
Quantum Algorithmic Techniques
for Fault-Tolerant Quantum

Computers

by

Mária Kieferová

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics (Quantum Information)

Waterloo, Ontario, Canada, 2019

c©Mária Kieferová 2019

Supervisor: Michele Mosca, Professor,
Dept. of Combinatorics & Optimization,
University of Waterloo

Supervisor (cotutelle): Dominic Berry, Assoc. Professor,
Dept. of Physics & Astronomy,
Macquarie University

Committee Member: Christine Muschik, Assist. Professor,
Dept. of Physics & Astronomy,
University of Waterloo

Committee Member: Daniel Gottesman, Professor,
Dept. of Physics & Astronomy,
(Perimeter Institute) University of Waterloo

Internal-External Examiner: Ashwin Nayak, Professor,
Dept. of Combinatorics & Optimization,
University of Waterloo

External Examiner: Ashley Montanaro, Reader,
School of Mathematics,
University of Bristol

ii

Author’s Declaration

This thesis is being submitted to Macquarie University and the University
of Waterloo in accordance with the Cotutelle agreement dated February 10,
2017.

This thesis consists of material all of which I authored or co-authored: see
Statement of Contributions included in the thesis.

I understand that my thesis may be made electronically available to the
public.

Mária Kieferová

iii

Statement of Contributions

Chapter 1
MK wrote this chapter as an introduction to the thesis.

Chapter 2
Section 2.3 is based on part 4.1 of my publication [1] but has been extended
to cover Hamiltonian simulation techniques in more detail. The rest of the
chapter was written by MK solely for this thesis.

• MK wrote the majority of Chapter 4 of [1] with inputs and revisions
from other authors, in particular Peter Johnson, Yudong Cao and Ian
Kivlichan.

Chapter 3
Chapter 3 is based on [2]. This chapter was edited and Sections 3.1 and 3.5
added for completeness.

The project was proposed by Dominic Berry and Ryan Babbush.

• MK contributed to the antisymmetrization procedure in [2] with ideas
and writing.
• MK designed the parallelized quantum comparator with inputs from

Artur Scherer, Dominic Berry and Craig Gidney.

Chapter 4
Chapter 4 is based on the publication [3]. This chapter was edited, and
Fig. 4.1 added for clarity.

The project was proposed by Dominic Berry.

• MK contributed to all parts of the project.
• MK wrote the majority of the paper together with Artur Scherer and

Dominic Berry.

iv

Chapter 5
Chapter 5 is based on [4]. This chapter was extensively edited, updated
for new developments, and an introduction to Boltzmann machines was
added. We also added multiple figures for clarity.

The project was proposed by Nathan Wiebe.

• MK contributed with ideas for defining a quantum training set.
• MK contributed to the development of POVM and relative entropy

training.
• MK performed the simulations in Sections 5.6.3 and 5.6.4 and the

comparison between Golden-Thompson and relative entropy training
in 5.6.5.
• MK proved Theorem 8.
• MK contributed to the writing of the paper.

Chapter 7
MK wrote this chapter as a conclusion for this thesis.

Appendix A
MK wrote this appendix to provide additional background information for
Chapter 5.

v

Abstract

Quantum computers have the potential to push the limits of computation
in areas such as quantum chemistry, cryptography, optimization, and ma-
chine learning. Even though many quantum algorithms show asymptotic
improvement compared to classical ones, the overhead of running quan-
tum computers limits when quantum computing becomes useful. Thus, by
optimizing components of quantum algorithms, we can bring the regime
of quantum advantage closer. My work focuses on developing efficient
subroutines for quantum computation. I focus specifically on algorithms
for scalable, fault-tolerant quantum computers. While it is possible that
even noisy quantum computers can outperform classical ones for specific
tasks, high-depth and therefore fault-tolerance is likely required for most
applications. In this thesis, I introduce three sets of techniques that can be
used by themselves or as subroutines in other algorithms.

The first components are coherent versions of classical sort and shuffle.
We require that a quantum shuffle prepares a uniform superposition over
all permutations of a sequence. The quantum sort is used within the shuffle
and as well as in the next algorithm in this thesis. The quantum shuffle is
an essential part of state preparation for quantum chemistry computation
in first quantization.

Second, I review the progress of Hamiltonian simulations and give a
new algorithm for simulating time-dependent Hamiltonians. This algo-
rithm scales polylogarithmic in the inverse error, and the query complexity
does not depend on the derivatives of the Hamiltonian. A time-dependent
Hamiltonian simulation was recently used for interaction picture simula-
tion with applications to quantum chemistry.

Next, I present a fully quantum Boltzmann machine. I show that our
algorithm can train on quantum data and learn a classical description of

vi

quantum states. This type of machine learning can be used for tomography,
Hamiltonian learning, and approximate quantum cloning.

vii

Acknowledgement

This thesis would not be possible without a number of people supporting
me throughout my PhD studies. I would first like to thank my supervisors
Michele Mosca, Dominic Berry and Gavin Brennen for all their time, advice
and encouragement. I cannot thank Michele enough for his guidance since
my first internship at IQC in 2012. I would also like to thank Dominic for
everything I learned from him and his many comments on earlier drafts of
this thesis.

I am very grateful to my advisory committee consisting of Daniel Gottes-
man, Ashwin Nayak, and Roger Melko as well as additional examiners
Christine Muschik, Ashley Montanaro, David Poulin and Jingbo Wang for
taking the time to read my thesis and for their helpful suggestions.

I want to thank Microsoft Research and Zapata Computing for giving
me the opportunities to join them as an intern during my studies. Spending
time in a corporate environment enriched my academic experience, and I
thoroughly enjoyed both of my internships.

I would also like to thank everyone involved in the FKS competition
for opening the doors of physics for me, my former supervisor Daniel
Nagaj for introducing me to quantum computing and Nathan Wiebe for
his ongoing mentorship. I am also thankful to my friends and colleagues
for all the conversations that enriched me academically.

I would not be able to carry out the research in this thesis without
my collaborators Ryan Babbush, Yudong Cao, Matthias Degroote, Craig
Gidney, Peter D Johnson, Alán Aspuru-Guzik, Ian D Kivlichan, Guang Hao
Low, Tim Menke, Jonathan Olson, Borja Peropadre, Sadegh Raeisi, Jonathan
Romero, Nicolas PD Sawaya, Sukin Sim, Yuval Sanders, Artur Scherer and
Libor Veis. I thank Mike and Ophelia Lazaridis Fellowship, University of
Waterloo, Michele Mosca and Macquarie University for financial support.

viii

Lastly, I want to thank my parents for raising me, to Danielka for her
friendship since the day she was born and to Yuval for his love and caffeine
supply.

ix

Table of Contents

List of Figures xiv

List of Abbreviations xv

1 Introduction 1

1.1 Quantum Computing Hardware in 2019 2

1.2 Quantum Computing Software in 2019 4

1.3 Overview . 5

1.4 Notation . 6

2 Background 8

2.1 Preliminaries . 9

2.1.1 Quantum Gates and the Circuit Model 9

2.1.2 Complexity . 11

2.1.3 Error Correction and the Threshold Theorem 12

2.2 A Brief Overview of Quantum Algorithms 14

2.2.1 Coherent Classical Computation 15

2.2.2 Phase Estimation and Eigenstate Preparation 16

2.2.3 Grover Search and Amplitude Amplification 19

2.2.4 Oblivious Amplitude Amplification 22

2.3 Hamiltonian Evolution Simulation 22

x

2.3.1 The Hamiltonian Oracles 24

2.3.2 Lower Bounds on Hamiltonian Simulation 26

2.3.3 Simulation Based on Trotterization 28

2.3.4 Sparse Matrix Decomposition 29

2.3.5 The Quantum Walk Approach 31

2.3.6 Hamiltonian Simulation with Linear Combination of
Unitaries . 34

2.3.7 Quantum Signal Processing and Qubitization 36

2.3.8 Generalization of the Hamiltonian Simulation Problem 38

3 Quantum Sort and Shuffle 40

3.1 How to Shuffle a Deck of Cards 41

3.2 Quantum Approach to a Shuffle 43

3.3 Preparing a Uniform Superposition With the Quantum FY
Shuffle . 44

3.3.1 Initialization . 47

3.3.2 FY Blocks . 48

3.3.3 Disentangling index from input 51

3.3.4 Complexity Analysis of the FY shuffle 52

3.4 Symmetrization Through Quantum Sorting 53

3.4.1 Quantum Sorting Network 55

3.4.2 Quantum Comparator 59

3.4.3 Analysis of ‘Delete Collisions’ Step 65

3.4.4 Complexity Analysis of the Shuffle via Sorting 67

3.5 Applications . 68

3.6 Conclusion . 70

xi

4 Simulation of Time-Dependent Hamiltonians 71

4.1 Unitary Evolution Under a Time-dependent
Hamiltonian . 72

4.2 Framework . 73

4.2.1 Oracles . 73

4.2.2 Enabling Oblivious Amplitude Amplification 75

4.3 Algorithm Overview . 77

4.3.1 Evolution Discretization 77

4.3.2 Linear Combination of Unitaries 81

4.4 Preparation of Auxiliary Registers 84

4.4.1 Clock Preparation Using Compressed Rotation En-
coding . 86

4.4.2 Clock Preparation Using a Quantum Sort 88

4.4.3 Completing the State Preparation 90

4.5 Complexity Requirements . 95

4.5.1 Complexity for Scenario 1 96

4.5.2 Complexity for Scenario 2 98

4.6 Results . 99

4.7 Applications . 100

4.8 Conclusion . 102

5 Training and Tomography with Quantum Boltzmann Machines 103

5.1 Quantum Machine Learning 104

5.2 Boltzmann Machines . 105

5.3 Training Quantum Boltzmann Machines 110

5.3.1 Quantum Training Set 112

5.3.2 Golden-Thompson Training 114

5.3.3 Commutator Training 116

xii

5.3.4 Relative Entropy Training 116

5.4 Complexity Analysis . 119

5.5 Preparing Thermal States . 122

5.6 Numerical Results . 124

5.6.1 The Data Set and the Hamiltonian 124

5.6.2 Parameters of QBM Training 125

5.6.3 Golden-Thompson Training Analysis 126

5.6.4 Commutator Training Analysis 127

5.6.5 Relative Entropy Analysis 130

5.7 Conclusion . 130

6 Conclusion and Future Work 134

References 136

APPENDICES 158

A A Brief Introduction To Machine Learning 159

A1 Generative Modelling . 160

A2 Artificial Neural Networks . 161

xiii

List of Figures

1.1 Commercial NISQ chips . 3

2.1 A diagram of a quantum circuit 10

2.2 A universal set of gates . 11

2.3 A T-factory . 13

2.4 The Toffoli gate . 15

2.5 Simulation of NAND . 16

2.6 Eigenvalue estimation circuit 17

2.7 Inverse Quantum Fourier Transform on 4 qubits. 18

2.8 Hamiltonian decomposition based on edge coloring 30

2.9 Phase kickback . 37

2.10 Trotterization . 39

3.1 A naive shuffle . 42

3.2 A tree diagram for the Fisher-Yates shuffle 43

3.3 High-level overview of the quantum FY shuffle. 46

3.4 Detail for the FY block . 47

3.5 Circuit for preparing the choice register 49

3.6 Implementation of the two selected swaps 50

3.7 Circuit for resetting choice 51

3.8 Circuit implementing ‘decrement by 1’ 53

xiv

3.9 Example of symmetrization through sorting 56

3.10 A sorting network on 4 inputs 57

3.11 Quantum comparator . 57

3.12 Bitonic sort . 58

3.13 Implementation of COMPARE2 61

3.14 Parallelized bitwise comparison 63

3.15 A circuit that determines if two bits are equal, ascending, or
descending . 64

3.16 Overview of energy estimation in the first quantization . . . 69

4.1 High-level overview of the truncated Dyson series algorithm 78

4.2 Linear combination of unitaries for the Dyson series 85

5.1 Areas of QML . 105

5.2 Assigning an energy to a configuration 106

5.3 Fully connected vs. restricted Boltzmann machine. 107

5.4 Overview of QBM training . 118

5.5 Classical vs. quantum BM . 127

5.6 Performance of QBMs with a range of numbers of visible units128

5.7 Commutator training . 129

5.8 Golden-Thompson training vs. relative entropy training . . 131

5.9 Tomography with a QBM . 132

A.1 Generative model example . 160

A.2 Examples of underfitting, good fit and overfitting. 162

A.3 Examples of ANN architectures. 163

xv

xvi

List of Abbreviations

ANN Artificial Neural Network

BM Boltzmann Machine

CG Conjugate Gradient

FY Fisher-Yates (shuffle)

GT Golden-Thompson

h.c. Hermitian conjugate

HHL Harrow, Hassidim, Lloyd (algorithm [5])

KL Kullback-Leibler (divergence)

LCU Linear Combination of Unitaries

NISQ Noisy Intermediate-Size Quantum

OAA Oblivious Amplitude Amplification

QAOA Quantum Approximate Optimization Algorithm

QBM Quantum Boltzmann Machine

xvii

QFT Quantum Fourier Transform

QSP Quantum Signal Processing

QSVT Quantum Singular Value Transformation

SVM Support Vector Machine

VQE Variational Quantum Eigensolver

xviii

“At the end of a miserable day, instead of grieving my virtual nothing, I can
always look at my loaded wastepaper basket and tell myself that if I failed, at least I
took a few trees down with me.”

David Sedaris (Me Talk Pretty One Day)

xix

1
Introduction

“I don’t know what I think until I write it down.”

Joan Didion

The promise of quantum algorithms is a major force driving the devel-
opment of quantum technologies. The beginning of quantum algorithms
can be traced back to Feynman [6], who suggested that quantum systems
could be used for solving difficult problems. The model of computing using
quantum systems was first formulated by David Deutsch and is known as
the quantum Turing machine [7]. Soon after, Deutsch and Jozsa [8] formu-
lated a problem that can be provably solved faster on a quantum computer
than a classical one, Černy showed that quantum systems can be used for
solving NP-complete problems [9] (albeit using an exponential amount of
energy) and Bernstein and Vazirani [10], and Simon [11] developed their
algorithms for oracular problems.

Three of the major results in the early years of quantum algorithms
were Shor’s algorithm [12] for factoring, Lloyd’s algorithm for simulating
quantum systems [13] and Grover’s search algorithm [14]. Over the years,

1

quantum algorithms research expanded and developed subfields such
as quantum walks [15–27], Hamiltonian simulation [28, 29, 29–37], and
adiabatic quantum computation [28, 38–44]. The applications of quantum
computing grew as well. Today, there are quantum algorithms for problems
ranging from number theory [12, 45, 46] through simulation of quantum
field theories [47–49] to neural networks [50–53].

In the subsequent years, quantum algorithms became increasingly more
sophisticated. Nowadays, quantum algorithms often employ multiple sub-
routines such as Hamiltonian simulation, coherent simulation of classical
computation or state preparation.

In this thesis, we propose algorithmic techniques that can be used
by themselves or as procedures in more complex algorithms. We focus
our effort on algorithms for gate-based quantum computers. All of the
techniques are also approximate, meaning that they are guaranteed to
produce an output within an error ε from the actual solution. Whenever
possible, we quantify their resource requirements in terms of the size of the
input and this error.

At the time of the writing of this thesis, there were no known devices
capable of implementing the proposed algorithms. The current devices
are quite limited in the size of computation, but the number of available
qubits keeps increasing while the noise levels become lower and lower. The
holy grail of hardware development is decreasing the noise on a sufficient
number of qubits below the threshold where the errors can be efficiently
corrected. We call these devices fault-tolerant, and we devised algorithms
for them.

1.1 Quantum Computing Hardware in 2019

Today, we are arguably seeing the dawn of quantum computers. According
to John Preskill’s speech from December 2017, we are just entering the
era of Noisy Intermediate-Scale Quantum (NISQ) devices [54]. This era is
characterized by access to chips with 50-100 noisy qubits that run hybrid
algorithms such as the variational quantum eigensolver (VQE) [55] or
quantum approximate optimization algorithm (QAOA) [56]. The devices
in this era are not fault-tolerant and every component of computation

2

(a) Google [58] (b) Rigetti [59] (c) Sandia [60]

(d) IBM [61] (e) Intel [62] (f) Bristol/Guangzhou [63]

Figure 1.1: Several NISQ chips in 2019. Many other devices are being
developed by academic groups around the world.

introduces errors. These errors come from state initialization, single and
multiple qubit gates, measurement as well as the decoherence in the entire
system. At the time of the writing, the number of two-qubit gates that can
be implemented without a significant loss in accuracy appears to be the
main bottleneck for implementation of algorithms.

Currently, there are several proposals for the physical architecture of a
quantum computer, each with their respective advantages and drawbacks.
For example, the highest number of qubits connected by gates tends to be
achieved for superconducting qubits, but ion-trap based computers consis-
tently show higher gate precision. Other measures include the connectivity
(when a gate can be applied on a pair of qubits), the ability to initialize
qubits and keep them stable, the measurement precision and scalability.
All the theoretical requirements for building a scalable universal quantum
computer are summarized by DiVincenzo’s criteria [57].

3

On the superconducting front, companies such as Google [58], IBM [64],
Intel [62] and Rigetti [65] are developing (or already developed) NISQ chips.
We also see the renaissance of ion trap based computers with commercial
efforts of ION-Q [66] and Honeywell [67]. Other architectures include pho-
tonics, nuclear spins and NMR, analog quantum simulators and annealers
such as the D-Wave machines.

It is not clear which hardware architecture is the most suitable for build-
ing a quantum computer. It is also possible that future quantum computers
will consist of multiple types of quantum systems linked together. At this
point, a quantum algorithm theorist such as myself can only speculate. For
this reason, we focus on the development of hardware agnostic algorithms.

1.2 Quantum Computing Software in 2019

The capability of NISQ devices is in stark contrast with the requirements of
most quantum algorithms. The quantum computing community works on
closing this gap from both sides – increasing the power of quantum devices
and decreasing the requirements of quantum algorithms.

The decline in the resource requirements of quantum algorithms has
been due to the developments in error correction, circuit synthesis, and
quantum algorithms. As a consequence, the expected number of (physical)
qubits required to break 2048-bit RSA was reduced from 1000 million in
2012 [68] to 20 million while decreasing the overall computational time to
under 8 hours [69].

In this thesis, we focus on algorithmic improvements. One of the practi-
cal applications we consider is the electronic structure problem in quantum
chemistry. The goal is to efficiently estimate the ground state energy of a
given fermionic Hamiltonian given a description of the Hamiltonian and a
good initial guess of the ground state (from an experiment or a mean-field
computation). The problem stated this way has long been known to be
polynomially solvable on a quantum computer but it took over a decade of
research to decrease the powers of the polynomial [37, 70–74].

Code breaking (for example, factorization for breaking the RSA cryp-
tosystem [75]) and quantum chemistry are two of the areas that can be
revolutionized by quantum computing. We also expect improvements in

4

machine learning and optimization. All of the techniques in this thesis
can be used in one or more of these areas. We now proceed to give their
overview.

1.3 Overview

During my PhD I co-authored the following publications.

• Sadegh Raeisi, Mária Kieferová, and Michele Mosca. Novel Tech-
nique for Robust Optimal Algorithmic Cooling. Physical Review Letters,
2019 [76].

• Mária Kieferová, Artur Scherer, and Dominic W Berry. Simulating the
dynamics of time-dependent Hamiltonians with a truncated Dyson series.
Physical Review A, 2019 [3]

• Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote,
Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja
Peropadre, Nicolas PD Sawaya, Sukin Sim, Libor Veis, and Alán
Aspuru-Guzik. Quantum chemistry in the age of quantum computing.
Chemical Reviews, 2018. [1].

• Dominic W Berry, Mária Kieferová, Artur Scherer, Yuval R Sanders,
Guang Hao Low, Nathan Wiebe, Craig Gidney, and Ryan Babbush.
Improved techniques for preparing eigenstates of fermionic Hamiltonian.
npj Quantum Information, 2018 [2].

• Mária Kieferová and Nathan Wiebe. Tomography and generative training
with quantum Boltzmann machines. Physical Review A, 2017 [4].

• Mária Kieferová and Nathan Wiebe. On the power of coherently con-
trolled quantum adiabatic evolutions. New Journal of Physics, 2014 [77]

Publications [2–4] constitute the research results presented this thesis.
Publication [1] is a review of contemporary quantum computing techniques
for quantum chemistry. Publication [77] came from my Master’s thesis and
I finished it during the first months of my PhD. Publication [76] was an early

5

project unrelated to my other research and has been recently published in
Physical Review Letters.

This thesis is organized as follows. First, we review the existing algo-
rithmic techniques in Chapter 2. Specifically, we review preliminaries in
Section 2.1, give a brief overview of commonly used components of quan-
tum algorithms in Section 2.2 and summarize the progress in Hamiltonian
simulation in Section 2.3.

The original research from my PhD is the content of Chapters 3 – 5.

Chapter 3 gives coherent versions of sorting and shuffling algorithms,
including detailed circuits for their implementation. We also show that an
inverse sort can be used as a shuffle. We then use the coherent shuffle for
preparation of a completely antisymmetric state in quantum chemistry.

Chapter 4 focuses on the simulation of time-dependent Hamiltonians.
Such Hamiltonians arise whenever time-dependent fields or moving nuclei
are involved, in simulations in the interaction picture and for digitally
simulating adiabatic evolution.

In Chapter 5 we introduce a quantum algorithm that can learn directly
from quantum data. We generalize the concept of a training set into a quan-
tum context and show how to represent classical data in this framework.
At the same time, our machine learning algorithm gives a new approach to
tomography. For readers unfamiliar with machine learning techniques we
included a brief introduction in Appendix A.

I conclude this thesis by reviewing the results and presenting a list of
open questions.

1.4 Notation

We now briefly review the notation used in this thesis:

• All logarithms are base 2 unless specified otherwise.

• We use the big-O notation to specify asymptotic upper bounds andΩ
stands for asymptotic lower bounds.

6

• As is customary in quantum computing, the symbol H can stand both
for the Hadamard gate, in the context of quantum circuits, and a
Hamiltonian, if talking about the evolution of quantum systems. The
correct meaning of H should be clear from the context.

• We occasionally refer to complexity classes such asNP or BQP. The
definition of these classes can be found in standard textbooks or the
Complexity Zoo [78].

7

2
Background

“I love my computer and its software;
I hug it often though it won’t care.
I love each program and every file,
I’d love them more if they worked a while.”

Dr. Seuss, The Lost Dr. Seuss Poem

In this chapter, I review the preliminaries and landmark results used in
the rest of the thesis. I start by introducing the circuit model, the notion of
complexity and fault-tolerance. Next, I review techniques used in my work
including quantum simulation of classical computation, phase estimation,
and amplitude amplification. The last section focuses on the development
of Hamiltonian simulation that is heavily featured in my work. This re-
view serves as a background for algorithms in Chapters 3-5 and is not
intended for a quantum computing novice. For a pedagogical introduction
to quantum computing and quantum algorithm please see [79–81] or refer
to quantum algorithm reviews [82–85].

8

2.1 Preliminaries

2.1.1 Quantum Gates and the Circuit Model

The first concept we need to introduce is a quantum bit, qubit. A classical
bit can be either in state 0 or 1. A qubit can be in any superposition of these
states.

Qubit states are typically expressed either as vectors or in Dirac notation.

The “classical” states are assigned notation |0〉 :=

(
1
0

)
for state 0 and

|1〉 :=
(

0
1

)
for state 1 in Dirac and vector notation respectively. These states

form the computational basis on a 2-dimensional Hilbert space.

A general qubit state can be expressed as a linear combination α |0〉+
β |1〉 where α,β are complex numbers and |α|2 + |β|2 = 1. In the vector
form, a qubit can be expressed as a normalized C2 vector

|ψ〉 =
(
α

β

)
. (2.1)

With two bits, the potential computational states are 00, 01, 10 and 11.
The state on two qubits can be expressed as α |00〉+β |01〉+ γ |10〉+ δ |11〉
for arbitrary α,β,γ and δ that satisfy the normalization condition |α|2 +

|β|2 + |γ|2 + |δ|2 = 1. A state on n qubits is a superposition over 2n basis
states.

Operations on qubits can be expressed using quantum circuits, de-
scribed through diagrams as in Fig. 2.1. Quantum circuits show how a
potentially complicated operation can be broken down into elementary
components, analogously to logic circuits. The components of quantum
circuits are simple unitary operations called gates and measurements.

One has a lot of freedom to pick a set of gates used in an algorithm.
The choice of gates is often informed by the physical architecture (i.e.,
superconducting qubits vs. trapped ions) and error-correcting code. A
requirement is that the chosen set of gates is universal.

9

•

•
•

Figure 2.1: A quantum circuit consists of wires (qubits, represented as
horizontal lines) and gates (unitary operations, represented as boxes). The
circuit represents a sequence of operations with time going from left to right.
Some of the gates can be controlled which means that they are executed
only if the control bit is in a given state. We use a black full circle to indicate
that an operation is applied only if the control qubit is |1〉 and we use an
empty circle for |0〉. The operation can act in superposition, i.e. if the control
qubit is in state α |0〉+β |1〉, the (full circle) controlled unitary U will act on
the target state |ψ〉 as (α |0〉+β |1〉) |ψ〉 → α |0〉 |ψ〉+β |1〉U |ψ〉. The space
cost of this circuit is 8, the time cost is 17, and the depth is 7, see definitions
below.

A universal set of gates [86, 87] is a finite set of gates such that any
finite-dimensional unitary operation can be implemented as a circuit con-
sisting only of gates from this set. One such set is depicted in Fig. 2.2.
According to the Solovay-Kitaev theorem [88], any two universal sets of
gates can simulate each other with at most polylogarithmic overhead. For
convenience, we often add Pauli matrices, phase gate (denoted S and equal
to T2, see Fig. 2.2) and multiply-controlled-NOTs into our available gate
set. Synthesizing quantum operations into elementary gates is an active
area of research [86, 89] with immense implications for near-term quantum
devices.

Quantum computation often requires the use of additional qubits known
as ancillae. They play the same role as a working memory in classical com-
puting; many calculations can be more efficient if there is more space
available. At the same time, a large number of ancillae is prohibitive for
practical purposes.

10

H =
1√
2

(
1 1
1 −1

)

(a) Hadamard gate

T =

(
1 0
0 eiπ/4

)

(b) T-gate.

• =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




(c) Controlled Pauli X,
also known as controlled
not or CNOT

Figure 2.2: A universal set of gates consisting of Hadamard, T gate and
a C-NOT. This set of gates is arguably the most common in theoretical
quantum computing.

Quantum states are converted into classical information through a mea-
surement. In principle, it is always possible to delegate measurements to
the end of the circuit. However, it is often advantageous in practice to
measure as soon as possible [90, 91].

2.1.2 Complexity

We calculate the cost of computation in terms of the required resources as
a function of the length of the input and other relevant parameters (for
example, the required precision of computation ε). As such, complexity
shows how the “difficulty” of the computation scales when the input
grows. The space complexity refers to the number of qubits, while the time
complexity (often referred to only as the complexity) gives the number
of gates. Often, multiple gates can be executed in parallel. The depth of
the circuit then refers to the number of rounds or layers when gates were
applied (see Fig. 2.1).

The number of required gates can differ based on the gate set one works
with. However, a consequence of the Solovay-Kitaev theorem is that this
difference is at most O (logc (1/ε)) for c > 1. In practice, not all gates are
created equal. On near-term noisy devices (with no error correction) [54],
two-qubit gates are the most common bottleneck. One may thus wish to
minimize the number of two-qubit gates instead of gates in general. For
fault-tolerant computation based on the surface code [92], gates such as

11

T or Toffoli are several hundred times more expensive than Hadamard,
Paulis, CNOT and other gates from Clifford group [93, 94].

Apart from gates, it is possible to include oracles (sometimes also called
black boxes) in computation. An oracle is an abstract operation that can
perform a given computation in a unit of time. We refer to the number of
queries to the oracle as the query complexity. There are several reasons
why one wants to include oracles in an algorithm. An oracle can repre-
sent a separate computational primitive whose implementation can vary.
For example of such oracles are common in Hamiltonian simulation; see
Subsection 2.3.1. An oracle can be given as a part of the definition of the
problem. In this case, one can have oracular access to a function, and our
goal is to determine some properties of this function as in Deutsch-Joza [8]
or Simon’s [11] algorithms. Finally, oracles are often used in the theory
of computational complexity to quantify the difficulty of tasks. One can
construct a hierarchy of computational difficulty with respect to more and
more powerful oracles [95].

2.1.3 Error Correction and the Threshold Theorem

In the real world, neither the qubits nor the operations on them will be
implemented perfectly. There are a plethora of complications that come
into engineering quantum devices, starting from the difficulty of fabrication
through creating a well-isolated environment to the limited life of the qubits.
Besides, all operations are imprecise, and the qubit-qubit interactions are
the obvious bottleneck for most implementations. These errors accumulate
throughout a computation, making a straightforward implementation of
an algorithm fail even for modestly sized circuits.

Fortunately for us, if the errors are below a given threshold, it is possible
to correct for them faster than they occur. The above statement is made
rigorous in the quantum threshold theorem [96].

Theorem 1 (Quantum threshold theorem [96] , Theorem 10 in [97])
There is a threshold error rate pT . Suppose we have a local stochastic error model
with pi 6 p < pT

1. Then for any ideal circuit C, and any ε > 0, there exists

1Here pi is the probability of an uncorrelated error at a location Ci, see Definition 11
in [97].

12

a fault-tolerant circuit C ′, which, when it undergoes the error model, produces
an output which has statistical distance at most ε from the output of C. C ′ has
a number of qubits and a number of timesteps which are at most polylog(|C| /ε)
times bigger than the number of qubits and timesteps in C, where |C| is the number
of locations in C.

Figure 2.3: Illustration of the difficulty of applying fault-tolerant T gates
from [73, Fig. 24]. The figure depicts a “T-factory” in surface code prepar-
ing |T〉 states where |T〉 = cosβ |0〉+ eiπ/4 sinβ |1〉 and cos (2β) = 1√

3
. One

|T〉 can be used for fault-tolerant implementation of one T gate [93]. Im-
plementation of T (or different non-Clifford) gates are the bottleneck for
fault-tolerant algorithms.

Several things need to be pointed out in the threshold theorem. The
first thing is the exact meaning of error rate and how would one estimate it;
see [96, 98] for more detail. The second thing is the noise model. Making
assumptions about the noise, particularly its locality, is necessary. There
is some evidence that error correction for a specific type of non-localized
noise might not be possible [99, 100]. In contrast, one can correct errors
more effectively given additional promises about the error model. The last
and most commonly examined one is how would one go about devising
the circuit C ′. Quantum error correction and fault-tolerant gadgets address
this point.

The main idea is to use redundancy to encode a logical qubit into a

13

collection of physical qubits. The logical qubit is then encoded into non-
local properties of the collection of physical qubits, making it resilient to
localized errors. The first example of an error correcting code was Shor’s
9-qubit code [101].

Currently, most of practical error correction uses topological codes [102,
103], most prominently surface codes [68, 104, 105] with the stabilizer for-
malism [94]. Broadly speaking, stabilizers allow us to detect errors without
disrupting the computation. Importantly, detecting and correcting errors
can be done efficiently.

Surface codes allow us to fault-tolerantly implement logical qubits into
physical qubits on a 2-D lattice, which makes them a prime candidate for
error correction in superconducting qubits. Even then, the typical ratio
between physical and logical qubits can be of the order of thousands2.

Clifford gates (i.e., Paulis, H, S and CNOT) can be fault-tolerantly im-
plemented in surface codes quite easily. However, it is necessary to include
non-Cliffords gates such as the T gate or Toffoli which are implemented
using magic states and fault-tolerant gadgets [93]. To illustrate the diffi-
culty of implementing a T gate, we included a picture demonstrating its
implementation in a surface code (see Fig. 2.3). Consequently, the cost of
computation is predominantly determined by the number of T gates.

We could not possibly give justice to fault-tolerance by such a brief
overview. For a more in-depth introduction to error correction see [68, 94]
or any of the cited references.

2.2 A Brief Overview of Quantum Algorithms

The speedup in many algorithms stems from a smart application of several
quantum transformations. In this chapter, we give an overview of the most
used computing primitives and their applications.

2A recent result [69] uses 1568 physical qubits for each logical qubit. This estimate uses
lattice surgery and code distance d = 27.

14

•
•

=




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




Figure 2.4: The Toffoli gate, also known as doubly-controlled-NOT is uni-
versal for classical computation and reversible.

2.2.1 Coherent Classical Computation

Before we move onto quantum algorithm primitives, let us review how
a quantum computer can simulate classical computation. Examples of
classical computation in quantum algorithms include logic, arithmetic or
integral evaluation. In this thesis, we propose coherent versions of classical
sorting and shuffling algorithms in Chapter 3.

Even though these algorithms do not provide a speedup compared
to their classical counterparts, they are often an unavoidable part of a
computation. For example, quantum chemistry algorithms such as the
one in [73] require integral evaluation to compute matrix elements of the
Hamiltonian. Calculating them classically in advance and accessing them
from a lookup table would asymptotically increase the complexity of the
algorithm; hence, the integrals are coherently evaluated on the quantum
computer.

One of the inspirations for quantum computing was the work by Tof-
foli [106], Fredkin [107], Landauer [108], Bennett [109, 110] and others on
classical reversible computation and its connection to thermodynamics and
information theory. The reversible Toffoli gate (Fig. 2.4) is universal for
classical computation because it can simulate the NAND logic gate; see
Fig. 2.5. As such, reversible computation is equivalent to classical compu-
tation. Since the Toffoli can be also be implemented as a quantum gate,
reversible computation gives us a way to construct classical computing
primitives in quantum circuits.

15

The downside of replacing NAND gates with Toffolis is the number of
additional bits. The NAND logic gate takes two bits as inputs and outputs
one bit, whereas the Toffoli has three qubits on both the input and output.
This means that the number of ancillae would increase linearly with the
number of gates in this naive construction. Such a construction quickly
becomes wasteful for large circuits or if space is limited. One can save
ancillae by reversing the computation to uncompute the information saved
in these registers [86, 111] and disentangle them from the output. These
techniques are crucial in algorithm design, and we use them in Chapter 4.

a • a

b • b

1 1⊕ (a∧ b) = a∧ b

Figure 2.5: A single Toffoli can replicate the NAND operation. The inputs
of NAND stay unchanged and the result is encoded into an ancilla.

The space limitation is crucial for the practicability of near-term quan-
tum computers; even modest constant factors can make a difference for
implementation on near-term hardware.

Several lines of research aim to make a quantum simulation of classical
computation. The use of additional gates, such as NOT or CNOT results
in simpler circuits than a naive construction with only Toffolis [112–114].
NOT and CNOT map computational basis states onto computational states;
this means that they can be regarded as classical gates. Next, there has been
significant effort to efficiently replicate classical computation using quan-
tum components (such as Hadamards or T gates [115]). Lastly, it is often
preferred to avoid arithmetic and classical computation altogether [116].

