of 

their maximal heart rate. These intensities were selected to represent a typical, social weekend 

activity. A walking or running trial consisted of one progression overground on a 20m runway 

and a cycling trial consisted of 30 second efforts extracted from a continuous, steady state, 6-

minute trial on the cycle ergometer. Walking was assumed to be a relatively low injury-risk 

activity and was performed to act as a baseline to which running and cycling could be 

compared. Kinematic, kinetic and electromyographical signals were analyzed during the stance 

phase of walking/running and the downstroke of cycling. These portions of the respective 

activities were chosen since they are the main propulsion producing phases of their respective 

activities. 

 Compared to walking and cycling, running generally had a larger dynamic joint stiffness 

and co-contraction index. For the entire stance/downstroke, and when it was broken into an 

initial and terminal phase, running had the largest DJS, followed by walking and then cycling (all 

p<0.0001). For stance/downstroke as well as the terminal phase, for all muscle groupings, 

running had a greater CCI compared to walking and cycling (all p<0.05/4), which were not 

different from each other. For the initial phase, for the VLLG and VMMG muscle groupings, 

running had a greater CCI compared to walking and cycling (both p<0.05/4), which were not 

different from each other. For the VLBF muscle grouping, running had a greater CCI compared 

to walking, which was greater than cycling (p=0.002) and for the VMST muscle grouping, 

walking and running were larger than cycling, but were not different from each other (p=0.002). 

The coordination variability was not different between walking, running or cycling for the 
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sagittal thigh / sagittal shank or sagittal shank / sagittal foot segment coupling (both p>0.05). In 

terms of IT band impingement measures, running had a larger ITBEX compared to walking and 

cycling, which were not different from each other (p=0.0001). In terms of IT band impingement 

duration over an equivalent cumulative load, there were no differences between walking, running 

and cycling (p=0.164). The outcome measures that were different from walking (assumed to be a 

relatively low-injury risk activity) might be a contributor to injury for that activity. Of the 

outcomes analyzed in the current study, joint stiffness and co-contraction thus could potentially 

play a role in running injuries. None of the studied outcomes, however, when interpreted in 

isolation, likely play a role in cycling injuries. At the large knee flexion angles, such as those 

exhibited during the downstroke of cycling, the patellofemoral contact pressure, area and force 

have been found to be increased compared to full extension (Lewallen, Riegger, Myers, & 

Hayes, 1990). Thus, perhaps large flexion angles may be an important factor, either in isolation 

in combination with the outcome measures analyzed such as the co-contraction indices and 

coordination variability, to overuse injuries in cycling. 

This was the first study to explicitly compare the biomechanics of running and cycling in 

the same study. When comparing walking, running, and cycling, significant differences were 

found in the dynamic joint stiffness and co-contraction index. Since injury rates between the two 

sports are very similar, these findings suggest that the same injuries could manifest from 

different injury mechanisms. Runners may opt to cross train in cycling but should be warned that 

due to large knee flexion angles under load, there are mechanisms of injury during cycling that 

may also result in overuse injury. 
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Chapter 1 : Introduction 

Among endurance athletes, it is common for aging runners to shift to cycling, with the aim of 

mitigating injuries perceived to be related to running. Specifically, a lower incidence of cycling 

injuries is thought to be a consequence of the lower impact ground reaction forces (GRF) 

experienced in cycling compared to running. Contrary to this belief, however, similar injury rates 

have been reported between running and cycling. The overall incidence of non-traumatic injury 

(also called overuse injury) is up to 92.4% in running (Van Gent et al., 2007) and up to 85% in 

cycling (Baskins, Koppel, Oliver, Stieber, & Johnston, 2016; Dettori & Norvell, 2006) over the 

course of one year. Of these injuries, 42% (Clement, Taunton, Smart, & Mcnicol, 1981; Taunton, 

2003) and 36% (Clarsen et al., 2010) are at the knee for running and cycling, respectively. Of 

overuse injuries to the knee, in both modalities, iliotibial band syndrome (ITBS) and 

patellofemoral pain syndrome (PFPS) are the two most prevalent (Callaghan, 2005; Nielsen, 

Nohr, Rasmussen, & Sorensen, 2013). The close relationship between ITBS and PFPS injury 

may be explained due to the iliotibial band having an indirect insertion on the patella (Hudson & 

Darthuy, 2009; Mendonça et al., 2016).  

In running, ITBS (also referred to as runner’s knee) has an incidence of ~15% (Baker, Souza, 

& Fredericson, 2011; Ellis, Hing, & Reid, 2007; Noehren, Davis, & Hamill, 2007; Taunton, 

2003) and is the main cause of lateral knee pain in runners (Aderem & Louw, 2015). Further, 

PFPS has an incidence of 25% in running (Neal, Barton, Gallie, O’Halloran, & Morrissey, 2016; 

Sprenkel, 2014; Taunton, 2003) and is a debilitating, chronic injury that can last multiple years, 

requiring adjustments to training for the majority of those affected (Stefanyshyn, Stergiou, Lun, 

Meeuwisse, & Worobets, 2006). 
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In cycling, ITBS accounts for up to 24% of all overuse injuries in the knee (Ellis et al., 2007; 

Holmes, Pruitt, & Whalen, 1993) and PFPS (also known as biker’s knee) has been found to 

account for up to 36% of all overuse injuries in the knee (Clarsen et al., 2010; Holmes et al., 

1993; Weiss, 1985). In professional cyclists, 36% of cyclists are troubled with PFPS, with PFPS 

being responsible for 57% off all injuries requiring time off training/racing (Clarsen et al., 2010).  

In Canada, there were 350,000 reported finishers of running races in 2015, with many more 

estimated to run recreationally (Athletics Canada, 2015). In the US, 17 million runners finished 

over 30,000 races across all distances in 2016 (Running USA, 2016), with 47.4 million 

Americans estimated to have run for fitness in 2016 (Statista, 2016). Half of all finishers were 

between 25-44 years old (Running USA, 2016), with 31% of all finishers being older than 45. 

With participation rates dropping rapidly from the largest age group (35-44 years old) to just 3% 

in the oldest measured age group (65+ years old) (Figure 1.1), the most recent statistics support 

the theory that running participation is more prevalent in a younger population, as opposed to 

older populations. Running participation is currently at an all-time high, at the peak of a 300% 

increase from 1990-2013 (Running USA, 2016). Additionally, an estimated 33 million 

Americans rode their bikes for 1 hour an average of 6 times per month in 2016 (Baskins et al., 

2016). 
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Figure 1.1: 2016 Running race participants in the U.S. by age and sex (data taken from the 2016 state of the Sport – 

U.S. Road Race Trends (Running USA, 2016)). 

 

 Clearly, a large proportion of individuals in Canada and the US participate in running and 

cycling as forms of physical activity in a society growing exponentially in terms of health 

conscientiousness. Endurance activities, such as running and cycling, improve cardiovascular 

and mental health, and decrease diabetes and mortality risks (Ghorbani et al., 2014; Lo et al., 

2017; Petrovic-Oggiano, Damjanov, Gurinovic, & Glibetic, 2010; Williams, 2015). However, no 

study to date has performed an extensive biomechanical analysis explicitly comparing running 

and cycling. It is therefore unknown how participation in these exercise modalities affects the 

body from a biomechanics point of view in terms of injury mechanisms and knee health. 

Previous studies of running and cycling are mostly physiological, with emphasis on running 

performance after cycling, for triathlon applications (Bernard et al., 2003; Hausswirth et al., 

2001; Heiden & Burnett, 2003; Hue et al., 1998; Millet & Vleck, 2000; Millet, Vleck, & Bentley, 

2009; Vercruyssen et al., 2002). The current study fills this gap in the literature by comparing 
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running and cycling to each other, as well as to walking, which was assumed to be a relatively 

low injury-risk activity. 

A moderate intensity was the focus of the current thesis because this would be the intensity 

of a typical long run or long ride, which most athletes would perform for fitness or recreation. In 

order to quantify differences, dynamic joint stiffness, muscular co-contraction, segment 

coordination variability and IT band impingement measures were assessed. These outcome 

measures were selected since they are often investigated in walking, running and cycling 

literature and have previously been linked to overuse injury (Chmielewski, Hurd, Rudolph, Axe, 

& Snyder-Mackler, 2005; Farrell, Reisinger, & Tillman, 2003; Heiderscheit, Hamill, & Van 

Emmerik, 2002; Stefanyshyn & Nigg, 1998; Williams, Davis, Scholz, Hamill, & Buchanan, 

2004). Understanding how these outcome measures compare between exercise modalities may 

help to identify similarities or differences in mechanisms of overuse injury in running and 

cycling, which may be of interest to endurance athletes, coaches and sport biomechanics 

researchers.  
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Chapter 2 : Objectives and Hypotheses 

2.1 Objectives 

The purpose of the current study was to compare lower limb kinetics, kinematics and 

electromyography (EMG) between walking, running and cycling in an active, experienced cohort 

aged 18-35, in order to investigate what could contribute to the similar injury risks between 

running and cycling. All outcome measures for running and cycling were compared to a walking 

task, which acted as a relatively low-risk comparison activity. The current study had four 

primary objectives: 

1. To determine how dynamic joint stiffness (DJS) of the knee differs between the different 

exercise modalities during physiologically equivalent bouts of exercise intensity.  

Physiologically equivalent bouts of exercise intensity were defined as exercise which elicits a 

“moderate intensity” heart rate (65%-71% heart rate max (HRm)) (Garber, Blissmer, Deschenes, 

Franklin, & Lamo, 2011), according to the American College of Sports Medicine (ACSM). 

Higher DJS has been associated with more advanced tibiofemoral OA (Zeni & Higginson, 2009) 

and was predictive of patellofemoral OA worsening (Chang et al., 2017) during walking. DJS 

has also been linked to a greater risk of tibial stress fracture (Milner, Hamill, & Davis, 2007), 

with a larger DJS being associated with an increased risk of bony injury and a lower DJS linked 

to a greater risk of soft tissue injury (Butler, Crowell, & Davis, 2003). 
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2. To determine how muscular co-contraction for combinations of vastus lateralis (VL), 

vastus medialis (VM), gastrocnemius lateralis (LG), gastrocnemius medialis (MG) biceps 

femoris (BF) and semitendinosus (ST) differ between the exercise modalities.  

Greater co-contraction has been associated with increased joint contact forces (Hodge & 

Harris, 1986; Sasaki & Neptune, 2010; Winby, Lloyd, Besier, & Kirk, 2009), increased joint 

contact pressure (Li & Park, 2004) and increased energy expenditure in older adults (Hortobágyi 

et al., 2009; Hortobágyi, Finch, Solnik, Rider, & Devita, 2011). Increased co-contraction has also 

been retrospectively linked to PFPS in walking and running (Besier, Fredericson, Gold, Beaupré, 

& Scott, 2009) and has been identified as a coping mechanism for instability (Gantchev & 

Dimitrova, 1996; Hurd & Snyder-Mackler, 2007; Slijper & Latash, 2000), 

3. To determine how segment coordination variability differs between exercise modalities.  

Segment coordination represents segment control strategies adopted to perform a task. A 

lower segment coordination variability has been thought to be more detrimental to injury since 

forces may be applied more repeatedly to a localized point and less distributed about the 

surrounding tissues (Hamill, Palmer, & Van Emmerik, 2012). 

4. To determine how measures of IT band impingement differ between exercise modalities 

when considering multiple ways of defining exercise exposures. 

The EMG of gluteus maximus (GM) and cumulative ground reaction forces were used to 

determine measures of exercise exposures when comparing IT band impingement. The iliotibial 

band impingement zone (ITBIZ) (when the knee is flexed between 20° and 30°) has previously 

been defined as the range of motion where the IT band rubs against the lateral epicondyle of the 

femur and can cause irritation (Orchard, Fricker, Abud, & Mason, 1996). More time spent with 

the knee in the ITBIZ has been associated the onset of ITBS (Farrell et al., 2003; Orchard et al., 
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1996). A novel cumulative exposure metric is proposed in the current study, termed the IT band 

EMG exposure (ITBEX). It is the product of the number of times the knee passes through the 

ITBIZ in one minute, the angular velocity of knee flexion while it is in the ITBIZ and the sum of 

the integrated EMG of GM while the knee is in the ITBIZ. The ITBEX has never been 

investigated before, however, it is possible that when GM is activated, the IT band could become 

more tensioned, contributing to overuse injury. ITBIZ duration over an equivalent cumulative 

ground reaction force was calculated to investigate relationships between external reaction force 

and IT band impingement in walking, running and cycling.  

In addition, two secondary objectives have been defined, prompted by findings in previous 

literature. The correlation between DJS and muscular co-contraction was investigated. It has 

previously been postulated that DJS in the knee may be explained by an increase in muscular co-

contraction about the knee (McGinnis, Snyder-Mackler, Flowers, & Zeni, 2013). Co-contraction 

is often a strategy adopted to increase stiffness of the lower limb (McGinnis et al., 2013; Zeni & 

Higginson, 2009) and can increase knee compression forces (Hodge & Harris, 1986; Sasaki & 

Neptune, 2010).  

The IT band impingement measures from the current study were also compared to those of a 

hypothetical equivalent workout. It has been postulated that more repetitions and total duration 

with the knee flexed in the ITBIZ has been associated with the onset of ITBS (Farrell et al., 

2003). This comparison between running and cycling in an equivalent workout has previously 

been approximated  (Farrell et al., 2003). An equivalent workout was suggested to be a 1 hour 

run and a 1.25-hour bike ride, during which, the knee was reported to spend 250 seconds in the 

ITBIZ over 4800 events in running, compared to 330 seconds in the ITBIZ over 6600 events in 

cycling. In this study, however, the running data were not experimentally measured so it is 
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unknown how these values compare within the same individual, during exercise of equivalent 

intensities.  
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2.2 Hypotheses 

 The specific hypotheses of the primary objectives of the current study are as follow: 

1. The DJS will be greater in running compared to walking and cycling. 

DJS is the resistance of a joint’s muscle and soft tissue to an external applied moment (Zeni 

& Higginson, 2009). It is reported as the slope of the linear regression of the external knee 

flexion moment (KFM) plotted against the knee flexion angle (Chang et al., 2017). Pedal 

reaction forces during cycling are expected to be lower than ground reaction forces during 

running (Gatti et al., 2017) and thus, lower knee flexion moments should be found in cycling. 

Because cycling is expected to have lower knee flexion moments and to have a larger range of 

motion, the slope of the regression line (DJS) is expected to be lower during cycling. In addition, 

walking is expected to have knee flexion moments similar to cycling and lower than running. 

2. Co-contraction will be greater in running compared to walking and greater for walking 

compared to cycling for all muscle groupings. 

Running is expected to have the largest co-contraction due to the more ballistic and high-

velocity nature of the task, requiring more knee joint stabilization to perform the task and keep 

the body upright. While walking is a lower velocity task, it still requires the maintenance of 

upright posture through support at the foot-ground contact and thus is expected to have higher 

co-contraction compared to cycling. In cycling, support surfaces include pedals, handlebars and 

the seat, adding additional contact points to provide support.  
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3. Coordination variability will be greater for walking compared to running and greater for 

running compared to cycling. 

Coordination variability is thought to explain how individuals perform the same task 

repetitively given redundancies in degrees of freedom of movements (further explained in 

section 3.2.2.4). A lower coordination variability is thought to be linked to injury, while a greater 

variability is related to healthy and high-performing individuals (Hamill et al., 2012). It has 

previously been reported that running has a trend of reduced variability compared to walking 

(Seay, Van Emmerik, & Hamill, 2011), although a statistical test was not run to determine 

significance in this study. Cycling with clipless pedals (where the forefoot portion of the cycling 

shoe is rigidly attached to the pedal) has reduced degrees of freedom (DoF) compared to walking 

and running, since the foot is restrained by the pedal system (reduced to 3DoF) and the pelvis is 

restrained by the saddle (reduced to 3DoF). This may affect the cyclist by limiting the range of 

motion and possible strategies available to perform the task.  These constraints may result in 

lower coordination variability and have an effect on the knee joint kinematics. Running is 

hypothesized to have less coordination variability compared to walking because running is a 

more physically demanding (higher velocity) task. This higher demand is expected to limit the 

number of possible strategies available to the athlete to achieve the task. When landing from a 

jump or double float phase of running, certain constraints are imposed on the individual that 

must be performed to complete the task successfully while maintaining balance and control in 

preparation for the next stride. Walking is expected to have the largest coordination variability 

due to the low intensity and least amount of constraints imposed to perform the task. 
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4. A) The ITBEX will be greatest for running compared cycling and greater for cycling 

compared to walking. 

The ITBEX is a cumulative measure, combining the number of times that the knee is flexed 

between 20° and 30° with the integrated EMG over the same interval. For each pedal revolution 

in cycling, Farrell et al. (2003) estimated that the knee would be flexed in this range for 38ms 

with the participant cycling at a power output of 280W and a cadence of 80-90 RPM. They also 

reported that in running, the knee would be flexed in that range for 75ms for each stride, based 

on previous data. In the previous running study, participants ran at a self-selected pace (between 

2.78 and 3.89 m/s). In addition, the EMG during running is anticipated to be larger than that of 

walking or cycling. Thus, the ITBEX is expected to be largest for running.  

4. B) The cumulative load ITBIZ duration will be greater for cycling compared to walking 

and running. 

It has previously been reported that at a self-selected moderate intensity, 45 minutes of 

cycling results in the same external force cumulative load as a 15-minute run (Gatti et al., 2017). 

As mentioned in Hypothesis 4A, it has also been approximated that running has an ITBIZ 

duration per repetition of 75ms and cycling has 38ms per repetition (Farrell et al., 2003), with the 

cadence of running and cycling anticipated to be similar. Taking these results and calculating 

ITBIZ duration over an equivalent cumulative load, it is expected that cycling will have a larger 

ITBIZ duration compared to running. Walking and running are expected to be similar, since 

walking should have a lower cadence compared to running, but a larger ITBIZ duration per step 

due to longer stance durations.  

Pertaining to the first of the secondary objectives, the DJS and muscular co-contraction is 

anticipated to be positively correlated for all muscle groupings for walking, running and cycling. 
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It has previously been hypothesized that DJS and co-contraction could be correlated (Chang et 

al., 2017; McGinnis et al., 2013). Though no strong correlations were previously found for 

walking (Chang et al., 2017; McGinnis et al., 2013), it has never been compared during running 

or cycling. DJS in running has been found to increase with increasing gait speed (Arampatzis, 

Brüggemann, & Metzler, 1999). It has been postulated that co-contraction acts to stabilize the 

joint via joint stiffening (Chmielewski et al., 2005). 

Comparing IT band impingement measures over an equivalent workout, the current study 

aimed to validate results previously published. The number of ITBIZ events has previously been 

estimated by Farrell et al. (2003) over a workout of equivalent exposure (a 1 hour run vs. 1.25-

hour bike ride) to be approximately 4800 ITBIZ events in running and 6600 ITBIZ events in 

cycling. These values for running were approximated from a separate study, under different 

testing conditions. Further, in addition to approximating the number of ITBIZ events, the total 

time the knee would be flexed in the ITBIZ over each specific workout was also determined. 

Using the assumption that over a pedal revolution, 38ms is spent in the ITBIZ for cycling and 

that for each stride, 75ms is spent in the ITBIZ for running, they found that running would result 

in a total of 330s in the ITBIZ and 250s for cycling (Farrell et al., 2003). 
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2.3 Hypothesis Summary Table 

Table 2.1: Summary of hypotheses outlining outcome measures, expected result, signal over which each outcome 

measure is analyzed and statistical test used to determine differences. 

 Outcome 

Measure 

Hypothesis Signal Statistical 

Test  

1. DJS Running > (Walking = Cycling) Mean DJS per repetition 

One-way 

repeated 

measures 

ANOVA 

2. CCI Running > Walking > Cycling Mean CCI per repetition 

3.  Coordination 

Variability 

Walking > Running > Cycling Intra-individual standard 

deviation of segment 

coordination 

4a) ITBEX Running > Cycling > Walking Mean iEMG per minute in 

the ITBIZ 

4a) ITBIZ(t)cumul_load Cycling > (Walking = Running) Mean ITBIZ duration over 

same cumulative load 
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Chapter 3 : Literature Review 

 The objectives of this literature review are to establish a basic understanding of running 

and cycling mechanics (section 3.1), to broadly describe injuries common to both running and 

cycling (ITBS & PFPS) (section 3.2), to review previous literature comparing the biomechanics 

of running and cycling (section 3.3) and to explain the need for and the method for defining 

equivalent exercise exposures in the current study (section 3.4). 

The benefits of endurance activities have widely been proven to offer numerous health 

benefits leading to increased cardiovascular health, mental health, and decreased mortality risk 

(de Hartog, Boogaard, Nijland, & Hoek, 2010; Ghorbani et al., 2014; Lo et al., 2017; Petrovic-

Oggiano et al., 2010; Williams, 2015), among others. A six-week running program was found to 

increase mental health, decrease body mass index and improve VO2max (maximal oxygen 

uptake; a performance metric quantifying the body’s oxygen consumption during physical 

activity) (Ghorbani et al., 2014). On average, individuals who run live 3 years longer than those 

who do not run, have a 57% reduced risk of mortality by cardiovascular disease (Williams, 2015) 

and 30% reduced risk of mortality by all other diseases (Lo et al., 2017). Additionally, de Hartog 

et al. (2010) found that individuals 18-64 years old who switched to cycling to work from 

driving to work would gain 3-14 months of life expectancy, controlling for potential mortality 

effects (air pollution, accident rates). The Canadian Society for Exercise Physiology (CSEP) 

recommends that adults should perform at least 150 minutes per week of moderate – to vigorous-

intensity aerobic physical activity, in bouts of 10 minutes or more (Tremblay et al., 2011). 

Further, the ACSM’s physical activity recommendations state that individuals should perform 

between 150 minutes to 300 minutes of moderate-intensity, or 75 minutes to 150 minutes of 

vigorous-intensity aerobic physical activity per week (American College of Sports Medicine, 



15 

 

2018). As mentioned in the Canadian Physical Activity Guidelines provided for CSEP, running 

and cycling both qualify and are recommended as forms of physical activity. 

Health practitioners often prescribe physical activity to patients in order to promote 

longevity and health. However, activities such as running and cycling present a risk of injury that 

may prohibit or discourage further physical activity, resulting in more sedentary behaviour.  

3.1 General Background 

 Recreational running and cycling can both be classified as long distance endurance events 

(barring sprint running and cycling events, which are not the focus of the current study and 

involve different mechanics (Amen et al., 2011; Mann & Hagy, 1980)). Both involve repetitive 

motions at regular cadences that have distinct phases bilaterally. The following section will 

briefly outline the running stride and cycling pedal revolution.  

3.1.1 Phases in the Gait Stride 

Current gait analyses typically consist of two distinct phases; the stance phase and swing 

phase (Novacheck, 1998). Each phase is subdivided into more specific portions dependent on 

various biomechanical characteristics. One gait cycle consists of the events between when one 

foot first contacts the ground and when the same foot contacts the ground again. During human 

gait, the stages of a unilateral step consist of initial contact (0%-2% of the gait stride), loading 

response (2%-12%), midstance (12%-31%), terminal stance (31%-50%), pre-swing (50%-62%), 

initial swing (60%-75%), mid-swing (75%-87%) and terminal swing (87%-100%) (Rancho Los 

Amigos National Rehabilitation Center, 2001). These features occur temporally offset in the 

opposite leg to result in bipedal motion. Gait between walking and running share these common 

features, differentiated by altered temporal characteristics. During walking gait, the stance phase 



16 

 

for each leg lasts approximately 62% of the gait cycle (Novacheck, 1998). Since stance phase is 

greater than 50% of the gait cycle, there is an interval of double-leg stance. As gait speed 

increases, stance time decreases, resulting in a double leg float above the ground. During 

running, typically ~40% of the gait cycle is in stance phase (in contact with the ground), 

depending on running pace (Novacheck, 1998). The remaining 60% is split between a double 

float phase where both feet are off the ground and a swing phase. 

3.1.2 Phases in the Pedal Stroke 

Compared to running, cycling biomechanics is a relatively new field of study, with the 

earliest recorded concepts of the bicycle being traced back to the mid-1500’s (Lessing, 1997). 

The modern bicycle in its current form (2 wheels propelled by a crank and chain) began to 

develop early in the 19th century (Hamer, 2005). Today, modern recreational road cycling bikes 

are designed to optimize comfort, aerodynamics, and weight, often adopting technology used by 

professional cyclists. In recent years, there has been a heightened interest in research pertaining 

to cycling related injury (Dieter, McGowan, Stoll, & Vella, 2014; Farrell et al., 2003). Unlike 

running, which is an exercise modality in which form/technique is primarily led by an 

individual’s anthropometrics and neuromuscular coordination, the kinematics of cycling is, in 

part, dependent on the characteristics of the bicycle and the interaction of the fit of the cyclist on 

the bicycle. Recreational and competitive cyclists are often “clipped in” to the pedals at their 

shoe, which reduces motions at the foot from 6 DoF to 3 DoF (lateral/medial translation, 

eversion/inversion and adduction/abduction are restricted or reduced). A bicycle has many 

adjustment options to best fit the rider in order to optimize performance, comfort and reduce 

injury such as saddle fore/aft, saddle height, handlebar reach, handlebar height, handlebar width, 

crank length and crank Q-factor, among others. Inappropriate adjustments can detrimentally alter 
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the cyclist’s movements, resulting in injury. No consensus has been agreed upon regarding an 

optimal bike fit (Fonda, Sarabon, & Li, 2014). Since no two individuals have the same 

anthropometric ratios, few guidelines have been accepted.  

In order to optimize performance and reduce injury, historically, a knee angle of between 

25°-30° is recommended at the bottom dead center (BDC) of the pedal stroke (Burke & Pruitt, 

2003; Holmes et al., 1993), a torso angle of ~45° with the horizontal and an arm-torso angle of 

between 75°-90° is generally accepted for a standard road bike.  

