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Abstract 

 Pilot-scale biofiltration experiments were conducted at the Region of Waterloo’s Mannheim 

Drinking Water Treatment Plant to inform the scientific and operational understanding of drinking water 

treatment by biologically-active GAC/sand filtration processes. Three dual-media granular activated carbon 

(GAC)/sand biofilters and one multi-media GAC-capped anthracite/sand biofilter media configuration were 

investigated. Both new GAC and GAC that had been biologically active for five years were used. The 

performance differences between a new, highly adsorptive GAC filter that is undergoing biological 

acclimation, and a biofilter that is stacked with older, biologically-active GAC media were investigated to 

increase the mechanistic understanding of natural organic matter (NOM) removal by biofiltration. The 

performance of a cost-effective, new GAC-capped anthracite/sand biofilter compared to a GAC/sand 

biofilter also was investigated. Performance was assessed using adenosine tri-phosphate (ATP) 

concentration associated with attached biomass in the filter media, dissolved organic carbon (DOC), UV-

absorbance, and characterization by liquid chromatography-organic carbon detection (LC-OCD) 

fractionation. The filters were monitored for their performance in headloss accumulation and turbidity 

removal. Water from the full-scale water treatment plant was coagulated, flocculated, clarified by settling, 

and then ozonated. It was then directed to the pilot plant filters, which  contained the same depth of media, 

but were operated separately from the full-scale plant. The experiments were conducted from June to 

September 2018, during warm water conditions (18–27°C). 

 As expected, the new GAC/sand filter removed substantially more DOC, UV-absorbing 

compounds, and humic substances than did the biologically-active GAC. There was also a typical pattern 

of biological acclimation in this filter, as there was high DOC removal, followed by a decline, and then a 

steady-state period. DOC removal during the steady-state period in the new filter was 25 to 30% on average, 

which was significantly higher than that in the filter containing media that had been biologically active for 

five years (13% on average), suggesting that DOC removal might decline over years of service. 

Interestingly, the new GAC/sand filter did not out-perform the biologically-active GAC/sand filter in 

biopolymer removal, possibly due to the size (>20 kDa) and shape of these compounds. This observation 

also suggests that biodegradation of biopolymers (in contrast to other compounds) occurs directly in 

biologically-active GAC filters, and not necessarily by bioregeneration (freeing up of adsorptive sites). 

Further, compared to biologically-active GAC/sand, there was no outright disadvantage to running a GAC-

capped anthracite/sand biofilter. One month into the experiment, the backwashing procedure was altered to 

improve filter run times. The increased vigorousness caused the biofilm in the GAC-capped anthracite/sand 

filter to decrease temporarily, and it also caused a brief decrease in the DOC removal, whereas the 

GAC/sand biofilter was not affected by the backwashing change.  

 Overall, it was found that (1) the new GAC filter demonstrated a trend in DOC removal that was 

expected, with the added finding that the biodegradation or adsorptive capacity declines over a period of 

several years after acclimation (2) adsorption did not enhance the removal of biopolymers, though they 

were removed by biofiltration, indicating that biodegradation may occur directly and not necessarily by 

bioregeneration (adsorption and desorption by biodegradation), and (3) as configured, the GAC/sand 

biofilter was more effective in removing DOC than the GAC-capped anthracite biofilter. 
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1. Introduction 

 Biological filtration—or the enhancement of filtration by microbiological activity—is a drinking 

water treatment process that has been extensively studied in recent years. Conventional chemically-assisted 

filtration in drinking water treatment systems involves the removal of contaminants by physico-chemical 

mechanisms. In brief, it involves the de-stabilization of particles by chemical coagulants so that they can 

subsequently attach to collectors during the filtration stage. This requires both particle transport to collector 

surfaces (via diffusion, interception, sedimentation, inertia, or hydrodynamic action) and subsequent 

attachment to the filter collector surfaces/media grains (Ryan and Elimelech, 1996). In biological filtration, 

some of the bacteria that are indigenous to the filter influent water matrix proliferate on the filter medium, 

and their metabolic activity effectively contributes to contaminant removal (Edzwald, 2011; Kirisits et al., 

2019; Urfer et al., 1997). 

 Biological filtration processes include slow sand filtration and riverbank filtration systems, which 

have been used for centuries. For these technologies, raw/untreated water enters the filter bed without any 

pre-treatment or addition of chemicals; most of the contaminant removal occurs within a biofilm that 

accumulates on the media surface and within the first several centimeters of the filter. These types of 

filtration processes typically require long residence times, ranging from 2 hours to 10 days (Edzwald, 2011; 

Zhu et al., 2010), and are constrained as a conventional treatment solution in mature urban areas due to the 

footprint that they require. Widespread discontinuation of pre-chlorination largely because of disinfection 

by-product (DBP) concerns (in North America especially), has promoted the use of “classical biofiltration” 

because of the proliferation of microbiological activity on filtration media and associated enhanced 

contaminant removal (Kirisits et al., 2019). Biological filtration, which can be aerobic or anaerobic 

depending on the compounds targeted by the process, can be an effective treatment option for a wide variety 

of drinking water treatment contaminants, such as nutrients, taste and odour compounds, perchlorates, and 

heavy metal compounds (Bouwer and Crowe, 1988; Zhu et al., 2010), while still effective in removing 

particles and pathogens like traditional chemically-assisted filtration processes (Emelko, 2001; Huck et al., 

2001, 2002; Emelko et al., 2005; Evans, 2010). Classical biofiltration in otherwise conventional surface 

water treatment plants is typically focused on natural organic matter (NOM) removal, which improves the 

biological stability of water, enhances DBP precursor removal, and reduces membrane fouling (Edzwald, 

2011). 

 One of the most extensively studied configurations of classical biological filtration during 

conventional drinking water treatment is granular activated carbon (GAC) filtration preceded by pre- and 

post-clarification ozonation. Ozone is a strong oxidant that readily reacts with NOM, breaking it down into 
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smaller, more biodegradable by-products, including aldehydes, ketones, and carboxylic acids (Amy and 

Carlson, 1997; Hozalski et al., 1999). Biofilm attached to the filtration media in the downstream GAC 

contactor subsequently removes many of the biodegradable components of the transformed NOM. GAC is 

a filtration medium that is engineered to possess micropores (<2 nm) mesopores (2–50 nm) and/or 

macropores (>50 nm), effectively enhancing each GAC granule with a high adsorptive capacity and 

augmenting the removal of contaminants (Edzwald, 2011; Sing et al., 1985). Non-adsorptive media, like 

anthracite and sand, can also support biological activity; however, it has been demonstrated that biologically 

active GAC filtration achieves better NOM removal under a wider range of operating conditions relative to 

non-adsorptive media  (LeChevallier et al., 1992; McKie et al., 2015; Wang et al., 1995; Kirsitis et al., 

2019). While it has been suggested that GAC’s irregular surface area protects the microbiological activity 

from the fluid shear forces of backwashing (Urfer and Huck, 1997), it has also been suggested that GAC 

adsorbs high levels of NOM, providing accessible substrate to biofilms (Klimenko et al., 2002; Laspidou 

and Rittmann, 2002; Velten et al., 2011a). The uptake of NOM by attached biofilm effectively regenerates 

adsorption sites on the GAC media and has been referred to as “bioregeneration” (Rattier et al., 2012; 

Scholz and Martin, 1997). Recently, it was demonstrated that it is the adsorptive properties of GAC rather 

than biofilm shielding that lead to enhanced NOM removal by GAC biofiltration (Kirisits et al., 2019; 

Spanjers, 2017); however, the exact mechanisms have not been fully elucidated. 

Regardless of the mechanism(s) of action, biofiltration on GAC filtration media surfaces can 

remove a wide spectrum of organic matter, from the larger, more recalcitrant compounds like proteins, 

polysaccharides, and humics (Gibert, et al. 2013a; Peldszus et al., 2012; Rahman et al., 2014) to smaller, 

more biodegradable organic matter compounds (LeChevallier et al., 1992; Van der Kooij, 1992). However, 

steady-state removal of NOM by microbiological activity does not occur immediately. When a GAC filter 

containing new or regenerated GAC is first put in service during conventional drinking water treatment, the 

predominant method of NOM removal is adsorption; a significant fraction of NOM can be readily removed 

during this phase of operation, often up to approximately 80% (Dussert and Van Stone, 1994), depending 

on the characteristics of the raw water and the operational conditions. Ultimately, the NOM removal rate 

decreases as the number of adsorption sites is exhausted, and eventually flattens out. Simultaneously, when 

a new GAC filter or contactor are brought online in absence of pre-oxidation, the adsorptive sites become 

exhausted with organic matter, and over time, microbial attachment increases and eventually stabilizes. At 

some point, typically in weeks to months depending on factors such as water temperature, and NOM 

removal by adsorption and biodegradation reaches an equilibrium and the removal rate stabilizes (Figure 

1.1) (Dussert and Tramposch, 1996; Velten et al., 2011a). 
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Figure 1.1: Theoretical representation of the transition from a new GAC filter to a biologically-

active one. Reprinted with permission (Dussert and Van Stone, 1994). 

 The stages of biofilter start-up have been well described (Dussert and Van Stone, 1994). For 

experimentation investigations of treatment process performance and optimization, the period during which 

a filter is biologically-active and operating at steady-state conditions is of typical focus (see Period C in 

Figure 1.1). Analogously, the transition from exclusively adsorptive GAC filtration to biologically active 

GAC filtration, and the associated mechanistic behaviour in these filters, is less well understood. For 

example, the presence of biological activity can trigger headloss accumulation, or the type of organic matter 

removed may vary depending on whether adsorption or biodegradation is the dominant removal process.  

 Importantly, many design and operational questions regarding classical biological filtration during 

drinking water treatment remain to be answered. For example, studies have provided anecdotal information 

on biofilters with a GAC cap stacked above a non-adsorptive medium (Andrew de Vera et al., 2019; 

Ndiongue et al., 2006; Stoddart and Gagnon, 2017), however, these studies have not provided a comparative 

examination of this filter configuration to all non-adsorptive medium biofilters or dual media GAC over 

sand filters. Although the operational advantages of GAC media relative to other non-adsorptive media 

such as anthracite have been widely reported (i.e. more NOM removal by biofiltration, especially at lower 

water temperatures and improved process resiliency after exposure to disinfectant) (Dussert and 

Tramposch, 1996; Krasner et al., 1993), the extent to which these advantages are relevant in capped filters 

is not well understood. Given the common need for utilities to balance target contaminant removal with 

budgetary constraints (Evans et al., 2010; Moore and Watson, 2007), these design and operational aspects 

of biological filtration must be investigated further. 
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1.1. Research Objectives  

 This research aimed to improve the scientific and operational understanding of drinking water 

treatment by biologically-active GAC/sand filtration processes. This included studying the relationship 

between organic matter removal and biomass, determining if the start-up period had an impact on 

conventional performance metrics, and characterizing the type of organic matter removed. These questions 

were extended to GAC-capped anthracite filters, as these relationships have not been previously reported 

in detail. More specifically, the objectives of this research were to: 

1. Evaluate the evolution of organic matter removal in a new GAC filter and compare it to that in an 

established biologically-active GAC filter containing exhausted GAC.  

2. Evaluate the types of organic matter that are removed by classical biofiltration. 

3. Investigate the potential performance-related advantages or disadvantages of a GAC-capped 

anthracite-configured biological filters. 

4. Characterize NOM removal and traditional aspects of filter operation (headloss accumulation, 

turbidity removal) among varying filter configurations. 

1.2. Research Approach  

 Pilot-scale experiments were conducted at the Region of Waterloo’s Mannheim Drinking Water 

Treatment Plant in Kitchener, Ontario, Canada (i.e. “the full-scale WTP”), which treats water from the 

Grand River. The treatment process consists of coagulation, flocculation, sedimentation, ozonation, 

GAC/sand dual media biofiltration, UV irradiation, followed by free chlorine disinfection. The pilot plant 

was outfitted with four filters, and was fed with the same ozonated water that entered the full-scale filters.  

 To document NOM removal in new GAC filters, three of the pilot filters were used to investigate 

how biofilter performance evolved in (1) new GAC over new sand filter, (2) a biologically-active GAC 

over new sand filter, and (3) a combination of new and biologically-active GAC, over new sand filter. The 

biologically-active GAC had been in operation in the full-scale WTP for several years and its adsorptive 

capacity was exhausted. The new GAC was the same media as in the biologically active GAC filters, but 

previously unused. These three filter configurations allowed for an in-depth analysis of the operational, and 

performance differences between filter being started up with fresh versus already acclimated and 

biologically active media. A fourth filter contained new anthracite over new sand; it enabled comparison to 

the evolution of biological filter performance with non-adsorptive media. This same filter also was used to 

investigate biologically-active GAC capping—this was achieved by replacing some of the anthracite with 

biologically-active GAC during the second phase of experimentation. Traditional aspects of filter 

performance, including headloss accumulation, turbidity removal, NOM removal (as measured but the 
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removal of dissolved organic carbon [DOC]), as well as carbon character (measured by LC-OCD), and 

biomass accumulation were investigated.  

1.3. Thesis Organization  

 A review of relevant literature on biofiltration, including start-up performance, organic matter 

characterization, and media types, is provided in Chapter 2. Chapter 3 details the experimental procedure, 

equipment, and analytical methods used for this research. Research results are presented in Chapter 4 and 

there is extensive discussion in this chapter on the contributions of the research to the body of scientific 

understanding of classical biological filtration processes and their application for NOM removal during 

drinking water treatment. Finally, Chapter 5 contains the conclusions that were drawn from this research. 

The detailed data and background information are presented in several appendices. 
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2. Literature Review 

2.1. Biological Filtration – Overview 

 In biologically-active filters (biofilters), microorganisms present in the influent water are deposited 

on filtration media surfaces, where they attach, proliferate, and thrive. These microbes naturally remain 

attached to the filter media surfaces by biofilm secretion, which allows them to withstand the fluid shear 

forces of backwashing (Ahmad et al., 1998). 

 

Figure 2.1 A scanning electronic micrograph image displays bacterial biofilms on a GAC granule. 

Reprinted (adapted) with permission from (Weber et al., 1978) Copyright (2019) 

American Chemical Society. 

 The metabolic activity of the microorganisms in biofilters effectively removes contaminants, hence 

the term ‘biological filtration’. This alternative treatment process is especially prevalent in GAC filters that 

are preceded by ozonation (without pre-chlorination). In such systems, ozone oxidises and breaks down 

natural organic matter (NOM) into smaller byproducts that are biodegraded more quickly (Amy and 

Carlson, 1997; Hozalski et al., 1999). These NOM compounds are a substrate consumed by naturally-

occuring microbial populations attached to the GAC medium within the downstream filter bed (Edzwald 

2011). GAC media are highly porous media and engineered to remove dissolved drinking water constituents 

by adsorption. The rough, irregular surface, high surface area, and adsorptive capacity of GAC make its 

surface an ideal attachment site for microbiological activity (Urfer et al., 1997). The primary treatment goal 

of a biologically-active carbon (BAC) filter is to remove taste and odour compounds (McDowall et al., 

2009), DBP precursors (LeChevallier et al., 1992; Miltner, et al., 1995), membrane foulants (Edzwald, 

2011; Van der Hoek et al., 1999), and other substrates that support microbiological proliferation in 

distribution systems (Van der Kooij 1992; Zhang and Huck 1996). Notably, biologically active filters offer 
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this contaminant removal capacity while still effective in removing particles and pathogens like traditional 

chemically-assisted filtration processes (Emelko, 2001; Huck et al., 2001, 2002; Emelko et al., 2005; Evans, 

2010; Kirisits et al., 2019). Because of this operational capacility and resilience, biological filtration has 

been suggested as a key, cost-effective treatment option for climate change adaptation in areas prone to 

climate change-exacerbated landscape disturbances such as wildfire and hurricanes (Emelko et al., 2011). 

Moreover, because optimal biofilter performance has been associated with rough media surfaces (Kirisits 

et al., 2019), it is possible that there particle and pathogen removal performance may be further optimized 

(Jin et al., 2017;2016;2015a,b). Accordingly, biological filtration processes can play an increasingly 

important role in many municipal drinking water treatment plants. 

2.2. Biological Filtration – Start-Up 

 The microbial communities that flourish in biological filtration processes are indigenous to the raw 

water source; thus, it is possible for filters to become biologically active unintentionally, especially in 

absence of pre-treatment (e.g. chlorination) for prevention of microbiological activity. However, intentional 

conversion of conventional filters to biologically active operation (by discontinuing or relocating chlorine 

addition) requires time needed for biofilm establishment. This is frequently referred to as the ‘start-up’ time 

in biological filtration, and it is an aspect of the technology over which utility operators have little control. 

2.2.1. Start-Up of New GAC Filters  

 When a new GAC filter is put into service with the intention that it will become biologically active, 

there is a generally expected evolution (or pattern) of dissolved organic carbon (DOC) removal 

performance. During the first stage, the GAC media are highly adsorptive and remove much if not most of 

the DOC. As the filter continues to operate, this adsorptive capacity decreases at a decelerated rate, while 

simultaneously, biological activity begins to develop and stabilize. In the final stage of GAC biofilter start-

up, DOC removal stabilizes—it has been suggested that removal then occurs primarily by biodegradation 

(Dussert and Tramposch, 1996; Dussert and Van Stone, 1994); notably, direct biodegradation, as opposed 

to bioregeneration (i.e. adsorption followed by biodegradation) has not been demonstrated. 
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Figure 2.2 Theoretical representations of DOC removal over the operational time of a biologically 

active filter. Reprinted with permission (2019). Dussert and Van Stone, 1994 (A); Brown 

et al., 2015 (B); Huck et al., 2000 (C); Korotta-Gamage and Sathasivan, 2017 (D) 

 Although GAC is widely used for treatment of micro-pollutants because of its adsorptive capacity 

(Edzwald, 2011), a recent survey of utilities indicates that it is increasingly being used (approximately 30% 

of the time at present) to enable biological filtration specifically (Schindeman et al., 2012). 

 Biological activity contributes to the exhaustion of GAC adsorptive sites; however, it also enables 

utilities to utilize GAC biofiltration to most reliably (relative to other media types) achieve some extent of 

DOC removal long after the media have been exhausted. Of course, exhausted media still have the capacity 

to achieve traditional particle filtration goals of conventional filtration processes. It has been hypothesized 

that BAC filtration processes remove DOC in a synergistic cycle in which organic matter adsorbs to the 

GAC surface and the biological activity in the vicinity of these sites subsequently removes that DOC by 

biodegradation, thereby freeing those sites for further adsorption (Azzeh et al. 2015; Gibert, et al. 2013a; 

Klimenko et al. 2002). Incontrovertible proof of this theory is not currently available, however, and the 

extent of adsorption or biodegradation that contributes to DOC removal by biofiltration has not been 

demonstrated. Although it has been speculated that GAC enables more biomass growth than non-adsorptive 

media (Wang et al., 1995) and accordingly results in more DOC removal than less expensive, non-
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adsorptive media (LeChevallier et al., 1992). Several investigations have demonstrated that DOC removal 

does not necessarily directly correlate with biological proliferation (Emelko et al., 2006; Pharand et al., 

2014). Accordingly, classical biofiltration process optimization for maximizing DOC removal during 

drinking water treatment requires a better understanding of the dynamics and roles of adsorption and direct 

(i.e. from the bulk suspension as opposed to from the GAC media surface) biodegradation processes. 

 Many studies have attempted to distinguish between the adsorption and biodegradation phase of 

biofiltration because the relative dominance of these different mechanisms of contaminant/target compound 

removal is generally believed to change during these phases of the filter life cycle; thus, in the case of DOC 

removal, the types of DOC that are most efficiently removed can change. For example, adsorption 

preferentially removes more aromatic, hydrophobic types of organic matter (Ates et al., 2007; Fu et al., 

2017a), whereas biodegradation is more effective at removing more hydrophilic (and more biodegradable) 

types of organic matter (Hozalski et al., 1995)—the removal of organic matter is discussed in greater detail 

in Section 2.3.2. Additional operational factors that must be considered when implementing GAC for 

ultimate biofiltration include the potentially greater release (during the early stages of operation) of 

heterotrophic bacteria that will exert subsequent oxidant demand, as opposed to well-established BAC 

filters (Papciak et al., 2016; Servais et al., 1994), and turbidity removal, which may be comparable or even 

better than that observed using conventional, non-adsorptive anthracite media in some cases (Edzwald, 

2011). 

 In a survey of drinking water professionals, the importance of identifying when a BAC filter reaches 

steady-state, or in other words, becomes acclimated, was among the most cited concerns and areas of 

uncertainty (Evans et al., 2010). The general assumption is that the biological activity is stable at the same 

point as when organic matter removal (typically measured by DOC concentration) reaches steady-state 

(Dussert and Kovacic, 1996; Dussert and Van Stone, 1994). In recent years, the amount of biomass and/or 

biological activity in these filters has been frequently evaluated concurrently with DOC removal. Reported 

process start-up times required to reach acclimation (i.e. steady-state removal of DOC, and biomass 

concentration or activity) by BAC treatment initiated with new GAC preceded by conventional pre-

treatment (coagulation, flocculation, sedimentation) and subsequent ozonation systems are summarized in 

Table 2.1. From this table it is evident that these two sets of performance parameters do not necessarily 

stabilize at the same time.
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Table 2.1: BAC filter start-up times to acclimation with new GAC preceded by conventionally-treated ozonated systems 

Organic matter 

and type of 

biomass 

Water 

source 

Influent water 

quality 

Empty bed  

contact time 

(min) 

Tempera-

ture (°C) 

Time to steady state Values at steady state Reference 

DOC 

 

GAC cell density 

Surface 

and/or 

ground-

water 

1.1 to 5.5 mg DOC/L 

 

Influent biomass 

unknown 

19 Room 

Temp. 

8 months for DOC 

 

5 months for cell density 

33 % DOC removal 

 

0.01 to 0.1 cells per 

µm2 of GAC 

Gibert et al., 

2013a1 

 

DOC 

 

GAC cell density  

and ATP-per-cell 

Surface 

water 

0.8 to 1.4 mg DOC/L 

 

Influent biomass 

unknown 

18 5 to 15 4 months for DOC 

 

Unclear for GAC cell density2 

6 weeks for ATP-per-cell 

40 – 50% DOC removal 

 

107 - 108 cells per g ww 

BAC and 

~5·10-8 ATP-per-cell 

 

Lohwacharin 

et al., 2015 

 

DOC and BDOC 

 

Fixed bacterial 

biomass per 

GAC 

Not 

specified 

1.5 mg DOC/L and 

0.4 mg BDOC/L 

 

5·103 to 104 

bacteria/mL 

10 9 to 22 3 – 4 months for DOC, BDOC 

remained roughly stable 

 

3 – 4 months for fixed 

bacterial biomass3 

~14% DOC and 50-

60% BDOC removal 

 

2.3 µg C/cm3 GAC 

(biomass in carbon) 

Servais et al.,  

1994 

DOC 

 

O2 consumption 

and CO2 release 

Surface 

water 

8 – 10 DOC mg/L 

Influent biomass 

unknown 

40 3 to 21 6 – 7 months for DOC 

removal 

 

O2 and CO2 did not correlate 

with DOC 

20% DOC removal 

 

Varying results 

Van Der Aa, 

et al. 2012;        

Van Der Aa, 

et al. 2011 

CODMn 

 

Phospholipid 

biomass 

Surface 

water 

2.7 – 4.4 CODMn 

mg/L 

 

30 CFU/mL 

0.2 7 to 26 ~2.5 months for CODMn 

 

4 months for phospholipid 

biomass 

~45% CODMn removal 

 

32.5 nmol-P/cm3 GAC 

Liao et al., 

2016 

DOC 

 

Cells per GAC 

(using ATP) 

Not 

specified 

1.5 – 2.0 mg/L DOC 

 

Influent biomass 

unknown 

15 > 10 ~2.5 months for DOC 

 

3 months for cells/GAC 

15 – 30% DOC removal 

 

(5.37 +/- 1.10)·107 

cells/g GAC 

Fu, et al., 

2017a; Fu, et 

al., 2017b4 

1. GAC is not new but regenerated. According to supplier, characteristics should have been similar. 

2. GAC cell density was stable from week 1 to week 16 and increased from week 16 to week 28. 

3. Slow decrease was apparent in the biomass after stabilizing. 

4. Influent water was pre-oxidized and conventionally treated; however, pre-oxidation conditions were not specified. 
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 The relationship between microbiological proliferation in GAC filters and the removal of organic 

matter is unclear (Table 2.1), as there are a wide variety of methods for measuring biological activity, or 

biomass quantity (Evans et al., 2013). Another level of complexity is the variety of ways in which filters 

are deemed to be biologically active during start-up; in practice, they are most frequently considered 

biologically active if (1) the media have been extracted from full-scale plant filters that have been operated 

for at least several years (McKie et al., 2016) or (2) their operation is initiated with new media and they are 

operated until they contain the same amount of biomass as a reference biological filter (Nemani et al., 2018; 

Servais et al., 1994). Somewhat recently, the notion of a benchmark quantity of biomass (102 to 103 ng ATP 

per cm3 of GAC or anthracite) that defines whether a filter is biologically active has been proposed (Pharand 

et al., 2014); however, most studies on this topic were conducted prior to this suggestion. Thus, although 

there is no unified definition of a fully-acclimated biological filter, the most commonly accepted approach 

at present is the point at which biological activity and/or organic matter removal reach steady-state. An 

improved understanding of the relationship between these two parameters is therefore necessary. 

2.2.2. Acclimation Phase – Organic Matter Removal 

 During GAC manufacturing, carbonaceous materials (such as vegetative derivatives, lignite, 

natural coal, and coke) are heated pyrolytically and activated. The result are granules with a highly porous 

structure and thus, a large internal surface area that can be as high as 400 to 500 m2 per gram of media 

(Weber and Van Vliet, 1980). The final product is a material that is highly suitable for physical adsorption 

(transport and attachment of adsorbents to the adsorbate due to attractive forces) and chemical adsorption 

(when the adsorbate reacts with the surface to form a covalent bond or an ionic bond) (Crittenden et al., 

2012). Over time, the adsorptive sites of a GAC contactor become exhausted and the GAC requires 

replacement or regeneration (Edzwald, 2011). 