2.2.2 Phase Estimation and Eigenstate Preparation

Another widely used component of algorithms is phase estimation [117,
118]. Given a unitary U and its eigenstate |ψθ〉 satisfying

U |ψθ〉 = ei2πθ |ψθ〉 , (2.2)

16

phase estimation can prepare with high probability the state |ψθ〉 |θ̃〉, where
θ̃ is an m-digit approximation of θ. It can be shown that if we allow
for a failure rate at most ε, the algorithm requires n = m+

⌈
log
(
2 + 1

ε

)⌉

additional qubits (not including the qubits needed to encode |ψ〉), 2n queries
to controlled U, and O

(
n2) elementary gates. We assume that we are given

an oracle to implement controlled U. The circuit implementing phase
estimation is pictured in Fig. 2.6.

|0〉 H • . . .

QFT−1|0〉 H • . . .

|0〉 H . . . •

|ψ〉 U⊗2n−1
U⊗2n−2 . . . U

Figure 2.6: Eigenvalue estimation circuit. The last block represents the
inverse quantum Fourier transform depicted in Fig. 2.2.2.

Phase estimation starts by creating a uniform superposition on the
ancillary register by applying a Hadamard gate on each ancilla qubit.

|00 . . . 0〉 |ψ〉 → 1√
2n

2n−1∑
k=0

|k〉 |ψ〉 . (2.3)

In the next step, controlled U2j operations are applied.

1√
2n

2n−1∑
k=0

|k〉 |ψ〉 → 1√
2n

2n−1∑
k=0

|k〉Uk |ψ〉 (2.4)

=
1√
2n

2n−1∑
k=0

|k〉 ei2πkθ |ψ〉 . (2.5)

The last part of phase estimation is the application of the inverse Fourier
transform (QFT−1, defined below). If θ can be expressed exactly in n bits, θ̃

17

would be equal to θ. Otherwise, θ̃ is an m-digit approximation distributed
around θ.

The inverse quantum Fourier transform in the group Z2n (all we need
in this case) is defined as

QFT−1
2n : |x〉 → 1√

2n

2n−1∑
y=0

e−2πi x2n y |y〉 , (2.6)

where x = x1x2 . . . xn is an integer and xi its digits in binary notation.
Implementation of QFT−1

2n on n qubits requires O
(
n2) gates [81] (or n logn

for an approximate algorithm [119]) and consists of n stages. In the j-th
stage, operations controlled by qubits j+ 1 to n are applied on the qubit j.
The controlled rotations R2 to Rn−j+1 are defined as

Rk =

(
1 0
0 e−2iπ/2k

)
. (2.7)

Rotation Rk applied to qubit j is always controlled by the (k− j+ 1)th qubit.
The circuit for QFT−1

2n on 4 qubits in pictured in Fig. 2.2.2.

|x1〉 R4 R3 R2 H

|x2〉 R3 R2 H •

|x3〉 R2 H • •

|x4〉 H • • •

Figure 2.7: Inverse Quantum Fourier Transform on 4 qubits.

The phase estimation algorithm can be used to prepare eigenstates. Let
us apply phase estimation on a state |φ〉 that is not an eigenvector of U.
|φ〉 can be then decomposed into eigenvectors as |ψ〉 =∑i ai |ψi〉. Phase
estimation on |φ〉will produce∑

i

ai|θ̃i〉 |ψi〉 , (2.8)

18

where θ̃i is an approximation of the eigenphase associated with |ψi〉. Mea-
suring the first register will produce one of the eigenstates |ψi〉 with proba-
bility |ai|

2.

This method is often used to estimate ground state energies with U =
e−iHt for 0 < t < 2π

‖H‖ implemented through Hamiltonian simulation tech-
niques (see Section 2.3). Assume that we have a method to prepare a state
|φ〉 that has a significant overlap with the ground state, i.e., 〈g|φ〉 = a0.
Furthermore, assume that we are given a promise that any state with energy
at most Epromise is the ground state. The eigenstate preparation algorithm
applied on |φ〉 will then produce the ground state with probability |a0|

2.
We know we succeeded when we measured θ < tEpromise in the second
register. Since t is known, we can use θ to estimate ground state energy.
Several techniques build on phase estimation to estimate energies more
efficiently, see [2, 120]. A particularly interesting one is the semi-classical
phase estimation [90], later perfected in [121]. This approach replaces all
two-qubit gates in QFT−1 by measurements and adaptive rotations.

2.2.3 Grover Search and Amplitude Amplification

A large number of quantum algorithms [50, 122, 123] achieve their speedup
thanks to amplitude amplification [124]. This idea originated from Grover’s
algorithm for unstructured search [14].

Grover’s algorithm aims to find a marked item in a collection ofN = 2n

items. The search problem can be defined formally as finding a preimage
of a function in the following setting. Let f : {0, 1}n → {0, 1} such that x is
marked if and only if f(x) = 1. The goal of the algorithm is to find such x.
If the function f has no structure it is generally not possible for a classical
computer to succeed in fewer than O (N) steps.

To recognize the marked item, we are given an oracle Omark:

Omark |x〉 =
{
− |x〉 if x is marked,
|x〉 otherwise.

(2.9)

The first step of the algorithm is to create a uniform superposition using

19

Hadamard transform

H⊗ logN |0 . . . 0〉 = 1√
N

N−1∑
x=0

|x〉 . (2.10)

Assume thatM out of N items are marked. The uniform superposition can
be then decomposed into marked and unmarked states

1√
N

N−1∑
x=0

|x〉 = 1√
N

∑
x is marked

|x〉+ 1√
N

∑
x is not marked

|x〉 , (2.11)

=

√
M

N
|marked〉+

√
N−M

N
|unmarked〉 , (2.12)

where we defined the marked and unmarked superposition states

|marked〉 :=
√

1
M

∑
x is marked

|x〉 , (2.13)

|unmarked〉 :=
√

1
N−M

∑
x is not marked

|x〉 . (2.14)

It is straightforward to see that 〈marked|unmarked〉 = 0. For convenience,

let us introduce the angle θ such that sin θ =
√
M
N . In this notation,

1√
N

N−1∑
x=0

|x〉 = sin θ |marked〉+ cos θ |unmarked〉 . (2.15)

Let us define the reflection around the uniform superposition

R = −
(

I − 2H⊗ logN |0〉〈0|H⊗ logN
)

(2.16)

= − cos(2θ) |marked〉〈marked|+ cos(2θ) |unmarked〉〈unmarked|
+ sin(2θ) (|marked〉〈unmarked|+ |unmarked〉〈marked|) (2.17)

and observe that Omark acts as a reflection around the unmarked state.

20

We can show show that the operation G = ROmark acts as a rotation by
an angle 2θ on the subspace span{|marked〉 , |unmarked〉}. Let us apply G
on an arbitrary state |ψ〉 = sinα |marked〉+ cosα |unmarked〉:

G |ψ〉 = ROmark
(

sinα |marked〉+ cosα |unmarked〉
)

(2.18)

= R
(
− sinα |marked〉+ cosα |unmarked〉

)
(2.19)

= sinα(cos(2θ) |marked〉− sin(2θ) |unmarked〉)
− cosα(− cos(2θ) |unmarked〉− sin(2θ) |marked〉) (2.20)

= sin (α+ 2θ) |marked〉+ cos (α+ 2θ) |marked〉 (2.21)

It can be shown that span{|marked〉 , |unmarked〉} is closed under the
application of G. Thus, G rotates the initial state towards |marked〉. Assum-

ing that
√

N
M � 1, this requires approximately π

4

√
M
N applications of G. In

the case where M � N, Grover’s algorithm achieves quadratic speedup
over any classical algorithm.

Grover search can be generalized to amplitude amplification. Ampli-
tude amplification can be used to boost the success amplitude for a wide
variety of quantum computations. Let us take a unitary U that prepares a
state that has λ overlap with the desired state |good〉 and can be therefore
written as

U |0 . . . 0〉 = sin θ |good〉+ cos θ |bad〉 , (2.22)

where 〈good|bad〉 = 0. In this notation, θ = π
2 means that we reached the

desired state |good〉 with certainty. Given reflections around the zero state
R0 = I − 2 |0〉〈0| and the correct state Rgood = I − 2 |good〉〈good| we can
then construct the operatorG = UR0U

−1Rgood. The operatorG is analogous
to Grover’s operator – the same type of calculation can be used to prove
the correctness of the algorithm. Reaching a high probability of success
requires approximately π

4θ applications of G.

The presented versions assume that the fraction of marked items M
N

and the initial overlap is known. The initial amplitude can be estimated
using quantum amplitude estimation [79]. Alternatively, a more technical
version of amplitude amplification can be used instead [125] to avoid
over-rotating. Another extension of amplitude amplification is oblivious
amplitude amplification which we discuss in the next section.

21

2.2.4 Oblivious Amplitude Amplification

Oblivious amplitude amplification (OAA) extends the framework of am-
plitude amplification by relaxing the requirement on the reflection. While
amplitude amplification reflects around the good state, |good〉, OAA re-
flects only around a control system, leaving the target system untouched.
OAA then allows us to turn a probabilistic implementation of an opera-
tion [77, 126] into a nearly perfect one without an exponential overhead.

Suppose thatW probabilistically implements U such as

W |0〉flag |ψ〉data = sin θ |0〉flagU |ψ〉data + cos θ |bad〉 , (2.23)

where
(
|0〉〈0|flag ⊗ Idata

)
|bad〉 = 0. In other words, if we measure the

ancilla in state |0〉, Uwas properly applied on |ψ〉data.

Berry et al. showed in [34] thatWRW†R acts as a rotation
(
WRW†R

)k
W |0〉 |ψ〉 = sin ((2k+ 1)θ) |0〉U |ψ〉+ cos ((2k+ 1)θ) |bad〉 ,

(2.24)
where R is the reflection around all zero in the flag register R = 2 |0〉〈0|⊗ I−
I. Note that oblivious amplitude amplification differs from amplitude am-
plification in that R is not a reflection around the initial state. Nevertheless,
using a different reflection is in this case sufficient.

In addition, one can show that it is sufficient to constrain ourselves
to span{|0〉U |ψ〉 , |bad〉}. Success amplitude sin((2k+ 1)θ) can be then be
boosted arbitrarily close to 1.

So far we assumed that U is a unitary operation. It turns out that
oblivious amplitude amplification is robust, meaning that it can handle
operations that is only ε close to a unitary [34]. At the same time, W is
still a unitary operator. Amplification will in this case not be performed
perfectly, but the error is at most O(ε).

2.3 Hamiltonian Evolution Simulation

This section focuses on the problem of simulating the dynamics of a quan-
tum system. Given an initial state of a system |ψ(0)〉 and a Hamiltonian H,

22

our aim is to simulate the time evolution |ψ(0)〉 → e−iHt |ψ(0)〉. The goal
of Hamiltonian simulation is to design a circuit U consisting of gates and
oracles that approximates the time evolution up to an error ε such that

∥∥∥U− e−iHt
∥∥∥

2
< ε, (2.25)

where ‖·‖2 is the spectral norm3. We predominantly focus on the query
complexity of Hamiltonian simulation.

In Chapter 4 we present a simulation algorithm for a time-dependent
Hamiltonian which is an extension of the above-stated problem. Here we
present techniques used or related to those in Chapter 4.

Quantum systems are fundamentally difficult to simulate; dynamics
of quantum systems is a BQP-hard (or BQP complete for Hamiltonians
with natural restrictions) [6, 28, 128]. Even though there are certain cases,
such as Clifford circuits [129], when a classical simulation is possible, the
complexity of simulating the evolution generally grows exponentially with
the number of qubits.

As such, simulation of quantum dynamics is a field where we believe
quantum computers can quickly outperform classical ones. In fact, the time
evolution of quantum systems was the original application for quantum
computers suggested by Feynman in his seminal paper [130] and Lloyd’s
algorithm [13] from 1996 was one of the early quantum algorithms with
exponential speedup.

We start this section by defining the formalism and establishing simula-
tion lower bounds. Then, we follow the chronological progress of Hamil-
tonian simulation research, starting by Lloyd’s [13] paper and follow-up
approaches based on Lie-Trotter formula, often referred to as Trotterization
or product formulae.

Early Hamiltonian simulation algorithms assumed that the simulated
Hamiltonians are given in the formH =

∑m
j=1Hj, where eachHj is local and

3Spectral norm is the correct measure even for algorithms that involve measurements
on ancillae. In this case, the diamond norm

∥∥U− e−iHt
∥∥
3

would be an appropriate
measure but it can be bounded by 4

∥∥U− e−iHt
∥∥

2 [127]. The proof involves writing the
simulation algorithm as a channel where the desired operation (to be applied after post-
selection on a measurement outcome) is one of the Kraus operators. The diamond norm is
then bounded using norm inequalities and strong convexity.

23

e−iHjt can be implemented directly for arbitrary t. The complexity of these
algorithms was then generally measured by the number of exponentials
needed for the simulation [29]. Nowadays, we do not take these assump-
tions for granted and instead only assume that the Hamiltonian is a sparse
Hermitian matrix and its elements can be accessed through oracles, see
Sec. 2.3.1. Non-local Hamiltonians appear in quantum chemistry [131, 132]
and applications outside of physics such as digital simulation of adiabatic
computation [133] and systems of linear equations [5, 134]. The complexity
of a simulation algorithm is then measured predominantly in terms of
oracle queries and then in terms of additional gates [31, 33, 127]. This will
be the convention we follow in this thesis. Of course, there are exceptions
to this rule, particularly if the authors are interested in a more specialized
class of Hamiltonians.

Simultaneously with the development of Trotterization algorithms,
Childs suggested a simulation algorithm based on quantum walks [126]. In
2014, a seminal paper by Berry et al. [135] achieved exponential improve-
ment in the error scaling and was subsequently improved upon in [34, 136].
In the last few years, approaches based on singular value processing [35]
and qubitization [137] achieved the optimal query complexity.

Let us note that Hamiltonian simulation is often used as a subroutine of
a more complex algorithm, for example in phase estimation (described in
Section 2.2.2) or for solving linear equations [5, 134].

This section is based on part 4.1 of Quantum Chemistry in the Age of
Quantum Computing [1] but it has been significantly extended and altered.
It aims to provide an overview of the existing results from the conception
of Hamiltonian simulation to the most recent results. To the best of our
knowledge, there are no current surveys covering recent techniques such
as quantum signal processing and linear combinations of unitaries (LCU)
methods. The older reviews of Hamiltonian simulations include Berry et
al. [138] and Georgescu et al. [139].

2.3.1 The Hamiltonian Oracles

In this section, we explain how one can grant access to a Hamiltonian.
The oracular representation allows us to work with Hamiltonians that
are not necessarily local, for example in adiabatic computation [133] or

24

quantum chemistry [140]. Storing the Hamiltonian as a full matrix would
not be practical because storing such a representation would necessarily
require an exponential overhead. Instead, oracles often provide access to
the Hamiltonian as an abstraction for computing the matrix elements as
discussed in Section 2.1.2.

One type of oracular access is particularly common when the Hamil-
tonian (in a computational basis) is given by a sparse matrix. We say a
Hamiltonian is row-d-sparse if each row has at most d non-zero entries. If
there is an efficient procedure to locate these entries we moreover say that
the Hamiltonian is row-computable. In this case, one can efficiently construct
oracles

Oloc |r,k〉 = |r,k⊕ l〉 (2.26)
Oval |r, l, z〉 = |r, l, z⊕Hr,l〉 . (2.27)

OracleOloc locates the position l of the k-th non-zero element in row r. The
oracle Oval then gives the value of the matrix element Hr,l. We compute
the cost of algorithms in terms of the number of queries to these oracles.

It is possible to construct different oracles. Any Hermitian matrix can
be decomposed into a sum of unitaries

H =

L−1∑
l=0

αlHl, (2.28)

where for each l, αl 6 0 and Hl is a unitary matrix ‖Hl‖ = 1. This decom-
position can be efficiently implemented for sparse Hamiltonians [34]. The
coefficients αl and unitaries Hl can be accessed through oracles

Oα |l, z〉 = |l, z⊕αl〉 (2.29)
OHl |l,ψ〉 = Hl |l,ψ〉 , (2.30)

or, in some cases, described classically.

Berry et al. introduced the decomposition (2.28) in [135] and showed
that for d-sparse Hamiltonians, L can be chosen as L = O

(
d2 ‖H‖max /γ

)
,

where γ is the precision with which the Hamiltonian matrix entries are
approximated. Furthermore, oracles (2.29) and (2.30) can be simulated by
oracle queries to (2.26) and (2.27) with constant overhead.

25

Lastly, Low and Chuang [137] introduced a representation of a Hamilto-
nian through a signal oracle U such that for a signal state defined as |G〉,
H = 〈G|U |G〉. In other words,

U |G〉 |ψ〉 = |G〉H |ψ〉+
√

1 − |H |ψ〉|2 |G⊥〉 , (2.31)

where
(
|G〉〈G|⊗ I

)
|G⊥〉 = 0. This approach is based on the Hamiltonian

representation in the linear combination of unitaries (LCU) approach [135].
This model is used heavily in algorithms based on quantum signal pro-
cessing [36]. Low and Chuang [137] showed that the oracle (2.31) can be
implemented with O(1) queries to (2.29) and (2.30). This results allows us to
use QSP with LCU [137] instead of the relying on an earlier implementation
using quantum walks [35].

Other models in quantum simulation include the fractional query model
[135], representation of the Hamiltonian via a density matrix [141], or data
structures for non-sparse Hamiltonians [135], but do not appear in the
algorithms mentioned in this thesis.

2.3.2 Lower Bounds on Hamiltonian Simulation

Before describing any quantum algorithms, let us first establish what is the
best complexity we could hope for. All but one of the lower bounds in this
section are stated in the query complexity model. The first lower bound on
Hamiltonian simulation is known as the no-fast forwarding theorem [29]. It
establishes that no quantum computer can simulate Hamiltonian evolution
for time t with complexity sublinear in ‖H‖ t.

Berry, Ahokas, Cleve and Sanders (BACS) [29] proved the no-fast-
forwarding theorem by reduction to the parity problem [142, 143]. The
work on the parity problem established that the parity of B bits cannot
be determined with fewer than B/2 queries (a query outputs a single bit)
with 1/4 error. The authors [29] explicitly construct a 2-sparse Hamiltonian
whose sublinear simulation would imply a parity algorithm that uses fewer
than N/2 queries. However, there are still possible speedups for dense
Hamiltonians in other parameters besides time.

There were two important lower bounds following the landmark [29]
result. Childs and Kothari [144] proved the restrictions for simulating dense

26

Hamiltonians. They not only extended the no-fast-forwarding theorem to
dense Hamiltonians, but also showed that a stricter condition applies. In
particular, it is not possible to simulate a general dense H ∈ Cn×n for time
twith poly (||Ht|| ,n) queries to a matrix entry phase oracle4 even if given
additional information.

More recently, Berry et al. [135] determined the lower bound with
respect to the error of the simulation ε. Using the parity problem again,
they showed that the lower bound in the simulation error ε scales as
Ω
(

log(1/ε)
log log(1/ε)

)
. At the same time, they gave an algorithm that achieves this

scaling.

The next question that needed an answer was the relationship between
the scaling in time and the error. Berry et al. showed in [127] that the lower
bound on the complexity is additive with respect to the time and the error.
We now state this result directly.

Theorem 2 (Hamiltonian simulation lower bound, Theorem 2.2 [127])
For any ε, t > 0, integer d > 2, and a fixed value ||H||max, there exists a d-sparse
Hamiltonian H such that simulating H for time t with precision ε has query
complexity

Ω

(
τ+

log(1/ε)
log log(1/ε)

)
, (2.32)

where τ = d ||H||max t.

We know that this query complexity lower bound is, in fact, tight with
quantum signal processing [137] achieving the optimal simulation com-
plexity.

Lower bounds in terms of gate complexity are much more rare. To the
best of our knowledge, the only gate complexity lower bound is due to
Haah et al. [145]. The authors show that for any integers n and T such that
1 6 n 6 T 6 2n there exists a piecewise constant bounded 1D Hamiltonian
H(t) on n qubits whose simulating for time T requires Ω̃(nT) 2-qubit gates.
This result can be extended into higher dimensions [145].

4The matrix entry phase oracle gives the value of Hi,j/
∥∥Hi,j

∥∥ when queried on the
input i, j [144].

27

2.3.3 Simulation Based on Trotterization

The first quantum simulation algorithms relied on the lowest-order Lie-
Trotter formula

eA+B = lim
r→∞

(
eA/reB/r

)r
. (2.33)

Lloyd [13] first showed how to use the Lie-Trotter formula for Hamilto-
nian simulation. Assuming that the Hamiltonian of interest can be decom-
posed into a sum of of simpler Hamiltonians5 Hj such that H =

∑m
j=1Hj,

one can decompose the evolution with respect to H into the evolution with
respect to each Hj as

Ũ =
(
e−iH1t/re−iH2t/r . . . e−iHmt/r

)r
. (2.34)

If each e−iHjt/r can be efficiently implemented, one can simulate Hamil-
tonian evolution using O (poly logN) steps as opposed to O (polyN) for a
classical simulation.

This approach can be extended to sparse matrices given through the
oracles defined in (2.26) and (2.27). Aharonov and Ta-Shma [133] first
showed that a sparse Hermitian matrix can be decomposed as H =

∑
jHj,

where each eiHjt can be implemented directly. Then, using the Lie-Trotter
formula, d-sparse Hamiltonians can be simulated with O(poly(N,d)(τ2/ε))
complexity.

Two types of improvements were made since the first Trotterization-
based simulations. A series of works by Berry, Wiebe, and others [29, 30]
used more sophisticated Lie-Trotter-Suzuki decompositions [146]. These
approximations allow for the approximation error to be an inverse of a
polynomial of arbitrary order by devising high-order formulae that better
approximate an exponential of a sum. For illustration, the symmetric
Trotter formula

e(A+B)∆t ≈ eA∆t/2eB∆teA∆t/2 (2.35)

suppresses O(∆t2) errors [30]. These higher-order formulae can be obtained
using the recursion relation

S2k(δ) = [S2k−2(pkδ)]
2 S2k−2((1 − 4pk)δ) [S2k−2(pkδ)]

2 , (2.36)
5For example, if H is a sum of local terms as in the Ising model.

28

where

S2(δ) =

m∏
j=1

eHjδ/2
1∏

j ′=m

eH
′
jδ/2. (2.37)

The number Nexp of exponentials of the form e−iHjt for the k-th order
Trotterization algorithm is then bounded by

Nexp 6
2m52k(mτ)1+1/2k

ε1/2k , (2.38)

for ε < 2mrk−1 and τ = ‖H‖ t [29].

While Trotterization-based algorithms have poor scaling in error com-
pared to newer techniques, they perform exceptionally well on real-world
instances. In a resource study conducted by Childs et al. [147], high-order
product formulae [30] showed promising T-gate scaling.

Trotterization-based methods can be further improved by sampling the
exponentials at random instead of fixing their order ahead of time. The idea
of using randomization to decrease the error in Hamiltonian simulation
was first proposed by Childs et al. [148] and subsequently improved by
Cambell [149]. Cambell’s algorithm, known as the randomized compiling
or QDRIFT protocol, works particularly well for shorter evolution times
and Hamiltonians of the form H =

∑m
j=1 hjHj where each

∥∥Hj
∥∥ = 1, ex-

ponentials of the form e−iHjt can be implemented directly, and hj vary
significantly for different values of j. QDRIFT draws the exponential terms
with probabilities proportional to the interaction strengths hj. This leads to
an algorithm dependent on

∑m
j=1
∣∣hj
∣∣ instead ofm

(
maxj

∣∣hj
∣∣).

2.3.4 Sparse Matrix Decomposition

We require that the Hamiltonian can be decomposed into terms that can be
efficiently simulated. In addition, this decomposition must be efficiently
computable and it is vital that the number of terms in the decomposition
be as small as possible. Aharonov and Ta-Shma [133] devised such a
decomposition for sparse Hamiltonians.

These decompositions rely on graph coloring techniques. Any Hamilto-
nian can be assigned a connectivity graph withN vertices and the following

29

1
2 3

4

5
67

8

9 10 11 12

13
14




. 1 11
1 . 1 1 . . 1
. 1 . 1 111 .
. . 1 . 1 1 . .
. . . 1 . 1 1 .
. . . . 1 . 1 11
. 1 . 111 . . . 1
. 1 . 11
1 11 . 1
1 111 1
. 11 111
. . 111 1 . 1 .
. . 11 . 1 11 . .
. 1 . . . 11 . . 11 . . .




=




. 1
1
. 1 .
.
. 1
. . . . 1
. 1
.
.
. 1
. 1
.
. . 1
. 1 . . .




+




. 1

.

. 1 . .

.

.

. 1 .

. 1

.
1
.
.
. . 1
. 1
. 1




+




. 1

. . 1

. 1

. . . . 1

. . . 1

. 1

. 1

. 1

. 1
1
. 1 . .
. 1 . . .
.
.




+




.

. 1 . . .

. . . 1

. . 1

.

. 1

. 1 .

. 1

.

. 1

. 1

.

. . . . 1

. 1




+




.

.

. 1 . . .

.

.

.

. 1

.

. 1

. 1

. . 1

. 1 .

. 1 . .

. 1




+




.

. 1

.

. 1 . .

.

.

. 1

. 1

. 1

. 1

.

. . . 1

.

. 1




Figure 2.8: An example of Hamiltonian decomposition based on edge
coloring. The entire graph corresponds the full, black, matrix. The colored
matrices then represent edges of a given color. Note that each colored
matrix is only 1-sparse.

30

property: vertices x and y are connected by an edge if and only if the entry
Hx,y is nonzero. Since H is Hermitian, this graph is undirected and the
sparsity d represents the maximum degree of this graph. The Hamiltonian
decomposition is determined from an edge coloring of this graph. This
means that each edge is assigned a color (label) such that incident edges (on
the same vertex) always have different colors. Edges of a single color in the
graph then correspond to a single term in the Hamiltonian decomposition
and the number of colors used is the number of terms in the Hamiltonian
decomposition as in Fig. 2.8. Each 1-sparse Hamiltonian is then simulated
directly using its equivalence to a block diagonal matrix [29, 133].

The decomposition was later improved in a number of papers [29, 135,
150, 151]. The state-of-the-art decomposition is summarized in the theorem
below:

Theorem 3 (d-sparse Hamiltonian decomposition [135])
If H is a d-sparse Hamiltonian, there exists a decomposition H =

∑d2

j=1Hj, where
each Hj is 1-sparse and a query to any Hj can be simulated with O(1) queries to H.

The new ingredient in the construction [135] is to modify the Hamiltonian
to make the graph bipartite6. These decompositions are used in nearly all
simulations of sparse Hamiltonians including our algorithm in Chapter 4.

2.3.5 The Quantum Walk Approach

A surprising Hamiltonian simulation technique comes from the equiva-
lence between discrete and continuous-time quantum walks [27]. In this
section, we describe the quantum walk-based algorithm from [27] and
the subsequent work [31]. Both approaches give a quantum analog of a
stochastic process on a graph. In the classical case, the transition matrix is
the adjacency matrix A of a graph and is required to be stochastic7. Every
random walk can be modified into its lazy version by changing the transi-
tion rule p→ Ap into p→ (1− ε)p+ εAp, where p refers to the probability

6A graph is said to be bipartite if the vertices can be split into two distinct sets such
that no two vertices within the same set are connected by an edge.

7A stochastic matrix must be square and matrix with real, non-negative entries. In our
notation, the sum of matrix entries for each column must be equal to 1. This condition
ensures that the total probability is preserved.

31

distribution on the graph and ε ∈ (0, 1). Taking the limit ε → 0 and an
infinitesimally short length of each step, one can obtain the continuous
time limit of a random walk

p(t) = eAtp0, (2.39)

which can be interpreted as the diffusion equation.

A continuous-time quantum walk [152] is obtained by replacing (2.39)
by the Schrödinger equation

|ψ(t)〉 = e−iAt |ψ0〉 , (2.40)

with the adjacency matrix as the Hamiltonian. The Hamiltonian is Hermi-
tian if the graph is undirected.

Discrete-time quantum walks take a very different approach. The con-
struction by Szegedy [15] translates any Markov chain on a graph to a
quantum process on a quadratically larger Hilbert space. Discrete-time
quantum walks are typically defined on symmetric graphs but the construc-
tion can be generalized to any N×NHamiltonian H. Using the notation
from [27], define

∣∣ψj
〉
=

1√
‖abs(H)‖

N∑
k=1

√
H∗j,k

dk
dj

|j,k〉 (2.41)

for every pair of graph vertices j,k where abs(H) stands for entry-wise
absolute value of H and |d〉 =

∑
j dj |j〉 is the principal eigenvector of

abs(H). This construction allows us to make the quantum walk unitary. A
state |k, j〉 can be assigned to an edge between k and j; j being the vertex
where the walker starts in a particular step and k the vertex the walker is
moving towards. Let S be the swap operation of these registers

S |j,k〉 = |k, j〉 . (2.42)

Next, define an isometry T mapping the states of the graph onto the
states of enlarged Hilbert space

T =

N∑
j=1

∣∣ψj
〉
〈j| . (2.43)

32

One step of the walk can be implemented using iS(2TT † − I); see [15].
Taking the eigenvalues of the Hamiltonian H

‖abs(H)‖ |λ〉 = λ |λ〉, it can be
shown [153] that the eigenvectors of U = iS(2TT † − I) are

|µ±〉 =
1 − e±i arccos λS√

2(1 − λ2)
T |λ〉 (2.44)

and corresponding eigenvalues µ± = ±e±i arcsin λ [27].

Discrete-time quantum walks are already formulated in terms of query
complexity. The framework of quantum walks [21], can be applied to a
variety of classical randomized algorithms and gives a number of provable
speedups [15, 21, 154–156].

The relationship between discrete and continuous random walks trans-
lates to a correspondence between discrete and continuous time quantum
walks. Childs quantified this correspondence devising an algorithm for
simulating continuous-time walks using discrete time quantum walks.
Since discrete-time quantum walks can be easily translated into the gate
model [157, 158], this result de facto gave a new algorithm for simulating
Hamiltonian evolution [31].

Let us take |Θ〉 to be an eigenstate of a discrete time quantum walk with
an eigenvalue e−iΘ. Furthermore, define P to be an operation that performs
phase estimation on the walk and records the outcome in an additional
register

P |Θ〉 =
∑
φ

aφ|Θ |Θ,φ〉 . (2.45)

Next, define a unitary Ftsin that computes the sine function and applies
an appropriate phase

Ftsin |Θ,φ〉 = e−it sinφ |Θ,φ〉 . (2.46)

Childs showed in [27] that Hamiltonian evolution can be closely ap-
proximated using discrete-time quantum walk techniques

〈ψ|eiHtT †P†FtsinPT |ψ〉 > 1 −
93t2

M2 , (2.47)

33

where M denotes the number of calls to quantum walk unitary U. Equa-
tion (2.47) shows that the fidelity between states produced by the quantum
walk algorithm and time evolution is high. TakingM = O

(
t√
δ

)
, Hamilto-

nian evolution for time t can be simulated using O
(∥∥∥abs(H)t/

√
δ
∥∥∥
)

steps
of a discrete-time quantum walk.

Reference [27] just considered the complexity in terms of the steps of this
discrete quantum walk, without showing how to implement them. Berry
and Childs [31] provided methods to implement the discrete quantum walk
in terms of the oracles for matrix entries of the Hamiltonian (2.26), (2.27),
thus providing a complexity that could be compared to the prior work
based on Trotterization. Quantum-walk simulation techniques have query
complexity linear in simulation time compared to superlinear complexity
for Trotterization methods [29].

2.3.6 Hamiltonian Simulation with Linear Combination of
Unitaries

We now present a Hamiltonian simulation algorithm [34] that achieves
a logarithmic scaling in the inverse error. This algorithm requires the
Hamiltonian to be either

√
L sparse and row-computable or a sum of at most

L Pauli operators. In these two cases, the Hamiltonian can be decomposed
into a linear combination of unitaries Hl, as

H =

L∑
l=0

αlHl. (2.48)

This decomposition together with oblivious amplitude amplification is
responsible for the speedup compared with previous techniques.

The goal of the algorithm is to implement the unitary

U(t) = e−iHt =

∞∑
k=0

(−iHt)k

k!
(2.49)

given the time t and access to the unitary decomposition of the Hamiltonian
H (2.48).

34

First, we divide the evolution into r segments, each of them t/r long.
Each segment is then approximated by a Taylor series truncated at the K-th
order

K∑
k=0

(−iHt/r)k

k!
. (2.50)

To limit the error to O(ε) by the end of evolution, each segment must have
error at most O(ε/r), giving the bound on K = O

(
log(r/ε)

log log(r/ε)

)
provided that

‖H‖ t/r < 1. Note that the operator coming from this approximation is no
longer a unitary.

Plugging the decomposition (2.48) into (2.50), we obtain

Ũ =

K∑
k=0

(−it/r)k

k!

∑
l1

∑
l2

· · ·
∑
lk

αl1αl2 . . .αlkHl1Hl2 . . .Hlk , (2.51)

where Ũ is an approximation of U and no longer a unitary operation.
In (2.51), we expressed Ũ as a sum of unitaries. Each unitary here is a
product of Vl1Vl2 . . .Vlk and the coefficients depend on the coefficients
in Taylor series and unitary decomposition. Without loss of generality,
Eq. (2.51) can be written in the form Ũ =

∑m−1
j=0 βjVj where all βj > 0 and

unitaries Vj are products of Hamiltonian terms Hl and (−i) factors.

The algorithm frist prepares the superposition state 1√
s

∑m−1
j=0

√
βj |j〉,

where s =
∑m−1
j=0 βj, through a circuit denoted B. Implementation of B

can be complicated (see [159]) but it does not require any queries to the
Hamiltonians.

Next, we need to able to implement each Vj controlled by the value j.
Define

select(V) |j〉 |ψ〉 = |j〉Vj |ψ〉 , (2.52)

for each j. Since each Vj consists of a product of at most K terms in the
Hamiltonian decomposition, the complexity of implementing select(V) is
K times the complexity of applying Hl.

Let us now introduce

W =
(
B† ⊗ I

)
select(V) (B⊗ I) . (2.53)

35

Inductively, W applies the Ũ if the ancilla is in the correct state (in this case
it is |0〉) and prepares some garbage state if that ancilla is not zero. Formally,
(|0〉〈0|⊗ I)W |ψ〉 |0 . . . 0〉 = 1

s |0〉 Ũ |ψ〉. If s is close to 2, we can use W to
implement oblivious amplitude amplification presented in Sec. 2.2.4. Ap-
plying −WRW†RW where R = I − (|0〉〈0|⊗ I) results in the state |0〉 Ũ |ψ〉
with high accuracy [34].

