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Director of Research
Institut de Recherche en Informatique Fondamentale
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Abstract

The state complexity of operations on regular languages is an active area of research in
theoretical computer science. Through connections with algebra, particularly the theory
of semigroups and monoids, many problems in this area can be simplified or completely
reduced to combinatorial problems. We describe various algebraic techniques for attacking
state complexity problems. We present a general method for constructing witness languages
for operations – languages that attain the worst-case state complexity when used as the
argument(s) of the operation. Our construction is based on full transformation monoids,
which contain all functions from a finite set into itself. When a witness for an operation is
known, determining the state complexity essentially becomes a counting problem.

These counting problems, however, are not necessarily easy, and the witness languages
produced by this method are not ideal in the sense that they have extremely large alpha-
bets. We thus investigate some commonly used operations in detail, and look for algebraic
techniques to simplify the combinatorial side of state complexity problems and to simplify
the search for small-alphabet witnesses. For boolean operations (e.g., union, intersection,
difference) we show that these combinatorial problems can be solved easily in special cases
by studying the subgroup of permutations in the syntactic monoid of a witness candidate.
If the subgroup of permutations is known to have some strong transitivity property, such as
primitivity or 2-transitivity, we can draw conclusions about the worst-case state complexity
when this language is used in a boolean operation. For the operations of concatenation
and Kleene star (an iterated version of concatenation), we describe a “construction set”
method to simplify state complexity lower-bound proofs, and determine some algebraic
conditions under which this method can be applied. For the reversal operation, we show
that the state complexity of the reverse of a language is closely related to the syntactic
monoid of the language, and use this fact to investigate a generalized version of the reversal
state complexity problem.

After describing our techniques, we demonstrate them by applying them to some clas-
sical state complexity problems. We obtain complex generalizations of the classical results
that would be difficult to prove without the machinery we develop.

iv



Acknowledgements

Much of the work in this thesis would have been impossible without the aid of the GAP
computer algebra system [38] and the GAP Automata package [27]. This thesis was fi-
nancially supported by the Natural Sciences and Engineering Research Council of Canada
grant No. OGP0000871.

On a more personal note: I thank my supervisors Jason Bell and Janusz Brzozowski for
their support and guidance throughout my PhD. I thank my family doctor Dana Quinn
and my former and current therapists Susan Sargeant and Tracy Morgan for helping me
deal with depression and anxiety. I thank Cathy, Mardsen and Ceri for their lifetime of
support. I thank Chantelle for never forgetting about me. I thank Delphine for their gentle
demeanor and interesting conversations. I thank Hubol for his caring personality, his sense
of humor, and his musical talent. I thank Katherine for an uncountable number of things. I
thank Suzanne for befriending me when I felt completely alone, and eating tasty food with
me. I miss you! I thank the members of the University of Waterloo Game Development
Club for giving me a place to belong. I thank everyone else who has shown me kindness,
and I apologize if I omitted your name. The kindness of others makes life worth living.

v



Dedication

This thesis is dedicated to my supervisor and mentor, Janusz Brzozowski, with whom I
have worked since my undergraduate years. He taught me how to do research and write
papers, and was always kind and supportive. Even when I failed him numerous times, he
was patient and lenient with me. I cannot overstate his importance to my development as
a researcher and a person. I will miss working with him greatly.

vi



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 What is State Complexity? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries 6
2.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Abstract Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Monoids and Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Actions, Transitivity and Primitivity . . . . . . . . . . . . . . . . . 13
2.3.3 Examples of Transitive and Primitive Groups . . . . . . . . . . . . 17
2.3.4 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Languages and Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Minimal Automata and the Syntactic Monoid . . . . . . . . . . . . 35
2.4.3 State Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.4 Automaton Constructions . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.5 State Complexity of Basic Operations . . . . . . . . . . . . . . . . . 65

3 The One-Letter-Per-Action Approach 78
3.1 Witnesses for Worst-Case State Complexity . . . . . . . . . . . . . . . . . 78
3.2 History of the OLPA Approach . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Unary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Full Transformation Languages . . . . . . . . . . . . . . . . . . . . 82
3.3.2 Uniform Unary Operations . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.3 Main Theorem: The Unary Case . . . . . . . . . . . . . . . . . . . 87

vii



3.4 Multiary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.1 Full Transformation Tuple Languages . . . . . . . . . . . . . . . . . 89
3.4.2 Uniform Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.3 Main Theorem: The General Case . . . . . . . . . . . . . . . . . . . 92