As with running, the cycling motion occurs in distinct phases. The cycle pedal revolution 

is broken into just two phases: the downstroke (often referred to as the power phase) and 

upstroke (often referred to as the recovery phase) (Fang, 2014). During the downstroke, force is 

applied downwards onto the pedal from the foot to apply a propulsive force to the bike. This 

occurs approximately between top dead center (TDC, when the crank arm is at the 12 o’clock 

position) and bottom dead center (BDC, when the crank arm is at the 6 o’clock position). At the 

same time, the opposite leg is in the upstroke phase, where it completes the final 180° from BDC 

to TDC (Bini, Hume, & Kilding, 2013). Ideally, the force applied to the pedal occurs with an 

index of effectiveness (IE) of 1.0 when the cyclist if clipped into the pedal. This would indicate 

that the resultant force (i.e. direction of force application) is perfectly perpendicular to the crank 

arm. In reality, however, the IE is not always 1.0, due to a variety of factors such as realistic 

pedal positions, skill level of the cyclist, and reluctance to “pull up” on the pedal during the 

upstroke phase of cycling. A large IE is found during the downstroke phase, when force is 

applied to propel the bike forward, however a negative IE is sometimes found during the 

recovery phase. This indicates that a cyclist may not pull up during the upstroke in order to 
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maintain a high index of effectiveness throughout the entire cycle and actually applies a 

downward force on the pedal (Mornieux, Stapelfeldt, Gollhofer, Belli, & Etienne, 2008). 

3.2 Common Injuries in Running and Cycling 

 As described in Chapter 1, overuse injury rates for running and cycling are very similar, 

with the knee being the most common injury site for both exercise modalities (Clarsen et al., 

2010; Taunton, 2003). Of these injuries to the knee, ITBS and PFPS are the two most common 

(Callaghan, 2005; Nielsen et al., 2013). The following section will describe these injuries and 

investigate previous literature pertaining to these injuries. 

3.2.1 Biomechanical Injury Risk Factors 

 Due to a lack of prospective studies, specific causes of injury are difficult to identify. 

Non-biomechanical risk factors thought to contribute to injury are training errors (such as 

suddenly increasing mileage or intensity) or improper equipment (Farrell et al. 2003). However, 

certain biomechanical outcome measures have previously been investigated as they relate to 

injury and have been associated with injured states. Specifically, DJS, CCI, coordination 

variability and IT band impingement measures have been identified as such outcome measures. 

In this section, DJS will be examined as it relates to general overuse injury. CCI and 

coordination variability will be reviewed in more depth in sections 3.2.2 and the IT band 

impingement measures will be reviewed in section 3.2.3, as they relate to PFPS and ITBS, 

respectively. 

DJS defined as the slope of the linear regression of KFM plotted against knee flexion 

angle, quantifies the resistance of a joint to an external applied moment (Chang et al., 2017). 

When the slope is positive, such as the case of increasing flexion angle and increasing flexion 
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moment, work is done by external forces and absorbed by the system. When the slope is 

negative, such as the case with decreasing flexion angle with decreasing flexion moment, work is 

done by internal forces and produced by the system (Frigo, Crenna, & Jensen, 1996). A greater 

DJS is the result of a larger ground reaction force and/or lower joint range of motion.  

DJS is not a true measure of stiffness since it involves a biological joint with both active 

and passive structures (Latash & Zatsiorsky, 1993). “Quasi-stiffness” is a more accurate term to 

describe the moment-angle relationship, since stiffness refers to exclusively passive structures 

that have the ability to store and release energy (Latash & Zatsiorsky, 1993; Rouse, Gregg, 

Hargrove, & Sensinger, 2013). Despite this, among some biomechanists, the term DJS has been 

adopted (Baltich, Maurer, & Nigg, 2013; Chang et al., 2017; Lark, Buckley, Bennett, Jones, & 

Sargeant, 2003; Stefanyshyn & Nigg, 1998) and was the term used in the current study to refer to 

the slope of the regression line of KFM and knee flexion angle to remain consistent with the 

literature.  

Typically used for gait studies, DJS has been retrospectively found to be twice as high in 

individuals with tibiofemoral OA compared to healthy controls (Zeni & Higginson, 2009). In 

addition, in a 2-year prospective study of 391 knees, Chang et al. (2017) found increased DJS to 

be associated with patellofemoral OA disease worsening, however no correlations to 

tibiofemoral OA were found. These discrepancies in tibiofemoral findings may be due to a 

greater baseline DJS, which has not been examined. It has also been reported that overuse injury 

can occur when DJS is excessive, or when it is not sufficient to support the task being performed 

(Butler et al., 2003). DJS has been investigated extensively in the ankles during walking and 

running under differing conditions (Frigo et al., 1996; Gabriel et al., 2008; Hamill, Gruber, & 

Derrick, 2014; Powell, Williams, Windsor, Butler, & Zhang, 2014; Stefanyshyn & Nigg, 1998) 
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as well as for the knee (Frigo et al., 1996; Hamill et al., 2014; Kuitunen, Komi, & Kyröläinen, 

2002; Williams et al., 2004).  

The relationship between DJS and injury is made more complex by the fact that stiffness 

is also associated with performance; a larger DJS is associated with a greater gait velocity, jump 

height and economy of motion (Butler et al., 2003). Increased DJS been linked to an increase in 

risk for bony injuries such as tibial stress fractures (Milner et al., 2007), while a lower DJS being 

associated with an increase in soft tissue injuries (Butler et al., 2003). These postulations were 

supported by Williams et al. (2001), who studied the knee stiffness of high- and low-arch 

runners. It was revealed that high-arched runners ran with a greater leg stiffness compared to 

low-arched runners. It was believed that these differences contributed to the understanding of the 

phenomena that high-arched runners experienced more bony injuries and low-arched runners 

experienced more soft tissue injuries. It has been suggested that since large DJS is linked to bony 

injuries and low DJS has been linked to soft tissue injuries, there may be an optimal level of 

stiffness which balances the risk of injury and performance (Butler et al., 2003). Further, it 

believed that these stiffness values are of the most importance for injury risk during the early 

stance phase of gait (Milner et al., 2007; Powell et al., 2014). 

Chang et al. (2016) did not collect EMG data during their prospective study showing the 

link between patellofemoral OA and DJS, due to participant burden (muscle pairs for each joint 

and each side must be collected) and the difficulty of analyzing surface EMG on their study 

cohort with a larger BMI (average BMI = 28.4 kg/m2). DJS does not incorporate muscle activity, 

however it has been hypothesized that greater muscle co-activation creates a stiffer joint which in 

turn yields greater joint loading and potentially an increase in OA progression (Chang et al., 

2017; McGinnis et al., 2013). Williams et al. (2004) found low co-activation values during 
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running due to the relatively more active quadriceps muscle group compared to the hamstring 

group during the stance phase, however this was not compared to DJS. Co-contraction was not 

found to be correlated to DJS in individuals with ACL injury during walking (Gardinier, 2009) 

or in healthy individuals during walking (McGinnis et al., 2013). This has not been investigated 

in running or cycling, so it is unknown if there is an association between DJS and co-contraction 

indices of these more physically demanding activities. 

3.2.2 Patellofemoral Pain Syndrome 

 PFPS is non-specific knee pain located between the posterior aspect of the patella and 

anterior surface of the distal femur (Dieter et al., 2014). PFPS is thought to be caused by 

maltracking of the patella and is often localized to the lateral aspect of the patella (Dieter et al., 

2014; Wünschel, Leichtle, Obloh, Wülker, & Müller, 2011). Although specific etiology is 

unknown (van Zyl, Schwellnus, & Noakes, 2001), knee adduction and muscular imbalances are 

thought to be associated with PFPS.  

 At the proximal aspect of the patella, the quadriceps muscles insert as the quadriceps 

tendon (Wilson, Press, & Zhang, 2009). The patella is embedded within an arrangement of soft 

tissue, distal to the quadriceps tendon and proximal to the patellar ligament. The quadriceps act 

to extend the knee using the patella as a lever arm to increase mechanical advantage (Blackburn 

& Craig, 1980). Other muscles and tissues also have an indirect influence on the patella via 

attachments to the surrounding fascia (Blackburn & Craig, 1980). Temporal muscle imbalance 

has been thought to lead to the development and/or progression of PFPS (Dieter et al., 2014; 

Grabiner, Koh, & Draganich, 1994; Van Tiggelen, Cowan, & Coorevits, 2009). Dieter et al. 

(2014) concluded that temporal imbalance in the vasti might not affect kinematics, however it 

may still have an influence on pain, while Souza & Gross (1991) and Voight & Weider (1991) 



22 

 

propose that knee extensor imbalances disturb the normal kinematics of the patellofemoral joint, 

leading to injury.  

 Given that PFPS and ITBS are both highly prevalent in both running and cycling, it is not 

out of the question that they could share a common injury mechanism. When the iliotibial band 

is tight, the patella is pulled laterally due to the iliotibial band’s attachment to the lateral 

retinaculum of the patella, inducing PFPS tightness (Hudson & Darthuy, 2009). Therefore, 

factors that lead to an increased risk of ITBS could also lead to an increased risk of PFPS.  

 The following section will describe previous literature investigating PFPS in running and 

cycling specifically, as well as describe methods previously used to investigate PFPS in running 

and cycling. 

3.2.2.1 Patellofemoral Pain Syndrome in Running 

 PFPS accounts for up to 25% of all overuse injuries to the knee in runners (Neal et al., 

2016; Sprenkel, 2014; Taunton, Ryan, Clement, & McKenzie, 2002) and can potentially affect 

an individual for years, requiring alterations to their exercise routines (Stefanyshyn et al., 2006). 

A study consisting of retrospective and prospective components compared individuals with PFPS 

individuals with matched controls (Stefanyshyn et al., 2006). The study demonstrated that, 

retrospectively, 20 runners who had previously developed PFPS had higher knee abduction 

moment peak (130 Nm) than those who had never been affected by PFPS (105 Nm) 

(Stefanyshyn et al., 2006). Prospectively, 6 participants who went on to develop PFPS also had a 

higher knee abduction moment peak (78 Nm) compared to matched controls who did not (38 

Nm). Further, it was discovered that in the retrospective component that participants with PFPS 

displayed a higher KAM impulse (17.0 ± 8.5 Nm·s) compared to healthy controls (12.5 ± 5.5 
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Nm·s). In the prospective study, the trend was similar with those who developed PFPS having a 

higher KAM impulse (9.2 ± 3.7 Nm·s) compared to matched healthy controls (4.7 ± 3.5 Nm·s).   

 Due to the many muscles having insertions on the patella as well as the importance of its 

role in the quadriceps tendon moment arm, muscle activations have been thought to influence 

patellofemoral pain (Besier et al., 2009). Between individuals with patellofemoral pain and pain-

free controls, co-contraction was found to be significantly larger during walking, with 

patellofemoral pain group values trending to be larger during running (Besier et al., 2009). It was 

concluded that the increased joint contact force due to increased co-contraction could be causing 

pain in individuals in the patellofemoral pain group.  Additionally, during abnormal lower limb 

kinematics (such as increasing internal rotation) the quadriceps muscles, having a direct insertion 

onto the patella, have been found to produce increased lateral forces on the patella (Powers, 

2003) and have an influence on PFPS. 

In addition to studying PFPS injury in gait from a ‘traditional’ biomechanics approach 

(EMG, joint moments), PFPS has been investigated using segment coordination (Hamill, Van 

Emmerik, Heiderscheit, & Li, 1999; Heiderscheit et al., 2002). Heiderscheit et al. (2002) found 

reduced variability in individuals with PFPS. Eight participants with and eight participants 

without PFPS ran on a treadmill both at a fixed pace of 2.68 m/s and at a self-selected pace. 

Though no differences were found averaging coordination variability over the entire stride cycle, 

the PFPS group showed a reduced variability in the transverse thigh / transverse shank segment 

coupling at heel strike during the self-selected running trials. Individuals with PFPS might 

constrain the available coordination patterns to avoid pain, and thus show a reduced variability. It 

is unknown, however, whether this reduction in the cause for PFPS or influenced by it. 

Additionally, Hamill et al. (1999) investigated coordination variability in runners with and 
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without PFPS. With participants running at 2.5m/s, coordination variability during late stance 

was lower in the PFPS group, compared to healthy controls. It was concluded that when 

individuals with PFPS repeated actions with a lower variability and, despite relatively low loads 

being applied, the repetition over a less distributed area, might localized damage to the tissue. 

3.2.2.2 Patellofemoral Pain Syndrome in Cycling 

Patellofemoral pain syndrome, also referred to as “Biker’s Knee” accounts for 

approximately 35% of all overuse injuries caused by cycling (Clarsen et al., 2010; Holmes et al., 

1993; Weiss, 1985). Despite the large proportion of cyclists anticipated to experience this injury, 

there is limited research addressing the topic in relation to cycling biomechanics. 

A study by Ericson & Nisell (1987) found that peak patellofemoral compressive forces 

could approach 900N for cycling at just 120W (for reference, professional cycling sprinters can 

reach a power output of 2000W+). The absolute compressive forces were found to be 

independent of body weight, a potential consequence of the seated posture, and associated knee 

positions, during cycling. They reported that patellofemoral joint forces were found to be higher 

with increasing workload and lower with lowered saddle height. Cadence had no effect on the 

forces. In addition, these compressive forces were lower than the forces experienced during some 

activities of daily living.  

As previously stated, quadriceps imbalance is hypothesized to result in patellar 

maltracking and lead to PFPS. This was first investigated in cyclists by Dieter et al. (2014). In a 

case-control study of 10 healthy and 7 PFPS cyclist participants cycling for 10 minutes at a RPE 

of 14 on the Borg 6-20 scale, temporal characteristics of VM, VL, BF, and ST were compared 

(Dieter et al., 2014). Despite the well documented hypothesis that vasti onset times are 
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associated with PFPS, onset activity of the vasti was not found to be correlated with altered 

kinematics in cyclists but may still have been a contributor to pain (Dieter et al., 2014). Dieter et 

al. (2014) concluded that at the point of offset imbalance, the knee is flexed to ~147° and at this 

large flexion angle, the patellofemoral joint is stable, so no lateral movement should occur. 

Instead, the lateral pull may induce injury to the lateral soft tissue as the source of pain.  

3.2.2.3 Co-Contraction Indices 

 Co-contraction is the simultaneous activation of muscle groups surrounding a joint 

(Rudolph, Schmitt, & Lewek, 2007). Increased co-contraction has been linked to increased joint 

contact forces (Hodge & Harris, 1986; Sasaki & Neptune, 2010; Winby et al., 2009), joint 

contact pressure (Li & Park, 2004), energy expenditure in older adults (Hortobágyi et al., 2009, 

2011) and patellofemoral pain (Besier et al., 2009). Further, evidence suggests that increased co-

contraction is a coping mechanism for joint instability (Gantchev & Dimitrova, 1996; Hurd & 

Snyder-Mackler, 2007; Slijper & Latash, 2000). Via forward dynamic modelling of human gait, 

Winby et al. (2009) and Sasaki & Neptune (2010) have displayed muscle contributions to joint 

contact forces that are not accounted for during inverse dynamic analyses. Specifically, Winby et 

al. (2009) found that muscle contributions provided more than 50% of the tibiofemoral joint 

contact load calculated in their EMG-driven model of human gait. In vitro testing has shown that 

co-contraction increased patellofemoral joint contact pressures (Li & Park, 2004). While 

applying a quadriceps muscle force of 400N and a hamstring force of 200N to cadaveric knees at 

0°, 30°, 60°, 90° and 120°, in contrast to quadriceps muscle activation in isolation, the addition 

of hamstring co-contraction increased patellofemoral contact pressures by up to 24%. Thus, an 

increased co-contraction may affect joint loading to the articulations about the knee (tibiofemoral 

and patellofemoral) in ways that are not accounted for through inverse dynamics analyses.  
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3.2.2.4 Segment Coordination and Coordination Variability  

Segment coordination and segment coordination variability explain the adaptations that 

individuals perform in order to successfully complete a given task (Heiderscheit et al., 2002). 

Using a modified vector coding approach (explained in section 4.3.2) (Sparrow et al., 1987), 

segment coordination is defined by coupling angles, which are the angles between pairs of 

consecutive points of an angle-angle plot of two articulating segments (Figure 3.1).  These 

coupling angles are calculated for each percent of an event of interest (i.e. stance phase of gait). 

Segment angles are calculated relative to the global coordinate system.  

 

 

Figure 3.1: Segment angle plots for the A) sagittal thigh and B) sagittal shank for one stance phase of running. 

Segment angles are represented in the global coordinate system. The angle-angle plot of the data in A) and B) 

plotted against each other is depicted in C). The black arrow in C) indicates the direction of signal progression. 

 

A B 
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The coupling angle magnitude (0 - 360°, as measured form the right horizontal) 

represents the coordination strategy adopted to perform the task and can be interpreted by 4 

distinct phases: anti-phase, in-phase, proximal phase and distal phase. The anti-phase pattern 

describes movement where the segments rotate in opposite directions (when coupling angles are 

135° and 315°). The in-phase pattern describes movement where the segments rotate in the same 

direction (when coupling angles are 45° and 225°). The proximal phase pattern describes the 

movement where the proximal segment rotates, while the distal segment does not (when 

coupling angles are 0° and 180°). The distal phase pattern describes the movement where the 

distal segment rotates, while the proximal segment does not (when coupling angles are 90° and 

270°). Since the coupling angles track a continuous movement, the segment angles rarely lie on 

these discrete values. Thus, 45° bins have been previously established to describe the primary 

coordination pattern of an action as one of the four phases (Figure 3.2) (Chang, Emmerik, & 

Hamill, 2008). 

  

Figure 3.2: A) Angle-angle plot of the sagittal thigh and sagittal shank segment coupling, duplicate of Figure 3.1C. 

The black arrow indicates the direction of signal progression. B) Diagram for describing segment coordination 

patterns. When the centre black dot is positioned over a point in the angle-angle plot for segment couplings 

(expanded from A)), whichever section on the diagram that the next consecutive point falls into (the peripheral black 

dot), will determine the coupling angle (and the corresponding) segment coordination pattern at that percent of 

stance. In this instance, the coupling angle has a value of ~260° and would be classified as a proximal segment 

coordination pattern. 

 

A B 
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The coordination variability is the standard deviation of the coupling angle between trials 

at each percentage of the event being investigated. Healthy and high-performing individuals have 

been found to have greater coordination variability allowing them to adapt to changes in the 

environment (i.e. curbs, ice, uneven ground) by having more redundancies in degrees of freedom 

at their exposure (Hamill et al., 2012). Injured individuals with patellofemoral pain have shown 

to have lower segment coordination variability in the lower limb during running (Hamill et al., 

1999). Increased coordination variability was thought to decrease the risk of injury by avoiding 

no specific tissue to be repeatedly engaged to the point of injury due to the range of variation of 

movements that could be recruited to perform the movement. 

Using traditional biomechanics approaches (ground reaction forces, stride length, stride 

duration), increased variability has typically been thought to be detrimental and increase the risk 

of injury, such as risk of falls (Gabell, Simons, & Nayak, 2007; Hausdorff, Rios, & Edelberg, 

2001). However, it may be helpful to distinguish ‘end-point’ variability from coordination 

variability. End-point variability is the variability of the final objective of a task. Arutyunyan et 

al. (1969) investigated the end-point variability and coordination variability of expert vs amateur 

marksmen. The expert marksmen, unsurprisingly, showed very low end-point variability (high 

accuracy) in a shooting task but their coordination variability was more varied compared to 

amateurs. In other words, there may be many ways to complete a task and experts can adapt to 

choose the most efficient solution. The same could be true for segment coordination of more 

complex tasks such as walking, running and cycling. The end-point variability of running at a 

constant pace with low variability in kinematics may be small (i.e. maintaining a constant pace) 

but the coordination variability required to do so may be large. 
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Individuals with little experience in a task perform by “freezing” degrees of freedom or 

limiting variation of a movement in order to maintain control. However, Hamill et al. (2012) 

have speculated that a very high coordination variability could also lead to injury, proposing that 

there is a happy middle ground where healthy, functioning athletes perform. 

3.2.3 Iliotibial Band Syndrome 

 ITBS, first described by Renne (1975), is “rubbing” of the iliotibial band against the 

lateral femoral condyle. The iliotibial band originates from portions of the gluteus maximus and 

gluteus medius and tensor fascia latae muscles (Birnbaum et al., 2004; Muhle et al., 1999), while 

the distal insertion includes the lateral condyle of the tibia at Gerdy’s tubercle (Orchard et al., 

1996), the patella, head of the fibula and lateral intermuscular septum (Birnbaum et al., 2004). Its 

role is to primarily assist in hip adduction and to resist abduction. Further described by Orchard 

et al. (1996), ITBS was traditionally thought to be caused by friction caused by the iliotibial band 

crossing over the lateral femoral condyles at approximately 20°-30° of knee flexion, while 

gluteus maximus and tensor fascia latae contract, creating tension (Noble & Sa, 1979; 

Novacheck, 1998; Renne, 1975). This range of 20°-30° of knee flexion has been coined the 

“iliotibial band impingement zone” (ITBIZ) (Orchard et al., 1996). More recently, an alternative 

etiology for ITBS has been proposed, suggesting that the iliotibial band is held in place over the 

lateral aspect of the knee joint and as the knee is flexed into the ITBIZ, the femoral condyle 

moves under the iliotibial band, causing compression of the distal fibres and the layer of 

innervated fat over the lateral epicondyle (Fairclough et al., 2007; Falvey, Clark, Bryant, Briggs, 

& Mccrory, 2009). Regardless of the exact internal mechanism of ITBS, it is generally accepted 

that flexion of the knee through the ITBIZ is the primary cause of ITBS (Farrell et al., 2003).  
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 Previous work in biomechanics has outlined possible causal factors leading to ITBS as 

well as movement alterations due to ITBS. In retrospective studies, greater knee flexion angles at 

heel strike (Miller, Lowry, Meardon, & Gillette, 2007), and weakness of hip external rotators, 

tight iliotibial band and altered neuromuscular control (Noehren, Schmitz, Hempel, Westlake, & 

Black, 2014) have been potential factors. In prospective studies, female runners who had 

developed ITBS demonstrated increased hip adduction, knee internal rotation and femur external 

rotation (Noehren et al., 2007), and male runners who had developed ITBS demonstrated greater 

hip internal rotation and knee adduction angles (Noehren et al., 2014). 

Though the etiology of ITBS has not been agreed on, various impingement measures 

have been associated with ITBS. In a cadaveric study, Orchard et al. (1996) found that the 

posterior edge of the IT band is the most affected region of the IT band since, at full extension, 

the IT band was either overlying or just anterior to the lateral epicondyle. Thus, as the knee 

enters flexion, the posterior edge of the IT band rubs against the lateral epicondyle, which could 

lead to irritation. Both the duration with the knee spent in the ITBIZ as well as the number of 

times that the knee is flexed into the ITBIZ have previously been used to investigate the 

relationship between kinematics and ITBS (Farrell et al., 2003) and were investigated in the 

current study.  

The following sections will investigate previous literature investigating ITBS in running 

and cycling specifically.  

3.2.3.1 Iliotibial Band Syndrome in Running 

ITBS is the most commonly reported knee condition in runners (Sprenkel, 2014) and the 

main cause of lateral knee pain in runners (Aderem & Louw, 2015). Its notoriety among 
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endurance athletes has earned it the title of “Runner’s Knee” (Sprenkel, 2014). In subjects who 

previously had been diagnosed with ITBS, the average knee flexion angle at heel strike was 

found to be greater at 21.4° ± 4.3° (Orchard et al., 1996) and 20.6° ± 7.8° (Miller et al., 2007), in 

contrast to a heel strike angle of 15.3° in subjects who did not have a history of ITBS (Miller et 

al., 2007). It has been found that just after heel strike when GM and TFL (muscular attachments 

to the IT band) are most active (Mann & Hagy, 1980) and is when individuals with ITBS 

experience pain (Orchard et al., 1996).  

There have also been sex differences related to ITBS development. In a prospective study 

of a cohort of female recreational runners followed for two-years, those who went on to develop 

ITBS presented increased hip adduction and knee internal rotation compared to matched controls 

(Noehren et al., 2007). The same group found that runners with ITBS had increased hip internal 

rotation and increased knee adduction, compared to controls.  

3.2.3.2 Iliotibial Band Syndrome in Cycling 

 To date, only one experimental study has assessed biomechanics related to ITBS in 

cycling specifically (Farrell et al., 2003). Ten recreational cyclists were fit to a bicycle ergometer 

using a static bike fit with their knee angle between 25°-30° at BDC. Participants were asked to 

pedal for 5 minutes at 80-90 RPM at a workload of 280 W. Kinematics and kinetics were 

recorded. The results were a minimum knee flexion angle of 32.9° ± 7.2° with a pedal force of 

230 N ± 64.8 N at that knee angle. The external reaction force was estimated to be 17%-19% of 

values previously reported for running in other studies. Further, duration in the ITBIZ was found 

to be 38ms for cycling (Farrell et al., 2003) and approximated to be 75ms for running, based on 

data previously published (Orchard et al., 1996). These were not equivalent intensities or 

calculated for the same individual. An individual’s cadence and step frequency inherently have a 
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large influence on the calculation of duration in the ITBIZ. In cycling, the duration in the ITBIZ 

may be affected by factors such as the bicycle set up (i.e. saddle height) and/or cycling intensity 

(which may affect kinematic joint angles). The authors simulated a situation where they equated 

4km cycled for every 1 km jogged and determined that cyclists would go through 30%-40% 

more ITBIZ events compared to running and that duration in the ITBIZ would be less for cycling 

(250s) than for running (330s). Speeds/pace and cadence/step frequencies were assumed for the 

scenario and not quantitatively equivalent in terms of intensity. It was concluded that since 

duration in the ITBIZ was less, reaction force was less, and number of ITBIZ events was greater 

for cycling compared to running, repetition is the primary factor leading to ITBS in cycling. The 

current study attempted to verify the assumptions and findings used to come to these 

conclusions.   

3.3 Previous biomechanics work comparing running and cycling 

The majority of studies investigating cycling and running focus on the physiology of the 

sports. Specifically, differences between VO2, heart rate (Borg, Hassmén, & Lagerström, 1987; 

Faulkner, Roberts, Elk, & Conway, 1971), energy expenditure (Achten, Venables, & 

Jeukendrup, 2003) and run performance after cycling, for applications to triathlon performance 

(Hausswirth et al., 2001; Hue et al., 1998; Millet & Vleck, 2000; Millet, Vleck, & Bentley, 2009; 

Vercruyssen et al., 2002) are common themes.  

As mentioned in Chapter 1, only one other study has measured ground reaction forces 

between running and cycling (Gatti et al., 2017). In this study, the main outcome measure was 

mean cartilage transverse relaxation times before and after bouts of running and cycling. 

Cumulative ground reaction force was calculated to represent a 15-minute run based on 

participant impulse ground reaction force from running multiplied by step cadence. The 
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participants were then asked to ride on a bicycle ergometer instrumented with an instrumented 

force pedal, until the cumulative load of cycling reached the pre-calculated cumulative load 

equal to that of a 15-minute run. To produce an equivalent cumulative GRF, cycling duration 

was approximately three times that of the running duration. No kinematic or kinetic comparisons 

were made between the two exercise modalities and the intensity of the exercise bouts was self-

selected. Speeds and power output for running and cycling varied (7.9-13kph and 85-200W, 

respectively). Cadence was regulated to 80RPM for cycling and step cadence for running was 

self-selected. Participants were screened for fitness level, but a very good cyclist who is not a 

trained runner, or vice versa, may have skewed the results as to how running compared to 

cycling. 