 Adsorption is an effective process that has a variety of industrial and treatment applications (air 

pollution, wastewater). In this context, the influence of adsorption is examined in drinking water filters that 

involve the treatment of surface water in which DOC is predominantly comprised of NOM. When a new 

GAC filter is being started up, it typically removes the majority of organic matter (80% – 90%) (Buchanan 

et al., 2008; Dussert and Van Stone, 1994; Moore et al., 2001). The remaining 10% – 20% fraction of DOC 

exiting the filter during this period is theorized to be non-adsorptive organic matter (Dussert and Van Stone, 

1994; Lohwacharin et al., 2015). Except for this fraction, almost all forms of DOC are removed by 

adsorption, including the biodegradable fractions of organic matter (Servais et al., 1994). In theory, the 

concentration of contaminants in the effluent of a GAC contactor follows an S-curve pattern from the 

beginning to the end of its operational life (see Figure 2.3A). In the first stage, there is 100% removal of 

the target compound (or very close to it) by the GAC, as there is ample adsorptive capacity within all layers 
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of the filter. In the second stage, the upper layers of GAC become exhausted, and there is not enough contact 

time in the GAC filter to contain the entirety of the mass-transfer (i.e. adsorption) zone. In the third stage, 

breakthrough of the target compound occurs (i.e. the effluent concentration exceeds the targeted effluent 

concentration) (Baruth, 2005). At this point, the GAC contactor requires replacement or regeneration. In 

biological filtration, however, DOC removal often continues after the GAC adsorption sites are exhausted. 

It has been speculated that this occurs either by direct biodegradation from the bulk suspension, by 

bioregeneration in which the DOC adsorbs on the GAC surface and is subsequently degraded by nearby 

microorganisms in the biofilm, allowing for further adsorption, or by a combination of these mechanisms.  

 

Figure 2.3: (A) Typical S-curve of a GAC contactor from the beginning to end of its operational life 

(Baruth, 2005), (B) the TOC influent and the S-curve shape of the TOC effluent in a 

new GAC filter becoming biologically active (Moore et al., 2001) 

 GAC filter effluent target compound water quality will typically present as an S-curve, like that 

presented in the conceptual model in Figure 2.3A. This same pattern is also observed in biological GAC 

filters when they are first put into service, as illustrated in Moore et al. (2001) (Figure 2.3B). Notably, this 

general trend in biofilter influent and effluent organic matter has been widely observed (DeWaters and 

DiGiano, 1990; Van Der Aa et al., 2012; Van der Hoek et al., 1999; Velten et al., 2011a; Velten et al., 

2007). Thus, although there is rapid microbiological colonization while a new GAC biofilter is becoming 

exhausted, adsorption is still the dominant mechanism of organic matter removal during the start-up phase. 

2.2.3. Acclimation Phase – Microbiological Colonization 

 During this early phase of biological filtration, relatively few bacterial cells are retained by the 

GAC media (Papineau et al., 2010; Servais et al., 1994). It is theorized that the microbial cells first come 
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into contact with the GAC media grains much like any other particles during physico-chemical filtration; 

that is, as a result of van der Waals attraction, steric interactions, and electrostatic (double layer) interactions 

(Hermansson, 1999). Once microbial cells do begin to accumulate on the extensive surfaces of GAC 

collectors, they secrete extra-cellular polymeric substances (EPS) that promote attachment, serve as 

protective barriers, and mediate the transport of substrate to the biofilm (Sutherland, 2001). EPS can also 

be hydrolyzed to biomass-associated products and eventually recycled as new substrate (Laspidou and 

Rittmann, 2002) The active biomass then continues to grow by consuming substrate in its surrounding 

vicinity and using it to build active biomass and EPS. In an established biofilm, convective flow of the 

substrate to the inner cell clusters becomes restricted. Diffusion, or the transport of solutes by concentration 

gradients, is thus the predominant method of solute transport within cell aggregates. Water channels and 

pores within mature biofilms also provide transport pathways for substrate (Stewart, 2003). Accordingly, 

because substrate can be transported across mature biofilms (and because biofilms can also be patchy), the 

adsorptive capacity of filtration media may impact organic matter removal in biologically-active GAC 

filters, as has been suggested and demonstrated by Spanjers (2017).  

2.2.4. Steady-State Phase – Organic Matter Removal by Biodegradation   

 Eventually during the operation of a biofilter, organic matter removal and microbial biomass will 

reach an equilibrium—exactly how this happens has been widely theorized. The “diffusion transport 

resistance” theory relies on mathematical modeling to demonstrate the relationship between 

bioregeneration and the diffusion of absorbed substrate to the outer surface of a GAC media grain; here, an 

imbalance between the desorption rate and the concentration of organic matter in the liquid phase cause a 

decrease in bioregeneration (Speitel and Digiano, 1987). The stabilization of microbiological communities 

as a result of predation by protozoa also has been suggested (Servais et al., 1994). Diffusion limitation 

associated with biofilm thickness (i.e. the growth of biofilms until their thickness reaches a critical level 

beyond which nutrient diffusion across the biofilm cannot occur) also has been proposed (Lazarova and 

Manem, 1995). Operational conditions such as frequent and consistent backwashing may also impact or 

“control” biomass growth in biofilters, as a biofilm that is too thick may not only remove NOM less 

efficiently, but also cause excessive headloss accumulation (Scholz and Martin, 1997). It has been further  

suggested that bioregeneration efficiency in biologically-active GAC filters may gradually decrease over 

the long term due to a non-reversible accumulation of inorganic substances and dead cells (Laspidou and 

Rittmann, 2002; Lohwacharin et al., 2011).  

2.2.5. Removal by Biodegradation: Direct Biodegradation and Bioregeneration 

 Biodegradation is an oxidation process in which the organic matter substrate acts as an electron 

donor to the electron-accepting biomass (Metcalf and Eddy, 2013). Sometimes, this mediation of electron 
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transfer between reduced compounds and oxidized compounds can alter inorganic contaminants into forms 

that are easier to remove during treatment (Brown et al., 2015; Laspidou and Rittmann, 2002). In biological 

filtration, colloidal solid matter can also become absorbed into porous biofilms (Drury et al., 1993). 

Primarily, though, biological filtration removes organic matter by uptake and conversion into biofilm (Van 

der Kooij, 1992). 

 During classical biofiltration in drinking water treatment with GAC media, the removal of organic 

matter can continue several years after the GAC has lost most of its adsorptive capacity (Rattier et al., 2012; 

Scholz and Martin, 1997), either through direct biodegradation from the bulk matrix or as the active biofilm 

consumes substrate on GAC surfaces, thereby freeing up sites for further adsorption. This latter process is 

referred to as “bioregeneration”. As diffusion is the dominant substrate transport mechanism within a 

biofilm (Stewart, 2003), adsorbate can desorb from GAC surfaces during periods of low substrate 

concentration in the surrounding water matrix, improving accessibility of the substrate to the biofilm and 

enhancing direct biodegradation; however, if the substrate concentration in the surrounding water matrix is 

too low, it may hinder biodegradation (Speitel and Digiano, 1987). Dissolved organic matter includes a 

wide spectrum of molecular configurations (Gjessing et al., 1999) however, and there are likely several 

potential biodegradation pathways. Another such pathway is the multi-step process of biodegradation of 

macromolecular structures. Here, the largest macromolecules attach to the outer GAC surface where they 

can be partially biodegraded by exocellular enzymes. The smaller compounds and biodegradation products 

can adsorb within the narrower GAC micropores, and once the diffusion gradient shifts, they may desorb, 

and undergo further biodegradation, continuing the cycle (Korotta-Gamage and Sathasivan, 2017; Simpson, 

2008). Substrate remains bioavailable in GAC mesopores (2-50 nm); however, it has been speculated that 

adsorbates in the microporous sites (< 2 nm) are too strongly attached to desorb and biodegrade (Klimenko 

et al., 2002). This hypothesis has been supported by at least one investigation in which phenol (a lower-

molecular-weight hydrophobic compound) adsorption in the micropores (< 0.7 nm) of activated carbon 

ultimately made it inaccessible to the exoenzymes necessary to transform it and make it further bioavailable 

(Martin et al., 2002). Collectively, these investigations demonstrate that the physical structure of the GAC, 

the adsorption kinetics of the system, and the type of substrate, are collectively important factors affecting 

biodegradation processes in biofilters. 

2.3. Classical Biological Filtration – Performance Metrics 

2.3.1. Headloss Accumulation and Turbidity Removal  

 Headloss accumulation rate, turbidity removal, and filter run time are operational parameters that 

characterize filtration process performance efficiency—they are relevant to both conventional and 

biologically chemically-assisted filtration processes. All chemically-assisted filtration processes, including 



 

15 

 

biofiltration, require regular backwashing to manage headloss accumulation and particle/turbidity 

breakthrough, though backwashing also may be scheduled in advance for planning/convenience. 

Backwashing involves reversing water flow so that the filter bed is fluidized, expanding porosity between 

the collector grains and effectively removing the contaminant particles trapped throughout the depth of the 

filter (Edzwald, 2011). While it is possible that excessive biofilm growth can exacerbate headloss 

accumulation in the filters or lead to turbidity breakthrough in these processes (Simpson, 2008), such 

challenges in the operation of classical biological filtration processes during drinking water treatment 

(where process influent water is relatively nutrient poor compared to municipal and some industrial 

wastewater treatment processes) have not been widely reported. To ensure adequate, vigorous backwashing, 

sub-fluidization water wash has been combined with air scour and referred to as “collapse pulse” 

backwashing (Amirtharajah, 1993; Amirtharajah et al., 1991). Notably, while this procedure provides a 

rigorous cleaning of filter beds, it does not have substantively detrimental impacts on biomass or its ability 

to remove DOC or AOC (Ahmad et al., 1998; Emelko et al., 2006). 

2.3.2. Organic Matter Removal 

 TOC and DOC are bulk parameters that have been used traditionally to quantify organic matter in 

water. In most natural waters, DOC accounts for greater than 90% of TOC (Thurman, 1986) it also tends 

to be the most challenging component of natural organic matter for water treatment (Karanfil et al., 2005) 

because it is a precursor to DBP formation, and also a potential contributor to taste and odour compounds, 

membrane foulants, and microbial proliferation in distribution systems (Edzwald, 2011). Several methods 

beyond TOC and DOC exist for characterizing organic matter. These include biodegradable dissolved 

organic carbon (BDOC), or organic matter that is removed specifically by the oxidation of bacteria (Servais 

et al., 1989) and assimilable organic carbon (AOC), which is measured by the accrued mass of biofilm 

development as a direct result of organic matter (Van der Kooij, 1992). These are frequent parameters in 

biological filtration studies since they have direct implications for the potential for regrowth in the 

distribution systems (Servais et al., 1989; Van der Kooij, 1992). Fluorescence excitation-emission matrices 

can be used to identify humic substances, protein-like compounds, and colloidal component of organic 

matter; however, these methods are still evolving and have limited utility because they are not quantitative  

(Park and Snyder, 2018; Peiris et al., 2010). UV254, SUVA (specific UV absorbance), and LC-OCD 

approaches are discussed in detail below. 

UV254 and SUVA 

 UV absorbance at a wavelength of 254 nm provides an indication of the quantity of double carbon 

bonds, and more specifically the aromaticity of organic matter in water. From a practical perspective, UV254 
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is a useful indicator of larger molecular weight compounds, as they tend to have a higher level of aromaticity 

(Edzwald, 2011; Shams, 2018). 

 Specific UV254 absorbance (SUVA) is sample UV254 normalized to its DOC concentration. Higher 

SUVA values indicate a higher fraction of aromatic organic matter. SUVA values under 2 L/mg.m are 

comprised of mostly hydrophilic compounds, and above 4 L/mg.m  are mostly hydrophobic, and SUVA 

values between 2 and 4 L/mg.m are a mixture (Sillanpää, 2014). Notably, SUVA often correlates well with 

DBP (trihalomethane (THM) and haloacetic acid (HAA)) formation potentials (Fu et al., 2017a; Hua et al., 

2015; Susa and Lemus, 2017; Yang et al., 2005). 

 Carbon double bonds are potential electron donors, so oxidants and disinfectants are quick to 

chemically react with these compounds (Edzwald and Kaminski, 2009). This theory supports why SUVA 

is a good predictor of DBP formation potential, however this may not be the case in all circumstances. 

Nemani et al. (2016) conducted a correlation analysis of the SUVA from biological filtration effluent and 

the THM4 and HAA9 formation potential. Overall, the correlations between these two metrics were poor 

(R2 = 0.33 and 0.03, respectively). It was also speculated in that study, however, that the SUVA was very 

low (between 0.5 and 0.7 L/mg.m) and that the predominance of aliphatic organic matter may have skewed 

the results of the correlation study. This was also the case in Ates et al. (2007). Overall, a higher SUVA 

value generally corresponds to increased DBP formation, including THMs, HAAs, THAAs and CFs (Fu et 

al., 2017a; Hua et al., 2015; Susa and Lemus, 2017; Yang et al., 2005). As with all over-arching theories 

about NOM, however, there are some limitations. For example, the correlation is not valid for bromo- or 

bromochloro-DBPs (Yang et al., 2005), also, the relationship between SUVA and DBP can vary 

significantly depending on the water source or water treatment applied (Ates et al., 2007; Kitis et al., 2004; 

Tan et al., 2005). Overall, removing DOC quantitatively will reduce DBP formation potential (Selbes et al., 

2016), however changes in SUVA are a robust indicator of changes in DBP formation potential.  

 While new GAC filters preferentially adsorb aromatic compounds (Ates et al., 2007; Kitis et al., 

2004), the removal of organic matter by microbiological activity typically does not have an impact on the 

SUVA of the influent water. This is not surprising, as the microbiological activity targets smaller, more 

biodegradable components, and UV254-absorbing organic matter tends to be larger in size, more aromatic, 

and less biodegradable (Edzwald, 2011; González et al., 2013). Ozonation typically decreases SUVA; 

changes in SUVA have not been observed in BAC systems either preceded by ozonation (Selbes et al., 

2017; Zhang et al., 2017) or not preceded (Mckie et al., 2019; Zhang et al., 2017). In one case, it was even 

reported that a BAC system preferentially removed smaller, non-UV absorbing compounds, and therefore 

caused SUVA to increase (Han et al., 2013).  
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LC-OCD 

 Liquid chromatography-organic carbon detection (LC-OCD) is a method that provides information 

on the different sizes and chemical functions of organic matter, quantifying them on the basis of organic 

carbon (Huber et al., 2011). Dissolved organic matter is separated into five fractions based on molecular 

weight and size. The stream is then directed to a thin-film reactor that oxidises the sample and produces 

corresponding chromatographic peaks. The peaks are integrated to provide information on the quantity of 

biopolymers, humic substances, building blocks, low molecular weight neutrals and low molecular weight 

acids (LMW neutrals and LMW acids, respectively) (Huber and Frimmel, 1988). Typical surface water 

sources are comprised of 2–10% biopolymers, 55–90% humic substances, 10–15% building blocks, 10–

15% LMW neutrals, and 2–10% LMW acids (Baghoth et al., 2009; Lautenschlager et al., 2014; Ronteltap 

et al., 2008). Table 2.2 provides a summary of the current knowledge on what these fractions are and their 

physical and chemical properties. 

Table 2.2: LC-OCD fractions and their properties 

LC-OCD fraction Molecular weight 

and size 

Composition Properties 

Biopolymers • 50,000 – 2·106 

Daa 

• >> 20,000 Dab 

• > 10,000 Dac 

• Polysaccharides, amino acids, 

proteinsa,b 

• Hydrophilic, not UV254-

absorbinga,c 

Humic substances • 100 – 100,000 

Daa 

• 20,000-1,000 

Dab 

• Humic substances and fulvic 

acidsa,c 

• UV-absorbingc 

• Can include both 

aquagenic, autochthonous 

compounds and pedogenic, 

allochthonous compoundsc 

Building blocks • 350 – 500 Daa 

• 300 – 500 Dab 

• Intermediates to humic 

substances and LMW acidsa,c 

• Humic-like substancesc 

• Cannot be removed by 

flocculationc 

LMW acids • < 350 Daa 

• <<350 Dab 

• Among final degradation 

productsa 

• Highly biodegradablec 

LMW neutrals • < 350 Daa 

• <350 Dab 

• Among final degradation 

productsa 

• Includes alcohols, aldehydes, 

ketones and amino acidsa,c 

• Amphillicb and 

hydrophllicc 

• Highly biodegradablec 

a. González et al. (2013) – provided size information in g/mol, converted to Da here. 

b. Kennedy et al. (2005) 

c. Huber et al. (2011) 

 

 Notably, humic substances and biopolymers are associated with DBP formation (Azzeh et al., 2015; 

McKie et al., 2015; Wassink et al., 2011) and there is strong evidence that biopolymers contribute to 

membrane fouling (Peldszus et al., 2012; Rahman et al., 2014; Siembida-Losch et al., 2015; Tian et al., 
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2013; Zheng et al., 2009). Biological filtration is generally effective at removing both humic substances 

(Gibert et al., 2013b; Lautenschlager et al., 2014) and biopolymers (Rahman et al., 2014) from water; 

however, a variety of factors including filter influent water quality, empty bed contact time (EBCT), and 

pre-treatment affect performance (Siembida-Losch et al., 2015; Lautenschlager et al., 2014; Rahman et al., 

2014). Moreover, it is important to note that multiple types of compounds comprise the LC-OCD fractions 

of organic matter. For example, in one report, polysaccharides were removed by BAC, but not proteins, 

although both contribute to the biopolymer fraction (Siembida-Losch et al., 2015).  

 It is well-known that biological filtration, and especially BAC filtration, is effective for membrane 

pre-treatment (Peldszus et al., 2012); however, few studies have focused on GAC adsorption as a treatment 

process for biopolymers and humic substances. Jeong et al. (2016) traced NOM fractions throughout all the 

treatment processes at a full-scale plant at which chlorination preceded GAC filtration, which was able to 

remove 44% of biopolymers, 54% of humic substances, and 48% of the LMW neutrals and acids. The 

building blocks fraction, however, increased by 57%—the authors did suggest a reason for this observation. 

One possible theory for this is that by chlorinating upstream of the GAC contactors, the larger recalcitrant 

biopolymers and humic substances were broken down into smaller building blocks. The authors assumed 

that adsorption was the dominant organic matter removal process within the GAC filters. In another study, 

a new GAC contactor was operated in parallel with an old, biologically-active GAC filter; there, the 

biologically-active GAC filter was capable of removing humic- and protein-like substances, whereas the 

new GAC filter was only capable of removing humic-like substances (Peleato and Andrews, 2015). 

2.4. GAC-Capped Anthracite/sand Filters for Biological NOM Removal  

 Anthracite is a common type of filter media made from coal. Unlike GAC, it is not processed to 

possess a high adsorptive capacity, and it is less expensive. Dual media anthracite/sand filters are one of 

the most common filter media configurations. The installation of a GAC as a cap over mono-media or dual-

media filters containing anthracite and/or sand offers a cost-effective approach for potentially achieving 

maximal removal of organic matter with biological filtration without the need to fully invest in more 

expensive GAC media that also suffers from attrition due to its relative friability over the longer term 

(Evans, 2010; Evans et al., 2010). In a survey of water treatment plants in Ontario, a sizable fraction (14%) 

used GAC specifically as a filter cap over anthracite in their treatment process (Moore and Watson, 2007). 

Although biofiltration performance using anthracite media relative to GAC has been widely compared, 

relatively little is known about the biofiltration performance of GAC-capped anthracite/sand filters. 

 While the use of GAC caps during drinking water filtration has been reported; however, these 

investigations have not focused on organic matter removal specifically. For example, Stoddart and Gagnon 

(2017) ran GAC-capped anthracite/sand filters in parallel with anthracite/sand filters and focused on pre-
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oxidation methods. Ndiongue et al. (2006) investigated MIB and geosmin removal by GAC capped filters, 

and although Andrew et al. (2019) compared GAC-capped anthracite sand to a GAC/sand dual media filter, 

both filters were fed with HOCl, and the effect of pre-oxidation was also the primary focus of the study. 

Nonetheless, at the very least, these investigations provide consistent evidence that GAC capped 

anthracite/sand filters can achieve the traditional filtration performance objective of acceptable turbidity 

removal, regardless of chlorine addition.   

2.4.1. NOM Removal during Biological Filtration with GAC and Anthracite Media 

Biomass Quantity 

 GAC is consistently found to support more biomass than anthracite using a wide spectrum of 

different biomass quantification methods, even at cold temperatures or when its adsorptive capacity is 

exhausted (Emelko et al., 2006; LeChevallier et al., 1992). It has been suggested that the rough, irregular 

surface of GAC media, which is believed to protect bacterial communities against the fluid shear forces 

during backwashing (Urfer et al., 1997). In one example, GAC and anthracite biofilter performance was 

compared and biomass quantity was inferred by analyzing ATP biofilm, EPS polysaccharides, and EPS 

proteins; while the GAC media did not support significantly more ATP biofilm, significantly more EPS 

proteins and polysaccharides were found on its surface (McKie et al., 2015). GAC has also been found to 

retain five times more phospholipid biomass than anthracite (~250 versus ~50 nmol lipid-P/g media) (Wang 

et al., 1995). LeChevallier et al. (1992) examined the biological activity of a GAC/sand filter and a mixed 

media anthracite/sand/garnet filter and found more heterotrophic bacteria (measured by heterotrophic plate 

counts; HPC) within the GAC media (3.6 x 108 cfu/g versus 9.7 x 106 cfu/g).  

Organic Matter Removal 

 Organic matter removal by biofiltration was first investigated to identify potential advantages in 

removing more AOC, or organic matter that directly contributes to regrowth in the distribution systems, 

than other media (Van der Kooij 1992; LeChevallier et al., 1992). Dussert and Tramposch (1996) studied 

AOC removal by various biological filtration media and found that (1) GAC removes more AOC than 

anthracite at lower temperatures, but at temperatures above 12 to 15°C, the removal is comparable, (2) GAC 

develops biomass sooner, and thus removes AOC sooner, than anthracite, and (3) GAC’s high adsorptive 

capacity during start-up also contributes to AOC removal, unlike non-adsorptive anthracite. Similar 

observations have been made regarding DOC and TOC removal by biofiltration processes. In some cases, 

TOC and DOC removals by GAC biofiltration were up to twice as high as those achieved by anthracite 

media (LeChevallier et al., 1992; McKie et al., 2015; Singh Sidhu et al., 2018). Overall, biologically-active 

anthracite is capable of removing organic matter (Azzeh et al., 2015; Liu et al., 2001), especially at warm 

temperatures (Emelko et al., 2006). Curiously, comparative studies between biologically-active anthracite 
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and GAC have found no effective difference between UV254 removal and SUVA change (Selbes et al., 

2017; Singh Sidhu et al., 2018; Shuangyi Zhang et al., 2017). Studies that have analysed other carbon 

fractions have made this topic somewhat more ambiguous. For example, biopolymers and humic substances 

were removed to varying extents by GAC and anthracite biofilters (Table 2.3). 

Table 2.3: Biopolymer and humic substance removal by anthracite and GAC biofilters 

Biopolymer removal Humic substance removal 
Source 

GAC Anthracite GAC Anthracite 

22% to 

25% 

-5% to -13% 

(produced BPs) 
0% to 1% 11% 

(Singh Sidhu et al., 

2018)1 

17% to 

25% 
15% to 24% 

-2% (produced) 

to 2% removal 
1% (Azzeh et al., 2015)2 

1. This system preceding the biological filters is a coagulation/flocculation/sedimentation process. The study was 

conducted during warm water temperatures, between 16 and 23°C. 

2. This system differs in that it is direct biofiltration. The ranges of biopolymer and humic substance removal are 

combined from cold water (5-12°C) and warm water temperatures (17-23°C). 

* Both systems had EBCT between 10-11 min. 

 

When compared to anthracite biofilters, GAC biofilters also regularly remove more DBP precursors 

(DOC), thereby reducing DBP formation potential (Krasner et al., 1993; Wang et al., 1995). In one 

investigation conducted at warm water conditions (16–23°C), biologically active GAC removed more THM 

and HAA formation potential (8–17% and 15–24%, respectively), than did anthracite filters (<2% and 5–

9%, respectively) (Singh Sidhu et al., 2018). In contrast, Azzeh et al (2015) conducted an experiment in 

cold water (5–12°C) and warm water conditions (17–25°C), and found no discernable difference between 

biologically-active GAC and anthracite biofilters in terms of THM and HAA formation-potential removal. 

Classical biofiltration is a cost-effective process for removing organic matter to prevent subsequent 

DBP formation and distribution system regrowth during drinking water treatment. Collectively, the body 

of available biological filtration research underscores that there is a need to improve the scientific and 

operational understanding of drinking water treatment by conventional GAC/sand and biologically-active 

GAC/sand filtration (i.e. classical biofiltration) processes. The amount of GAC required to achieve adequate 

biofiltration also must be understood, so that the utility of relatively more economical configurations such 

as GAC caps over non-adsorptive anthracite/sand biofilters can be considered. Accordingly, the relationship 

between organic matter removal and biomass also must be better understood and the mechanisms that 

govern it must be better described so that biological filtration can be more efficiently implemented and 

optimized.  
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3. Materials and Methods 

3.1. Research Approach 

 A pilot-scale biological filtration investigation was conducted to address the research objectives 

detailed in Chapter 1. Thus, more tactically, this investigation involved: (1) observing how closely new 

GAC filters display the trend of transient-to-steady-state organic matter removal, (2) investigating the 

relationship between steady-state biomass production and organic matter removal, (3) comparing the 

performance of new GAC filters and new filters started up with established biologically-active media and 

(4) comparing the performance of a multi-media GAC-capped anthracite/sand filter to a GAC/sand filter to 

investigate the adequacy of capping for enhanced DOC removal during drinking water treatment. The work 

was conducted in a pilot plant facility located at the Region of Waterloo’s full-scale Mannheim Drinking 

Water Treatment Plant. The pilot plant was equipped with four filter columns that receive the same influent 

water as the full-scale filters and have similar operational features, including backwash capacity, valve 

controls, data collection, etc. The pilot plant filters contained new GAC media, exhausted GAC media from 

the full-scale WTP, a combination of the two (40% new, 60% old GAC), and new anthracite media with a 

spent GAC cap. The plant was operated from June 4th to September 5th, 2018. Headloss across the filters 

and turbidity removal by the filters was evaluated continuously. Grab samples were collected regularly to 

enable the analysis of DOC (every two to three days), UV254 absorbance, biopolymers and humics (by LC-

OCD), and biofilm ATP (weekly). The performance of each media configuration is presented and discussed 

in Chapter 4. 

3.2. Region of Waterloo Mannheim Drinking Water Treatment Plant 

 This research project was conducted at the pilot plant in Region of Waterloo’s full-scale Mannheim 

Drinking Water Treatment Plant. A portion of the full-scale plant filter influent is diverted to the pilot plant 

facility (Section 3.3), which was operated separately and continuously.  