3.5 Uniform and Non-Uniform Operations . . . . . . . . . . . . . . . . . . . . 94
3.5.1 Uniform Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.2 Non-Uniform Operations . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Techniques for Boolean Operations 103
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Primitive Groups and Uniform Minimality . . . . . . . . . . . . . . . . . . 104
4.3 Uniform Boolean Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 Accessibility of the Direct Product . . . . . . . . . . . . . . . . . . . . . . 116
4.5 Distinguishability in the Direct Product . . . . . . . . . . . . . . . . . . . 125
4.6 Dissimilar DFAs and the Main Result . . . . . . . . . . . . . . . . . . . . . 132
4.7 Similar DFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.8 Beyond Permutation DFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.9 An Affine Group Construction . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5 Techniques for Concatenation and Kleene Star 151
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 Reachability and Construction Sets . . . . . . . . . . . . . . . . . . . . . . 152
5.3 Concatenation Witness Examples . . . . . . . . . . . . . . . . . . . . . . . 158
5.4 Construction Sets for Star . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6 Reversal and Deterministic Finite Automata with Output 173
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.2 Deterministic Finite Automata with Output . . . . . . . . . . . . . . . . . 175
6.3 State Complexity of Reversal . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 Revisiting State Complexity of Regular Languages 190
7.1 Applying the OLPA Approach . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

References 200

viii



List of Tables

5.1.1 Complexity of concatenation in subclasses . . . . . . . . . . . . . . . . 152

6.3.1 Largest sizes of 2-generated monoids . . . . . . . . . . . . . . . . . . . 181
6.3.2 Lower bound values for Corollary 6.3.10 . . . . . . . . . . . . . . . . . 185

ix



List of Figures

1.1.1 Determinism and nondeterminism . . . . . . . . . . . . . . . . . . . . . 2

2.4.1 Deterministic semiautomaton with transition monoid T2 . . . . . . . . 26
2.4.2 Deterministic semiautomaton with transition monoid Sn . . . . . . . . 27
2.4.3 Deterministic semiautomaton with transition monoid S4 . . . . . . . . 29
2.4.4 Deterministic semiautomaton with transition monoid Tn . . . . . . . . 30
2.4.5 Language recognition in deterministic and nondeterministic automata . 33
2.4.6 Minimal DFA using Myhill-Nerode . . . . . . . . . . . . . . . . . . . . 38
2.4.7 Minimal DFA using the quotient method . . . . . . . . . . . . . . . . . 40
2.4.8 Overly complicated, non-minimal DFA . . . . . . . . . . . . . . . . . . 43
2.4.9 Renaming the states of our non-minimal DFA . . . . . . . . . . . . . . 44
2.4.10 Merging some states of our non-minimal DFA . . . . . . . . . . . . . . 45
2.4.11 Merging more states of our non-minimal DFA . . . . . . . . . . . . . . 45
2.4.12 Minimized form of the DFA . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.13 Example automaton A . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.14 Determinized version of A . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.15 Example automaton A . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.16 Reversal of the automaton A . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.17 Two deterministic automata A′ and A . . . . . . . . . . . . . . . . . . 55
2.4.18 Concatenation of A′ and A . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.19 Example automaton A . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.20 Kleene star of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.21 Determinized star automaton for A . . . . . . . . . . . . . . . . . . . . 60
2.4.22 Minimized star automaton for A . . . . . . . . . . . . . . . . . . . . . 60
2.4.23 Two example automata A′ and A . . . . . . . . . . . . . . . . . . . . . 63
2.4.24 Direct product A′ ×A . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.25 Witness automaton An . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4.26 Second witness automaton A′

n . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.27 Automaton for reverse of the language Ln . . . . . . . . . . . . . . . . 66

x



2.4.28 Automaton for the concatenation L′
mLn . . . . . . . . . . . . . . . . . 69

2.4.29 Automaton for the star of Ln . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.30 Direct product automaton A′

3 ×A4 . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Standard DFA of full transformation language . . . . . . . . . . . . . . 83