Other studies (such as Farrell et al. (2003), described in section 3.2.3), have compared 

running to cycling using previously published data and hypothetical situations. No study to date 

has directly compared the biomechanics of running and cycling during regulated equivalent 

bouts of exercise intensity. 

3.4 Equivalent Exercise Exposures 

This study was the first to perform a direct kinematic analysis between running and 

cycling. In order to conduct such an analysis to relate the findings to an equivalent level of effort 

between running and cycling, both exercise modalities must be performed at an equal intensity. 

A measure of percent HRm is typically used when prescribing intensities for research studies, 

however two issues are present as they relate to the current study.  

First, age-related equations are typically used to determine individual’s HRm. HRm is 

affected by training level and age (age equations can be inaccurate by up to 20 bpm in 
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individuals over 40 years old) (Mollard et al., 2007; Nes, Janszky, Wisløff, Støylen, & Karlsen, 

2013; Tanaka, Monahan, & Seals, 2001; Zavorsky, 2000). Since the current study was performed 

on highly trained athletes, this method may result in inaccurate results. Thus, a physiological test 

was conducted to directly determine HRm by having the participants perform a fatigue test to 

exhaustion. A maximum consumption of oxygen test (VO2max test) was performed, since the 

protocol between a heart rate max test and VO2max test are similar, in terms of intensity and 

time. The protocol for a VO2max test can be conducted while performing a variety of exercise 

modalities. Of interest to this study, however, are the protocols for running and cycling. The 

main objective of the VO2max test was to obtain a value for the participant’s HRm. HRm has 

been found to differ between modalities in untrained individuals (Millet et al., 2009), but in 

trained triathletes, HRm has been found to be the same between modalities (Astrand & Saltin, 

1961; Caputo, Mello, & Denadau, 2003; Fontana, Boutellier, & Knöpfli-Lenzin, 2009; Millet et 

al., 2009; Roecker, Striegel, & Dickhuth, 2003). Thus, only one test was needed, as opposed to a 

cycling maximal test and a running maximal test.  

Second, heart rate is typically higher during running compared to cycling for equivalent 

rates of perceived exertion (RPE).  Studies have found that for an equivalent RPE, percent lactate 

threshold or percent VO2, the submaximal HR for running is approximately 10-20bpm or 5%-

10% HRm higher than cycling (Fontana et al., 2009; Hetzler, Seip, Boutcher, & Pierce, 1991; 

Millet et al., 2009; Roecker et al., 2003). In many studies, non-significant differences in HR at 

the same RPE were ~7bpm, which is still considered clinically relevant (Millet et al., 2009; 

Mollard et al., 2007). In order to maintain the recommended intensity zone for “moderate 

intensity” typical of a recreational activity, running heart rate was prescribed at 70% HRm ± 

5bpm and cycling heart rate was prescribed at 65% ± 5bpm. These values are both in-line with 
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ACSM recommendations for moderate intensity which has been found to simulate a long slow 

distance activity or a typical recreational outing (Stagno, Thatcher, & van Someren, 2007) and is 

an intensity at which lactate does not accumulate in the body (Hetzler et al., 1991).  

3.5 Summary of Relevant Literature 

 To summarize, it remains unknown how factors such as dynamic joint stiffness, muscular 

co-contraction, segment coordination, and IT band impingement measures differ between 

running and cycling. Traditionally, runners have shifted to cycling participation in an attempt to 

preserve knee health and continue in endurance sport pain- and injury- free. However, overuse 

injury rates between running and cycling have been found to be similar (92.5% and 85%, 

respectively) with the knee being the most commonly injured region and the most common 

injuries being PFPS and ITBS for both sports.  

DJS has previously been studied for walking and running and has been linked to OA 

(Chang et al., 2017) as well as bony injury and soft tissue injury (Butler et al., 2003). During 

walking and running, muscular co-contraction has previously been associated with 

patellofemoral pain (Besier et al., 2009) and has been reported as a coping mechanism for 

instability (Gantchev & Dimitrova, 1996; Hurd & Snyder-Mackler, 2007; Slijper & Latash, 

2000). Further, co-contraction has been linked to increased knee joint contact forces (Hodge & 

Harris, 1986; Sasaki & Neptune, 2010; Winby et al., 2009), knee joint contact pressure (Li & 

Park, 2004) and energy expenditure in older adults (Hortobágyi et al., 2009, 2011). Segment 

coordination and coordination variability have been previously reported for walking and running 

and have implications for overuse injury risk. A lower coordination variability has been 

associated with an injured state (Hamill et al., 2012, 1999). ITBS risk has been previously 

studied by quantifying the duration with the knee flexed in the ITBIZ, number of repetitions and 
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ground reaction force for both running and cycling (Farrell et al., 2003; Orchard et al., 1996). It 

was speculated that for cycling, number of repetitions played a bigger role in the development of 

ITBS compared to force or ITBIZ duration (Farrell et al., 2003) 

No study to date has assessed the differences between running and cycling kinematics or 

kinetics. To compare the two sports, these variables had to be investigated during equivalent 

exposures to each other to provide meaningful comparisons. The current study compared these 

variables during an exercise bout of moderate intensity, similar to that of a recreational ride or 

run, to represent the activity habits of an individual performing these sports for leisure. A target 

heart rate of 65%-71% HRm was sought to conform to ACSM guidelines, however due to 

differences in heart rate at similar levels of perceived exertion (Hetzler et al., 1991), cycling was 

performed at a lower heart rate than running. Running trials were performed at a pace equivalent 

to 70% HRm ± 5bpm and cycling was performed at 65% HRm ± 5bpm.  
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Chapter 4 : Methods 

4.1 Study Population 

 Fifteen participants between the ages of 18 and 35 were recruited (Table 4.1). 

Participants were required to have at least one year of self-reported experience in both running 

and cycling. Participants were pre-screened to verify that in the last year, on average, they 

performed at least one run and one bike ride per week (totaling a minimum of 30 minutes 

running and 60 minutes cycling, respectively) and that they have competed in at least one 

triathlon or duathlon in the past. Further, experience with clipless pedals was required since the 

instrumented pedals had a clipless design. The study population was recruited from local running 

and cycling clubs and University classes, teams and clubs. Additionally, a recruitment email was 

forwarded by Triathlon Ontario to members of every registered triathlon club in Ontario. In 

addition to the fifteen participants who were eligible and participated in the study, thirteen 

individuals responded to recruitment measures. Four respondents from various classes on 

campus were excluded due to not meeting the experience requirements. Three respondents from 

local training groups were excluded due to current lower limb injury. Six respondents from the 

Triathlon Ontario email list were excluded; one due to not meeting the experience requirements 

and five for exceeding the maximum age limit.  
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Table 4.1: Demographics of study participants. 

Characteristic  

Sex (M/F) 11/4 

Leg Dominance (L/R) 3/12 

Age (years) 25.1 (4.7) 

Height (cm) 1.80 (1.0) 

Weight (kg) 72.1 (8.2) 

BMI (kg/m2) 22.2 (2.3) 

Running Experience (years) 9.1 (4.8) 

Cycling Experience (years) 7.4 (5.4) 

Competition Experience (years) 5.3 (3.9) 

Weekly Training (hours/week) 8.0 (3.1) 
Note: Values are reported in mean (SD), where applicable. 

 

 Both running and cycling experience was sought because kinematics, kinetics, and EMG 

can differ between trained and untrained cyclists (Chapman et al., 2008) and intra- and inter-

individual EMG variance is higher in untrained cyclists. As well, untrained athletes would be 

more likely to fatigue, which has been found to alter running and cycling kinematics (Derrick, 

Dereu, & McLean, 2002; Dingwell, Joubert, Diefenthaeler, & Trinity, 2008; Mizrahi, Verbitsky, 

Isakov, & Daily, 2000; Williams et al., 1991).    

As previously described, individuals presenting with injury symptoms (PFPS, ITBS, etc.) 

have been shown to display altered kinetics and kinematics (Cowan, Hodges, & Bennell, 2001; 

Dieter et al., 2014; Patil, Dixon, White, Jones, & Hui, 2011; Wilson et al., 2009). Thus, 

individuals who were currently experiencing injury symptoms of the lower limb or within the 

past month were excluded. Further exclusion criteria were individuals with a history of previous 

injury requiring surgery, lower limb pathologies, or diagnosis of chronic disease, answering 

“yes” to any of the questions on the GAQ (Appendix A), less than 80% on the Lower Extremity 

Functional Scale (LEFS) (Appendix A) or those who had been instructed by a health care 

practitioner to not engage in physical activity. In addition, due to the importance of heart rate in 

the current study, individuals who were currently taking or had taken medication in the previous 



39 

 

14 days which acts to alter heart rate/circulatory properties were excluded. Examples include 

beta blockers, calcium channel blockers, digitalis glycosides, sodium channel blockers, 

potassium channel blockers, and blood thinners. As rubbing alcohol and adhesive strips were to 

be used for instrumentation, individuals with allergies to the aforementioned products were also 

excluded.  

The study was approved by the University of Waterloo Office of Research Ethics and 

prior to participation in the study, all participants provided written, informed consent. 

4.2 Experimental Design 

 The current study was a cross-sectional, within-subject study design with three conditions 

(walking, running and cycling) applied to all participants. The study consisted of two collection 

days. On the first day, participants completed screening questionnaires to validate their eligibility 

in the study and to confirm that there were no contraindications to participating. If all inclusion 

criteria were satisfied, a VO2max test was performed in order to obtain a quantitative measure of 

the participant’s physical fitness and to obtain a value of maximal heart rate. 

Since overground running (on a 20m runway) was to be studied in this investigation, it 

was not expected that they would achieve the target heart rate (70% HRm ± 5bpm) during the 

overground trials. Thus, on the second day, the participants were asked to run on a treadmill in 

order to find a pace that would elicit 70% HRm ± 5bpm and then subsequent overground trials 

were performed at this pace. There was no trial to pre-determine cycling pace to elicit 65% HRm 

± 5bpm because this heart rate could be achieved during the data collection trials on the 

ergometer.  
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After the treadmill run, the participants were asked to perform walking, running and 

cycling trials, in a quasi-randomized order. All trials within an activity type were performed 

consecutively. The order of activities always consisted of walking and running trials being 

performed back-to-back (i.e. never walking, cycling, running or in the reverse order) due to 

logistical constraints of re-digitizing the foot Optotrak markers (Appendix F). Walking trials 

consisted of 6 progressions down the runway at a self-selected normal walking pace, running 

trials consisted of 6 progressions down the runway at the pre-determined treadmill speed and the 

cycling trial consisted a 6-minute cycling bout at a heart rate of 65% HRm ± 5bpm. Activities 

were separated by 10 minutes of rest. While there have been no studies comparing walking, 

running and cycling biomechanics, and thus there is no standardized rest period between these 

activities, the 10-minute rest was assumed to allow adequate washout time for any biomechanical 

changes that may occur due to the previous exposure. Previous work has indicated that walking 

has no effect on subsequent running or cycling performance (Gardner, 2013; Gardner et al., 

2015; Noehren et al., 2014), and that cycling can result in minimal lower limb angle changes 

during subsequent running (up to a 3.9° increase in ankle dorsiflexion and less than 1° in sagittal 

plane angles of the knee). These changes typically affect less experienced athletes and wash out 

within 5 minutes (Bonacci et al., 2010).  

4.2.1 Experimental Protocol 

 On the first collection day (Figure 4.1), participants were greeted by the principal 

researcher in the lobby of the Centre for Community, Clinical and Applied Research Excellence 

(CCCARE), before being escorted to the cardiovascular assessment room (AHS TJB-1143). The 

participants read, and if they agreed to participate, signed a letter of informed consent. The 

participants then completed three forms. The first form was the participant screening 
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questionnaire (Appendix A). This form consisted of questions about the participant’s past and 

current health status to identify any contraindications to taking part in the current study. This 

form contained the Get Active Questionnaire (GAQ), which collects general health information 

to determine suitability for physical activity. No participants answered “yes” to one or more of 

the questions on the GAQ, the participant’s collection, which would have indicated the need to 

consult a physician before physical activity. Next, a shortened version of the International 

Physical Activity Questionnaire (IPAQ) was completed to provide a quantitative assessment of 

physical activity and to ensure eligibility for participation (Appendix B). The last form the 

participants were asked to fill out is a participant information questionnaire (Appendix C). This 

questionnaire collects general information of the participant including sex, age, self-described 

running style, years of competitive experience, and a description of current equipment used (i.e. 

shoes, pedals, etc.). 
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Figure 4.1: Day One – Experimental Protocol. Total duration was approximately 1 hour. 

 The participants were then asked to change into suitable athletic clothing (i.e. cycling 

shorts, t-shirt and athletic shoes). Participant height and weight was recorded. Participants 

performed a graded VO2max test according to the ramp protocol on a cycle ergometer (Lucia, 

Hoyos, Santalla, Perez, & Chicharro, 2002). The participants sat on the cycle ergometer and it 

was adjusted to the participant’s preference. VO2 was measured using the VMAX Encore 

Metabolic Cart (Becton, Dickenson and Company, Franklin Lakes, New Jersey, USA) and heart 

rate was monitored using a 3-lead electrode placement. The cycle ergometer used was an 

Ergoline VIAsprint 150P (ergoline GmbH, Bitz, Germany), which is an electromagnetically 

resisted ergometer for which the resistance is controlled by the VMAX system and has a load 

range of 6-999 W. The ergometer was able to maintain a constant load as long as the 

participant’s cadence was between 60 and 130 RPM.  

Introduction and Consent

5 Minutes

Questionnaires

10 Minutes

Bike Fitting

10 Minutes

Cycling Warm Up

5 Minutes

VO2max Test
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The protocol began with a 5-minute warm up to prepare the participant for the test of 

increased intensity. The warm up was performed at a self-selected intensity and cadence. 

Following the warm up, the VO2max test commenced. Starting at a power output of 25W, while 

maintaining a cadence of at least 60RPM, the resistance was increased by 25W every minute 

until failure or the participants were unable to continue (Lucia et al., 2002).  The participants 

were fitted with a secured mouthpiece, through which the inhaled and exhaled air passed into the 

VMAX system for oxygen/carbon dioxide measurement. A nose clip was placed over the 

participant’s nose to prevent air from bypassing the measurement system. As the participants 

breathed in and out during activity, the contents of the air was calculated by the VMAX system. 

Before each collection, the VMAX machine was calibrated for volume flow and oxygen/carbon 

dioxide gas proportion using built-in calibration tools. The VO2max test results provided the 

participant’s HRm, which was used to calculate the target heart rate at which running and cycling 

bouts were performed during the second testing day. These target heart rates were determined to 

elicit an exercise intensity of “moderate intensity” as defined by the ACSM, which is defined as 

65%-71% HRm (Stagno et al., 2007). This intensity was expected not to induce any fatigue in 

the participant, as fatigue has been shown to result in alterations to joint kinematics while cycling 

(Dingwell et al., 2008) and running (Derrick et al., 2002; Mizrahi et al., 2000; Williams et al., 

1991). Following the VO2max test, the participant was given as long as they needed to cool 

down. The total collection time for the first day was approximately 1 hour. 

On the second collection day, the participants arrived at the Biomechanics of Human 

Mobility Laboratory (BMH 1405) in Burt Matthews Hall. The participants were reminded of the 

study protocol, given the results from their VO2max test, and informed of the previously 

calculated heart rate at which they were required to perform the running and cycling bouts. Due 
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to known discrepancies between submaximal heart rate during running and cycling at equivalent 

perceived intensities, running heart rate was prescribed at 70% HRm ± 5bpm and cycling was 

prescribed as 65% HRm ± 5bpm, as described in section 3.4. Participants completed a secondary 

participant screening questionnaire (Appendix D). This questionnaire was an abbreviated version 

of the questionnaires completed on the first day to check that no medical changes had occurred 

between visits and to record physical activity since the last visit. Participants changed into 

running clothes. Participant height and weight were recorded.  

The participants were asked to sit on the cycle ergometer and it was adjusted according to 

the protocol advocated by Bini and colleagues (2016). Bini et al. (2016) compared static and 

dynamic knee flexion angles from bike fits and found that statically measuring the sagittal plane 

angles with the pedal at the 3 o’clock position resulted in “trivial” differences between measured 

static and dynamic sagittal joint angles. While the participant was seated on the bike with their 

feet on the pedals placed at the 3 o’clock position, the saddle was adjusted to elicit a knee angle 

of 60° ± 5° with the knee inline vertically with the pedal spindle axle (plumb line). The 

handlebars were positioned such that the torso and the horizontal elicit a 40°-50° angle and the 

arms and the torso elicit a 75°-90° angle (Figure 4.2). Due to the experience level of the 

participants, it was expected that they would have a preferred bike fit. A 25mm saddle height 

adjustment range around the set saddle height was allowed to accommodate the participant’s 

preference. Despite the literature reporting a 4%-7% change in saddle height can affect knee 

joint angles by up to 25% (Sanderson & Amoroso, 2009), it was expected that the participants 

would move in their seat to get to a comfortable position if the saddle were not adjusted to their 

comfort. The position of the saddle, handlebars and crank center of rotation were recorded for 

each participant.  
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Figure 4.2: Cycle Ergometer Set-Up. A) Arm/Torso Angle (75°), B) Torso/Horizontal Angle (40°), C) Knee Angle 

(60°) with Pedal at 3 o’clock, the orange dotted line is the plumb line. 

Participants were instrumented unilaterally on the right leg with EMG surface electrodes 

over VL, VM, LG, MG, BF, ST and GM, (Figure 4.3). Before application of the EMG 

electrodes, the area was shaved of hair and wiped clean with alcohol. Three trials of maximal 

sprint runs were performed over a 30-meter long runway in order to normalize the EMG data. 

This method has previously been shown to produce appropriate normalization values for studies 

investigating walking, running and cycling EMG (Chuang & Acker, 2019). Participants were 

given time to warm up before completing the maximal sprints by walking/jogging on a treadmill 

at a self-selected pace for 5 minutes.  

 

 
A
) 

B
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Figure 4.3: Unilateral Electromyography Placement for the Right Leg. A) Vastus Lateralis, B) Vastus Medialis, C) 

Gluteus Maximus, D) Biceps Femoris, E) Semitendinosus F) Gastrocnemius Lateralis, G) Gastrocnemius Medialis 

 

After the maximal sprints, the participants performed the treadmill run. Participants 

performed a 5-10 minute run warm up at a self-selected pace followed by an increase to a speed 

that elicits 70% HRm ± 5bpm over the following 5 minutes. The treadmill was set to a 1% 

incline, since this has been found to replicate the metabolic expenditure of that of outdoor 

running at speeds between 2.92m/s and 5.0m/s (speeds that were expected in the current study) 

(Jones & Doust, 1996). The 5-10 minute warm up was in accordance to recommendations by the 

ACSM. Once 70% HRm ± 5bpm was achieved, the run was maintained for an additional 1 

minute to confirm the pace and to allow heart rate to stabilize. The investigator stopped the test 

in the event the participant indicated any distress.  

After the treadmill run, the participants were instrumented with motion capture marker 

clusters unilaterally on the right foot, shank, thigh and on the lower back (Figure 4.4). Motion 

C 

D 
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G 
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capture calibration was performed to define bony landmarks and joint centers. A standing 

calibration trial, a knee flexion/extension trial and a hip range of motion trial was recorded in 

order to determine functional joint centers during data processing. Bony landmarks are listed in 

Table 4.2 (section 4.3.2).  

 

Figure 4.4: Kinematic Marker Placement, Unilaterally on the Right Leg. Rigid bodies with IREDs are located on the 

A) pelvis, B) right thigh, C) right shank and D) right foot. 

 Next, depending on the pre-selected block assigned to the participant, the following was 

performed as A) then B) or B) then A). 

A)  The participant was given 10 minutes rest. In a random order, the participants performed 

either walking at a self-selected normal pace or running at the pre-determined pace meant to 

elicit 70% HRm. If this block occurred second, the participant’s foot was re-digitized after 

putting on running shoes. 

Gait trials were performed down a 20-meter long laboratory runway (Figure 4.5) over the 

force plates until 6 acceptable trials were collected, always starting on the same mark and always 

starting with the same foot, unless otherwise indicated by the researcher. Acceptable trials 

A

) 

B

) 

C
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included those where the right foot was isolated on a single force plate during stance, the motion 

tracking markers were visible to the collection cameras, EMG data showed no signs of 

abnormalities (such as signal spikes, dropouts or clipping) and the pace was within the set 

constraints. The walking and running pace were monitored using timing gates. The walking and 

running orders were randomized by participant. For the first few walking trials, the participants 

were asked to proceed at a self-selected comfortable pace. During these trials, the participant was 

instructed by the principal investigator to start at varying distances from the force plates, until 

their stance was isolated to one force plate. Over these walking ‘familiarization’ trials, walking 

pace was determined and the average was set as their preferred walking pace. For consecutive 

walking trials, their walking speed was monitored to within 10% of this preferred walking pace.  

For the running trials, the first few trials were meant to familiarize the participant with 

running at the pre-determined pace meant to elicit 70% HRm ± 10%. Once they were 

comfortable consistently running at the set pace, the participant was instructed by the principal 

investigator to start at varying distances from the force plates until their stance was isolated to 

one force plate. Between trials, participants were given 1-minute recovery including a walk or 

light jog back to the starting mark. After the trial, if done after B) the participant was given as 

long as necessary to cool down. 
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Figure 4.5: Laboratory Runway Set-up 

B)  The cycle ergometer was moved to the center of the collection area (Figure 4.6). 10-

minutes of rest was given to the participant. If this block occurred second, the participant was re-

digitized to track the bike in the global space, track the instrumented pedal with respect to the 

right foot and locate the center of pressure of the right foot (section 4.3.3). Participants then 

begin the 11-minute cycling trial. The first 5 minutes was a cycling warm up while the resistance 

was gradually increased to elicit 65% HRm ± 5bpm at a self-selected cadence. The final 6-

minutes were performed at 65% HRm ± 5bpm at a self-selected cadence. The data were collected 

for 30 seconds, on every minute of the 6-minute steady state exposure. After the trial, if done 

after A) the participant was given as long as necessary to cool down. 
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Figure 4.6: Cycle Ergometer Laboratory Set-up. 

After all trials were complete, all equipment was removed from the participant and any re-

usable laboratory equipment (marker clusters, surface electromyography signal boxes) were 

cleaned and disinfected with an alcohol-based solution. Any clothing provided to the participant 

was collected and washed before its next use. The total collection time for the second day was 

approximately 2 hours and 40 minutes (Figure 4.7). 
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Figure 4.7: Day Two - Experimental Protocol. Total approximate duration was 2 hours and 40 minutes. 
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4.3 Data Analysis 

 Inherently, walking, running and cycling are very different activities and produce vastly 

different signals for the same outcome variables. Previous research investigating each activity in 

isolation has typically used characteristics specific to each activity in order to partition the data 

for further analysis. Such examples include heel strike, toe off and swing phases for gait 

(Novacheck, 1998) and TDC/BDC for cycling (Dieter et al., 2014; Farrell et al., 2003). Even 

walking and running (both forms of bipedal gait) have unique characteristics that make 

comparisons difficult (i.e. double stance phase of walking or double float phase of running 

(Novacheck, 1998). Thus, in the current study, phases within each activity were defined in order 

to keep comparisons as consistent as possible. 

Holistically, the stance phase of walking and running and the downstroke of the pedal 

revolution of cycling will be used in the following analysis. These phases were chosen since they 

are the primary power-producing phases for each respective activity (i.e. the swing phase of 

walking/running and the up-stroke of cycling do not produce as much propulsive power 

relatively, if at all). Before the data were segmented into the stance phase or down-stroke, the 

raw data were filtered such that there were an adequate number of padding points (minimum 20) 

both before and after the signal of interest to ensure that filtering end effects would be removed 

when trials/phases were cropped to appropriate lengths (Smith, 1989). 

The stance phase in walking and running will be defined as from heel strike (when a 

force of 20N is registered on the force plate) and toe off (when the force decreases below 20N) 

(Powell, Andrews, Stickley, & Williams, 2016). 
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The downstroke of cycling will be defined as from pedal force initiation (when the 

normal force of the pedal begins to increase) to when the foot is at bottom dead center. This 

definition was used in an attempt to capture the power-producing phase of cycling. Due to the 

cyclic nature of cycling, pedal force initiation occurs at every instance when the normal force of 

the pedal is at a local minimum and begins to rise (solid green line, bottom panel Figure 4.8). 

Typically, in cycling literature, the downstroke is defined as from TDC (when the pedal is at 12 

o’clock) to BDC (when the pedal is at 6 o’clock) (Fonda & Sarabon, 2010). A post hoc analysis 

of the data revealed that in some participants, a magnitude of force was already being applied to 

the pedal before TDC (dashed green line, top panel Figure 4.8) and in others, force began to rise 

in the pedal after TDC. Since the cycling data were being compared to gait, where the beginning 

of the stance phase was defined as when a force was applied to the foot (and not defined by a 

kinematic parameter), the beginning of the downstroke of cycling was defined as when the pedal 

force started to rise at each pedal revolution.  

Unlike gait, however, the end of the downstroke was not defined as when there was a 

cessation of force applied to the foot. Due to the attachment of the foot to the pedals via the 

clipless shoe mechanism, there was never a time when a force was not acting on the foot (bottom 

pane, Figure 4.8), which prohibits the same end of signal definition. Thus, for cycling, BDC was 

used to define the end of the downstroke since that is when it was assumed that the power-

producing phase of cycling ends. 
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Figure 4.8: Pedal position (top) and normal pedal reaction forces (bottom) during cycling. The dashed black lines 

indicate where TDC occurred. The solid black lines indicate where pedal loading initiation occurred. The solid red 

line indicates where BDC occurred. 

For all outcome measures, the data were first processed and analyzed over the interval of 

the stance of each walking/running stride and downstroke of each cycling pedal revolution. For 

DJS and CCI, the signal was further partitioned into an initial and terminal phase, separated by 

peak KFM. This separation was meant to be representative of loading and unloading of the knee 

joint and has been previously used to partition signals of DJS (Frigo et al., 1996). The signal for 

segment coordination and coordination variability was partitioned into thirds, to represent early, 

mid and late phases (Hafer & Boyer, 2018; Hafer, Silvernail, Hillstrom, & Katherine, 2016). The 

signals for the IT band impingement measures were assessed over the stance phase of walking 

and running and for the downstroke of cycling. 