All together, the complexity is

O

(
τ

log(τ/ε)
log log(τ/ε)

)
, (2.54)

where τ = L ‖H‖max t for
√
L-sparse matrices. We use similar steps in our

algorithm for simulating time-dependent Hamiltonians in Chapter 4 and
derive rigorous bounds for our work.

2.3.7 Quantum Signal Processing and Qubitization

Hamiltonian simulation through quantum signal processing started by
Low et al. [160] asking a seemingly unrelated question: What single qubit
unitaries can we implement given Z-rotations with a fixed angle φ and
arbitrary X rotations? Surprisingly, this class of operations can be fully
classified [36, 160]. We give a simplified question these conditions at the
end of this section. Specifically, all circuits with up to k gates can be char-
acterized by four polynomials that satisfy the conditions of Theorem 1
in [160]. Even more surprisingly, given a function of φ that meets these con-
ditions, one can construct a circuit approximating this function following
the construction in [160].

The above procedure can be extended to a multi-qubit case through
the phase kickback explained in Fig. 2.9. This algorithm, named quan-
tum signal processing, describes the transformation of a unitary W =∑
λ e
iφm |um〉〈um| to

W → Videal =
∑
m

eih(φm) |um〉〈um| (2.55)

for any real function h. The first step of quantum signal processing is the
transduction of the phase φm to the control qubit via phase kickback (see

36

• = Rz(φm)

|ψm〉 U |ψm〉

Figure 2.9: Application of a controlled unitary acting on an eigenstate acts
as a rotation on the control qubit. Let |ψm〉 be an eigenstate of U associ-
ated with eigenvalue eiφm . Applying the circuit above on an initial state
(α |0〉+β |1〉) |ψm〉 results in

(
α |0〉+ eiφmβ |1〉

)
|ψm〉. This is equivalent to

applying Rz(φm) =
(

1 0
0 eiφm

)
on the first qubit.

Fig. 2.9). Then, single qubit rotations are used to synthesize the desired
function as in the above control problem.

Quantum signal processing can be used together with a quantum walk
oracle [27, 31]. Recall that the quantum walk operator has eigenvalues
±e±i arcsinφm where φm is an eigenvalue of the Hamiltonian. Using the
function h(θ) = −τ sin (θ) gives the proper time evolution. This function
can be approximated by the Jacobi-Anger expansion in a manner similar
to [31]. Importantly, Jacobi-Anger results in an achievable transformation
(satisfying the criteria in [160]) and converges exponentially fast which
gives logarithmic scaling in error. In their next work, Low and Chuang [137]
presented qubitization. Qubitization allows one to use quantum signal
processing beyond the limitations of the signal oracle. Given access to the
Hamiltonian as H = 〈G|U |G〉 (see Subsection 2.3.1), one can construct a
“qubiterate” to compute powers of H [137]. The name qubitization refers
to decomposition into 2-dimensional invariant subspaces isomorphic to
qubits. Qubitization allows one to combine quantum signal processing
with LCU methods and other techniques.

Gilyen et al. [36] later simplified and generalized these methods to a
technique called quantum singular value transformation (QSVT). We now
state their version of quantum signal processing:

37

Theorem 4 (Quantum Signal Processing [36])
Let k ∈ N; there exists Θ = θ0, θ1, . . . , θk ∈ Rk+1 such that for all x ∈ [−1, 1]:

eiθ0σz

k∏
j=1

(
W(x)eiθjσz

)
=

[
P(x) iQ(x)

√
1 − x2

iQ(x)∗
√

1 − x2 P∗(x)

]

where

W(x) =

[
x i

√
1 − x2

i
√

1 − x2 x

]
= ei arccos (x)σz

if and only if P,Q ∈ C[x] such that

• deg(P) 6 k and deg(Q) 6 k− 1

• P has parity (k mod 2) and Q has parity (k− 1 mod 2)

• ∀x ∈ [−1, 1] : |P(x)|2 + (1 − x2)|Q(x)|2 = 1

Simply put, Theorem 4 (Theorem 3 in [36]) states the conditions on the
polynomials that can be implemented through quantum signal processing
circuits. The proof of this theorem is constructive, giving an algorithm
for computing the angles from polynomials. In addition, if P or Q are not
known entirely, they can be completed following the proofs of Theorems
3-5 of [36].

2.3.8 Generalization of the Hamiltonian Simulation Prob-
lem

In the last subsection of the Background, we discuss several lines of research
closely related to Hamiltonian simulation but extend it in various ways.

The first generalization is using a Hamiltonian that depends on time.
Techniques for simulating time-dependent Hamiltonians based on the
Lie-Trotter-Suzuki decomposition were developed in [161–163], but the
complexity scales polynomially with the error. Poulin et al. [163] gave an
algorithm whose quantum complexity does not depend on the derivatives
of the Hamiltonian because of their use of Monte Carlo integration.

38

More recent advances providing complexity logarithmic in the error
[34,135] mention that their techniques can be generalized to time-dependent
scenarios, but do not analyze this case. The most recent algorithms [35,137]
are not directly applicable to the time-dependent case. Here we present
an explicit algorithm for simulating time-dependent Hamiltonians with
complexity logarithmic in the allowable error, matching the complexity of
the algorithms for the time-independent case in [34, 135], though not those
in [35, 137]. Low and Wiebe [37] independently achieved similar results.

Figure 2.10: The continuous-time evolution is discretized into short
timesteps. The state in each step is then evolved with a time-independent
Hamiltonian.

Another avenue of research is the simulation of open quantum systems.
An open quantum system can always be embedded into a closed one as a
consequence of Stinespring dilation [164]. As such, Hamiltonian simulation
techniques can also be used for the evolution of an open quantum system.
However, extending a quantum system according to Stinespring dilation is
prohibitively costly for practical simulations.

If the open system is Markovian, it is possible to simulate the Linbland
Master equation directly. Kliesch et al. [165] laid the basis for simulation of
Markovian systems by showing that it can be simulated with complexity
polynomial in the evolution time and polylogarithmic in the dimension if
the Lindbladian is k-local (see [165] for a formal definition) using Trotteri-
zation. Childs and Li [166] extended this algorithm to sparse Lindbladians.
Recently, Cleve and Wang proposed an algorithm logarithmic in inverse
error [167], extending LCU techniques to Markovian dynamics.

39

3
Quantum Sort and Shuffle

“The order that our mind imagines is like a net,
or like a ladder, built to attain something. But
afterward you must throw the ladder away,
because you discover that, even if it was useful, it
was meaningless.”

Umberto Eco, The Name of the Rose

Randomness is an essential resource for many classical algorithms used
everywhere from casinos to traffic route optimization. An example of a
common randomized subroutine is a shuffle. Given objects marked 1 to k,
the shuffle produces a sequence of these objects uniformly at random.

In this section, we present a quantum version of the above task: prepare
an equal superposition of all permutations of k objects efficiently. Creating
a superposition is a natural extension of a shuffle because measurement in
the computational basis would reproduce an outcome of a classical shuffle.
Note that we are strictly concerned by permutations without repetitions.

We present two different approaches to a quantum shuffle. The first one
is a quantization of a classical algorithm, the Fisher-Yates (FY) shuffle. The

40

second one approaches shuffle as the opposite of a sort. Indeed, if the origi-
nal list of items is sorted, a sort can be seen as reverting the application of a
shuffle. We extend classical sorting algorithms to the quantum framework
by providing a reversible version with no asymptotic overhead.

Clearly, neither sort nor shuffle is reversible. We define shuffle as an
operation that takes a list in increasing order and outputs a symmetric
superposition. A sort is then the inverse operation to the shuffle in the
sense that a uniform superposition over possible permutations can be
sorted in increasing order.

This chapter is based on the paper Improved techniques for preparing
eigenstates of fermionic Hamiltonians [2] which includes sort and shuffle as
subroutines. I participated in the discussion, contributed with ideas, and
was involved in the writing process. Since I was primarily engaged in
improving antisymmetrization procedure utilizing a quantum sort or a
shuffle, I decided to focus this chapter only on these techniques. My main
contributions were optimizing the algorithm for logarithmic depth and de-
composing the components into elementary gates. Section 3.5 explains how
one can use a sort or a shuffle in quantum chemistry as well as additional
applications of our work. For instance, the algorithm in Chapter 4 uses the
quantum sort as a subroutine.

3.1 How to Shuffle a Deck of Cards

Consider the following problem. We are given m cards, for simplicity
labeled from 1 tom. We want to shuffle them, i.e., output any ordering of
the cards with equal probability. What random swaps should we perform
to shuffle the cards efficiently?

Intuitively, we could pick random pairs of cards and swap them, but we
would need to perform much more than n swaps to guarantee a genuinely
random permutation as can be seen in Fig. 3.1. Another strategy would
be to pick the first card deterministically and exchange its place with a
random card. Unfortunately, a naive approach based on this strategy does
not produce uniform probabilities for all permutations.

A successful algorithm that requiresm swaps ensures that each card is
deterministically chosen only once. Note that a card can be swapped with

41

0 20 40 60 80 100 120
permutation

0.0075

0.0080

0.0085

0.0090

0.0095

p
ro

b
a
b
ili

ty

(a) 10 random swaps

0 20 40 60 80 100 120
permutation

0.0075

0.0080

0.0085

0.0090

0.0095

p
ro

b
a
b
ili

ty
(b) 1000 random swaps

Figure 3.1: Shuffling by performing random swaps is not very effective.
Here we attempt to shuffle 5 cards by picking two cards at random and
swapping them. The procedure is repeated 10 times in (a) and 1000 times in
(b). Then the statistics is collected from 107 repetitions of the shuffle. In an
ideal shuffle, all sequences should be equally probable, and the distribution
in Figures (a) and (b) should be close to flat (up to a sampling error).

itself, i.e., it does not have to move. This algorithm is called a Fisher-Yates
(FY) shuffle [168] or sometimes Knuth’s shuffle [169]. There are several
variants of FY shuffle; we found the following version to be most suitable
for quantization:

Fisher-Yates shuffle

for k = 1, . . . , (m− 1) do
Choose ` uniformly at random from {0, . . . ,k}.
Swap items in positions k and `.

end for

In other words, in the k-th run, the card on k-th position (indexing from
0) is swapped with any of the previous cards. All the possible scenarios are
illustrated as a tree in Figure 3.2 for m = 4. Assuming that all swaps are
random, the FY shuffle produces a random sequence optimally.

42

1 4 6 7
1 4 7 6
1 7 6 4
7 4 6 1
1 6 4 7
1 6 7 4
1 7 4 6

1 4 6 7

7 6 4 1
6 4 1 7
6 4 7 1
6 7 1 4

4 1 6
4 1 6 7
4 1 7 6
4 7 6 1
7 1 6 2

1 6 4 7

4 1 7

4 1 6 7

4 6 1 7
4 6 7 1
4 7 1 6

6 1 4
6 1 4 7
6 1 7 4
6 7 4 1
7 1 4 6

4 6 1

6 1 4 7

1 4 6 7

4 1 6 7

1 4 6 7

k=3k=2k=1

7
6

7
7

Figure 3.2: A tree diagram for the FY shuffle demonstrates all the moves
that the algorithm can make. The blue boxes identify the array entries that
have been swapped at each stage of the shuffle. In the first step, the item
“2” is moved, in the next one item “3” and item “4” is moved last. Note that
the blue boxes also label the largest value in the array truncated to position
k.

3.2 Quantum Approach to a Shuffle

The FY algorithm presented above is not a unitary transformation and as
such, cannot be directly implemented on a quantum computer. Instead,
we propose an algorithm that prepares a uniform superposition of all
sequences, analogously to a classical shuffle.

Here we present our algorithm that implements a shuffle in superposi-

43

tion, i.e. performs the transformation

|r1 · · · rm〉 7→
∑
σ∈Sm

|σ (r1, · · · , rm)〉 , (3.1)

where σ iterates over possible permutations. Note that the choice of the
state is not unique; adding arbitrary phases eiφσ1 to the states |σ (r1, · · · , rm)〉
would still fall within the definition of a quantum shuffle. In particular, the
transformation needed in [2] for fermionic state preparation was

|r1 · · · rm〉 7→
∑
σ∈Sm

(−1)π(σ) |σ (r1, · · · , rm)〉 (3.2)

where π(σ) is the parity of the permutation σ, and we require for the initial
state that rp < rp+1 (necessary for this procedure to be unitary). This means
that we are solving a restricted version of the problem where the input is
always sorted in increasing order.

Although we describe the procedure for a single input |r1 · · · rm〉, our
algorithm may be applied to any superposition of such states. We assume
that there are no repetitions among the shuffled items (this assumption
holds for fermions in the application of the shuffle in [2]) and the array
starts ordered.

We first present a quantum extension of FY shuffle. Unfortunately,
its complexity is worse than that of its classical counterpart. Then we
show an alternative algorithm utilizing sorting. As a part of the algorithm,
we develop a quantum approach to sorting based on sorting networks
and synthesize all the components down to elementary gates. This work
presents an exponential improvement in depth compared to the prior state-
of-art [170].

3.3 Preparing a Uniform Superposition With the
Quantum FY Shuffle

In this Section, we present a quantum version of FY shuffle that gives
an intuitive approach to antisymmetrization. Assuming that we need to

1Of course, some functions φσ can be difficult to implement

44

shuffle m numbers between 0 and N− 1, the size- and depth-complexity
are O(m2 logN).

Two key steps turn the FY shuffle into a quantum algorithm. First, our
quantum implementation of the shuffle replaces the random selection of
swaps with a superposition of all possible exchanges. Unfortunately, this
step presents an overhead compared to the classical FY shuffle. To achieve
this superposition, the random variable is replaced by an equal-weight
superposition 1√

k+1

∑k
`=0 |`〉 in an ancillary register (called choice).

Second, we must reset the choice register at the end of each step. To
accomplish this, we introduce an additional index register, which initially
contains the integers 0, . . . ,m − 1. We shuffle both the length-m input

register and the index register, and the simple form of index enables us to
easily reset choice. The resulting state of the joint input⊗ index register
is still highly entangled; however, provided input was initially sorted in
ascending order, we can disentangle index from input.

As we explained in our paper, the quantum FY shuffle consists 6 steps.
The high level overview of FY shuffle is illustrated in Fig. 3.3, and Fig. 3.4
provides additional detail. We now briefly review these steps and then
explain each in detail.

1. Initialization. Prepare the choice register in the state |0〉. Prepare the
index register in the state |0, 1, . . . ,m− 1〉. Also set a classical variable
k = 1.

2. Prepare choice. Transform the choice register as

|0〉 → 1√
k+ 1

k∑
`=0

|`〉 . (3.3)

3. Execute swap. Swap element k of input with the element specified
by choice. Also swap element k of index with the element specified
by choice. If preparing an antisymmetric superposition, apply a −1
phase to the input register if a non-trivial swap was executed (i.e. if
choice does not encode k).

4. Reset choice. For each ` = 1, . . . ,k, subtract ` from the choice register
if position ` in index is equal to k. The resulting state of choice is |0〉.

45

5. Repeat. Increment k by one. If k < m, go to Step 2. Otherwise,
proceed to the next step.

6. Disentangle index from input. For each k 6= ` = 0, 1, . . . ,m − 1,
subtract 1 from position ` of index if the element at position k in
input is greater than the element at position ` in input. The resulting
state of index is |0, 0, . . . , 0〉, which is disentangled from input.

|0〉⊗η

FY1

. . .

FYη−1

|0〉⊗m

|0〉⊗mdlogme / INIT . . .

DETANGLE

|0〉⊗mdlogme

input / . . . SYMM(input)

Figure 3.3: High-level view of the FY shuffle as it appeared in [2]. The
procedure acts on registers labeled (top to bottom) choice, index and input.
The first step block represents Initialization and the FYk blocks consist of
steps Prepare choice, Execute swap and Reset choice, see Fig. 3.4, for
k between 1 and m− 1. The last block aims to Disentangle index from
input.

After the DETANGLE procedure, the ancillary registers choice and index

are reset to their initial all-zero states and the input register has been
symmetrized. The structure of FY blocks is depicted in Fig. 3.4. Each
block starts with the preparation operator Πk to choice, then we apply
selected swaps between choice and index and between choice and input.
We conclude each block by applying a phase conditioned on choice to
input, and resetting the choice register. These procedures are applied a
total of m− 1 times (for each of k = 1, . . . ,m− 1). Their gate counts and
circuits depths are then multiplied by (m− 1). Disentangling index and
input is the most expensive component, but it is executed only once, so it
contributes only an additive cost to the overall resource requirement.

46

|0〉⊗m / PREPARE choice c c
RESET
choice

|0〉⊗m

index / SWAP(c,k)

input / SWAP(c,k)

Figure 3.4: Detail for the FY block FYk from [2]. The first register (labeled
choice) is used to select the target of the two selected swap steps. Each
block FYk is completed by resetting the choice register back to its origi-
nal state |0〉⊗m, i.e. steps steps Prepare choice, Execute swap and Reset
choice.

We now explain each step of the algorithm and justify their correspond-
ing resource contributions. We briefly summarize them here. Step 1 requires
O(m logm) gates but has a negligible depth O(1). Step 2 requires O(m)
gates and has depth complexity O(m). Step 3 requires O(m logN) gates
and also has depth O(m logN). Step 4 requires O(m logm) gates but has
depth only O(logm). As Step 2 to Step 4 are repeatedm− 1 times, the total
gate count before Step 6 is O(m2 logN). Finally, Step 6 requires O(m2 logN)
gates and has depth O

(
m2 [log logN+ logm]

)
. Thus the total gate count

of the quantum FY shuffle is O(m2 logN). Because most of the gates need
to be performed sequentially, the overall circuit depth of the algorithm is
also O(m2 logN).

3.3.1 Initialization

We assume that the register choice is initialized in the state |0〉⊗m. The
index register is set to the state |0, 1, . . . ,m− 1〉 that represents the positions
of the entries of input in ascending order. Because each of them entries in
index must be capable of storing any of the values 0, 1, . . . ,m− 1, the size
of index is mdlogme qubits. This step requires O(m logm) single-qubit
gates that can be applied in parallel with circuit depth O(1) ifm is a power
of 2. Otherwise, we can create an arbitrary uniform superposition using a
method from from [73].

47

3.3.2 FY Blocks

Each FY block consists three stages: prepare choice, executed selected
swaps, and reset choice. The exact steps depend on the encoding of the
choice register; in particular, whether it is binary or unary.

We usem qubits (labelled 0, 1, . . . ,m), define

|null〉 = |0〉⊗m (3.4)

and encode
|`〉 = X` |null〉 , (3.5)

where X` is the Pauli X applied to the qubit labelled `. |`〉 is simply the
unary encoding of the value `.

An advantage of our encoding for choice is that the selected swaps re-
quire only single-qubit controls. A distinct disadvantage is an unnecessary
space overhead. While binary encoding would save some space, it would
also increase the time cost.

Prepare choice

Our preparation procedure has two stages. First, we prepare an alternative
unary encoding on k qubits Sk = 1√

k
(|10 . . . 0〉+ |110 . . . 0〉+ · · ·+ |1111 . . . 1〉).

Formally we can define Sk recursively

S1 = |1〉

Sk =

√
k− 1√
k
Sk−1 ⊗ |0〉+ 1√

k
|1〉⊗k . (3.6)

We can prepare |Sk〉 in this encoding with a cascade of controlled rotations
of the form

Rj :=
1√
j+ 1

(
1 −

√
j√

j 1

)
, (3.7)

see Fig. 3.5. This is a total of k+ 1 gates, all of them applied sequentially.

Second, we need to translate Sk into the desired unary encoding. Each
|11 . . . 100 . . . 0〉 must be turned into |00 . . . 010 . . . 0〉. This can be accom-
plished with a series of CNOTs 3.5. Thus the total gate count and depth for
preparing choice are O(k) = O(m).

For the circuit for choice preparation, please see Figure 3.5.

48

0 X . . .

1 Rk • . . . •
2 Rk−1 . . . •
...

. . .
. . .

k − 1 . . . •
k . . . R1 •

Figure 3.5: Circuit for preparing the choice register at the beginning of
block FYk from [2]. See Eq. (3.7) for the definition of R`. First we prepare
Sk state (3.6) using a cascade of controlled rotations. Then we turn it into a
unary encoding through a series of CNOTs.

Selected Swap

The next step is to implement the selected swap operation:

SELSWAPk :=

k−1∑
c=0

|c〉〈c|⊗ SWAP(c,k), (3.8)

where the swapped states are either in the index or the input registers
and controlled by the choice register. The unary encoding of c the choice

register allows for a simple implementation of SELSWAP; see Fig. 3.6.

Observe that only the first k+1 subregisters are involved of each choice,
index and input. For each i = 0, 1, . . . ,k, index[i] is of size dlogmewhereas
input[i] is of size dlogNe. Hence, the circuit consists of kdlogme+kdlogNe
ordinary 3-qubit controlled-SWAP gates that for the most part must be ex-
ecuted sequentially, see Fig. 3.6. This is the operation responsible for the
overhead compared to a classical swap. While the randomized FY algo-
rithm requires only one (random) swap of registers, the coherent SELSWAPk
has complexity O (m logN) for both gate count and depth.

49

choice[0] • . . . • . . .

choice[1] • . . . • . . .

...
. . .

. . .
choice[k − 1] . . . • . . . •

choice[k]

index[0] / ×

index[1] / ×
...

. . .

index[k − 1] / . . . × . . .

index[k] / × × . . . × . . .

input[0] / . . . × . . .

input[1] / . . . × . . .
...

. . .

input[k − 1] / ×
input[k] / . . . × × . . . ×

Figure 3.6: Implementation of the two selected swaps SELSWAPk as part
of FYk, with the unary-encoded choice as the control register and index

and input as target registers. The figure is from [2]. As each wire of the
target registers stands for several qubits, each controlled-SWAP is to be
interpreted as many bitwise controlled-SWAPs.

Resetting choice register

Next, we need to erase the choice register at the end of each FY block. We
can reverse the computation because we previously executed swaps on both
index and input. The erasure is performed by scanning index to find out

50

which value of kwas encoded into choice. We erase choice by applying
a NOT operation to choice[`] if index[`] = k. This can be expressed as
a multi-controlled-NOT, as illustrated by an example in Figure 3.7. The
control sequence of the multi-controlled-NOT is a binary encoding of the
value k.

choice[`]

0

1 •
2

index[`]

{
3 •
4
...

...

dlog ηe − 1

Figure 3.7: Circuit for resetting choice register as part of iteration block
FYk from [2]. In this example k = 10 and the control sequence is its binary
encoding. The NOT erases choice[`] if index[`] = k.

For compiling multiple controls, see Fig. 4.10 in [81]. Each dlogme-
controlled-NOT can be decomposed into a network of O(logm) gates
(predominantly Toffolis) with depth O(logm). Because the k+ 1 multi-
controlled-NOTs (for ` 6 k 6 m − 1) can all be executed in parallel,
resetting the choice register thus requires a circuit with O(m logm) gates
but only O(logm) depth.

3.3.3 Disentangling index from input

The last task is to clean up and disentangle index from input by resetting
the former to the original state |0〉⊗mdlogme while leaving the latter in the
desired antisymmetrized superposition. The key observation is that the
element we moved (blue box in Fig. 3.2) is always the maximum from the
array truncated to position k. We can use this observation to reset index as
follows.

51

We compare the value carried by each of the m subregisters input[`]
(labeled by position index ` = 0, 1, . . . ,m− 1) with the value of each other
subregister input[` ′] (` ′ 6= `), thus requiring m(m − 1) comparisons in
total. Note that these subregisters of input have all size dlogNe. Each time
the value held in input[`] is larger than the value carried by any other of
the remaining m− 1 subregisters input[` ′], we decrease the value of the
corresponding `th subregister index[`] of index by 1. If the value carried by
input[`] is smaller than input[` ′], we do not decrement the value of index[`].
This way we identify the original position of the number currently encoded
at input[`] at thus the value in index[`] subregister. After accomplishing
all the m(m − 1) comparisons within the input register and controlled
decrements, we have reset the index register state to |0〉⊗mdlogme while
leaving the input register in the antisymmetrized superposition state.

The comparisons between the values of two subregisters of input (each
of size dlogNe) can be performed with O(logN) gates and O(log logN)
depth using a quantum comparison from Section 3.4.2. The oracle’s output
is used to control the ‘decrement by 1’ operation, after which the oracle is
used again to uncompute the ancilla holding its result.

Decrementing the value of the dlogme-sized index subregister index[`]
(for any ` = 0, 1, . . . ,m− 1) by the value 1 can be achieved by a circuit
depicted in Figure 3.8.

Each decrement consists of a total of dlogme multi-controlled-NOTs.
Each multi-controlled-NOT involves n = dlogme− 1, . . . , 0 controls plus
the control on the qubit holding the result of the comparison. These gates
can be decomposed into O(n) Toffoli gates (see [81]), but the majority of
the involved Toffoli gates for different values of n will effectively cancel
each other out. The resulting cost is then O (logm) gates and no ancillae
since we can reuse qubits from choice register.

3.3.4 Complexity Analysis of the FY shuffle

Putting everything together, the overall circuit size for this step amounts to
O (m(m− 1) [logN+ logm]) predominantly Toffoli gates, which can then
be further decomposed into CNOTs and single-qubit gates (including T
gates) in well-known ways. Becausem 6 N, we thus report O(m2 logN) for

52

(a) (b)
0 0

1 1

2 = 2

3 3

4 4

5 5

|0〉 • • • |0〉
|0〉 • • • |0〉
|0〉 • |0〉

Figure 3.8: Circuit implementing ‘decrement by 1’ operation, applied to
index[`] subregisters of size dlogme from [2]. (a) Example form = 64. (b)
Decomposition into a network of O (logm) Toffoli gates using O (logm)
ancillae.

the overall gate count for this step, while its circuit depth is O(m2 log logN+
m2 logm).

3.4 Symmetrization Through Quantum Sorting

Our second approach to (anti)symmetrization uses a sorting algorithm.
Classically, sorting is not used as a part of a shuffle, because the FY shuffle
is more efficient. The situation is different for quantum algorithms, making
an approach utilizing a sort more appealing. Sadly, most well-known
classical algorithms are not well-suited for quantization. Quicksort’s worst
case runtime, m2 applies every time if run in superposition. A standard
recursive application of merge sort requires a large space overhead. Other
algorithms, for example, heapsort, implement operations whose position
depends on values stored in the registers. This overhead is analogical

53

to selected swaps in FY shuffle. In this Section, we show that sorting
networks are well-suited for quantum algorithms and give detailed circuits
to implement them.

Quantum sort can speed up the preparation of a symmetrization and
antisymmetrization of sequences. Sorting for antisymmetrization was
originally proposed in [170], but has complexity O(m2 logN) and is not
optimized for depth.

The algorithm that we describe now has the complexity O(m logm logN)
and depth O(logm log logN). We first review the four main steps and then
explain them in detail:

1. Prepare seed. Let η > m2. In this step, we prepare an ancillary
register called seed in an even superposition of all possible length-m
strings of the numbers 0, 1, . . . ,η − 1 in binary encoding. If η is a
power of two, preparing seed consist of the Hadamard transform.

2. Sort seed. Sort seed using a quantum sorting network. This requires a
modification of a sorting network that encoded the performed swaps
in a second ancillary register called record. Comparing numbers is
also performed coherently and can be parallelized. There are several
known sorting networks with polylogarithmic runtime, as we discuss
below.

3. Delete collisions from seed. At this point, we need to remove re-
peated entries from seed. Due to the choice of η, repetitions are
rare as a consequence of the birthday paradox. As we consider only
permutations without repetition, we need to identify and delete the re-
peats. We further prove that the resulting state of seed is disentangled
from record, meaning seed can be discarded after this step.

4. Apply the reverse of the sort to target. Using the comparator values
stored in record, we apply each step of the sorting network in reverse
order to the sorted array target. The resulting state of target is an
evenly weighted superposition of each possible permutation of the
original values. If we wish to include a −1 phase for each permutation,
we can apply a Z gate after each swap.

54

Step 4 is the key step for preparing a symmetric superposition. Having
prepared (in Step 1-Step 3) a record of the in-place swaps needed to sort a
symmetrized, collision-free array, we undo each of these swaps in turn on
the sorted target. We demonstrate the algorithm on an example in Fig. 3.9.

In the next Section, we explain sorting networks and their implementa-
tion on a quantum computer. Then, we show how to compare two numbers
coherently, which is an elementary operation necessary in sorting. In the
next Subsection 3.4.3, we explain Step 3, Delete collisions. We conclude
this section by connecting all the components and computing the complex-
ity of our algorithm.

We employ a sorting network, a sorting method used in hardware,
because sorting networks have comparisons and swaps at a fixed sequence
of locations.

3.4.1 Quantum Sorting Network

Sorting networks are logical circuits that consist of wires carrying values
and comparator modules applied to pairs of wires, that compare values
and swap them if they are not in the correct order, see Fig. 3.10. They
were developed for sorting on a hardware level. Sorting networks are
data-oblivious, meaning that performed operations do not depend on the
input which makes them ideal for implementation in quantum computers.

Wires represent bit strings (integers stored in binary) in classical sorting
networks and qubit strings in their quantum analogs. A classical compara-
tor2 is a sort on two numbers. In other words, on an ordered pair of inputs
A and B, a comparator implements the transformation

comparator ([A,B]) = [min(A,B), max(A,B)] , (3.9)

producing an ordered pair of A, B in increasing order. A quantum com-
parator is its reversible version where we record whether the items were
already sorted (ancilla state |0〉) or the comparator needed to apply a swap
(ancilla state |1〉); see Figure 3.11.

2The name comparator can be somehow misleading because this step involves a
conditional step in addition to the comparision. Nevertheless, this is is the term used in
the literature.

55

Steps Prepare seed, Sort seed, and Delete collisions from seed

→ |0〉 |0〉 → |0〉 |0〉 |no swap〉 → ((((((((
|0〉 |0〉 |no swap〉

→ |0〉 |1〉 → |0〉 |1〉 |no swap〉 → |0〉 |1〉 |no swap〉
→ |0〉 |2〉 → |0〉 |2〉 |no swap〉 → |0〉 |2〉 |no swap〉
→ |0〉 |3〉 → |0〉 |3〉 |no swap〉 → |0〉 |3〉 |no swap〉
→ |1〉 |0〉 → |0〉 |1〉 | swap 〉 → |0〉 |1〉 | swap 〉
→ |1〉 |1〉 → |1〉 |1〉 |no swap〉 → ((((((((

|1〉 |1〉 |no swap〉
→ |1〉 |2〉 → |1〉 |2〉 |no swap〉 → |1〉 |2〉 |no swap〉
→ |1〉 |3〉 → |1〉 |3〉 |no swap〉 → |1〉 |3〉 |no swap〉

|0〉 |0〉 → |2〉 |0〉 → |0〉 |2〉 | swap 〉 → |0〉 |2〉 | swap 〉
→ |2〉 |1〉 → |1〉 |2〉 | swap 〉 → |1〉 |2〉 | swap 〉
→ |2〉 |2〉 → |2〉 |2〉 |no swap〉 → ((((((((

|2〉 |2〉 |no swap〉
→ |2〉 |3〉 → |2〉 |3〉 |no swap〉 → |2〉 |3〉 |no swap〉
→ |3〉 |0〉 → |0〉 |3〉 | swap 〉 → |0〉 |3〉 | swap 〉
→ |3〉 |1〉 → |1〉 |3〉 | swap 〉 → |1〉 |3〉 | swap 〉
→ |3〉 |2〉 → |2〉 |3〉 | swap 〉 → |2〉 |3〉 | swap 〉
→ |3〉 |3〉 → |3〉 |3〉 |no swap〉 → ((((((((

|3〉 |3〉 |no swap〉

The resulting state on
seed and record.

(
|0〉 |1〉+ |0〉 |2〉+ |0〉 |3〉+ |1〉 |2〉+ |1〉 |3〉+ |2〉 |3〉

)
⊗
(
|swap〉+ |no swap〉

)

Step Apply the reverse
of the sort to target.

(
|4〉 |7〉

)(
|swap〉+ |no swap〉

)
→
(
|4〉 |7〉+ |7〉 |4〉

)
|0〉

Figure 3.9: Example of the symmetrization by sorting for N = 4 and m = 2.
Steps 1-3 operate only on ancillary registers seed and record and aim to
prepare the desired superposition in record. In step 4 (last box), we use
record and a reverse sort to symmetrize the data stored in target.

The key feature of sorting networks is that the positions of comparators
are predetermined. Therefore, they cannot depend on the inputs, unlike the

56

3

4

2

1

3

2

4

1

Figure 3.10: A simple sorting network from [171]. The sorting network on 4
inputs on the left hand side that consists of five “comparators”, elementary
components that compare two numbers and potentially swap them, see
Fig. 3.11. The right-hand side figure demonstrates how to sort the input
3-2-4-1 in this network.

A • A / • × min(A,B)

B • = B / • × max(A,B)

|0〉 A > B •

Figure 3.11: The standard notation for a comparator is indicated on the
left-hand side from [2]. Its implementation as a quantum circuit is shown
on the right. In the first step, we compare two inputs with values A and B
and save the outcome (1 if A > B is true and 0 otherwise) in a single-qubit
ancilla. In the second step, conditioned on the value of the ancilla qubit,
the values A and B in the two wires are swapped.

comparisons in heap sort. This makes sorting networks viable candidates
for quantum computing. Many of the sorting networks are also highly par-
allelizable, thus allowing low-depth, often polylogarithmic, performance.
Applications of sorting networks in quantum algorithms has previously
been considered in Refs. [142, 172, 173].

Our algorithm allows for any choice of sorting network. Several stan-
dard sort algorithms, for example, the insert and bubble sorts, can be
represented as sorting networks. However, these algorithms have inferior
time complexity and depth. More efficient runtime can be achieved, for
example, using the bitonic sort [174,175], which is illustrated for 8 inputs in
Figure 3.12. The bitonic sort uses O(m log2m) comparators and O(log2m)
depth, thus achieving an exponential improvement in depth compared

57

to conventional sorting techniques. Similar performance can be obtained
using an odd-even mergesort [174].

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Figure 3.12: Example of a classical bitonic sort on 8 inputs from [2]. Com-
parators in each dashed box can be applied in parallel for depth reduction.
A quantum version of of the bitonic sort uses the same order of swaps with
comparators defined in Fig. 3.11.

The asymptotically best sorting networks have depth O(logm) and
complexity O(m logm), though there is a large constant which means they
are less efficient for realistic m [176, 177]. There is also a sorting network
with O(m logm) complexity with a better multiplicative constant [178],
though its depth is O(m logm) (so it is not logarithmic).