4.2.1 Permutation and non-permutation DFAs . . . . . . . . . . . . . . . . . 105
4.2.2 Uniformly minimal DFA . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.3 Non-minimal DFA with imprimitive transition group . . . . . . . . . . 109
4.3.1 Two DFAs and a symmetric difference DFA . . . . . . . . . . . . . . . 113
4.3.2 Uniformly boolean minimal DFA . . . . . . . . . . . . . . . . . . . . . 114
4.9.1 DFA from affine group construction . . . . . . . . . . . . . . . . . . . . 147

xi



Chapter 1

Introduction

1.1 What is State Complexity?

This thesis concerns regular languages and finite automata, two classes of objects whose
study is traditionally within the purview of computer science. Finite automata model
computers with a finite amount of memory, which execute simple “recognizer” programs:
given an input, determine whether the input is “valid” or “invalid”. Regular languages
are the sets of inputs that are considered “valid” by some such finite-memory recognizer.
Not all sets are regular; some may require unbounded memory to recognize, and some
may even be impossible for any sort of computer to recognize, such as Turing’s famous
“halting set” consisting of all computer programs that do not get stuck in an infinite loop
when executed on a given input. The development of finite automata and regular languages
coincides with the development of early electronic computers, and these objects have many
practical applications. Nonetheless, they also have rich mathematical properties and enjoy
deep connections to algebra, topology and logic. This work gives only a small glimpse of the
pure-mathematical side of the theory of languages and automata; we consider connections
to the theory of monoids and groups, and use these connections to attack a rather small
and particular class of problems. We are interested in the deterministic state complexity
of operations on regular languages.

Many kinds of finite automata have been defined, but we are concerned mostly with
two classical models: deterministic and nondeterministic finite automata. In both the
deterministic and nondeterministic models, the finite memory of the automaton is divided
into states, and there are rules for transitioning between states. The input is given as a
word – a finite-length sequence of letters – and the automaton reads one letter at a time.
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After each letter is read, the automaton then chooses a transition rule, which must match
the current state and the letter that was read, and transitions to a new state (or it may stay
in the same state, depending on the rule). If there is exactly one choice of transition rule for
each state-letter pair, the automaton is called deterministic. More general automata, which
do not necessarily meet this condition, are called nondeterministic. In a nondeterministic
finite automaton, some state-letter pairs may have multiple choices of rule, or no choice of
rule.

1 2 1 2

b a, b

a

aa

a, b

Figure 1.1.1: Deterministic automaton (left) and nondeterministic automaton (right).

Figure 1.1.1 illustrates the difference between determinism and nondeterminism. The
automata are represented as directed graphs, where the nodes are states and the edges,
labelled with letters, correspond to transition rules. For example, an edge of the form
1

a
−→ 2 means that from state 1, if the letter a is read, the automaton should transition to

state 2. Notice that in the right automaton, if the state is 1 and a letter a is read, there are
two choices for the next transition: the automaton may remain in state 1, or transition to
state 2. If the state is 2 and a letter b is read, there are no choices for the next transition.
Thus the right automaton is nondeterministic. However, in the left automaton, there is
always exactly one choice of transition corresponding to each state-letter pair – the left
automaton is deterministic.

As mentioned, finite automata correspond to finite-memory “recognizer” programs,
which decide whether input words are “valid” or “invalid”, and a set of words is called a
regular language if it is the set of “valid” words of a recognizer. The exact semantics of
language recognition by automata will be discussed later; for now, it is sufficient to know
that this correspondence exists. With this connection between languages and automata
established, we may ask the following question: given a regular language, what is the least
amount of memory needed to recognize it? That is, what is the minimal number of states
needed to recognize the language with a finite automaton? If we restrict our attention to
deterministic finite automata, this minimal number of states is called the deterministic state
complexity of the language. By considering the more general nondeterministic automata,
we may also define the nondeterministic state complexity of a regular language; however,
this thesis is concerned only with deterministic state complexity. We will generally refer
to deterministic state complexity as simply state complexity, with no further qualifiers.
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State complexity of regular languages is an active area of research, part of the more
general study of descriptional complexity of formal languages. Roughly speaking, descrip-
tional complexity is concerned with the size of various representations or models of formal
languages, including but not limited to automata and other sorts of “recognizers”. A 2016
survey on state complexity by Gao, Moreira, Reis and Yu [37] identifies two general types of
results in descriptional complexity. The first type are representational or transformational
results; these concern the change in size caused by conversions between different models.
For example, if we convert a nondeterministic finite automaton to a deterministic finite
automaton, how much extra memory (that is, how many new states) does the determin-
istic automaton need? The other type are operational results; these concern the change
in model size when an operation is performed on a language or on multiple languages.
For example, how large can the state complexity of the union of two regular languages be
compared to the state complexities of the original languages?