4.3.1. Physiological Measurements 

 The VO2max was measured using the VMAX Encore Metabolic. The VMAX system 

measures the percentage of oxygen (O2) consumed and exhaled during usage to produce a 
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measurement of VO2 in relative (mL/kg/min) or absolute (L/min) terms. During the VO2max test 

on the cycle ergometer, VO2max was defined as the 10-second averaged VO2 at which failure 

occurs or the value at which VO2 stops increasing with increasing workload.  

 Maximal heart rate was measured using a 3-lead electrode placement. HRm was defined 

as the highest 10-second average heart rate achieved during the VO2max test. 

4.3.2 Kinematics 

4.3.2.1 Raw Data Processing 

 The 3D kinematic data were recorded using an Optotrak camera system (NDI Inc., 

Waterloo, Ontario, Canada). After collection space calibration and alignment (global coordinate 

system Y+ up, X+ in the direction of travel, Figure 4.5/Figure 4.6) (Wu & Cavanagh, 1995), 

rigid bodies with infrared diodes (IREDs) were placed on the lower back to represent the pelvis, 

and unilaterally on the right thigh, shank and foot of the participant.  Bony landmarks, which 

were digitized during a standing reference trial, assisted in assigning a local coordinate system 

(LCS) to each segment according to the Visual3D convention (Table 4.2). For the standing 

reference trial, participants were instructed to stand upright, still and naturally for a duration of 6 

seconds. This enabled a V3D model to be applied to the digitized landmarks for further 

processing. The LCS was assigned such that the Y+ axis was defined as a vector from the origin 

along the long axis of the segment, the X+ axis was perpendicular and pointing in an anterior 

direction, with the Z+ axis being the cross product of the X+/Y+ axes, according to the right-

hand rule. The dot products of the segment axis vectors were calculated and Euler angles were 

extracted using the ZXY transformation matrix (Equation 1), using the proximal segment as the 
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reference (fixed) frame. The angles of the Z axis of the right limb was multiplied by -1 to 

produce a positive knee flexion angles and external moments.  

𝑅 = 𝑍(𝛼)𝑋(𝛽)𝑌(𝛾)

=  [

cos(𝛼) cos(𝛾) − 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(𝛾) cos(𝛽) sin(𝛼) cos(𝛼) sin(𝛾) − 𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛼) 𝑠𝑖𝑛(𝛽) 

 cos(𝛾) sin(𝛼) + 𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛽) 𝑠𝑖𝑛(𝛾) cos(𝛼) cos(𝛽) sin(𝛼) sin(𝛾) − 𝑐𝑜𝑠(𝛼) 𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛽) 

− 𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(𝛾)  𝑠𝑖𝑛(𝛽) cos(𝛽) cos(𝛾)
] 

Equation 1: ZXY Rotation Matrix for calculating segment and joint angles.  

  

Where: R is the ZXY rotation matrix, α is the angle (in rad) of the first elemental rotation 

(Z), β is the angle (in rad) of the second elemental rotation (X) and γ is the angle (in rad) of the 

third elemental rotation (Y). 

Table 4.2: Coordinate System and Landmarks for the Segments of the Body. Local coordinate systems are located at 

the segment origin, and bony landmarks are indicated by a yellow dot with alphabetical referencing. 

Pelvis 

 

 

Origin: 

The origin is the midpoint between the left and right ASIS (a, b)  

Z-Axis: 

A line connecting the left ASIS and right ASIS, pointing to the right ASIS 

X-Axis: 

A line in the plane defined by the two ASIS and midpoint of the two PSIS, 

pointing anteriorly and perpendicular to the Z-Axis. 

Y-Axis: 

A line orthogonal to the X-Z plane, to create a right-handed coordinate system 

 

Bony Landmarks: 

a. Left Anterior Superior Iliac Spine 

b. Right Anterior Superior Iliac Spine 

c. Left Posterior Superior Iliac Spine 

d. Right Posterior Superior Iliac Spine  

 

 

 

 

 

 

a) 

b) 

c) 
d) 
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Thigh 

 

Origin: 

The origin is the center of the functional hip joint center (Schwartz & 

Rozumalski, 2005), defined during kinematic calibration 

Y-Axis: 

The line connecting the midpoint of the lateral and medial femoral epicondyles (f, 

g) and the origin, pointing proximally 

X-Axis 

The line perpendicular to the plane defined by the origin, greater trochanter (A) 

and the midpoint of the lateral and medial femoral epicondyles (f, g), pointing 

anteriorly 

Z-Axis: 

The line orthogonal to the X-Y plane, to create a right-handed coordinate system 

 

Bony Landmarks: 

e. Greater Trochanter 

f. Lateral Femoral Epicondyle 

g. Medial Femoral Epicondyle 

 

 

 

 

 

 

 

Shank 

 

Origin: 

The origin is the functional knee joint center (Jensen, Lugade, Crenshaw, Miller, 

& Kaufman, 2016), defined during kinematic calibration 

Y-Axis: 

The line connecting the midpoint of the lateral and medial malleoli (j, k) and the 

midpoint of the lateral and medial tibial condyles (h, i), pointing proximally 

X-Axis 

The line perpendicular to the plane defined by the origin, the lateral tibial condyle 

(h) and the midpoint of the lateral and medial malleoli (j, k), pointing anteriorly 

Z-Axis: 

The line orthogonal to the X-Y plane, to create a right-handed coordinate system 

  

Bony Landmarks: 

a. Lateral Tibial Condyle 

b. Medial Tibial Condyle 

c. Lateral Malleolus  

d. Medial Malleolus 

 

h) 

i) 

j) k) 

e) 

f) 

g) 
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Foot 

 

Origin: 

The origin is the midpoint of the lateral and medial malleoli (j, k) 

Y-Axis: 

The line connecting the midpoint of the 1st metatarsal head and the 5th metatarsal 

head (l, m) and the midpoint of the lateral and medial malleoli (j, k), pointing 

proximally 

X-Axis: 

The line perpendicular to the plane defined by the origin, the lateral malleolus (j) 

and the midpoint of the 1st metatarsal head and the 5th metatarsal head (l, m), 

pointing anteriorly 

Z-Axis: 

The line orthogonal to the X-Y plane, according to the right-hand rule 

 

Bony Landmarks: 

j. Lateral Malleolus 

k. Medial Malleolus 

l. 1st Metatarsal Head 

m. 5th Metatarsal Head 

 

 

 

 

Pedal 

 

Origin: 

The origin is the center of the pedal 

Z-Axis: 

The line passing through the midpoint of the anterior medial corner and posterior 

medial corner (n, p) and the midpoint of the anterior lateral corner and posterior 

lateral corner (o, q), pointing laterally 

X-Axis: 

The line passing through the midpoint of the anterior medial corner and anterior 

lateral corner (p, q) and the midpoint of the posterior medial corner and posterior 

lateral corner (n, o), pointing laterally 

Y-Axis: 

A line orthogonal to the X-Z plane, according to the right-hand rule 

 

Bony Landmarks: 

n. Posterior Medial Corner 

o. Posterior Lateral Corner 

p. Anterior Medial Corner 

q. Anterior Lateral Corner  

m) 

l) 

n) 

o) 
p) 

q) 
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 The kinematic data were recorded at the highest binary multiple frequency possible using 

19 IREDs, which was 128Hz. The data were processed using a custom Visual 3D pipeline 

(v6.01.07, C-Motion, Germantown, MD, USA) and Matlab script (Version R2015a, Mathworks 

Inc., Natick, MA). All kinematic data were processed using a 4th order Butterworth low-pass 

filters. Due to the different nature expected from the gait and cycling signals, different cutoff 

frequencies were applied to the filters for the gait and cycling data. Cycling is a more rhythmic 

motion with few transient impact signals. Within the literature, a variety of cutoff frequencies 

and filtering methods have previously been used to process kinematic data for running and 

cycling. The most common filtering method used is a 4th order Butterworth filter with a cutoff 

frequency of between 4 Hz to 25 Hz for cycling (Bini & Diefenthaeler, 2010; Bini, 

Tamborindeguy, & Mota, 2010; Bini, Diefenthaeler, & Mota, 2010; Dingwell et al., 2008; Fang, 

2014; Korff, Fletcher, Brown, & Romer, 2011; Marsh, Martin, & Sanderson, 2000; Shen, 2015) 

and a cutoff frequency of between 4 Hz and 15 Hz for running (Bus, 2003; Fellin, Manal, & 

Davis, 2010; Hunter, Marshall, & McNair, 2005; Quigley & Richards, 1996; Santos-Concejero 

et al., 2017). Bini and colleagues (2016) stated that cycling kinematics have a natural frequency 

of 1.5 Hz while cycling at 90 RPM. It has been recommended that in order to filter cycling 

kinematic data, a cutoff frequency of at least 5Hz should be used since the natural frequency of 

cycling is approximately 1.5 Hz (Bini et al., 2016). 6 Hz was used to filter cycling kinematic data 

(Fang, 2014; Gardner et al., 2015; Shen, 2015). To process gait kinematic data, a cutoff 

frequency of 12Hz was used. This frequency has been found to contain 95% of the signal content 

while runners ran overground at 3.35 m/s (Fellin et al., 2010), which is similar to the pace that 

was expected in the current study. Walking was filtered at the same cutoff frequency as running 
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(Keller et al., 1996; Li et al., 1999; Seay et al., 2001) since it was assumed all necessary 

frequencies would be contained within the same frequencies as running.  

4.3.2.2 Data Reduction 

4.3.2.2.1 Coordination Variability 

 

Segment coordination and coordination variability was calculated for sagittal shank / 

sagittal foot (Boyer, Freedman Silvernail, & Hamill, 2016) and sagittal thigh / sagittal shank 

segment couplings (Heiderscheit et al., 2002). These segment couplings have been previously 

investigated for walking and running and have been thought to be related to increased risk of 

injury. A modified vector coding technique was used to calculate segment coordination using 

equation 2 (Sparrow, Donovan, Van Emmerik, & Barry, 1987). 

 𝜃𝑖,𝑗 =  𝑡𝑎𝑛−1 [
𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗

𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗
] 

Equation 2: Segment coordination coupling angle formula. 

Where 0 ≤ Ɵ ≤ 360°, j is the percent of stance/downstroke for the ith repetition. And x 

and y are the distal and proximal segment angles for each coupling, respectively, as measured in 

the global coordinate system. This modified vector coding approach calculates the coupling 

angle between 2 consecutive time points on an angle-angle plot of two segments, with respect to 

the right horizontal (Figure 4.9). The result is a plot of coupling angle at each percent of 

stance/downstroke (Figure 4.10). These coupling angles represent the segment coordination and 

describe how segments move with respect to one another (i.e. anti-phase, in-phase, proximal 

phase or distal phase). Coordination variability is calculated by finding the intra-individual 

standard deviation of the coupling angle for each percent of the data between strides or pedal 

revolutions (Figure 4.11).  
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Figure 4.9: Sagittal thigh/sagittal shank segment coupling (angle-angle plot) for the stance phase of running for one 

trial of a single participant. The black arrow indicates the direction of progression.  

 

 

Figure 4.10: Plot of coupling angles for all trials from a single participant during overground running at each percent 

of the stance phase of the sagittal thigh/sagittal shank segment coupling. 

 

Figure 4.11: Intra-individual coordination variability for all running trials during overground running at each percent 

of the stance phase of the sagittal thigh/sagittal shank segment coupling for one participant.  
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For walking and running, each trial consisted of one stance phase available for analysis. 

For each participant, the coordination variability was calculated as the intra-individual standard 

deviation of the coupling angles between strides. The grand mean coordination variability for 

walking and running were calculated by averaging the coordination variability across 

participants.  

As for cycling, each 30-second trial consisted of 30-40 pedal revolutions available for 

analysis. To account for the greater number of pedal revolutions compared to gait strides, 

coordination variability was first found for each trial. For each cycling trial, the intra-trial 

coordination variability between pedal revolutions within each trial was found and then this trial 

coordination variability was averaged across trials to find the coordination variability for each 

participant. Essentially, coordination variability was reduced to one value per cycling trial to 

align with the 6 walking and running trials before being averaged for each participant. The grand 

mean coordination variability for cycling was calculated by averaging the coordination 

variability across participants.  

 The grand mean coordination variability curves were then partitioned into thirds to 

represent early, mid and late phases (Hafer & Boyer, 2018; Hafer et al., 2016).   

4.3.2.2.2 IT Band Impingement Measures 

 

The other kinematic outcome investigated was IT band impingement. As previously 

stated in section 3.2.3, the ITBIZ is when the IT band is in contact with the lateral femoral 

condyle between 20° and 30° of knee flexion. For the walking and running trials, the amount of 

time that the knee was in the ITBIZ for each stance phase was calculated and averaged across all 

trials for each participant (Figure 4.12/Figure 4.13). For the cycling trials, the amount of time 
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that the knee was in the ITBIZ for each pedal revolution was calculated and the mean ITBIZ 

duration per pedal revolution was found (Figure 4.14). Collectively, ITBIZ duration for each 

stance phase and pedal revolution are referred to as ITBIZ(t)per_rep. Only the stance phase of 

walking and running were analyzed due to collection space constraints: the subsequent heel 

strike often occurred outside the collection volume. Further, since the stance phase is the only 

part of the walking or running stride where force is being applied to the foot, the stance phase 

was thought to be most detrimental and thus was the focus in the current study. Thus, the 

downstroke of the cycling pedal revolution was compared to the stance phase of walking and 

running. The kinematic collection frequency for the collection data was 128Hz. The number of 

data frames with the knee flexed between 20° and 30°, inclusively, was found and divided by 

128 to yield the ITBIZ(t)per_rep, in seconds.  

 

Figure 4.12: Knee flexion angles for one stance phase of walking for a single participant. The shaded area between 

the blue bars represents the interval in which the knee was flexed in the ITBIZ.  
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Figure 4.13: Knee flexion angles for one stance phase of running for a single participant. The shaded area between 

the blue bars represents the interval in which the knee was flexed in the ITBIZ.  

 

 

Figure 4.14: Knee flexion angles for one downstroke during cycling. The shaded area between the blue bars 

represents the interval in which the knee was flexed in the ITBIZ. 
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Typically, a static bike fit requires the bike to be set-up such that the participant’s leg is 

flexed between 20° and 30° at BDC. As stated in section 4.2.1, in order to mitigate biasing the 

data, the bike was set-up according to a protocol established by Bini and colleagues (2016). 

While the participant was seated on the bike with feet on the pedals placed at the 3 o’clock 

position, the saddle was adjusted to elicit a knee angle of 60° ± 5°. This was done in an attempt 

to avoid forcing the participant to cycle with their knee flexed in the ITBIZ. As a result, it was 

anticipated that participants may not always achieve a knee flexion of 20° and 30° during a pedal 

revolution. Some participants may cycle with their knee angle entering the ITBIZ for every pedal 

revolution and some may cycle with their knee angle never entering the ITBIZ, except for a few 

outlier cases. The participants were thus separated into two groups: ITBIZ and non-ITBIZ 

cyclists. The criteria for ITBIZ cyclists were for at least three of the six collected 30-second 

trials, at least half of the pedal revolutions contained ITBIZ events.  

 In order to compare ITBIZ duration between walking, running and cycling, three 

comparisons were made. The purpose of these comparisons was twofold: to assess ITBIZ 

duration on a more tangible, meaningful scale and to compare data in the current study to results 

previously reported. 

The first comparison extrapolated the ITBIZ(t)per_rep to represent a 60-minute activity. 

When exercising, 60-minutes is fairly representative of a workout duration (i.e. spin class or 

~10km run). The ITBIZ(t)per_rep for each activity was multiplied by the average cadence for each 

participant and by 60 minutes. The result is the ITBIZ duration experienced per hour and will be 

represented as ITBIZ60 (units are seconds). For this analysis, ITBIZ60 was compared over stance 

phase of walking and running and the downstroke of cycling. 
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The second comparison will attempt to verify data presented by Farrell et al. (2003) (see 

section 3.2.3.2, where they assumed that running distance to cycling distance ratio of 4:1 was a 

good approximation of an equivalent workout). Values for this comparison will be referred to as 

ITBIZ(t)eq_workout. It was found that ITBIZ duration was 250s and 330s for cycling and running, 

respectively, when comparing a 1.25-hour bike ride to a 10km run. In order to support these 

findings, the same calculations by Farrell et al. (2003) was performed, substituting the 

assumptions made (cadence, ITBIZ(t)per_rep, and run pace) for measured data. Since cycling 

distance cannot be accurately calculated (due to factors such as rolling resistance, drag, etc.), the 

assumption of a 1.25-hour ride was used in the current calculation (which was assumed by 

Farrell et al. to be representative of a 40km ride). For running, the participants run paces were 

used to approximate their 10km running time. The ITBIZ(t)per_rep for running were multiplied by 

their cadence and 10km time (calculated based on their run pace), to produce the ITBIZ duration 

over a 10km run. For cycling, the ITBIZ(t)per_rep was multiplied by their cadence and 1.25 hours 

to produce the ITBIZ duration over a 40km ride. Since there was no equivalent for walking, it 

was excluded from this analysis. The stance phase of running was compared to the full pedal 

revolution of cycling, to maintain consistency with the methods for the previous study. 

The final comparison made compared ITBIZ duration over an equivalent cumulative load 

and will be referred to as ITBIZ(t)cumul_load. This will be further described in section 4.3.3.2.  

In summary, three comparisons will be measured for ITBIZ duration. The first will be a 

comparison of a 60-minute activity (ITBIZ60), the second will compare the modalities similar to 

Farrell et al., (2003) (ITBIZ(t)eq_workout) and the third will compare modalities up to an equivalent 

cumulative load (ITBIZ(t)cumul_load).  
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4.3.3. Kinetics  

4.3.3.1 Raw Data Processing 

 The force data were collected from AMTI OR6-7 force plates (AMTI, Watertown, MA, 

USA) and a 2D force transducer pedal (Figure 4.15) (Novatech, UK) for gait and cycling trials, 

respectively. The force transducer pedal was equipped with Shimano 105 clipless pedals 

(Shimano, Inc., Sakai, Japan) in order to allow the participants to interface with the cycle 

ergometer similarly to their own personal bike. Shimano SPD-SL zero-degree float cleats 

(Shimano, Inc., Sakai, Japan) were installed on the bottom of the participant’s cycling shoes to 

limit movement between the foot and pedal. The contralateral pedal was a dummy pedal with the 

same dimensions, mass and modified clipless pedal system as the instrumented pedal in order to 

allow for symmetry between legs. All force plate data were pre-processed through the amplifiers 

with a built in 2nd order low-pass critically damped filter with a cutoff frequency of 1050 Hz. All 

kinetic data were collected at a sampling frequency of 2048 Hz.  
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Figure 4.15: The experimental set-up for the instrumented pedal. A Shimano clipless pedal system was attached 

securely to the force transducer pedal. A dummy pedal was fabricated to match the stack height, positioning of the 

clipless pedal with respect to the spindle and mass. Top: Lateral view of the instrumented pedal with coordinate 

system. Bottom: Frontal view comparing the height of each pedal. 

 

Similar to kinematics, to reflect the differences between running and cycling signals, the 

kinetics were processed using different cutoff frequencies. Both sets of data were filtered through 

a 4th order Butterworth low-pass filter. Common cutoff frequencies are between 15 Hz and 96 Hz 

for running (Blackmore, Willy, & Creaby, 2016; Gatti et al., 2017; Hunter et al., 2005; Keller, 

Weisberger, Ray, & Hasan, 1996; Quigley & Richards, 1996; Santos-Concejero et al., 2017) and 

between 6 Hz and 25 Hz for cycling (Bini & Diefenthaeler, 2010; Bini et al., 2010; Broker & 

Gregor, 1990; Fang, 2014; Korff et al., 2011; Marsh et al., 2000; Mornieux et al., 2008; Shen, 

2015).  

A cutoff frequency of 20 Hz was used for the gait kinetic data and has been previously 

used by Gatti and colleagues (2017). A cutoff frequency of 10 Hz was used for the cycling 
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kinetic data. This cutoff frequency had been previously used by multiple other authors assessing 

cycling kinetics (Bini & Diefenthaeler, 2010; Bini et al., 2010; Broker & Gregor, 1990; Marsh et 

al., 2000) and was also used by Gatti et al. (2017).  

Due to the limitations of the 2D force transducer pedal, center of pressure could not be 

calculated at each time point. Thus, in order to apply the force signal to the model in Visual3D, a 

center of pressure location was estimated for each participant. During cycling digitization, an F-

Scan 3000E Tekscan sensor (Tekscan, Inc., Boston, Massachusetts) was placed inside of the 

participant’s cycling shoe (Figure 4.16).  

 

Figure 4.16: F-Scan 3000E sensor inside of a cycling shoe. Three points were digitized within the shoe and on the 

Tekscan sensor simultaneously in order to map a center of pressure location to the foot. 

 

Three points (A, B and C) were digitized on the Tekscan F-Scan 3000E in the shoe in 

order to map the Tekscan sensor to the rigid body cluster which was attached firmly to the 

cycling shoe (Figure 4.17a). The participant then performed 5-10 pedal revolutions in order to 

identify where center of pressure occurred on the Tekscan sensor (Figure 4.17b). Center of 
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pressure was defined as the center of pressure during the 5-10 pedal revolutions in the frame that 

had the largest summed forces registered. The center of pressure from the Tekscan sensor was 

then mapped into the foot coordinate system (Figure 4.17c). In Visual3D, a landmark for center 

of pressure was created by mapping the center of pressure with respect to points A, B and C. A 

vector from point B to point A was defined (length 1), in which the endpoint was the orthogonal 

intersection of the vector from the center of pressure, in the plane defined by points A, B and C 

(length 2). Force signals from the pedal were then transformed into the foot coordinate system 

and applied to the foot at the center of pressure (Figure 4.18). 

 

Figure 4.17: Tekscan sensor foot center of pressure location. A) Three reference points recorded on the Tekscan 

sensor that were also digitized with respect to the foot cluster that was attached to the shoe/pedal interface. B) 

Tekscan recording of the foot during the frame with the largest sum of force. The red star indicates where the center 

of pressure was calculated. C) Deduction of center of pressure location with respect to the three reference points. 
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Figure 4.18: Force signals applied to the foot model at the center of pressure location during cycling. a, b, and c are 

the three reference points as recorded with Tekscan and digitized with respect to the foot cluster. The blue sphere is 

the center of pressure location, as depicted in Figure 4.17c. 

4.3.3.2 Data Reduction 

4.3.3.2.1 Dynamic Joint Stiffness 

 

Dynamic joint stiffness of the knee, previously described in section 3.2.1, is the slope of 

the regression line of a plot of knee flexion moment versus knee flexion angle. For each activity, 

the knee flexion moment and knee flexion angle were calculated for stance and downstroke and 

plotted against each other for each stride/pedal revolution.  

Due to the cyclic and non-linear nature of moment/angle plots for gait, analysis of 

dynamic joint stiffness is often partitioned into different quasi-linear phases bounded by 

inflection points in the plots (Frigo et al., 1996). In the current study, the stance and downstroke 

were partitioned in to two phases (the initial and terminal phases). The initial phase for running 
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and cycling was defined from heel strike/initiation of pedal loading, respectively, to the 

maximum knee flexion moment (Figure 4.19). The terminal phase for running and cycling was 

defined from the maximum knee flexion moment to toe off/BDC, respectively (Figure 4.19). In 

walking, the DJS is more complex from heel strike to toe off, due to the double stance phase 

(Figure 4.19a) and has often been partitioned in up to 4 phases (Frigo et al., 1996). In order to 

reduce the data to be able to compare it to the two phases previously described for running and 

cycling, the DJS of walking was analyzed during single leg stance only. The terminal phase was 

defined as maximum knee flexion moment to minimum knee flexion angle, following the 

inflection points of the DJS plot. It was important to isolate the DJS terminal phase to single leg 

stance only because once the swing leg initiates heel strike, it has been assumed to have an 

influence of the stiffness of the contralateral leg. This is evident by the near horizontal portion at 

the right of the walking DJS figure (first column, Figure 4.19a). The data extending from the red 

star to the right side of the figure represent the double support phase of walking, where the slope 

of the DJS approaches zero. This portion of the data was not included in any analyses. 

A linear regression line was fit to the plotted data from each of the trials for the entire 

stance/downstroke, the initial phase and the terminal phase (Figure 4.19). The mean slope of the 

regression line, in Nm/kg/deg, for each activity for each participant was calculated and used for 

statistical analysis.  

 

 

 

 

 

 

 



 

 

 

 

 

Figure 4.19: DJS plots for all trials of a single participant for walking, running and cycling for the Stance/Downstroke, which was then partitioned into: the 

loading phase and the terminal phase. The black arrows indicate the direction of progression. The green star represents heel strike (for walking and running) or 

initiation of pedal force (for cycling). The blue represents max knee flexion moment (the end of the loading phase and the start of the terminal phase). The red 

star represents contralateral heel strike (for walking), toe off (for running) or BDC (for cycling). 

 

W
al

k
in

g
 

C
y
cl

in
g

 
R

u
n
n
in

g
 

Stance/Downstroke Initial Phase Terminal Phase 



 

 

4.3.3.2.2 IT Band Impingement Measures 

 

The cumulative vertical ground reaction force loading was calculated for a representative 

15-minute run (Gatti et al., 2017). The value of this cumulative load was used to find an 

equivalent cycling duration which elicits the same cumulative load for the vertical pedal reaction 

force. The time for cycling to reach an equivalent cumulative load as a 15-minute run was 

expected to be approximately 45-minutes (Gatti et al., 2017). For running, the ITBIZ(t)per_rep was 

multiplied by the run cadence and by 15 minutes to produce the ITBIZ duration over a 15-minute 

run. For walking and cycling, cumulative loads were calculated for each participant and the 

ITBIZ(t)per_rep were multiplied by the average cadence and multiplied by a time duration that 

would produce equivalent cumulative loads to the 15-minute run. 

The equations used to calculate the cumulative loading times were adopted from Gatti et 

al. (2017) (Equations 3 & 4).  

 𝐶𝐿 = 𝑅 ∗ 𝐼 ∗ 𝑡𝑟𝑢𝑛 

Equation 3: Cumulative loading equation. 

Where: CL is the cumulative load for the run, in newtons. R is the number of running 

repetitions (strides) per minute, I is the integral of the vertical ground reaction force per 

repetition (N), and trun is the duration of the run, in minutes. 

 𝑡𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐶𝐿

𝑅∗𝐼
 

Equation 4: Cumulative loading equation solving for time. 