For a small number of inputs to be sorted (up to m = 20), very tight
bounds have been derived for optimized circuit depth as well as the overall
number of comparators. Knuth [169] and later Codish et al. [179] gave
networks for sorting up to 17 numbers that were later shown to be optimal
in depth, and up to m 6 10 also optimal in the number of comparators.
Optimizations for up to 20 inputs have recently been achieved, see Table 1
in [179]. For illustration, the best known sorting networks for 20 numbers
require depth 11 and 92 comparators, with lower bounds reported as 10
and 73 respectively. More extensive sorting networks can be built up by
an in-place merging of smaller sorting networks, but the construction is
sub-optimal.

Assume that a quantum sorting network hasm wires, where each wire
represents a quantum register with d qubits (i.e., d = logN). We can obtain
the resource requirements for a quantum sort by taking a (classical) sorting
network and multiplying its resources in terms of comparators by those

58

needed for a quantum comparator. A quantum comparator consists of a
procedure for comparing two numbers explained in Section 3.4.2 and a
controlled swap on registers of size d, see Fig. 3.11.

3.4.2 Quantum Comparator

Here we describe how to reversibly implement the comparison of the value
held in one register with the value carried by a second equally-sized register,
and store the result (larger or not) in a single-qubit ancilla.

We need to use it for implementing the comparator modules of quantum
sorting networks as well as in our antisymmetrization approach based on
the quantum FY shuffle. We first explain a straightforward method for
comparison with depth linear in the length of the involved registers. In the
second step, we then convert this prototype into an algorithm with depth
logarithmic in the register length using a divide and conquer approach.

Let us compare two values A and B encoded as binaries in two equally
sized registers, A and B. Intuitively, we can compare the registers in a bit-by-
bit fashion, starting with their most significant bits and going down to their
least significant bits. At the very first occurrence of an i such that A[i] 6= B[i],
i.e., either A[i] = 1 and B[i] = 0 or A[i] = 0 and B[i] = 1, we know that A > B
in the first case and A < B in the second case. If A[i] = B[i] for all i, then
A = B.

If we are performing this comparison in superposition, we no longer
have the option of stopping once we found the point of difference. Hence,
we employ two ancillary registers denoted A ′ and B ′, that each consist of
d qubits initialized |0〉⊗d. These registers will encode the results of the
comparison. All the bitwise comparisons except for the first one will be
conditioned on the values stored in A ′ and B ′. Once we found the most
significant bit where A[i] 6= B[i], we flip the bit into 1 in A ′ if A > B or flip
the bit into 1 in B ′ if B > A. This means that the results of all remaining
comparisons is insignificant and should not be recorded. Instead, we carry
the result of the comparison of the most significant bits all the way to the
least significant bit and use it for reading the result.

We illustrate the naive comparison protocol on an example in Table 3.1.
While this algorithm works, it has the drawback that the bitwise compari-

59

Register i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8
A 0 1 0 0 1 0 1 0 1
B 0 1 0 0 0 1 1 1 0
A ′ 0 0 0 0 1 1 1 1 1
B ′ 0 0 0 0 0 0 0 0 0

Table 3.1: Example illustrating the idea of reversible bitwise comparison.
The index i labels the bits of the registers. At i = 0 we compare the most
significant bits A[0] and B[0], and write 1 into ancilla A ′[0] if A[0] > B[0],
or write 1 into ancilla B ′[0] if A[0] < B[0]. In our example, the ancillas
remain as 0. While both A ′[i− 1] and B ′[i− 1] are zero, we keep comparing
the numbers bit by bit encoding the result into A ′[i] and B ′[i]. The first
occurrence of A[i] 6= B[i] is for i = 4, at which stage the value of ancilla A ′[4]
is switched to 1, as A[4] > B[4]. For the remaining steps, the remaining bits
of A and B will not be compared anymore. Instead, in each step we flip
each remaining bit of A ′ to 1, whereas all bits of B ′ remain 0. Thus, the last
bit of A ′ will be 1 while B ′[8] is 0, implying A > B.

son is conducted sequentially, which results in circuit-depth scaling O(d). It
also uses more ancilla qubits than necessary.

We can reduce the number of ancillae and the depth of the algorithm
with a divide-and-conquer approach. Let us split the register A into two
parts: A1 consisting of the first approximately d/2 bits and A2 consisting of
the remaining approximately d/2 bits. Split register B in the very same way
into subregisters B1 and B2. We can then determine which number is larger
(or whether both are equal) for each pair (A1,B1) and (A2,B2) separately
in parallel (using an unspecified method) and record the results of the two
comparisons in ancilla registers (A ′1, B ′1), (A

′
2, B ′2). The least significant bits

of these four ancilla registers can be then used to deduce whether A > B
or A < B or A = B with just a single bitwise comparison. Thus, we effec-
tively halved the depth by dividing the problem into smaller problems and
merging them afterward. This approach can be also be used for comparing
subregisters, giving a recursive algorithm. We now explain its bottom-up
implementation.

First, slice A and B into pairs of bits – the first slice contains A[0] and
A[1], the second slice consists of A[2] and A[3], etc., and in the very same

60

way for B. The critical step takes the corresponding slices of A and B and
overwrites the second bit of each slice with the outcome of the comparison.
We ignore the first bit of each slice and store the comparison results stored
in the second bits. Therefore, the second bits become the next layer on
which bitwise comparisons are performed again. We denote the i’th bit
forming the registers of the jth layer by Aj[i] and Bj[i]. The original registers
A and B correspond to j = 0: A0 ≡ A and B0 ≡ B. The part of the circuit
that implements a single bitwise comparison is depicted in Figure 3.13. We
denote the corresponding transformation ‘COMPARE2’, such that it takes
two bits from Aj and two bits of Bj registers and sortes the outcome of the
comparison in the bits Aj+1[i],Bj+1[i] storing the comparison result. Note
that the comparison can be performed in place with the use of a single
ancilla.

x1 • • temp

y1 • × temp

x0 × x′

y0 • × • y′

|1〉 × temp

Figure 3.13: The input pair is (x,y) = (x0 + 2x1,y0 + 2y1). The output
pair is (x′,y′) and will satisfy sign(x′ − y′) = sign(x− y). Output qubits
marked “temp” store values that are not needed, and are kept until a later
uncompute step where the inputs are restored. Each Fredkin gate within
the circuit can be computed using 4 T gates and (by storing an ancilla
not shown) later uncomputed using 0 T gates [91, 180]. This circuit was
previously published in [2].

At each step, comparisons of the pairs of the original arrays can be
performed in parallel, and produce two new arrays with approximately
half the size of the original ones to record the results. Thus, at each step,

61

we approximately halve the size of the problem, while using a constant
depth for computing the results. The basic idea is illustrated in Figure 3.14.
This procedure is repeated for dlogde steps until registers Afin := Adlogde and
Bfin := Bdlogde both of size 1 have been prepared.

The parallelized algorithm is perfectly suited for comparing arrays
whose length d is a power of 2. If d is not a power of 2, we can either
pad A and B with 0s prior to their most significant bits without altering
the result, or introduce comparison of single bits (using only the first two
gates from the circuit in Figure 3.13 with targets on Aj+1 and Bj+1 registers
respectively).

Formally, we can express our comparison algorithm as follows, here
assuming d to be a power of 2:

Low-depth comparison

for j = 0, . . . , logd− 1 do
for i = 0, . . . , size(Aj)/2 − 1 do(

Aj+1[i],Bj+1[i]
)
= COMPARE2(Aj[2i],Bj[2i],
Aj[2i+ 1],Bj[2i+ 1])

end for
end for
return (Alogd−1[0],Blogd−1[0])

The key feature of this algorithm is the parallelization of all the op-
erations of the inner loop. Since one application of COMPARE2 requires
only constant depth and a constant number of operations, our comparison
algorithm requires only depth O(logd).

The above-constructed comparison algorithm can be used to output a
result that distinguishes between A > B, A < B and A = B. Its reversible
execution results in the ancillary single-qubit registers Afin and Bfin generated
in the very last step of the algorithm holding information about which
number is larger or whether they are equal. Indeed, Afin[0] = Bfin[0] implies
A = B, Afin[0] < Bfin[0] implies A < B, and Afin[0] > Bfin[0] implies A > B.
The three cases are separated into three control qubits by using the circuit
shown in Figure 3.15. These individual control qubits can be used to control
further conditional operations that depend on the result of the comparison.

After the output bit has been produced, we reverse the comparison

62

1 1 0 0 1 1 0 1 0 1 0 0

1 1 0 1 0 1 0 1 1 1 0 1

1 0 1 1 0 0

1 1 0 1 1 1

0 1 0

1 0 1

0 0

1 1

0

1

A

B

A1

B1

A2

B2

A3

B3

A4

B4

Figure 3.14: Parallelized bitwise comparison. Notice that each step reduces
the size of the problem by approximately one half, while using a constant
depth for computing the results.

algorithm to clean all the ancillary registers and restore the input registers
A and B.

The actual comparison of two numbers thus takes as inputs two size-d
registers A and B (holding values A and B) and a single-qubit ancilla q

initialized to |0〉. It reversibly computes whether A > B is true or false by
executing the parallelized comparison process presented above. It copies
the result (which is stored in Afin) to ancilla q. It then executes the inverse
of the comparison process. It outputs A and B unaltered and the ancilla
q holding the result of the oracle: q = 1 if A > B and q = 0 if A 6 B.

63

x • x

y • • x=y

|0〉 • x<y

|0〉 x>y

Figure 3.15: A circuit that determines if two bits are equal, ascending, or
descending from [2]. When the comparison is no longer needed, the results
are uncomputed by applying the circuit in reverse order.

As shown, this oracle has circuit size O(d) but depth only O(logd) and a
T-count of 8d+O(1).

The second part of the comparator consists of conditional swaps on two
registers of size d. Since all the single-bit swaps are conditioned on the same
ancilla qubit, it may appear that these swaps should be applied sequentially,
which would imply depth scaling O(d). However, the conditional swaps
can also be parallelized by first copying the bit of the ancilla holding the
result of the comparison to additional ancillae initialized in |0〉 states. Such
an expansion of the result to d copies can be attained with a parallelized
arrangement of O(d) CNOTs but with circuit depth only O(logd). After
copying, all the d controlled elementary swaps can then be executed in par-
allel (by using the additional ancillae) with circuit depth only O(1). Next,
the d− 1 additional ancillae used for holding the copied result of compari-
son are uncomputed again, by reversing the copying process. While this
procedure requires O(d) ancillary space overhead, it optimizes the depth.
The overall space overhead of the quantum comparator is also O(d).

Taking d = dlogNe (the largest registers used in Step 4 of our sort-
based antisymmetrization algorithm), conducting the quantum bitonic sort,
for instance, thus requires O(m log2(m) logN) elementary gates but only
O(log2(m) log logN) circuit depth.

64

Similar scaling can be achieved using an algorithm from Draper et
al. [181]. As presented, our work uses slightly fewer Toffoli gates and
ancillae compared to [181]. However, the number of CNOTs and overall
depth are larger.

3.4.3 Analysis of ‘Delete Collisions’ Step

In this Section, we explain how repeated items (collisions) can be deleted
from seed. This step is non-deterministic and involves a measurement.
We have to show that our algorithm is highly likely to succeed because
collisions are relatively rare for a given set of parameters. If this part fails,
we can restart the algorithm and repeat steps 1-3. We require that the
chance of failure is at most 1

2 ; therefore, the expected number of runs of
steps 1-3 is at most 2. Additionally, because we want to uncompute record

during the final step of our algorithm, we have to show that the resulting
state of seed is disentangled from record.

Let us first look at the state of seed after Step 1

1
ηm/2

η−1∑
`0,...,`m−1=0

|`0, . . . , `m−1〉 . (3.10)

The state (3.10) can be decomposed into a part with no repetitions and
one when repetitions occur. Clearly, these two subspaces are mutually
orthogonal.

To show that the probability of success is high, we need to compute the
support of (3.10) on the subspace with no repetitions. This task is exactly
opposite to the birthday problem [182]; we want the likelihood of `i = `j
for any i 6= j to be small.

Comparing the number of permutations without and with repetitions
(just as for the generalized birthday problem), we can show that the norm
of the projection onto the repetition-free subspace is

m!
ηm

(
η

m

)
. (3.11)

65

Using Proposition A.1 in [182], the probability of success is lower
bounded as

Pr(success) =
m!
ηm

(
η

m

)
> 1 −

m(m− 1)
2η

, (3.12)

which is more than 1/2 for η > m2.

To detect the repetitions in our algorithm, we need to compare the
values of `i in seed. It is advantageous to perform the comparisons in
Step 3 after sorting the registers because then it is only necessary to check
adjacent entries. Sorting does not affect whether there are repetitions. The
repetition-free outcome can be achieved after fewer than two attempts on
average. One can improve the success probability by using a larger η or by
using amplitude amplification.

We are left to show that seed is not entangled with record after Step
3. After Step 1, the state of seed⊗ record projected to the repetition-free
subspace is proportional to∑

06`0<...<`m−1<η

∑
σ∈Sm

|σ (`0, . . . , `m−1)〉seed |ι〉record . (3.13)

The register record will encode the performed permutation, in terms of
performed swaps, applied to seed. At this stage, record is initialized to the
identity permutation denoted as ι.

In Step 2, we sorted seed by applying a series of swaps σ1, . . . ,σT which
we recorded in record. Since the swaps were intentionally chosen to order
the elements in seed, we effectively uncompute the initial permutation σ.
Formally,

σT ◦ · · · ◦ σ1◦ = σ−1. (3.14)

Note that the repetitions-free subspace is closed under sorting. There-
fore, we do not need to consider repeated elements in this analysis.

All together, Steps 1-2 transform seed⊗record projected on the repetition-
free subspace as

∑
06`0<...<`m−1<eta

∑
σ∈Sm

|σ (`0, . . . , `m−1)〉seed |ι〉record (3.15)

→
∑

06`0<...<`m−1<η

|`0, . . . , `m−1〉seed
∑
σ∈Sm

|σ1, . . . ,σT 〉record (3.16)

66

In Step 3, we can flag and eliminate repetitions which leaves us with
the state in Eq. (3.16). Notice that the states in registers seed and record

are not entangled. Since we only need the state in record, see Fig. 3.9, we
can safely discard seed.

3.4.4 Complexity Analysis of the Shuffle via Sorting

We now give the complexity of the shuffle via sorting by collecting the com-
plexities of its components. Assuming we use an asymptotically optimal
sorting network, the circuit depth for our algorithm is O(logm log logN)
and the gate complexity is O(m logm logN). The dominant cost of the
algorithm comes from Step 2 and Step 4, each of which has O(m logm)
comparators that can be parallelized to ensure the sorting network ex-
ecutes only O(logm) comparator rounds. Each comparator for Step 4
has a complexity of O(logN) and a depth of O(log logN), as we show in
Sec. 3.4.2. The comparators for Step 2 have complexity O(logm) and depth
O(log logm), which is less because m < N. Thus Step 2 and Step 4 each
have gate complexity O(m logm logN) and runtime O(logm log logN).

The other two steps in our algorithm have smaller cost. Step 1 has con-
stant depth and O(m logm) complexity. Step 3 requires O(m) comparisons
because be only need to compare adjacent registers on seed after sorting.
These comparisons can be parallelized over two rounds, with complexity
O(m logm) and circuit depth O(log logm). Then the result for any of the
registers being equal is computed in a single qubit, which has complexity
O(m) and depth O(logm). Thus the complexity of Step 3 is O(m logm)
and the total circuit depth is O(logm). Thus, our algorithm has an expo-
nential improvement in depth over the proposal in Refs. [170, 183]. We also
have a quadratic improvement in gate complexity, which is Õ(m) for our
algorithm but Õ(m2) for Refs. [170, 183].

The depth of our algorithm is likely optimal for symmetrization, at
least in terms of the m scaling. Symmetrization takes a single computa-
tional basis state and generates a superposition ofm! computational basis
states. Each single-qubit operation can increase the number of states in
the superposition by at most a factor of two, and two-qubit operations
can increase the number of states in the superposition by at most a factor
of four. Thus, the number of one- and two-qubit operations is at least

67

log2(m!) = O(m logm). In our algorithm, we need this number of opera-
tions between the registers. If that is true in general, then m operations can
be parallelized, resulting in minimum depth O(logm).

Our quoted asymptotic runtime and gate complexity scalings assume
the use of sorting networks that are asymptotically optimal. However,
these algorithms have a large constant overhead making it more practical
to use an odd-even mergesort, leading to depth O(log2m log logN). Note
that is possible to obtain complexity O(m logm logN) with a better scaling
constant using the sorting network of Ref. [178] but worse depth. All
together, we can summarize our results in the theorem below:

Theorem 5 (Quantum shuffle)
Define a quantum shuffle as the transformation

|r1 · · · rm〉 →
∑
σ∈Sm

|σ (r1, · · · , rm)〉 , (3.17)

where 0 < r1 < r2 · · · < rm < N are encoded in binary and σ iterates over the
permutations. The quantum shuffle can be performed using O(m log2m logN)
gates and depth O(logm log logN).

3.5 Applications

The need for a quantum shuffle arises in the state preparation problem in
quantum chemistry with first quantization as outlined in Fig. 3.16.

State preparation is the first step for eigenstate (and particularly ground
state) preparation algorithms. The goal of this step is to prepare a state that
has a significant overlap with the ground state. The state is specified by
listing the orbital for each fermion. Note that we described the algorithm as
working on a state in the computational basis but a superposition of states
is also possible. We can index the orbitals as 0 toN1. Since the number of
orbitals is typically much larger than the number of fermions m, we can
perform the Delete collisions step correctly. Since it represents fermions, the
state must be completely antisymmetric (exchanging two fermions leads to
a (−1) phase). As a result, no two fermions can occupy the same state.

68

prepare
ordered

states

antisym-
metrization

a version
of phase

estimation

Hamiltonian
simulation

Did we
obtain a

satisfying
energy

estimate?

output
the energy

restart

no

yes

state preparation

Figure 3.16: An overview of an algorithm for quantum chemistry in the
first quantization based on the proposal [183]. The goal of this algorithm is
to compute the ground state energy of a given Hamiltonian. The diagram
presents the steps of the algorithm left to right. The algorithm works by
first preparing a state that has a nontrivial overlap with the ground state
and then using a version of phase estimation from Sec. 2.2.2 to extract the
ground state energy. The state preparation phase consists of preparing a
superposition of ordered states |r1 · · · rm〉 and their subsequent antisym-
metrization. This fermionic state is then used in phase estimation with
Hamiltonian simulation used for the unitary U. If phase estimation fails to
produce the desired state, the whole procedure is restarted using the same
parameters.

Abrams and Lloyd [183] proposed the first algorithm for preparing
a completely antisymmetric state. First, we prepare an unsymmetrized
state |r1, . . . , rm〉 where 0 6 r1 6 r2 6 · · · 6 rm < N, or a superposition of
such states. Then, they use sorting and un-sorting for antisymmetrization.
However, they suggest using Heapsort, whose quantum complexity is
m2 logm comparisons and do not go into implementation details.

Modification of the shuffle to prepare a completely antisymmetric state
one comes in Step 4 and can be accomplished by applying Z gates with
each swap. We select a target qubit in the input register – it does not matter
which. Then, for each ` = 0, 1, . . . ,k− 1, we apply a phase gate controlled
on position ` of choice to the target qubit. The result is that input has
picked up a phase of (−1) if choice specified a value strictly less than k.
The total number of gates is k = O(m), while the depth can be made O(1).

69

Quantum sort and comparison has applications beyond symmetrization
and antisymmetrization. We utilized a quantum search in Chapter 4 to
produce a time ordering. A quantum comparison procedure introduced
here is essential for a black-box state preparation algorithm [116]. We used
a similar technique in Chapter 4.

3.6 Conclusion

To conclude this Section, we have presented an algorithm for symmetriz-
ing (or antisymmetrizing) a sorted, repetition-free quantum register. We
propose two algorithms to accomplish this case. The first one is a quantum
version of FY shuffle. While FY shuffle is classically optimal, its quantum
version requires linear overhead to replace random swaps with preparing
superposition over all possible swaps.

The second approach implements a shuffle by reversing a sort. The
choice of a sort presents the dominant cost of this algorithm. We suggest
using sorting networks for sorting in quantum hardware and devise circuits
for highly efficient sorting and comparison. The resulting asymptotical
gate count complexity and depth are, respectively, O(m logm logN) and
O(logm log logN). This constitutes a polynomial improvement in the first
case and exponential in the second case over previous work in Refs. [170,
183]. As in Ref. [183], our algorithm can be used for state preparation of a
fermionic wavefunction in first quantization.

Our algorithm requires that the input is always sorted in increasing or-
der. This assumption is easy to satisfy for the purposes for state preparation
but one may ask whether it is necessary. It is easy to see that our algorithm
fails if the input is not ordered – we will not be able to clean record.

We can modify our sort based shuffling algorithm to allow for different
types of ordering provided that the input is still in strict order and we
can construct an alternative comparator for this order. Then we can apply
the reverse sort in Step 4 with respect to this new order. We can easily
(anti)symmetrize input in decreasing order with the same complexity but
the complexity with respect toNmight be different for different encodings.

70

4
Simulation of Time-Dependent

Hamiltonians

“Every moment before this one depends on this
one.”

Jonathan Safran Foer (Extremely Loud and
Incredibly Close)

This chapter is based on the paper [3] and significantly overlaps with
its text. I contributed to all parts of the projects including the majority of
the writing.

71

4.1 Unitary Evolution Under a Time-dependent
Hamiltonian

The Schrödinger equation

i
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 (4.1)

is one of the most famous equations in all of physics. It describes the time
evolution of a closed quantum system. We described in detail how to
solve it on a quantum computer in Section 2.3. The standard process of
analytically solving (4.1) (albeit exactly possible only for a few special cases)
is to find the eigenvalues Ej and eigenvectors

∣∣φj
〉

of the Hamiltonian and
express the evolution for a time period T as

|ψ(T)〉 =
∑
j

〈φj|ψ(0)〉e−iEjt
∣∣φj
〉

(4.2)

While solving the Schrödinger equation classically is almost always very
difficult, using a time-dependent Hamiltonian is even more complicated. It
is possible to find the instantaneous eigenvalues and the eigenvectors; these
are however different for each time and Eq. (4.2) no longer applies.

The formal solution of the evolution under a time-dependent Hamilto-
nian can be written as

U(t0, t0 + T) = T exp

(
−i

∫ t0+T
t0

dτH(τ)

)
, (4.3)

where T is the time ordering operator. Equation (4.3) can be interpreted as
the limit

U(t0, t0 + T) = lim
M→∞T

M−1∏
n=0

exp
{
−iT

M
H

(
t0 +

nT

M

)}
. (4.4)

Solving the time-dependent Schrödinger equation analytically is in
practice almost always impossible. Dynamics of even a small system,
say a 1

2-spin, can exhibit rich behavior that depends on the change of

72

the Hamiltonian. Many theoretical approaches have been developed to
approximate the evolution under a time-dependent Hamiltonian. The
adiabatic approximation [184, 185] can be used when the change of the
Hamiltonian is slowly varying.

Other approximations include the diabatic approximation and rotating
wave approximation. Nevertheless, the evolution under a general time-
dependent Hamiltonian is a computationally difficult problem that can be
only solved through numerical simulation (for a small system), or simulated
on a quantum computer. Let us first define the problem of simulating time
dependent Hamiltonians:

Problem 1 (The time-dependent Hamiltonian simulation problem)
Let H be a time-dependent Hamiltonian that can be expressed as a time-de-
pendent linear combination of unitaries as either H(t) =

∑L−1
l=0 αl(t)Hl or

H(t) =
∑L−1
l=0 αlHl(t), where L is polylogarithmic in the dimension of the Hilbert

space of H. Given an initial state |ψ〉 at time t0, we aim to prepare

T exp

(
−i

∫ t0+T
t0

dτH(τ)

)
|ψ〉 (4.5)

for a finite time T , such that the maximum error in the final state, as quantified by
the trace distance, does not exceed ε.

4.2 Framework

4.2.1 Oracles

We consider two different representations of H(t): Hamiltonians that are
given by a d-sparse time-dependent Hermitian matrix (scenario 1) and
Hamiltonians that are time-dependent linear combinations of some time-
independent unitaries (scenario 2). While scenario 2 is already in the form
required by Problem 1, we show that scenario 1 can be expressed as a
linear combination of unitaries as well. The second scenario is also more
general than the first one but it can help us to benefit from an additional
structure of the Hamiltonians. For example, Hamiltonians in quantum

73

chemistry, which is one of the main applications of quantum simulations,
fall into the second scenario because they are commonly expressed as linear
combinations of tensor products of Pauli matrices.

Our algorithms for both scenarios rely on the ability to express the
time-dependent Hamiltonian as a linear combination of efficiently imple-
mentable unitaries, similarly to [34]. Unlike [34], we need to include the
time-dependence in the decomposition. We can choose to add it either in
the coefficients or the unitaries. We show that either choice is possible and
the preferred approach depends on the structure of the Hamiltonian.

For d-sparse matrices we need compute the decomposition of the Hamil-
tonian into a sum of unitaries. As such, it is more practical to take the
unitaries to be time-dependent while making the coefficients in the decom-
position constant. In contrast, for cases where the Hamiltonian is already
given in the form of a sum of unitaries, we take the unitaries to be constant,
and the time dependence is solely in the coefficients. This form is natural
for applications such as quantum chemistry or adiabatic algorithms.

Let us now describe the oracles for both cases in more detail. In the first
scenario, access to a d-sparse Hamiltonian is provided through the oracles

Oloc |j, s〉 = |j,ν(j, s)〉 , (4.6)

Oval |t, i, j, z〉 =
∣∣t, i, j, z⊕Hij(t)

〉
, (4.7)

where ⊕ represents a bitwise XOR. The above equations are a time-depen-
dent analog of oracles (2.26) and (2.27) defined in Section 2.3. Here, ν(j, s)
gives the position of the s’th element in row j of H(t) that may be nonzero
at any time. Note that the oracle Oloc does not depend on time but Oval

does. Oracle Oval yields the values of non-zero elements at each instant of
time.

Furthermore, we say that a time-dependent HamiltonianH(t) is d-sparse
on the interval if the number of entries in any row or column that may be
nonzero at any time throughout the interval is at most d. This definition is
distinct from the maximum sparseness of the instantaneous Hamiltonians
H(t), because some entries may go to zero while others become nonzero.
(This definition of sparseness upper bounds the sparseness of instantaneous
Hamiltonians.)

74

4.2.2 Enabling Oblivious Amplitude Amplification

Our algorithm for d-sparse matrices builds on the unitary decomposition of
a Hermitian matrix into equal-sized 1-sparse self-inverse parts introduced
in Lemma 4.3 in Ref. [135] that we explained in Sec. 2.3.4. The Hamiltonian
H(t) can be decomposed using the technique of Ref. [135] for any individual
time, giving

H(t) = γ

L−1∑
`=0

H`(t), (4.8)

where the H`(t) are 1-sparse, unitary and Hermitian. The matrix entries
in H`(t) can be determined using O(1) queries according to Lemma 4.4 of
Ref. [135]. The single coefficient γ is time-independent, and so is the sum of
coefficients λ := Lγ in the decomposition. The value of γ should be chosen
as (see Eq. (24) in [135])

γ ∈ Θ(ε/(d3T)) (4.9)

to give a contribution to the error that is O(ε). The unitary decomposition
(4.8) can be computed with a number of Hamiltonians scaling as

L ∈ O
(
d2Hmax/γ

)
. (4.10)

Here we defined

Hmax = maxt∈[t0,t0+T] ‖H(t)‖max . (4.11)

We also define a norm for the derivative of the Hamiltonian

Ḣmax = maxt∈[t0,t0+T] ‖dH(t)/dt‖ , (4.12)

where ‖ · ‖ indicates the spectral norm and ‖ · ‖max the max-norm.

In the second scenario, we assume that the Hamiltonian already has the
form of a unitary decomposition with time-dependent coefficients:

H(t) =

L−1∑
`=0

α`(t)H` . (4.13)

In this scenario, the H` are all unitary and time-independent, while each
α`(t) is assumed to be a real-valued differentiable function with modulus

75

upper bounded by a known constant αmax > |α`(t)| for t ∈ [0, T] and all
` ∈ {0, . . . ,L− 1}.

The condition α`(t) ∈ R can always be attained by decomposing any
complex-valued coefficient into its real and imaginary parts and including
the complex phase factor ±i in the associated unitary H`.

As in the first scenario, access to the Hamiltonian is provided through
oracles. We assume there is an efficient procedure to implement an oracle
Ounit that applies a single unitary from the decomposition (4.13) to the
system state according to

Ounit |`〉a |Ψ〉s = |`〉aH` |Ψ〉s . (4.14)

The particular unitary H` is selected by the index value ` held in an ancilla
register state |`〉a. In one important example, the H` are composed of tensor
products of Pauli matrices, in which case each such oracle query can be
implemented with O(L(n+ logL)) elementary gates; see [34]. However,
we do not bind ourselves to a specific implementation and quantify the
complexity only in terms of the number of oracle calls and the number of
additional gates. Furthermore, we assume access to the time-dependent
coefficients through a coefficient oracle defined as

Ocoeff |`, t, z〉 = |`, t, z⊕α`(t)〉 . (4.15)

More precisely, the oracle returns a truncated version of the target coef-
ficients as z⊕ α(ν)

` (t), where z is a ν-bit integer encoded into a ν-qubit
register, and α(ν)

` (t) := b2να`(t)c is a ν-bit fixed-point approximation to the
real value of α`(t).

The sum of the coefficients, λ(t) :=
∑L−1
`=0 α`(t), in the decomposition

(4.13) generally depends on time, which appears to be a problem for imple-
menting oblivious amplitude amplification [34]. Successful implementation
of oblivious amplitude amplification for a given interval requires that the
integral of λ(t) over that interval should be equal to ln 2. If we were to
perform oblivious amplitude amplification on this decomposition directly,
we would need to integrate λ(t) to find an appropriate length of the time in-
terval, which would increase the computational complexity. How could we
avoid this complication? In our construction, we alter the unitary decompo-
sition (4.13) such that the sum of the new coefficients is time-independent

76

but corresponds to the same Hamiltonian. One option to create such a
decomposition is

H(t) =

L−1∑
`=0

αmax +α`(t)

2
H` +

L−1∑
`=0

αmax −α`(t)

2
(−H`)

=

2L−1∑
`=0

α̃`(t)H̃`, (4.16)

where

α̃`(t) :=


αmax+α`(t)

2 for ` = 0, . . . ,L− 1

αmax−α`−L(t)
2 for ` = L, . . . , 2L− 1

(4.17)

H̃` :=


H` for ` = 0, . . . ,L− 1

−H`−L for ` = L, . . . , 2L− 1 .
(4.18)

This new decomposition has 2L terms and the sum of its coefficients is by
construction time-independent and equal to λ = Lαmax. This allows us to
satisfy the condition that is sufficient for achieving the oblivious amplitude
amplification procedure globally for the entire time interval [t0, t0 + T].

4.3 Algorithm Overview

Our algorithm consists of the following steps summarized in the dia-
gram 4.1.

4.3.1 Evolution Discretization

Our goal is to simulate the action of U in Eq. (4.3) within error ε. First,
we divide the total simulation time T into r time segments of length T/r.
Without loss of generality, we analyze the evolution induced within the
first segment and set t0 = 0. The simulation of the evolution within

77

Entire Hamiltonian evolution
Divide the evolution into
segments

Oblivious amplitude
amplification

See Fig. 4.2

State preparation

Same as segment 1

segment 2segment 1 segment r

W in
Eq. (4.35)

R in
Eq. (4.34)

prepare
ancillae

select(V)
unprepare

ancillae

prepare
time

prepare `
coefficients

. . .

Figure 4.1: An overview of our algorithm. The top level shows the high-
level structure and each level below it explains how to implement the
corresponding block. We first divide the evolution into segments as out-
lined in Subsection 4.3.1. In each segment, we approximate the evolution
operator by a linear combination of unitaries, see Subsection 4.3.2, that can
be implemented using oblivious amplitude amplification. The oblivious
amplitude amplification is performed usingW,W† and R defined in (4.35)
and (4.34). While R can be trivially implemented,W requires several steps.
First, we need to prepare ancillary registers that encode the discretized
times (see Subsections 4.4.1 and 4.4.2), and coefficients of the linear combi-
nation (see Subsection 4.4.3). Next, we apply the appropriate Hamiltonians
specified by the ancillary registers. Lastly, we reverse the preparation of
ancillae and repeat the entire process for the next segment.

the following segments is accomplished in the same way. The overall
complexity of the algorithm is then given by the number of segments r

78

times the cost of simulation for each segment. To upper bound the total
simulation error by ε, we require the error of simulation for each segment to
be at most ε/r. By using an LCU technique, we can choose these segments
longer than for Trotterization algorithms [161].

We need a set of qubits to encode the time over the entire time interval
[0, T]. It is convenient to take r to be a power of two, so there will be one set
of qubits for the time that encodes the segment number, and another set
of qubits that gives the time within the segment. The qubits encoding the
segment number are only changed by incrementing by 1 between segments,
which gives complexity O(r log r). If it is not possible to take r as a power
of two, one can choose the last segment to be shorter and use an ancilla to
perform oblivious amplitude amplification as in [135].

Let us now explain the key steps for decomposing the evolution into a
linear combination of unitaries. We approximate the evolution within the
first segment by a Dyson series up to K-th order:

U(0, T/r) ≈
K∑
k=0

(−i)k

k!
T

∫T/r
0
dtH(tk) . . .H(t1) , (4.19)

where, for each k-th term in the Dyson series, T
∫T/r

0 dt (·) represents inte-
gration over a k-tuple of time variables (t1, . . . , tk) while keeping the times
ordered: t1 6 t2 6 · · · 6 tk. It is straightforward to show that the error of

this approximation is O
(
HK+1

max
(K+1)!

(
T
r

)K+1
)

.

Next, we discretize the integral over each time variable and approximate
it by a sum withM terms. For convenience, we may choose to takeM to be
a power of two. The time-dependent Hamiltonian is thereby approximated
by its values atM uniformly separated times jT

rM identified by an integer
j ∈ {0, . . . ,M− 1}. Approximating an integral with its Riemann sum yields

∫T/r
0
H(t)dt =

M−1∑
j=0

∫ tj+1

tj

H(t)dt

≈
M−1∑
j=0

(
T

rM

)
H(tj), (4.20)

79

where t0 = 0 and tM = T/r. The incurred error can be then bounded by∑M−1
j=0
∫tj+1
tj

∥∥H(t) −H(tj)
∥∥dt .

In each of the time intervals [tj, tj+1] of length T/(rM) we have

‖H(t) −H(tj)‖ 6
T

rM
max
z

∥∥∥∥
dH(z)

dz

∥∥∥∥

6
TḢmax

rM
, (4.21)

where maxz indicates a maximum over that time interval.