3.2.1. Full-scale WTP Processes – Prior to Pilot-scale Filtration 

 Water from the Grand River is first stored in reservoirs located at the Hidden Valley Low Lift 

Station from which it is pumped to the main treatment facility where it undergoes chemically-assisted 

filtration. When it arrives at the WTP, the flow is separated into two streams that subsequently enter two 

sides of the treatment plant that are operated in parallel. Poly-aluminum chloride (PACl) is added for 

coagulation and then flocculated with the aid of a polyelectrolyte (Magnafloc LT22S); the doses were 30 

+/- 5 mg/L and 0.22 +/- 0.03 mg/L, respectively during the study period. Following sedimentation, the 

water is ozonated; the applied dose was 3.1 +/- 0.4 mg O3/L during the present investigation. The ozone 

contactor effluents from each of the two treatment trains in the full-scale WTP flow to granular media 
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filters, but before this, some water is redirected to the pilot plant facility. The ozonated water is the influent 

to the pilot plant filters; the connection is controlled so that the pilot plant receives either stream of ozonated 

water, or a mixture of the two. All effluent from the pilot plant was sent to the full-scale WTP waste facility 

(Region of Waterloo, 2017, 2018). 

3.2.2. Full-scale WTP Processes – After Connection to Pilot Plant 

 Each stream of post-ozonated water was separated further into two streams, entering 4 dual-media 

biologically-active GAC over sand filters. These full-scale filters had a similar configuration to the pilot 

plant filters and were thus used as a reference through the experiment. Approximately 1.3 m of 

FILTRASORB® 816 GAC media (Calgon Carbon Corporation, Pittsburgh, PA), with an effective size (ES) 

of 1.3 mm to 1.5 mm, is stacked on 0.3 m of silica sand with an ES of 0.45 to 0.55 mm, yielding an overall 

media depth of 1.6 m. Filtered water is subsequently UV irradiated, chloraminated, and discharged to the 

distribution system. 

3.3. Pilot Plant 

 The pilot plant consisted of four filters, 4.2 m high, and 20 cm in diameter, and constructed of clear 

PVC piping. Filter effluent holding tanks are located one floor below, and are connected to a pump that 

enables backwashing of each filter with its own effluent. The system includes automatic and manual flow 

valves, headloss meters, and turbidimeters connected to a SCADA system that monitored these parameters 

every 2 to 5 minutes. For this research project, the pilot plant facility was set up with varying types of media 

in the filters, which were operated in parallel. The pilot plant was operated as closely as possible to a typical, 

full-scale water treatment plant, and the performance of the filters was monitored and analysed for the 

completion of the research objectives. 

3.3.1. Pilot Plant Facility –Media Types 

  To enable direct comparison in performance as a function of the media configuration, the pilot  

filters were all backwashed using the same protocol (see Section 3.4.1) and all contained a media (either 

GAC or anthracite) with an effective size of 1.3 to 1.5 mm, over silica sand with an effective size of 0.45 

to 0.55 mm. The primary differences in the bulk media are summarized in Table 3.1. 
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Table 3.1: Properties of media used in this study 

Type of 

media 

Past use Effective size3 Uniformity 

coeffiecent-(UC)3 

New GAC1 • New media  1.3 to 1.5 mm  1.4 

Spent 

GAC1 
• Used in full-

scale plant 

from April 

2013 to May 

2018 

1.3 to 1.5 mm 1.4 

Anthracite2 • New media 1.3 to 1.5 mm 1.4 

Silica 

Sand2 
• New media 0.45 to 0.55 

mm 

1.5 

1. FILTRASORB® 816 GAC by Calgon Carbon Corporation, Pittsburgh, 

PA. 

2. Supplied by Anthrafilter Media & Coal Ltd., Brantford, ON. 

3. For additional information and grain size distributions, see Appendix C. 

  

The origin and prior use of each GAC type is important and was vital to the meeting the research 

objectives detailed in Chapter 1. The term “spent” GAC refers to GAC that was first used in the full-scale 

filters starting in April 2013 (after purchase) and was continuously utilized until May 2018, thereby 

rendering it exhausted. The medium was removed and briefly held in a separate container before being 

transported into the pilot plant facility. At the time of extraction, the full-scale filter had been in service for 

approximately 18 h since its last backwash. The new GAC, anthracite, and sand were purchased new from 

various suppliers (Table 3.1). 

 The filter media configurations used during the present investigation are provided below (Table 

3.2). The bulk medium, composed of various combinations of GAC or anthracite, was 1.0 m in depth 

situated over 0.3 m of silica sand, providing a total bed depth of 1.3 m. Filters 1 to 3 were dual-media filters, 

and Filter 4 was a multimedia filter.  

Table 3.2: Pilot scale media configurations 

Media depth 

(m) 

Filter 1 Filter 2 Filter 3 Filter 4 

1.0 New GAC A mixture of new 

GAC and spent 

GAC (ratio 2:3) 

Spent GAC 0.2 m of spent GAC 

laid on top of 0.8 m 

of new anthracite 

0.3 New silica 

sand 

New silica sand New silica 

sand 

New silica sand 
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 Filters 1 through 3 were configured to provide a deeper understanding of performance differences 

between new and spent GAC during the filter start up period. Comparison of Filter 4 to Filter 3 informed 

the performance of a GAC capped anthracite/sand filter relative to a spent GAC/sand filter. 

3.3.2. Pilot Plant Facility – Filter Media Configurations 

 The media were stacked in the filters as per ANSI/AWWA standards B100 and B604 (American 

Water Works Association et al., 2012). Prior work in the pilot plant involved biologically active filtration 

(Wong, 2015), so the columns needed to be cleaned and sanitized with sodium hypochlorite to thoroughly 

remove any bacteria or other microbes that had accumulated on the interior of the columns prior to the 

present investigation. The new GAC and new anthracite were placed in a separate container and were wetted 

and rinsed with chloraminated tap water to remove fines. Once all of the media were loaded into the filters, 

they were backwashed under a reverse hydraulic loading rate of 50 m/h for approximately five minutes to 

ensure that the fines were removed and the media heights in all of the filters were consistent. It should be 

noted that this backwashing step briefly exposed all of the GAC media, including the biologically-active 

media, to chloramines that were present in the water. It likely did not impact the activity of the established 

biological media because the contact was brief; this lack of impact would be consistent with what has been 

observed for the full-scale biological filters at the Mannheim WTP, which are regularly backwashed with 

chlorinated water without any measurable impact on biological filtration performance (Huck et al., 2000). 

ATP data from the present investigation (first date of experimentation; see Figure 4.13, Figure 4.24, 

Figure 4.37, and Figure 4.46 in Chapter 4) are consistent with this expectation. 

3.3.3. Pilot Plant Facility – Water and Filter Media Sampling 

 Throughout the experimental period, water and media samples were extracted regularly from ports 

situated at various depths in the filter media. Figure 3.1 identifies the locations of these ports. 
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Figure 3.1 Pilot plant schematic with sampling ports and their heights above the base of the filter 

columns 

 Filter influent water samples were typically collected from Port 1, located approximately 15 cm 

above the media surface. They also could be collected at the post-ozone sampling station in the full-scale 

plant, from which the water must travel through approximately 15 m of piping before reaching the pilot 

plant. Both water and media could be sampled from the various ports along the depth of the filter columns 

during operation. Finally, the filter effluent sampling location was located next to the effluent storage tanks, 

one floor below the pilot plant.  

3.3.4. Pilot Plant Equipment and Operation 

 Headloss, filter effluent turbidity, and effluent flow rate data were collected by an Allen-Bradley 

supervisory control and data acquisition (SCADA) system (Rockwell Automation, Inc., Milwaukee, WI). 
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Differential pressure was measured from the base of each filter, to a port approximately 2 m above, using 

Foxboro IDP10-T differential pressure transmitters (Invensys Foxboro, Foxboro, MA). Filter effluent 

turbidity was measured using Hach sc100™ 1720E Low Range Turbidimeters (Hach, Loveland, CO). 

 The pilot filters were operated in constant-head, constant-flow mode using an automated system of 

effluent control valves. The SCADA system was programmed to control the effluent flow rate using 

Chemline Q Series electric valve actuators (Chemline Inc., Cranford, NJ). ABB ProcessMaster FEP300 

(ABB Inc., Zürich, Switzerland) electromagnetic flow meters reported flow rate data to the SCADA system.  

 A Porter-Cable Pancake compressor (Pentair, Inc., Arden Hills, MN) was used during the air-scour 

portion of the backwashing procedure, and the flow rate of the air supply was controlled using a King 

Instruments 7530 Series acrylic tube flow meter (King Instruments Company, Garden Grove, CA). A 

Grundfos CRNI vertical multi-stage centrifugal pump (Grundfos Pumps Corp., Bjerringbro, Denmark) was 

used to backwash the filters. 

3.4. Backwash and Operation 

 The filters were operated at a hydraulic loading rate of 7.6 m/h, which corresponded to an empty 

bed contact time (EBCT) of 10 minutes. The filters were backwashed approximately every two to three 

days, however, it should be noted that filter flow rates during the study period frequently declined 

(sometimes to the point of little or no flow) during the experimental period because of atypical solids 

accumulation in the filters likely associated with non-ideal pre-treatment at the full-scale plant during the 

experimental period—the full-scale plant experienced similar challenges in shortened run times during this 

period, resulting in more frequent backwashing. More frequent filter performance assessment was not 

possible during the pilot-scale investigation; therefore, this regular back-washing schedule (i.e., every two 

to three days) was implemented. Most importantly, backwashing occurred with adequate frequency so as 

to ensure that the filters were always wetted; thus, these periods of declining rate filtration were not expected 

to substantially impact gross differences in biological filtration performance. It follows that DOC 

degradation rates could not be reasonably evaluated because of the associated, variable EBCTs in the filters. 

Evaluation of these rates was not a focus of the present investigation; rather, the focus herein was to identify 

any key differences in NOM removal, such as differences in the removal of various sized NOM fractions 

that could help to inform the mechanisms contributing to biofilter performance during the various phases 

of operation. Operational details are provided in Tables A-1 and A-6.  

 The pilot filters were in operation from June 4th until September 5th, 2018, with an off-line period 

from July 13th to the 16th, 2018 to address operational issues. Each filter was backwashed with effluent from 
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its own dedicated storage tank. The collapsed-pulse backwashing procedure was performed as per 

Amirtharajah et al. (1991). 

3.4.1. Backwash Protocol 

 Collapsed-pulse backwash consisted of air-scouring the media while undergoing a low-rate up-

flow wash, then pausing to wait for the media to settle and any trapped air to dissipate following air 

shutdown. Next, the media was washed at a sufficiently high rate to achieve 30% bed expansion, followed 

by slowly decreasing the backwashing rate to achieve media stratification. This backwash procedure was 

altered slightly after June 29th, 2018 (further discussed in Section 3.4.2). Also, to achieve 30% bed 

expansion, backwashing procedure was slightly difference among different media configurations (Table 

3.3).  

 The rates of water flow and air flow during this backwash were determined (Appendix B) as per 

Amirtharajah (1993) and Amirtharajah et al. (1991). Slight modifications to the procedure were then 

implemented during operation to ensure bed expansion; this was easily done by visual assessment of the 

filtration media in the clear PVC columns. The hydraulic loading rates, air flow rates, and duration of the 

backwashing steps are detailed below. 

Table 3.3: Backwash settings used during pilot-scale biofiltration experiments 

Backwash step Duration Loading rate and air flow 

Backwash settings from June 4th - June 29th, 2018 

Air scour and               

low rate wash 
6.5 min 

Air flow = 54 m3/h/m2 

HLR = 12.4 m/h  

(HLR = 14.3 m/h for Filter 4) 

Media settling 2 min - 

High rate wash 

5 min 

(or until water 

exiting is clear) 

HLR = 50 m/h 

Backwash settings from June 29th - Sept 5th, 2018 

Air scour and               

low rate wash 
6.5 min 

Air flow = 54 m3/h/m2 

HLR = 12.4 m/h 

(HLR = 14.3 m/h for Filter 4) 

Air scour and                 

High rate wash 
0.5 - 1 min 

Air flow = 54 m3/h/m2 

HLR = 50 m/h 

High rate wash 

5 min 

(or until water 

exiting is clear) 

HLR = 50 m/h 

HLR = Hydraulic Loading Rate 
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 All of the GAC filters were backwashed using the protocol described above. The configuration of 

Filter 4 included anthracite in addition to a cap layer of GAC. Given the different density of anthracite 

media, a slightly higher was rate was required to achieve the same level of bed expansion (see Air Scour 

and Low Rate Wash row in Table 3.3).  

3.4.2. Solids Accumulation in the Filters 

 After the first month of operation, it was found that the backwashing procedure was not sufficient 

to adequately remove solids (i.e. likely floc carryover from the chemical pre-treatment process as a result 

of rapid shifts in raw water quality; some biomass also was likely associated with these solids) within the 

filters. Similar to mudball formation, during these periods it appeared as if the filter media became clumped 

together in masses that did not completely break up during backwashing. This operational problem has been 

a hindrance for biological filters both at pilot-scale (Krasner et al., 1993; LeChevallier et al., 1992; Pacini 

et al., 2005) and full-scale (Evans et al. 2010; USEPA 2013). The solids and biomass caused excessive 

headloss accumulation and potentially increased the risk of preferential flow pathways. During the first 

phase of this experiment, some of the filters effectively became clogged almost immediately after the 

backwashing. On June 29th, 2018, the filters were found to be affected by this issue and underwent 

additional maintenance after the regular backwashing procedure. This included putting them under a 

simultaneous air scour and high rate wash for approximately 3 to 5 minutes, at 100 m3/h/m2 of air flow and 

a 50 m/h backwash hydraulic loading rate. Filter 2 underwent another maintenance on August 23rd, 2018. 

 

Figure 3.2: Solids masses emerging in Filter 4 (left) and Filter 2 (right) during backwashing on June 

29th, 2018. 
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 After maintenance on June 29th, 2018, the backwash procedure was altered as outlined in Table 3.3. 

The steps are 1) air-scouring and backwashing at a low-rate, 2) increasing the backwash rate to a high-rate 

wash 3) shutting off the air scour and continuing high-rate wash for 5 minutes. 

  

3.4.3. Details on Operating Data Collection 

Flow 

Filter effluent flow rate was measured by electromagnetic flow meters that relayed information every 

two minutes to the Allen-Bradley supervisory control and data acquisition (SCADA) system. 

Turbidity 

Filter effluent turbidity was continuously measured using Low Range Turbidimeters. This information 

was relayed to the SCADA system every two minutes, except for Filter 4 (new anthracite capped with 

spent GAC), which was precise to every 15 minutes due to a programming error in the local instrument. 

Additionally, from August 18th to the 23rd, the turbidity meter for Filter 3 (spent GAC) needed to be 

taken off line for maintenance; thus, turbidity data are not available for this period. 

Filter influent turbidity was measured from the post-ozonation stream entering the full-scale filters. 

This information was also precise to every 2 minutes. 

Headloss 

Headloss across the pilot filters was measured using differential pressure transmitters – this parameter 

was measured every 5 minutes. 

Filter run time 

Following backwashing, the filter influent flow through a filter was resumed at an operational flow rate 

of 4 L/min. The start of filter run time occurred when the filter effluent turbidity returned to 0.2 NTU 

after a period of deterioration during ripening. The threshold for the end of a filter run time was when 

the headloss exceeded 305 cm (the maximum hydraulic head), when the flow rate decreased to below 

3 L/min, or when the turbidity exceeded 0.3 NTU for 10 minutes. 

 As mentioned previously, the filters were operated in constant-flow mode by maintaining a constant 

water level in the filter columns using an overflow and automated valves that progressively opened to 

maintain filter effluent flow. Due to full-scale treatment optimization challenges (that affected filter influent 

water quality) occasional abbreviated filter run times and periods of sub-optimal filtration occurred. 

Specifically, there were some occasions on which (1) terminal headloss was reached (and flow decreased 

to outside of the operational criterion of at least 3 L/min), (2) filters did not receive enough influent flow 
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and water level in the filter column dropped to below the overflow (though never to the point of that the 

media were not submerged), or (3) turbidity breakthrough occurred. In all of these cases, the filters were 

backwashed and returned to service and the filter runs were excluded from the present analysis. 

3.5. Organic Matter Concentration and Characterization 

 Water samples were collected from the post-ozone sampling location, port 1 and the filter effluent 

ports (Figure 3.1) approximately every 2-3 days. The central sampling ports (Figure 3.1) were sampled 

approximately weekly. Water samples were collected during periods of stable filter operation, 

approximately 4 to 8 h after the filters were put into service. Sample collection and storage were performed 

according to Standard Methods 1060 B, which specifies that all glassware should be acid-washed 10% HCl 

and samples should be stored at 4°C until use; all vials also were pre-rinsed once with the sample matrix 

before collection (American Water Works Association et al., 2012).  

3.5.1. DOC 

 DOC was analyzed approximately every 3 days in water samples collected from the post-ozone 

port, port 1, and the effluent sampling ports, and weekly, from the central sampling ports 2 to 5 (Figure 

3.1). Samples were collected, stored and analysed according to Standard Methods 5310 C (American Water 

Works Association et al., 2012). The samples were filtered through 0.45 µm nominal porosity nylon 

membranes (GVS Filter Technology, Findlay, OH) which were rinsed with organic-free water prior to use. 

After filtration, the samples were acidified with H3PO4 to lower the pH to 2. A Sievers M9 Portable TOC 

Analyzer (SUEZ Water Technologies & Solutions, Trevose, PA) was used to measure DOC using the UV-

persulfate method for analysing organic carbon. The inorganic carbon removal setting on the analyzer was 

activated.  

3.5.2. UV Absorbance 

 UV254 was analyzed approximately every 3 days in water samples collected from the post-ozone 

port, port 1, and the effluent sampling ports (Figure 3.1). Samples were analysed according to Standard 

Methods 5910 B (American Water Works Association et al., 2012). As in Section 3.5.1, the water samples 

were filtered through pre-rinsed 0.45 µm nominal porosity nylon membranes. UV absorbance at a 

wavelength of 254 nm was measured using a Real Tech UV254 Field Meter (PentAir Apopka, FL). As 

recommended in Standard Method 5910 B, a quartz cuvette was used and was rinsed three times in organic-

free water between each sample. Samples were analysed in triplicate. 

3.5.3. LC-OCD 

 Dissolved organic matter in the filter influent and effluent streams was further characterized using 

liquid chromatography with organic carbon detection (LC-OCD) (Huber et al., 2011). Samples were 
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collected from the post-ozone port and the filter effluent ports (Figure 3.1) approximately every week; this 

analysis commenced one month after the filters were first put in to service (July 1, 2018); thus, this analysis 

focused on the transition from filter start-up to steady-state filtration, as detailed in the research objectives, 

as opposed to either the filter start-up or steady-state operation period exclusively.  

 LC-OCD analysis involves passing a water sample through a weak cation exchange column that 

separates the organic matter based on its molecular size (Huber and Frimmel 1991). Organic matter is 

typically separated in to biopolymers (largest molecular weight, >10 kDa), humic substances, building 

blocks, low molecular-weight acids, and low molecular-weight neutrals (smallest molecular weight). This 

analysis occurs in two stages. First, the sample is passed through the instrument, which outputs 

chromatographic peaks, and then the peaks are integrated to calculate organic matter size fractionation 

using software and visual interpretation (Figure 3.3). 

 

Figure 3.3: LC-OCD data output (top) and analysis (i.e. integration to determine peak area) 

(bottom) (Huber et al., 2011). 
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3.6. Microbiological Sampling and Analysis 

 The amount of active biomass present in the filters was evaluated by quantifying ATP concentration 

per mass of filter medium. This metric was used because it correlates well with total direct cell counts 

(Magic-Knezev and van der Kooij, 2004) and serves as a widely accepted indicator of active biofilm 

quantity in filters (Pharand et al., 2014).  

 ATP concentration per dry weight of media was determined approximately every 7 to 10 days. 

Filter media were collected after a filter run had ended and prior to backwashing. The water above the filter 

was drained prior to collection of the media. Instruments for media collection were sterilized by soaking in 

ethanol for 2 minutes and rinsed with organic-free water before coming in contact with the filter media. 

Approximately 5 g of media sample were collected in sterile, 40 mL EPA vials, containing 30 mL of a 

phosphate buffered saline (PBS) at pH 7.4. Samples were kept in coolers with ice packs and were analysed 

within 6 h of collection. 

 ATP concentration was measured using the Deposit & Surface Analysis (DSA) test kit (LuminUltra 

Technologies Ltd, Fredericton, NB). In brief, cells present in a sample were lysed, causing them to release 

ATP. Samples were then diluted and Luciferase enzyme was added to cause the ATP molecules to fluoresce. 

Upon mixing with the enzyme, the samples were immediately analyzed using a luminometer and an 

established conversion to determine ATP concentration. The manufacture’s protocol was altered slightly; 

it states that once the biomass-covered solid samples are submerged in the lyse, they can be stored for up 

to one week. In this particular case, our sample medium is GAC covered in biomass, and once they were 

submerged in lyse, the ATP was released as expected, but the concentration in the supernatant of the lyse 

solution immediately started to decrease because the ATP was adsorbed onto the GAC. Samples collected 

on only three occasions (June 20th, June 27th, and July 6th, 2018) were impacted as a result and required a 

correction. This is discussed in Appendix B. 

 When biologically-active granular media are physically removed from the filter column, the 

bacteria present in the sample include cells that are attached (sessile) to the GAC and suspended, water-

borne cells. To evaluate biofilter performance, it was intended that only the microbial activity of attached 

cells be measured; accordingly, a simple rinse step was introduced to avoid including suspended bacteria 

in the analysis of biomass attached to the filter media. An investigation was undertaken to evaluate the 

effect of rinsing. It involved the analysis of approximately 5 g of wet, biologically-active GAC in a 50 mL 

glass beaker, which were swirled gently 3 times after the addition 100 mL of ultra-pure water. ATP 

concentration in the supernatant from each rinse was analysed immediately using the Quench-GoneTM 

Aqueous Test Kit (LuminUltra Technologies Ltd, Fredericton, NB). 
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Table 3.4 Media sample rinsing results (ATP concentration in the supernatant after rinsing) 

Effluent from Rinse 1 82 pg ATP/mL 

Effluent from Rinse 2 14 pg ATP/mL 

Effluent from Rinse 3 7 pg ATP/mL 

 

 In general, the first wash appeared to remove most of the suspended bacteria from the sample. 

However, it must be noted that the use of ultra-pure water instead of a phosphate buffered saline may have 

lysed some of the attached biofilm bacteria. Thus, the protocol was modified such that PBS at pH 7.4 was 

used to wash the media samples. The final media washing protocol is presented in Table 3.5. 

Table 3.5: Determining ATP concentration in attached biofilter biomass 

Phase of 

Microbiological 

Testing 

Details 

Media 

extraction 

Collect 5 g of media from filters using a sterilized metal spatula. Placed in 

sterilized EPA vial containing 30 mL of PBS at pH 7.4. Stored on ice in 

coolers until analysis. 

Media rinsing Upon return to lab after media collection, immediately, gently invert sample 

vials 5 times. Slowly decant PBS supernatant to waste and weigh GAC. 

Lab-bench 

ATP test 

Add 1.00 g of wet media into the lyse solution, dilute it, combine 100 μL of 

this solution to 100 μL of Luciferase. Immediately analyze the sample using 

a luminometer. 

Conversion to 

ATP 

concentration 

Convert RLU reading to ATP concentration using following formula: 

ng ATP

g dry ∙ media
=

RLUCalibration

RLUMedia Sample

∙
50 ATP (ng)

wet mass (g)
∙

wet weight (g)

dry weight (g)
 

  

 To determine the ATP concentration per mass of dry media, the ratio of wet weight to dry weight 

was calculated. This was done by simply extracting 1 kg of wet GAC and wet anthracite, weighing them, 

and reweighing them following air-drying. This was completed once prior to each experiment. 

3.7. Statistical Methods   

3.7.1. Steady-state Filter Performance Analysis Using Linear Regression 

 There is no universal indicator of when a biological filter has reached the end of its acclimation 

phase. As mentioned in Section 2.2.1, it is widely assumed that steady-state filter performance is achieved 

when the removal of biodegradable organic matter reaches steady-state. This approach was used here to 

determine when the pilot filters were acclimated and operating at steady-state. 
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 Least squares linear regression analysis was used to determine the best fit line (𝑌𝑖 = 𝛽𝑂 + 𝛽1𝑋𝑖 +

𝜀𝑖) to the DOC removal data analyzed for each filter run. Specifically, the period of steady-state DOC 

removal in the filter was confirmed by calculating the best fit line to subsets of ten consecutive data points, 

(a minimum sample size of ten is considered acceptable for a simple linear regression (Harell et al., 1984)) 

starting from the beginning of the experiment (June 14th to July 27th, 2018) and proceeding in a stepwise 

manner with an increment of one sampling occasion until reaching the end of the study period (July 27 to 

September 5, 2018). Analysis of the significance of slope of that line was then used to confirm and establish 

the onset of steady-state filtration. The period of steady-state DOC removal was defined as the period during 

which filter effluent DOC concentration reaches steady-state, resulting in a slope that is not statistically 

different than a slope of zero. Variations of this approach have been used before to determine whether or 

not experimental data display transient or steady-state behaviour (Di Prima et al., 2018). 

 IBM® SPSS Statistics® Version 25.0 was used to conduct each linear regression. A parameter 

estimates analysis was conducted for each calculated linear model. It included a test of whether the slope 

(𝛽1) significantly contributed to the model (i.e. whether the slope was significantly different from zero). 

The 5% significance level (α=0.05) was used. Thus, if p > 0.05 for 𝛽1, the slope of the linear regression 

model was not considered significant and it was concluded that the filter was operating at steady-state. 

 Notably, a linear regression model is appropriate if the data meet the following assumptions: (1) a 

linear model is appropriate for the relationship being described (as opposed to a non-linear model), 2) each 

observation (𝑋𝑖) of the independent variable is measured without error, 3) the errors associated with the 

dependent variable (𝑌) are normally distributed, and 4) the variance is roughly equal along the regression 

line. The validity of these assumptions was confirmed using residuals plots (Appendix A). Data that 

presented any of these issues were log-transformed (base 10 and e) or square-root transformed, and analysed 

again, as recommended by Gotelli and Ellison (2013). For linear regression equations, see Appendix B. 