Where: tactivity is the walking or cycling duration equivalent to the 15-minute run, CL is 

the cumulative load of the 15-minute run from Equation 3, R is the number of repetitions 

(walking steps or pedal revolutions) per minute and I is the integral of the vertical reaction forces 
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(during walking or cycling). In order to get a true measure of cumulative vertical reaction forces 

for cycling, this value was taken from the entire pedal revolution, and not just the downstroke. 

Using tactivity, ITBIZ(t)cumul_load was calculated using Equation 5 to determine the duration 

with the knee flexed in the ITBIZ during walking, running and cycling of a cumulative load. 

ITBIZ(t)cumul_load = 𝑡𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗  𝑐𝑎𝑑𝑒𝑛𝑐𝑒 ∗ 𝐼𝑇𝐵𝐼𝑍(𝑡)𝑝𝑒𝑟𝑟𝑒𝑝
 

Equation 5: ITBIZ duration equation for comparing cumulative loads. 

Where: ITBIZ(t)cumul_load is the duration with the knee flexed in the ITBIZ during an 

activity with a cumulative load equal to that of a 15-minute run, tactivity is the walking or cycling 

duration equivalent to the 15-minute run, cadence is the number of repetitions for each respective 

activity and ITBIZ(t)per_rep  is the duration with the knee flexed in the ITBIZ during each stance 

phase of walking and running and downstroke of cycling. 

4.3.4. Electromyography 

4.3.4.1 Raw Data Processing 

 EMG was collected for seven muscles, unilaterally on the right side of the body. The 

muscles being collected were VL, VM, LG, MG, BF, ST and GM (Figure 4.3). The purpose of 

collecting EMG was so that co-contraction could be calculated and to assess tensioning of the IT 

band. 

 EMG was recorded using the Cometa Wave Plus EMG system (Cometa, Cisiano, Italy) at 

a sampling frequency of 2048 Hz. The EMG sensors had a fixed signal amplifier with a 

magnitude of 1000 and filter the raw analog signal with a bandpass filter of 10-500Hz. Data had 
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its bias removed then was full wave rectified and low-pass filtered with a 4th order 6Hz 

Butterworth filter (Hubley-Kozey, Deluzio, Landry, McNutt, & Stanish, 2006). 

For all EMG locations, two Ag-AgCl surface electrodes (Ambu Blue Sensor N, 

Denmark) with an inter-electrode distance of 2 cm were placed parallel to the fibres of the 

muscle, also according to SENIAM guidelines. The EMG placement for the VL muscle was 2/3 

of the distance between the anterior superior iliac spine (ASIS) and the lateral edge of the patella 

or over the bulk of the muscle bulge during resisted knee extension. VM EMG was placed 80% 

of the distance between the ASIS and anterior joint space of the medial knee or over the bulk of 

the muscle bulge during resisted knee extension. LG EMG was placed 1/3 of the distance 

between the head of the fibula and the heel. MG EMG was placed 1/3 of the distance between 

the most prominent bulge of the muscle belly. BF EMG was placed halfway between the ischial 

tuberosity and the lateral epicondyle of the tibia or over the bulk of the muscle bulge during 

resisted knee flexion. ST EMG was placed halfway between the ischial tuberosity and the medial 

epicondyle of the tibia or over the bulk of the muscle bulge during resisted knee flexion. GM 

EMG was placed halfway between the sacrum and the greater trochanter or over the bulk of the 

muscle bulge during resisted hip extension in a prone position.  

Normalization is the process in which EMG data are adjusted to be representative of a 

meaningful reference value. Typically, this is performed via a maximal voluntary isometric 

contraction (MVC). However, normalizing to MVC’s for dynamic activities such as running and 

cycling has been found to be inaccurate and not always reliable. In a review by Ball & Scurr 

(2013), the need for EMG normalization of running and cycling during sprint activities was 

emphasized. They concluded that typical normalization techniques such as MVC may be 

inappropriate for high-velocity muscle contractions such as those presented when running and 
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cycling. These exercise modalities have unique muscle activation characteristics (such as muscle 

length changes), which are not accurately reflected by the specificity of the conditions of an 

MVC (Sinclair et al., 2015). Though no standardized method of normalization has been agreed 

upon for cycling or running specifically, it is universally accepted that the traditional MVC 

method is inadequate (Albertus-Kajee, Tucker, Derman, Lamberts, & Lambert, 2011; Ball & 

Scurr, 2010, 2013; Suydam, Manal, & Buchanan, 2016). Further, the method of EMG 

normalization has been found to affect the interpretation of the EMG signal (Sinclair, Brooks, 

Edmundson, & Hobbs, 2012). MVC methods have been found to result in low levels of 

reliability during cycling (Sinclair et al., 2015). 

In a running study, Kyrolainen et al. (2005) found much greater max EMG values during 

sprint running compared to MVC values. Kyrolainen et al. (2005) found greater max EMG 

values for BF, GM, VL, and gastrocnemius during sprint running. In cycling, Rouffet & Hautier 

(2008) also found greater max EMG values during sprint cycling compared to MVC values for 

GM, soleus, BF and VL. Albertus-Kajee and colleagues (2010 & 2011) analyzed EMG 

normalization techniques in cycling and running in separate studies. Both studies concluded that 

dynamic measures of maximum EMG should be taken for these activities and included VL, VM, 

rectus femoris, BF, MG and LG. Further, in both studies, the sprint method of normalization was 

recommended since it was sensitive to exercise intensity changes, resulted in good 

reproducibility and had low intra-subject variation compared to tradition MVC methods, 

specifically for studies taking place on one day and where absolute EMG amplitude is desired. In 

the current study a 30m maximal sprint effort on a runway was performed to quantify the 

maximum EMG signal for all muscles. This method has been shown to produce the greatest 

EMG normalization values, however, with lower repeatability compared to traditional MVC 
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methods or during sprint cycling (Chuang & Acker, 2019). Three sprint run normalization trials 

were performed and the greatest EMG value for each muscle across trials was defined as the 

normalization value to be used when normalizing EMG data according to the following equation: 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑀𝐺 (𝑖) =
𝐸𝑀𝐺 𝑆𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑖)

𝑀𝑎𝑥 𝐸𝑀𝐺 (𝑉)
 

Equation 6: Formula for EMG normalization. 

Where i is the ith datum point of the signal of interest for a specific muscle, and max 

EMG is the maximum voltage obtained for the specific muscle during the sprint run. 

4.3.4.2 Data Reduction 

4.3.4.2.1 Co-Contraction Indices 

 

As with all other signals, the EMG signals for each trial were cropped to only include the 

stance of gait and the downstroke of cycling as the signal of interest.  

EMG co-contraction for VL-LG, VM-MG, VL-BF and VM-ST muscle pairs were 

calculated using the equation 7: 

 ∑ CCI(n) =  (
𝐿𝑀(𝑛)

𝑀𝑀(𝑛)
) (𝐿𝑀(𝑛) + 𝑀𝑀(𝑛))𝑖=1

𝑛   

Equation 7: Formula for co-contraction indices, adopted from Rudolph et al. (2001). 

Where LM is the EMG value of the less activated muscle and MM is the EMG value of 

the more activated muscle. The co-contraction index (CCI) is unitless and represents a magnitude 

for the amount of co-contraction between antagonistic muscles. The CCI was measured at every 

1% and summed to provide a CCI over the stance/downstroke (Figure 4.20). The CCI was also 

calculated for the initial phase and terminal phase so that its relationship to the associated DJS 
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value could be explored. As with DJS, the initial and terminal phases were separated by the peak 

KFM.   

 

Figure 4.20: Plot of the CCI for the VMMG muscle coupling for one stride of running for one participant, from heel 

strike to toe off. The shaded region represents the signal common to both muscles, represented by the CCI. The red 

line is coincident with the peak knee flexion moment which was used to separate the signal for analyses. 

 

4.3.4.2.2 IT Band EMG Exposure 

 

The EMG of GM, the angular velocity of the knee joint and the ITBIZ(t)per_rep were used 

to establish a novel exposure metric to compare potential injury risk of the IT band. As 

previously described, the IT band rubs against the lateral femoral epicondyle when the knee is 

flexed between 20° and 30°. However, when GM and TFL are activated, their muscle bellies 

shorten, creating increased tension on the IT band due to its attachment. It is possible that this 
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additional tensioning of the IT band when it is in the impingement zone may be a possible 

explanation for IT band injury. In the current analysis, only the EMG of GM was considered 

because it is a much larger muscle compared to TFL and it is anticipated that it would have more 

influence over the tensioning of the IT band. Thus, the IT band EMG exposure (ITBEX) for a 

single trial is defined by Equation 8 for walking, running and cycling: 

  𝐼𝑇𝐵𝐸𝑋 = 𝑐𝑎𝑑𝑒𝑛𝑐𝑒 × ∑ [‖𝜔‖̅̅ ̅̅ ̅̅
𝑖 ∗ 𝑖𝐸𝑀𝐺𝐺𝑀(𝑖)]𝑛

𝑖=1   

Equation 8: IT band EMG exposure formula for a given trial. 

Where: n is the number of times the knee was flexed in the ITBIZ during each trial (this 

was typically three times for walking, twice for running and once for cycling), ‖𝜔‖̅̅ ̅̅ ̅̅
𝑖 is the mean 

of the absolute instantaneous angular velocity (rad/s) of knee flexion across ITBIZ event i, 

𝑖𝐸𝑀𝐺𝐺𝑀(𝑖) is the integrated EMG of GM (%MVC·s/rep) during ITBIZ event i, and cadence is 

the repetitions per minute measured for the specific activity. The ITBEX value has a unit of 

%MVC/min. For each repetition of each activity, each time the knee was flexed in the ITBIZ, the 

knee flexion angle was differentiated using 2-point differentiation to produce the angular 

velocity. The absolute value of the angular knee velocity was taken since this analysis was 

performed irrespective of whether the knee was flexing or extending. ITBEX was averaged 

across trials. In this analysis, only the stance phase of walking and running and the downstroke 

of cycling was included. 

4.4 Statistical Analysis 

Statistical analysis was performed using a custom SPSS syntax (IBM Corp., Armonk, 

NY) and a custom Matlab code. Student’s paired t-tests were performed to determine whether 

there was a significant difference between the participant’s predicted HRm and actual HRm. 
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Significance was determined using an alpha level of 0.05. One-way ANOVAs were performed to 

determine whether there was an effect of activity on cadence, peak external foot reaction force, 

knee flexion moment, knee range of motion, maximum knee flexion angle and minimum knee 

flexion angle. A Bonferroni correction was used to correct for multiple pairwise comparisons. 

Significance was determined using an alpha level of 0.05.  

Hypotheses 1-4 were tested using 1-way repeated measures ANOVAs to determine if 

there was difference in DJS, co-contraction indices, coordination variability and IT band 

impingement measures between activities, respectively. A Bonferroni correction was used to 

correct for multiple comparisons and were specific for each dependent variable. The alpha level 

was divided by n, where n was the number of datasets analyzed for each outcome variable. Thus, 

the alpha level for co-contraction indices was divided by 4 (to account for the 4 CCIs: VLLG, 

VMMG, VLBF and VMST muscle groupings), the alpha level for coordination variability was 

divided by 2 (to account for 2 coordination variability outcome measures sagittal foot/sagittal 

shank and sagittal thigh sagittal shank segment couplings) and alpha level for IT band 

impingement measures was divided by 6 (to account for the six comparisons made using 

ITBIZ(t)per_rep as a factor).  

Pearson Product Moment Correlations were calculated to find relationships between DJS 

and the CCI for each muscle pairing, for each phase. Significant correlations (p < 0.05) were 

identified as high correlation if r > 0.7, moderate correlation if 0.3 < r < 0.7 and low correlation 

if r < 0.3 (Ratner, 2009).  Student’s paired t-tests were performed to compare both the number of 

ITBIZ events and ITBIZ(t)eq_workout over an equivalent workout between running and cycling. 

Student’s paired t-tests were performed since a criterion for walking had not been previously 
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defined and the purpose of this assessment was to compare against previous work. Significance 

was determined using an alpha level of 0.05. 

Prior to performing statistical analysis, the data were checked for normality, common 

variance, mean of zero and independence. In cases where Mauchly’s test indicated that sphericity 

was violated, Greenhouse-Geisser correction was applied to the p-values. 
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Chapter 5 : Results 

All 15 participants completed the protocol as planned. Running and cycling trials were all 

performed at their prescribed HRm. Two participants data had to be excluded due issues with 

collection files. The participants’ physiological measurements (VO2max results, predicted and 

actual HRM) are summarized in Table 5.1. Participants had a significantly lower actual HRm, 

compared to the predicted HRm (t(14) = 2.815, p =0.014) by an average of 6.2 BPM.  

Table 5.1: Physiological outcome measures. 

Outcome Measure 
Value Maximum Minimum 

VO2max (mL/kg/min) 
61.5 (8.1) 74.2 41.4 

VO2max (L/min) 
4.5 (0.7) 5.7 3.0 

Predicted HRm (BPM) 
194.9 (4.7) 202 185 

Actual HRm (BPM) 
188.7 (9.3) 204 166 

Note: Values are presented as mean (SD), where applicable. 

The participants kinematic and kinetic characteristics are summarized in Table 5.2. There 

was a significant effect of activity on cadence (F2,24 = 88.099, p < 0.0001), peak external foot 

reaction force (F2,24 = 317.713, p < 0.0001) and peak knee flexion moment (F2,24 = 235.736, p < 

0.0001). Post-hoc pairwise comparisons revealed the following: Walking had a lower cadence 

compared to running and cycling (all p < 0.0001), however running and cycling were not 

different from each other (p = 0.098). Running had a larger peak external foot reaction force than 

walking (p < 0.0001), which was larger than cycling (p < 0.0001). Running had a larger peak 

knee flexion moment than walking (p < 0.0001), which was larger than cycling (p = 0.004).  
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Table 5.2: Kinematic and kinetic outcome measures during the stance phase of walking and running and the 

downstroke of cycling. 

 Walking Running Cycling 

Speed (m/s) 0.9 (0.12) 2.4 (0.33)  

Resistance (gear)   11.6 (1.5) 

Cadence (RPM) 58.8 (3.1) 85.2 (4.6)A 79.9 (7.0)A 

Peak External Foot Reaction Force (N) 863.0 (174.5) 1917.4 (234.0) 345.7 (106.2) 

Peak Knee Flexion Moment (Nm/kg) 0.9 (0.3) 2.9 (0.5) 0.5 (0.1) 

Note: Values presented as mean (SD). Values with the same superscript are not significantly different from each 

other (p<0.05). 

 

5.1 Dynamic Joint Stiffness 

 The dynamic joint stiffness curves for walking and running were similar, with cycling 

appearing drastically different (Figure 5.1). Walking and running produced dynamic joint 

stiffness plots progressing clockwise, and cycling produced a dynamic joint stiffness plot 

progressing in a counterclockwise direction, including the loading phase having in a negative 

slope.  
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Figure 5.1: Mean DJS plots for walking, running and cycling, for all participants. The green star represents heel 

strike (for walking and running) or initiation of pedal force (for cycling). The blue star represents max knee flexion 

moment (the end of the loading phase and the start of the terminal phase). The red star represents contralateral heel 

strike (for walking), toe off (for running) or BDC (for cycling). 

 

Walk 

Cycle 

Run 
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Dynamic joint stiffness, the slope of the linear regression of the moment-angle plots, are 

displayed in Figure 5.2, for stance/downstroke and for the initial and terminal phases. For all 

phases, there was a main effect for activity (Stance/Downstroke: F1.182,14.1785 = 107.944, p < 

0.0001; Initial: F1.182,14.179 = 64.192, p < 0.0001; Terminal: F2,24 = 37.021, p < 0.0001), with post 

hoc analyses revealing significant differences occurred between all activities (all p < 0.05), 

except between walking and running during the terminal phase (p = 0.186). For the 

stance/downstroke, running had the largest DJS (0.108 ± 0.030 Nm/kg/deg), followed by 

walking (0.032 ± 0.011 Nm/kg/deg) and then cycling (0.005 ± 0.002 Nm/kg/deg). Over the 

initial phase, running had the largest DJS (0.129 ± 0.041 Nm/kg/deg), followed by walking 

(0.065 ± 0.015 Nm/kg/deg) and then cycling (-0.015 ± 0.005 Nm/kg/deg), which had a negative 

slope. Over the terminal phase, running had the largest DJS (0.107 ± 0.035 Nm/kg/deg), 

followed by walking (0.081 ± 0.035 Nm/kg/deg) and then cycling (0.018 ± 0.004 Nm/kg/deg). 
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Figure 5.2: Mean dynamic joint stiffness values for the knee across all participants during each phase analyzed. 

Vertical error bars represent standard deviations. 

5.2 Co-Contraction Index  

 The average co-contraction index was determined for stance/downstroke (Figure 5.3), 

initial phase (Figure 5.4) and terminal phase (Figure 5.5), for each activity. Over 

stance/downstroke, there were significant effects of activity for all muscle groupings (all α < 

0.05/4) (VLLG: F1.327,15.929 = 61.194, p < 0.0001; VMMG: F1.176,11.756 = 37.952, p < 0.0001; 

VLBF: F1.192,13.112 = 24.941, p < 0.0001; VMST: F1.032,12.386 = 20.230, p = 0.001)(Figure 5.3). 

Post hoc tests revealed that running had a larger CCI than both walking and cycling for all 

muscle groupings (all p < 0.05) and that walking and cycling were not different from each other. 

 Over the initial phase, there were significant effects of activity for all muscle groupings 

(all α < 0.05/4) (VLLG: F2,24 = 16.053, p < 0.0001; VMMG: F1.185,11.848 = 21.207, p < 0.0001; 

VLBF: F1.322,14.545 = 12.6720, p = 0.002; VMST: F1.262,15.139 = 12.890, p = 0.002) (Figure 5.4). 

Post-hoc tests reveal running had the largest CCI for VLLG and VMMG groupings (both p < 

0.05) and that walking and cycling were not different from each other (all p > 0.05). In VLBF, 

 * * 
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running had a larger CCI than walking, which was larger than cycling (all p < 0.05). In VMST 

and medial knee, walking and running were larger than cycling, but not different from each other 

(all p < 0.05). 

For the terminal phase, there were significant effects of activity for all muscle groupings 

(all α < 0.05/4)(VLLG: F2,24 = 59.908, p < 0.0001; VMMG: F1.334,14.673 = 29.849, p < 0.0001; 

VLBF: F1.225,13.472 = 19.588, p < 0.0001; VMST: F1.050,12.598 = 16.903, p = 0.001) (Figure 5.5). 

Post-hoc tests reveal running had the largest CCI for all muscle groupings and that walking and 

cycling were not different from each other (all p < 0.05). 

Of the 12 muscle grouping comparisons (4 groupings x 3 phases each), walking only 

produced a greater CCI compared to cycling for the initial phase of VLBF and VMST. Cycling 

never produced a larger CCI compared to walking and neither walking nor cycling produced a 

greater CCI compared to running.  

 

 

Figure 5.3: Mean co-contraction indices across all participants for muscle groupings about the knee for walking, 

running and cycling during the stance/downstroke of each activity. Vertical error bars represent standard deviations. 

 

0

5

10

15

20

25

30

35

40

VLLG VMMG VLBF VMST

C
o

-c
o

n
tr

ac
ti

o
n

 In
d

ex

Muscle Group

Walking

Running

Cycling

** ** ** **



89 

 

  

Figure 5.4: Mean co-contraction indices across all participants for muscle groupings about the knee for walking, 

running and cycling during the initial phase of stance/downstroke of each activity. Vertical error bars represent 

standard deviations. 

 

 

Figure 5.5: Mean co-contraction indices for muscle groupings about the knee for walking, running and cycling 

during the terminal phase of stance/downstroke each activity. Vertical error bars represent standard deviations. 

 

5.3 Dynamic Joint Stiffness / Co-Contraction Index Correlation 

 Pearson correlations were calculated to determine the relationship between DJS and CCI 

for each activity for stance/downstroke and the initial phase and terminal phase (Table 5.3). 
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There were no strong correlations with DJS for any muscle pairing for any activity. The CCI for 

walking had at least a moderate correlation for at least one phase for every muscle grouping. The 

CCI for running had no moderate correlations to DJS and the CCI for cycling had a moderately 

negative correlation to DJS for the full pedal revolution of the VMMG muscle grouping. 

Table 5.3: Pearson Moment Correlations between DJS and CCIs of each muscle grouping.  

Activity Phase VLLG VMMG VLBF VMST 

Walking Full 0.309* 0.398* 0.255* 0.032 

Early 0.072 -0.347* -0.201 -0.308* 

Late 0.213 -0.125 0.379* 0.063 

Running Full -0.022 0.178 0.066 -0.089 

Early -0.005 -0.032 0.040 -0.190 

Late 0.025 -0.017 0.115 0.137 

Cycling Full -0.139 -0.425* 0.029 0.025 

Early 0.256* -0.125 -0.021 -0.157 

Late 0.041 -0.276* 0.039 0.060 

Note: Significant correlations (p < 0.05) were identified as high correlation if r > 0.7, moderate correlation if 0.3 < r 

< 0.7 and low correlation if r < 0.3 (Ratner, 2009). Values indicated by a * are significant (p<0.05). 

 

5.4 Segment Coordination & Coordination Variability 

 Segment coordination and coordination variability over stance/downstroke was split into 

thirds to represent early, mid and late phases of the activity). Table 5.4 displays the segment 

coordination for each segment coupling averaged over each phase. Despite being forms of gait, 

walking and running did not share the same segment coordination patterns for all phases of both 

couplings (Table 5.4) with the largest differences occurring during the late phases.  
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Figure 5.6:  Mean segment coordination coupling angles for the sagittal thigh/sagittal shank segment coupling for A) 

walking stance phase, B) running stance phase and C) cycling downstroke for all participants. The dashed lines 

separate the signals into thirds, to represent the early, mid and late stages. 

 

Figure 5.7: Mean Coordination variability for the sagittal thigh/sagittal shank segment coupling for A) walking 

stance phase, B) running stance phase and C) cycling downstroke for all participants. The dashed lines separate the 

signals into thirds, to represent the early, mid and late stages. 
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 There was no significant effect of activity (p > 0.05/6) on coordination variability for 

either phase of the stance phase/downstroke for either the sagittal shank / sagittal foot segment 

coupling (Early: F2,24 = 0.534, p = 0.593; Mid: F2,24 = 0.598, p = 0.558; Late: F2,24 = 1.385, p = 

0.270) or the sagittal thigh / sagittal shank segment coupling (Early: F2,24 = 0.369, p = 0.695; 

Mid: F1.346,16.156 = 0.814, p = 0.415; Late: F1.190,14.276 = 0.190, p = 0.0.712). 

Table 5.4: Segment coordination values for the corresponding segment couplings during walking, running and 

cycling. 

Segment Pairing Activity 

Phase 

Walking Running Cycling 

Sagittal Shank v. 

Sagittal Foot 

Early 214.3 (4.2) 220.5 (10.0) 221.0 (32.9) 

Mid 210.2 (13.8) 207.5 (9.0) 221.0 (34.6) 

Late 231.4 (4.6) 258.8 (8.2) 117.4 (35.1) 

Sagittal Thigh v. 

Sagittal Shank 

Early 248.0 (6.0) 266.0 (7.7) 274.2 (33.6) 

Mid 202.2 (6.5) 226.9 (4.5) 339.7 (32.1) 

Late 257.8 (6.1) 188.3 (6.4) 238.6 (42.9) 

Note: Values are presented in degrees (SD).  
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Table 5.5: Coordination variability values for the corresponding segment couplings during walking, running and 

cycling. 

Segment Pairing Activity Phase Walking Running Cycling 

Sagittal Shank v. 

Sagittal Foot 

 

Early 9.2 (11.7) AB 6.0 (5.2) AC 6.7 (5.6) BC 

Mid 11.4 (9.3) AB 7.1 (12.6) AC 9.3 (5.9) BC 

Late 4.0 (4.4) AB 7.9 (13.6) AC 9.6 (5.6) BC 

Sagittal Thigh v. 

Sagittal Shank 

 

Early 8.8 (10.0) AB 6.4 (6.7) AC 8.2 (3.8) BC 

Mid 6.2 (6.2) AB 6.6 (12.6) AC 2.8 (1.2) BC 

Late 4.4 (3.4) AB 5.5 (9.7) AC 4.2 (0.8) BC 

Note: Values are presented in degrees (SD). Values with the same superscript are not significantly different from 

each other (p<0.05). 

 

5.5 Iliotibial Band EMG Exposure 

The mean ITBIZ(t)per_rep was calculated for all three activities, averaged for each stance 

phase in walking and running and for each downstroke in cycling. For walking and running (blue 

shading and red shading, respectively, Figure 5.8), every stance contained two events of ITBIZ 

during stance, typically once during the loading response, and once during the pre-swing. In 

cycling (yellow shading, Figure 5.8), some participants entered the ITBIZ near the end of the 

downstroke, when the pedal was near BDC.  Eight out of fifteen participants consistently 

presented ITBIZ events and were thus classified as ITBIZ cyclists (section 4.3.2). Of these eight 

ITBIZ classified cyclists, three were excluded due to contaminated EMG signals from GM. The 

data for ITBIZ impingement measures are displayed in Table 5.6.  
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Figure 5.8: Knee flexion angles for one stance phase of walking (red) and running (blue), and one downstroke of 

cycling (yellow), averaged across all participants. The area between the black bars represents the interval in which 

the knee was flexed in the ITBIZ.  

There was no significant effect of activity on ITBIZ(t)per_rep  (p > 0.05/6) (F1.077,7.540 = 

7.293, p = 0.0527), ITBIZ(t)60 (F1.164,8.150 = 3.917, p = 0.079) or ITBIZ(t)cumul_load (F2,14 = 2.062, p 

= 0.164). There was a significant effect of activity on ITBEX (F2,10 = 20.950, p < 0.0001) (Table 

5.6).  

For the ITBEX, running (161.8 ± 70.3 %MVC/min) was larger than both walking (25.4 ± 

27.3 %MVC/min) and cycling (5.6 ± 3.8 %MVC/min), which were not different from each 

other. 

Comparing equivalent workouts, there was a difference in the number of ITBIZ events 

between running and cycling (t(7) = -4.654, p=0.002 but no difference in the duration with the 

knee flexed in the ITBIZ between running and cycling (t(7) = 2.567, p=0.037). 

Walking 

Running 

Cycling 
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Table 5.6: ITBIZ durations and ITBEX values for walking, running and cycling. 