Hence, the overall error of approximation in the integral over time T/r

is O
(
(T/r)2Ḣmax

M

)
. That is, the error in the k = 1 term for Ũ, and the error

for terms with k > 1, are higher order. The error for all r segments is then
O
(
T2Ḣmax
rM

)
. We remark that a slightly tighter bound in terms of a time-

average of Ḣ(t) rather than in terms of Ḣmax is possible, as was achieved
in [37]. Replacing all integrals by sums in expression (4.19) thus yields the
following approximation of the time-evolution operator within the first
segment:

Ũ :=

K∑
k=0

(−iT/r)k

Mkk!

M−1∑
j1,...,jk=0

TH(tjk) . . .H(tj1). (4.22)

The overall error of the obtained approximation is thus

‖Ũ−U(0, T/r)‖ ∈ O

(
(HmaxT/r)

K+1

(K+ 1)!
+

(T/r)2Ḣmax

M

)
. (4.23)

Provided that r > HmaxT , the overall error can be bounded by ε/r if we
choose

K ∈ Θ
(

log (r/ε)

log log (r/ε)

)
and M ∈ Θ

(
T2Ḣmax

εr

)
. (4.24)

This expansion is analogous to truncated Taylor series explained in
Section 2.3.6. Unlike in the time-independent algorithm [127] presented in
Section 2.3.6, we need to preserve the correct order of Hamiltonians. We

80

achieve this by introducing an additional multi-qubit control register called
time. This ancillary register is prepared in a certain superposition state
(depending on which approach we take). We use this register to sample
the Hamiltonian at different times in superposition while respecting time
ordering.

4.3.2 Linear Combination of Unitaries

Substituting the unitary decomposition, as defined in (4.8) or (4.16), into
(4.22), the approximation of the time-evolution operator takes the form
Ũ =

∑
j∈J βjVj. The index j is a multi-index and the coefficients βj comprise

information about both the time discretization and the unitary decomposi-
tion weightings as well as the order k within the Taylor series. Explicitly,
we define

β1

(k,`1,...,`k,j1,...,jk) :=
(γ T/r)k

Mkk1!k2! . . . kσ!
θk (j1, . . . , jk) , (4.25)

V 1

(k,`1,...,`k,j1,...,jk) := (−i)k H`k(tjk) . . .H`1(tj1) , (4.26)

when dealing with Hamiltonians given by a sparse matrix (scenario 1)
giving decomposition (4.8), and

β2

(k,`1,...,`k,j1,...,jk) :=
(T/r)k

Mkk1!k2! . . .kσ!
θk (j1, . . . , jk) α̃`k(tjk) . . . α̃`1(tj1),

(4.27)

V 2

(k,`1,...,`k,j1,...,jk) := (−i)k H`k . . .H`1 , (4.28)

when dealing with scenario 2 Hamiltonians given by decomposition (4.13),
where θk (j1, . . . , jk) = 1 if j1 6 j2 6 . . . 6 jk, and zero otherwise. The
quantity σ is the number of distinct values of j, and k1,k2, . . . ,kσ are the
number of repetitions for each distinct value of j. That is, we have the
indices j for the times sorted in ascending order, and we have multiplied
by a factor of k!/(k1!k2! . . . kσ!) to take account of the number of unordered
sets of indices which give the same ordered set of indices. The multi-index
set J is defined as

J1 := {(k, `1, . . . , `k, j1, . . . , jk) : k ∈ {0, . . . ,K}, `1, . . . , `k ∈ {0, . . . ,L− 1},
j1, . . . , jk ∈ {0, . . . ,M− 1}}, (4.29)

81

or

J2 := {(k, `1, . . . , `k, j1, . . . , jk) : k ∈ {0, . . . ,K}, `1, . . . , `k ∈ {0, . . . , 2L− 1},
j1, . . . , jk ∈ {0, . . . ,M− 1}} . (4.30)

The only difference is the second has 2L rather than L, where we expanded
the sum to ensure the λ is independent of time. It will be convenient (though
not necessary) to take both L andM to be powers of two, so equal-weight
superpositions can be produced with tensor products of Hadamard gates,
for example H⊗ logL when preparing superposition states 1√

L

∑L−1
`=0 |`〉.

We use a standard technique to implement linear combinations of uni-
taries (see Section 2.3.6) involving the use of an ancillary register to encode
the coefficients βj [135]. In the next section, we present two approaches to
implement the (multi-qubit) ancilla state preparation

B |0〉a =
1√
s

∑
j∈J

√
βj |j〉a (4.31)

as part of the LCU approach, where s :=
∑

j∈J βj. Analogously to the
time-independent simulation in Section 2.3.6, the operator

SELECT(V) :=
∑
j

|j〉〈j|a ⊗ Vj (4.32)

acts as
SELECT(V) |j〉a |Ψ〉s = |j〉a Vj |Ψ〉s (4.33)

on the joint ancilla and system states. This operation implements a term
from the decomposition of Ũ selected by the ancilla state |j〉a with weight βj.
Following the method in Ref. [34], we also define

R := Ias − 2 (|0〉〈0|a ⊗ Is) , (4.34)

W :=
(
B† ⊗ Is

)
SELECT(V) (B⊗ Is) . (4.35)

If Ũ were unitary and s 6 2, a single step of oblivious amplitude ampli-
fication could be used to implement Ũ. When Ũ is only approximately
unitary, with ‖Ũ−U(0, T/r)‖ ∈ O(ε/r), a single step of oblivious amplitude
amplification yields [34]

−WRW†RW |0〉a |Ψ〉s = |0〉a Ũ |Ψ〉s +O (ε/r) , (4.36)

82

which is the approximate transformation we aim to implement for each
time segment.

The implementation of the unitary transformation W by a quantum
circuit is illustrated in Fig. 4.2. It generalizes the LCU technique to time-
dependent decompositions. The circuit for scenario 1 is given in Fig. 4.2a
and the circuit for scenario 2 is depicted in Fig. 4.2b. In both scenarios, we
employ three auxiliary control registers in addition to the system register
holding the quantum state on which Hamiltonian evolution is applied.
The k register, which consists of K qubits, is used to hold the value of k
corresponding to the order in the truncated Dyson series encoded in unary.
In what follows, we denote the state

∣∣1k0K−k
〉

simply as |k〉. The time

register consists of K subregisters each of size logM. The time register

is prepared in a special superposition state |clock〉 that also involves the
k register. These registers are used for sampling the Hamiltonian at
different points at a time. Note that the same |clock〉 state and the two
alternative approaches to its preparation presented in Section 4.4.1 can be
used for both considered scenarios. Finally, the l register consisting of K
subregisters each of size logL is used to prepare the ancillary register states
commonly needed to implement the LCU technique. Its task is to select
which term out of the decomposition into unitaries is to be applied. As this
controlled selection ought to occur with amplitudes corresponding to the
weightings of the involved unitaries in the decomposition, the ancillary
l register states must also encode those amplitudes. All unitaries in the
decomposition (4.8) for scenario 1 have equal weight; thus only equal-
weight superpositions need to be prepared in the l register in this case.
For decompositions (4.13) of scenario 2 Hamiltonians, however, we need
to prepare superposition states that encode the amplitudes of the time-
dependent weightings α̃`(t) according to the unitary transformation

controlled-PREP(α) |t〉timek|0〉lk :=
(

I⊗ PREP
(
α(t)

))
|t〉timek |0〉lk

:=
1√
Lαmax

2L−1∑
`=0

√
α̃`(t) |t〉timek |`〉lk .

(4.37)

This is a controlled state preparation involving the k-th l-subregister
as target and the k-th time subregister as control, to be executed for
each k = 1, . . . ,K. By construction, PREP(α) encodes the coefficients

83

of the altered (but equivalent) decomposition (4.16). These coefficients
have been introduced to achieve a time-independent sum of coefficients,
λ =
∑2L−1
`=0 α̃`(t) = Lαmax for all t ∈ [0, T], in order to fulfill the condition

for oblivious amplitude amplification. While the new decomposition (4.16)
has twice as many coefficients as the original decomposition (4.13), the cost
of implementing the LCU method for the altered decomposition raises only
by one additional ancilla qubit, as the selection ranges ` = 0, . . . ,L− 1 and
` = L, . . . , 2L− 1 can be differentiated by conditioning on just a single qubit.

The SELECT(V) operation is implemented by a series of K controlled-
SELECT(H) transformations, whose action is given by

controlled-SELECT(H) |b〉kk |t〉timek |`〉lk |Ψ〉s
:= |b〉kk |t〉timek |`〉lk (−iH`(t))

b |Ψ〉s (4.38)

for decompositions (4.8) corresponding to scenario 1, and by

controlled-SELECT(H) |b〉kk |`〉lk |Ψ〉s := |b〉kk |`〉lk (−iH̃`)
b |Ψ〉s (4.39)

for decompositions (4.16) corresponding to scenario 2. Note that the control
on the timek register is only necessary in the case of sparse-matrix decom-
positions, but not for scenario 2 type Hamiltonians, since in the latter case
the individual unitaries H` in the decomposition are all time-independent.
The phase factor (−i)b has to be implemented separately by applying the
phase gate S† := |0〉〈0|+ (−i) |1〉〈1| to each qubit of the k register. Since the
value of k is encoded in unary, applying S on all K wires of the k register
results in the overall factor (−i)k.

4.4 Preparation of Auxiliary Registers

The algorithm relies on efficient implementation of the unitary transfor-
mation B, which acts on the composite ancilla registers k⊗ time⊗ l and
prepares a joint superposition state given in Eq. (4.31). This state prepa-
ration includes encoding the Dyson order k (in register k), the values
j1 6 · · · 6 jk specifying the ordered time instances (in register time), and
the index values `1, . . . , `k specifying the terms in the Hamiltonian decom-
positions (in register l), in superposition over all possible combinations of

84

k1

prepare
|clock〉

• S†

reverse
prepare
|clock〉

...
kk . . . • . . . S†

...
kK • S†

t1 / •
...

tk / . . . • . . .
...

tK / •

|0 . . . 0〉 /

`1 / Had⊗ logL • Had⊗ logL

...
`k / Had⊗ logL . . . • . . . Had⊗ logL

...
`K / Had⊗ logL • Had⊗ logL

|Ψ〉s / H`1(t) . . . H`k(t) . . . H`K (t)

︸ ︷︷ ︸
B⊗s

︸ ︷︷ ︸
Select(V)

︸ ︷︷ ︸
B†⊗s

(a) Hamiltonian is given as a time-dependent sparse matrix (scenario 1)
k1

prepare
|clock〉

• S†

reverse
prepare
|clock〉

...
kk . . . • . . . S†

...
kK • S†

t1 / • •
...
tk / • •

...
tK / • •

|0 . . . 0〉 /

`1 / Prep(α) • Prep(α)†
...
`k / Prep(α) . . . • . . . Prep(α)†

...
`K / Prep(α) • Prep(α)†

|Ψ〉s / H̃`1
. . . H̃`k

. . . H̃`K

︸ ︷︷ ︸
B⊗s

︸ ︷︷ ︸
Select(V)

︸ ︷︷ ︸
B†⊗s

(b) Hamiltonian is given as a time-dependent linear combination of time-
independent unitaries (scenario 2).

Figure 4.2: Quantum circuit implementing the unitary transformation
W (see definition in Eq. (4.35)) for the two alternative scenarios from [3].
In both cases, W is composed of a SELECT(V) operation consisting of a
series of K controlled-SELECT(H) transformations sandwiched between the
operations B and B† for the preparation and its reverse of the auxiliary
register states required for implementing the LCU technique. The boxed
subroutine “prepare |clock〉” acting on k⊗ time is implemented either by
the compressed encoding approach outlined in Subsection 4.4.1, or by
using a quantum sorting network described in Subsection 4.4.2. Both
approaches require additional ancillae indicated by |0 . . . 0〉. The phase gate
S† = |0〉〈0|+ (−i) |1〉〈1| is used to implement the factor (−i)k as part of the
k-th order term of the Dyson series.

85

the values, and with amplitudes that are the square roots of the weightings
β1

(k,`1,...,`k,j1,...,jk)
or β2

(k,`1,...,`k,j1,...,jk)
. As noted above, the main difficulty of

simulating time-dependent Hamiltonian dynamics is the implementation
of time ordering. This is achieved by a weighted superposition named
clock prepared as the joint state in the composite auxiliary control register
k⊗ time, which has been introduced in addition to the ancilla register l
used to implement the LCU technique in the time-independent case. Its
main purpose and task are to control sampling the Hamiltonian for differ-
ent instances of time in superposition in a way that respects the correct time
order. We here present two alternative approaches to efficient preparation
of such clock states in the composite k⊗ time register.

The first approach is based upon generating the intervals between
successive times according to an exponential distribution, in a similar way
as in Ref. [136]. These intervals are then summed to obtain the times.
Our second approach starts by creating a superposition over k and then
a superposition over all possible times t1, . . . , tk for each k. The times are
then reversibly sorted using quantum sorting networks [2, 142, 172] and
used to control ` as in the previous approach.

4.4.1 Clock Preparation Using Compressed Rotation Encod-
ing

To explain the first approach, it is convenient to consider a conceptually sim-
ple but inefficient representation of the time register. An ordered sequence
of times t1, . . . , tk is encoded in a binary string x ∈ {0, 1}M with Hamming
weight |x| = k, where 0 6 k 6 K. That is, if mj is the j’th value of m such
that xm = 1, then tj = mjT/(rM). This automatically forces the ordering
t1 < t2 < · · · < tk, omitting the terms when two or more Hamiltonians act
at the same time. The binary string x then would be encoded intoM qubits
as |x〉.

Now consider these M qubits initialized to |0〉⊗M, then rotated by a

86

small angle, to give

(α |0〉+β |1〉)⊗M =
∑
x

αM−|x|β|x| |x〉

=
∑
x,|x|6K

αM−|x|β|x| |x〉+
∑
x,|x|>K

αM−|x|β|x| |x〉

=
√

1 − µ2 |Ω〉+ µ
∣∣Ω⊥

〉
, (4.40)

where α :=
√

rM
λT+rM and β :=

√
λT

λT+rM . The state |Ω〉 encodes the se-
quences of times when the Hamiltonians are applied in Eq. (4.22) in the
discretized Dyson series up to the K-th order with the weighting as in
Eq. (4.25)

|Ω〉 = 1√
S

∑
|x|6K

(
λT

rM

)|x|/2

|x〉 , (4.41)

with S :=
∑

|x|6K

(
λT
rM

)|x|
. Recall that the Hamming weight |x| corresponds

to the order 0 6 k 6 K within the truncated Dyson series. The states |Ω〉
and

∣∣Ω⊥
〉

are normalized and orthogonal. The state
∣∣Ω⊥

〉
is analogous

to the higher-order terms omitted in the Dyson series. The amplitude µ
satisfies (as shown in [136]):

µ2 = O

(
(λT/r)K+1

(K+ 1)!

)
. (4.42)

We choose K as in Eq. (4.24), and the choice r > λT implies µ2 = O(ε/r).

Since |Ω〉 includes only Hamming weights up to K, it contains highly
compressible strings. The lengths of the strings of zeros between successive
ones are stored in order to compress the string x. That is, a string x =
0s110s210s3 . . . 0sk10σ can be represented by the integers s1s2 . . . sk. There
is always a total of K+ 1 entries, regardless of the Hamming weight. In
addition, we encode the Hamming weight k in an additional register. Thus,
our encoding converts x into

Ξ |0s110s210s3 . . . 0sk10σ〉 = |s1 + 1〉 |s1 + s2 + 2〉 . . .

|s1 + s2 + · · ·+ k+ 1〉
∣∣junkx

〉
|k〉 , (4.43)

87

where
∣∣junkx

〉
is a remnant of the construction as well as a padding for a

string with Hamming distance smaller than K. For example, for K = 4,
the state |001000001000〉 would be encoded as |2, 5〉

∣∣junkx
〉
|2〉. Following

Eq. (17) from [136], we define a more complex encoding BKM as

BKM |x〉 = |s1, . . . , sk〉



q−σ−1∑
j=0

αjβ |j+ σ〉+αq−σ |q〉


 |φq〉⊗(K−k) , (4.44)

where |φq〉 =
∑q−1
s=0 βα

s |s〉+ αq |q〉 and we need to take q = M for the
encoding here. According to Theorem 3 in [136],

|φq〉⊗K+1 =
∑
x,|x|6K

αM−|x|β|x|BKM |x〉+ µ
∣∣Ω ′
〉

. (4.45)

The idea is that one prepares the state |φq〉K+1 (see Eq. (13) of [136])
which gives an exponential distribution. Encoding BKM |x〉 includes spacing
between consecutive ones, the term in the bracket representing

∣∣junkx
〉

and
the necessary padding of |φq〉⊗(K−k). However, we require the absolute
times, rather than the differences between the times, as well as an additional
register encoding k. The state BKM |x〉 can be converted into Ξ |x〉 following
the steps 1 and 2 of Section 4.4 in [136]. First, one computes the absolute
position of 1’s by computing the prefix sums. Then, it is possible to identify
the register k+ 1 by finding the first register larger thanm using the term
in the bracket as an indicator of overflow following the same steps as
in [136]. The Hamming weight k is then recorded in an additional register.
Unlike [136], there is no need to clean the

∣∣junkx
〉

register or uncompute
the Hamming weight.

4.4.2 Clock Preparation Using a Quantum Sort

In this section, we explain an alternative approach to implementing the
preparation of the |clock〉k⊗time state, which establishes time ordering via
a reversible sorting algorithm. This approach first creates a superposi-
tion over all Dyson series orders k 6 K with amplitudes proportional to(
ζk/k!

)1/2, where ζ := λT/(rM). It then generates a superposition over all

88

possible k-tuples of times t1, . . . , tk for each possible value of k. To achieve
time-ordered combinations, sorting is applied to each of the tuples in the
superposition using a quantum sorting network algorithm.

The clock preparation requires logM qubits to encode each value tj
(via the integer j). As k 6 K, the time register thus consists of K logM
ancilla qubits. The value of k is encoded in unary into K additional qubits
constituting the k-register. Additionally, further O (Kpoly(logK)) ancillae
are required to reversibly perform a quantum sort. The overall space
complexity thus amounts to O (K logM+Kpoly(logK)).

Specifically, in the first step we create a superposition over the allowed
values of k in unary encoding by applying the following transformation to
K qubits initialized to |0〉:

PREPARE(k) |0〉⊗K :=
1
N

K∑
k=0

√
ζkMk

k!

∣∣∣1k0K−k
〉

, (4.46)

where the constant N :=
[∑K

k=0
ζkMk

k!

]1/2
accounts for normalization. This

transformation can be easily implemented (see Section 4 of Ref. [72] for
details) using a series of O(K) controlled rotations, namely, by first rotating
the first qubit followed by rotations applied to qubits k = 2 to K controlled
by qubit k− 1. We use it to determine which of the times tj satisfy the
condition j 6 k.

Next, we wish to create an equal superposition over the time indices j.
The preparation can be performed via the Hadamard transforms H⊗ logM

on all K subregisters of time (each of size logM) to generate the superposi-
tion state

1
N

K∑
k=0

√
ζkMk

MKk!
|k〉

M−1∑
j1=0

M−1∑
j2=0

· · ·
M−1∑
jK=0

|j1, j2, . . . , jK〉 (4.47)

using O(K logM) gates. At this stage, we have created all possible K-tuples
of times without accounting for time-ordering. Note that this superposition
is over all possible K-tuples of times, not only k 6 K of them. We have a
factor ofMk/MK, but for any k in the superposition we ignore the times in
subregisters k+ 1 to K. Hence the amplitude for |j1, j2, . . . , jk〉 is ∝

√
ζk/k!.

89

The next step is to sort the values stored in the time subregisters. Com-
mon classical sorting algorithms are often inappropriate for quantum al-
gorithms because they involve actions on registers that depend on the
values found in earlier steps of the algorithm. Sorting techniques that are
suitable to be adapted to quantum algorithms are sorting networks, because
they involve actions on registers in a sequence that is independent of the
values stored in these registers. We discussed methods for adapting sorting
networks to quantum algorithms in the Chapter 3.

For each |k〉 in the superposition (4.47), we only want to sort the values
in the first k subregisters of time. We could perform K sorts for each value
of k, or control the action of the comparators such that they perform the
SWAP only for subregisters with positions up to value k. A more efficient
approach is to sort all the registers regardless of the value of k, and also
perform the same controlled-swaps on the registers encoding the value of
k in unary. This means that the qubits encoding k still indicate whether the
corresponding time register includes a time we wish to use. The controlled
H`(t) operations are controlled on the individual qubits encoding k, and
will still be performed correctly.

There are many possible sorting networks we can use, for example, the
bitonic sort in Fig. 3.12. Since we need to record the positions of the first k
registers as well, we perform the same controlled-swap on the k-register
too. The bitonic sort requires O(K log2 K) comparisons, but there are more
advanced sorting networks that use O(K logK) comparisons [178]. That
brings the complexity of clock preparation to O(K logK logM) elementary
gates. Since each comparison requires a single ancilla, the space overhead
is O(K logK) ancillae.

4.4.3 Completing the State Preparation

To complete the state preparation, we transform each of the K l-subregisters
for encoding `1, . . . `K from |0〉 into specific superposition states, depending
on the representation of the given Hamiltonian.

In the sparse matrix scenario 1, we only need to prepare equal-weight
superposition states. If L is a power of two (as we already specified), a
Hadamard transform suffices. The complexity is then O(K logL) single-
qubit operations.

90

In scenario 2, the target superposition states for the l-subregisters to be
encoding `1, . . . `K are given by (4.37). We propose preparing the required
target superposition states using a similar approach as in Ref. [116], namely
by transducing the computed values α̃`(t)/αmax (using the output of oracle
Ocoeff) into quantum amplitudes

√
α̃`(t)/αmax via ‘inequality testing’. Ac-

cording to that approach, the state preparation requires the use of several
registers. For each k = 1, . . . ,K, in addition to the lk subregister for en-
coding the index value `k to identify the coefficients in the decomposition
(4.16) and the timek subregister for encoding a particular time tk as part
of the |clock〉 state, we introduce two further registers named ‘coeffk’ and
‘refk’, each consisting of ν qubits. Here, ν is the number of bits used for the
ν-bit fixed-point approximations α̃[ν]

` (t) := b2να̃`(t)/αmaxc. Finally, an ad-
ditional single-qubit ancilla called ‘flag’ is required to distinguish between
the two index ranges ` = 0, . . . ,L− 1 and ` = L, . . . , 2L− 1, and thus indicate

which of the corresponding two alternative amplitudes
(
αmax+α`(t)

2

)1/2
and

(
αmax−α`(t)

2

)1/2
has been generated.

The state preparation by inequality testing can be outlined as follows.
For more details, see Ref. [116]. We first create uniform superpositions
in both the lk and the refk register. We then compute a ν-bit fixed-point
approximation α̃[ν]

` (t) of the modified coefficient α̃`(t)/αmax at time t speci-
fied by the timek subregister. We obtain the value α̃[ν]

` (t) by querying the
oracle Ocoeff defined in Eq. (4.15) and save it in register coeffk. These first
two steps can be formalized by the following state transformations:

|0〉lk |t〉timek |0〉coeffk |0〉refk |0〉flagk
H⊗(ν+logL)|·〉lk |·〉refk−−−−−−−−−−−−−→ 1√

L
√

2ν

L−1∑
`=0

2ν−1∑
x=0

|`〉lk |t〉timek |0〉coeffk |x〉refk |0〉flagk

Ocoeff |·〉lk |·〉timek |·〉coeffk−−−−−−−−−−−−−−−−→ 1√
L
√

2ν

L−1∑
`=0

2ν−1∑
x=0

|`〉lk |t〉timek
∣∣∣α̃[ν]
` (t)

〉
coeffk

|x〉refk |0〉flagk .

(4.48)

Creating the uniform superpositions in the first step requires only ν+ logL
elementary gates. Computing α̃[ν]

` (t) requires only one query to oracle

91

Ocoeff. In addition, we need O (ν) gates to perform the arithmetic operations
needed to obtain α̃`(t)/αmax. To avoid having to perform generic division
(which requires O(ν2) gates), we can take the bound αmax to be a power of
2.

The state preparation then proceeds by applying the operation COMPARE
defined in Chapter 3 to the computational registers coeffk (holding a com-
puted coefficient value α̃[ν]

` (t)) and refk (holding a value x ∈ {0, . . . , 2ν− 1})
and flagging the result of the comparison operation (inequality test) by the
flag qubit:

COMPARE |·〉coeffk |·〉refk−−−−−−−−−−−−−−−→ 1√
L

L−1∑
`=0

|`〉lk |t〉timek
∣∣∣α̃[ν]
` (t)

〉
coeffk

⊗

 1√

2ν

α̃
[ν]
` (t)−1∑
x=0

|x〉refk |1〉flagk +
1√
2ν

2ν−1∑
x=α̃

[ν]
` (t)

|x〉refk |0〉flagk


 . (4.49)

The state within the brackets of (4.49) is normalized with an amplitude ap-

proximately equal to
√
αmax+α`(t)

2αmax
on |1〉flagk and amplitude approximately

equal to
√
αmax−α`(t)

2αmax
on |0〉flagk , up to error O (2−ν). This error must be

bounded by ε/(Kr), implying ν = Θ
(
log Kr

ε

)
. Hence, creating the target

superposition states for all K subregisters requires O (K) oracle queries and

O (K [log (Kr/ε) + logL]) (4.50)

additional elementary gates. We do not need to implement the full algo-
rithm of Ref. [116] because we do not require erasing the ancillary registers
immediately or to perform amplitude amplification. Indeed, we can leave
the basis states |`〉 entangled with ancillae similar to state preparation for
LCU given in [73], although the latter is different from our approach in
that it uses a classical database for amplitudes rather than a quantum or-
acle. ’ The state given in Eq. (4.49) is already operationally equivalent
(up to error ε/(Kr)) to our target state (4.37), if we regard flagk as part
of an extended l-register, while we ignore the entangled registers coeffk
and refk. The entanglement with the latter registers does not affect the
subsequent controlled-SELECT(H) operations. Hence, the uncomputation
of registers coeffk and refk may indeed be deferred to the stage when

92

reversing the above state preparation as part of B† after completing the
SELECT(V) operation.

Next, let us consider the states prepared as a result of these procedures.
In the first case, where we prepare the superposition of times by the com-
pressed rotations, we first prepare the state |φq〉⊗K+1, which contains the
separations between successive times, then add these to obtain the times.
The state is therefore

√
1 − µ2

S

K∑
k=0

ζk/2 |k〉
∑

j1<j2...<jk

|j1, . . . , jk〉+ µ
∣∣ν ′′
〉

. (4.51)

The preparation of the registers encoding `1, . . . `K gives a factor of 1/LK/2

for both considered Hamiltonian models. For k < K, the registers past k
are not used, and the effective amplitude factor is thus 1/Lk/2. We obtain
the indices j1 to jk in sorted order without repetitions. This means that
the weightings of the terms in the sum are (γT/(rM))k/2 for scenario 1 and
(αmaxT/(rM))k/2 for scenario 2. In Eq. (4.25), when there are no repetitions
the k1, . . . ,kσ are all 1. Therefore we have approximately the desired state
preparation from Eq. (4.31) with the correct weightings, and with s =
S/(1 − µ2). There is imprecision of O(ε/r) due to the additional term
weighted by µ, as well as imprecision due to the omitted repetitions, which
are bounded in Section 4.5 below.

For amplitude amplification to take one step, we require

s = S/(1 − µ2) 6 2. (4.52)

Note that it can be less than 2, and oblivious amplitude amplification can
still be performed in a single step using an ancilla qubit, as noted in the
Segment Lemma of Ref. [135]. To bound the value of S,

S =
∑
|x|6K

ζ|x|

=

K∑
k=0

(
M

k

)
ζk

<

∞∑
k=0

Mkζk

k!

= eMζ = eλT/r. (4.53)

93

Therefore, by choosing r > λT/ ln[2(1 − µ2)] we can ensure that s 6 2, and
a single step of amplitude amplification is sufficient. The value of µ2 is
O(ε/r), and therefore r = Θ(λT).

In the second case, where we obtain the superposition over the times
via a sort, the state is as in Eq. (4.47) except sorted, with information about
the permutation used for the sort in an ancilla. When there are repeated
indices j, the number of initial sets of indices that yield the same sorted
set of indices is k!/(k1!k2! . . . kσ!), using the same notation as in Eq. (4.25).
That means for each sorted set of j there is a superposition over this many
states in the ancilla with equal amplitude, resulting in a multiplying factor
of
√
k!/(k1!k2! . . . kσ!) for each sorted set of j.

As noted above, because the times tk+1 to tK are ignored, the factors of
M in the amplitude cancel. Similarly, when we prepare the state for the
registers encoding `1, . . . `K, we obtain a factor of 1/Lk/2. Including these
factors, and the factor for the superposition of states in the ancilla, we ob-
tain amplitude (γT/(rM))k/2/

√
k1!k2! . . .kσ! for scenario 1 and amplitude

(αmaxT/(rM))k/2/
√
k1!k2! . . . kσ! for scenario 2. Hence we have the desired

state preparation from Eq. (4.31) with the correct amplitudes, and the same
s.

We require s 6 2 for oblivious amplitude amplification to take one step.
We can bound s via

s =

K∑
k=0

Mkζk

k!

<

∞∑
k=0

Mkζk

k!

= eMζ = eλT/r. (4.54)

Therefore, by choosing r > λT/ ln 2 we can ensure that s 6 2, and a single
step of amplitude amplification is sufficient. Note that it is convenient
to take r to be a power of two, so the qubits encoding the time may be
separated into a set encoding the segment number and another set encoding
the time within the segment. Hence, in either case we choose r = Θ(λT).

94

4.5 Complexity Requirements

We now summarize the resource requirements of all the components of
the algorithm and provide the overall complexity. We start with elements
that are necessary for both scenario 1 sparse matrices and quantum type 2
Hamiltonians and then discuss the complexities of their unique parts.

The full quantum circuit consists of r successively executed blocks, one
for each of the r time segments. Since we took r = Θ(λT) for oblivious
amplitude amplification, the overall complexity is multiplied by a factor of
λT .

Each segment requires one round of oblivious amplitude amplification,
which includes two reflections R, two applications ofW and one application
of the inverse W†, as in Eq. (4.36). The cost of reflections is negligible
compared to that ofW. Hence, the overall cost of the algorithm amounts to
O(r) times the cost of transformationW, whose quantum circuit is depicted
in Fig. 4.2. For scenario 1, implementing W requires the procedure to
prepare the |clock〉 state and its inverse, 2K applications of H⊗ logL and K
controlled applications of unitaries H`(t). For scenario 2, implementing
W requires likewise preparing the |clock〉 state and the reverse of that
procedure, 2K applications of the controlled-PREP(α) subroutine, and K
controlled applications of unitaries H`.

Choosing K as in Eq. (4.24) yields error due to truncation for each
segment scaling as O(ε/r), and therefore total error due to truncation
scaling as O(ε). Taking r = Θ(λT), K is chosen as

K = Θ

(
log(λT/ε)

log log(λT/ε)

)
. (4.55)

Note that λ > Hmax implies that the condition r > HmaxT is satisfied, which
was required for deriving Eq. (4.24). Recall that λ = Lγ in scenario 1 and
λ = Lαmax in scenario 2.

In the case where the |clock〉 state is prepared using the compressed
form of rotations, the operation that is applied is a little different than
desired, because all repeated times are omitted. For each k, the proportion
of cases with repeated times is an example of the birthday problem and is
approximately k(k− 1)/(2M). Therefore, denoting by Ũunique the operation

95

corresponding to Ũ but with repeated times omitted, we have

‖Ũ− Ũunique‖ .
K∑
k=2

(T/r)k

k!
k(k− 1)

2M
Hkmaxspec

=

K∑
k=0

(T/r)k+2

k!
1

2M
Hk+2

maxspec

<
T2H2

maxspec

2r2M
eTHmaxspec/(rM), (4.56)

where Hmaxspec := maxt ‖H(t)‖. The error over r segments due to omitting
repeated times is upper bounded by

r‖Ũ− Ũunique‖ .
T2H2

maxspec

2rM
eTHmaxspec/(rM) . (4.57)

Using r ∈ Θ(λT) and λ > Hmaxspec, we should then choose

M = Ω

(
TH2

maxspec

ελ

)
. (4.58)

Therefore, when the repeated times are omitted, we would take

M = Θ

(
T

ελ
(H2

maxspec + Ḣmax)

)
. (4.59)

Next we consider the gate complexity for the |clock〉k⊗time state prepa-
ration. In the case of the compressed rotation encoding, the complexity is
O (K logM), where we have used r ∈ Θ(λT). In the case where |clock〉k⊗time
is prepared with a quantum sort, the complexity is O (K logM logK).

4.5.1 Complexity for Scenario 1

Let us now consider the complexity of simulation of a Hamiltonian given
as a sparse matrix. The preparation of the registers `1, . . . , `k requires only
creating an equal superposition. As we discussed in Section 4.4.3, the
Hadamard transform in this stage requires O (K logL) elementary gates.

96

Next, one needs to implement the controlled unitaries H`. Each con-
trolledH` can be implemented with O (1) queries to the oracles that give the
matrix entries of the Hamiltonian [135]. Since the unitaries are controlled by
O (logL) qubits and act on n qubits, each control-H` requires O (logL+n)
gates. Scaling withM does not appear here, because the qubits encoding
the times only serve as input to the oracles. As there are K controlled oper-
ations in each segment, the complexity of this step for a segment is O (K)
oracle queries and O (K(logL+n)) additional gates.

As the total cost for the entire simulation is obtained by multiplying the
cost per segment by the number r of all segments, the overall oracle query
complexity thus amounts to

O(λTK) . (4.60)

Here λ = Lγ and L is chosen as in Eq. (4.10) as Θ(d2Hmax/γ), so λ ∈
O(d2Hmax). In addition, K is given by Eq. (4.55), giving the total query
complexity

O

(
d2HmaxT

log(dHmaxT/ε)

log log(dHmaxT/ε)

)
. (4.61)

The overall complexity in terms of the additional gates is larger, and
depends on the scheme used to prepare the state |clock〉k⊗time. In the
case where the preparation is performed via the compressed encoding, we
obtain the complexity

O (λTK[logL+ logM+n]) . (4.62)

Regardless of the preparation approach, γ is chosen as in Eq. (4.9) as
Θ(ε/(d3T)). Moreover, L ∈ Θ(d5HmaxT/ε), whereas the first term in the
scaling forM in Eq. (4.59) is O(d2HmaxT/ε). This means that the first term
in Eq. (4.59) can be ignored in the overall scaling due to the logL, and we
obtain an overall scaling of the gate complexity as

O

(
d2HmaxT

log(dHmaxT/ε)

log log(dHmaxT/ε)

[
log
(
dHmaxT

ε

)
+ log

(
ḢmaxT

εdHmax

)
+n

])
.