3.7.2. Paired t-test for comparison 

 A paired-samples t-test was conducted to compare the performance data (organic matter removal 

etc.) between filters throughout the experimental period. Two-tailed tests were conducted using a 5% 

significance level (α=0.05). The assumptions of a paired t-test are that (1) the differences between the 

matched pairs follows a roughly normal distribution and (2) that the variance between the two data sets is 

approximately equal. These assumptions were tested by visually inspecting the histograms for the 

differences between the matched pairs, as recommended by Gotelli and Ellison (2013) and McDonald 

(2014). The histograms need to display a severe deviation from normality for the assumption to be violated. 

All paired t-tests were conducted using IBM® SPSS Statistics® Version 25.0, and the assumptions tests 

and paired t-test equations are presented in Appendix B. 
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4. Results and Discussion 

 From June 4th to September 5th, 2018, four pilot plant filters at the Region of Waterloo Mannheim 

drinking water treatment plant were operated. Three were dual-media GAC over sand, all of which 

contained the same grain-size distribution and types of media, however, biological activity varied among 

them. The fourth was a multi-media filter with a GAC cap over anthracite and sand. Throughout the 

experimental period, traditional performance (headloss accumulation, turbidity removal), organic matter 

removal and character (DOC, UV254, LC-OCD) and biomass accumulation (ATP concentration per gram 

of media) were analyzed.  

4.1. Filter Influent Organic Matter during the Experimental Period 

 The influent water entering the pilot plant was surface water from the Grand River that had been 

pumped to the full-scale Mannheim WTP where it was coagulated with PACl, flocculated with a 

polyelectrolyte flocculant aid (floc aid), clarified and ozonated. The full-scale plant experienced some 

treatment challenges during the experimental period; therefore, it was necessary to evaluate the associated 

shifts in water quality that occurred (Section 4.1.1). The DOC, UV254 and LC-OCD data (Section 4.1.2-

4.1.3) are the best available indicators of pilot filter influent water quality because they were measured at 

the pilot plant while the filters were running, from a port just above the granular media. The other 

performance indicators were filter effluent turbidity and headloss (see Sections 4.3.2, 4.4.2, 4.5.2, and 

4.6.2). Because of operational challenges at the full-scale plant and associated impacts on pilot plant 

operation, the collection of DOC, UV254, and LC-OCD data could not commence until June 14th, 2018, even 

though the filters were first put in service on June 4th, 2018. Biofilm ATP was collected throughout the 

experimental period, however, because of the need to confirm biofilm development and filter acclimation, 

even if impacted by operational and pre-treatment challenges. 

4.1.1. Settled, Post-Ozone Water Quality and Prior Treatment Steps 

 Raw water temperature at the entry point of the full-scale WTP (24 h averages) and settled, post-

zone (i.e. filter influent) turbidity are presented in Figure 4.1. There were some relatively rapid changes in 

settled, post-zone water quality from approximately June 4th, 2018 to July 9th, 2018, with raw water 

temperature fluctuating between 18 and 27°C, and turbidity ranging from 1 to 7 NTU within a span of a 

few days—these fluctuations were even more pronounced over the course of each day and challenged both 

the pilot- and full-scale filters. PACl, floc aid, and applied ozone doses in the full-scale plant had to be 

adjusted regularly—the ranges of applied doses are also presented in Figure 4.1. 
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Figure 4.1: Average daily settled, post-ozone water turbidity and raw water temperature during 

fluctuation and stable phases of pilot filter operation 

   

For discussion and analysis purposes, the influent water quality conditions over the experimental 

period were divided into two phases: the “fluctuating phase” before approximately July 9th, 2018, and the 

“stable phase” after July 9th, 2018, when the raw water quality stabilized, except for a single turbidity spike 

on August 3rd, 2018. The PACl, floc aid, and ozone dosage requirements also stabilized with raw water 

quality. As discussed in Section 3.4.2, the sub-optimal chemical pre-treatment that occurred during this 

period appeared to result in some solids/floc carryover from the sedimentation tank to the filters during 

these challenges periods; fortunately, these operational challenges were overcome using a more vigorous, 

collapse-pulsing backwash protocol (as described in Section 3.4.1). 

4.1.2. Filter Influent DOC 

 The DOC concentration entering the pilot plant remained relatively steady, averaging 4.1 +/- 0.3 

mg/L (mean +/- standard deviation) (Figure 4.2). As mentioned in Section 3.3.3, filter influent DOC 

concentration was characterized using water that could be collected from five possible locations: the post-

ozone sampling station that is farthest away from the filter media surface, separated by approximately 15 m 

of piping from the pilot plant, and the four ports (Port 1) that are located directly above the media in each 

of the pilot filters. 
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Figure 4.2: Comparison of DOC at the far port (full-scale ozone effluent redirection point) and 

Port 1 above the media in each filter, collected during experimental period  

(n = 21-24, ˔ = minimum value, ˕ = maximum value observed) 

 

 The DOC concentration measured at the sample port 15 m away from the plant averaged at 4.3 +/- 

0.3 mg/L while that from the sample ports, averaged across each filter and over each experimental date, 

were 4.1 +/- 0.3 mg/L DOC (mean +/- standard deviation). The DOC concentrations at all of the sampling 

locations was analysed statistically (student’s paired t-test, α = 0.05, n = 17 to 24, depending on the specific 

location) and it was found that the influent from the post ozone sampling location approximately 15 m away 

from the filters was significantly different from those measured at each of the sample ports on the filter 

columns Table 4.1). In contrast, the DOC concentrations in the filter influent samples collected from 

directly above the media (Port 1) were not significantly from one another, except in the case of Filters 1 

and 4 (i.e., new and spent GAC, respectively). 

Table 4.1: Paired t-test results between the DOC concentrations at the post ozone sampling location 

and influent (Port 1) to each of the pilot filters. 

 Post-Ozone F1 Port 1 F2 Port 1 F3 Port 1 F4 Port 1 

Post-Ozone - p < 0.0005 p = 0.001 p < 0.0005 p = 0.003 

F1 Port 1 - - p = 0.397 p = 0.297 p = 0.044 

F2 Port 1 - - - p = 0.771 p = 0.407 

F3 Port 1 - - - - p = 0.639 

F4 Port 1 - - - - - 

See Appendix C for histograms that demonstrate the assumptions of the paired t-test were met.   
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It is not clear why the DOC concentration 15 m upstream of the pilot plant was consistently slightly 

higher than that in the water just above the media in each filter. Given that the water was not pre-chlorinated 

prior to filtration, it is likely that some biodegradation in the 15 m of piping and/or in the water column 

above the filters, thereby resulting in some removal of DOC between these locations. Regardless, this 

difference was inconsequential in determining DOC removal by the biofilters because the samples collected 

from Port 1 just above the media and the effluent of each filter were used in this determination (and not the 

post-ozone DOC). Specifically, DOC removal during each filter run was calculated by subtracting the filter 

effluent DOC concentration in in each filter from that in the influent concentration. Some natural variation 

in influent DOC concentration across the study filters would be expected; thus, the filter influent 

concentration on each date was calculated as the arithmetic mean of the samples collected from the Port 1 

on each of the four filters. DOC concentrations were not included in removal calculations if the port in the 

sample location was broken, or if there appeared to be new GAC media were stuck inside the port. 

4.1.3. Filter Influent UV254 and Organic Matter Fractions 

 Filter influent UV254 absorbance was calculated using the same approach as that used to determine 

the filter influent DOC concentrations (i.e. an average across all four filters was calculated). On average, 

the filter influent UV254 over the duration of this investigation was 0.048 +/- 0.006 cm-1. Accordingly, the 

mean filter influent SUVA was 1.2 +/- 0.1 L/mg.m-1 (mean +/- standard deviation). This level of aromatic 

DOC in water entering filters was typical of natural surface water sources that had undergone conventional 

chemical pre-treatment (i.e. coagulation, flocculation, and sedimentation) followed by ozonation (Baghoth 

et al., 2009; Velten et al., 2011b; Zhang et al., 2017).  

 Filter influent organic carbon fraction concentrations evaluated by LC-OCD in samples collected 

at the post-ozone location were generally consistent with those that would be expected in natural surface 

waters containing both pedogenic, allochthonous compounds that originate from small rivers influenced by 

land runoff, and more aquagenic, autochthonous compounds, found in large water bodies, that are produced 

in-situ by microbial activity (Huber et al., 2011). They were also consistent with values previously reported 

after ozonation at the Mannheim WTP (Shams, 2017). Overall, the distributions of biopolymers, humic 

substances, building blocks, LMW neutrals and LMW acids was typical of what would be expected in 

surface water, with humic substances dominating the composition of the DOC (Figure 4.3). 
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Figure 4.3: Average filter influent organic carbon fraction concentrations at the post-ozone location 

across the experimental period (mean +/- std. deviation, n=9) 

  

4.2. Data Collection Biofiltraton Process Performance 

 The removal of organic matter by each of the individual filters during the experimental period from 

June 4th to September 5th, 2018 (i.e. day 1 to day 93 of operation) is discussed here. The filters were 

backwashed approximately every 2 days during the experimental period (Section 3.4). In practice, filters 

would normally be backwashed prior to reaching the end of their run but on occasion during this research 

the filters were prematurely in need of backwashing resulting in the filters reaching end of run before 

backwashing. Turbidity removal was calculated as the difference between the full-scale filter influent 

turbidity (recorded by the plant’s SCADA system) and the filter effluent turbidity values collected for each 

pilot filter and recorded by the SCADA system. Headloss accumulation rates exceeding 0.5 m/hour were 

omitted (as determined by the upper quartile range 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅) as these unusually high 

rates were likely caused by floc carryover in the filter influent during non-optimal periods of pre-treatment 

in the full-scale plant. 

 For organic matter quantification and characterisation, DOC, UV254, SUVA and LC-OCD are 

presented. It should be noted that the DOC and UV254 readings can be interpreted more easily because there 

is are substantially more data (n = 14 to 20); in contrast, only 8 to 10 samples per filter could be analysed 

using LC-OCD. Although the LC-OCD results differentiate the organic matter into five fractions, the 

fractions of main interest are the larger, more recalcitrant humic substances and biopolymers, since these 

have been linked to DBP formation potential and membrane reversible and irreversible fouling (Zheng et 

al., 2009).  
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4.3. Performance of Filter 1 – New GAC 

4.3.1. Turbidity Removal and Headloss Accumulation 

 Overall, Filter 1 achieved excellent turbidity removal, as the average filter run produced effluent 

less than 0.1 NTU (Table 4.2). Specifically, the filter effluent turbidity was 0.008 +/- 0.007 NTU (mean +/- 

standard deviation) during the experimental period. Filter cycles were generally terminated because of 

headloss accumulation in this filter in which turbidity breakthroughs above 0.3 NTU did not occur. The 

headloss accumulation rate in Filter 1 was 0.20 +/- 0.10 m/h (mean +/- standard deviation) during the 

experimental period. Notably, headloss accumulation in this filter varied somewhat during the experimental 

period (Figure 4.4), even considering extreme values above 0.5 m/h were removed.  

 

Table 4.2: Mean turbidity removal by Filter 1 (new GAC) during the experimental period (n=35) 

  

Influent entering 
filter (NTU) 

Filter effluent 
(NTU) 

% Removal 

Mean 0.93 0.09 88% 

Std. deviation 0.44 0.01 6% 

 

  

Figure 4.4: Headloss accumulation in Filter 1 (new GAC) during the experimental period 

 

4.3.2. DOC 

 The effluent DOC concentration in Filter 1 was 2.3 +/- 0.8 DOC mg/L (mean +/- standard 

deviation) over the experimental period (Figure 4.5). DOC removal dropped from 85% to 50% in the first 

two weeks of the experiment (June 14th to June 30th, 2018) as the media became exhausted. It continued to 
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decrease until it reached steady-state (~25% removal) after approximately 2 months of operation (August 

1st to September 5th, 2018). 

 

Figure 4.5: DOC concentrations in Filter 1 (new GAC) influent and effluent during the whole 

experimental period (n=23) 

  

Figure 4.6: Percentage DOC removal in Filter 1 (new GAC) during the whole experimental period 

(n=23) 

 The period of steady-state DOC removal in the filter was confirmed by analyzing the slopes of the 

best fit lines (Table 4.3) determined for consecutive subsets of 10 data points by least squares linear 

regression (Section 3.7.1).  
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Table 4.3: Linear regression results confirming the period of steady-state DOC removal in Filter 1. 

This is the period during which filter effluent DOC concentration reached a steady-

state, resulting in a slope that was not statistically different than a slope of zero. 

Data included Statistical significance of slopeƚ 

June 14th to July 10th  p < 0.0005 

June 18th to July 25th  p < 0.0005 

June 22nd to July 27th  p < 0.0005 

June 25th to Aug 2nd  p < 0.0005 

July 1st to Aug 5th  p < 0.0005 

July 3rd to Aug 8th  p = 0.001 

Jul 10th to Aug 14th  p = 0.002 

Jul 12th to Aug 16th  p = 0.003 

July 18th to Aug 18th p = 0.005 

July 20th to Aug 23rd  p = 0.041 

July 25th to Aug 28th  p = 0.106 

July 27th to Aug 31st  p = 0.316 

Aug 2nd to Sept 2nd  p = 0.570 

Aug 5th to Sept 5th  p = 0.259 

ƚ For every linear regression analysis (𝑌𝑖 = 𝛽𝑂 + 𝛽1𝑋𝑖 +
𝜀𝑖) units Y and X are in % removal and days since start of 
experiment, respectively. 

  

 DOC removal fluctuated during the experimental period, as would be expected, because it included 

both initial filter (with fresh GAC media) and steady-state operation (after the GAC media were exhausted). 

Accordingly, performance analysis required consideration. Critically, the linear regression analysis 

described above (Table 4.3) enabled clear differentiation between the two operational periods. The filter 

performance data were divided into two stages: the initial operational period (June 4th to July 25th, 2018) 

and steady-state operational period (July 25th to Sept 5th, 2018).  

 Although the GAC in Filter 1 appeared to have exhausted much of its adsorptive capacity, it still 

removed 25% to 30% of the influent DOC concentration in the last month of the study period. This 

performance was well within the range of what has been reported elsewhere where new GAC filters were 

put in operation in conventional treatment plants with ozonation. For example, Krasner et al. (1993) 

reported an initial TOC removal of 33% after a new GAC filter had operated for one day, decreasing to 10-

20% after 3 days. This relatively quick exhaustion was attributed to the filter’s low EBCT of 1.4 minutes 

(vs x minutes in this case). Another investigation with a new GAC filter operated at an EBCT of 19 minutes 

reported DOC removals of 60-95% during the first 2 months of operation, with subsequent DOC removals 

at an average of 33% for the subsequent 8 to 12 months after presumed exhaustion (Gibert et al., 2013b). 

For reference purposes, Table 4.4 provides information the media configuration above each port. 
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Table 4.4: Filter 1 (new GAC) port heights and media layers 

Port # Height above 

the base 

Layer of media above specified 

port 

Port 2 116 cm 12 cm of new GAC media 

Port 3 87 cm 29 cm of new GAC media 

Port 4 66 cm 21 cm of new GAC media 

Port 5 32 cm 34 cm of new GAC media 

Effluent 

Port 

Located on 

floor below 

2 cm of new GAC media, 

30 cm of silica sand 

 followed by ~30 m of piping 

 

 The DOC concentration across the depth of the filters was measured approximately weekly (Figure 

4.7). It is presented in two stages, before and during steady-state operational conditions.  

 

 

Figure 4.7: Mean DOC concentration across the depth of Filter 1 (new GAC) prior to steady-state 

DOC removal (June 14th to July 25th; top) and during steady-state removal (Aug 2nd to 

Sept 5th; bottom) (n=8, and 6, respectively: error bars = +/- std. deviation) 
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 The DOC concentrations across the depth of Filter 1 were exactly as expected. The higher DOC 

concentration in the effluent of Port 2 shows that the top 12 cm of GAC had lost more of its adsorptive 

capacity than the lower layers of the filter. Also, the effluent DOC concentration at Ports 3, 4 and 5 changed 

appreciably between the two periods of operation; in contrast, the DOC concentration at Port 2 did not 

change very much (specifically, it increased from ~3.6 mg/L to ~3.7 mg/L on average). GAC filters are 

expected to lose their adsorptive capacity in the layers of media that are first exposed to the influent stream. 

As the first layers become exhausted, the subsequent layers are exposed to steadily higher concentrations 

of organic matter (Edzwald, 2011). Thus, there is a pattern of the upper depths of GAC media adsorbing 

and removing higher quantities of DOC than the lower layers. This was observed both before steady-state 

and after steady-state conditions in Filter 1 (Figure 4.8). This suggests that the lower layers of GAC were 

not yet exhausted (as would be expected if the adsorption zone extended beyond the depth of the filter), but 

the layers at Port 2 and above had lost most of their adsorptive capacity (Edzwald, 2011; Metcalf and Eddy, 

2013). In a biologically active filter, this type of performance could also be associated with initial 

exhaustion of adsorptive activity that was not (rapidly enough) re-enabled by biological activity through 

bioregeneration at the onset of the steady-state operational period. During the steady-state operation period, 

continued DOC removal is enabled by biodegradation; specifically, via direct biodegradation from the bulk 

matrix or bioregeneration (as discussed in Section 4.5.4).  

 

Figure 4.8: Mean DOC concentration across the depth of Filter 1 (new GAC) prior to steady-state 

filter operation (from June 14th to July 25th) and after steady-state filter operation (from 

Aug 2nd to Sept 5th) (n=8 and 6, respectively, error bars = +/- std. deviation). 
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 DOC removal across the depth of Filter 1 was examined to evaluate how each layer of GAC 

contributed to overall DOC removal on any given sampling date and over the duration of the experimental 

period (Figure 4.9).  
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Figure 4.9: Fraction of DOC removed in each section of GAC in Filter 1 (new GAC) during the 

experimental period (  = fraction removed  = least squares linear regression 

trend line)  
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 The analysis of DOC removal in each of the layers of the filter (for example; fraction removed = 

[DOCPort 3 – DOCPort 4]/ [DOCInfluent – DOCEffluent]) generally indicated that steady-state removal of DOC 

predominantly occurred in the upper layers of the filter, but also began to progress to the lower layers of 

the filter (i.e. positive slope (albeit not significant with p=0.447) observed above Port 3 (Figure 4.9). This 

observation is generally consistent with previous investigations that have indicated that the majority of 

DOC biodegradation during drinking water treatment with exhausted GAC biofilters occurs in the upper 

layers of the media, but also extends to deeper layers, including the sand layer (Emelko et al., 2006; Gibert, 

et al., 2013a). This analysis suggests a longer-term establishment of biological activity across the depth of 

the biofilter that may have extended beyond the duration of the experimental period of this investigation. 

A longer-term analysis would be very useful in informing biofilm development and biological activity in 

biofilters across the longer term of operation; however, it was beyond the scope of the present investigation.  

4.3.3. UV254 and SUVA 

 UV254 reduction in Filter 1 was 52 +/- 22% (n = 15) during the experimental period; this was 

generally consistent with DOC removal, which was 43 +/- 18% (n = 23) during this period. The adsorptive 

capacity of Filter 1 had an impact on SUVA (p = 0.009), which decreased by a mean of 16 +/- 17% (n = 

13) over the experimental period. The filter influent SUVA also decreased, from 1.2–1.5 L/m.mg, to ~1.1 

L/m.mg as the period of stable filter operation started (see Section 4.1.1), and the DOC concentration 

remained constant (Figure 4.5). Accordingly, a higher fraction of lower-weight, biodegradable, organic 

matter entered the filter during this period.  

  

Figure 4.10: Filter 1 (new GAC) influent and effluent UV254 (left) and SUVA (right) during the 

experimental period (n = 15 and 13, respectively; ˔ = minimum value, ˕ = maximum 

value observed)   
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4.3.4. Organic Matter (LC-OCD) Fractions 

 Filter 1 influent and effluent biopolymer concentrations during the experimental period are 

presented in Figure 4.11. The biopolymer concentration in the influent stream (237 +/- 16 µg/L); was 

significantly different (p = 0.005) than that in the effluent stream (203 +/- 12 µg/L; mean +/- standard 

deviation), moreover, this relationship did not appear to vary substantially throughout the experiment. 

 

Figure 4.11: Biopolymer concentrations in Filter 1 (new GAC) influent and effluent streams during 

the experimental period (n=9) 

 

 Biopolymer removal in Filter 1 did not correlate with DOC removal (Figure 4.6). Critically, the 

first five samples analyzed were collected prior to steady-state filtration conditions during which the filter 

still exhibited substantial adsorptive capacity; it was only the last four samples that were collected after the 

GAC in Filter 1 had been exhausted. Nonetheless, the removal of biopolymers did not vary substantially 

during these two periods, averaging at 15% and 12%, respectively. It should be noted that there were too 

few points to conduct an unpaired t-test and compare a difference in means between the non-steady-state 

(n = 5) and the steady-state (n = 4) phases of filter operation. These data demonstrate that biopolymer 

removal was not significantly impacted by GAC adsorptive capacity. It should be further noted that the 

concentration of the biopolymer fraction of the organic matter was relatively low and only ranged from 180 

to 280 µg/L during the experimental period. Rahman et al. (2014) found that at biopolymer concentrations 

below 0.2 mg/L, the biopolymer removal was significantly correlated with the influent concentration in 

biologically-active filters; the present investigation may help to better understand those observations, which 

are consistent with the data reported herein. Specifically, the lack of enhanced biopolymer removal by new, 

highly adsorptive GAC was likely due the relatively large size of biopolymer macromolecules, which would 
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limit their access to the internal pore structure of GAC media. Given that biopolymers do not adsorb to 

GAC (Velten et al., 2011b), their removal at comparable levels by the new/adsorptive and exhausted GAC 

media in Filter 1 investigated herein suggests that (a) the media were biologically active throughout most 

of the experimental period and (b) the mechanism of biopolymer removal by biofiltration (i.e. 

“biodegradation”) is direct biodegradation rather than bioregeneration (see Section 4.3.5 for biological 

activity). Thus, biopolymer removal by biofiltration would be expected to correlate with filter influent 

biopolymer concentration, as observed by Rahman et al. (2014). The data reported herein further build on 

the mechanistic work of Spanjers (2017), who demonstrated that the adsorptive capacity of filtration media 

(not the roughness and associated surface area) substantially enhanced the removal of organic matter by 

biofiltration and further speculated that biofilters may be able to partially attenuate spikes of organic matter 

through biological action alone (i.e. direct biodegradation). While other mechanisms such as 

bioregeneration may be associated with the removal of other fractions of organic matter during classical 

biofiltration with GAC filtration media during drinking water treatment, the present investigation provided 

evidence of direct biodegradation, which was likely responsible for biopolymer removal in the pilot filters. 

 In contrast to biopolymer removal, the removal of humic substances by biofiltration with new, 

highly adsorptive GAC media was generally similar to DOC removal (Figure 4.6). A high level of humic 

substance removal was achieved by the filter prior to exhaustion (i.e. from July 1st to July 20th, 2018); it 

decreased after the adsorptive capacity of the filter was exhausted (i.e. July 27th to Sept 2nd, 2018). The 

removal in these two phases averaged at 45% and 29%, respectively. Overall, the filter influent 

concentration of humic substances (2,241 +/- 210 µg/L) was significantly different (p < 0.0005) from the 

effluent concentration (1,393 +/- 229 µg/L) (mean +/- standard deviation).  

 

Figure 4.12: Humic substances removal in Filter 1 (new GAC) during the experimental period 

(n=9) 
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 Although not discussed extensively here, the removal of each of the building blocks, low-

molecular-weight neutrals, and low-molecular-weight acids fractions of organic matter in Filter 1 was also 

significant (p < 0.0005). These data are available in Appendix A. 

4.3.5. ATP Concentration 

 ATP concentrations associated with biomass attached to the filtration media were collected from 

Ports 2 to 5 (see Figure 3.1) on several occasions during the experimental period. In Filter 1, the 

concentration of ATP steadily increased during the initial period of filter operation (from June 4th to 

approximately July 23rd, 2018) and then did not change considerably during the steady-state period of 

biofilter operation (Figure 4.13). The average ATP concentration across the depth of Filter 1 during steady-

state operation is presented in Table 4.5; it was generally consistent across the depth of the filter during 

steady-state operation (Figure 4.13; Table 4.5). It is possible that the stabilization in ATP concentration that 

was observed was related to the presence of more biodegradable compounds (SUVA; Section 4.3.3) in the 

filter influent; unfortunately, a detailed assessment of this relationship was beyond the scope of the present 

investigation. Notably, the ATP concentration and DOC removal in Filter 1 stabilized at approximately the 

same time (Figure 4.14), suggesting GAC exhaustion (Velten et al. 2007; Velten et al. 2011a) in late July, 

as discussed above (Section 4.2). Thus, the organic matter removal performance of Filter 1 was consistent 

with the conceptual model described by Dussert and Van Stone (1994), despite the raw water quality 

fluctuations and associated pre-treatment challenges that occurred during the initial phase of filter operation 

(see Section 4.1.1). Specifically, after the start up of a new GAC biofilter, adsorptive capacity dominated 

organic matter removal during the initial phase of operation and biological activity enabled continued 

removal of organic matter after the adsorptive capacity of the GAC medium was essentially exhausted.  

 

Figure 4.13: ATP concentration per g of dry GAC media in Filter 1 (new GAC)  during the 

experimental period 

Jun Jul Aug Sep

0

50

100

150

200

250

300

04 09 14 19 24 29 04 09 14 19 24 29 03 08 13 18 23 28 02 07 12

ng ATP
per

g of dry
media

Port 2 Port 3 Port 4 Port 5

Change in
backwash



 

51 

 

Table 4.5: ATP concentration (mean +/- standard deviation) across the depth of Filter 1 (new GAC) 

during steady-state operation 

Port ATP Concentration 

Port 2 114 +/- 28 ng ATP/g dry GAC 

Port 3 100 +/- 17 ng ATP/g dry GAC 

Port 4 95 +/- 18 ng ATP/g dry GAC 

Port 5 101 +/- 17 ng ATP/g dry GAC 

 

 

Figure 4.14: ATP concentration and DOC removal (%) in Filter 1 (new GAC) during the 

experimental period 

   

4.4. Performance in Filter 2 – Combination of new and exhausted GAC media 

4.4.1. Turbidity Removal and Headloss Accumulation 

 Filter 2 contained 60% exhausted GAC from an operating full-scale filter and 40% new GAC.  