It should now be clear what it means when we say we are interested in deterministic
state complexity of operations on regular languages – we are studying operational de-
scriptional complexity, using deterministic state complexity as our measure of choice, and
focusing specifically on regular languages as opposed to more general sets of words. Despite
this laser-sharp focus – on one type of descriptional complexity result, on one particular
measure, on one particular class of languages (and its subclasses) – there is a wealth of
interesting problems in this area.

An overview of early work on (deterministic) state complexity can be found in the
introductory sections of [5]. Papers dealing with “representational” state complexity issues
appeared as early as the 1960s, but to our knowledge, the first paper on operational state
complexity was by Maslov, published in 1970 [62]. Maslov’s paper studied the operational
state complexity of union, concatenation, Kleene star, and a few other operations on regular
languages; however, some proofs were omitted and the result for Kleene star contained a
small error. Furthermore, the paper was published in a Russian journal and was overlooked
by Western researchers for many years. In 1994, Yu, Zhuang and Salomaa rediscovered
and proved several of Maslov’s results [79]. Their paper sparked a great deal of interest in
state complexity, and many papers on the subject followed.

The papers of Maslov and Yu, Zhuang and Salomaa left open many interesting direc-
tions for future research. One direction was to study the complexity of other operations
these authors did not consider. Many operations have been considered, including other
binary boolean operations [5] and boolean operations of higher arity [35], cyclic shift [55],
shuffle [13, 23] and more generally shuffles on trajectories [32], square and higher pow-
ers [31], the root operation [58, 59], and proportional removals [29]. There are also many
papers on combined operations formed by composing operations, such as “star of union” [73]
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and “star-complement-star” [45, 52].

Another direction was to reduce the alphabet size of the witness languages used for
particular operations – the languages which attain the maximal possible state complexity
for a particular operation. For example, Yu, Zhuang and Salomaa provided witnesses for
concatenation over a three-letter alphabet, and proved that the maximal state complexity
cannot be reached with a one-letter alphabet, but left it open whether two letters are
sufficient. Jírasková was later able to find witnesses for concatenation over a two-letter
alphabet [46]. (In fact, Maslov had already provided a two-letter witness in 1970, but did
not give a proof, and as mentioned this paper was overlooked for some time.)

Yet another direction was to consider the range of state complexities that may result
from an operation, as opposed to simply the worst-case (largest possible) value. Numbers
which represent gaps in the range of possible complexities are called magic numbers [39],
and so these range problems are referred to as magic number problems. Operations that
have been studied include union and intersection [44], reversal [74], star [47, 51], and
concatenation [48, 53]; in all of these cases there are no magic numbers, meaning the range
of complexities for each operation is a contiguous interval of integers.

One of the most fruitful directions was to consider operational state complexity in proper
subclasses of the regular languages. For example, all finite languages are regular, but not
all regular languages are finite; thus finite languages form a proper subclass of the regular
languages. Thus we can ask questions such as: how large can the state complexity of the
union of two finite languages be compared to the state complexity of the original languages?
And then as above we may consider additional operations, optimal alphabet sizes, magic
number problems, and so forth in this new context of finite languages. A survey of previ-
ously studied subclasses can be found in [8]. Aside from finite languages [22], subclasses
that have been studied in a state complexity context include unary (one-letter alphabet)
and finite unary languages [78], star-free languages [15], non-returning languages [9, 34],
left ideal, right ideal, two-sided ideal, and all-sided ideal languages [10, 11, 19], prefix-free
languages [18, 42, 49, 57], suffix-free languages [16, 20, 25, 41, 50], bifix-free, factor-free
and subword-free languages [12, 36], prefix-closed, suffix-closed, factor-closed and subword-
closed languages [14, 16, 18, 42], proper prefix-convex languages [17], and proper suffix-
convex languages [75].

The goal of this thesis is to demonstrate the power of an algebraic viewpoint in solving
state complexity problems. It is common to introduce automata as a type of directed graph
with labelled edges (as we did above). This is a very intuitive representation of automata,
widely used in introductory courses and lectures for non-specialists, but even in more
advanced contexts it is often useful. However, this view of automata leads one to think

4



of the behaviour of automata in a local sense. That is, one thinks of the transitions of an
automaton as edges leading from one particular state to another. We believe that for state
complexity problems, this point of view is not ideal and can even obscure understanding.
It is better to think of a deterministic finite automaton as specifying an action of a monoid
on the set of states. The action is defined in a global way: for each letter which may
appear in an input word, one considers all transitions labelled with that letter and how
these transitions affect the set of states as a whole. We will see that this small shift in
viewpoint leads to new insights and a stronger understanding of the principles underlying
state complexity of operations.