 Walking Running Cycling 

ITBIZ Per Rep (ms) 115.9 (69.4)AB 53.8 (8.1)AC 41.5 (16.6)BC 

ITBIZ over 60 minutes 

(sec) 

403.4 (239.3)AB 274.8 (59.7)AC  195.8 (73.0)BC 

ITBIZ Events Over 

Equivalent Workout  

- 6907.4 (2848.3) 11709.8 (1415.6) 

ITBIZ Equivalent Workout 

(sec) 

- 319.8 (96.8)C 497.8 (189.7)C 

ITBIZ Cumulative Load 

(sec) 

102.1 (59.7)AB 68.7 (14.9)AC 111.5 (45.3)BC 

ITBEX (%MVC/min) 25.4 (27.3)B 161.8 (70.3) 5.6 (3.8)B 

Values are presented as mean (SD). Values with the same superscript are not significantly different from each other 

(p<0.05). 

 

 

 

 

 

 

 

 

 

 

  



 

 

5.6. Results Summary Tables 

Table 5.7: Summary table for the main hypotheses. 

Question Hypotheses Conclusion Supporting Evidence   

How does stiffness at the 

knee differ when walking, 

running and cycling? 

The DJS will be greater in running 

compared to walking and cycling 

during equivalent bouts of 

walking, running and cycling. 

Rejected DJS was greatest for running when considering the entire 

stance/downstroke and in the initial phase. In the terminal phase, 

walking and running were not different, but were larger than 

cycling. Cycling had the lowest DJS for all phases 

How does the co-

contraction of the muscles 

around the knee differ 

between walking, running 

and cycling? 

The co-contraction will be greater 

in running compared to walking 

and greater for walking compared 

to cycling for all muscle groupings 

during equivalent bouts of 

walking, running and cycling. 

Rejected CCI was greatest for running for all phases and all muscle 

groupings, except for the VMST groupings, where it was not 

different from walking in the initial phase. Walking had a greater 

CCI compared to cycling for VLBF and VMST muscle groupings 

in the initial phase. 

How does coordination 

variability of the lower 

limb differ between 

walking, running and 

cycling? 

Coordination variability will be 

greater for walking compared to 

running and greater for running 

compared to cycling. 

Rejected There were no differences in the coordination variability between 

walking, running and cycling for any segment couplings. 

How do measures of 

exercise intensity affect 

duration of the knee 

flexed in the ITBIZ 

between walking, running 

and cycling?  

The ITBEX will be greatest for 

running compared cycling, which 

will be greater compared to 

walking. 

Rejected Running was larger than both walking and cycling, which were not 

different from each other. 

The ITBIZ(t)cumul_load will be 

greater for cycling compared to 

walking and running. 

Rejected There were no differences in the ITBIZ(t)cumul_load between walking, 

running and cycling 
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Chapter 6 : Discussion 

 The primary objective of the current study was to assess the biomechanical differences 

between walking, running and cycling, in order to provide insight to how various outcome 

measures may contribute to overuse injury. To accomplish this, participants were asked to 

perform 6 trials each of moderate intensity running and cycling, as well as 6 trials of walking at a 

self-selected pace. Walking was included to act as a presumed low-risk control to compare 

running and cycling against, which allowed for a practical comparison that is not often taken into 

account when interpreting findings. A moderate intensity of activity was selected to represent a 

typical recreational/social run or bike ride. From the data collected, outcome variables were 

grouped into four categories (dynamic joint stiffness, co-contraction, segment coordination, and 

IT band impingement measures). These outcomes were investigated due to their association with 

overuse injury (Hamill et al., 1999; Heiderscheit et al., 2002) and long-term knee health (Chang 

et al., 2017; Hafer et al., 2016; McGinnis et al., 2013). Greater DJS has been associated with 

more severe knee osteoarthritis (Chang et al., 2017; Zeni & Higginson, 2009), greater risk of 

tibial stress fracture (Milner et al., 2007) as well as bony injury and soft tissue injury (Butler et 

al., 2003). Greater muscular co-contraction has been associated with increased energy 

expenditure (Hortobágyi et al., 2009, 2011), greater joint contact forces (Hodge & Harris, 1986; 

Sasaki & Neptune, 2010; Winby et al., 2009) as well as increased joint contact pressure (Li & 

Park, 2004). Additionally, co-contraction has been found to be a coping mechanism strategy for 

instability (Gantchev & Dimitrova, 1996; Hurd & Snyder-Mackler, 2007; Slijper & Latash, 

2000) and linked to PFPS in walking and running (Besier et al., 2009). Lower coordination 

variability has been associated with greater risk of overuse injury (Hamill et al., 2012). The 

number of ITBIZ events has been associated with ITBS (Farrell et al., 2003). It has previously 
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been postulated that repetition was more important compared to reaction forces as a contributing 

factor for ITBS in cyclists, in addition to anatomical differences and differing training habits. To 

advance this work, a novel exposure metric was developed involving knee angular velocity and 

EMG, as well as a cumulative loading analysis, to attempt to investigate why ITBS is still a risk 

to cyclists.  

 Generally, DJS was greater in running compared to walking and cycling, indicating that 

increased knee stiffness  may contribute to injury in running. CCI was greatest in running 

compared to walking and cycling, indicating that increased muscle activation may contribute to 

injury in running. Coordination variability was not different between walking, running and 

cycling. Lastly, the ITBEX was greatest in running compared to walking and cycling but the 

ITBIZ(t)cumul_load was not different between walking, running and cycling. Both the knee angular 

velocity and magnitude of muscle activation of GM might contribute to overuse injury in 

running. It is unlikely that coordination variability or time spent in the ITBIZ, given an 

equivalent cumulative load play a role in contributing to overuse injury. 

The following discussion sections will elaborate on the results found in the current study, 

compare and contrast them to findings from previous literature and explain any implications with 

regards to the hypotheses and objectives of the study. 

6.1 Dynamic Joint Stiffness 

There is a complex relationship between performance and injury risk in DJS. A larger 

DJS is linked to bony injury such as tibial stress fracture and knee OA (Chang et al., 2017; 

Milner et al., 2007; Zeni & Higginson, 2009). Thus, it would seem logical to attempt to reduce 

DJS by means of altering ground or shoe properties. However, this may not be feasible at the 
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cost of performance and in addition, a lower DJS at the knee could lead to more soft tissue 

injuries (Butler et al., 2003; Granata, Padua, & Wilson, 2002) or increase the risk of injury to 

other joints (Butler et al., 2003). It is thought that there is an optimal level of stiffness to balance 

injury risk and performance (Butler et al., 2003). In the current study, the DJS was generally 

larger for running compared to walking at a self-selected pace and cycling at an equivalent 

intensity to running. It was hypothesized that the DJS would be greater in running compared to 

walking and cycling, which was rejected due to walking and running having similar DJS during 

the terminal phase. DJS may contribute to overuse injury in running due to its greater magnitude 

during the initial phase, where weight acceptance and work absorption occurs.  

When the knee is stiff during walking and running, energy is lost by the system to the 

tissues of the body, as eccentric contraction of the knee extensors occurs (Frigo et al., 1996), 

which might cause injury (Warren et al., 1999). Since the knee joint is not a perfectly elastic 

structure, this energy is either lost or partially applied to the hip via bi-articular muscles (Frigo et 

al., 1996). Though there is no threshold for injury for the DJS of the knee, it is typically accepted 

that a larger DJS is associated with a greater risk for bony injury compared to a lower DJS 

(Butler et al., 2003).  

Though DJS has been calculated for walking and running, it has never been found for 

cycling. The results of this study show cycling as a vastly different activity in terms of DJS from 

gait. The moment-angle curve progresses counterclockwise, with the initial phase comprised of 

an increasing knee moment and decreasing knee angle, while the terminal phase involves a 

decreasing knee moment and a decreasing knee angle. As described in Table 6.1, this indicates 

that work is always produced (the joint moment never opposes the angular velocity), and never 

absorbed. There is never a state of knee ‘stiffness’ in cycling (work absorption); the knee instead 
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has compliance. In walking and running, upon heel strike, the knee extensors apply an extensor 

force about the knee, while knee flexion occurs. This acts to decelerate the body and control the 

landing to stabilize the joint during early stance. In cycling, no such requirement exists. Due to 

the cyclic nature of the pedal revolution, inducing a dynamically stiff knee is not relevant to the 

task. Not having a stiff knee is notable, in that in cycling, eccentric contraction of the knee 

extensors never occurs, which might be associated with injury (Warren et al., 1999). 

Cycling was shown to have a positive DJS value in the terminal phase, which was lower 

than walking in the terminal phase, which is when the primary thrust is developed in walking. 

Cycling is often recommended as a safe alternative for physical activity to reduce stresses on the 

knee for individuals after TKA, rehabilitation after injury to as a low stress activity. A lower DJS 

can be interpreted as a lower loading of tissues in the body (Blatich et al., 2013). Though cycling 

has a lower DJS (which has been previously associated with an increase in soft tissue injury 

(Butler et al., 2003), it is unlikely to contribute to overuse soft tissue injury, since it appears that 

stiffness is not a requirement to successfully complete the task. The interpretations of DJS in the 

current study supports the notion that cycling is a safe alternative for physical activity for these 

populations. 

Table 6.1: Summary of interpretations of DJS slopes. 

 Positive Slope Negative Slope 

Progressing Left to Right  Work Absorbed Work Produced 

Progressing Right to Left Work Produced Work Absorbed 

 

For the stance/downstroke and initial phase, running resulted in the greatest DJS, 

followed by walking, then cycling (Figure 5.2). In the terminal phase, walking and running were 
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larger compared to cycling, but not different from each other. These findings can be explained by 

breaking down the DJS into its components: the knee flexion moment and knee flexion angle. 

Running had the largest ground reaction force (1917.4 ± 224.8 N), and the largest peak knee 

flexion moment (2.9 ±0.5 Nm/kg). Walking had the second largest ground reaction force (863.0 

±167.7 N), and the second largest peak knee flexion moment (0.9 ± 0.3 Nm/kg). Cycling had the 

lowest peak ground reaction force (345.7 ± 102.1 N), and the lowest peak knee flexion moment 

(0.5 ± 0.1 Nm/kg). This information, coupled with cycling having the largest knee range of 

motion (79.4 ± 11.4°), walking having the second largest range of motion (35.6 ± 9.3 °) and 

running having the least range of motion (31.7 ± 6.5°) over the signal analyzed, contributed to 

the differences found in DJS components (moment-angle curve slope). Even though running had 

a lower range of motion (denominator of the slope equation) compared to walking, the much 

larger knee flexion moment (numerator) of running was a more important factor. Cycling had the 

lowest knee flexion moment and largest range of motion, resulting in the lowest slope (smallest 

DJS).  

The DJS plots for walking and running consist of work absorption and work production 

sections (Figure 5.1). As weight is accepted following heel strike, the knee flexion moment 

increases as the knee flexion angle increases (an increasing positive slope, Figure 5.21). This is 

indicative of work absorbed by the joint and characterizes the initial phase of walking and 

running (Frigo et al., 1996). After weight acceptance during the initial phase, as the stride 

progresses from mid to late stance, both the knee flexion moment and the knee flexion angle 

decreases (a decreasing positive slope, Figure 5.1). This represents work produced by the joint 

(Frigo et al., 1996). In cycling, DJS has never been investigated, to the knowledge of the author. 

The initial phase has an increasing negative slope and the terminal phase has a decreasing 
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positive slope, both representative of work production (Figure 5.1). Like cycling, walking and 

running had a decreasing, positive slope in the terminal phase, where work was produced and the 

joint is compliant (i.e. the joint is moving in the direction of the knee flexion moment and thus 

produces no resistance to the applied force.) The DJS has been determined in previous studies 

(Milner et al., 2007; Powell & Williams, 2018). Results from the initial phase of these studies are 

presented in Table 6.2. Milner et al. (2007) measured the DJS for individuals with and without 

previous tibial stress fractures to investigate correlations between DJS and impact shock between 

groups. The results revealed that DJS was positively correlated to impact shock and that the 

group with previous injury ran with a greater DJS compared to the control group. For their 

control group, the DJS was found to be lower than that in the current study. The DJS in the 

previous study was calculated from heel strike to the first vertical ground reaction peak (the 

interval which they referred to as initial contact) whereas DJS in the current study was calculated 

from heel strike to the peak knee flexion moment, which occurred more towards midstance. In 

addition, Milner and colleagues only studied female runners, and it has been shown that females 

have a lower leg stiffness compared to matched males in a hopping task (Granata et al., 2002), 

which could explain the difference between findings. When Powell & Williams (2018) measured 

DJS in younger and older runners, the DJS was found to be similar to that found in the current 

study (Table 6.2). It was found that older runners (63.6 ± 3.6 years) ran with lower knee 

stiffness, suggesting that running biomechanics change with age, perhaps to compensate for 

decreased capacity or to preserve joint function. 
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Table 6.2: DJS comparison during running between the current study, Milner et al. (2007) and Powell & Williams 

(2018). 

 Chuang 

(2019) 

Milner et al. (2007) Powell & Williams (2018) 

Initial Phase DJS 

(Nm/kg/deg) 

0.129 (0.041) - 0.119 (0.02) 

Initial Phase DJS 

(Nm/kg-m/deg) 

0.117 (0.02) 0.030 (0.015)  - 

Age (years) 25.1 (4.7) 24 (9) 33.6 (5.2) 

BMI (kg/m2) 22.2 (2.3) 22.0  22.9 

Running Pace (m/s) 2.4 (0.33) 3.7 3.35 

Notes Self-Selected 

Pace  

Young, healthy 

female runners  

Young, healthy runners (sex 

unspecified) 

Note: Values are presented in mean (SD), where applicable. 

 

DJS of the knee has also previously been found for walking, comparing total knee 

arthroplasty participants to controls (McGinnis et al., 2013) and for individuals with moderate 

OA, severe OA and controls (Zeni & Higginson, 2009). Results for the initial phase of these 

studies are compared to those of the current study in Table 6.3. The findings of McGinnis and 

colleagues (2013) were greater than that found in the current study over the initial phase, which 

may be due to the faster walking pace than in the current study. However, the previous study did 

have an older cohort than the current study (62.7 ± 6.6 years vs. 25.1 ± 4.7 years, respectively). 

However, Zeni & Higgins (2009) present a DJS that very closely matches the DJS found in the 

current study over the initial phase. The similar values may be attributed to the similar 

parameters between the studies (pace, cadence, BMI), despite Zeni & Higgins (2009) also having 

an older cohort. In contrast to running, where DJS was found to decrease with age, the current 
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study combined with this previous study shows that, the DJS of walking may be less affected by 

age and more influenced by gait parameters.  

Table 6.3: DJS comparison for walking between the current study, McGinnis et al. (2013) and Zeni & Higginson 

(2009). 

 Chuang (2019) McGinnis et al. 

(2013) 

Zeni & Higgins 

(2009) 

Initial Phase DJS 

(Nm/kg/deg) 

0.065 (0.015) - 0.066 

Initial Phase DJS (Nm/kg-

m/deg) 

0.019 (0.006) 0.042 (0.015) - 

Age (years) 25.1 (4.7) 62.7 (6.6) 58.9 (11.4) 

BMI (kg/m2) 22.2 (2.3) 29.0 (4.8) 24.9 (3.7) 

Walking Pace (m/s) 0.9 (0.12) 1.44 (0.15) 1.0 

Cadence (steps/min) 58.8 (3.1) - 54.6 (4.0) 

Notes Self-Selected 

Pace  

Self-Selected Pace  Controlled Pace 

Note: Values are presented in mean (SD), where applicable. 

 

One method to attempt to reduce overuse injury at the knee might be to adapt methods to 

alter the DJS in running to some optimal level. However, in addition to relevancy to injury, DJS 

has also been associated with performance. As a task’s demand increases (increasing running 

speed, jump height, for example) the DJS has been found to increase (Arampatzis et al., 1999; 

Farley, Houdijk, Van Strien, & Louie, 1998; Granata et al., 2002; Kuitunen et al., 2002; 

Stefanyshyn & Nigg, 1998). This is explained by greater external forces being applied to the 

body, resulting in a greater stiffness being produced to resist the increased applied forces in order 

to perform the task with increasing effort (Butler et al., 2003).  
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There has been research investigating modifications to stiffness and it has been found that 

after training volleyball players to ‘land softer’ after jumping, injury rates were lower over the 

course of a season, compared to a control group. One method of altering leg stiffness during 

running might be to alter footfall landing pattern (Arampatzis et al., 1999; Butler et al., 2003; 

Seyfarth, Geyer, Gunther, & Blickhan, 2002) or alter the foot/ground contact properties (Farley 

et al., 1998; Ferris, Louie, & Farley, 1998; Smith & Watanatada, 2002).  

6.2 Co-Contraction Index  

For all phases of all muscle groupings, except for the loading phase of the VMMG 

muscle grouping, running had the largest CCI compared to walking and cycling. Walking and 

cycling were only different during the loading phase for VLBF. Neither walking nor cycling 

produced larger CCI compared to running. This is unsurprising, since the CCI calculation used in 

the current study incorporates not only the ratio of muscle activity between antagonistic muscles, 

but also the magnitude of the muscle activation (Rudolph et al., 2001). Running is a ballistic, 

high-velocity activity that requires a lot of muscle activation in order to gain control after heel 

strike and propel the body forward near toe off (Besier et al., 2009; Novacheck, 1998).  

An increase in CCI has been found to increase joint contact forces (Hodge & Harris, 

1986; Sasaki & Neptune, 2010; Winby et al., 2009), joint contact pressures (Li & Park, 2004) 

and energy expenditure in older adults (Hortobágyi et al., 2009, 2011). Moreover, CCI is also a 

coping mechanism strategy for instability (Gantchev & Dimitrova, 1996; Hurd & Snyder-

Mackler, 2007; Slijper & Latash, 2000) and has been linked to PFPS in walking and running 

(Besier et al., 2009). Previous research investigating CCI has primarily focused on differences 

between injured and uninjured participants (Chmielewski et al., 2005), moderate/severe/control 

OA participants (Hubley-Kozey, Hill, Rutherford, Dunbar, & Stanish, 2009; Rudolph et al., 
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2001; Schmitt & Rudolph, 2008) and age-related changes (Lo et al., 2017). Relevant to the 

current study are the behavior of the control/healthy cohorts in these studies.  

For healthy individuals during walking, the values found in the current study are 

generally of smaller magnitude to those found in previous literature (Table 6.4). In these studies, 

the CCI was measured from heel strike (or 100 ms prior) to an inflection in the knee joint 

moment.  

Table 6.4: Comparison of co-contraction indices of the current study to previous literature. 

 Chuang 

(2019) 

Childs et 

al. (2004) 

Chmielewski 

et al. (2005) 

Lewek et 

al., (2004) 

Hubley-Kozey 

(2009) 

Rudolph 

et al. 

(2007) 

VLLG 4.5 (3.9) - - 15 (8) 10 (5)  7.8 (2.2) 

VMMG 2.7 (1.4) - 40.0 (9) 11 (8) 9 (5) 8.1 (2.8) 

VLBF 7.7 (3.2) 15 (9) 30.4 (11.9) 19 (10) 16 (6) 13.2 

(3.2) 

VMST 5.8 (3.2) 
- - 

16 (10) 19 (10) 12.3 

(2.9) 

Walking 

Speed 

(m/s) 

0.9 (0.12) 1.12 - 

1.34 

Self-Selected 

Pace 

1.5 (0.2)  1.37 (0.18) 1.39 

(0.08) 

Age 

(years) 

25.1 (4.7) 62 (10) Not Reported 49.5 (6.1) 49.2 (9.7) 20.6 

Status Healthy Healthy Healthy Healthy Asymptomatic Healthy 

Note: Values are presented as degrees (SD), where applicable. 

The larger CCI values found by Chmielewski et al. (2005) may be explained by their use of a 

movable platform. The platform was in a ‘locked’ condition, but the act of walking over an 

unfamiliar apparatus may have invoked some anxiety/instability causing an increase in co-

contraction. The findings of Childs (2004), Lewek et al. (2004) and Hubley-Kozey (2009) were 
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also larger than those found in the current study. All participants in these studies were older than 

that of the current study, and age has been shown to be linked to an increased co-activation of 

antagonistic muscles (Hortobágyi et al., 2009; Hortobágyi, Fernandez, & Rothwell, 2006). The 

findings of Rudolph and colleagues (2007) were closest to the co-contraction values found in the 

current study. Though both studies had young participant cohorts, the faster walking pace in the 

previous study may have resulted in the larger CCI values. It is interesting to note that the 

quadriceps/hamstring groupings tend to be larger than their respective medial/lateral 

quadriceps/gastrocnemius groupings.  Further, physical activity levels were not reported in the 

previous studies. The highly active, younger cohort of the current study may have an increased 

efficiency which could explain the lower CCI values found. 

6.3 Dynamic Joint Stiffness / Co-Contraction Index Correlation 

 It has previously been proposed that DJS and CCI could be correlated, since a higher 

muscular co-contraction is thought to prevent instability, potentially creating a stiffer joint 

(McGinnis et al., 2013).  In the current study, moderate significant correlations were found 

during some phases of walking, but none for running, and moderate negative correlations for 

cycling for the VLLG and VMMG muscle groupings. McGinnis et al. (2013) found no 

significant relationship between DJS and CCI about the ankle at a self-selected walking pace 

(1.44 ± 0.15 m/s). 

 In the current study, it was hypothesized that there would be at least a moderate 

correlation for all phases for all muscle groupings. This hypothesis was rejected and a possible 

explanation for these findings could be that the relationship (or lack thereof) between DJS and 

CCI in trained individuals is influenced more strongly by experience and efficiency, rather than a 

need to address instability. Being able to produce sufficient joint stiffness to perform a task could 
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be related to personal style and technique. Given that the participants in the current study were 

highly trained athletes (competition experience: 5.3 ± 3.9 years, weekly training: 8.0 ± 3.1 

hours/week), the conditions in the study were not novel and the CCI may have been lower as an 

adaptation to reduce energy expenditure. More moderate correlations may have been found in 

walking since it is a less demanding task that every participant performed at a fairly uniform 

pace and cadence. The more demanding tasks of running and cycling may invoke more varied 

muscular coordination patterns between participants, revealing less correlations to DJS.  

6.4 Segment Coordination & Coordination Variability 

Segment coordination explains the possible strategies that an individual may use to 

perform a given task (Hafer & Boyer, 2018; Hamill et al., 1999). By plotting segment angles 

(expressed with respect to the global coordinate system) against each other, the coupling angles 

between consecutive data points were calculated using a modified vector technique. 

Coordination variability describes the variance of the segment coordination stride to stride or 

pedal revolution to pedal revolution. In contrast to end-point variability, where an increased 

variability is unfavourable and associated with less experience, an increase in coordination 

variability is beneficial and associated with healthy, higher performing individuals (Arutyunyan 

et al., 1969, Hamill et al., 2012). 

Segment coordination has previously been compared between walking and running 

(Boyer et al., 2016; Hafer & Boyer, 2018) and it was found that walking and running had 

different coordination patterns. Further, Hafer et al. (2018) compared the segment coordination 

and coordination variability between young, active older and less active older adults. A 

comparison of segment coordination is displayed in Table 6.5, comparing the results of the 
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current study to those of the young cohort from Hafer et al. (2018). In general, the values are 

consistent with previous literature.  

Table 6.5: Comparison of segment coordination for walking between the current study and Hafer & Boyer (2018). 

Green values represent “In-Phase” coordination, red values represent “Anti-Phase” coordination, blue values 

represent “Proximal Segment” coordination and yellow values represent “Distal Segment” coordination. 

Segment Coupling Phase Current Study Hafer & Boyer (2018) 

 

Sagittal Shank v. 

Sagittal Foot 

Early 214.3 (4.2) 209.2 (3.5) 

Mid 210.2 (13.8) 202.1 (7.0) 

Late 231.4 (4.6) 224.6 (4.3) 

Sagittal Thigh v. 

Sagittal Shank 

Early 248.0 (6.0) 240.2 (5.5) 

Mid 202.2 (6.5) 206.7 (7.8) 

Late 257.8 (6.1) 268.9 (7.4) 

Note: Values are presented in degrees, mean (SD). 

  The Hafer group has also determined the coordination variability for walking and running 

in a number of different studies (Boyer et al., 2016; Hafer & Boyer, 2017, 2018; Hafer et al., 

2016). These data are displayed and compared in Table 6.6 and Table 6.7, for walking and 

running, respectively. For walking, the coordination variability values are similar, with values 

from the current study being slightly lower in general than those previously reported for the mid 

and late phases. In the previous work, participants walked at a faster pace of 1.38 ± 0.14 m/s, 

compared to an average of 0.9 ± 0.12 m/s in the current study.  
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Table 6.6: Comparison of coordination variability for walking between the current study, Hafer & Boyer (2017) and 

Hafer & Boyer (2018).  

Segment 

Coupling 

Phase Current Study Hafer & Boyer 

(2017) 

Hafer & Boyer 

(2018) 

Sagittal Shank v. 

Sagittal Foot 

Early 9.2 (11.7) - 8.1 (4.4) 

Mid 11.4 (9.3) - 11.1 (5.9) 

Late 4.0 (4.4) - 4.8 (4.2) 

Sagittal Thigh v. 

Sagittal Shank 

Early 8.8 (10.0) 6.0 (1.2) 7.6 (3.9) 

Mid 6.2 (6.2) 4.0 (1.0) 5.1 (2.7) 

Late 4.4 (3.4) 4.4 (0.8) 4.9 (3.2) 

Note: Values are presented in degrees, mean (SD). 

Coordination variability differences between the current study and previous studies were 

larger for running than for walking. All studies recruited experienced runners, so it is unlikely 

that these differences were due to a difference in experience/ability. Running pace was not 

reported by Hafer et al. (2016) and Boyer et al. (2016), however participants were asked to run at 

a self-selected pace and cadence typical of a comfortable run (similar to the instructions of the 

current study). Hafer & Boyer (2017) had participants run at a self-selected moderate pace, 

which was 3.2 ± 0.4 m/s.  
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Table 6.7: Comparison of coordination variability for running between the current study, Hafer et al. (2016), Hafer 

& Boyer (2017), Boyer et al. (2016).  

Segment 

Coupling 

Phase Current Study Hafer et al. 

(2016) 

Hafer & Boyer 

(2017) 

Sagittal Thigh v. 

Sagittal Shank 

Early 6.4 (6.7) 3.8 (1.7) 4.0 (0.8) 

Mid 6.6 (12.6) 3.1 (0.4) 3.0 (0.8) 

Late 5.5 (9.7) 5.8 (3.5) 7.0 (3.6) 

Note: Values are presented in degrees, mean (SD). 