Overall, Filter 2 achieved acceptable turbidity removal, as the average filter run produced effluent less than 

0.3 NTU (Table 4.7). Specifically, the filter effluent turbidity was 0.21 +/- 0.11 NTU (mean +/- standard 

deviation) during the experimental period. The relatively high filter effluent turbidities that were observed 

in the Filter 2 effluent could not be attributed to any specific factor, an instrumentation error is unlikely as 

the turbidimeters were tested and calibrated prior to experimentation. Filter cycles were generally 

terminated because of headloss accumulation in this filter (31 of 39 filter runs); turbidity breakthroughs 

above 0.3 NTU occurred six times. The headloss accumulation rate in Filter 2 was 0.19 +/- 0.12 m/h (mean 

+/- standard deviation) during the experimental period (Figure 4.16).  
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Table 4.6: Mean turbidity removal by Filter 2 (combination of new and spent GAC) during the 

experimental period (n=37) 

  

Influent entering 
filter (NTU) 

Filter effluent 
(NTU) 

Percentage 
removal (%) 

Mean 0.954 0.209 73 

Std. deviation 0.443 0.107 26 
 

 

Figure 4.15: Filter 2 (combination of new and spent GAC) headloss performance trend throughout 

experimental period 

 

Figure 4.16: Filter 2 (combination of new and spent GAC) turbidity performance trend throughout 

experimental period 
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Given the pre-treatment challenges that occurred in the full-scale water treatment plant that 

provided settled, ozonated water to the pilot filters, it is possible that solids carryover and deposition in 

some of the lines may have contributed to the observed breakthrough events. For example, the dislodging 

of solids in the tubing between the filter effluent sampling locations and the turbidimeter may have been 

attributable for the turbidity spike that occurred during the last filter run (Sept 5th; Figure 4.16), during 

which the average filter effluent turbidity (0.57 NTU) exceeded the average filter influent turbidity (0.35 

NTU) while other water quality parameters such as DOC (see Section 4.4.2 below) did not substantially 

fluctuate. As turbidity breakthrough is a sign that preferential pathways are forming through which water 

and particles can pass through the filter, these conditions would also be expected to result in increased DOC 

passage through the filter. Accordingly, the possibility of an instrumentation error rather than true filter 

breakthrough on this occasion was possible. 

4.4.2. DOC 

 The effluent DOC concentration in Filter 2 averaged 3.1 +/- 0.4 DOC mg/L (mean +/- standard 

deviation) over the experimental period (n=17; Figure 4.17). DOC removal ranged from 50 to 85% during 

the start of the experiment (June 14th to June 30th, 2018) when the media were adsorptive (Figure 4.18). As 

the media because exhausted, DOC removal decreased and reached steady-state (~25% removal), after 

approximately 2 months of operation (August 1st to September 5th, 2018). Although Filter 2 did not contain 

as much new GAC as Filter 1 (40% versus 100%); DOC removal still followed a trend similar to that 

observed in Filter 1. Although, the sample collected on August 23rd, 2018 indicated unusually low DOC 

removal (5%), DOC removal generally returned to (or near to) steady-state immediately thereafter; 

specifically, DOC removal was 19%, 20%, and 12% on the August 28th, September 2nd, and September 5th 

sampling occasions, respectively.  
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Figure 4.17: DOC concentrations in Filter 2 (combination of new and spent GAC) influent and 

effluent during the experimental period (n=17) 

 

Figure 4.18: DOC removal (%) in Filter 2 (combination of new and spent GAC) during the 

experimental period (n=17) 

 

The period of steady-state DOC removal in the filter also was evaluated by analyzing the slopes of 

the best fit lines determined for consecutive subsets of 10 data points by least squares linear regression 

(Section 3.7.1).  Using this approach, Filter 2 generally achieved steady DOC removal after approximately 

2 months time, although there was a bit of fluctuation during the period from July 12 to August 14 (Table 

4.8). These findings are generally consistent with the DOC data, which indicated that between 
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approximately July 3rd and July 25th, Filter 2 reached a steady-state DOC removal of ~25%, which was 

generally comparable to that observed in Filter 1 during steady-state operation. Given that the adsorptive 

capacity was being utilized during the first few months of operation, this general convergence in the DOC 

removal performance of Filters 1 and 2 is not surprising. 

 

Table 4.7: Linear regression results confirming the period of steady-state DOC removal in Filter 2 

(combination of new and spent GAC). This is the period during which filter effluent 

DOC concentration reaches steady-state, resulting in a slope that is not statistically 

different than a slope of zero. 

Data included Statistical significance of slopeƚ 

June 14th to July 27th p = 0.003 

June 18th Aug 2nd  p = 0.012 

July 1st to Aug 5th p = 0.064 

Jul 3rd to Aug 8th p = 0.570 

Jul 12th to Aug 14th p = 0.041 

Jul 18th to Aug 16th p = 0.119 

Jul 20th to Aug 18th  p = 0.107 

Jul 25th to Aug 23rd p = 0.079 

ƚ For every linear regression analysis (𝑌𝑖 = 𝛽𝑂 + 𝛽1𝑋𝑖 + 𝜀𝑖) 
units Y and X are in % removal and days since start of 
experiment, respectively. 

 

  For reference purposes, Table 4.8 below provides the depth of the GAC layer that is above each 

port along the vertical length of Filter 2. 

Table 4.8: Filter 2 (combination of new and spent GAC) port heights and media layers 

Port # Height above 

filter base 

Depth of media above port 

Port 2 116 cm 12 cm of GAC mixture            

(2:3, new GAC: full-scale GAC) 

Port 3 87 cm 29 cm of GAC mixture 

Port 4 66 cm 21 cm of GAC mixture 

Port 5 32 cm 34 cm of GAC mixture 

Effluent 

port 

Located on 

floor below 

2 cm of GAC mixture, 

30 cm of silica sand 

 And ~30 m of piping 

 

 As with Filter 1, the DOC concentration across the vertical depth of Filter 2 was examined during 

steady-state filter operation (data points were excluded if they were collected during the turbidity 
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breakthrough). Notably, the filter effluent DOC concentration was substantially higher than the filter 

influent concentration on two occasions—these occasions are indicated as outliers in Figure 4.19. While 

the outlier in Port 4 cannot be attributed to a specific event, the outlier in Port 2 was observed on August 

23rd, 2018, a date on which other DOC anomalies were observed in other filters as well. Thus, it is possible 

that there may have been a sample handling issue on that date or an operational disturbance (e.g. hydraulic 

surge) that caused sloughing in all of the filters; sloughing was likely as it also would explain the relatively 

poor turbidity removal that also occurred in Filter 2 on August 23rd (see Section 4.4.1). 

 

Figure 4.19: Mean DOC concentration across the depth of Filter 2 (combination of new and spent 

GAC) during steady-state filter operation (from July 18th to Aug 23rd) (n = 7 error bars 

= +/- one standard deviation). 

  

4.4.3. UV254 and SUVA 

 UV254 removal in Filter 2 averaged 40 +/- 22% (n = 12) during the experimental period. The 

adsorptive capacity of Filter 2 had an impact on SUVA, as it decreased by an average of 8 +/- 11% (n = 9) 

over the experimental period, however this difference in the SUVA influent and effluent was subtle from a 

statistical standpoint (p=0.049). The finding that Filter 2 caused a decrease in SUVA confirms that 

adsorption preferentially removes aromatic compounds.  
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Figure 4.20: Filter 2 (combination of new and spent GAC) influent and effluent UV254 (left) and 

SUVA (right) during the experimental period (n = 12 and 9, respectively; ˔ = minimum 

and ˕ = maximum value observed) 

4.4.4. Organic Matter (LC-OCD) Fractions 

 The Filter 2 influent and effluent biopolymer concentrations during the experimental period are 

presented in Figure 4.21. The biopolymer concentration in the effluent stream (201 +/- 24 µg/L; mean +/- 

standard deviation), was significantly different (p = 0.001) than that in the influent stream (237 +/- 16 µg/L); 

like in Filter 1, this relationship did not appear to vary substantially over the course of the experimental 

period. Similar to Filter 1, these data demonstrate that biopolymer removal was not significantly impacted 

by GAC adsorptive capacity and also suggest direct biodegradation of biopolymers by BAC filtration rather 

than adsorption and subsequent bioregeneration.  
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Figure 4.21: Biopolymer concentrations in Filter 2 (combination of new and spent GAC) influent 

(n=9) and effluent (n=8) streams during the experimental period 

 

Humic substances also were removed by Filter 2 (Figure 4.22). Overall, the average filter influent 

concentration of humic substances (2,241 +/- 210 µg/L) was significantly different (p =0.001) from the 

effluent concentration (1,669 +/- 190 µg/L) (mean +/- standard deviation). Although it was possible to 

observe how the removals of biopolymers and humic substances were affected as the GAC media became 

exhausted over the experimental period in Filter 1, this was not possible for Filter 2 because it had lost most 

of its adsorptive capacity before the first samples were collected for LC-OCD analysis. Notably, there was 

no measurable difference in biopolymer removal between Filters 1 and 2 over the experimental period; they 

averaged 14% and 18%, respectively. In contrast, there was an appreciable difference in humic substances 

removal: Filter 1 averaged 38% and Filter 2 averaged 23%. Thus, these observations substantiate the finding 

that unlike humic substances, biopolymer removal by BAC filtration is not affected by the adsorptive 

capacity of GAC. 
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Figure 4.22: Humic substance concentrations in Filter 2 (combination of new and spent GAC) 

influent and effluent streams during the experimental period (n = 8) 

 

 The single biopolymer data point after the turbidity breakthrough on September 2nd, 2018, further 

substantiates the theory that sloughing may have occurred after maintenance of the filter on August 23rd, 

2018. By dry-weight, biopolymers can make up as much as 95% of the total microbial mass (Bitton et al., 

2002); thus, this is the LC-OCD fraction that is most attributed to microbiologically-sourced proteins, 

polysaccharides, and lipids. Accordingly, a higher concentration of biopolymers in the filter effluent than 

in the influent could suggest a release of microbes from the filter. 

 Although not discussed extensively here, the removal of each the building blocks, low-molecular-

weight neutrals and low-molecular-weight acids fractions of organic matter in Filter 2 was also significant 

(p = 0.001, 0.028, 0.003, respectively). These data are available in Appendix A. 

4.4.5. ATP Concentration 

 As was the case for Filter 1, ATP concentrations associated with biomass attached to the filtration 

media were collected from Ports 2 to 5 on Filter 2 (see Figure 3.1) on several occasions during the 

experimental period. In Filter 2, the ATP concentration across the depth of the filter steadily increased from 

June 4th to July 23rd, 2018, though it briefly decreased after the change in backwash and stabilized thereafter. 

The average ATP concentration across the depth of Filter 2 during steady-state operation is 

presented in Table 4.9. It decreased slightly across the depth of the filter during this period (Figure 4.23); 

however, this difference likely was not statistically significant. Thus, biomass development in Filter 2 was 

Jun Jul Aug Sep

0

500

1000

1500

2000

2500

3000

04 09 14 19 24 29 04 09 14 19 24 29 03 08 13 18 23 28 02 07 12

Humic 
Substances

(μg/L)

Effluent Influent

Effluent after turbidity breakthrough Influent after turbidity breakthrough

Change in
backwash



 

60 

 

generally consistent with that observed in Filter 1, though slightly higher. This observation is consistent 

with some of the GAC media in Filter 2 already being biological active during start up; moreover, it suggests 

that possibility of more biomass/ATP development in Filter 1 over the longer term. Of course, natural 

variability between filters may also account for the slight difference in steady-state ATP concentration 

observed between Filters 1 and 2. 

 

Figure 4.23: ATP concentration per g of dry GAC media in Filter 2 (combination of new and spent 

GAC) during the experimental period  

  

Table 4.9: ATP concentration (mean  +/-  standard deviation) across the depth of Filter 2 

(combination of new and spent GAC) during steady-state operation 

Port ATP concentration 

Port 2 191 +/- 30 ng ATP/g dry GAC 

Port 3 156 +/- 20 ng ATP/g dry GAC 

Port 4 161 +/- 14 ng ATP/g dry GAC 

Port 5 128 +/- 7 ng ATP/g dry GAC 

 

 

4.5. Performance in Filter 3 – Biologically-active GAC from full-scale plant 

4.5.1. Turbidity Removal and Headloss Accumulation 

 Overall, Filter 3 achieved very good turbidity removal, as the average filter run produced effluent 

of ~0.1 NTU (Table 4.11). Specifically, the filter effluent turbidity was 0.12 +/- 0.02 NTU (mean +/- 

standard deviation) during the experimental period. Filter cycles were generally terminated because of 

headloss accumulation in this filter in which turbidity breakthroughs above 0.3 NTU did not occur. The 

average head loss accumulation rate in Filter 3 was 0.14 m/h +/- 0.08 m/h (n = 32) (Figure 4.24), whereas 
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in Filters 1 and 2, it was 0.20 +/- 0.10 m/h (n =33) and 0.19 +/- 0.12 m/h (n =28), respectively (mean +/- 

standard deviation). This difference in headloss performance is also strikingly apparent in Figure 4.25. 

From this perspective, it appears as if the headloss accumulation in Filter 3 was more consistent than in 

Filters 1 and 2. 

  

Table 4.10: Mean turbidity removal by Filter 3 (spent GAC) during the experimental period (n=34) 

  

Influent entering 
filter (NTU) 

Filter effluent 
(NTU) 

% Removal 

Mean 0.91 0.12 83% 

Std. Deviation 0.47 0.02 9% 
 

 

  

Figure 4.24: Filter 3 (spent GAC) headloss performance trend throughout experimental period 
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Figure 4.25: Headloss accumulation rate in Filters 1 to 3 (new GAC, combination of new and spent 

GAC, and spent GAC) 

 

 It is unclear why the headloss accumulation is higher in Filter 1 and 2 than Filter 3. ANSI/AWWA 

standards B100 and B604 (American Water Works Association et al., 2012) recommend washing out GAC 

fines when new GAC is stacked in a filter. It is possible that the new GAC was not adequately washed 

before being placed in Filter 1 and Filter 2, and the presence of fines caused high headloss accumulation.  

4.5.2. DOC 

 The effluent DOC concentration in Filter 3 was 3.6 +/- 0.2 DOC mg/L (mean +/- standard 

deviation) over the experimental period (Figure 4.26). DOC removal during the first 10 days of filter 

operation could not be measured because of operational challenges. Thereafter, DOC removal by the 

biologically-active media consistently ranged from 6 to 22%, with an average removal of 12% (Figure 

4.27). Notably, a previous investigation conducted at the same pilot plant with the same media and 

backwash protocol reported an overall average DOC removal rate of 15% (Wong, 2015). The only main 

operational difference was that in this previous experiment, the filter run times were longer (Region of 

Waterloo, 2018; Wong, 2015) because solids carryover from pre-treatment processes prior to filtration did 

not occur. A GAC filter that had been in operation for 5 years removed DOC at 13%, and a GAC filter with 

3 years of operation removed DOC at 15%. If this difference was significant it would suggest that the 

biological activity on filters degrade over the long term (Lohwacharin et al., 2011)—this is hypothesized 

to be a result of the long-term accumulation of inert biomass compounds and organic matter in biofilters as 

they mature (Korotta-Gamage and Sathasivan, 2017; Laspidou and Rittmann, 2002). This theory would 

     Filter 1 (new GAC)        Filter 2 (combination of           Filter 3 (spent GAC) 

                                                                             new and spent GAC) 
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also explain why the steady-state removal in Filter 1, after 3 months of acclimation, is higher than Filter 3, 

which underwent 5 years of acclimation. 

 

Figure 4.26: DOC concentrations in Filter 3 (spent GAC) influent and effluent during the 

experimental period (n=20) 

 

Figure 4.27: DOC removal (%) in Filter 3 (spent GAC) during the experimental period (n=20) 

  

 The period of steady-state DOC removal in the filter was confirmed by analyzing the slopes of the 

best fit lines determined for consecutive subsets of 10 data points by least squares linear regression (Section 

3.7.1). DOC removal by Filter 3 was as steady-state (Figure 4.27; Table 4.11) throughout the experimental 

period, as would be expected given that the media in the filter were obtained from a full-scale filter that had 

been in operation for several years. 
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Table 4.11: Linear regression results confirming the period of steady-state DOC removal in Filter 3 

(spent GAC). This is the period during which filter effluent DOC concentration reaches 

steady-state, resulting in a slope that is not statistically different than a slope of zero. 

Data included Statistical significance of slopeƚ 

June 14th to July 27th 1 p = 0.838 

June 18th Aug 2nd 1 p = 0.909 

July 1st to Aug 5th  p = 0.698 

Jul 3rd to Aug 8th p = 0.060 

Jul 3rd to Aug 14th p = 0.170 

Jul 10th to Aug 16th p = 0.115 

Jul 12th to Aug 18th p = 0.525 

Jul 18th to Aug 23rd p = 0.436 

Jul 20th to Aug 28th  p = 0.478 

Jul 25th to Sept 2nd  p = 0.064 

Jul 27th to Sept 5th  p = 0.469 

ƚ For every linear regression analysis (𝑌𝑖 = 𝛽𝑂 + 𝛽1𝑋𝑖 +
𝜀𝑖) units Y and X are in % removal and days since start of 
experiment, respectively. 
1. Data needed to be square-root transformed so it better 
fit the assumption of homogeneity of variance and 
normal distribution. 

 

 The DOC concentration in Filter 3 was measured across the depth of the filter. The port locations 

and thickness of media layers are outlined in Table 4.12. 

 

Table 4.12: Filter 3 (spent GAC) port heights and media layers 

Port # Height above 

filter base 

Layer of media above port 

Port 2 116 cm 12 cm of full-scale GAC 

Port 3 87 cm 29 cm of full-scale GAC 

Port 4 66 cm 21 cm of full-scale GAC 

Port 5 32 cm 34 cm of full-scale GAC 

Effluent 

Port 

Located on 

floor below 

2 cm of full-scale GAC media, 

30 cm of silica sand 

 And ~30 m of piping 

  

 The DOC concentration at each sampling port in Filter 3 during steady-state operation, which 

included the entire sampling period (June 4th to Sept 5th, 2018) is presented in Figure 4.28. On August 23rd, 

2018, there was an unusually high DOC concentration measured at Port 2. However, DOC anomalies also 

occurred in Filters 2 and 4 on this date, so it may have been that either there was a sample handling issue 
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or there was an operational disturbance (e.g. hydraulic surge, air entrapment, etc.) that caused solids 

sloughing in all of the filters. Other than on this one occasion, the effluent DOC concentrations across the 

depth of Filter 3 followed a stable and predictable pattern. Specifically, the DOC concentration in Filter 3 

steadily decreased across its depth; this is similar to what was observed in Filter 1; however, less DOC was 

removed by Filter 3, as would be expected given that Filter 1 contained fresh, highly adsorptive GAC upon 

startup. The effluent DOC across the depth of Filters 1 and 3 is compared in Figure 4.29. The substantially 

lower effluent DOC concentrations in Filter 1 (especially in the lower ports closer to the bottom of the filter 

bed) relative to Filter 3 provide substantial evidence to suggest that Filter 1 still had some adsorptive 

capacity, relative to the exhausted GAC media in Filter 3. 

 

 

Figure 4.28: Average DOC concentration at each sampling port in Filter 3 (spent GAC) during its 

stable period -  June 14th to Sept 5th  (n=14, error bars = +/- one standard deviation) 
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Figure 4.29: Effluent DOC concentration across the depth of Filters 1 and 3 (new and spent GAC, 

respectively) from August 2nd to September 5th, 2018 (n=6, error bars = +/- one standard 

deviation, outlier from Filter 3 excluded) 

   

 

Figure 4.30: Average DOC concentration at each sampling depth in Filters 1 and Filter 3 ( new and 

spent GAC, respectively), from August 2nd to September 5th  (n = 6, error bars = +/- std. 

deviation, outlier from Filter 3 excluded) 

  

Another interesting observation was that the pattern of DOC removal across the depths of Filter 1 
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(Figure 4.31). Unlike Filter 1, the DOC removal by each section of media in Filter 3 was roughly 

proportional to the depth of that media. This observation similar to another report in which  DOC removal 

across the depth of a filter was compared before and after a filter reached steady-state; in that investigation, 

periods of GAC exhaustion demonstrated more linear trends in DOC removal across the depth of the filters 

relative to periods in which adsorption was a primary removal mechanism (Figure 4.31; Velten et al., 

2011a).  

 

Figure 4.31: DOC removal across filter depth (day 14 and 35 = before steady-state, day 91 = right 

before steady-state, day 196 = after steady-state) from (Velten et al., 2011a) 

  

 As was the case in Filter 1 (Figure 4.9), DOC removal across the depth of Filter 3 (Figure 4.32) 

was examined to evaluate how each layer of GAC contributed to overall DOC removal on any given 

sampling date and over the duration of the experimental period.  
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Figure 4.32: Fraction of DOC removed in GAC between each sample port in Filter 3 (spent GAC) 

during the experimental period (solid line = fraction of removal, dotted line = trend line) 
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 The analysis DOC removal across the layers of the filter (for example; fraction removed = 

[DOCPort 3 – DOCPort 4]/ [DOCInfluent – DOCEffluent]) generally indicated that the steady-state fraction of DOC 

DOC removed was neither increasing nor decreasing in the upper layers of Filter 3. The fraction of DOC 

removed by the media layer at Port 5 appeared to be increasing (p = 0.010); it appeared to be decreasing at 

the filter effluent port (p = 0.012; Figure 4.32). The cause for these differences is unknown; however, they 

may be associated with establishing biological activity in the sand media, which were not biologically active 

when Filter 3 was started up, unlike the GAC media, which could be harvested from a full-scale biologically 

active filter. Extracting biologically active filtration media from the bottom of a full-scale filter would not 

be feasible because of media depth and mixing that would occur when attempting to remove the media from 

the filter.  

4.5.3. UV254 and SUVA 

 Average UV254 reduction in Filter 3 was 13 +/- 8% (n = 15) during the experimental period; this 

was generally consistent with DOC removal, which was 12 +/- 4% (n = 20) during this period (Figure 4.33). 

On average, Filter 3 decreased the SUVA by 1 +/- 10%, and overall, did not significantly remove aromatic 

compounds.  

 

Figure 4.33: Filter 3 (spent GAC) UV254 (left) and SUVA (right) influent and effluent from June 14th 

to September 5th, 2018 (n = 15 and 14, respectively, ˔ = minimum value, ˕ = maximum 

value observed) 

 

 It is well established at this point that Filter 1 had remaining adsorptive capacity (see Section 4.5.3). 

Therefore, from the SUVA data in Filters 1, 2 and 3, it can be seen that SUVA was most affected by GAC 
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adsorption, and less affected by biodegradation. It is clear that Filter 1 removes substantially more humic 

substances than Filter 3 (see Section 4.5.5), and humic substances tend to contain more aromatic carbon 

double bonds. The higher removal of humic substances is at the core of a high DOC removal since, in 

natural waters, humic substances contribute to 60 to 80% of the natural organic matter (Huber et al., 2011). 

From this perspective, a higher quantity of DOC removed overall might mean that SUVA is also reduced. 

To explore this theory, several biological filtration studies were reviewed, and their respective DOC and 

SUVA results were assessed (Table 4.14). Overall, a clear relationship between DOC removal and SUVA 

reduction was not evident. Regardless, it would generally be expected that some components that contribute 

to a higher SUVA would be removed by adsorption. 

Table 4.13: Review of studies that have recorded SUVA changes through BAC filters 

DOC Influent 

and Effluent 

(mg/L) 

DOC 

Removal 

(%) 

SUVA Influent   

and Effluent          

(L/mg/m-1) 

SUVA 

Reduction 
Notes Sourcea 

Not clear 3 – 10 
1.6 

1.4  

No 

reduction 

Despite change in SUVA (1.4 

to 1.6) no decrease 

occurred 

(Zhang et al., 

2017) 

1.48 mg/L 

1.09 mg/L 
26 

1.36  

1.08  
21 % 

Bench-scale biofilters. 

Included winter months 

(Fu et al., 

2017b) 

~5.5 mg/L 

~3.0 mg/L 
45 

1.7  

1.5 
13% 

Same distribution of LC-OCD 

compounds in influent and 

effluent 

(Baghoth et al., 

2009) 

2.09 mg/L 

1.35 mg/L 
35 

1.96  

2.07  
̶  6 % SUVA increased in this study 

(Han et al., 

2013) 

a. Study criteria: biologically-active carbon filters operated at temperatures of at least 10°C. 

 

  

4.5.4. Organic Matter (LC-OCD) Fractions 

The biopolymer concentration (Figure 4.35) in the effluent stream (199 +/- 15 µg/L; mean +/- 

standard deviation), was significantly different (p = 0.001) than that in the influent stream (238 +/- 17 µg/L); 

moreover, like in Filters 1 and 2, this relationship did not appear to vary substantially over the course of the 

experimental period. 
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Figure 4.34: Biopolymer concentrations in Filter 3 (spent GAC) influent and effluent streams 

during the experimental period (n = 9)  

  

The humic substances concentration (Figure 4.35) in the Filter 3 effluent (1,953 µg/L +/- 188 µg/L) 

was significantly less than the influent concentration (2,241 +/- 210 µg/L) (p = 0.001). Filter 3 removed 

16% of biopolymers and 13% of humic substances during the experimental period, on average. 

  

 

Figure 4.35: Humic substances concentrations in Filter 3 (spent GAC) influent and effluent streams 

during the experimental period (n = 9)  
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 As expected, more DOC was removed in Filter 1 (new GAC) than Filter 3 (spent GAC), presumably 

due to more adsorptive capacity, even though DOC removal had reached steady-state in Filter 1. SUVA 

decreased in Filter 1 as adsorptive capacity was increasingly exhausted, while it remained essentially 

unchanged in Filter 3. One possible theory for this is that humic substances comprise most of the organic 

matter, and there are strong links between humics and aromaticity (Huber et al., 2011). Filter 1 was capable 

of removing more DOC, and therefore, removed more of the dominant organic matter fraction, humics, 

which decreased the SUVA fraction.  

 The adsorption capacity in Filter 1 made it capable of removing humic substances, building blocks, 

LMW neutrals and LMW acids – at a higher rate than in Filter 3 (Figure 4.36). The most prominent theory 

to explain this is that the size and shape of biopolymers (hydrophilic, > 10 kDa) isn’t amenable to the 

adsorptive sites of GAC (Velten et al., 2011b). This finding has strong implications for water treatment 

research for membrane pre-treatment. 