(4.63)
There is also complexity of O(r log r) for the increments of the register
recording the segment number, but it is easily seen that this complexity is
no larger than the other terms above.

97

In the case where |clock〉k⊗time is prepared using a sorting network, we
obtain complexity

O (λTK(logL+ logM logK+n)) , (4.64)

withM given by Eq. (4.24).

Technically, this complexity is larger than that in Eq. (4.63), because of
the multiplication by logK. Nevertheless, preparation by a sorting network
may turn out to sometimes be advantageous in practice because the first
preparation requires a larger value ofM. This is because the compressed
encoding approach does not contain repeated times whereas the approach
by sorting networks does.

4.5.2 Complexity for Scenario 2

Let us now consider the cost of simulating the time evolution generated by
scenario 2 Hamiltonians. For each single time segment, we have 3× (2K)
applications of the controlled-PREP(α) operation as part of B and B† when
implementing W (or W†), which in turn must be applied three times for
achieving oblivious amplitude amplification. This requires O (K) queries to
Ocoeff. Furthermore, we have 3K controlled-SELECT(H) operations as part
of the SELECT(V) transformation that is involved three times in oblivious
amplitude amplification, which thus require O (K) queries to Ounit. Note
that the mentioned query complexities for Ocoeff and Ounit are additive.
Hence, the overall query complexity for the entire simulation over all r time
segments amounts to O (rK), which, by using r ∈ Θ(λT) and λ = Lαmax as
well as the choice for K given in Eq. (4.55), becomes

O

(
LαmaxT

log(LαmaxT/ε)

log log(LαmaxT/ε)

)
. (4.65)

For each time segment, preparation of the auxiliary l-register states
requires O (K(logL+ log (rK/ε)) additional elementary gates, as displayed
earlier in Eq. (4.50). Furthermore, we need O(K) gates to implement the mi-
nus signs given in Eq. (4.18) as well as the the (−i)k factors occurring in the
Dyson series. Additional gate complexity comes from the preparation of the

98

|clock〉k⊗time state, which is the same as for scenario 1. Preparation via com-
pressed encoding thus requires in total O

(
λTK

[
logL+ logM+ log

(
λTK
ε

)])

gates, where we have repeatedly used r ∈ Θ(λT). Using once more
λ = Lαmax and Eqs. (4.55) and (4.59) together with Hmax 6 Lαmax, this
finally yields

O

(
αmaxLT

log (αmaxLT/ε)

log log (αmaxLT/ε)

[
log
(
αmaxLT

ε

)
+ log

(
ḢmaxT

εαmaxL

)

+ log
(

log (αmaxLT/ε)

log log (αmaxLT/ε)

)
+ logL

])
(4.66)

as the overall gate complexity in this case, where we again ignored the first
term in Eq. (4.59) in the overall scaling due to the occurrence of the larger
log (αmaxLT/ε) term. Observe that the last two additive terms logK and
logL in the brackets of Eq. (4.66) are also much smaller compared to the first
term; they have also been ignored in the formulation of Theorem 2. Simi-
larly, we obtain the gate complexity O

(
λTK[logL+ logM logK+ log

(
λTK
ε

)
]
)

for implementations based on quantum sorting networks, which is slightly
larger due to the additional logK factor in the second term.

Scaling with n (i.e. with the number of system qubits) does not appear
in Eqs. (4.65) and (4.66), because the system qubits are just used as input
to the oracle Ounit (defined in Eq. (4.14)) as part of controlled-SELECT(H)
operations. The scaling with n is therefore hidden in the gate cost of
implementing that oracle.

4.6 Results

Let us summarize the results by stating the theorems for both scenarios.

Theorem 6 (Time-dependent Hamiltonian simulation for sparse matrices)
For a Hamiltonian H(t) given by a time-dependent d-sparse matrix, the generated
time evolution of a quantum system can be simulated for time T and within error
ε using a number of oracle queries scaling as

O

(
d2HmaxT

log(dHmaxT/ε)

log log(dHmaxT/ε)

)
, (4.67)

99

and a number of additional elementary gates scaling as

O

(
d2HmaxT

log(dHmaxT/ε)

log log(dHmaxT/ε)

[
log
(
dHmaxT

ε

)
+ log

(
ḢmaxT

εdHmax

)
+n

])
.

(4.68)

Theorem 7 (Time-dependent Hamiltonian simulation for LCU)
For a HamiltonianH(t) given by a time-dependent linear combination of L unitary
terms, the generated time evolution of a quantum system can be simulated for time
T and within error ε using a number of oracle queries scaling as

O

(
LαmaxT

log(LαmaxT/ε)

log log(LαmaxT/ε)

)
(4.69)

and a number of additional elementary gates scaling as

O

(
LαmaxT

log (LαmaxT/ε)

log log (LαmaxT/ε)

[
log
(
LαmaxT

ε

)
+ log

(
ḢmaxT

εLαmax

)])
,

(4.70)
where αmax denotes a known global upper bound on the modulus of each of the L
time-dependent coefficients in the decomposition, implying Lαmax > Hmax.

4.7 Applications

Our algorithm can be used for a range of problems that require simulating
dynamics under a time-dependent Hamiltonian. We now outline several
specific applications.

Low and Wiebe recently proposed a new Hamiltonian simulation al-
gorithm in the interaction picture [37]. This algorithm uses simulation
of a time-dependent Hamiltonian as a subroutine. Taking a Hamiltonian
H = A+ B and the Schrödinger equation i∂t |ψ(t)〉 = (A+ B) |ψ(t)〉, we
can formulate the simulation problem in the interaction picture as

HI(t) = e
iAtBe−iAt, (4.71)

|ψI(t)〉 = eiAt |ψ(t)〉 , (4.72)

i∂t |ψI(t)〉 = eiAtBe−iAt |ψI(t)〉 , (4.73)

100

where HI is the interaction picture Hamiltonian, |ψI(t)〉 a state in the in-
teraction picture and (4.73) the interaction picture Schrödinger equation.
Solving (4.73) requires time-dependent Hamiltonian simulation. Low and
Wiebe [37] proposed an approach for simulating time-dependent Hamilto-
nians simultaneously with us. They use a simpler method of preparing the
state representing the times by discarding times rather than sorting them.
This simplification results in a multiplicative factor in the gate complexity.

Interaction picture simulation is useful when ‖A‖ � ‖B‖ and e−iAt is
straightforward to implement. Using the interaction picture then allows
us to reduce the complexity in terms of the norm of the Hamiltonian. This
approach is particularly useful for quantum chemistry where it allows for
a simulation with complexity sublinear in the number of orbitals [74].

The second application of time-dependent simulations is adiabatic com-
puting and quantum annealing. Adiabatic computation is performed by
preparing the ground state |ψ〉 of an “easy” Hamiltonian H0 and then
evolved under a slowly changing Hamiltonian

H(t) = tH1 + (1 − t)H0, (4.74)

where H1 is the Hamiltonian whose ground state we wish to prepare [186].
If the evolution is slow enough to satisfy the conditions of the adiabatic
theorem [187], one has a a good chance of preparing the ground state of
H1. These approaches are favored for heuristics for optimization problems.
Implementing them on a fault-tolerant circuit-based quantum computer
can allow for a higher accuracy than using an analog quantum annealer.
This implementation would simply consist of simulating the evolution
under a time-dependent Hamiltonian.

Our work can also be applied to state preparation. Adiabatic state
preparation is a popular choice for initializing quantum chemistry algo-
rithms [71]. In this case, one prepares an eigenstate of a simple Hamiltonian
and slowly (adiabatically) changes the Hamiltonian to the one of interest.

Lastly, there are many time-dependent phenomena that our algorithm
can simulate. One example is evolution of states under a time-dependent
electromagnetic field. In quantum chemistry and material science, we can
account for nuclear movement by describing the system of electrons by a
time-dependent Hamiltonian.

101

4.8 Conclusion

We have provided a quantum algorithm for simulating the evolution gen-
erated by a time-dependent Hamiltonian that is either given by a generic
d-sparse matrix or by a time-dependent linear combination of some effi-
ciently implementable unitary terms. For both scenarios, the complexity of
the algorithm scales logarithmically in both the dimension of the Hilbert
space and the inverse of the error of approximation ε. Our work presents
an exponential improvement in error scaling compared to techniques based
on Lie-Trotter-Suzuki expansion. We utilize the truncated Dyson series,
which is based on the truncated Taylor series approach by Berry et al. [34].
It achieves similar complexity, in that it has T times a term logarithmic in
1/ε. Interestingly, the complexity in terms of queries to the Hamiltonian is
independent of the rate of change of the Hamiltonian.

For the complexity in terms of additional gates, the complexity is some-
what larger and depends logarithmically on the rate of change of the Hamil-
tonian. The complexity also depends on the scheme that is used to prepare
the state to represent the times. If one uses the scheme as in Ref. [136],
which corresponds to a compressed form of a tensor product of small ro-
tations, then there is an additional error due to the omission of repeated
times. Alternatively, one could prepare a superposition of all times and sort
them, which eliminates that error, but gives a multiplicative factor in the
complexity. This trade-off means that different approaches may be more
efficient with different combinations of parameters.

Simultaneously with the publication of our algorithm, Low and Wiebe [37]
developed a similar algorithm for time dependent Hamiltonians also based
on LCU. Their algorithm is slower than ours by a multiplicative factor.
Even more recently, Berry et al. [188] came up with a new algorithm that
improved the dependence on the norm of the Hamiltonian. Their work
builds onto [149] and can provide more efficient algorithm for simulation
Hamiltonians whose norm significantly changes over time, for example in
scattering problems.

An interesting open question is whether the complexity could be im-
proved such that the factor of log(1/ε) is additive rather than multiplica-
tive, as in Ref. [35] for time-independent Hamiltonians. However, those
approaches do not appear directly applicable to the time-dependent case.

102

5
Training and Tomography with
Quantum Boltzmann Machines

“What I cannot create, I do not understand.”

Richard Feynman

Machine learning (ML) has earned a prominent role in the tech industry
for its ability to train computers for complicated tasks without the need of
giving them explicit instructions. ML performs exceptionally well on tasks
with complex structure such as speech recognition [189–191], computer
vision [192–194] or even playing the board game Go [195–197]. Given its
importance for computing, it is natural to ask what can arise from the
confluence of ML and quantum computing.

In this chapter, we focus on quantum algorithms that learn from quan-
tum data. This chapter is based on our paper [4] and significantly over-
laps with it. I altered the text to suit an audience mostly unfamiliar with
Boltzmann machines. I included the Theorems 9 and 10 proved by my
co-authors but without the full statements of the proofs. My co-author also

103

carried out the numerical analysis for tomography using relative entropy
in Section 5.6.5.

It should be noted that the success of a particular ML algorithm is
seldom determined by theoretical analysis alone. Instead, ML algorithms
are compared by running against each other on benchmark sets or by their
usefulness for practical tasks. Since we do not have quantum hardware
that can run QML algorithms, our situation is similar to the one of artificial
intelligence in the 60s. At the same time, the foundations of AI laid back
before ML became “practical” were crucial for guiding our thinking about
algorithm development. Similarly, there is value in foundations research in
QML.

5.1 Quantum Machine Learning

ML and quantum physics can overlap in several ways. There are many
results that apply (classical) ML techniques on quantum problems in
condensed-matter physics [198], quantum control [199] or discovering
physical concepts [200]. In these applications, ML is used to uncover the
properties of physical systems or devise models for complex phenomena.

Another avenue of research explores the implementation of ML algo-
rithms on quantum hardware. A number of results showed that quantum
computing can provide significant speedups for problems such as sup-
port vector machines (SVM) [201], nearest neighbor classification [202, 203],
boosting [204, 205] and many others [206–210]. However, loading and ac-
cessing large data sets in a quantum computer is problematic [211–213].
Nevertheless, there are still applications with polynomial speedup and
unexplored ways of combining ML with quantum computing techniques.

The last possible way of combining quantum computing and ML is
inventing quantum machine learning (QML) algorithms that run on a
quantum computer and are designed to process quantum data. In this setup,
quantum states are fed into a quantum computer for analysis directly from
an experiment or another quantum device. This area has a lot of potential
for speedups. To analyze the data classically, one needs to first perform
tomography whose complexity scales exponentially with the size of the
system. Quantum machine learning on quantum data might allow us

104

to extract features from the system without performing full tomography.
While we do not expect universal exponential speedups in this area, it is
likely that using quantum machine learning will assist in quantum system
characterization and Hamiltonian learning [214, 215] for problems that
exhibit some structure. We summarize the types of quantum machine
learning in the table below.

The data is
classical quantum

The
algorithm
runs on a

classical
computer Classical ML

ML on
experimental

data
quantum
computer

QML for SVM,
clustering, fitting . . . This chapter

Figure 5.1: Different areas of QML. Our focus is on quantum algorithms
able to process quantum data. However, since classical data are a special
case of quantum ones, we show how to learn on them as well.

5.2 Boltzmann Machines

As the name of this chapter implies, we are interested in a particular neural
network called a Boltzmann machine (BM). The Boltzmann machine is
a physically motivated framework capable of generating new examples
“similar” to the training data [216], i.e. generative, unsupervised training
introduced in Appendix A1. The inspiration for Boltzmann machines
comes from statistical physics, particularly the Boltzmann distribution.
For readers unfamiliar with machine learning we recommend reading
Appendix A first and then continuing with this section.

Hinton [217] defines a Boltzmann machine as “a network of symmet-
rically connected, neuronlike units that make stochastic decisions about
whether to be on or of.” This network has two key features – a graph (or a
hypergraph1) and an energy function. Just as for general neural networks,

1A hypergraph is a generalization of a graph. While an edge in a graph connects two
vertices, a hyperedge in a hypergraph can connect any number of vertices.

105

the information vector x is encoded in the vertices (called units) xi that can
take on values ±1. The units of a BM consist of visible units and optional
hidden units, similarly to other artificial neural networks.

The edges of the graph have been assigned weights such that an edge
connecting nodes i and j has weightWij. Missing edges automatically have
weight 0. We also allow for self-loop like terms, biases bi. This energy
function

E(x) = xTWx + bTx (5.1)

can be shown to be equivalent to (A.1) where we added one bit to x with a
fixed value of 1. We demonstrate how to compute an energy for a given
configuration in Fig. 5.2.

3 -2

5
-2 3

-1

1 -1

1

Figure 5.2: Each configuration can be assigned an energy value. In this
example, the assigned configuration E = (−1)·1 + (−2)·1 + 3·(−1) + 3· 1·
1 + (−2)·1·(−1) + 5·1·(−1) = −6.

Common choices of the graph include the complete graph and the
bipartite graph (see Fig. 5.2) with connections only between visible and
hidden units. A BM defined on a bipartite graph is called a Restricted
Boltzmann Machine (RMB). RBMs are favored by the ML community
because they can be trained using an efficient method called contrastive
divergence [218].

A properly trained BM generates new data. Outputs similar to the
training set should be generated with high probability while data that is
very different than the training set should be very unlikely to appear. To
do this, we assume that there is a distribution P(v) that the model learns
and the training data are sampled from it. A BM accomplishes this by
outputting data from its probability distribution Q(v), defined by weights
and biases, that should be close to the distribution P(v). We accomplish

106

(a) A fully-connected Boltzmann
machine. The connections be-
tween units form a complete
graph.

(b) Restricted Boltzmann Ma-
chine. Each hidden unit is con-
nected to each visible unit but
not to other hidden units and
vice versa. The connections form
a bipartite graph.

Figure 5.3: Fully connected vs. restricted Boltzmann machine.

this by teaching the BM to approximately reproduce the training data2. In
particular, the probabilityQ(x) for a configuration x (i.e. on both the visible
and the hidden units) is defined as:

Q(x) =
exp (−E(x))∑
x exp (−E(x))

. (5.2)

This is the Boltzmann distribution for the energy E(x) defined in (5.1) where
we set kT = 1. The state x consists of the state on the hidden units h and
visible units v, so x = (v, h). The probability of a state on the visible units
can be obtained by summing over all configurations on the hidden units

Q(v) =
∑

h exp (−E(v, h))∑
v,h exp (−E(v, h))

. (5.3)

But how do we get the weights and biases required for computing (5.1)
and (5.3)? We train the algorithm to make Q close to P using the train-
ing data. The “closeness” of two distributions is measured by Kullback-
Leibler (KL) divergence. Formally, the KL divergence quantifies the in-
formation loss occurring if the distribution generated from the model Q

2We want to be able to model the training data but not overfit them.

107

replaces the underlying distribution of data P:

DKL(P‖Q) =
∑

v
P(v) log

P(v)
Q(v)

. (5.4)

Since P is fixed, minimizing DKL(P‖Q) is equivalent to maximizing the
log-likelihood

L =
∑

v
P(v) logQ(v). (5.5)

While computing DKL(P‖Q) (and the log-likelihood) is exponentially dif-
ficult in the number of units, it is possible to estimate its gradients with
respect to bi andWi,j. A straightforward computation yields

∂biL =
∑

v
P(v)

[
−

∑
h xi exp (−E(v, h))∑

h exp (−E(v, h))
+

∑
v ′,h xi exp (−E(v ′, h))∑

v ′,h exp (−E(v ′, h))

]

(5.6)
for biases and

∂Wi,jL=
∑

v
P(v)

[
−

∑
h xixj exp (−E(v, h))∑

h exp (−E(v, h))
+

∑
v ′,h xi exp (−E(v ′, h))∑

v ′,h exp (−E(v ′, h))

]

(5.7)
for weights. However, we do not have direct access to the probability
distribution P(v). Instead, we estimate the gradients as

∂Wi,jL =
1
s

∑
v∈training set

[
−

∑
h xixj exp (−E(v, h))∑

h exp (−E(v, h))
+

∑
v ′,h xi exp (−E(v ′, h))∑

v ′,h exp (−E(v ′, h))

]

(5.8)

where s is the number of training vectors. Here we approximated the
underlying distribution P(v) using the training data which we treat as
samples from P(v). We estimate the gradients of the biases in the same
way. The expression (5.8) consists of expectations values of xixj in two
different types of states. The first term in (5.8) is the expectation value
when the visible units are “clamped” to a particular training vector v (i.e.
fixed to a given configuration) while the hidden units model a thermal
distribution. We first estimate these expectation values through sampling
for each training vector, and then we average them over the data set. The

108

second term in (5.8) does not depend on the training data, thus we need to

compute it only once for each update of weights. The term
∑

v,h xi exp (−E(v,h))∑
v,h exp (−E(v,h))

is sampled from a thermal distribution on all units. The steps of the training
are summarized at the end of this section.

Hinton and Sejnowski [219] proposed the first machine learning al-
gorithm that evaluates the gradient in Eq. (5.8). However, this learning
was not efficient because it required many samples from a thermal dis-
tribution. There have been many approaches to improve the speed of
learning [220, 221, 221–223]. Most notably, the first term in (5.8) can be com-
puted exactly for RBMs and the second term can be roughly approximated
using a method called contrastive divergence. Surprisingly, this very rough
approximation works exceptionally well [217, 218, 224].

We train a BM using stochastic gradient ascent. We start by initializ-
ing the weights and biases to random values and keep updating them to
increase L (and therefore decrease DKL(P‖Q)). Many techniques can be
used to speed up the convergence of gradient descent, including changing
the gradient step and including momentum3. This process is repeated for
a fixed number of epochs. If the number of epochs is too small, P and
Q might not be close. On the other hand, if we trained for too long, it is
possible that the BM overfits the data. Since L is impossible to estimate for
real-world data sets, the quality of the model is in practice estimated using
cross-validation data.

We will conclude this section with an overview of the training and the
generating algorithms. Once we settle on a graph (i.e., the number of visible
and the hidden units and the connections between them) for the BM, the
algorithm proceeds as follows:

3Momentum often helps accelerate gradient descent. The name is inspired by mechan-
ics and suggests that instead of following the direction of the gradient (acceleration), we
should follow the direction of velocity. In each step, the new momentum pi+1 is calculated
as a linear combination of momentum in the previous step pi and freshly computed
gradient ai+1. The new momentum is pi+1 = (1 −α)pi +αai+1 where α ∈ [0, 1].

109

Boltzmann machine training

generate starting weights and biases
construct the energy function
for the number of epochs do

create an approximation of the thermal distribution on all units
evaluate the expectation values of xixj and xi in this configuration
for all training vectors do

clamp visible units to a training vector
create an approximation of the thermal state on hidden units
evaluate the expectation values xixj and xi in this configuration

end for
compute gradients
update weights and biases
update the energy function

end for

Once the algorithm is trained, we can generate new data:

Sampling from a Boltzmann machine

create an approximation of the thermal state on all units
sample from the visible units

5.3 Training Quantum Boltzmann Machines

There are two main reasons why it is worth introducing Boltzmann ma-
chines to quantum mechanics. First, classical BMs may require many hid-
den units to model complicated datasets. We know that quantum mechan-
ics can produce distributions that are difficult to sample from classically.
It is possible that quantum Boltzmann machines will be more space effi-
cient than classical ones. Second, we want to perform generative learning
on quantum data. We will now introduce several approaches for quan-
tizing BMs and compare them between each other and to their classical
counterparts.

A quantum Boltzmann machine (QBM) was first introduced by Amin
et al. [225]. The QBM was defined as a generalization of a classical Boltz-

110

mann machine to the quantum regime. Classical binary units are replaced
by qubits and the energy function by a Hamiltonian. Amin et al. con-
strained their Hamiltonians to the transverse Ising model.

This choice was made to satisfy the hardware abilities; this algorithm
was designed to run on a D-Wave machine. While such models are trainable
and can outperform classical BMs, the training procedure proposed therein
suffers two drawbacks. First, the transverse field cannot be learned by
gradient descent from classical data. These terms must be found through
brute force techniques which makes finding the full Hamiltonian much
more difficult. Second, the transverse Ising models considered are widely
believed to be efficiently simulatable using quantum Monte-Carlo methods
and therefore do not provide a clear quantum advantage. The state of the
QBM can be then described by the density matrix corresponding to the
thermal state of the Hamiltonian

σ =
e−H

Tr [e−H]
(5.9)

and the state on the visible units

σv = Trh [σ] =
Trh
[
e−H

]

Tr [e−H]
, (5.10)

where we traced over the hidden units. Amin et al. further defined quan-
tum log-likelihood for training QBMs on classical states. In this chapter, we
generalize their version of the QBM in more than one way.

We explicitly design QBMs to process quantum data and work with
models that exhibit the full power of quantum computing. The gener-
alization of Boltzmann Machine training into the quantum setting is not
unique. We propose three methods that we refer to as POVM-based Golden-
Thompson training4, commutator training, and state-based Relative En-
tropy training. These approaches present different quantum analogs of the
training set and the objective function. We now review the possible realiza-
tions of a quantum training set. Next, we follow up with our proposal for a
new objective function.

4POVM stands for a positive-operator valued measure. This is the most general
measurement.

111

5.3.1 Quantum Training Set

In the classical setting, the training set is a set of vectors representing the
data. As a part of the training of classical Boltzmann Machines (BMs), we
have to ability to fix (clamp) the visible units to a particular training vector.
Additionally, we assume that the training set is sampled from an underlying
distribution P(v) over the visible units. The training set was first translated
to the quantum world as a set of projectors [225] on computational states.
This choice makes it indeed possible to clamp visible units on any desired
configuration. The goal of the training is then to learn the probability of
each projector.

We propose two ways of generalizing the training set to include quan-
tum as well as classical data. Our first suggestion is that there is no need
to constrain ourselves to projectors on computational states. We realized
that POVMs provide a natural way to express the training set. Formally,
we define the training set to be the following.

Let H := HV ⊗HH be a finite-dimensional Hilbert space and let HV

and HL be subsystems corresponding to the visible and hidden units of
the QBM. The probability distribution pv and POVM Λ = {Λv}, comprise a
training set for QBM training if

1. there exists a bijection between the domain of pv and Λ and

2. the domain of each Λv is H, and it acts non–trivially only on subsys-
tem HV .

Note that unlike P(v), pv corresponds only to the relative frequencies of
each outcome in the training set and not necessarily to the expectation
values of each Λv in the underlying state (although we assume that they
should be close).

This means that if we are training on quantum data, we can take a set
of measurements and the frequencies of their corresponding outcomes as
our training examples. We can also use POVM training on classical data by
pretending that they were sampled from a quantum state.

As a method for generalizing classical data, the choice of POVMs gives
a lot of freedom. Let us clarify the freedom of choosing the POVM on

112

an example. Suppose that we wish to train a model that generates even
numbers between 1 and 16 (this was an arbitrary choice) given a set of
samples that are all even numbers5. Then a sensible training set would be

Λn = |2n〉 〈2n| for 1 6 n 6 8

Λ0 = I −

8∑
n=1

Λn, pv = (1 − δv,0)/8. (5.11)

The following equivalent training set can also be used

Λ1 =
1
8
(
|2〉+ · · ·+ |16〉

)(
〈2|+ · · ·+ 〈16|

)
,

Λ0 = I −Λ1, pv = δv,1. (5.12)

This ambiguity about the form of the training set reveals that the POVM for
quantum Boltzmann training can be non-trivial even when a single training
vector is used. This allows us to circumvent problems with the Golden-
Thompson method that arose in [225] by using inherently non-diagonal
POVM elements. POVM training allows for clamping the visible units in
the same way as in the classical case. Just as with classical training data,
we assume to have a full knowledge about the data set. We know which
POVM we measured as well as how often we obtained each outcome6.
What we do not know is the underlying quantum state that the outcomes
were sampled from.

The second option is to train directly from quantum states. This is
equivalent to a quantum algorithm sampling from a density matrix. Note
that a single density matrix is sufficient since a linear combination of density
matrices is a density matrix as well. Since learning a description of a
quantum state is the goal of tomography, QBM training can be considered
a tomographic tool. The training state is then described by a Hamiltonian
such that the thermal state of this Hamiltonian is close to the training state.

These generalizations give very different notions of what a quantum
training set really is. While our POVM approach focuses on the general-
ization of obtaining (measuring) the training examples, the density matrix

5This is a very simple example where the training set provides all the necessary infor-
mation about the concept we are trying to learn without any noise.

6It might be possible to relax this assumption and only assume to have oracular access
to POVM elements.

113

approach focuses on the states. We expect that these notions will not be in-
terchangeable in practice. Since we are working with very different objects,
we needed to develop different training techniques as well.

5.3.2 Golden-Thompson Training

Our first approach to training is a generalization of the training method
introduced by Amin et al. [225]. The goal is to find an analog of the negative
log-likelihood as defined in (5.5). The data in their setting is classical and
thus can be assigned to a computational basis state. The probability Q(v)
of observing a training state |v〉 can be translated to the quantum setting as

Q(v) = Tr
[
e−HΛv

]
/Tr

[
e−H

]
, (5.13)

where H is the Hamiltonian defining the thermal state. The projector
Λv = |v〉〈v|⊗ 1 corresponds to visible units clamped to a training binary
state v and the training set is a set of such projectors. This allows us to
introduce the quantum log-likelihood.

OΛ(H) =
∑

v
Pv log

(
Tr
[
Λve

−H
]

Tr [e−H]

)
. (5.14)

Assuming that the Hamiltonian can be written as H =
∑M
j=1 θjHj, we

can attempt to compute the gradient of OΛ(H). The derivative of the
exponential in (5.14) can be expressed using Duhamel’s formula

Tr
[
Λv∂θe

−H
]
= Tr

[∫1

0
Λve

sH [∂θH] e
(1−s)Hds

]
. (5.15)

If Λv commutes with H, then we recover the expression for the classical
gradient. However, in the general, non-commuting case, a closed formula
is not available.

Amin et al. [225] overcame this difficulty by lower bounding the objec-
tive function instead of estimating it. First define a clamped Hamiltonian
Hv = H − lnΛv. This Hamiltonian introduces a penalty whenever the

114

visible units are not settled on v. Then, they use the Golden-Thompson
inequality

Tr
[
eAeB

]
> Tr

[
eA+B

]
(5.16)

on expression (5.14), leading to an objective function lower bound

OΛ(H) > Obound
Λ (H) =

∑
v
Pv log

(
Tr
[
e−Hv

]

Tr [e−H]

)
. (5.17)

The components of the gradient of Obound
Λ (H) are

∂Obound
Λ (H)

∂θj
=
∑

v
Pv

(
−

Tr[e−Hv∂θjH]
Tr[e−Hv]

+
Tr[e−H∂θjH]

Tr[e−H]

)
. (5.18)

A downside of this approximation is that when Tr[e−Hv∂θjH] = 0, the
model does not learn because the gradient of the Golden-Thompson ap-
proximation is zero. However, this does not mean that the gradient of the
log-likelihood is zero as well. Instead, it shows that the upper bound given
by the Golden-Thompson inequality is not always tight. As a consequence,
Amin et al. in [225] were not able to use this form of training to learn
non-diagonal terms of the Hamiltonian.

Our work presents two improvements over [225]. First, our formal-
ism avoids the problem of Tr[e−Hv∂θjH] = 0 by explicitly designing non-
diagonal POVM elements. We can always see a classical distribution as
being sampled from pure states. This allows us to always pick non-diagonal
Λv.

This freedom allows us to choose a POVM that always produces a
non-zero gradient because Λv does not commute with H. This avoids the
problems in [225] with the transverse Ising model and a training set similar
to (5.11).

Second, our algorithm is not constrained by the transverse Ising model.
A general Hamiltonian that is a smooth function of its parameters is indeed
possible. In our numerical analysis, we used an electronic Hamiltonian
which is 4-local. A choice of a 2-local Hamiltonian is preferred because
such a Hamiltonian can be represented on a graph instead of a hypergraph.

115

5.3.3 Commutator Training

Our second approach to POVM training avoids the use of the Golden–
Thompson inequality. Instead, we approximate the derivative in the ex-
pression (5.14) as a commutator series. If H and Λv commute, we recover
the classical gradient exactly. In general, if the Hamiltonian is a sum of
bounded Hamiltonian terms the expectation value can be written as a
commutator series; we have Tr[Ce−H] for

C := Λv

(
∂θjH+

[H,∂θjH]
2!

+
[H, [H,∂θjH]]

3!
+ · · ·

)
. (5.19)

Thus, the gradient of the average log-likelihood becomes

OΛ(H)

∂θj
=
∑

v
Pv

(
−

Tr[e−HC]
Tr[e−H]

+
Tr[e−H∂θjH]

Tr[e−H]

)
. (5.20)

Next, we truncate the series at a low order. This makes the commutator
series tractable and we will not incur substantial error if ‖[H,∂θjH]‖ �
1. Commutator training is therefore expected to outperform Golden-
Thompson training in the presence of L2 regularization on the quantum
terms. However, computing higher-order commutators is computationally
more expensive than estimating the gradient from formula (5.18). Lastly,
our numerical examples showed that commutator training can be numer-
ically unstable. While it might work for certain data sets or be used for
fine-tuning a model trained using the Golden-Thompson approach, we did
not find the commutator training to be broadly applicable.

5.3.4 Relative Entropy Training

The relative entropy is the quantum equivalent of KL divergence and as
such, represents a natural extension for the learning of quantum states.
Relative entropy is defined as

S(ρ‖σ) = Tr(ρ log ρ− ρ logσ), (5.21)

where ρ is the data distribution and σ = e−βH/Z is the thermal state gener-
ated by QBM. For simplicity, we take β = 1. Similarly to KL divergence,

116

the first part of (5.21) is independent of the parameters of the QBM. Hence,
our goal is to maximize the new objective function

Oρ(H) = Tr
[
ρ log

(
e−H

Tr[e−H]

)]
. (5.22)

Minimization of Oρ(H) allows us to train on quantum data, i.e. copies of ρ.
We can express the derivatives of Oρ(H) with respect to the parameters of
the Hamiltonian θ as

∂Oρ(H)

∂θj
= −Tr[ρ∂θjH] + Tr[e−H∂θjH]/Tr[e−H]. (5.23)

We can use the expression (5.23) for gradient ascent. We can compute
an approximation of the gradient by estimating both terms in (5.23). The
first term can be obtained by measuring expectation values on the train-
ing state and the corresponding expectation values on the approximation
of the thermal state created by a simulation. Furthermore, maximizing
Oρ(H) guarantees that the generated data is close to the training data be-
cause S(ρ||e−H/Z) > ‖ρ− e−H/Z‖2/2 ln(2) if ρ is positive definite. Thus if
S(ρ||e−H/Z)→ 0 then e−H/Z→ ρ.

Training by minimizing the relative entropy has two main advantages.
First, unlike Golden-Thompson training, no approximations are needed for
computing tomography. Second, relative entropy can be used for directly
learning quantum states. Given enough copies of the training state ρ and
sufficient computing time, relative entropy training provides a classical
description of the training state ρ in the form of the parameters θj of a
Hamiltonian such that ρ ≈ e−H

Tr[e−H] . This provides a novel approach to partial
tomography. Unlike tomography, QBM provides a direct description of
the state but might be more efficient for high-dimensional states exhibiting
clear structure. Additionally, QBM has the ability to create additional
approximate copies of ρ and therefore perform approximate cloning. We
also propose using QBM as a candidate for a quantum memory (QRAM).

We compare training and generation of Golden-Thompson and relative
entropy QBMs in the diagram 5.4.

117

(assumed)
quantum state

measurement
statistics
{Λv,pv}

copies of
the density

matrix ρ

expectation
values

Tr
[
e−Hv∂θjH

]

Tr[e−Hv]

expectation
values

Tr
[
ρ∂θjH

]

expectation
values

Tr
[
e−H∂θjH

]

Tr[e−H]

expectation
values

Tr
[
e−H∂θjH

]

Tr[e−H]

update
parameters θj

update
parameters θj

repeat until
the model has

learned the data

repeat until
the model has

learned the data

description of
the quantum state

description of
the quantum state

tr
ai
ni
ng

generate new
{Λv,p ′v}

generate new
ρ ′ou

tp
ut

relative entropyGolden-Thompson

Figure 5.4: Overview of Goldman-Thompson (left) and relative entropy
(right) training. In both cases, we are aim to generate samples from an
underlying quantum state similarly to the classical generative training in
Fig. A.1. We train the models through gradient ascent, where the gradient
consists of two terms; one term does depend on the training data and
one does not, see Eqs. (5.18) and (5.23). Commutator training is similar to
Golden-Thompson training, see Eq. (5.20).

118

5.4 Complexity Analysis

In this section, we bound the complexity of QBM training. While we are
able to obtain several analytic results, the speed of QBM training and the
number of copies of the training data must be ultimately determined by
benchmarking. In the thesis, we present only the proof of the theorem
proved by the author. The theorems proved by our co-author are included
for completeness and their proofs can be found in [4].