A key difference between the studies conducted by Hafer & Boyer (2017) and Hafer & 

Boyer (2018) and the current study was the environment in which data were collected. The 

previous studies had participants walk/run on a treadmill whereas in the current study 

participants ran overground on a runway. In the current study, during the running trials, 

participants may have still been accelerating when this data was collected. Further, the greater 

variability may have come from some participants altering their stride to land on the force plate, 

despite the instruction to look forward while running and the researchers flagging any trial where 

the participant appeared to alter their gait to land on the force plate. Treadmill running could 

have been more comfortable and may have been collected while the participant was running at a 

steady state.  

Despite having different segment coordination magnitudes, coordination variability was 

not significantly different between any activities for any segment coupling in the current study. 

These results are similar to a previous study who found similar variances between phases for 

walking and running for 8 participants (Li et al., 1999). In this study variation was calculated 

using continuous relative phase, as opposed to the modified vector coding technique used in the 

current study. Both studies were performed at self-selected walking pace and an average run 



112 

 

pace of 2.24 m/s, though Li et al. (1999) constrained that speed for the participants, while in the 

current study it was tailored for each participant.  

Segment coordination and coordination variability has never been calculated for cycling; 

this dynamical systems approach offers a novel comparison between walking, running and 

cycling. It was hypothesized that, due to the limited degrees of freedom in cycling, coordination 

variability would be the lowest, however, this was not found to be the case. For all segment 

couplings, there were no differences between activity, for any of the three phases (early, mid or 

late). A lower coordination variability has been associated with an injured state, lower level 

performance and inexperience (Arutyunyan et al., 1969; Hamill et al., 2012). If walking can be 

assumed to be a low-risk control activity, in which all participants perform with a high level of 

experience/competency, the similar coordination values found for running and cycling could help 

support the justification that these athletes were highly trained in both running and cycling. It has 

been theorized that in addition to a low coordination variability being associated with injury, 

when coordination variability is excessive, there may also be an association to injury as well 

(Hamill et al., 2012). Thus, there is thought to be an optimal range for coordination variability 

where normal, healthy function occurs (Hamill et al., 2012). Since the values for running and 

cycling found in the current study were not difference from walking, these data may provide an 

indication of this optimal range of coordination variability.  

6.5 Iliotibial Band Impingement Measures 

The ITBIZ was defined as when the knee is flexed between 20° and 30°, where 

impingement of the IT band can occur, leading to ITBS. ITBS has been attributed to increased 

repetition, anatomical differences (leg length discrepancy, varus knee alignment or excessive 

joint rotation), and improper training (i.e. too much volume/intensity) (Farrell et al., 2003). In the 
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current study, the stance phase of walking and running were compared to the downstroke of the 

cycling pedal revolution. ITBIZ(t)per_rep was found to be 115.9 ± 69.4 ms during each stance 

phase of walking, 53.8 ± 8.1 ms during each stance phase of running and 41.5 ± 16.6 ms per 

downstroke of cycling. Extrapolated over a one-hour activity, ITBIZ(t)60 was found to be 6.7 ± 

4.0 minutes for walking, 4.6 ± 1.0 minutes for running and 3.3 ± 1.2 minutes for cycling, taking 

into account participant’s cadence for each activity. Finding the ITBIZ duration for an equivalent 

cumulative load, ITBIZ(t)cumul_load was found to be 102.1 ± 59.7s during walking, 68.7 ± 14.9s 

during running, and 111.5 ± 45.3s during cycling. A novel exposure metric (ITBEX) was 

proposed, which incorporated the knee angular velocity and iEMG of GM to provide an 

indication of whether the IT band was being tensioned by musculature while it was in the ITBIZ. 

The ITBEX was 25.4 ± 27.3 %MVC/min for walking, 161.8 ± 70.3 %MVC/min for running and 

5.6 ± 3.8 %MVC/min for cycling. Walking was included in the analysis of the current study to 

act as a baseline, since walking has no reported increase in ITBS risk. Walking, in fact, had a 

trend of having a larger ITBIZ duration than that of running and cycling in the current study. 

This is primarily due to the fact that over a typical walking gait stride, the knee is in the ITBIZ 

for a larger percentage. Thus, the notion that ITBIZ duration or repetition alone is a prominent 

factor for ITBS (Farrell et al., 2003) is not supported by the data in the current study. 

ITBIZ has been previously investigated in a cycling-oriented study by Farrell et al. 

(2003). The minimum knee flexion angle was 32 ± 7.2° and it was reported that ITBIZ per cycle 

revolution was 38ms for the whole pedal revolution at an average cadence of 88 RPM at an 

intensity of 280 W. That minimum flexion angle was slightly larger than that found in the current 

study, which was 27.99 ± 8.04° for athletes who were classified as ITBIZ cyclists (section 5.5). 

ITBIZ per cycle revolution for cycling in the current study (79.6 ± 37 ms) was more than double 
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that of the value previously published. This discrepancy can be attributed to differences in bike 

set up. Farrell et al. (2003) fit the participants to the cycle ergometer by statically placing their 

knee angle at 25-30 degrees with the pedal at bottom dead center. As previously shown (Bini & 

Hume, 2016), this method of static bike fit often does not result in the same measurements taken 

dynamically. The bike fit method from the current study was selected since it has been shown to 

produce optimal power, which happened to result in the knee often being flexed in the ITBIZ for 

some participants. 

Farrell et al. (2003) also addressed the issue that ITBS had a similar prevalence in 

running and cycling, despite cycling having a much lower GRF. Citing a study by Orchard et al. 

(1996) for running data, it was concluded that for a workout of equivalent exposure (10km run 

vs. 40km bike ride), running would have a total time of 330s with the knee flexed in the ITBIZ, 

with cycling having 250s with the knee flexed in the ITBIZ. The same calculations were 

performed in the current study and the opposite relationship was found. Running had an 

ITBIZ(t)eq_workout duration of 320 ± 97s over a 10km run and cycling had an ITBIZ duration of 

498 ± 190s for a simulated 40km bike ride. Farrell et al. concluded that since cycling had a 

decreased impingement duration compared to running, other factors such as anatomical 

differences, repetition, improper bike set-up and training errors are the most likely influencers of 

ITBS. However, this was a general observation with no statistical analysis. Comparing ITBIZ 

duration in the current study, there was no significant difference between running and cycling 

duration when the comparison was based on the hypothetical equivalent workout or when 

extrapolating the data for a one-hour activity. It is important to note that in this analysis, the 

stance phase of running was compared to the entire downstroke of cycling, consistent with 

methods previously published (Farrell et al., 2003) 
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Farrell et al. (2003) found repetition to play a more influential role in the onset of ITBS 

compared to measures involving external foot forces, since it was found that cycling involved 

more impingement events, less external foot forces and less duration with the knee flexed in the 

ITBIZ compared to running. For an athlete running at 4.5 m/s with a 1 m stride length, Farrell et 

al. approximated that 4800 impingement zone events will take place, assuming 1 impingement 

event per stride. The results of the current study show that for each walking and running stride, 

the knee is flexed into the ITBIZ twice per stride – once just after heel strike and once just before 

toe-off (Figure 5.8), which should have doubled the 4800 used in the previous analysis to 9600. 

In the current study, the cadence for walking, running and cycling was 59 ± 3.1 RPM, 85 ± 4.6 

RPM and 80 ± 7.0 RPM, respectively. Running and cycling were found to have a significantly 

larger cadence compared to walking but were not statistically different from each other. For an 

average run or ride of 1 hour, these could equate to ~5100 steps or ~4800 pedal revolutions, 

respectively. Although this is greater than the ~3540 steps for one hour of walking, many people 

take more than 3540 steps per day, with no reported increase of ITBS. Modern fitness devices, in 

fact, recommend an arbitrary 10,000 steps per day as a goal. These data further indicate that 

repetition alone may not be as influential to the onset of ITBS as previously thought. 

It was hypothesized that task intensity may play a role in ITBS development. Running 

and cycling are typically done at a greater intensity than walking, which may help to explain the 

similar injury risk. Thus, the novel ITBEX was proposed to incorporate not only the ITBIZ 

duration, but the knee flexion velocity as well as the muscle activation of GM over that interval. 

The results revealed that running was greater than both walking and cycling, but walking and 

cycling were not different from each other (Table 5.6). Thus, the ITBEX might provide insight as 

to why ITBS is so prevalent in runners. Running tended to have more EMG activation compared 



116 

 

to walking or cycling, and cycling tended to have the fastest angular knee velocity compared to 

walking and running with the knee flexed in the ITBIZ. Thus, muscle activity could potentially 

be more of an influence for ITBS in running, while knee angular velocity could potentially be 

more of an influence in cycling. 

Another approach to investigating the relationship between ITBS and intensity was to 

determine a cumulative load for each activity. In this instance, cumulative loading is defined as 

the summation of the external forces being applied to the foot over a given interval. Repetitive 

loading of tissues may decrease their tolerance over time and reduce their capacity to function 

without injury (Marra et al., 2014). Gatti et al. (2017) determined the cumulative load of the 

external ground reaction forces of healthy men (25.8 ± 4.2 years) running at a self-selected 

moderate pace for the equivalent of a 15-minute run. With the same participants cycling at a 

moderate intensity, it was found that a 15-minute run had the same cumulative load of a 46-

minute cycling duration. In other words, it took approximately 3 times as long in cycling to 

accumulate the same cumulative load as running. In the current study, using the same analysis 

methods as Gatti et al. (2017), a 15-minute run had the same cumulative load as a 33.8 ± 1.9-

minute cycling duration. Thus, the current study found cycling to require, on average, 2.2 times 

the duration to that of running to get to the same cumulative load. This difference in cumulative 

load time may be due to the more specifically trained cohort as well as the regulation of exercise 

intensity with heart rate in the current study. The study population of the previous study had an 

average weekly activity history of 6570.6 ± 4158.7 MET/week, which is equivalent to 

approximately a 40 ± 27 minute run every day, or a little over 4.5 ± 3.2 hours of running per 

week (Kyu et al., 2016), as an example. For comparison, the participants of the current study 

averaged 8.03 ± 3.05 hours per week. When ITBIZ duration was compared over the same 
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cumulative load of a 15-minute run, there was no difference between walking (102.1 ± 59.7s), 

cycling (111.5 ± 45.3s) or running (67.8 ± 14.9s). 

Farrell and colleagues (2003) suggested that the number of repetitions of impingement 

zone events is the major contributor to ITBS in cycling, with the aforementioned force and 

ITBIZ duration being less important. The rationale was that the reaction force in cycling on the 

foot is one-fifth of that found during running and since the duration spent in the ITBIZ over a 

given workout was approximated to be less in running compared to cycling (330s and 250s, 

respectively), the greater number of repetitions must have been important. The results of the 

current study found evidence to the contrary. During walking and running, the knee was flexed 

into the ITBIZ twice per stance phase. This doubles the previous approximation of ITBIZ events 

for walking and running revealing that the number of ITBIZ events is actually less during 

cycling. Further, in contrast to the same workout as calculated by Farrell and colleagues (a 

simulated 10 km run and 40km bike), the time spent in the ITBIZ was larger for cycling (497.8 

±189.7s), compared to running (319.9 ± 96.8s). The running ITBIZ(t)per_rep was similar to that 

previously published (previously found to be 75ms (Farrell et al., 2002)), but the cycling 

ITBIZ(t)per_rep was nearly double the duration when considering the entire pedal revolution when 

comparing to data previously published (previously found to be 38ms (Farrell et al., 2002)). 

When only including the downstroke of the pedal revolution, ITBIZ(t)per_rep was similar between 

running and cycling (53.8 ± 8.1s vs. 41.3 ± 16.6s, respectively). Lastly, despite the force being 

approximately one-fifth in cycling compared to that of running, when compared to the same 

cumulative load, there were no differences between activities. Due to the similarities between 

ITBIZ(t)per_rep between the activities, repetition alone might not be enough to explain ITBS risk 

in running and cycling. 
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6.6 Rationale of Cycling Injuries 

Running and cycling injury rates are very similar (Dettori & Norvell, 2006; Van Gent et 

al., 2007), however the outcome measures in the current study cannot definitively explain why. 

Since the DJS and CCI in running were so much greater compared to walking and cycling, 

different mechanisms might be at play as they relate to overuse injuries. Considering all the 

outcome measures, cycling was not significantly different compared to walking – which was 

assumed to be a low injury risk activity. Based on these findings, cycling should not have a 

higher incidence of injury compared to walking. This might be interpreted in two ways: that the 

outcome measures in the current study do not contribute to overuse cycling injury or that there 

are other factors at play. A possible explanation of these findings might be the increased knee 

flexion angle exhibited during cycling, specifically near TDC, when the lower limb first begins 

to apply pressure to the pedal. At TDC during cycling, the knee is flexed to greater than 100° 

(Figure 4.14). This is well above the typical knee flexion angle of either walking or running 

during the stance phase, where force is also being applied to the foot in those activities. Around 

this flexion angle, the cyclist begins to apply force to the pedal rapidly. With the knee in so much 

higher flexion, a greater joint contact force created by co-contraction could be detrimental, as it 

is at these flexion angles that tibiofemoral joint contact area decreases as much as 25% (Yao et 

al., 2008). A decreased contact area could mean that instead of the contact forces being 

distributed over a larger area, forces are instead localized, increasing the stresses at a region of 

interest. Additionally, in vitro studies have shown that a knee flexed to 90°, compared to a more 

extended knee (tested at 30° of knee flexion), patellofemoral contact characteristics are altered 

(Lewallen et al., 1990). When applying a moment of 35 Nm (similar to that found during 

cycling) contact area increased by 80%, contact pressure increased by 110% and contact force 



119 

 

increased by 230%. Modelling of the knee during walking, running and cycling has also revealed 

that maximum patellofemoral contact force is ~950N for walking (Shelburne, Torry, & Pandy, 

2005), ~2300N for running (Flynn & Soutas-Little, 1995) and ~980N for cycling (Ericson & 

Nisell, 1987). Despite peak external reaction forces in cycling being only ~15% of that found in 

running and 40% of that found in walking, the peak patellofemoral contact forces are estimated 

to be nearly 40% that of running and similar to that of walking. This suggests that at these large 

knee flexion angle postures, a greater proportion of external reaction forces is transferred to the 

patellofemoral joint.  

Even with a lower CCI in cycling compared to running, altered patellofemoral joint 

contact forces, contact pressures and contact areas could potentially contribute more to overuse 

injury in cycling due to these changes to joint kinematics found at a large knee flexion angle. 

These altered patellofemoral characteristics may also have implications for the findings 

of coordination variability. For both segment couplings, there was no difference between 

walking, running or cycling for any phase analyzed. As Hamill et al. (2012) stated, overuse 

injury is a multifactorial problem and is probably caused by an interaction of many variables. 

The dynamical systems approach to segment coordination and coordination variability is thought 

to explain the influence of many of these variables. With low coordination variability, the 

repeated use of a particular region of tissue about a joint may lead to an increased risk of injury. 

With greater coordination variability, forces are more distributed over a larger proportion of the 

tissue and not concentrated at localized point. The changes to tibiofemoral joint contact area, 

contact area, contact pressure and contact force may also interact with the coordination 

variability to result in greater influence to overuse injury. As previously mentioned, peak 

patellofemoral contact force has been estimated to be ~950N (Shelburne et al., 2005), ~2300N 
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(Flynn & Soutas-Little, 1995) and ~980N (Ericson & Nisell, 1987) for walking, running and 

cycling, respectively. Though the peak patellofemoral forces are similar between walking and 

cycling, the coordination variability of cycling, specifically in these larger flexion knee postures 

which are not experienced during the stance phase of walking, may explain why patellofemoral 

pain develops during cycling and is often not at an elevated risk during walking.  

With respect to ITBS, impingement of the IT band only occurs when the knee is flexed 

between 20-30 degrees. This impingement zone is coincident with the late phase of the cycling 

pedal revolution and depending on bike fit, is only applicable for some people (see section 5.5). 

In running, this is coincident with the early phase and late phases of the stance phase. 

Considering the insertion of the IT band at Gerdy’s tubercle of the tibia (Orchard et al., 1996), 

sagittal rotation of the shank with respect to the thigh could influence how the IT band moves 

over the lateral femoral epicondyle. There were no differences, however, between walking, 

running or cycling during the early or late phase of the sagittal thigh / sagittal shank coupling 

(when the knee is flexed in the ITBIZ). This coordination variance in walking would also suggest 

that there is a risk for ITBS in walking, which has not been reported. The cadence of running and 

cycling would typically eclipse those in walking, leading to more instances of impingement per 

minute and the low variation could be more detrimental for these tasks due to repetition. It is thus 

unlikely that coordination variability plays a role in ITBS development.  

 

  



121 

 

Chapter 7 : Limitations 

 There were a few identified limitations to the current study regarding the experimental 

setup and the processing and interpretation of the outcome variables. With respect to the 

experimental setup, there were inherent differences to analyzing running and cycling in a 

laboratory compared to studying these activities in a more realistic, outdoor setting. In the 

current study, the running trials were limited to a 20-meter runway and ground reaction forces 

from only one stance phase could be collected for each trial. Due to the volume of the collection 

space, the swing phase for each participant was often not captured and thus, was excluded from 

analyses. The short runway and force plate set-up prohibited running at the target heart rate and 

measuring data for successive strides. The solution to determining the run speed was to have the 

participants run on a treadmill elevated to a 1% grade to determine their target heart rate and then 

have the participants run at the same speed on the runway. 

In terms of cycling, a fixed, stationary ergometer did not allow for the lateral side to side 

sway that typically occurs during outdoor riding and the ergometer setup (i.e. saddle position, 

handlebar position) may have made joint kinematics less natural. The limited lateral sway of the 

bike may have reduced the coordination variability found during cycling. It is possible that on a 

mobile bicycle that there may have been greater coordination variability due to the motion of the 

bicycle beneath the rider. In the literature, there is little consensus on how to optimally fit a bike 

to an individual (Fonda et al., 2014). However, dynamic bike fits have been recommended to 

ensure similar kinematics between testing and bike set up (Fonda et al., 2014). Unfortunately, 

these dynamic bike fits are time consuming and can bias the knee flexion angle to fall within the 

impingement zone. Thus, an alternate bike fit method that has been shown to produce similar 
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hip, knee and ankle angles to a dynamic bike fit was used (Bini & Hume, 2016), as described in 

section 4.2.1.  

In addition to the ergometer set up parameters, the instrumented pedals used may have 

been unfamiliar to participants. Though athletes with experience with clipless pedals were 

recruited, the stack height of the instrumented pedals (the distance from the pedal spindle to the 

interface at the bottom of the shoe) was approximately 5cm higher than a typical commercially 

available pedal to make room for the force transducer. Anecdotally, participants reported an 

unusual feel to the pedals initially, that was gone after the first few minutes of the warm-up. This 

can be corroborated by the fact that the coordination variances for cycling were relatively low 

and similar to that of walking and running, which could indicate that the instrumented pedal had 

a small to negligible impact on the participant’s kinematics. 

 As no study has yet to quantitatively compare the biomechanics of cycling compared to 

running, there are few variables which have been used to compare both modalities. ITBIZ 

duration has been previously studied for running/gait (Orchard et al., 1996) and cycling (Farrell 

et al., 2003). However, DJS and joint coordination have only previously been determined for 

walking and running. DJS is often analyzed for gait during the stance phase or portions of stance 

phase (Chang et al., 2017; Günther & Blickhan, 2002; Stefanyshyn & Nigg, 1998; Zeni & 

Higginson, 2009). In order to define a cycling equivalent, DJS for cycling was determined during 

pedal loading as an analog to stance phase. To take into account the different characteristics of 

the signals (Figures 4.15), DJS was first defined over stance/downstroke, and then broken down 

into an initial phase and terminal phase. Partitioning the DJS has previously been done by Frigo 

et al. (1996) who divided gait strides into quasi-linear phases bounded by inflection points in the 

DJS plot.  
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Similarly, segment coordination is often analyzed during the stance phase of gait. It has 

never been measured in cycling. Segment coordination data collection is often done on a 

treadmill and it has been shown that 10 and 8 strides best represents reliable coordination 

analyses for walking and running, respectively (Hafer & Boyer, 2017). These values were 

established by taking the lowest stride count that produced a mean within 10% of a 15 stride 

mean. 5-6 strides were used in the current study, which was approximately within 15% of a 15 

stride mean, according to data from Hafer & Boyer (2017). Given the small standard deviations 

for most coordination variances in the current study, this number of strides was deemed 

acceptable for this analysis.  

Lastly, due to limitations of a two-axis custom force pedal, center of pressure could not 

be calculated in real time during data collections. To account for this, center of pressure of each 

participant was estimated using a Tekscan F-Scan 3000E pressure sensor during 5-10 pedal 

revolutions, before data collection began. A limited number of pedal revolutions were captured 

using the Tekscan sensor due to the capacity of each sensor (1-7 ‘uses’ each) and the limitations 

of the Visual3D software used to compute the joint kinetics. Each Tekscan sensor is 

recommended for less than 50 steps/repetitions, which would equate to approximately 45 

seconds of a cycling trial, making it ineffective for the 6-minute cycling protocol. Further, 

Visual3D requires fixed values to create new landmarks (center of pressure in this case), 

meaning that a static COP position location relative to the foot tracking markers were required. 

During the downstroke, across all pedal revolutions recorded with the Tekscan sensor, the 

medial-lateral center of pressure moved by an average of 3.57 ± 1.94 mm and the anterior-

posterior center of pressure moved by an average of 7.43 ± 4.95 mm. Further, when isolating 

center of pressure movement within a single downstroke, the medial-lateral center of pressure 
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moved by an average of 2.09 ± 1.10 mm and the anterior-posterior center of pressure moved by 

an average of 4.87 ± 4.48 mm. The use of a fixed center of pressure is an acceptable estimate, 

since it is assumed that these changes in foot center of pressure within the cycling shoe would 

not significantly affect the kinetics of the lower limb. 
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Chapter 8 : Future Directions & Contributions 

Future research should expand on the findings of the current study to an older cohort. The 

current study was performed on young, healthy, well-trained adults, which lays the groundwork 

for future research. The motivation for the current study was that as runners age, there is a shift 

from running participation to cycling participation in order to avoid injury caused by the larger 

impact forces experienced while running. While the results of the current study corroborate this 

rationale (running had a larger DJS and CCI, in part due to larger ground reaction forces), future 

research should investigate how these results compare to those of an older cohort. In addition, 

prospective studies are required to determine causation of overuse injury in running and cycling. 

According to Tanaka & Seal (2003), endurance performance peaks at around 35 years of age, 

followed by decreases over the next 15-25 years before a drastic drop off is experienced. This 

trend is similar for athletes of all ability levels (Joyner, 1993) and decline in performance is more 

drastic in women compared to men (Donato et al., 2003; Joyner, 1993; Tanaka & Seals, 1997). 

The decrease in performance is the result of a decreased capacity to maintain training intensity 

and volume, as well as decreased cardiovascular properties such as stroke volume, maximal heart 

rate and VO2max (Tanaka & Seals, 2008). 

The results of the current study indicate that CCI was much lower in cycling compared to 

running and thus, co-contraction may not be a primary contributor to injury in cycling. However, 

a lower CCI isn’t necessarily beneficial if there are additional changes to joint loading 

parameters. As mentioned in section 6.2, at large knee flexion angles, such as those during the 

initial phase of cycling, contact areas, pressures and forces are altered from a more extended 

knee. In the current study, these effects of large knee flexion angles were not measured and 
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should be investigated to further the understanding of the effects that contribute to overuse injury 

in running and cycling. 

As the ITBEX was a novel metric proposed in the current study, it has never been 

previously investigated and future work should investigate its relationship to IT band injury. A 

longitudinal study should be performed to explore whether there is an association to injury risk 

between iEMG of GM and cadence of each activity.  

As mentioned in section 4.3.2.2.2, due to the size of the collection space, only the stance 

phase of the running stride could consistently be recorded for each participant. Thus, the stance 

phase of walking and running was compared to the downstroke of cycling. There were no 

differences in ITBIZ(t)per_rep between walking, running or cycling. Thus, including the swing 

phase of walking and running and the upstroke of cycling into this analysis may help to parse out 

differences, since the IT band would pass through the ITBIZ additionally during the swing phase. 

In future studies, the full gait stride for walking and running should be included to provide a 

more complete analysis. 

Both males and females were welcome to participate in the study. Although there has 

been some research revealing differences in the kinematics and kinetics between the sexes 

(Ferber et al., 2003; Phinyomark et al., 2015; Sinclair & Selfe, 2015; Willson et al., 2012) and it 

has previously been advocated that results should not be collapsed across sex (Schache et al., 

2003), due to the small sample size in the current study, it was not feasible to compare sexes. 

With larger Q-angles, women may have different lower limb frontal plane alignment compared 

to men (Emami et al., 2007), which may result in different findings, specifically pertaining to the 

DJS and coordination variability. With an increased Q-angle, the sagittal plane moment of the 

knee may differ, affecting the DJS calculations. Additionally, an increased Q-angle may also 
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affect the segment coordination and coordination variability findings, since it breaks down 

segment angles into the frontal, transverse and sagittal planes. Future work should be done to 

identify if there is an effect of sex on the outcome variables.  

Furthermore, the activities performed in the current study were done at a moderate 

intensity, and future research should consider these activities at a higher intensity. The goal of 

many endurance athletes is to apply the fitness and form gained during training to a more 

competitive, racing setting. Analysis of varying intensities could offer insight into how overuse 

injury might be affected by faster run paces/increasing cycling resistances, since it is unlikely 

that an individual maintains a precise level of moderate intensity throughout an entire workout. 

Lastly, future research should investigate frontal plane kinetics and kinematics. There is 

limited data available for the frontal plane of cycling, specifically in middle-aged and older 

adults (Fang et al., 2016). PFPS has been associated with frontal plane moments (Stefanyshyn et 

al., 2006; Myer et al., 2010; Myer et al., 2014; Myer et al., 2015).  In addition, a frontal plane 

analysis may supplement the understanding of ITBS. It has been accepted that when the knee is 

between 20° and 30° of knee flexion, the IT band is impinged by the lateral epicondyle of the 

femur. It is possible that either frontal knee angle or frontal knee moments, while the knee is 

flexed in the ITBIZ, may provide more information on the mechanism of ITBS injury. 

The current study contributed to the field of knee and sport biomechanics by being the 

first to explicitly compare the kinematics, kinetics and electromyography of walking, running 

and cycling. Many studies have investigated the biomechanics of running and cycling in separate 

studies, or compared the influence of one sport on successive performance of the other (Bernard 

et al., 2003; Hausswirth et al., 2001; Heiden & Burnett, 2003; Hue et al., 1998; Millet & Vleck, 

2000; Millet, Vleck, & Bentley, 2009; Vercruyssen et al., 2002). In addition, the inclusion of a 
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comparison to walking (a presumed low-risk activity of daily living) allowed for a practical 

comparison that is not often taken into account when interpreting findings. Further, no study had 

previously investigated DJS or segment coordination for cycling, providing novel data to the 

research community to build upon. 