  

 

Figure 4.36: Comparison of LC-OCD components in the effluents of Filter 1 and Filter 3 (new and 

spent GAC, respectively) during the experimental period (n=9, error bars = +/- one 

standard deviation) 

 

Overall, biofiltration processes are capable of removing biopolymers (Baghoth et al., 2009; Hallé 

et al., 2009), however the precise role of biodegradation in this process is unclear. For example, although 

increasing the retention time within a filter (i.e. an increase in EBCT) can frequently enable more 

biodegradation, increased EBCT does not necessarily improve biopolymer removal during biological 

filtration (Hijnen et al., 2018; Nemani et al., 2016; Siembida-Losch et al., 2015). Similarly, higher 

temperatures also can enhance biodegradation and have been associated with improved biopolymer removal 
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in biofilters (Pharand et al., 2015), however, higher temperatures may also result in higher biopolymer 

concentrations in filter  influents (Rahman et al., 2014). In this experiment, Filter 3 had been in operation 

much longer and with a higher concentration of ATP than Filter 1 (see Section 4.5.6), yet there were no 

significant differences in biopolymer removal between Filters 1 and 3 (p = 0.535); this observation that 

biomass concentration does not correlate with activity has been widely reported (Emelko et al., 2006; 

Pharand et al., 2014). 

 Again, the biopolymer removal in Filter 1 is essentially the same as the biopolymer removal in 

Filter 3, which supports that biopolymers are not significantly affected by physical adsorption. Only two 

known studies that have explored the relationship between biopolymer removal and physical adsorption by 

new GAC could be located. One study compared two new types of GAC media—where one had a higher 

total pore volume and BET surface area than the other, yet the biopolymer removal was negligible for both 

filters. This was despite the fact that both GAC filters removed other NOM fractions, and the filter with the 

higher porosity removed more NOM overall (Velten et al., 2011b). Contrarily, another experiment with 

new GAC was successful in removing biopolymers near the start of operation (Gibert et al., 2013b). Both 

of these experiments even had similar biopolymer concentrations in the influent of the filters (~70 μg/L). 

For reference, the BET surface area of the carbon used in Filter 1 of this experiment was likely 1,050 m2/g 

(Edzwald, 2011), within the same range as the GAC in the other studies (790 m2/g 1,050 m2/g, 1,060 m2/g, 

1,300 m2/g etc.). The results from this study would support the hypothesis stated in Velten et al. (2011b), 

that most of the biopolymer materials are too large (>10 kDa) to be adsorbed in GAC micropores and 

mesopores, which range in size between 0 and 2 nm (Edzwald, 2011).  

 Given that biopolymers do not adsorb to GAC (Velten et al., 2011b), their removal at comparable 

levels by the new (Filter 1) and long-exhausted (Filter 3) GAC media investigated herein demonstrates that 

(a) both the new and exhausted GAC biofilters in the present investigation were biologically active at least 

one month after filter start up and (b) the mechanism of biopolymer removal by biofiltration (i.e. 

“biodegradation”) was direct biodegradation rather than another mechanisms such as bioregeneration. 

  

4.5.5. ATP Concentration 

 ATP concentrations associated with biomass attached to the filtration media were collected from 

Ports 2 to 5 (see Figure 3.1) on several occasions during the experimental period (Figure 4.37 and Table 

4.15).  
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Figure 4.37: ATP concentration per g of dry GAC media in Filter 3 (spent GAC) during the 

experimental period  

 

As mentioned previously, the change in backwash that occurred on June 29th, 2018, effectively 

removed a lot of the active biomass attached to the GAC. It is worth noting that the first ATP concentration 

measured on June 4th was shortly after the media were removed from the full-scale, biologically-active 

filters, and before the first pilot-scale backwash. It is interesting, therefore, to note that the media in Filter 

3 returned to its original level of biological activity immediately after the change in backwash. These data 

speak to the stability and resilience of biological filters temporarily exposed to different, potentially 

stressful operational conditions. 

Table 4.15: ATP concentration (mean +/-  standard deviation) across the depth of Filter 3 (spent 

GAC) during steady-state operation  

Port ATP Concentration 

Port 2 199 +/- 16 ng ATP/g dry GAC 

Port 3 179 +/- 27 ng ATP/g dry GAC 

Port 4 175 +/- 27 ng ATP/g dry GAC 

Port 5 153 +/- 15 ng ATP/g dry GAC 

 

. 

4.6. Performance of Filter 4 – Biologically-active, spent GAC cap over new anthracite 

4.6.1. Turbidity Removal and Headloss Accumulation 

 Overall, Filter 4 achieved very good turbidity removal, as the average filter run produced effluent 

of ~0.1 NTU (Table 4.16). Specifically, the filter effluent turbidity was 0.099 +/- 0.010 NTU (mean +/- 

standard deviation) during the experimental period. Filter cycles were generally terminated because of 
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headloss accumulation in this filter (28 of 31 runs) in which turbidity breakthrough above 0.3 NTU only 

occurred twice. The headloss accumulation rate in Filter 4 was 0.12 +/- 0.06 m/h (mean +/- standard 

deviation) during the experimental period.  

Table 4.14: Mean turbidity removal by Filter 4 (biologically active, spent GAC cap over new 

anthracite) during the experimental period (n=32) 

  

Influent Entering 
Filter (NTU) 

Filter Effluent 
(NTU) 

% Removal 

Mean 0.860 0.099 87 

Std. Deviation 0.361 0.010 7 
 

4.6.2. DOC 

 The average effluent DOC concentration in Filter 4 was 3.5 +/- 0.3 DOC mg/L (mean +/- standard 

deviation) (Figure 4.38). From the first measurement that was taken after 10 days of operation, Filter 4 

performed relatively well in terms of organic removal, averaging at 8%. Filter 4 reached steady-state 

performance after approximately 50 days of operation (Figure 4.39; Table 4.16) this was within reported 

peak organic matter removal and steady-state biomass accumulation in new anthracite filters (Stoddart and 

Gagnon, 2015; Wert et al., 2008).  Filter 4’s successful performance is either because biological activity 

began to accumulate on the media within the first week (see Figure 4.44), removing DOC early on by 

biological degradation, or the top layer of biologically-active GAC removed a larger-than-proportional 

fraction of DOC.  

 

Figure 4.38: DOC concentrations in Filter 4 (biologically active, spent GAC cap over new 

anthracite) influent and effluent during the experimental period (n=23) 

Jun Jul Aug Sep

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

04 09 14 19 24 29 04 09 14 19 24 29 03 08 13 18 23 28 02 07 12

DOC
Concen-

tration
(mg/L)

DOC Influent DOC Effluent

Change in
backwash



 

76 

 

 

Figure 4.39: DOC removal (%) DOC concentrations in Filter 4 (biologically active, spent GAC cap 

over new anthracite) during the experimental period  (n=23) 

 The pattern of DOC removal in Filter 4 is stable overall. Except for the abnormality on July 12th, 

2018, the rate of removal ranges from 4 to 12%, and averages 8%. However, by visual observation, there 

is a gentle increase in DOC removal after the new backwashing method is employed (Figure 4.39). What 

likely happened to produce these results is that; there was a higher total biomass in the beginning of the 

experiment, causing more DOC removal by biodegradation, then this biomass was effectively removed by 

the change in backwash on June 29th, 2018, and the new biomass slowly accumulated and, finally, the 

biomass stabilized during the last month of experimentation. 

 A linear regression analysis was done on 10 consecutive data points for the percent DOC removal 

in Filter 4. The results are shown in Table 4.16 and they confirm what can be visually observed in Figure 

4.40, that there is a gentle positive slope occurring after the backwashing procedure changed. 
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Table 4.15: Linear regression results confirming the period of steady-state DOC removal in Filter 4 

(biologically active, spent GAC cap over new anthracite). This is the period during 

which filter effluent DOC concentration reaches steady-state, resulting in a slope that is 

not statistically different than a slope of zero 

Data Included Statistical Significance of Slopeƚ 

June 14th to July 18th p = 0.199 

June 18th July 20th p = 0.349 

June 22nd to July 25th 1 p = 0.761 

June 25th to July 27th  p = 0.475 

July 1st to Aug 2nd  p = 0.144 

Jul 3rd to Aug 8th p = 0.056 

Jul 6th to Aug 14th  p = 0.067 

Jul 10th to Aug 16th  p = 0.089 

Jul 12th to Aug 18th p = 0.027 

Jul 18th to Aug 23rd  p = 0.041 

Jul 20th to Aug 28th  p = 0.038 

Jul 25th to Aug 31st 1 p = 0.927 

Jul 27th to Sept 2nd  p = 0.497 

Aug 2nd to Sept 5th  p = 0.084 

ƚ For every linear regression analysis (𝑌𝑖 = 𝛽𝑂 + 𝛽1𝑋𝑖 + 𝜀𝑖) 
units Y and X are in % removal and days since start of 
experiment, respectively. 
1. Data needed to be square-root transformed so it better 
fit the assumption of homogeneity of variance and normal 
distribution. 

 

 For reference purposes, Table 4.17 below provides information on what layers of media exist above 

each port.  

Table 4.16: Filter 4 (biologically active, spent GAC cap over new anthracite )port heights and 

media layers 

Port # Height above 

the base 

Layer of media above port 

Port 2 116 cm 12 cm of full-scale GAC 

Port 3 87 cm 8 cm of full-scale GAC 

21 cm of new anthracite 

Port 4 66 cm 21 cm of new anthracite 

Port 5 32 cm 34 cm of new anthracite 

Effluent 

Port 

Located on 

floor below 

2 cm of new anthracite 

30 cm of silica sand 

 And ~30 m of piping 
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 It should be noted that the GAC is only assumed to be at the top of the filter due to its lighter particle 

density, however, there is likely to have been some inter-mixing between the anthracite and GAC. 

 

Figure 4.40: Average DOC concentration at each sampling port in Filter 4 (biologically active, 

spent GAC cap over new anthracite). Although there are some non-steady-state periods 

(Table 4.), the entire period (n=14, error bars = +/- one standard deviation) 

 There is one outlier that occurred on August 23rd, 2018, in Port 2. As mentioned earlier in Section 

4.5.3, unusually high DOC concentrations in the depth of the filter also occurred in Filters 2 and 3 on August 

23rd, so it is likely to be an operational anomaly and is excluded from the data. 

 Overall, Figure 4.41 shows that DOC removal by biodegradation occurred throughout the depth of 

Filter 4, as it did with Filter 3 (Figure 4.29) although biodegradation does successfully occur within a few 

months of start-up, DOC removal in the GAC-capped anthracite-sand filter did average at 8% versus 12% 

in the GAC-sand filter. 

4.6.3. UV254 and SUVA 

 On average, Filter 4 reduced UV254 by 5 +/- 5% (n = 16) (Figure 4.42) similarly, Filter 4 removed 

DOC by 8 +/- 3% (n = 23). This UV254 removal was low, yet significant (p=0.002). Filter 4 did not have an 

impact on SUVA, in fact, SUVA increased by 2 +/- 6% (n = 14) albeit not at a significant level (p=0.192). 
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Figure 4.41: Filter 4 (biologically active, spent GAC cap over new anthracite) UV (left) and SUVA 

(right) influent and effluent during the experimental period (n = 16 and 14, respectively, 

˔ = minimum value, ˕ = maximum value observed) 

 

 These results are conducive to another study with an anthracite/sand filter with a GAC cap – which 

also did not see any change on the SUVA of the influent and effluent (Stoddart and Gagnon, 2017). SUVA 

is reportedly not affected by biodegradation (Basu and Huck, 2004). There was a statistically significant 

difference (p = 0.037) between Filter 3’s impact on the influent SUVA (decrease by 1%) and Filter 4’s 

impact on the influent SUVA (increase by 2%), however, from an operational perspective, Filter 3 does not 

have any advantage over Filter 4 in terms of removing more aromatic, recalcitrant compounds. 

4.6.4. Organic Carbon (LC-OCD) Fractions 

  There is some variability in the biopolymer removal rate in Filter 4 (Figure 4.43), however, 

a paired t-test still found that there is a statistically significant difference (p = 0.002) between the influent 

(238 +/-  17 µg/L) and effluent (206 +/- 26) biopolymer concentration, showing that Filter 4 was capable 

of removing biopolymers. 
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Figure 4.42: Biopolymer concentrations in Filter 4 (biologically active, spent GAC cap over new 

anthracite) influent and effluent streams during the experimental period (n=9) 

 

 Statistically, Filter 4 was also capable of removing humic substance compounds (p = 0.001). The 

influent averaged at 2,241 +/- 210 µg/L and the effluent at 2,046 +/- 213 µg/L (Figure 4.44).  

  

Figure 4.43: Humic Substance concentrations in Filter 4 (biologically active, spent GAC cap over 

new anthracite) influent and effluent streams during the experimental period (n = 9)  

 

 Filter 4 removed biopolymers and humic substances at a rate of 13% and 9%, respectively.  

  No studies were found that provide information on biopolymer and humic substance removal for 

GAC-capped anthracite/sand filters – so studies with anthracite/sand filters were reviewed for comparison 
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purposes. Overall, biopolymer removal by anthracite biofiltration continues to be complex. Two separate 

studies were reviewed that had roughly the same system configuration, which was surface water sent to a 

roughing filter to minimize the impact of low water quality events, then directed to an anthracite/sand 

biofilter. In one system, the biopolymer influent ranged between 50 and 250 µg/L and the biopolymer 

removal ranged between 10% and 35% and averaged 21% (Rahman et al., 2014). In the other system, the 

biopolymer influent ranged between 90 and 530 µg/L, and the biopolymer removal rate was 40 to 90% 

(Hallé et al., 2009). Overall, the removal rate of biopolymers by Filter 4 in this experiment is reasonable. 

 There is no significant difference between the biopolymer and humic substance removal rate of 

Filter 4 and Filter 3 (p = 0.421, and p = 0.082, respectively) – which shows that there is no added benefit 

of using GAC instead of anthracite for the purpose of removing irreversible membrane foulants. The humic 

substance removal rate of Filter 4 mirrored its DOC removal rate, as was the case in Filters 1, 2 and 3. 

4.6.5. ATP Concentration 

 ATP concentrations associated with biomass attached to the filtration media was collected from 

Ports 2 to 5 (see Figure 3.1) in Filter 4. 

 

 

Figure 4.44: ATP concentration per g of dry GAC media in Filter 4 (biologically active, spent GAC 

cap over new anthracite) during the experimental period  

The biological activity in Port 2 reflects the top layer of GAC, and samples from Port 3, 4 and 5 

are directly under the new anthracite. This is demonstrated plainly at the start of the experiment, with the 

high ATP concentration in Port 2 and minimal ATP concentration in Ports 3, 4 and 5 (Figure 4.45). Filter 

4 behaves similarly to Filter 1, 2 and 3 in that the biomass quantity dips after the backwash maintenance on 

June 29th, 2018, then rises and stabilizes after July 23rd, 2018. Shortly after the backwashing maintenance, 

Jun Jul Aug Sep

0

50

100

150

200

250

300

04 09 14 19 24 29 04 09 14 19 24 29 03 08 13 18 23 28 02 07 12

ng ATP
per

g of dry
media

Port 2

Port 3

Port 4

Port 5

Change in
backwash



 

82 

 

the DOC removal rate decreased for a brief period (Figure 4.40), which is presumably due to this decrease 

in biomass quantity – this stresses the need to consider the impact on organic removal if a GAC-capped 

anthracite/sand filter requires a higher-energy backwashing procedure. 

 It is also worth noting that the amount of biomass in the GAC layer (Port 2) is higher throughout 

the experiment than the other layers. This confirms a common finding among biological filtration studies – 

that GAC can support more biomass than anthracite (Stoddart and Gagnon, 2017; Wang et al., 1995). 

Table 4.17: ATP concentration (mean ± standard deviation) through Filter 4 (biologically active, 

spent GAC cap over new anthracite) during steady-state operation  

Port n ATP concentration 

Port 2 5 184 +/- 13 ng ATP/g dry GAC 

Port 3 5 125 +/- 14 ng ATP/g dry GAC 

Port 4 5 108 +/- 29 ng ATP/g dry GAC 

Port 5 5 84 +/- 28 ng ATP/g dry GAC 

 

 The GAC layer within Filter 4 is a considerable contribution to the DOC removal throughout the 

depth of Filter 4, (Table 4.19). 

Table 4.18: Fraction of DOC removed in each layer of media within Filter 4 (biologically active, 

spent GAC cap over new anthracite) 

Layer and media 
configuration 

Fraction of DOC 
removed through 

GAC layer in Filter 4 

12 cm of full-scale GAC -0.07a 

8 cm of full-scale GAC 

21 cm of new anthracite 
0.43a 

21 cm of new anthracite 0.26 

34 cm of new anthracite 0.16 

2 cm of new anthracite 

30 cm of silica sand 

and ~30 m of piping 

0.26 

a. Calculations do not contain the single outlier 
presented in Section 4.6.3., when included, these 
layers are -0.24 and 0.56, respectively. 

 

 In the first 12 cm of the GAC layer, DOC is released (-7%), and then removed substantially in the 

following 29 cm layer of combined GAC and anthracite (43%). This demonstrates that although a higher 

quantity of biomass was measured Port 2, biological activity and thus biodegradation occurred throughout 

the depth of the filter, as found by Velten et al., (2011a). 
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5.  Conclusions and Implications 

This research was focused on advancing the scientific and operational understanding of drinking 

water treatment by varying select configurations of GAC/sand and biologically-active GAC/sand filtration 

(i.e. classical biofiltration), including the utility of relatively more economical configurations such as GAC 

caps over non-adsorptive anthracite/sand biofilters. Pilot-scale biofiltration experiments were conducted to 

evaluate biomass development and the removal of organic matter. Filter 1 contained 1 m of new GAC, 

Filter 2 contained new and spent GAC (40% and 60%, respectively), Filter 3 contained spent GAC (5 years 

of acclimation), and Filter 4 contained 0.2 m of spent GAC over 0.8 m of new anthracite. The main 

conclusions from this work are: 

1. New, highly adsorptive GAC media operated to encourage biological activity (i.e., without pre-

chlorination) (a) generally removed more organic matter (DOC, humic substances, building blocks, 

LMW neutrals and LMW acids) than exhausted biologically-active GAC, b) demonstrated a trend 

of decreasing to eventual steady-state DOC removal, with evidence to show that subtle declines in 

performance could potentially continue to occur for several years after start-up, and c) 

preferentially removed aromatic compounds, as would be expected based on the extensive available 

literature.  

2. The removal of biopolymers, which are associated with membrane fouling, was comparable 

between the new and exhausted GAC media in the biofilters. The lack of enhanced biopolymer 

removal by new, highly adsorptive GAC was likely due the relatively large size of biopolymer 

macromolecules, which would limit their access to the internal pore structure of GAC media. 

o Given that biopolymers do not adsorb to GAC (Velten et al., 2011b), their removal at 

comparable levels by the new and exhausted GAC biofilters investigated herein suggests 

that (a) both the new and exhausted GAC biofilters in the present investigation were 

biologically active after one month of start-up and (b) the mechanism of biopolymer 

removal by biofiltration (i.e. “biodegradation”) is direct biodegradation rather than 

bioregeneration. This novel mechanistic finding has important implications for biofiltration 

process design because it demonstrates that biopolymer removal is limited by biological 

activity rather than available adsorptive sites. It also resolves the mechanistic work of 

Spanjers (2017) by demonstrating that, in addition to other mechanisms, direct 

biodegradation occurs in classical biofiltration with GAC filtration media during drinking 

water treatment. 
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3. GAC caps over anthracite/sand filtration media may offer an economical alternative to GAC/sand 

biofilters for organic matter removal. Although less DOC was removed by the GAC-capped 

anthracite/sand filter when compared to the biologically-active GAC/sand biofilter (even during 

warm-water conditions), the two types of filters achieved comparable levels of SUVA, humic 

substances, and biopolymer removal. It should also be noted that the quantity of biomass in GAC-

capped anthracite/sand filter appeared to be more affected by changes in backwashing conditions 

than the biologically-active GAC/sand filter.  

4. Several operational factors such as filter influent water quality, hydraulic loading rate, and EBCT 

as well as design parameters such as the depth of the GAC cap will affect the traditional and organic 

matter removal performance of GAC capped biofilters. The data presented herein suggest that a 

more rigorous investigation of these factors and their implications to GAC capped biofilter 

performance is warranted.  
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Appendix A – All Raw Data 

Operational Data 

Headloss Data 

Table A - 1: Headloss accumulation rate for each filter (Part 1/2) 

Head Loss Accumulation Rate (m/h) 

Start of Filter Run Time F1 F2 F3 F4 

2018-06-04 15:28 0.93 0.65 0.11 0.10 

2018-06-07 16:15 0.22 0.53 0.09 0.04 

2018-06-08 10:13 6.00 6.00 3.27 3.15 

2018-06-11 17:21 0.10 0.04 0.08 0.09 

2018-06-12 17:26 0.25 0.10 0.08 0.07 

2018-06-14 10:40 0.21 0.13 0.10 0.09 

2018-06-16 15:30 0.24 0.32 0.11 0.10 

2018-06-18 11:27 0.35 0.34 0.25 0.33 

2018-06-20 14:13 0.20 0.44 0.12 0.19 

2018-06-22 13:17 0.33 0.19 0.87 0.12 

2018-06-25 1:44 0.20 0.95 0.48 0.08 

2018-06-27 21:42 2.71 1.31 1.28 6.55 

2018-06-29 17:09 0.14 0.15 0.07 0.09 

2018-07-01 13:16 0.15 0.15 0.10 0.09 

2018-07-03 12:20 0.43 0.73 0.19 0.15 

2018-07-06 16:28 4.48 3.23 1.18 0.24 

2018-07-08 21:45 0.37 0.45 0.20 0.12 

2018-07-10 13:09 0.30 0.63 0.24 0.11 

2018-07-12 14:20 0.28 0.43 0.22 0.14 

2018-07-13 13:56 0.14 0.14 0.08 0.05 

2018-07-16 14:42 0.05 0.07 0.04 0.05 

2018-07-18 10:41 0.12 0.10 0.07 0.07 

Formatting Legend           

Reason for end of filter run time     

X.XX Head loss exceeded target of 305 cm, or…   

X.XX Flow rate fell below 3 L/min (target is 4 L/min) 

X.XX Turbidity exceeded 0.3 NTU for more than 10 min 

X.XX End because shut off and backwashed   

        

Other considerations       

X.XX Run time affected by loss of influent   

X.XX Excluded outlier     

NR Could not collect data     
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Table A - 2: Headloss accumulation rate for each filter (Part 2/2)  

Head Loss Accumulation Rate (m/h) 

Start of Filter Run Time F1 F2 F3 F4 

2018-07-20 21:07 0.09 0.22 0.08 0.09 

2018-07-23 13:50 0.17 0.14 0.08 0.18 

2018-07-25 19:44 0.08 0.10 0.10 0.06 

2018-07-27 4:33 0.10 0.10 0.08 0.06 

2018-07-31 13:15 0.08 0.09 0.09 0.07 

2018-08-02 13:08 0.16 0.14 0.11 0.10 

2018-08-05 12:44 0.31 0.32 0.21 0.27 

2018-08-08 11:00 0.32 0.13 0.13 0.16 

2018-08-10 13:29 0.37 0.60 0.20 0.12 

2018-08-14 14:54 1.52 0.35 13.14 4.29 

2018-08-14 22:12 0.11 0.11 0.10 0.09 

2018-08-16 15:07 0.10 0.10 0.10 0.07 

2018-08-18 12:41 0.13 0.15 0.11 0.10 

2018-08-21 18:36 0.12 0.09 0.11 0.10 

2018-08-23 12:54 0.12 0.10 0.10 0.10 

2018-08-26 13:35 0.17 12.13 1.98 0.08 

2018-08-28 11:51 0.14 0.22 0.12 0.11 

2018-08-31 11:57 0.25 2.02 4.97 0.08 

2018-09-02 11:36 0.18 1.85 0.13 0.23 

2018-09-05 13:44 0.22 0.18 0.14 0.10 

Formatting Legend           

Reason for end of filter run time     

X.XX Head loss had exceeded 305 cm, or…   

X.XX Flow rate fell below 3 L/min (target is 4 L/min) 

X.XX Turbidity exceeded 0.3 NTU for more than 10 min 

X.XX End because shut off and backwashed   

        

Other considerations       

X.XX Run time affected by loss of influent   

X.XX Excluded outlier     

NR Could not collect data     
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Turbidity 

Table A - 3: Average effluent turbidity from each filter while it flowed (Part 1/2) 

Average Effluent (NTU) 

Start of Filter Run Time F1 F2 F3 F4 

2018-06-04 15:28 0.065 0.245 0.159 0.153 

2018-06-07 16:15 0.075 0.197 0.140 0.091 

2018-06-08 10:13 NR NR 0.131 0.087 

2018-06-11 17:21 0.112 0.135 0.147 0.113 

2018-06-12 17:26 0.089 0.146 0.132 0.080 

2018-06-14 10:40 0.080 0.156 0.138 0.084 

2018-06-16 15:30 0.078 0.159 0.143 0.088 

2018-06-18 11:27 0.079 0.168 0.147 0.124 

2018-06-20 14:13 0.084 0.168 0.150 0.103 

2018-06-22 13:17 0.083 0.166 0.152 0.098 

2018-06-25 1:44 0.082 0.144 0.143 0.090 

2018-06-27 21:42 NR NR NR NR 

2018-06-29 17:09 0.093 0.222 0.146 0.110 

2018-07-01 13:16 0.087 0.205 0.144 0.110 

2018-07-03 12:20 0.092 0.186 0.145 0.119 

2018-07-06 16:28 0.105 0.171 0.142 0.110 

2018-07-08 21:45 0.112 0.173 0.114 0.114 

2018-07-10 13:09 0.089 0.173 0.121 0.101 

2018-07-12 14:20 0.088 0.173 0.118 0.108 

2018-07-13 13:56 0.089 0.181 0.122 0.102 

2018-07-16 14:42 0.095 0.160 0.108 0.100 

2018-07-18 10:41 0.085 0.149 0.105 0.098 

Formatting Legend           

Reason for end of filter run time     

X.XXX Head loss had exceeded 305 cm, or…   

X.XXX Flow rate fell below 3 L/min (target is 4 L/min) 

X.XXX Turbidity exceeded 0.3 NTU for more than 10 min 

X.XXX End because shut off and backwashed   

        

Other considerations      

X.XXX Run time affected by loss of influent   

NR Could not collect data   
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Table A - 4: Average effluent turbidity from each filter while it flowed (Part 1/2) 

Average Effluent (NTU) 