Let us start by explaining the cost model. We give the complexity of our
algorithm as a query complexity with respect to several oracles. We do not
explicitly estimate the gate complexity in this work.

The oracle FH(εH) takes the weights and biases of a quantum Boltzmann
machine (or equivalently a parameterization of a Hamiltonian) and outputs
an approximation σ of the thermal state such that ‖σ− e−H/Z‖tr 6 εH for
εH > 0. Note that we use this oracle for approximating thermal states of Hv
as well as H. In Section 5.5, we review several methods for implementing
FH(εH). We do not assume that we have the ability to prepare exact thermal
states; this would immediately yield an unrealistic computing model likely
more powerful than a quantum computer.

For relative entropy training, we also assume we have access to the
training data states ρ through an oracle Fρ. We take the cost of both oracles
to be equal.

Finally, we assume that the POVM elements can be prepared with a
constant sized circuit. Therefore, we do not assign a cost to implement them.
We do this for two reasons. First, incorporating a cost for POVM elements
would affect the implementation of oracle FH which would force us to
specialize to particular state preparation methods. In this sense, the cost
for the preparation of POVM elements is incorporated in FH. Second, the
POVM examples are likely to be projectors or similarly simple terms. Their
complexity would be therefore comparable to implementing a Hamiltonian
term. It might be possible to relax this requirement and only consider
oracular implementation of the POVM; we leave this question open for
further research.

We first show how the error in approximating the thermal state affects
the complexity of POVM training.

119

Theorem 8 Let H =
∑M
j=1 θjHj with ‖Hj‖2 = 1 ∀ j be the Hamiltonian for

a quantum Boltzmann machine. For notational simplicity, the terms Λv are
included in the Hamiltonian for POVM-based training. Furthermore, assume that
the approximation σ of the thermal states are always accessed through the oracle
FH(εH) such that ‖e−H/Z− σ‖tr 6 εH. Let G be an approximation to∇O where
O is the training objective function for either POVM based or relative entropy
training. If ε >

√
MεH then there exist training algorithms that approximate the

gradient using

O

(
M

ε2 −Mε2
H

)

queries to FH(εH) and the training set times per epoch, where the approximation
error E(‖G−Gtrue‖2

2) 6 ε
2.

We prove this theorem by considering the approximate gradients given
by the methods described in this chapter. The algorithms estimate the
gradient by sampling the expectation values of local Hamiltonians in the
approximate thermal states yielded by FH(εH). Each expectation value is
evaluated from n samples. As such, we have a sampling error as well as an
error due to using a slightly different state.

The true gradientGtrue is the vector of expectation values of local Hamil-
tonians using thermal states ∇OboundΛ or ∇Oρ(H); see Eqs. (5.8) and (5.23).
We evaluate the difference between Gtrue and our estimates G. Since the
gradients are vectors, we compute the 2-norm of their difference as

E(‖G−Gtrue‖2
2) =

M∑
j=1

E
(
(Gj −Gjtrue)

2
)

=

M∑
j=1

[
E
(
(Gj)2

)
− 2E

(
GjG

j
true

)
+ E

(
(Gjtrue)

2
)]

=

M∑
j=1

[
V
(
Gj
)
+ E

(
Gj
)2

−Gjtrue2E
(
Gj
)
+ (Gjtrue)

2
]

=

M∑
j=1

[
V
(
Gj
)
+
(

E
(
Gj
)
−Gjtrue

)2
]

. (5.24)

120

Next, we bound the gradient component E
(
Gj
)
= Tr

(
Hjσ

)
where σ is

an approximation of the thermal state e−H/Z. We are guaranteed that σ is
close to the thermal state such that

∥∥σ− e−H/Z
∥∥

tr 6 εH. Using standard
properties of the trace norm we can bound

∥∥∥Hje−H/Z− σHj

∥∥∥
tr
6
∥∥∥e−H/Z− σ

∥∥∥
tr
‖Hj‖2 6 εH. (5.25)

Thus |Gjtrue − E(Gj)| 6 εH under the assumption that ‖Hj‖2 6 1 for all j.

Next, we estimate the term V
(
Gj
)

for both relative entropy and POVM
training.

For relative entropy training, the components of approximate gradient
Gj are estimated using formula (5.23). Assuming ‖Hj‖2 6 1, we can bound
the variance of the components

V(Gj) ∈ O

(
1
n

max
{

Tr
[
ρHj

]
, Tr
[
σHj

]})
∈ O (1/n) , (5.26)

where ρ is the density matrix corresponding to the ensemble of training
vectors. The factor 1/n is due to sampling the expectation value n times
and Tr(ρHj) and Tr(σHj) are both O(1).

Similarly, we can estimate the variance for Golden-Thompson gradient
based on Eq. (5.18). Taking σv to be an approximation of the thermal state
e−Hv/Tr[e−Hv] within trace distance εH, we compute the variance

V(Gj) ∈ O

(
1
n

max
{

Tr
[
Hj
∑
v

pvσv

]
, Tr
[
Hjσ

]})
∈ O (1/n) . (5.27)

Note that in this context we have implicitly allowed the POVM elements to
be considered as Hamiltonian terms in the Boltzmann machine. Thus we
can prepare the clamped thermal states e−Hv/Zv within trace distance εH
using one query to FH(εH). Thus in both cases the sample variance of each
coordinate of the gradient vector has the same upper bound.

We can plug these results back into (5.24) and bound the error

E(‖G−Gtrue‖2
2) = O

(
M

n

)
+Mε2

H. (5.28)

121

Thus if we wish to take E(‖G − Gtrue‖2
2) 6 ε2 it suffices to take n =

O
[
M/(ε2 −Mε2

H)
]
. This also places a bound on the precision of gradi-

ent estimation in terms of precision of the density matrix preparation as
ε >
√
MεH.

This analysis shows that the gradient can be efficiently estimated by
sampling from an imperfect approximation of the gradient. However, we
are not able to analytically estimate the number of steps (epochs) needed
for the convergence of gradient descent/ascent algorithms. We do not
expect that the number of training epochs will scale polynomially with
the system size in the worst case scenario. This situation is analogous to
classical machine learning, which is often used on NP-complete problems
and excel for instances that exhibit additional structure. We will explore
convergence on small instances numerically in Section 5.6.

Let us state the additional theorems as they appear in our work. The
first result that we show is a lower bound based on tomographic bounds
that shows that quantum Boltzmann training cannot be efficient in general
if we wish to provide a highly accurate generative model for the training
data.

Theorem 9 The number of queries to Fρ which yields copies of rank r state
operator ρ ∈ CD×D required to train an arbitrary quantum Boltzmann machine
using relative entropy such that the quantum state generated by the Boltzmann
machine are within trace distance ε ∈ (0, 1) of ρ, and with failure probability
Θ(1), is inΩ(Dr/[ε2 log(D/rε)]).

The second result states the limitation for training. This result can be
proven by Grover’s search to Boltzmann training.

Theorem 10 There does not exist a general purpose POVM-based training algo-
rithm for quantum Boltzmann machines on a training set such that |{pv : pv >
0}| = N can prepare a thermal state such that Tr([

∑
v pvΛv]e

−H/Z) > 1/∆ that
requiresM queries to pv where ∆ ∈ O(

√
N) andM ∈ O(

√
N).

5.5 Preparing Thermal States

An essential part of Boltzmann machine training is sampling from the ther-
mal distribution. Sadly, preparing the thermal state is NP-hard. Classical

122

algorithms circumvent this problem by approximating it using contrastive
divergence [216]. Additional solutions have been proposed in [50, 226–
228]. A high-precision approximation can be obtained using the methods
from [91, 229]. We now briefly review a few of these methods.

The method of Chowdhury and Somma is strongly related to the meth-
ods in [50, 226, 227]. The main difference between these methods is that
their approach uses an integral transformation to allow the exponential to
be approximated as a LCU and implemented using Hamiltonian simulation
techniques as in Section 2.3.6. The complexity of preparing a thermal state
ρ ∈ CN×N within error ε, as measured by the 2–norm, is from [229]

O

(√
N

Z
polylog

(
1
ε

√
N

Z

))
, (5.29)

for inverse temperature β = 1, partition function Z and cases where H is
explicitly represented as a linear combination of Pauli operators.

Recently, Gilyen et al. [36] improved the above method by using QSVT
instead of LCU. This consists of first approximating the transformation by
a polynomial series that is probabilistically implemented through QSVT.
The success probability is amplified arbitrarily close to 1 with amplitude

amplification. If N is the dimension of the Hilbert space, O
(√

N
Z

)
rounds

of amplitude amplification are required.

Yung and Aspuru-Guzik [227] proposed an alternative approach for
thermal state preparation based on a quantum walk. In particular, the
Metropolis algorithm can be implemented in the quantum setting using a
Szegedy walk operator. The complexity of this approach depends on the
difference of energies between the ground state and the lowest excited state.
These eigenvalues are computed using phase estimation. The number of
applications of a controlled walk operator required by phase estimation is

O
(
‖H‖2

ε
√
δ

log
(
‖H‖2

ε2

))
, where δ is the gap of the transition matrix that defines

the quantum walk, and ε is the error in the preparation of the thermal state.
In addition, one needs to consider the complexity of applying the walk
operator. As such, it is not known which out of the described algorithms
would be preferable.

Additionally, there are promising empirical methods for preparing ther-
mal states. Recently, Anschuetz and Cao [230] suggested that a QBM can

123

be trained using the Eigenstate Thermalization Hypothesis [231,232]. Al-
ternatively, one can achieve an approximation of the thermal state with a
quantum annealer [225, 233]. However, this method is applicable only for
limited types of Hamiltonians. Lastly, there are thermal state preparation
techniques based on QAOA and VQA [234, 235]. Unlike the techniques
reviewed in the previous paragraphs, all of these techniques can be imple-
mented on near-term hardware.

5.6 Numerical Results

Now we present our numerical results. We performed two types of simula-
tions. The first type used a fermionic Hamiltonian to learn a classical data
set encoded in a quantum state. The second type of simulation performs
tomography on a 2-qubit density matrix. We will now discuss the first type
of simulation and compare the results to classical training.

5.6.1 The Data Set and the Hamiltonian

Given the limitations of classical computers, we could examine the perfor-
mance of QBMs only on a small number of units. Even though we were
able to simulate only very small QBMs, up to 9 units in total, we performed
a thorough sweep through the parameters of the simulation in order to
compare the best performance of different models. Since the model was
small, we were able to analytically compute the thermal state and the nega-
tive log-likelihood. This allowed us to directly assess the performance of
the QBM instead of using a validation data set.

We chose a simple data set composed of strings starting with some
number of 0s followed by 1s, the step function. We also added noise to the
training vectors; each bit had a 5% chance of a flip. We then encoded the
data into a single quantum state |ψ〉 as in Eq. (5.12). For POVM training,
we constructed the projectors to be Λ1 = |ψ〉 〈ψ| and Λ0 = I − |ψ〉 〈ψ|.

To capture the full power of quantum computing (instead of constrain-
ing ourselves to stoquastic Hamiltonians), we used a fermionic Hamiltonian

124

for training from [236]:

H = H1 +
1
2
H2 +

1
2
H4 , (5.30)

where

H1 =
∑
p

hp (ap + h.c.) , (5.31)

H2 =
∑
pq

hpq

(
a†paq + h.c.

)
, (5.32)

H4 =
∑
pqrs

hpqrs

(
a†pa

†
qaras + h.c.

)
. (5.33)

Here ap and a†p are fermionic creation and annihilation operators, which
create and destroy fermions at the QBM unit p. They have the properties
that a† |0〉 = |1〉, a† |1〉 = 0 and a

†
paq + aqa

†
p = δpq. The Hamiltonian

here corresponds to the standard Hamiltonian used in quantum chemistry
modulo the presence of the non-particle conserving Hp term.

Note that the y-axes in this section depict negative objective values. This
is because the objective values (5.17) and (5.22) are both upper bounded by
zero.

5.6.2 Parameters of QBM Training

When using any of the training methods outlined in this chapter, one is still
left with a freedom to choose a number of additional parameters.

The first one is the number of hidden units. Classically, using hidden
units is almost always necessary and a Boltzmann machine with all visible
units has limited expressive power. We were changing the number of hid-
den units for our quantum model between 0 and 2. We found out that our
QBMs required much fewer hidden units than their classical counterparts.

The next parameter is the step size within gradient descent/ascent, also
called the learning rate. Often, one starts with fairly large steps and keeps
decreasing them as the model learns. However, this can give a false sense
of convergence which was the case in our earlier simulations. Instead,

125

we decided to keep the learning rate constant. We searched over different
learning rates and used the ones that performed the best. Note that different
models preferred different learning rates.

The next parameter is momentum. We noticed that using momentum
significantly improved the convergence of learning, especially after many
steps of learning when the gradient becomes small. Using momentum
helps the training to converge faster if the gradient for consecutive steps
points in the same direction.

The last freedom that we explored was regularization. Regularization
is a set of methods to prevent overfitting and unnecessarily complicated
models. We chose to L2 regularization, that adds a penalty to the objective
function proportional to the square of weights hpq and hpqrs corresponding
to non-diagonal terms in the Hamiltonian. L2 regularization is a common
choice because of the simplicity of its derivatives and good performance
for a wide range of models.

We now present our numerical results. We repeated each simulation 100
times and present median values. Since the value of the objective function
depends on the dimension as well as the data, we compare the difference
between the achieved negative log-likelihood and the maximum one (exact
fit) in the plots below.

5.6.3 Golden-Thompson Training Analysis

We focused our efforts on Golden-Thompson training. We explored models
with 4 to 8 visible units and a varied number of hidden units. Our QBMs
consistently outperformed classical BMs in terms of accuracy, even if we
added hidden units to the hidden models. As shown in Fig. 5.5, the quan-
tum models learned to approximate the training data much more closely
than their classical counterparts. This suggests that QBMs can be beneficial
when classical machine learning techniques underfit data. Surprisingly,
adding hidden units to a QBM did not improve the quality of the approx-
imation. The simulations for 6 and more units showed similar results as
shown in Fig. 5.5.

We compare the performance of QBMs with a range of numbers of
visible units (and zero hidden units) in Fig. 5.6. As expected, larger QBMs

126

101 102 103

epoch

0.01

0.1

1

−
∆
O

Λ
(m

ed
ia

n)

q, hidden = 0
q, hidden = 1
q, hidden = 2
c, hidden = 0
c, hidden = 1
c, hidden = 2

Figure 5.5: Comparison of classical and quantum Boltzmann machines
(with Golden-Thompson training) for 5 visible units. This figure first
appeared in [4]. The vertical axis shows the difference between asymptotic
value of the objective function and the objective function for the learned
model in a given epoch.

require longer to learn. We were not able to determine how the complexity
of QBM training scales with the number of visible units. Presumably,
this can heavily depend on the training data and in some cases grow
exponentially.

5.6.4 Commutator Training Analysis

We examine the performance of commutator training for an all-visible Boltz-
mann machine with 4 visible units and compare it with Golden-Thompson
training. We immediately noticed that this type of the training is not nu-
merically stable. In particular, we were not able to use commutator training
at all when the learning rate or the gradient were too large – the learning

127

102 103 104

epoch

0.05

0.1

3

−
∆
O

Λ
(m

ed
ia

n)

GT, visible = 5
GT, visible = 6
GT, visible = 7
GT, visible = 8

Figure 5.6: Performance of QBMs with a range of numbers of visible units
and no hidden units. This figure first appeared in [4].

did not converge.

We were only able to use commutator training for later stages of learning
when the gradient estimated by Golden-Thompson was sufficiently small.
We then compared commutator and Golden-Thompson training with a
fixed set of parameters such as the learning rate and the momentum. Under
these conditions and for cases when learning converged, a high-order
commutator expansion performed much better than Golden-Thompson;
see Fig. 5.7. This, in turn, illustrates the difference between exact gradients
and Golden-Thompson gradients.

In particular, we trained for a fixed number of epochs using the Golden-
Thompson gradients and then switched to a 5th–order commutator ex-
pansion. We saw a dramatic improvement in the objective function as
a result. This shows that in some circumstances much better gradients
can be found with the commutator method than with Golden-Thompson,
albeit at a higher price because more expectation values need to be mea-

128

50 100 200 400

epoch

1.5

1.75

2

2.25

−
O

Λ
(m

ed
ia

n)

commutator post-training
commutator post-training
commutator post-training
optimized GT training

Figure 5.7: Plot showing the accuracy of commutator training for all-visible
Boltzmann machines with 4 visible units. The top lines depict training
with Golden-Thompson at first and then switching to commutator training
where we see a sudden increase in accuracy. We picked the parameters such
that the commutator training is stable. The bottom line (dashed) shows
the performance of Golden-Thompson training with optimized learning
rate and momentum. We always kept the learning rate constant during the
training; changing the learning rate might improve the learning outcome
but introduces another degree of complexity. This figure first appeared
in [4].

sured. In other words the gradients estimated from Golden-Thompson are
not always close to the gradients of the negative log-likelihood (without
approximation).

We also noticed that the optimal learning rate for this form of train-
ing can substantially differ from the optimal learning rate for Golden-
Thompson training. We compared our results from commutator training
to the results with optimized learning rate for Golden-Thompson training.

129

We found out that the optimized version of Golden-Thompson training
performed much better. This version of Golden-Thompson training used
a high learning rate that was incompatible with commutator training be-
cause of numerical instabilities. As such, we could not find a case when
commutator training proved useful; it only showed an advantage when
compared to highly constrained Golden-Thompson training.

This shows that while commutator training can give more accurate
gradients, it does not necessarily require fewer gradient steps and its use is
very limited. In practice, the method could be used in the last few training
epochs after Golden–Thompson training or other forms of approximate
training to reach a local optimum, but its use is otherwise limited.

5.6.5 Relative Entropy Analysis

We can train the QBM with relative entropy training using the same classical
data set as POVM training. We successfully reproduce results from Golden
Thompson training and find out that two approaches converge similarly;
see Fig. 5.8. We were not able to train QBMs with hidden units; however,
including hidden units from QBMs was in general unnecessary for our
simple data.

Next, we train our QBM to reconstruct two-qubit states using relative
entropy training. This task demonstrates that QBMs can be used for to-
mography. We trained QBMs on both pure and mixed states, and in all
cases our model was able to reconstruct these states within graphical ac-
curacy (i.e. the learned state is visually indistinguishable from the true
state) in 5 epochs as seen in Fig. 5.9. Since we chose our Hamiltonian to
consist of every two-qubit Pauli operator, we did not need to use hidden
units. A limitation of this approach was the requirement of all visible units.
Wossling and Wiebe [237] recently provided a method for training QBMs
with hidden units.

5.7 Conclusion

In this chapter, we proposed methods to train quantum Boltzmann ma-
chines on quantum data. We demonstrated that the models can successfully

130

102 103 104 105

epoch

10−2

10−1

−
∆
O

Λ
(m

ed
ia

n)

entropy
q, hidden = 0

Figure 5.8: Comparison of performance of a QBM using Golden-Thompson
POVM training and relative entropy training. In our experiments, the two
approaches performed similarly. This figure first appeared in [4].

learn under idealized conditions, but more research is needed to prove the
usefulness of QBM training.

The first open question is how well QBMs learn under realistic assump-
tions. That is, in practice we will not have direct access to thermal states or
precise estimates of expectation values. When training classical BMs, the
issue of Gibbs sampling is circumvented by using contrastive divergence
and explicitly computing certain expectation values. It is not clear how
many samples would be required for an accurate estimate of expectation
values for gradient computation. Also, it would be interesting to explore
whether there is an analog of contrastive divergence for QBM training.

The second question is the inclusion of hidden units for relative entropy
training. Hidden units would be necessary for constructing deep quan-
tum Boltzmann machines and for training only with local Hamiltonians.
Recently, Wiebe and Wossnig [237] proposed methods for training such

131

432

1 Epochs

14
3

2
1

0

0.2

0.4

432

3 Epochs

14
3

2
1

0

0.2

0.4

432

5 Epochs

14
3

2
1

0

0.2

0.4

4

True Mixed State

3214
3

2
1

0

0.2

0.4

432

1 Epochs

14
3

2
1

0

0.2

0.4

432

3 Epochs

14
3

2
1

0

0.2

0.4

432

5 Epochs

14
3

2
1

0

0.2

0.4

4

True Mixed State

3214
3

2
1

0

0.2

0.4

432

1 Epochs

14
3

2
1

0

0.2

0.4

432

3 Epochs

14
3

2
1

0

0.5

1

432

5 Epochs

14
3

2
1

0

0.5

1

4

True Pure State

3214
3

2
1

0

0.5

1

432

1 Epochs

14
3

2
1

0.5

0

432

3 Epochs

14
3

2
1

0

0.2

0.4

432

5 Epochs

14
3

2
1

0

0.2

0.4

4

True Pure State

3214
3

2
1

0

0.2

0.4

Figure 5.9: Absolute values of tomographic reconstruction of two-qubit
pure states and mixed states using relative entropy training with learning
rate η = 1. This figure first appeared in [4].

QBMs.

We mostly avoided the topic of overfitting data. This is because charac-
terizing quantum states is a resource-intensive task and having too much
quantum processing power is not likely to be an issue in the near future.
Eventually, we will need to introduce methods to prevent us from learning
sampling errors. One such method is L2 regularization that we incorpo-
rated in our numerical experiments. It would be interesting to examine
how classical regularization techniques perform in the quantum setting,

132

as well as to develop new overfitting techniques. Additionally, we will
eventually need to use separate data for validation of QML algorithms.

Lastly, the most important strength of QBMs is their ability to replace
tomography for quantum states with structure. Since we require only
approximations of thermal states and computation of expectation values,
relative entropy training is near ideally suited for near future experiments.
We hope that combining ideas from quantum machine learning, quan-
tum Hamiltonian learning, and state estimation will lead to more efficient
methods that will be eventually employed in practice.

133

6
Conclusion and Future Work

“Full stories are as rare as honesty.”

Zadie Smith (White Teeth)

In this thesis, we presented several techniques for building efficient
quantum algorithms. Our goal was to improve quantum algorithm perfor-
mance for practical tasks, such as estimating energies in quantum chemistry.

The first set of techniques, quantum comparison, sort, and shuffle,
are presented in Chapter 3 and based on our paper [2]. We developed a
quantum shuffle to antisymmetrize fermionic states in first quantization
quickly. The components of one of our shuffling algorithms, comparison
and sort, later found applications in state preparation [116] and simulation
of time-independent Hamiltonians [3].

Chapter 4 focused on our algorithm for simulating time-dependent
Hamiltonians. This algorithm has applications for simulating quantum
chemistry with moving nuclei, a digital simulation of adiabatic computa-
tion, and simulations in the interaction picture. The next step will be to
estimate the resources of using this method for benchmark molecules in

134

quantum chemistry. Calculating gate counts will also determine which one
of our state preparation methods is more efficient.

Our last methods are for generative learning and tomography with
quantum Boltzmann machines based on [4]. We demonstrate how to use
quantum Boltzmann machines for training on quantum and classical data.
We envision that quantum Boltzmann machines can be used for classical
data that conventional algorithms underfit, or for partial tomography on
quantum states.

Throughout this thesis, we raised many open questions. The first one
is what are the resource requirements of our algorithms. We quantified
our algorithms in terms of their asymptotic scaling or through numerical
simulations for small examples. In particular, it would be interesting to see
how shuffling and truncated Dyson series algorithms perform on quantum
chemistry problems. We plan to estimate the explicit gate counts for our
Dyson series algorithm in the near future.

In Chapter 5, we showed that we can train quantum Boltzmann ma-
chines on quantum data. However, there are many more steps needed to
show that such training is efficient. A method for relative entropy training
with hidden units [237] is one such step. Another one is creating approxi-
mations of training states, aka quantum contrastive divergence. We will
also need to carefully examine the performance of QBMs with a growing
number of units. Lastly, it would be interesting to investigate whether cre-
ating additional layers and forming a deep quantum Boltzmann machine
brings any advantages.

Lastly, we would like to apply our techniques on a wider array of
problems. Comparison and sort are simple routines with many applications
in classical computing and we would like to use our efficient circuits for
them in other quantum algorithms. Similarly, we want to know the scope
of applications of QBMs for tomography, approximate cloning and possibly
state preparation. We hope that the techniques introduced in this thesis
will prove to be widely applicable.

135

References

[1] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote,
Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja
Peropadre, Nicolas PD Sawaya, et al. Quantum chemistry in the age
of quantum computing. Chemical Reviews, 2018.

[2] Dominic W Berry, Mária Kieferová, Artur Scherer, Yuval R Sanders,
Guang Hao Low, Nathan Wiebe, Craig Gidney, and Ryan Babbush.
Improved techniques for preparing eigenstates of fermionic Hamilto-
nians. npj Quantum Information, 4:22, 2018.

[3] Mária Kieferová, Artur Scherer, and Dominic W Berry. Simulating the
dynamics of time-dependent Hamiltonians with a truncated Dyson
series. Physical Review A, 99(4):042314, 2019.

[4] Mária Kieferová and Nathan Wiebe. Tomography and generative
training with quantum Boltzmann machines. Physical Review A,
96:062327, 2017.

[5] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical Review Letters,
103(15):150502, 2009.

[6] Richard P Feynman. Quantum mechanical computers. Foundations of
Physics, 16(6):507–531, 1986.

[7] David Deutsch. Quantum theory, the Church–Turing principle and
the universal quantum computer. Proceedings of the Royal Society of
London. A. Mathematical and Physical Sciences, 400(1818):97–117, 1985.

136

[8] David Deutsch and Richard Jozsa. Rapid solution of problems by
quantum computation. Proceedings of the Royal Society of London Series
A, 439:553–558, 1992.

[9] Vladimı́r Černý. Quantum computers and intractable (NP-complete)
computing problems. Physical Review A, 48(1):116, 1993.

[10] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory.
SIAM Journal on Computing, 26(5):1411–1473, 1997.

[11] Daniel R Simon. On the power of quantum computation. SIAM
Journal on Computing, 26(5):1474–1483, 1997.

[12] Peter W Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Review,
41(2):303–332, 1999.

[13] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–
1078, 1996.

[14] Lov K Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, pages 212–219. ACM, 1996.

[15] Mario Szegedy. Quantum speed-up of markov chain based algo-
rithms. In 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 32–41. IEEE, 2004.

[16] Andris Ambainis. Quantum walk algorithm for element distinctness.
SIAM Journal on Computing, 37(1):210–239, 2007.

[17] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam
Gutmann, and Daniel A Spielman. Exponential algorithmic speedup
by a quantum walk. In Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing, pages 59–68. ACM, 2003.

[18] Andrew M Childs and Jeffrey Goldstone. Spatial search by quantum
walk. Physical Review A, 70(2):022314, 2004.

[19] Andrew M Childs. Universal computation by quantum walk. Physical
Review Letters, 102(18):180501, 2009.

137

[20] Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath,
and John Watrous. One-dimensional quantum walks. In Proceedings
of the Thirty-Third Annual ACM Symposium on Theory of Computing,
pages 37–49. ACM, 2001.

[21] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos San-
tha. Search via quantum walk. SIAM Journal on Computing, 40(1):142–
164, 2011.

[22] Frédéric Magniez, Ashwin Nayak, Peter C Richter, and Miklos Santha.
On the hitting times of quantum versus random walks. Algorithmica,
63(1-2):91–116, 2012.

[23] Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Nested quantum
walks with quantum data structures. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete algorithms, pages
1474–1485. Society for Industrial and Applied Mathematics, 2013.

[24] Neil B Lovett, Sally Cooper, Matthew Everitt, Matthew Trevers, and
Viv Kendon. Universal quantum computation using the discrete-time
quantum walk. Physical Review A, 81(4):042330, 2010.

[25] Ashley Montanaro. Quantum walk speedup of backtracking algo-
rithms. arXiv:1509.02374, 2015.

[26] Andrew M Childs, David Gosset, and Zak Webb. Universal compu-
tation by multiparticle quantum walk. Science, 339(6121):791–794,
2013.

[27] Andrew M Childs. On the relationship between continuous-and
discrete-time quantum walk. Communications in Mathematical Physics,
294(2):581–603, 2010.

[28] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth
Lloyd, and Odev Regev. Adiabatic Quantum Computation is Equiva-
lent to Standard Quantum Computation. In 45th Annual IEEE Sympo-
sium on Foundations of Computer Science. IEEE, 2004.

[29] Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C.
Sanders. Efficient quantum algorithms for simulating sparse Hamil-
tonians. Communications in Mathematical Physics, 270(2):359–371, 2006.

138

[30] Nathan Wiebe, Dominic Berry, Peter Høyer, and Barry C Sanders.
Higher order decompositions of ordered operator exponentials. Jour-
nal of Physics A: Mathematical and Theoretical, 43(6):065203, 2010.

[31] Dominic W Berry and Andrew M Childs. Black-box Hamiltonian
simulation and unitary implementation. Quantum Information and
Computation, 12:0029–0062, 2012.

[32] Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamilto-
nian simulation with nearly optimal dependence on all parameters.
In Proceedings of the 56th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 792–809, 2015.

[33] Dominic W Berry, Richard Cleve, and Rolando D Somma. Exponen-
tial improvement in precision for Hamiltonian-evolution simulation.
arXiv:1308.5424, 2013.

[34] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari,
and Rolando D Somma. Simulating Hamiltonian dynamics with a
truncated Taylor series. Physical Review Letters, 114(9):090502, 2015.

[35] Guang Hao Low and Isaac L Chuang. Optimal Hamiltonian simula-
tion by quantum signal processing. Physical Review Letters, 118:010501,
2017.

[36] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quan-
tum singular value transformation and beyond: exponential improve-
ments for quantum matrix arithmetics. arXiv:1806.01838, 2018.

[37] Guang Hao Low and Nathan Wiebe. Hamiltonian simulation in the
interaction picture. arXiv:1805.00675, 2018.

[38] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
Quantum computation by adiabatic evolution. arXiv:0001106, 2000.

[39] Wim Van Dam, Michele Mosca, and Umesh Vazirani. How pow-
erful is adiabatic quantum computation? In Proceedings 2001 IEEE
International Conference on Cluster Computing, pages 279–287. IEEE,
2001.

139

[40] Andrew M Childs, Edward Farhi, and John Preskill. Robustness
of adiabatic quantum computation. Physical Review A, 65(1):012322,
2001.

[41] Jérémie Roland and Nicolas J Cerf. Adiabatic quantum search algo-
rithm for structured problems. Physical Review A, 68:62312, 2003.

[42] Tameem Albash and Daniel A Lidar. Adiabatic quantum computa-
tion. Reviews of Modern Physics, 90(1):015002, 2018.

[43] Rolando D Somma, Daniel Nagaj, and Mária Kieferová. Quan-
tum Speedup by Quantum Annealing. Physical Review Letters,
109(5):50501–50506, 2012.

[44] Rolando D Somma, Daniel Nagaj, and Mária Kieferová. Quantum
speedup by quantum annealing. Physical Review Letters, 109(5):050501,
2012.

[45] Greg Kuperberg. A subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. SIAM Journal on Computing,
35(1):170–188, 2005.

[46] Daniel J Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer.
Quantum algorithms for the subset-sum problem. In International
Workshop on Post-Quantum Cryptography, pages 16–33. Springer, 2013.

[47] Stephen P Jordan, Keith SM Lee, and John Preskill. Quantum al-
gorithms for quantum field theories. Science, 336(6085):1130–1133,
2012.

[48] Esteban A Martinez, Christine A Muschik, Philipp Schindler, Daniel
Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello
Dalmonte, Thomas Monz, Peter Zoller, et al. Real-time dynamics of
lattice gauge theories with a few-qubit quantum computer. Nature,
534(7608):516, 2016.

[49] Gavin K Brennen, Peter Rohde, Barry C Sanders, and Sukhwinder
Singh. Multiscale quantum simulation of quantum field theory using
wavelets. Physical Review A, 92(3):032315, 2015.

140

[50] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum deep
learning. Quantum Information and Computation, 16:0541–0587, 2016.

[51] MV Altaisky. Quantum neural network. arXiv:0107012, 2001.

[52] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest
for a quantum neural network. Quantum Information Processing,
13(11):2567–2586, 2014.

[53] Edward Farhi and Hartmut Neven. Classification with quantum
neural networks on near term processors. arXiv:1802.06002, 2018.

[54] John Preskill. Quantum computing in the NISQ era and beyond.
arXiv:1801.00862, 2018.

[55] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L
O’Brien. A variational eigenvalue solver on a photonic quantum
processor. Nature Communications, 5:4213, 2014.

[56] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm. arXiv:1411.4028, 2014.

[57] David P DiVincenzo. The physical implementation of quantum
computation. Fortschritte der Physik: Progress of Physics, 48(9-11):771–
783, 2000.

[58] Julian Kelly. A pReview of Bristlecone, Google’s new quantum
processor. https://ai.googleblog.com/2018/03/a-preview-of-

bristlecone-googles-new.html, 2018.

[59] Rigetti’s 19Q superconducting quantum processor. https://www.

eurekalert.org/multimedia/pub/162061.php, 2018.

[60] Quantum information science in the national spotlight. https://www.
aps.org/publications/apsnews/201810/quantum.cfm, 2018.

[61] IBM’s newly revealed 50-qubit quantum processor will be available
in next generation of IBM Q systems. http://www.softcarecs.

com/ibms-newly-revealed-50-qubit-quantum-processor-will-

be-availale-in-next-generation-of-ibm-q-systems/, 2017.

141

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://www.eurekalert.org/multimedia/pub/162061.php
https://www.eurekalert.org/multimedia/pub/162061.php
https://www.aps.org/publications/apsnews/201810/quantum.cfm
https://www.aps.org/publications/apsnews/201810/quantum.cfm
http://www.softcarecs.com/ibms-newly-revealed-50-qubit-quantum-processor-will-be-availale-in-next-generation-of-ibm-q-systems/
http://www.softcarecs.com/ibms-newly-revealed-50-qubit-quantum-processor-will-be-availale-in-next-generation-of-ibm-q-systems/
http://www.softcarecs.com/ibms-newly-revealed-50-qubit-quantum-processor-will-be-availale-in-next-generation-of-ibm-q-systems/

[62] Making the world’s first integrated quantum system.
https://newsroom.intel.com/wp-content/uploads/sites/11/

2018/05/49-qubit-processor-tangle-lake-infographic.jpg,
2018.

[63] Xiaogang Qiang, Xiaoqi Zhou, Jianwei Wang, Callum M Wilkes,
Thomas Loke, Sean O’Gara, Laurent Kling, Graham D Marshall,
Raffaele Santagati, Timothy C Ralph, et al. Large-scale silicon quan-
tum photonics implementing arbitrary two-qubit processing. Nature
Photonics, 12(9):534, 2018.