The current study provided contributions to the understanding of potential injury 

mechanisms in running and cycling. The rates of overuse injuries (such as ITBS and PFPS) are 

quite similar in running and cycling (Baskins et al., 2016; Dettori & Norvell, 2006; Neptune, 

Wright, & Van Den Bogert, 2000; Van Gent et al., 2007). However, the factors considered in this 

work, which are known to be related to overuse injuries, were, in many cases, significantly 

different between the two activities. This apparent discrepancy is resolved if, in fact, the 

mechanisms for developing the same overuse injuries are different between running and cycling.  

To address the common perception that cycling participation reduces overuse injury 

compared to running, some of the data from the current study appear to corroborate this idea. 

The DJS and CCI values found during running are greater than walking and cycling due in part 

to the larger ground reaction forces applied to the body. A greater ground reaction force would 

increase the knee joint moments (resulting in a larger DJS), as well as greater muscle activation 

(CCI) in order to maintain stability and control over the motion. These outcome variables are 

associated with greater risk of bony overuse injury (Butler et al., 2003), increased joint contact 

force (Hodge et al., 1986; Lu et al., 1997; Winby et al., 2009; Sasaki & Neptune, 2010) and 

retrospectively linked to PFPS (Besier et al., 2009), among others.  

There were no differences between running or cycling and walking for the coordination 

variability or ITBIZ(t)cumul_load. The novel ITBEX was greater for running, compared to walking 

and cycling, which could indicate that the EMG magnitude and knee angular velocity while the 
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knee is flexed within the ITBIZ could contribute to ITBS in running. The ITBEX has never been 

investigated before, however an increase in activity of the musculature acting on the IT band 

while it is in the ITBIZ is suggested to increase tension on the IT band. A larger ITBEX could 

indicate either that muscle activity in the impingement zone tensions the IT band or that the IT 

band moves over the condyles at a faster rate, possibly producing more irritation, or a 

combination of both.  

Despite the lower ground reaction forces experienced during cycling, overuse injury 

prevalence is still similar to that of running. The outcome measures in the current study could not 

adequately explain this phenomenon. As described in section 6.6, perhaps these outcome 

measures, in combination with the larger knee flexion angles achieved while cycling may 

contribute to overuse injury.  

Running overuse injury has previously been thought to be linked to impact forces, which 

has been supported by findings of the current study. Cycling does appear to be less detrimental 

with respect to impact-related variables (DJS, CCI). However, the injury rates in cycling have 

been found to be comparable to those of running, and findings of the current study suggest that in 

addition to the outcome variables investigated, repetitive loading in large knee flexion angles 

might also help to explain overuse injury, rather than impact force. Those suffering from 

running-related impact injuries could consider cycling as a form of cross training/rehabilitation 

but should be cautioned that a risk of injury is still present. 
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Chapter 10 : Appendices 

Appendix A: Participant Screening Questionnaire 

This questionnaire asks some questions about your health status. This information is used to 

guide us with your entry into the study. 

Contradictions to participation in this study include: 

 Any previous history of knee pain that required medical intervention or time off from 

work or training longer than three days, within the past month 

 Previous knee surgery 

 Inability to participate in continuous light exercise for 30 minutes 

 Experienced bouts of dizziness and/or fainting 

 Allergy or sensitivity to alcohol 

 

Past Relevant Health History (Check all that apply): 

 

Musculoskeletal pain/disorders 

 Hip/Thigh Injury, please specify:____________________________________ 

 Knee/Shank Injury, please specify:__________________________________ 

 Ankle/Foot Injury, please specify:___________________________________ 

 

Cardiovascular Disorders 

 Acute myocardial infraction  Cardiac arrhythmias 

 High risk unstable angina  Active endocarditis 

 Symptomatic severe aortic stenosis  Decompensated symptomatic 

heart failure 

 Acute pulmonary embolus or 

pulmonary infarction 

 Acute myocarditis or pericarditis 

 Left main coronary stenosis  Moderate stenotic valvular heart 

disease 

 Tachyarrhythmias or 

bradyarrhythmias 

 Atrial fibrillation 

 Hypertrophic cardiomyopathy  A/V Block 
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Current Relevant Health History (Check all that apply): 

 

 Irregular Heartbeat  Fatigue 

 Chest Pain  Persistent Coughing 

 Leg Pain/injury  Dizziness 

 Back pain/injury  Fainting 

 Illness requiring medication within 

the past week (e.g. flu/cold) 

 

Allergies 

 

 Rubbing Alcohol 

 Adhesives 

 

This next section, entitled “Get Active Questionnaire”, is an established self-screening 

questionnaire designed to assess your readiness to participate in physical activity and to address 

any potential risks related with exercising. 
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Appendix B: Participant Information Questionnaire 

The following questionnaire provides us with general information about yourself and 

equipment that you currently use.  You may choose to not answer any question. If you 

have any questions, please ask the research assistant. 

   

1. What is your sex?  Male 

 Female 

2. How old are you?  __________________________________  

3. Which leg do you kick a ball with?  Right 

 Left 

4. Would you consider yourself to be in 

a ‘good’ mood today? 
 Yes 

 No 

5. What brand of running shoes are you 

wearing today? (e.g. Saucony, Nike) 

 __________________________________  

6. What model of running shoe are you 

wearing today? (if known)  

 __________________________________  

7. How old are the running shoes you 

are wearing today?  

 ___________ years 

 ___________ months 

8. What brand of cycling shoes are you 

wearing today? (e.g. Shimano, Sidi) 

 __________________________________  

9. What model of cycling shoe are you 

wearing today? (if known)  

 __________________________________  

10. How old are the cycling shoes you are 

wearing today?  

 ___________ years 

 ___________ months 

11. What is your preferred pedal 

system? (i.e. which pedal system do 

you use on your primary bike?) 

_____________________________ 
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Appendix C: Participant Physical Activity Questionnaire 

This questionnaire asks some questions about your physical activity participation so that we can 

get a measure of your past training and racing experience as well as your current training 

volume, duration and intensity. 

Years of experience running ____years  

Years of experience cycling ____years  

Years of competition (if any) ____years  

On average, how long do you spend 

training per week? 

____hours ____ minutes 

Please specify your 

running/cycling 

competency level as 

(novice, 

intermediate, elite, 

professional) 

 Running per week Cycling per week 

Time ____hours             

____ minutes 

 

____hours               

____ minutes 

 

Distance ____ km ___ km 

Personal best 10k run time (if known)  

Personal best FTP (if known)  

 

The following section was adapted from the Adult Physical Activity Questionnaire (Booth, 

2000) to record information on physical activity over the past 2 weeks. 
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In the past 2 weeks, have you done any of the 

following exercises, sports, or physically active 

hobbies? 

How many times in the 

past 2 weeks did you 

go/do this activity? 

On average, how many 

minutes did you spend 

doing each activity each 

time? 

As a percent, how was the rate of perceived effort 

of these activities split? 

 Yes No Light 

(Easy) 

Moderate 

(Tempo) 

Hard 

(Threshold/Max) 

Walking for exercise        

Gardening or yard work        

Stretching exercises        

Weightlifting/Gym        

Jogging or running        

Aerobics/aerobic dance        

Riding a bicycle        

Stair climbing for exercise        

Swimming for exercise        

Tennis        

Golf        

Bowling        

Base/softball        

Hand/racquetball/squash        

Skiing 

        Downhill        

        Cross-Country        

        Water        

Basketball        

Volleyball        

Soccer        

Football        

Other: (please specify) 
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Appendix D: Secondary Participant Screening Questionnaire 

This questionnaire asks some questions about your health status since your last visit to the lab.  

 

Current Relevant Health History (Check all that apply): 

 

 Irregular Heartbeat  Fatigue 

 Chest Pain  Persistent Coughing 

 Leg Pain/injury  Dizziness 

 Back pain/injury  Fainting 

 Illness requiring medication 

within the past week (e.g. 

flu/cold) 

  

 

The following section was adapted from the Adult Physical Activity Questionnaire (Booth, 

2000) to record information on physical activity since your last visit. 
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In the past 2 weeks, have you done any of the 

following exercises, sports, or physically active 

hobbies? 

How many times in the 

past 2 weeks did you 

go/do this activity? 

On average, how many 

minutes did you spend 

doing each activity each 

time? 

As a percent, how was the rate of perceived effort 

of these activities split? 

 Yes No Light 

(Easy) 

Moderate 

(Tempo) 

Hard 

(Threshold/Max) 

Walking for exercise        

Gardening or yard work        

Stretching exercises        

Weightlifting/Gym        

Jogging or running        

Aerobics/aerobic dance        

Riding a bicycle        

Stair climbing for exercise        

Swimming for exercise        

Tennis        

Golf        

Bowling        

Base/softball        

Hand/racquetball/squash        

Skiing 

        Downhill        

        Cross-Country        

        Water        

Basketball        

Volleyball        

Soccer        

Football        

Other: (please specify) 
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Appendix E: Knee Anatomy 

 The knee joint consists of four bones – the tibia, fibula, femur and patella. The fibula is 

located lateral to the tibia and, together, make up the shank of the lower limb, positioned distal to 

the femur and articulating with the lateral and medial femoral condyles, respectively. The patella 

sits superiorly to the patellar surface on the anterior distal aspect of the femur. Articular cartilage 

is present on the articular surfaces of the tibia and femur to distribute forces and reduce friction 

during movement and is surrounded by an articular capsule filled with synovial fluid (Goldblatt 

& Richmond, 2003). 

Intrinsically, the knee is supported by two ligaments: the anterior cruciate ligament and 

the posterior cruciate ligament. The anterior cruciate ligament runs from the lateral condyle of 

the femur, anteromedially to the anterior intercondylar area of the tibia. The anterior cruciate 

ligament resists anterior tibial translation relative to the femur and internal rotation of the tibia 

under the femur (Goldblatt & Richmond, 2003). The posterior cruciate ligament runs from the 

medial condyle of the femur to the posterior intercondylar area of the tibia. The posterior cruciate 

ligament resists posterior tibial translation relative to the femur and external tibial rotation under 

the femur (Goldblatt & Richmond, 2003). Extrinsically, the knee is supported by the lateral 

collateral (fibular) ligament and the medial (tibial) collateral ligament.  Laterally, the femur and 

head of the fibula are supported by the lateral cruciate ligament, which resists varus forces. 

Medially, the femur and tibia are supported by the larger medial cruciate ligament, which resists 

valgus forces and is also attached to the medial meniscus (Goldblatt & Richmond, 2003).   
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 The basic musculature of the knee joint consists of the thigh knee flexors and extensors 

(primarily the hamstrings and quadriceps, respectively), thigh adductors (gracilis) and the shank 

knee flexors (lateral and medial gastrocnemius) (Blackburn & Craig, 1980).  

Of interest to this proposed study are the quadriceps, hamstring, and triceps surae muscle 

groups, in addition to gluteus maximus and tensor fascia latae. The quadriceps muscle group 

consists of the vastus lateralis, vastus medialis, vastus intermedius and rectus femoris (Blackburn 

& Craig, 1980). Collectively, they function to extend the knee and produce an extension moment 

(i.e. during stance phase of walking/running and during the down-stroke of cycling). The four 

quadriceps muscles taper together distally to form the quadriceps tendon (Blackburn & Craig, 

1980). The quadriceps tendon inserts onto the superior aspect of the patella, and inferiorly, the 

patellar tendon attaches the apex of the patella to the tibial tuberosity. The three hamstring 

muscles are the biceps femoris, semimembranosus and semitendinosus. Collectively, they 

perform knee flexion (i.e. during the swing phase of running and upstroke of cycling) (Blackburn 

& Craig, 1980). Due to the complex structure of the knee anatomy, the hamstring muscles also 

have indirect attachments to the patella via the fascia. The purpose of the patella complex is to 

increase the lever arm of the quadriceps muscles to aid in knee extension (Blackburn & Craig, 

1980). The triceps surae muscle group consists of gastrocnemius lateralis, gastrocnemius 

medialis, and soleus. The main function of the triceps surae are to plantarflex the ankle joint, 

however, due to the origin of the gastrocnemius proximal to the knee, it also has a small 

influence on knee flexion (Moore et al., 2009).  Gluteus maximus originates at the medial pelvis 

and inserts onto the IT band and gluteal tuberosity of the femur (Martini et al., 2018). It functions 

to extend and externally rotate the thigh, while stabilizing the knee during full extension and 

maintaining hip abduction via its attachment to the IT band (Martini et al., 2018). Lastly, tensor 
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fascia latae originates on the lateral iliac crest of the pelvis and also inserts onto the IT band. Its 

primary action provides abduction of the thigh, extension of the knee and lateral rotation of the 

shank (Martini et al., 2018).  

 The close relationship of knee structures and complexity of the knee anatomy makes it 

susceptible to injury, with many similarities and overlapping mechanisms of injury. 
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Appendix F: Protocol Order 

 Due to logistical constraints of participant instrumentation, the protocol for walking, 

running and cycling trials on day 2 were quasi-randomized. Walking and running trials were 

always performed consecutively, i.e. cycling was always performed first or last. Figure 10.3 

displays a breakdown of the protocol variations, with the number of times each variation was 

performed. Randomizations were determined using a macro in Google Sheets (Alphabet Inc., 

Mountain View, Ca). 

 

Figure 10.1: Breakdown of potential quasi-randomization protocols, with the number of instances each protocol 

occurred. 
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Appendix G: Bicycle Ergometer Set-Up  

Methods of fitting the bicycle ergometer for each participant is crucial in assuring any 

differences found can attributed to true differences between activities, and confounded by 

differences in how the ergometer was set up. Lieberman (2007) stated that a 5% change in saddle 

height drastically alters kinematics by up to 35% and moments by up to 16%. It is therefore vital 

that a repeatable and reliable method be used to fit the ergometer to the participants to reduce 

inter-individual variance as much as possible. de Vey Mestdagh (1998) provides guidelines for 

setting handlebar reach and height based on anthropometric data to obtain correct upper body 

posture that have previously been used to fit ergometers (Bini et al., 2016). Several other 

methods to determine saddle positioning have been debated including the Lemond method, 

Thomas and Hamley method, heel method and Holmes method (Fonda et al., 2014). These 

methods use ratios of leg segment lengths (which can vary in efficacy between individuals) to 

determine saddle height and are performed during a static measurement (Bini et al., 2011; Fonda 

et al., 2014).  

Static measurements of optimal saddle height have recently been called into question. 

The Holmes method (adjusting the static knee angle between 25° to 30°) and the Thomas and 

Hamley method (adjusting saddle height to 109% of inseam length) resulted in different saddle 

heights for the same person (Peveler et al., 2005; Peveler et al., 2008; Peveler et al., 2011). 

Further, these static set ups have produced knee angles out of the recommended 25° to 30° knee 

angle during dynamic cycling (Peveler et al. 2005). Thus, a dynamic bike fit has been advocated 

in order to optimally and accurately adjust saddle height (Fonda et al., 2014).  
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In a recent study by Bini et al. (2016), these concepts were confirmed and a novel bike 

fitting method was proposed. Compared to static measurement of knee angle at BDC, dynamic 

measurements were significantly smaller at BDC. However, at the 3 o’clock position, hip, knee 

and ankle angles were similar. It was concluded that to fit a bike statically, with the accuracy of a 

dynamic fit, a knee angle 60° should be set with the pedal at the 3 o’clock position during a static 

bike fit. Further, the saddle fore-aft position and position of the knee over the pedal axle can be 

adjusted concurrently. This method was thus, implemented in the current study. A 25mm saddle 

adjustment range for all measurements were allowed to accommodate the cyclist’s preference, 

since it was expected that the participants would move in their seat to get to a comfortable 

position if the saddle were not adjusted to their comfort. Results from the bike fit from the 

current study are displayed in Figure 10.4 and Table 10.1. 
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Figure 10.2: Bicycle ergometer set up – participant knee, hip and arm angles measured during static bike fitting, 

adopted from Bini et al., 2016.  

 

Table 10.1: Mean static joint angles during the bike set up. Measurements were taken while the crank arm was 

positioned at the 3 o’clock position.  

Measurement Angle (°) 

Knee Angle 62.9 (3.8) 

Hip Angle 87.5 (5.7) 

Arm-Torso Angle 49.1 (4.9) 

Note: Values are presented as mean (SD).
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Appendix H: Instrumented Pedal  

 The instrumented pedal utilized in the current study was custom designed and 

manufactured by Novatech Measurements Ltd (Figure 10.5). The instrumented pedal has a 

capacity of ±1kN in the x-direction and ±3kN in the y-direction.  In the current study, forces 

were below 150N in the x-direction and 400N in the y-direction. Calibration values are displayed 

in Table 10.2, comparing the results of the calibrations performed in the current study, to those 

previously experimentally tested for other investigations. The pedals were calibrated in the Y and 

X directions (Figure 10.6/Figure 10.9), tested for hysteresis (Figure 10.7) and drift (Figure 10.8) 

Table 10.2: Instrumented Pedal Calibration Results 

Parameter  Current Study – 

Post Collection 

Gatti (2016) 

Y-Direction  Force Cal 321.37 N/V 320.41 N/V 

Hysteresis 0.0002% 0% 

Drift -2 x 1010 N/s over 

10 minutes 

0.0002 N/s over 90 

minutes 

X-Direction Force Cal 107.0 N/V 102.40 N/V 
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Figure 10.3: Schematic diagram for the instrumented pedal, provided by the manufacturer. 
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Figure 10.4: Force calibration curve for the y-direction of the instrumented pedal. 

 

 

Figure 10.5: Hysteresis Curve for the y-direction of the instrumented pedal. 
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Figure 10.6: Drift Trial for the y-direction of the instrumented pedal.  

 

 

Figure 10.7: Force calibration curve for the x-direction of the instrumented pedal. 
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Appendix I: Co-Contraction Indices 

Table 10.3: Co-contraction indices for each muscle grouping, for each activity over stance/downstroke. 

Activity VLLG VMMG VLBF VMST 

Walking 4.0 (2.2) 3.0 (1.4) 4.5 (2.4) 4.0 (2.1) 

Running 21.4 (8.4) 19.1 (9.0) 22.9 (12.3) 17.1 (11.2) 

Cycling 4.3 (3.7) 3.7 (2.8) 4.1 (3.5) 2.7 (2.1) 

Note: Data is presented as mean (SD). 

 

Table 10.4: Co-contraction indices for each muscle grouping, for each activity over the initial phase. 

Activity VLLG VMMG VLBF VMST 

Walking 4.5 (3.9) 2.7 (1.4) 7.7 (3.2) 5.8 (3.2) 

Running 10.4 (5.1) 8.8 (5.3) 14.8 (9.2) 9.5 (5.0) 

Cycling 3.0 (3.3) 1.4 (0.9) 3.3 (3.3) 1.4 (2.2) 

Note: Data is presented as mean (SD). 

 

Table 10.5: Co-contraction indices for each muscle grouping, for each activity over the terminal phase. 

Activity VLLG VMMG VLBF VMST 

Walking 6.2 (3.4) 6.3 (3.0) 6.2 (4.1) 6.3 (4.1) 

Running 28.7 (11.1) 27.3 (14.3) 26.3 (15.5) 21.4 (15.9) 

Cycling 5.7 (5.3) 4.2 (5.9) 4.8 (3.8) 3.1 (2.1) 

Note: Data is presented as mean (SD). 
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Appendix J: Segment Coordination and Coordination Variation Plots 

Figure 10.10 and Figure 10.11 display the segment coordination plots for all three 

segment couplings analyzed. Figure 10.12 and Figure 10.13 display the coordination variability 

plots for all three segment couplings analyzed. It is important to note that the coordination 

variability plots do not represent the variability of the segment coordination plots but instead the 

intra-individual variability that is masked by averaging across all participants.  

 

 

Figure 10.8: Segment coordination coupling angles for the sagittal shank/sagittal foot segment coupling for A) 

walking, B) running and C) cycling. The dashed lines separate the signals into thirds, to represent the early, mid and 

late stages. 
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Figure 10.9: Segment coordination coupling angles for the sagittal thigh/sagittal shank segment coupling for A) 

walking, B) running and C) cycling. The dashed lines separate the signals into thirds, to represent the early, mid and 

late stages. 
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Figure 10.10: Coordination variability for the sagittal shank/sagittal foot segment coupling for A) walking, B) 

running and C) cycling. The dashed lines separate the signals into thirds, to represent the early, mid and late stages. 

 

 

Figure 10.11: Coordination variability for the sagittal thigh/sagittal shank segment coupling for A) walking, B) 

running and C) cycling. The dashed lines separate the signals into thirds, to represent the early, mid and late stages. 
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Appendix K: Full ANOVA Results 

K.1 Overall ANOVA Results 

Table 10.6: ANOVA Results for Kinematic and Kinetic Analysis 

Signal DoF Sum Square Mean Square F Value Sig G-G 

Correction 

Partial 

Eta2 

Peak GRF 2 16682555.17 834277.584 317.713 0.0001 No 0.964 

Peak KFM 2 42.300 21.150 235.763 0.0001 No 0.952 

ROM 2 18214.985 10157.501 106.614 0.0001 No 0.899 

Max Knee 

Angle 

2 30185.296 15092.648 218.638 0.0001 No 0.948 

Min Knee 

Angle 

1.219 4900.639 4021.136 104.655 0.0001 Yes 0.897 

Note: Significance was determined with an alpha level of 0.05 and are identified by an underlined p=value. 

 

K.2 Dynamic Joint Stiffness ANOVA Results 

Table 10.7: ANOVA Results for Dynamic Joint Stiffness 

Signal DoF Sum 

Square 

Mean 

Square 

F Value Sig G-G 

Correction 

Partial 

Eta2 

Stance/Downstroke 1.182 0.074 0.062 107.944 0.0001 Yes 0.900 

Initial 1.182 0.084 0.071 64.192 0.0001 Yes 0.843 

Terminal 2 0.054 0.027 37.021 0.0001 No 0.755 

Note: Significance was determined with an alpha level of 0.05 and are identified by an underlined p=value. 
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K.3 Co-Contraction Index ANOVA Results 

Table 10.8: ANOVA Results for Vastus Lateralis – Gastrocnemius Lateralis Co-Contraction 

Signal DoF Sum 

Square 

Mean 

Square 

F 

Value 

Sig G-G 

Correction 

Partial 

Eta2 

Stance/Downstroke 1.327 0.257 0.194 61.194 0.0001 Yes 0.836 

Initial 2 0.040 0.020 16.053 0.0001 No 0.572 

Terminal 2 0.447 0.223 59.908 0.0001 No 0.833 

Note: Significance was determined with a Bonferroni correction (p = α/4) and are identified by an underlined 

p=value. 

 

Table 10.9: ANOVA Results for Vastus Medialis – Gastrocnemius Medialis Co-Contraction 

Signal DoF Sum 

Square 

Mean 

Square 

F 

Value 

Sig G-G 

Correction 

Partial 

Eta2 

Stance/Downstroke 1.176 0.181 0.091 37.952 0.0001 Yes 0.791 

Initial 1.185 0.035 0.029 21.207 0.0001 Yes 0.680 

Terminal 1.334 0.392 0.294 29.849 0.0001 Yes 0.731 

Note: Significance was determined with a Bonferroni correction (p = α/4) and are identified by an underlined 

p=value. 

 

Table 10.10: ANOVA Results for Vastus Lateralis – Biceps Femoris Co-Contraction 

Signal DoF Sum 

Square 

Mean 

Square 

F 

Value 

Sig G-G 

Correction 

Partial 

Eta2 

Stance/Downstroke 1.192 0.276 0.231 24.941 0.0001 Yes  0.694 

Initial 1.322 0.080 0.060 12.720 0.002 Yes 0.536 

Terminal 1.225 0.347 0.284 19.588 0.0001 Yes 0.640 

Note: Significance was determined with a Bonferroni correction (p = α/4) and are identified by an underlined 

p=value. 
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Table 10.11: ANOVA Results for Vastus Medialis – Semitendinosus Co-Contraction 

Signal DoF Sum 

Square 

Mean 

Square 

F 

Value 

Sig G-G 

Correction 

Partial 

Eta2 

Stance/Downstroke 1.032 0.163 0.158 20.230 0.001 Yes 0.628 

Initial 1.262 0.033 0.026 12.890 0.002 Yes 0.518 

Terminal 1.050 0.247 0.236 16.903 0.001 Yes 0.585 

Note: Significance was determined with a Bonferroni correction (p = α/4) and are identified by an underlined 

p=value. 

 

K.4 Coordination Variability ANOVA Results 

Table 10.12: ANOVA Results for Sagittal Foot – Sagittal Shank Coordination Variability 

Signal DoF Sum Square Mean Square F Value Sig G-G 

Correction 

Partial 

Eta2 

Early 2 74.600 37.300 0.534 0.593 No 0.076 

Mid 2 119.934 59.967 0.598 0.558 No 0.069 

Late 2 215.939 107.969 1.385 0.270 No 0.366 

Note: Significance was determined with a Bonferroni correction (p = α/2) and are identified by an underlined 

p=value. 

 

 

Table 10.13: ANOVA Results for Sagittal Thigh – Sagittal Shank Coordination Variability 

Signal DoF Sum Square Mean Square F 

Value 

Sig G-G 

Correction 

Partial 

Eta2 

Early 2 42.432 21.216 0.369 0.695 No 0.070 

Mid 1.346 113.824 84.544 0.814 0.415 Yes 0.0267 

Late 1.190 13.726 11.538 0.190 0.712 Yes 0.026 

Note: Significance was determined with a Bonferroni correction (p = α/2) and are identified by an underlined 

p=value. 
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K.5 IT Band Impingement Measures ANOVA Results 

Table 10.14: ANOVA Results for IT Band Impingement Measures 

Signal DoF Sum 

Square 

Mean 

Square 

F 

Value 

Sig G-G 

Correction 

Partial 

Eta2 

ITBIZ(t)per_rep 1.077 0.025 0.024 7.293 0.027 Yes 0.648 

ITBIZ(t)60 1.164 175661.5 150876.4 3.917 0.079 Yes 0.650 

ITBIZ(t)cumul_load 2 8103.1 4051.6 2.062 0.164 No 0.228 

ITBEX 2 86760.3 43380.1 20.950 0.0001 No 0.807 

Note: Significance was determined with a Bonferroni correction (p = α/6) and are identified by an underlined 

p=value. 

 

  