Start of Filter Run Time F1 F2 F3 F4 

2018-07-20 21:07 0.088 0.145 0.107 0.101 

2018-07-23 13:50 0.087 0.143 0.106 0.098 

2018-07-25 19:44 0.087 0.167 0.101 0.095 

2018-07-27 4:33 0.086 0.153 0.100 0.097 

2018-07-31 13:15 0.092 0.158 0.101 0.091 

2018-08-02 13:08 0.088 0.153 0.104 0.088 

2018-08-05 12:44 0.091 0.156 0.107 NR 

2018-08-08 11:00 0.092 0.167 0.107 0.096 

2018-08-10 13:29 0.089 0.135 0.109 0.094 

2018-08-14 14:54 0.089 0.228 NR 0.105 

2018-08-14 22:12 0.083 0.221 0.143 0.092 

2018-08-16 15:07 0.083 0.238 0.174 0.097 

2018-08-18 12:41 0.081 0.250 NR 0.086 

2018-08-21 18:36 0.082 0.153 NR 0.100 

2018-08-23 12:54 0.093 0.253 0.131 0.100 

2018-08-26 13:35 0.083 0.238 0.132 0.089 

2018-08-28 11:51 0.083 0.628 0.093 0.089 

2018-08-31 11:57 0.091 0.304 0.136 0.101 

2018-09-02 11:36 0.091 0.380 0.102 0.100 

2018-09-05 13:44 0.086 0.567 0.095 0.093 

Formatting Legend           

Reason for end of filter run time     

X.XXX Head loss had exceeded 305 cm, or…   

X.XXX Flow rate fell below 3 L/min (target is 4 L/min) 

X.XXX Turbidity exceeded 0.3 NTU for more than 10 min 

X.XXX End because shut off and backwashed   

        

Other considerations      

X.XXX Run time affected by loss of influent   

NR Could not collect data   
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Run Times 

Table A - 5: Official run times for each filter (Part 1/2) 

Run Times 

Start of Filter Run Time F1 F2 F3 F4 

2018-06-04 15:28 1:22 0:00 8:22 1:28 

2018-06-07 16:15 13:02 2:00 8:26 3:24 

2018-06-08 10:43 0:00 0:00 15:22 11:22 

2018-06-11 17:21 9:08 12:36 12:58 23:12 

2018-06-12 17:26 9:24 26:32 38:15 34:55 

2018-06-14 10:40 16:38 24:24 26:30 32:44 

2018-06-16 15:30 15:23 11:42 21:53 20:20 

2018-06-18 11:27 6:52 6:58 7:08 6:46 

2018-06-20 14:13 16:03 8:53 22:20 14:55 

2018-06-22 13:17 13:22 16:47 3:06 24:29 

2018-06-25 1:44 20:20 1:24 5:59 21:32 

2018-06-27 21:42 0:00 0:00 0:00 0:00 

2018-06-29 17:09 27:17 26:10 37:36 33:01 

2018-07-01 13:16 21:20 18:36 27:58 33:45 

2018-07-03 12:20 14:05 4:54 12:36 14:46 

2018-07-06 16:28 0:23 0:48 1:25 4:56 

2018-07-08 21:45 7:59 6:24 14:13 23:32 

2018-07-10 13:09 12:50 4:10 13:23 26:08 

2018-07-12 14:20 7:13 6:48 7:07 6:52 

2018-07-13 13:56 2:16 2:16 2:02 1:40 

2018-07-16 14:42 36:38 31:42 42:38 42:30 

2018-07-18 10:41 25:02 24:52 38:01 28:44 

Formatting Legend           

Reason for end of filter run time     

X:XX Head loss had exceeded 305 cm, or…   

X:XX Flow rate fell below 3 L/min (target is 4 L/min) 

X:XX Turbidity exceeded 0.3 NTU for more than 10 min 

X:XX End because shut off and backwashed   

        

Other considerations      

X:XX Run time affected by loss of influent   

NR Could not collect data     
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Table A - 6: Official run times for each filter (Part 2/2) 

Run Times 

Start of Filter Run Time F1 F2 F3 F4 

2018-07-20 21:07 27:21 25:51 30:36 26:47 

2018-07-23 13:50 25:18 24:19 34:19 3:54 

2018-07-25 19:44 30:52 29:40 31:08 22:32 

2018-07-27 4:33 31:32 34:14 38:06 35:04 

2018-07-31 13:15 28:14 25:01 35:27 35:47 

2018-08-02 13:08 21:22 24:54 26:32 33:32 

2018-08-05 12:44 10:46 8:20 17:04 9:00 

2018-08-08 11:00 10:08 24:16 22:08 20:24 

2018-08-10 13:29 10:52 6:36 17:51 23:57 

2018-08-14 14:54 5:36 5:34 0:00 0:52 

2018-08-14 22:12 30:26 29:42 30:10 35:46 

2018-08-16 15:07 23:28 27:24 20:24 11:36 

2018-08-18 12:41 19:00 8:42 18:18 21:58 

2018-08-21 18:36 27:40 20:36 28:32 31:22 

2018-08-23 12:54 23:58 3:34 29:32 28:29 

2018-08-26 13:35 24:32 0:04 1:56 37:44 

2018-08-28 11:51 26:21 4:26 25:42 31:48 

2018-08-31 11:57 18:16 0:00 0:23 35:29 

2018-09-02 11:36 6:12 0:00 6:06 10:09 

2018-09-05 13:44 24:18 0:00 24:44 33:08 

Formatting Legend           

Reason for end of filter run time     

X:XX Head loss had exceeded 305 cm, or…   

X:XX Flow rate fell below 3 L/min (target is 4 L/min) 

X:XX Turbidity exceeded 0.3 NTU for more than 10 min 

X:XX End because shut off and backwashed   

        

Other considerations      

X:XX Run time affected by loss of influent   

NR Could not collect data      
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Organic Matter Data 

Dissolved Organic Carbon 

Table A - 7: DOC data from Filter 1 

Date Day* 
Post-

Ozone** 
Port 1 
(Inf) 

Avg 
Influent*** Port 2 Port 3 Port 4 Port 5 Effluent  

14-Jun-18 10 NR 3.45 3.79 2.96 1.72 1.07 0.63 0.55 

18-Jun-18 14 4.61 3.76 4.01 NR NR NR NR 0.66 

22-Jun-18 18 NR 4.15 4.41 3.23 2.32 1.77 NR 1.26 

25-Jun-18 21 NR 3.68 3.55 3.43 2.50 1.99 1.44 1.20 

1-Jul-18 27 4.32 4.26 4.10 3.84 3.08 2.67 2.28 1.89 

3-Jul-18 29 NR 4.49 4.28 3.74 3.05 2.77 2.24 2.29 

10-Jul-18 36 4.34 4.27 4.36 3.75 3.18 2.62 2.35 2.16 

12-Jul-18 38 4.42 4.19 3.88 NR NR NR NR 1.95 

18-Jul-18 44 4.34 4.31 4.20 3.72 3.08 2.75 2.40 2.39 

20-Jul-18 46 4.81 4.31 4.43 3.86 3.22 2.83 2.55 2.49 

25-Jul-18 51 4.60 4.23 4.23 4.03 3.37 3.12 2.69 2.68 

27-Jul-18 53 4.29 4.26 4.00 NR NR NR NR 2.84 

2-Aug-18 59 3.99 3.76 3.88 3.52 3.09 2.91 2.66 2.72 

5-Aug-18 62 4.16 3.95 3.97 3.81 3.06 3.06 2.73 2.71 

8-Aug-18 65 4.14 3.90 3.98 NR NR NR NR 2.66 

14-Aug-18 71 4.03 3.68 4.02 3.13 3.07 2.74 2.71 2.66 

16-Aug-18 73 4.17 3.95 3.95 NR NR NR NR 2.92 

18-Aug-18 75 4.01 3.81 3.87 3.65 3.17 3.04 2.77 2.94 

23-Aug-18 80 3.93 3.63 3.83 3.46 3.35 2.86 2.51 2.63 

28-Aug-18 85 4.14 3.80 3.88 3.60 3.11 3.10 2.93 2.86 

31-Aug-18 88 4.66 4.51 4.44 NR NR NR NR 3.18 

2-Sep-18 90 4.52 4.40 4.47 NR NR NR 2.68 3.00 

5-Sep-18 93 4.50 NR 4.25 4.26 3.56 3.37 3.18 3.21 
* Days from when the filter first started running 
** DOC data is in mg/L 
*** Average Influent is average of port 1 across all filters in experiment 
NR – Could not collect data 
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Table A - 8: DOC data from Filter 2 

Date Day* 
Post-

Ozone** 
Port 1 
(Inf) 

Avg 
Influent*** Port 2 Port 3 Port 4 Port 5 Effluent  

14-Jun-18 10 NR 4.25 3.79 3.03 3.12 NR 2.38 2.33 

18-Jun-18 14 4.61 3.86 4.01 NR NR NR NR 2.29 

22-Jun-18 18 NR 3.77 4.15 3.47 3.27 NR 3.00 2.63 

1-Jul-18 27 4.32 4.36 4.26 3.95 3.87 NR 3.82 3.49 

3-Jul-18 29 NR 3.95 4.28 NR NR NR NR 3.10 

12-Jul-18 38 4.42 3.08 3.88 NR NR NR NR 2.89 

18-Jul-18 44 4.34 3.99 4.20 3.90 3.66 3.51 3.25 3.12 

20-Jul-18 46 4.81 4.39 4.43 4.11 3.73 4.81 3.40 3.39 

25-Jul-18 51 4.60 4.29 4.23 3.96 3.69 3.65 3.52 3.30 

27-Jul-18 53 4.29 4.16 4.00 NR NR NR NR 3.30 

2-Aug-18 59 3.99 3.97 3.88 3.73 3.42 3.31 3.13 3.04 

5-Aug-18 62 4.16 4.07 3.97 NR NR NR NR 3.08 

8-Aug-18 65 4.14 3.95 3.98 NR NR NR NR 3.08 

14-Aug-18 71 4.03 4.11 4.02 3.77 3.75 3.37 4.03 3.16 

16-Aug-18 73 4.17 4.02 3.95 NR NR NR NR 3.16 

18-Aug-18 75 4.01 3.97 3.87 NR 3.56 3.32 3.23 3.18 

23-Aug-18 80 3.93 3.60 3.83 5.12 3.27 3.10 2.94 3.63 
* Days from when the filter first started running 
** DOC data is in mg/L 
*** Average Influent is average of port 1 across all filters in experiment 
NR – Could not collect data 
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Table A - 9: DOC data from Filter 3 

Date Day* 
Post-

Ozone** 
Port 1 
(Inf) 

Avg 
Influent*** Port 2 Port 3 Port 4 Port 5 Effluent  

14-Jun-18 10 NR 3.64 3.79 3.50 3.53 3.52 3.85 3.52 

18-Jun-18 14 4.61 4.32 4.01 NR NR NR NR 3.50 

1-Jul-18 27 4.32 4.38 4.26 4.36 4.05 3.98 4.02 3.36 

3-Jul-18 29 NR 4.11 4.28 4.33 4.11 4.12 4.03 4.04 

10-Jul-18 36 4.34 4.34 4.36 4.30 4.10 4.06 4.02 3.82 

12-Jul-18 38 4.42 4.05 3.88 NR NR NR NR 3.67 

18-Jul-18 44 4.34 4.22 4.20 4.04 3.85 3.71 3.74 3.61 

20-Jul-18 46 4.81 4.45 4.43 4.38 4.25 3.93 3.87 3.98 

25-Jul-18 51 4.60 4.16 4.23 4.11 3.88 3.85 3.85 3.69 

27-Jul-18 53 4.29 3.56 4.00 NR NR NR NR 3.62 

2-Aug-18 59 3.99 3.84 3.88 3.66 3.57 3.46 3.30 3.36 

5-Aug-18 62 4.16 4.09 3.97 3.82 3.77 3.60 3.43 3.40 

8-Aug-18 65 4.14 3.87 3.98 NR NR NR NR 3.49 

14-Aug-18 71 4.03 4.06 4.02 3.90 3.77 3.60 3.47 3.51 

16-Aug-18 73 4.17 3.86 3.95 NR NR NR NR 3.48 

18-Aug-18 75 4.01 3.87 3.87 3.91 3.71 3.51 3.42 3.60 

23-Aug-18 80 3.93 3.92 3.83 4.53 3.43 3.55 3.20 3.19 

28-Aug-18 85 4.14 3.89 3.88 3.79 3.61 3.43 3.32 3.33 

2-Sep-18 90 4.52 4.56 4.47 NR NR NR NR 3.49 

5-Sep-18 93 4.50 NR 4.25 4.19 4.14 3.98 3.86 3.81 
* Days from when the filter first started running 
** DOC data is in mg/L 
*** Average Influent is average of port 1 across all filters in experiment 
NR – Could not collect data 
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Table A - 10: DOC data from Filter 4 

Date Day* 
Post-

Ozone** 
Port 1 
(Inf) 

Avg 
Influent*** Port 2 Port 3 Port 4 Port 5 Effluent  

14-Jun-18 10 NR 3.80 3.79 3.58 3.61 3.68 3.65 3.43 

18-Jun-18 14 4.61 4.07 4.01 NR NR NR NR 3.61 

22-Jun-18 18 NR 3.94 4.15 4.30 3.91 3.84 3.81 3.65 

25-Jun-18 21 NR 3.55 3.68 3.97 3.80 3.89 3.64 3.48 

1-Jul-18 27 4.32 4.24 4.26 4.44 3.95 4.20 4.29 4.03 

3-Jul-18 29 NR 4.54 4.28 4.49 4.43 4.17 4.14 4.08 

6-Jul-18 32 4.31 4.20 4.16 NR NR NR NR 4.00 

10-Jul-18 36 4.34 4.46 4.36 4.35 4.30 4.09 4.03 3.95 

12-Jul-18 38 4.42 4.12 3.88 NR NR NR NR 3.88 

18-Jul-18 44 4.34 4.27 4.20 4.12 4.07 3.95 3.87 3.80 

20-Jul-18 46 4.81 4.54 4.43 4.38 4.26 4.17 4.22 4.13 

25-Jul-18 51 4.60 4.38 4.23 4.31 4.21 4.07 3.86 3.92 

27-Jul-18 53 4.29 4.30 4.00 NR NR NR NR 3.74 

2-Aug-18 59 3.99 3.85 3.88 3.87 3.70 3.58 3.64 3.48 

8-Aug-18 65 4.14 4.05 3.98 NR NR NR NR 3.55 

14-Aug-18 71 4.03 4.13 4.02 3.99 3.90 3.77 3.71 3.65 

16-Aug-18 73 4.17 3.86 3.95 NR NR NR NR 3.56 

18-Aug-18 75 4.01 3.91 3.87 3.91 3.81 3.81 3.80 3.53 

23-Aug-18 80 3.93 4.28 3.83 4.90 3.86 3.58 3.47 3.39 

28-Aug-18 85 4.14 3.90 3.88 3.86 3.68 3.62 3.21 3.52 

31-Aug-18 88 4.66 4.33 4.44 NR NR NR NR 4.26 

2-Sep-18 90 4.52 4.38 4.47 NR NR NR NR 4.14 

5-Sep-18 93 4.50 NR 4.25 4.27 4.16 4.00 3.98 3.88 
* Days from when the filter first started running 
** DOC data is in mg/L 
*** Average Influent is average of port 1 across all filters in experiment 
NR – Could not collect data 
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UV254 

Table A - 11: UV254 influent data summary for all filters 

Date Day* 
Post-

Ozone 
F1 Port 

1 
F2 Port 

1 
F3 Port 

1 
F4 Port 

1 Avg Inf1 

14-Jun-18 10  NR 0.054 0.073 0.049 0.047 0.056 

18-Jun-18 14 0.070 0.038 0.040 0.057 0.053 0.048 

01-Jul-18 27  NR 0.054 0.055 0.055 0.055 0.055 

03-Jul-18 29  NR  NR 0.056 0.058 0.056 0.057 

06-Jul-18 32 0.051 0.053 0.052 0.053 0.052 0.052 

10-Jul-18 36 0.050 0.042 0.048 0.046 0.048 0.046 

12-Jul-18 38 0.047 0.037 0.035 0.041 0.049 0.041 

18-Jul-18 44 0.046 0.045 0.044 0.044 0.047 0.045 

05-Aug-18 62 0.040 0.035 0.039 0.040 0.040 0.039 

08-Aug-18 65 0.041 0.041 0.041 0.042 0.041 0.041 

16-Aug-18 73 0.042 0.043 0.042 0.041 0.041 0.042 

18-Aug-18 75 0.042 0.040 0.043 0.042 0.042 0.041 

28-Aug-18 85 0.044 0.045 0.045 0.045 0.046 0.045 

02-Sep-18 90 0.056 0.053 0.053 0.052 0.051 0.053 

05-Sep-18 93 0.048  NR NR NR NR NR 
* Days from when the filter first started running 
UV data is in cm-1 
NR – Could not collect data 
1 - Average of F1 Port 1, F2 Port 1, F3 Port 1 and F4 Port 1  
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Table A - 12: UV254 effluent data from all filters 

Date Day* 
F1 

Effluent 
F2 

Effluent 
F3 

Effluent 
F4 

Effluent 

14-Jun-18 10 0.004 0.028 0.042 0.046 

18-Jun-18 14 0.007 0.025 0.046 0.047 

01-Jul-18 27 0.024  NR 0.042 0.051 

03-Jul-18 29 0.023 0.039 0.043 0.055 

06-Jul-18 32 0.010 0.028 0.047 0.051 

10-Jul-18 36 0.014 0.027 0.043 0.046 

12-Jul-18 38 0.021 0.021 0.036 0.041 

18-Jul-18 44 0.023 0.033 0.040 0.043 

05-Aug-18 62 0.021 0.027 0.031 0.038 

08-Aug-18 65 0.025 0.031 0.037 0.037 

16-Aug-18 73 0.029 0.035 0.038 0.041 

18-Aug-18 75 0.029 0.033 0.042 0.042 

28-Aug-18 85  NR NR 0.038 0.040 

02-Sep-18 90 0.033  NR 0.042 0.052 

05-Sep-18 93 0.035  NR 0.045 0.046 
* Days from when the filter first started running 
UV data is in cm-1 
NR – Could not collect data 
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LC-OCD Data 

 

Table A - 13: NOM Fractions – Post-ozone port 

Date Biopolymers Humic 
Substances 

Building 
Blocks 

LMW 
Neutrals 

LMW  
Acids 

01-Jul 222 2147 778 525 136 

10-Jul 228 2251 666 369 158 

12-Jul 272 2338 579 413 145 

18-Jul 233 2176 752 550 164 

20-Jul 250 2363 804 542 121 

27-Jul 236 2113 859 421 133 

02-Aug 239 2022 713 383 180 

14-Aug 235 2055 759 461 178 

02-Sep 216 2706 457 569 165 

*All compounds measured in µg/L 

 

Table A - 14: NOM Fractions – Filter 1 Effluent 

Date Biopolymers Humic 
Substances 

Building 
Blocks 

LMW 
Neutrals 

LMW  
Acids 

01-Jul 210 1206 285 213 29 

10-Jul 210 1188 296 337 37 

12-Jul 207 1106 340 190 39 

18-Jul 197 1262 444 210 48 

20-Jul 188 1481 468 267 55 

27-Jul 206 1505 525 219 67 

02-Aug 210 1404 494 235 77 

14-Aug 219 1542 503 277 72 

02-Sep 182 1840 298 229 75 

*All compounds measured in µg/L 

 

Table A - 15: NOM Fractions – Filter 2 Effluent 

Date Biopolymers Humic 
Substances 

Building 
Blocks 

LMW 
Neutrals 

LMW  
Acids 

01-Jul 187 1739 521 539 74 

10-Jul NR NR NR NR NR 

12-Jul 243 1318 427 213 64 

18-Jul 180 1639 630 309 88 

20-Jul 187 1861 633 299 91 

27-Jul 204 1792 652 370 91 

02-Aug 175 1654 620 290 102 

14-Aug 202 1681 695 846 82 

02-Sep 229 2267 315 480 115 

*All compounds measured in µg/L 
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Table A - 16: NOM Fractions – Filter 3 Effluent 

Date Biopolymers Humic 
Substances 

Building 
Blocks 

LMW 
Neutrals 

LMW  
Acids 

01-Jul 195 1806 591 251 78 

10-Jul 229 2100 548 488 114 

12-Jul 198 1818 703 354 117 

18-Jul 212 1882 598 359 112 

20-Jul 195 2129 771 352 122 

27-Jul 191 1961 715 434 109 

02-Aug 182 1750 677 319 112 

14-Aug 209 1822 728 363 115 

02-Sep 181 2311 301 333 104 

*All compounds measured in µg/L 

 

Table A - 17: NOM Fractions – Filter 4 Effluent 

Date Biopolymers Humic 
Substances 

Building 
Blocks 

LMW 
Neutrals 

LMW  
Acids 

01-Jul 167 2053 638 465 112 

10-Jul 227 1979 729 353 121 

12-Jul 251 1920 717 360 116 

18-Jul 205 1877 741 580 126 

20-Jul 193 2105 829 573 124 

27-Jul 206 1992 709 402 117 

02-Aug 187 1828 630 340 122 

14-Aug 227 2105 534 339 125 

02-Sep 187 2553 406 420 136 

*All compounds measured in µg/L 

 

Table A - 18: NOM Fractions – Impact of long-term storage of sample 

Date Day of 
Storage 

Biopolymers Humic 
Substances 

Building 
Blocks 

LMW 
Neutrals 

LMW  
Acids 

10-Jul 0 - sample was taken 

18-Jul 8 229 2100 548 488 114 

26-Jul 16 212 1962 700 333 109 

30-Jul 20 217 1922 751 292 105 

04-Aug 25 208 2028 645 355 112 

10-Aug 31 217 1973 715 312 115 

23-Aug 44 230 1899 777 325 104 

26-Sep 78 256 2273 327 298 115 

*All compounds measured in µg/L 
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LC-OCD Chromatograms 

 

 

Figure A - 1  LC-OCD Data Jul 1st – F1 PE 

 

Figure A - 2  LC-OCD Data Jul 1st – F2 PE 
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Figure A - 3  LC-OCD Data Jul 1st – F3 PE 

 

Figure A - 4  LC-OCD Data Jul 1st – F4 PE 
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Figure A - 5  LC-OCD Data Jul 1st – INF 

 

Figure A - 6  LC-OCD Data Jul 10th  – F1 PE 
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Figure A - 7  LC-OCD Data Jul 10th  – F2 PE 

 

Figure A - 8  LC-OCD Data Jul 10th  – F3 PE – Degradation Day 8 
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Figure A - 9  LC-OCD Data Jul 10th  – F4 PE 

 

Figure A - 10  LC-OCD Data Jul 12th  – INF 
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Figure A - 11  LC-OCD Data Jul 12th  – F2 PE 

 

Figure A - 12  LC-OCD Data Jul 12th  – F3 PE 
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Figure A - 13  LC-OCD Data Jul 12th  – F4 PE 

 

Figure A - 14  LC-OCD Data Jul 12th  – F3 PE Degradation Day 16 
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Figure A - 15  LC-OCD Data Jul 12th  – F1 PE 

 

Figure A - 16  LC-OCD Data Jul 18th  – INF 
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Figure A - 17  LC-OCD Data Jul 18th  – F1 PE 

 

Figure A - 18  LC-OCD Data Jul 18th  – F2 PE 
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Figure A - 19  LC-OCD Data Jul 18th  – F3 PE 

 

Figure A - 20  LC-OCD Data Jul 18th  – F4 PE 
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Figure A - 21  LC-OCD Data Jul 20th  – INF 

 

Figure A - 22  LC-OCD Data Jul 20th  – F1 PE 
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Figure A - 23  LC-OCD Data Jul 20th  – F2 PE-2 

 

Figure A - 24  LC-OCD Data Jul 20th  – F3 PE 
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Figure A - 25  LC-OCD Data Jul 20th  – F3 PE Degradation Day 20 

 

Figure A - 26  LC-OCD Data Jul 20th  – F4 PE 
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Figure A - 27  LC-OCD Data Jul 20th  – F2 PE-2 

 

Figure A - 28  LC-OCD Data Jul 27th  – INF 
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Figure A - 29  LC-OCD Data Jul 27th  – F1 PE 

 

Figure A - 30  LC-OCD Data Jul 27th  – F2 PE 
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Figure A - 31  LC-OCD Data Jul 27th  – F3 PE 

 

Figure A - 32  LC-OCD Data Jul 27th  – F4 PE 
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Figure A - 33  LC-OCD Data Jul 27th  – F3 PE Degradation Day 25 

 

Figure A - 34  LC-OCD Data Aug 2nd  – INF 
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Figure A - 35  LC-OCD Data Aug 2nd  – F1 PE 

 

Figure A - 36  LC-OCD Data Aug 2nd  – F2 PE 
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Figure A - 37  LC-OCD Data Aug 2nd  – F3 PE 

 

Figure A - 38  LC-OCD Data Aug 2nd  – F4 PE 
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Figure A - 39  LC-OCD Data Aug 2nd  – F3 PE Degradation Day 31 

 

Figure A - 40  LC-OCD Data Aug 14th  – INF 
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Figure A - 41  LC-OCD Data Aug 14th  – F1 PE 

 

Figure A - 42  LC-OCD Data Aug 14th  – F2 PE 
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Figure A - 43  LC-OCD Data Aug 14th  – F3 PE 

 

Figure A - 44  LC-OCD Data Aug 14th  – F4 PE 
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Figure A - 45  LC-OCD Data Aug 14th  – F3 PE Degradation Day 44 

 

Figure A - 46  LC-OCD Data Aug 21st  – INF 
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Figure A - 47  LC-OCD Data Aug 21st  – F1 PE 

 

Figure A - 48  LC-OCD Data Aug 21st  – F2 PE 
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Figure A - 49  LC-OCD Data Aug 21st  – F3 PE 

 

Figure A - 50  LC-OCD Data Aug 21st  – F4 PE 
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Figure A - 51  LC-OCD Data Aug 21st  – F3 PE Degradation Day 52 

 

Figure A - 52  LC-OCD Data Sept 2nd – INF 
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Figure A - 53  LC-OCD Data Sept 2nd – F1 PE 

 

Figure A - 54  LC-OCD Data Sept 2nd – F2 PE 
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Figure A - 55  LC-OCD Data Sept 2nd – F3 PE 

 

Figure A - 56  LC-OCD Data Sept 2nd – F4 PE 
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Figure A - 57  LC-OCD Data Sept 2nd – F3 PE Degradation Day 78 
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Microbiological Data – ATP Concentration 

 

Table A - 19: ng ATP per g of dry media for Filter 1 

DATE PORT 2 PORT 3 PORT 4 PORT 5 

04-JUN-18 4 0 0 0 

11-JUN-18 3 2 2 3 

20-JUN-181 52 51 52 NR 

27-JUN-181 81 76 76 78 

06-JUL-181 47 49 49 49 

12-JUL-18 71 58 34 42 

23-JUL-18 96 111 85 120 

31-JUL-18 131 93 104 106 

10-AUG-18 153 124 121 107 

26-AUG-18 82 79 88 96 

05-SEP-18 108 94 74 74 
* Measured in ng atp per gram of dry media 
1 - Samples corrected for impact of GAC adsorption (see 
Appendix B) 
NR – Could not collect data 

 

Table A - 20: ATP per media for Filter 2 

DATE PORT 2 PORT 3 PORT 4 PORT 5 

04-JUN-18 4 90 62 16 
11-JUN-18 95 72 82 41 

20-JUN-181 114 104 96 86 
27-JUN-181 121 120 126 116 
06-JUL-181 69 70 71 NR 
12-JUL-18 83 76 81 67 
23-JUL-18 208 174 153 137 
31-JUL-18 230 126 183 128 

10-AUG-18 192 170 164 129 
26-AUG-18 157 146 157 119 
05-SEP-18 166 162 146 NR 

* MEASURED IN NG ATP PER GRAM OF DRY MEDIA 
1 - samples corrected for impact of GAC adsorption (see 
Appendix B) 
NR – Could not collect data 
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Table A - 21: ATP per media for Filter 3 

DATE PORT 2 PORT 3 PORT 4 PORT 5 

04-JUN-18 153 172 214 150 
11-JUN-18 142 163 162 75 

20-JUN-181 142 137 133 125 
27-JUN-181 138 135 132 127 
06-JUL-181 71 71 72 71 
12-JUL-18 142 116 101 102 
23-JUL-18 201 135 83 67 
31-JUL-18 220 210 172 136 

10-AUG-18 202 181 211 153 
26-AUG-18 189 145 173 150 
05-SEP-18 186 179 146 173 

*  Measured in ng ATP per gram of dry media 
1. Samples corrected for impact of GAC adsorption (see 
Appendix B) 
NR – Could not collect data 

 

Table A - 22: ATP per media for Filter 4 

DATE PORT 2 PORT 3 PORT 4 PORT 5 

04-JUN-18 112 7 1 NR 
11-JUN-18 83 45 26 21 

20-JUN-181 80 68 54 62 
27-JUN-181 157 122 100 98 
06-JUL-181 50 17 NR NR 
12-JUL-18 154 NR 73 60 
23-JUL-18 201 135 83 67 
31-JUL-18 166 104 73 50 

10-AUG-18 182 125 133 111 
26-AUG-18 180 121 112 79 
05-SEP-18 191 138 139 116 

*  Measured in ng ATP per gram of dry media 
1. Samples corrected for impact of GAC adsorption (see 
Appendix B) 
NR – Could not collect data 
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Appendix B – Calculations and Error Determination 

Backwashing – Estimating Sub-fluidization Velocity 

 Extensive backwash studies (Amirtharajah et al., 1991) have been conducted to optimize  

collapsed-air pulse washing for biological filters. This includes altering the hydraulic loading rate to varying 

fractions of the media’s minimal fluidization velocity (Vmf). It has been found that, even with different air 

flowrates, a fraction of 40% (V/Vmf) was the most optimal in terms of turbidity remaining at the end of the 

backwash (Figure A - 58). 