[64] Making the world’s first integrated quantum system. https://www.
research.ibm.com/ibm-q/system-one/, 2019.

[65] Chad Rigetti. The Rigetti 128-qubit chip and what it means for
quantum. https://medium.com/rigetti/the-rigetti-128-qubit-
chip-and-what-it-means-for-quantum-df757d1b71ea, 2018.

[66] The Rigetti 128-qubit chip and what it means for quantum. https:
//ionq.co/.

[67] The path to the world’s most powerful quantum computer.
https://www.honeywell.com/en-us/newsroom/news/2019/01/the-

path-to-the-world-s-most-powerful-quantum-computer, 2019.

[68] Austin G Fowler, Matteo Mariantoni, John M Martinis, and An-
drew N Cleland. Surface codes: Towards practical large-scale quan-
tum computation. Physical Review A, 86(3):032324, 2012.

[69] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers
in 8 hours using 20 million noisy qubits. arXiv:1905.09749, 2019.

[70] Ivan Kassal, Stephen P Jordan, Peter J Love, Masoud Mohseni, and
Alán Aspuru-Guzik. Polynomial-time quantum algorithm for the
simulation of chemical dynamics. Proceedings of the National Academy
of Sciences, 105(48):18681–18686, 2008.

[71] Alán Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin
Head-Gordon. Simulated quantum computation of molecular ener-
gies. Science, 309(5741):1704, 2005.

142

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/49-qubit-processor-tangle-lake-infographic.jpg
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/49-qubit-processor-tangle-lake-infographic.jpg
https://www.research.ibm.com/ibm-q/system-one/
https://www.research.ibm.com/ibm-q/system-one/
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://ionq.co/
https://ionq.co/
https://www.honeywell.com/en-us/newsroom/news/2019/01/the-path-to-the-world-s-most-powerful-quantum-computer
https://www.honeywell.com/en-us/newsroom/news/2019/01/the-path-to-the-world-s-most-powerful-quantum-computer

[72] Ryan Babbush, Dominic W Berry, Ian D. Kivlichan, Annie Y. Wei,
Peter J. Love, and Alán Aspuru-Guzik. Exponentially more precise
quantum simulation of fermions in second quantization. New Journal
of Physics, 18(3):033032, 2016.

[73] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jar-
rod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven.
Encoding electronic spectra in quantum circuits with linear t com-
plexity. Physical Review X, 8(4):041015, 2018.

[74] Ryan Babbush, Dominic W Berry, Jarrod R. McClean, and Hartmut
Neven. Quantum simulation of chemistry with sublinear scaling to
the continuum. arXiv:1807.09802, 2018.

[75] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commu-
nications of the ACM, 21(2):120–126, 1978.

[76] Sadegh Raeisi, Mária Kieferová, and Michele Mosca. Novel tech-
nique for robust optimal algorithmic cooling. Physical Review Letters,
122:220501, Jun 2019.

[77] Mária Kieferová and Nathan Wiebe. On the power of coherently
controlled quantum adiabatic evolutions. New Journal of Physics,
16(12):123034, 2014.

[78] Scott Aaronson, Greg Kuperberg, and Christopher Granade.
The Complexity Zoo. https://complexityzoo.uwaterloo.ca/

Complexity_Zoo, 2005.

[79] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An introduc-
tion to quantum computing. Oxford University Press, 2007.

[80] Chris Ferrie. Quantum Computing for Babies. Jabberwocky, 2017.

[81] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2010.

[82] Stephen Jordan. Quantum Algorithm Zoo. https://math.nist.gov/
quantum/zoo/.

143

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://math.nist.gov/quantum/zoo/
https://math.nist.gov/quantum/zoo/

[83] Michele Mosca. Quantum algorithms. Encyclopedia of Complexity and
Systems Science, pages 7088–7118, 2009.

[84] Dave Bacon and Wim VAn DAm. Recent progress in quantum algo-
rithms. Communications of the ACM, 53(2):84–93, 2010.

[85] Ashley Montanaro. Quantum algorithms: an overview. npj Quantum
Information, 2:15023, 2016.

[86] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVin-
cenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin,
and Harald Weinfurter. Elementary gates for quantum computation.
Physical Review A, 52:3457–3467, 1995.

[87] Michael A Nielsen, Michael J Bremner, Jennifer L Dodd, Andrew M
Childs, and Christopher M Dawson. Universal simulation of Hamil-
tonian dynamics for quantum systems with finite-dimensional state
spaces. Physical Review A, 66(2):022317, 2002.

[88] Christopher M Dawson and Michael A Nielsen. The Solovay-Kitaev
algorithm. arXiv:0505030, 2005.

[89] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Asymp-
totically optimal approximation of single qubit unitaries by Clifford
and T circuits using a constant number of ancillary qubits. Physical
Review Letters, 110:190502, 2013.

[90] Robert B Griffiths and Chi-Sheng Niu. Semiclassical Fourier trans-
form for quantum computation. Physical Review Letters, 76:3228–3231,
1996.

[91] Craig Gidney. Halving the cost of quantum addition. Quantum, 2:74,
2018.

[92] Austin G Fowler, Ashley M Stephens, and Peter Groszkowski. High-
threshold universal quantum computation on the surface code. Phys-
ical Review A, 80(5):052312, 2009.

[93] Sergey Bravyi and Alexei Kitaev. Universal quantum computa-
tion with ideal Clifford gates and noisy ancillas. Physical Review
A, 71(2):022316, 2005.

144

[94] Daniel Gottesman. Stabilizer codes and quantum error correction.
arXiv:9705052, 1997.

[95] Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):1–22, 1976.

[96] Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum com-
putation with constant error rate. arxiv:9906129, 1999.

[97] Daniel Gottesman. An introduction to quantum error correction and
fault-tolerant quantum computation. In Quantum information science
and its contributions to mathematics, Proceedings of Symposia in Applied
Mathematics, volume 68, pages 13–58, 2010.

[98] Yuval R Sanders, Joel J Wallman, and Barry C Sanders. Bounding
quantum gate error rate based on reported average fidelity. New
Journal of Physics, 18(1):012002, 2015.

[99] John Preskill. Sufficient condition on noise correlations for scalable
quantum computing. arXiv:1207.6131, 2012.

[100] Gil Kalai. Quantum computers: noise propagation and adversarial
noise models. arXiv:0904.3265, 2009.

[101] Peter W Shor. Scheme for reducing decoherence in quantum com-
puter memory. Physical Review A, 52:R2493–R2496, 1995.

[102] Chenyang Wang, Jim Harrington, and John Preskill. Confinement-
Higgs transition in a disordered gauge theory and the accuracy
threshold for quantum memory. Annals of Physics, 303(1):31–58, 2003.

[103] Michael Freedman, Alexei Y Kitaev, Michael Larsen, and Zhenghan
Wang. Topological quantum computation. Bulletin of the American
Mathematical Society, 40(1):31–38, 2003.

[104] Sergey B Bravyi and Alexei Y Kitaev. Quantum codes on a lattice
with boundary. arXiv:9811052, 1998.

[105] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topo-
logical quantum memory. Journal of Mathematical Physics, 43(9):4452–
4505, 2002.

145

[106] Tommaso Toffoli. Reversible computing. In International Colloquium
on Automata, Languages, and Programming, pages 632–644. Springer,
1980.

[107] Edward Fredkin and Tommaso Toffoli. Conservative logic. Interna-
tional Journal of Theoretical Physics, 21(3-4):219–253, 1982.

[108] Rolf Landauer. Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development, 5(3):183–191, 1961.

[109] Charles H Bennett. Notes on the history of reversible computation.
ibm Journal of Research and Development, 32(1):16–23, 1988.

[110] Charles H Bennett. Notes on Landauer’s principle, reversible com-
putation, and Maxwell’s Demon. Studies In History and Philosophy
of Science Part B: Studies In History and Philosophy of Modern Physics,
34(3):501–510, 2003.

[111] Alex Parent, Martin Roetteler, and Michele Mosca. Improved re-
versible and quantum circuits for Karatsuba-based integer multipli-
cation. arXiv:1706.03419, 2017.

[112] Vivek V Shende, Aditya K Prasad, Igor L Markov, and John P Hayes.
Synthesis of reversible logic circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 22(6):710–722, 2003.

[113] Mehdi Saeedi and Igor L Markov. Synthesis and optimization of
reversible circuits–a survey. ACM Computing Surveys (CSUR), 45(2):21,
2013.

[114] D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. A transfor-
mation based algorithm for reversible logic synthesis. In Proceedings
2003. Design Automation Conference (IEEE Cat. No. 03CH37451), pages
318–323. IEEE, 2003.

[115] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Gio-
vanni De Micheli. Logic synthesis for quantum computing.
arXiv:1706.02721, 2017.

[116] Yuval R Sanders, Guang Hao Low, Artur Scherer, and Dominic W
Berry. Black-box quantum state preparation without arithmetic. Phys-
ical Review Letters, 122:020502, 2019.

146

[117] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca.
Quantum algorithms revisited. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, volume 454,
pages 339–354. The Royal Society, 1998.

[118] A Yu Kitaev. Quantum measurements and the Abelian stabilizer
problem. arxiv:9511026, 1995.

[119] Lisa Hales and Sean Hallgren. An improved quantum Fourier trans-
form algorithm and applications. In Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on, pages 515–525. IEEE,
2000.

[120] David Poulin, Alexei Kitaev, Damian S. Steiger, Matthew B. Hastings,
and Matthias Troyer. Quantum algorithm for spectral measurement
with a lower gate count. Physical Review Letters, 121:010501, 2018.

[121] Brendon L. Higgins, Dominic W Berry, Stephen D. Bartlett,
Howard M. Wiseman, and Geoff J. Pryde. Entanglement-free
Heisenberg-limited phase estimation. Nature, 450:393–396, 2007.

[122] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and
Ronald De Wolf. Quantum lower bounds by polynomials. Journal of
the ACM (JACM), 48(4):778–797, 2001.

[123] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis,
Krišjānis Prūsis, and Jevgēnijs Vihrovs. Quantum speedups for
exponential-time dynamic programming algorithms. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1783–1793. SIAM, 2019.

[124] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quan-
tum amplitude amplification and estimation. Contemporary Mathe-
matics, 305:53–74, 2002.

[125] Theodore J Yoder, Guang Hao Low, and Isaac L Chuang. Fixed-point
quantum search with an optimal number of queries. Physical Review
Letters, 113(21):210501, 2014.

147

[126] Andrew M Childs and Nathan Wiebe. Hamiltonian simulation using
linear combinations of unitary operations. Quantum Information and
Computation, 12(11):901, 2012.

[127] Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamilto-
nian simulation with nearly optimal dependence on all parameters.
In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 792–809. IEEE, 2015.

[128] Seth Lloyd. Universal Quantum Simulators. Science, 273(5):1073–
1078, 1996.

[129] Scott Aaronson and Daniel Gottesman. Improved simulation of
stabilizer circuits. Physical Review A, 70(5):052328, 2004.

[130] Richard P Feynman. Simulating physics with computers. International
Journal of Theoretical Physics, 21(6-7):467–488, 1982.

[131] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simu-
lation of electronic structure Hamiltonians using quantum computers.
Molecular Physics, 109(5):735–750, 2011.

[132] James Daniel Whitfield, Peter John Love, and Alan Aspuru-Guzik.
Computational complexity in electronic structure. Physical Chemistry
Chemical Physics, 15(2):397–411, 2013.

[133] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state
generation and statistical zero knowledge. In Proceedings of the Thirty-
Fifth Annual ACM Symposium on Theory of Computing, pages 20–29.
ACM, 2003.

[134] Andrew M Childs, Robin Kothari, and Rolando D Somma. Quan-
tum algorithm for systems of linear equations with exponentially
improved dependence on precision. SIAM Journal on Computing,
46(6):1920–1950, 2017.

[135] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari,
and Rolando D Somma. Exponential improvement in precision for
simulating sparse Hamiltonians. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, STOC ’14, pages 283–292,
New York, NY, USA, 2014. ACM.

148

[136] Dominic W Berry, Richard Cleve, and Sevag Gharibian. Gate-efficient
discrete simulations of continuous-time quantum query algorithms.
Quantum Information & Computation, 14(1-2):1–30, 2014.

[137] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by
qubitization. Quantum, 3:163, 2019.

[138] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C.
Sanders. Quantum Algorithms for Hamiltonian Simulation. In Louis
Kauffman and Samuel J. Lomonaco, editors, Mathematics of Quantum
Computation and Quantum Technology, Chapman & Hall/CRC Applied
Mathematics & Nonlinear Science, pages 89–112. CRC Press, 2007.

[139] I M Georgescu, S Ashhab, and Franco Nori. Quantum simulation.
Reviews of Modern Physics, 86(1):153–185, 2014.

[140] A. Aspuru-Guzik, A. Dutoi, P. J. Love, and M. Head-Gordon.
Simulated quantum computation of molecular energies. Science,
309(5741):1704–1707, 2005.

[141] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum
principal component analysis. Nature Physics, 10:631–633, 2014.

[142] Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow, Samuel
Kutin, Noah Linden, Dan Shepherd, and Mark Stather. Efficient
distributed quantum computing. Proceedings of the Royal Society A,
469(2153), 2013.

[143] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
Limit on the speed of quantum computation in determining parity.
Physical Review Letters, 81(24):5442, 1998.

[144] Andrew M Childs and Robin Kothari. Limitations on the simulation
of non-sparse Hamiltonians. arXiv:0908.4398, 2009.

[145] Jeongwan Haah, Matthew Hastings, Robin Kothari, and Guang Hao
Low. Quantum algorithm for simulating real time evolution of lattice
hamiltonians. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 350–360. IEEE, 2018.

149

[146] Masuo Suzuki. Fractal decomposition of exponential operators with
applications to many-body theories and Monte Carlo simulations.
Physics Letters A, 146(6):319–323, 1990.

[147] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross,
and Yuan Su. Toward the first quantum simulation with quantum
speedup. Proceedings of the National Academy of Sciences, 115(38):9456–
9461, 2018.

[148] Andrew M Childs, Aaron Ostrander, and Yuan Su. Faster quantum
simulation by randomization. Quantum, 3:182, 2019.

[149] Earl Campbell. Random compiler for fast hamiltonian simulation.
Physical Review Letters, 123(7):070503, 2019.

[150] Andrew M Childs. Quantum information processing in continuous time.
PhD thesis, Massachusetts Institute of Technology, 2004.

[151] Andrew M Childs and Robin Kothari. Simulating sparse Hamiltoni-
ans with star decompositions. In Conference on Quantum Computation,
Communication, and Cryptography, pages 94–103. Springer, 2010.

[152] Andrew M Childs, Edward Farhi, and Sam Gutmann. An exam-
ple of the difference between quantum and classical random walks.
Quantum Information Processing, 1(1):35–43, 2002.

[153] Andris Ambainis, Andrew M Childs, Ben W Reichardt, Robert Špalek,
and Shengyu Zhang. Any AND-OR formula of size N can be eval-
uated in time N1/2+o(1) on a quantum computer. SIAM Journal on
Computing, 39(6):2513–2530, 2010.

[154] Stacey Jeffery. Frameworks for Quantum Algorithms. PhD thesis, Uni-
versity of Waterloo, 2014.

[155] Andris Ambainis. Quantum walks and their algorithmic applications.
International Journal of Quantum Information, 1(04):507–518, 2003.

[156] Harry Buhrman, Christoph Durr, Mark Heiligman, Peter Hoyer,
Frédéric Magniez, Miklos Santha, and Ronald De Wolf. Quantum
algorithms for element distinctness. In Computational Complexity, 16th
Annual IEEE Conference on, 2001., pages 131–137. IEEE, 2001.

150

[157] Chen-Fu Chiang, Daniel Nagaj, and Pawel Wocjan. Efficient circuits
for quantum walks. arXiv:0903.3465, 2009.

[158] T Loke and JB Wang. Efficient quantum circuits for szegedy quantum
walks. Annals of Physics, 382:64–84, 2017.

[159] Leonardo Novo and Dominic W Berry. Improved Hamiltonian simu-
lation via a truncated Taylor series and corrections. arXiv: 1611.10033,
2016.

[160] Guang Hao Low, Theodore J Yoder, and Isaac L Chuang. Method-
ology of resonant equiangular composite quantum gates. Physical
Review X, 6:041067, 2016.

[161] Nathan Wiebe, Dominic W Berry, Peter Høyer, and Barry C Sanders.
Simulating quantum dynamics on a quantum computer. Journal of
Physics A: Mathematical and Theoretical, 44(44):445308, 2011.

[162] David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete.
Quantum simulation of time-dependent Hamiltonians and the con-
venient illusion of Hilbert space. Physical Review Letters, 106:170501,
2011.

[163] David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete.
Quantum simulation of time-dependent Hamiltonians and the conve-
nient illusion of hilbert space. Physical Review Letters, 106(17):170501,
2011.

[164] W Forrest Stinespring. Positive functions on C*-algebras. Proceedings
of the American Mathematical Society, 6(2):211–216, 1955.

[165] Martin Kliesch, Thomas Barthel, Christian Gogolin, Michael Kasto-
ryano, and Jens Eisert. Dissipative quantum Church-Turing theorem.
Physical Review Letters, 107(12):120501, 2011.

[166] Andrew M Childs and Tongyang Li. Efficient simulation of sparse
markovian quantum dynamics. arXiv:1611.05543, 2016.

[167] Richard Cleve and Chunhao Wang. Efficient quantum algorithms for
simulating Lindblad evolution. arXiv:1612.09512, 2016.

151

[168] Richard Durstenfeld. Algorithm 235: random permutation. Commu-
nications of the ACM, 7(7):420, 1964.

[169] Donald Ervin Knuth. The art of computer programming, volume 3.
Pearson Education, 1997.

[170] Daniel S Abrams and Seth Lloyd. Quantum algorithm providing
exponential speed increase for finding eigenvalues and eigenvectors.
Physical Review Letters, 83(2):5162–5165, 1999.

[171] Sorting network entry on Wikipedia. https://en.wikipedia.org/
wiki/Sorting_network. Accessed: 2019-04-17.

[172] Sheng-Tzong Cheng and Chun-Yen Wang. Quantum switching and
quantum merge sorting. IEEE Transactions on Circuits and Systems I:
Regular Papers, 53(2):316–325, 2006.

[173] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Achiev-
ing quantum supremacy with sparse and noisy commuting quantum
computations. Quantum, 1:8, April 2017.

[174] K E Batcher. Sorting networks and their applications. Communications
of the ACM, 32:307–314, 1968.

[175] K J Liszka and K E Batcher. A generalized bitonic sorting network.
International Conference on Parallel Processing, 1:105–108, 1993.

[176] M Ajtai, J Komlós, and E Szemerédi. An O(N logN) sorting network.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, STOC ’83, pages 1–9, New York, NY, USA, 1983. ACM.

[177] M S Paterson. Improved sorting networks with O(logN) depth.
Algorithmica, 5:75–92, 1990.

[178] Michael T Goodrich. Zig-zag sort: A simple deterministic data-
oblivious sorting algorithm running in O(N logN) time. In Proceed-
ings of the Forty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 684–693, New York, NY, USA, 2014. ACM.

[179] Michael Codish, Lus Cruz-Filipe, Thorsten Ehlers, Mike Müller, and
Peter Schneider-Kamp. Sorting networks: To the end and back again.
Journal of Computer and System Sciences, 2016.

152

https://en.wikipedia.org/wiki/Sorting_network
https://en.wikipedia.org/wiki/Sorting_network

[180] Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli
gate. Physical Review A, 87(2):022328, 2013.

[181] Thomas G Draper, Samuel A Kutin, Eric M Rains, and Krysta M Svore.
A logarithmic-depth quantum carry-lookahead adder. arXiv:0406142,
2004.

[182] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the ci-
pher block chaining message authentication code. Journal of Computer
and System Sciences, 61(3):362 – 399, 2000.

[183] Daniel S Abrams and Seth Lloyd. Simulation of many-body Fermi
systems on a universal quantum computer. Physical Review Letters,
79:2586–2589, 1997.

[184] Donny Cheung, Peter Høyer, and Nathan Wiebe. Improved error
bounds for the adiabatic approximation. Journal of Physics A: Mathe-
matical and Theoretical, 44(41):415302, 2011.

[185] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
Quantum computation by adiabatic evolution. arXiv:0001106, 2000.

[186] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
Quantum Computation by Adiabatic Evolution. MIT-CTP-2936, 2000.

[187] Donny Cheung, Peter Hoyer, and Nathan Wiebe. Improved error
bounds for the adiabatic approximation. Journal of Physics A: Mathe-
matical and Theoretical, 44(41):415302, 2011.

[188] Dominic W Berry, Andrew M Childs, Yuan Su, Xin Wang, and Nathan
Wiebe. Time-dependent Hamiltonian simulation with L1-norm scal-
ing. arXiv:1906.07115, 2019.

[189] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Brian Kingsbury, et al. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal Processing Magazine, 29,
2012.

[190] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-
dependent pre-trained deep neural networks for large-vocabulary

153

speech recognition. IEEE Transactions on Audio, Speech, and Language
Processing, 20(1):30–42, 2012.

[191] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, pages
6645–6649. IEEE, 2013.

[192] Simon J D Prince. Computer vision: models, learning, and inference.
Cambridge University Press, 2012.

[193] Edward Rosten and Tom Drummond. Machine learning for high-
speed corner detection. In European conference on computer vision,
pages 430–443. Springer, 2006.

[194] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2818–2826, 2016.

[195] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature,
529(7587):484, 2016.

[196] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

[197] Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian
Schrittwieser, David Silver, and Nando de Freitas. Bayesian optimiza-
tion in alphago. arXiv:1812.06855, 2018.

[198] Juan Carrasquilla and Roger G Melko. Machine learning phases of
matter. Nature Physics, 13(5):431, 2017.

[199] Sandeep Mavadia, Virginia Frey, Jarrah Sastrawan, Stephen Dona,
and Michael J Biercuk. Prediction and real-time compensation of

154

qubit decoherence via machine learning. Nature Communications,
8:14106, 2017.

[200] Raban Iten, Tony Metger, Henrik Wilming, Lı́dia Del Rio, and Re-
nato Renner. Discovering physical concepts with neural networks.
arXiv:1807.10300, 2018.

[201] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum
support vector machine for big data classification. Physical Review
Letters, 113(13):130503, 2014.

[202] Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs. Machine learn-
ing in a quantum world. Advances in Artificial Intelligence, pages
431–442, 2006.

[203] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum
nearest-neighbor algorithms for machine learning. Quantum Informa-
tion and Computation, 15, 2018.

[204] Kristen L Pudenz and Daniel A Lidar. Quantum adiabatic machine
learning. Quantum Information Processing, 12(5):2027–2070, 2013.

[205] Hartmut Neven, Vasil S Denchev, Geordie Rose, and William G
Macready. Training a binary classifier with the quantum adiabatic
algorithm. arXiv:0811.0416, 2008.

[206] Patrick Rebentrost, Maria Schuld, Francesco Petruccione, and Seth
Lloyd. Quantum gradient descent and Newton’s method for con-
strained polynomial optimization. arXiv:1612.01789, 2016.

[207] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum per-
ceptron models. arXiv:1602.04799, 2016.

[208] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation
systems. arXiv:1603.08675, 2016.

[209] Alex Monràs, Gael Sentı́s, and Peter Wittek. Inductive supervised
quantum learning. Physical Review Letters, 118(19):190503, 2017.

[210] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. Prediction
by linear regression on a quantum computer. Physical Review A,
94(2):022342, 2016.

155

[211] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum
random access memory. Physical Review Letters, 100(16):160501, 2008.

[212] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architec-
tures for a quantum random access memory. Physical Review A,
78(5):052310, 2008.

[213] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor,
Michele Mosca, and Priyaa Varshinee Srinivasan. On the robust-
ness of bucket brigade quantum RAM. New Journal of Physics,
17(12):123010, 2015.

[214] Christopher E Granade, Christopher Ferrie, Nathan Wiebe, and
David G Cory. Robust online Hamiltonian learning. New Journal of
Physics, 14(10):103013, 2012.

[215] Jianwei Wang, Stefano Paesani, Raffaele Santagati, Sebastian Knauer,
Antonio A Gentile, Nathan Wiebe, Maurangelo Petruzzella, Jeremy L
O’Brien, John G Rarity, Anthony Laing, et al. Experimental quantum
Hamiltonian learning. Nature Physics, 13(6):551, 2017.

[216] Geoffrey E Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1771–1800, 2002.

[217] Geoffrey Hinton. Boltzmann machines. Encyclopedia of Machine
Learning and Data Mining, pages 1–7, 2014.

[218] Miguel Á Carreira-Perpiñán and Geoffrey E Hinton. On contrastive
divergence learning. In AISTATS, 2005.

[219] Geoffrey E Hinton and Terrence J Sejnowski. Analyzing cooperative
computation. In Proceeding of the 5th Annual Congress of the Cognitive
Science Society, 1983.

[220] Radford M Neal. Connectionist learning of belief networks. Artificial
Intelligence, 56(1):71–113, 1992.

[221] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski.
A learning algorithm for boltzmann machines. Cognitive Science,
9(1):147–169, 1985.

156

[222] Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann ma-
chines. In Artificial Intelligence and Statistics, pages 448–455, 2009.

[223] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning
with deep boltzmann machines. In Advances in neural information
processing systems, pages 2222–2230, 2012.

[224] Geoffrey Hinton. A practical guide to training restricted Boltzmann
machines. Momentum, 9(1):926, 2010.

[225] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan
Kulchytskyy, and Roger Melko. Quantum Boltzmann machine. Phys-
ical Review X, 8(2):021050, 2018.

[226] David Poulin and Pawel Wocjan. Sampling from the thermal quan-
tum Gibbs state and evaluating partition functions with a quantum
computer. Physical Review Letters, 103(22):220502, 2009.

[227] Man-Hong Yung and Alán Aspuru-Guzik. A quantum–quantum
Metropolis algorithm. Proceedings of the National Academy of Sciences,
109(3):754–759, 2012.

[228] Nathan Wiebe, Ashish Kapoor, Christopher Granade, and Krysta M
Svore. Quantum inspired training for Boltzmann machines.
arXiv:1507.02642, 2015.

[229] Anirban Narayan Chowdhury and Rolando D Somma. Quan-
tum algorithms for Gibbs sampling and hitting-time estimation.
arXiv:1603.02940, 2016.

[230] Eric R Anschuetz and Yudong Cao. Realizing quantum Boltzmann
machines through eigenstate thermalization. arXiv:1903.01359, 2019.

[231] J M Deutsch. Quantum statistical mechanics in a closed system.
Physical Review A, 43:2046–2049, 1991.

[232] Mark Srednicki. Chaos and quantum thermalization. Physical Review
E, 50:888–901, 1994.

[233] Misha Denil and Nando De Freitas. Toward the implementation
of a quantum rbm. In NIPS Deep Learning and Unsupervised Feature
Learning Workshop, volume 5, 2011.

157

[234] Guillaume Verdon, Michael Broughton, and Jacob Biamonte. A quan-
tum algorithm to train neural networks using low-depth circuits.
arXiv:1712.05304, 2017.

[235] Jingxiang Wu and Timothy H Hsieh. Variational thermal quantum
simulation via thermofield double states. arXiv:1811.11756, 2018.

[236] James D Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simula-
tion of electronic structure Hamiltonians using quantum computers.
Molecular Physics, 2011.

[237] Nathan Wiebe and Leonard Wossnig. Generative training of quantum
Boltzmann machines with hidden units. arXiv:1905.09902, 2019.

[238] Sandhya Samarasinghe. Neural networks for applied sciences and engi-
neering: from fundamentals to complex pattern recognition. Auerbach
publications, 2016.

[239] Mohamad H Hassoun et al. Fundamentals of artificial neural networks.
MIT press, 1995.

[240] Geoffrey Hinton. Neural networks and machine learning. https:

//www.cs.toronto.edu/~hinton/coursera_lectures.html.

158

https://www.cs.toronto.edu/~hinton/coursera_lectures.html
https://www.cs.toronto.edu/~hinton/coursera_lectures.html

A
A Brief Introduction To Machine

Learning

Let us briefly introduce a few classical ML concepts that are essential for our
work. ML algorithms can be divided into supervised, unsupervised, and
reinforcement learning. In supervised learning, an algorithm has access to
a database of examples with labels. Given enough training, the algorithm
is then expected to assign correct labels to new data.

Our algorithm is an unsupervised one, which means that it gets only
a set of data with no labels. A canonical example of an unsupervised
algorithm is clustering. The goal of the clustering algorithm is to group
“similar data” together and divide the data set into two or more clusters.
For example, a clustering algorithm can take a set of hand-written digits
and divide them into ten groups, one for each digit (without labels). In-
tuitively, the algorithm learns a model that accurately represents the data.
Reinforcement learning is a cross between supervised and unsupervised
learning and is not relevant to this thesis.

159

A1 Generative Modelling

Machine learning algorithms can also be divided into discriminative and
generative. In a discriminative model, the algorithm learns how to classify
the training samples (represented as binary vectors). After such an algo-
rithm is trained, it is supposed to assign each vector to a group of “similar”
vectors. In contrast, a generative algorithm learns a model that generates
the training data. In this setting, the training data are seen as samples from
an underlying distribution. A properly trained generative algorithm can be
used for sampling from this distribution and to generate examples similar
to the training data as in Fig. A.1.

Figure A.1: An example of generative modelling from [222]. The examples
on the left were used to train a deep Boltzmann machine (a restricted
Boltzmann machine with multiple layers). Then, the algorithm generated
the images on the right-hand side.

If the model is not rich enough, it can underfit the data, i.e. not capture
important properties of the distribution. Such a model can neither fit the
training data nor generate new data.

In the other extreme, the model can also overfit data – capture any
sampling errors. Such a model appears to perform very well on training
data – indeed, we can fit any data perfectly given enough parameters, but

160

it will not generalize. We demonstrate the problem of underfitting and
overfitting on an example in Fig. A.2.

A2 Artificial Neural Networks

Artificial neural networks (and their variants, deep nets) emerged as one
of the main ML tools. We will now briefly review them and introduce the
terminology used in this chapter. Artificial neural networks are an ML
framework inspired by biology. In biological neural networks, neurons
connected by synapses are responsible for the activity in animals’ and
humans’ brains.

An artificial neural network (from now on referred to only as a neural
network or ANN) is defined by its graph. The vertices of the graph (also
called units) represent neurons and store information as +1 or −1 states1.
Some of the units also serve as input or output of the algorithms, and these
are called visible units. Remaining units are referred to as hidden units and
can provide additional complexity to the network. The edges of the graph
represent connections between units and encode the relationship between
the bits of the information. In addition, one can define functions on this
graph, such as the activation function or the energy function, that specifies
how the information propagates through the network.

It is possible to distinguish two types of ANNs based on the properties
of the underlying graph structure. Oriented graphs correspond to feed-
forward networks, where the information flows only in one direction, and
the graphs do not include cycles. Their counterparts are recurrent neural
networks that can include loops and undirected graphs.

From the physics perspective, neural networks with undirected graphs
are particularly interesting because they allow defining “energy” as a bilin-
ear function

E(x) = xTWx, (A.1)

where W is the adjacency matrix of the graph and the binary vector x is
defined on the units. A Boltzmann machine is an example of a neural

1Machine learning literature often prefers to use 0 and 1, but the notations are equiva-
lent.

161

pr
ob

a
bi

lit
y

states on visible units

training data
learned distribution

(a) Underfitting.

pr
ob

a
bi

lit
y

states on visible units

training data
learned distribution

(b) Good fit.

pr
ob

a
bi

lit
y

states on visible units

training data
learned distribution

(c) Overfitting.

Figure A.2: Examples of underfitting, good fit and overfitting. The his-
togram represents the training data and the red fit is the distribution that
supposedly generated it. This example is purely illustratory; in practice, it
is unlikely to have any training vector represented more than once in the
training set. In addition, it is in general not possible to directly determine
what constitutes a good fit – the quality of a learned model is determined
from its performance on test data.

162

(a) Feed-forward ANN. (b) Recurrent ANN.

Figure A.3: Examples of ANN architectures.

network that can be trained using the energy function. For an introduction
to neural networks see [238, 239] or this excellent lecture series by Geoffrey
Hinton [240].

163

	List of Figures
	List of Abbreviations
	Introduction
	Quantum Computing Hardware in 2019
	Quantum Computing Software in 2019
	Overview
	Notation

	Background
	Preliminaries
	Quantum Gates and the Circuit Model
	Complexity
	Error Correction and the Threshold Theorem

	A Brief Overview of Quantum Algorithms
	Coherent Classical Computation
	Phase Estimation and Eigenstate Preparation
	Grover Search and Amplitude Amplification
	Oblivious Amplitude Amplification

	Hamiltonian Evolution Simulation
	The Hamiltonian Oracles
	Lower Bounds on Hamiltonian Simulation
	Simulation Based on Trotterization
	Sparse Matrix Decomposition
	The Quantum Walk Approach
	Hamiltonian Simulation with Linear Combination of Unitaries
	Quantum Signal Processing and Qubitization
	Generalization of the Hamiltonian Simulation Problem

	Quantum Sort and Shuffle
	How to Shuffle a Deck of Cards
	Quantum Approach to a Shuffle
	Preparing a Uniform Superposition With the Quantum FY Shuffle
	Initialization
	FY Blocks
	Disentangling index from input
	Complexity Analysis of the FY shuffle

	Symmetrization Through Quantum Sorting
	Quantum Sorting Network
	Quantum Comparator
	Analysis of `Delete Collisions' Step
	Complexity Analysis of the Shuffle via Sorting

	Applications
	Conclusion

	Simulation of Time-Dependent Hamiltonians
	Unitary Evolution Under a Time-dependent Hamiltonian
	Framework
	Oracles
	Enabling Oblivious Amplitude Amplification

	Algorithm Overview
	Evolution Discretization
	Linear Combination of Unitaries

	Preparation of Auxiliary Registers
	Clock Preparation Using Compressed Rotation Encoding
	Clock Preparation Using a Quantum Sort
	Completing the State Preparation

	Complexity Requirements
	Complexity for Scenario 1
	Complexity for Scenario 2

	Results
	Applications
	Conclusion

	Training and Tomography with Quantum Boltzmann Machines
	Quantum Machine Learning
	Boltzmann Machines
	Training Quantum Boltzmann Machines
	Quantum Training Set
	Golden-Thompson Training
	Commutator Training
	Relative Entropy Training

	Complexity Analysis
	Preparing Thermal States
	Numerical Results
	The Data Set and the Hamiltonian
	 Parameters of QBM Training
	Golden-Thompson Training Analysis
	Commutator Training Analysis
	 Relative Entropy Analysis

	Conclusion

	Conclusion and Future Work
	References
	APPENDICES
	A Brief Introduction To Machine Learning
	Generative Modelling
	Artificial Neural Networks