 

Figure A - 58: Time of backwashing versus fluidization velocity (Amirtharajah, 1993) 

 For the experiments conducted herein Vmf was calculated for each filter media depth, and then 

reduced to 40% of that value for the hydraulic loading rate. The following equations show how Vmf was 

obtained from the media properties.   

(1)   𝑉𝑚𝑓(𝑓𝑜𝑟 𝐹𝑖𝑙𝑡𝑒𝑟𝑠 1, 2, 3 𝑎𝑛𝑑 5) = 𝑉𝑚𝑓−𝑠𝑎𝑛𝑑 [
𝑉𝑚𝑓−𝐺𝐴𝐶

𝑉𝑚𝑓−𝑠𝑎𝑛𝑑
]

𝑋𝐺𝐴𝐶
1.69

 

(2)    𝑉𝑚𝑓(𝑓𝑜𝑟 𝐹𝑖𝑙𝑡𝑒𝑟 4) = 𝑉𝑚𝑓−𝑠𝑎𝑛𝑑 [
𝑉𝑚𝑓−𝐴𝑛𝑡ℎ𝑟𝑎𝑐𝑖𝑡𝑒

𝑉𝑚𝑓−𝑠𝑎𝑛𝑑
]

𝑋𝐴𝑛𝑡ℎ𝑟𝑎𝑐𝑖𝑡𝑒
1.69

 

(3)              𝑋𝐺𝐴𝐶 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝐺𝐴𝐶 𝑖𝑛 𝐹𝑖𝑙𝑡𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟 𝑀𝑒𝑑𝑖𝑎
 

(4)        𝑋𝐴𝑛𝑡ℎ𝑟𝑎𝑐𝑖𝑡𝑒 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝐴𝑛𝑡ℎ𝑟𝑎𝑐𝑖𝑡𝑒 𝑖𝑛 𝐹𝑖𝑙𝑡𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟 𝑀𝑒𝑑𝑖𝑎
 

(5)           𝑉𝑚𝑓 =
𝑅𝑚𝑓𝜇

𝑑90𝜌
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(6)            𝑅𝑚𝑓 = √33.72 + 0.0408𝐺𝑎 − 33.7 

(7)         𝐺𝑎 =
𝑑90

3 𝜌𝑤(𝜌𝑠−𝜌𝑤)𝑔

𝜇2  

Table A - 23: Physical Media Properties 

Assumed Values Units Value 

Particle density for all types of GAC kg/m^3 1350 

Particle density for anthracite kg/m^3 1600 

Particle density for sand kg/m^3 2650 

Uniformity Coefficient for all media - 1.4 

Porosity for GAC and Anthracite - 0.5 

Porosity for Sand - 0.42 

d10 for GAC mm 1.4 

d10 for Anthracite mm 1.4 

d10 for Sand mm 0.48 

Water Density kg/m^3 998.2 

Dynamic Viscosity kg/m.s 0.001002 
 

From equations 1 to 7, the following backwash values were calculated:  

Table A - 24: Hydraulic loading rates during low-rate wash (calculated) 

 Filter 1 Filter 2 Filter 3 Filter 4 

Hydraulic Loading Rate (m/h) 11.0  11.0  11.0  13.0  

 

 These were eventually amended to the values in Table A - 25, as the values in Table A - 24 did not  

adequately mix the media. 

Table A - 25: Hydraulic loading rates for air-scour during low-rate wash (from operating filters) 

 Filter 1 Filter 2 Filter 3 Filter 4 

Hydraulic Loading Rate (m/h) 12.4  12.4  12.4  14.3  
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Data – Error Evaluation 

ATP – Necessary Laboratory Adjustment 

 The ATP concentration per GAC samples collected on June 20th, June 27th, and July 6th, 2018 were 

prone to systematic error due to the GAC’s adsorptive properties. The ATP concentrations were analysed 

as instructed by the LuminUltra Deposit & Surface Analysis Kit (LuminUltra Technologies Ltd., 

Fredericton, New Brunswick, Canada), where one gram of media was submerged in an UltraLyse solution 

that lyses the cells attached to the media and releases the ATP. This lyse solution is extracted, diluted, and 

analysed in subsequent steps. 

 For a typical non-adsorptive solid media sample such as anthracite or sand, it is acceptable to leave 

the sample in the UltraLyse solution at 4°C for up to one week before proceeding with the next steps, as 

the ATP concentration is stable at this stage in the analysis. However, solid media samples that are 

adsorptive are problematic. It was observed that the ATP was adsorbed back onto the solid surface of the 

sample while the lyse is being stored, effectively lowering the concentration of ATP in the supernatant part 

of the UltraLyse tube, skewing the results.  

 On June 20th, June 27th, and July 6th, 2018, samples were left in lyse solution for 1 to 3 days. To 

recover lost data for those three sampling rounds, an ATP degradation curve was re-created (Figure A - 59). 

First, media samples were extracted from Port 3 of all the filters. Then the samples were each divided into 

6 portions, placed in 6 separate lyse tubes, submerged, and shaken as per the manufacturer instructions. The 

different lyse tubes were then analysed for their ATP concentration after being stored at varying time 

intervals – 15 minutes, 45 minutes, 120 minutes, 12 hours, 36 hours, and 72 hours. By plotting the ATP 

concentration against the time that the Lyse tubes were stored, it was possible to re-create the effect of GAC 

adsorption on the final ATP results.  

 A control was made by submerging GAC into a lyse tube, then, immediately after the ATP would 

have been released, the lyse solution was removed from the GAC. This lyse was then measured at varying 

time intervals, while it was stored in a way so that GAC did not influence the results.   
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Figure A - 59: Flow chart of steps for experiment that re-creates ATP adsorption in lyse tubes 

 The ATP concentrations declined at a rate that agrees with an adsorption degradation curve. This 

was the case for Filters 1, 2 and 3. The overall ATP degradation curve for Filter 4 was most difficult to 

interpret, as the media from Port 3 is likely to be a combination of GAC and anthracite. It is assumed that 

the ATP concentration declines at a linear rate for this filter. 

 

Figure A - 60 ATP Degradation curve in lyse for F1 sample 
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Figure A - 61 ATP Degradation curve in lyse for F2 sample 

 

 

Figure A - 62 ATP Degradation curve in lyse for F3 sample 

 

 

Figure A - 63 ATP Degradation curve in lyse for F4 sample 
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Figure A - 64 ATP Degradation curve in lyse for Control (F1) sample 

 The model equations from each of these curves were used to adjust the ATP concentrations of the 

samples affected by the laboratory mishap. The calculations are as follows: 

Modeled Eq’n for F4 

𝑦 = 𝑚(𝑥) + 𝐶 

Modeled Eq’ns for F1, F2 and F3 

𝑦 = mln(𝑥) + 𝐶 

Moving forward, the known values from samples June 20th, June 27th, and July 6th is the ATP concentration 

(𝑦1), and the number of hours this media sample had spent in the lyse (𝑥1). Further calculations also assume 

that the degradation rate (𝑚(𝑥), or mln(𝑥)) does not change between sampling dates, but 𝐶 will change. 

The calculations are therefore as follows: 

Eq’n for F4 

𝐶 =  −𝑚(𝑥1) + 𝑦1 

𝑦2 = 𝑚(𝑥2) + 𝐶 

 

Eq’n for F1, F2 and F3 

𝐶 =  −𝑚𝑙𝑛(𝑥1) + 𝑦1 

𝑦2 = 𝑚𝑙𝑛(𝑥2) + 𝐶 

Where 𝑦2 is the ATP, had the lyse for the media sample been extracted within a proper time frame (𝑥2). 
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UV Absorbance – Error caused by storage 

 Water samples collected for UV absorbance must be analysed within 48 hours, as stated in SMWW 

5910 (American Water Works Association et al., 2012). Due to pragmatic reasons, the UV absorbance was 

instead analysed within 10 days of collection. 

 Some samples were analysed twice in order to address the potential impact of storage times longer 

than 48 hours. 9 samples, collected on June 14th, 2019, were measured after 1 day of storage and again after 

11 days of storage, and 10 samples, collected on July 31st, 2019, were measured after 8 days and again after 

20 days of storage. The rate of change in UV absorbance was approximated from these points and plotted 

to check for the influence of the quantity of the starting UV absorbance (Figure A - 65). Overall, the rates 

of change in UV absorbance were evenly distributed. 

 

Figure A - 65: Approximations of rate of change in UV absorbance over days that the sample is 

stored – plotted against the starting UV absorbance of that sample 

 A true measurement of the change of UV absorbance over storage time should involve taking 

several readings of the same sample, instead of just two, as was done in this experiment. However, this is 

just an approximation and is not meant to definitively establish the rate at which UV absorbance changes.  

 The approximation of change in UV absorbance was calculated to as 0.00053 cm-1/day (the UV 

absorbance can only be measured with a precision of 0.000 cm-1, the additional decimal points are 

construed). This potential change in UV storage was deemed to not significantly affect the final UV 

readings (Figure A - 66 to A-69.). 
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Figure A - 66: UV absorbance in F1 Effluent and correction for the impact of sample storage 

 

Figure A - 67: UV absorbance in F2 Effluent and correction for the impact of sample storage 

 

Figure A - 68: UV absorbance in F3 Effluent and correction for the impact of sample storage 
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Figure A - 69: UV absorbance in F4 Effluent and correction for the impact of sample storage 
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LC-OCD – Error caused by storage 

 As with UV absorbance, the LC-OCD measurements were subject to change while in storage prior 

to analysis. The impact of this storage was estimated by leaving one filtered sample (Filter 3 effluent, 

collected on July 10th, 2019) in storage at 4°C, and repeatedly measuring it. 

 

Figure A - 70: Repeated LC-OCD readings over storage of same sample 

 

Figure A - 71: Change in LC-OCD concentrations in same sample over its storage 
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 The LC-OCD samples collected throughout the biological filtration experiment were measured 

within approximately 2 weeks. It appears that the LMW neutrals and the Building Blocks fraction of LC-

OCD would be prone to change if stored for that long, but the biopolymers and humic substances must have 

remained relatively unaffected (Figure A - 70 and Figure A - 71). On day 34, there is an unexpectantly high 

biopolymer concentration – this is an outlier as it deviates from the overall pattern and there is no 

explanation for it. 

 Aside from its relevance to the biological filtration experiment, the long-term pattern of LC-OCD 

fractions has some interesting implications. For one, there is a decrease in the amphillic and hydrophilic, 

smaller-sized LMW neutrals, and there is an increase in the larger, more humic-like Building Blocks. This 

is a potential explanation for the tendency of UV absorbance to increase during storage. It is also interesting 

that the largest changes in the LC-OCD samples occur from storage day 8 to 16 and from day 52 to 78. One 

theory to explain this is that these changes are somehow caused by microorganisms. For example, when an 

environmental sample is isolated, the cell growth within the sample enters 4 phases; 1) lag, where the cells 

are adjusting to the new environment, or the individual cells grow larger in size, but don’t multiply, 2) the 

cells multiply at an exponential rate 3) substrate supply begins to be depleted and cell growth reaches a 

stationary phase, and 4) substrate is completely depleted and cell death causes the cell population to decline 

(Bitton et al., 2002). This familiar growth pattern could be associated with the pattern of change in building 

blocks and LMW neutrals, however, this association would take thorough experimentation to show. 

 Recommendations for further research in this area are to take more frequent LC-OCD 

measurements during the first 14 days of storage, and to measure cell growth all throughout the LC-OCD 

storage. 
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Appendix C - Statistical Analysis 

Equations 

Linear Regression Equations 

In a linear regression analysis, a series of paired observations (independent, 𝑋𝑖 and dependent, 𝑌𝑖) are fitted 

into model that minimizes the residual sum of squares.  

Fitted linear regression model: 

𝑌𝑖 = 𝛽𝑂 + 𝛽1𝑋𝑖 + 𝜀𝑖 

Residual sum of squares: 

𝑅𝑆𝑆 = ∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 

A linear regression model is appropriate if the data meets the following assumptions 1) that a linear model 

is correct (as opposed to a non-linear model), 2) that each 𝑋𝑖 variable is measured without error, 3) the 

errors associated with 𝑌 are normally distributed and 4) the variance is roughly equal along the regression 

line. 

To test these assumptions, the residuals of the models were plotted and visually observed for non-normal 

distributions, non-linear patterns, or heteroscedasticity. Data that presented any of these issues were log-

transformed (base 10 and e) or square-root transformed, and analysed again, as recommended by (Gotelli 

and Ellison, 2013). 

Paired t-test 

The paired t-test is a popular robust method of determining if two sets of data are statistically different. The 

calculated P-value is usually presented as the result of the t-test. If the P-value is sufficiently large, then 

there is no reason to reject the null hypothesis – in other words, randomness is the primary reason between 

the differences in the set of data. And if the P-value is sufficiently low, it is concluded that something more 

than random variation is contributing to the difference in results. The P-value depends on the sample-size 

of the data sets, the difference between the means of the samples, and the level of variation among them 

(Gotelli and Ellison, 2013). 
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Testing Assumptions – Normality and Equal Variance 

Paired t-Tests Histograms – Influent Results 

 

Figure A - 72 Histograms for paired t-tests among DOC influent (Post-ozonated influent, and Port 

1 from Filter 1, Filter 2, Filter 3 and Filter 4) 
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Paired t-Test Histograms – Filter 1 

 

 
Figure A - 73: Frequency diagram of differences between pairs for influent biopolymer 

concentration and Filter 1 effluent biopolymer concentration 

 
Figure A - 74: Frequency diagram of differences between pairs for influent humic substance 

concentration and Filter 1 effluent humic substance concentration 
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Paired t-Test Histograms – Filter 2 Results  

 

 
Figure A - 75: Frequency diagram of differences between pairs for influent biopolymer 

concentration and Filter 2 effluent biopolymer concentration 

 

 
Figure A - 76: Frequency diagram of differences between pairs for influent humic substance 

concentration and Filter 2 effluent humic substance concentration 



 

159 

 

Paired t-test Histograms – Filter 3 Results 

 
Figure A - 77: Frequency diagram of differences between pairs for influent biopolymer 

concentration and Filter 3 effluent biopolymer concentration 

 

 
Figure A - 78: Frequency diagram of differences between pairs for the removal of biopolymers in 

Filter 1 and the removal of biopolymers in Filter 3 
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Figure A - 79: Frequency diagram of differences between pairs for influent humic substances 

concentration and Filter 3 effluent humic substances concentration 

 

 
Figure A - 80: Frequency diagram of differences between pairs for the removal of humic substances 

in Filter 1 and the removal of humic substances in Filter 3 
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Paired t-Test Histograms – Filter 4 Results 

 
Figure A - 81: Frequency diagrams of differences between pairs for headloss accumulation in Filter 

3 and the headloss accumulation in Filter 4 

 
Figure A - 82: Frequency diagrams of differences between pairs for the effluent turbidity in Filter 3 

and the effluent turbidity in Filter 4 
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Figure A - 83: Frequency diagram of differences between pairs for F3 impact on the SUVA of the 

water and the F4 impact of the SUVA 
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Figure A - 84: Frequency diagram of differences between pairs for influent biopolymer 

concentration and Filter 4 effluent biopolymer concentration 

 

 
Figure A - 85: Frequency diagram of differences between pairs for the removal of biopolymers in 

Filter 3 and the removal of biopolymers in Filter 4 
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Figure A - 86: Frequency diagram of differences between pairs for influent humic substances 

concentration and Filter 4 effluent humic substances concentration 

 

 
Figure A - 87: Frequency diagram of differences between pairs for the removal of humic substances 

in Filter 3 and the removal of humic substances in Filter 4 
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Linear Regression Residuals – Filter 1 DOC Removal over Experimental Period 

 

Figure A - 88: Linear regression residuals for DOC removal in Filter 1 – Iteration 1 

 
 
Figure A - 89: Linear regression residuals for DOC removal in Filter 1 – Iteration 2 

 
 

Figure A - 90: Linear regression residuals for DOC removal in Filter 1 – Iteration 3 
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Figure A - 91: Linear regression residuals for DOC removal in Filter 1 – Iteration 4 

 
Figure A - 92: Linear regression residuals for DOC removal in Filter 1 – Iteration 5 

 
Figure A - 93: Linear regression residuals for DOC removal in Filter 1 – Iteration 6 
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Figure A - 94: Linear regression residuals for DOC removal in Filter 1 – Iteration 7 

 
Figure A - 95: Linear regression residuals for DOC removal in Filter 1 – Iteration 8 

 
Figure A - 96: Linear regression residuals for DOC removal in Filter 1 – Iteration 9 
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Figure A - 97: Linear regression residuals for DOC removal in Filter 1 – Iteration 10 

 
Figure A - 98: Linear regression residuals for DOC removal in Filter 1 – Iteration 11 

 
Figure A - 99: Linear regression residuals for DOC removal in Filter 1 – Iteration 12 
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Figure A - 100: Linear regression residuals for DOC removal in Filter 1 – Iteration 13 

 
Figure A - 101: Linear regression residuals for DOC removal in Filter 1 – Iteration 14 
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Linear Regression Residuals – Filter 1 Fractions of DOC Removal over Experimental Period 

 
Figure A - 102: Linear regression residuals for fraction of DOC removed between the top to Port 2 

in Filter 1– over experimental period 

 
Figure A - 103: Linear regression residuals for fraction of DOC removed between Port 2 and Port 3 

in Filter 1– over experimental period 

 
 
Figure A - 104: Linear regression residuals for fraction of DOC removed between Port 3 and Port 4 

in Filter 1– over experimental period 
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Figure A - 105: Linear regression residuals for fraction of DOC removed between Port 4 and Port 5 

in Filter 1– over experimental period 

 

 
Figure A - 106: Linear regression residuals for fraction of DOC removed between Port 5 and 

Effluent Port in Filter 1– over experimental period 
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Linear Regression Residuals – Filter 2 DOC Removal Over Experimental Period 

 
Figure A - 107: Linear regression residuals for DOC removal in Filter 2 – Iteration 1 

 
Figure A - 108: Linear regression residuals for DOC removal in Filter 2 – Iteration 2 

 
 
Figure A - 109: Linear regression residuals for DOC removal in Filter 2 – Iteration 3 
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Figure A - 110: Linear regression residuals for DOC removal in Filter 2 – Iteration 4 

 
 

Figure A - 111: Linear regression residuals for DOC removal in Filter 2 – Iteration 5 

 
Figure A - 112: Linear regression residuals for DOC removal in Filter 2 – Iteration 6 
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Figure A - 113: Linear regression residuals for DOC removal in Filter 2 – Iteration 7 

 

 
Figure A - 114: Linear regression residuals for DOC removal in Filter 2 – Iteration 7 
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Linear Regression Residuals – Filter 3 DOC Removal Over Experimental Period 

 
Figure A - 115: Linear regression residuals for DOC removal in Filter 3 – Iteration 1 

 
Figure A - 116: Linear regression residuals for DOC removal in Filter 3 – Iteration 2 

 
Figure A - 117: Linear regression residuals for DOC removal in Filter 3 – Iteration 3 
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Figure A - 118: Linear regression residuals for DOC removal in Filter 3 – Iteration 4 

 
Figure A - 119: Linear regression residuals for DOC removal in Filter 3 – Iteration 5 

 
Figure A - 120: Linear regression residuals for DOC removal in Filter 3 – Iteration 6 
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Figure A - 121: Linear regression residuals for DOC removal in Filter 3 – Iteration 7 

 
Figure A - 122: Linear regression residuals for DOC removal in Filter 3 – Iteration 8 

 
Figure A - 123: Linear regression residuals for DOC removal in Filter 3 – Iteration 9 
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Figure A - 124: Linear regression residuals for DOC removal in Filter 3 – Iteration 10 

 

 
Figure A - 125: Linear regression residuals for DOC removal in Filter 3 – Iteration 11 
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Linear Regression Residuals – Filter 3 Fractions of DOC Removal over Experimental Period 

 
Figure A - 126: Linear regression residuals for fraction of DOC removed between the top to Port 2 

in Filter 3– over experimental period 

 
Figure A - 127: Linear regression residuals for fraction of DOC removed between Port 2 and Port 3 

in Filter 3– over experimental period 

 
Figure A - 128: Linear regression residuals for fraction of DOC removed between Port 3 and Port 4 

in Filter 3– over experimental period 
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Figure A - 129: Linear regression residuals for fraction of DOC removed between Port 4 and Port 5 

in Filter 3– over experimental period 

 
 

Figure A - 130: Linear regression residuals for fraction of DOC removed between Port 5 and 

Effluent Port in Filter 3– over experimental period 
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Linear Regression Residuals – Filter 4 DOC Removal Over Experimental Period 

 
Figure A - 131: Linear regression residuals for DOC removal in Filter 4 – Iteration 1 

 
Figure A - 132: Linear regression residuals for DOC removal in Filter 4 – Iteration 2 

 
Figure A - 133: Linear regression residuals for DOC removal in Filter 4 – Iteration 3 
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Figure A - 134: Linear regression residuals for DOC removal in Filter 4 – Iteration 4 

 
Figure A - 135: Linear regression residuals for DOC removal in Filter 4 – Iteration 5 

 
Figure A - 136: Linear regression residuals for DOC removal in Filter 4 – Iteration 6 
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Figure A - 137: Linear regression residuals for DOC removal in Filter 4 – Iteration 7 

 
Figure A - 138: Linear regression residuals for DOC removal in Filter 4 – Iteration 8 

 
Figure A - 139: Linear regression residuals for DOC removal in Filter 4 – Iteration 9 
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Figure A - 140: Linear regression residuals for DOC removal in Filter 4 – Iteration 10 

 
Figure A - 141: Linear regression residuals for DOC removal in Filter 4 – Iteration 11 

 
Figure A - 142: Linear regression residuals for DOC removal in Filter 4 – Iteration 12 
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Figure A - 143: Linear regression residuals for DOC removal in Filter 4 – Iteration 13 

 
Figure A - 144: Linear regression residuals for DOC removal in Filter 4 – Iteration 14 
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Appendix D – Filtration Media Specs 

Sieve Analysis 

In order to confirm that the grain size distributions of the filters were sufficiently similar, all the filter media 

was sieved as recommended by AWWA and ANSI (2002).  

Table A - 26: Sieve analysis results 

Sample 
D10  
(mm) 

Uniformity  
Coefficient (mm) 

Mannheim GAC 1.37 1.30 

New GAC 1.29 1.59 

Anthracite 1.43 1.43 

Sand Trial 0.44 1.53 

 

The media was air-dried prior to measuring. The grain size of GAC is lower than the anthracite, this may 

be explained by the presence of fines. Overall, the grain size distribution is as expected. 

Wet-Dry Conversion 

For the ATP analysis, it was necessary to determine how much more the filter media weighs when it is wet 

versus when it is dry. 

Table A - 27: Wet-dry conversion results 

 
Mannheim  

GAC 
New  
GAC 

Anthracite  
(Trial 1) 

Anthracite  
(Trial 2) 

Wet (g) 1222.2 1133.6 153.1 150.8 

Dry (g) 743.1 677.6 97.7 95.2 

Ratio 1.64 1.67 1.57 1.58 

 

This was approximated to 1.7 for GAC, and 1.6 for anthracite. 
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Filtration Media Specification Sheets 
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