The remainder of the thesis is structured as follows. Chapter 2 covers the basic def-
initions, notations, and results that will be needed in subsequent chapters. Chapter 3
describes a general technique for finding witness languages which maximize the state com-
plexity of particular operations, called the “One Letter Per Action” approach. This ap-
proach is the cornerstone of the thesis – it connects state complexity with algebra, reduces
many state complexity problems to combinatorics, and illustrates the basic principles be-
hind solving state complexity problems.

The next three chapters look at the state complexity problems for particular operations
in greater detail, and describe specialized techniques for solving them more easily. We focus
on the most widely used and studied operations. Chapter 4 discusses boolean operations,
such as union, intersection and set difference, and connects these operations with the theory
of transitive and primitive permutation groups. Chapter 5 covers the concatenation and
Kleene star operations, focusing on techniques for solving reachability problems. Chapter
6 looks at a generalization of the reversal state complexity problem to a different machine
model called deterministic finite automata with output.

At the end of Chapter 2, we take a look at the basic state complexity problems for the
operations mentioned above. In the final chapter, Chapter 7, we revisit these problems
and see how our new techniques enabled them to be solved more simply, and enable us to
obtain far more general theorems. We also discuss possible avenues for future work in this
area.
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Chapter 2

Preliminaries

2.1 Notation and Conventions

Below, we summarize the notation and mathematical conventions used in this thesis. The
remaining sections of this chapter define the concepts mentioned in detail and prove some
basic results on them. We recommend reading this summary in full before proceeding to
later chapters; the other sections can be read as necessary.

Results given without attribution in this chapter are generally either elementary or
part of the “folklore” of the relevant field. None of the results presented in this chapter
are originally due to the thesis author.

The natural numbers, denoted by N, contain zero.

Singleton sets are identified with the elements they contain; we often write x instead of
{x}.

The power set of a set X , the set of all subsets of X , is denoted P(X).

The complement of a set S ⊆ X is the set X \ S and is denoted S. The set relative to
which we are taking the complement will always be clear from the context.

Binary relations between X and Y are subsets of X × Y . A relation ρ can be viewed as
an element-to-set map ρ : X → P(Y ), or as a set-to-set map ρ : P(X) → P(Y ) by applying
the element-to-set map to each element of the argument set.

Maps are generally written to the right of their arguments: we write (x)ρ or simply xρ,
rather than ρ(x), for the image of x under ρ.
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Composition of binary relations is denoted by juxtaposition and performed from left to
right. The composition ρτ of ρ ⊆ X × Y and τ ⊆ Y × Z is defined as the composition of
the element-to-set map ρ : X → P(Y ) with the set-to-set map τ : P(Y ) → P(Z).

Functions are treated as a special case of binary relations, and follow the same rules: we
write xfg to mean “apply f to x, then apply g to the result”, as opposed to something
like (g ◦ f)(x).

Equivalence relations: note that if ρ is an equivalence relation on X , then the image xρ
is precisely the equivalence class of x ∈ X . The set of equivalence classes is denoted X/ρ.

Function equality: consider the functions f : N → N and g : N → Z defined by nf =
ng = n + 1. Are they equal, because they are equal as relations, or are they distinct,
because they have different codomains? It turns out one’s viewpoint on this issue affects
one of our most important definitions! So, we introduce terminology for the two opposing
viewpoints. We say that a person who considers the functions distinct has the restricted
viewpoint on function equality, because their conditions for function equality are more
restrictive. A person who considers the functions equal has the unrestricted viewpoint. For
most of the thesis, either the viewpoint is irrelevant or we use the restricted viewpoint, but
we will occasionally explore the consequences of the unrestricted viewpoint.

Transformations of X are functions t : X → X . The identity transformation is denoted
id. The transformation (S → x) sends every element of S to x, and fixes all elements of
X \ S. The transformation (jix → xt), where t : X → X , sends x to xt if i ≤ x ≤ j and
otherwise fixes x; in this context, usually X is {1, 2, . . . , n} and t is x 7→ x+1 or x 7→ x−1,
with arithmetic performed modulo n. The full transformation monoid on X , is denoted
TX , or Tn if X = {1, 2, . . . , n}. A transformation monoid on X is a submonoid of TX and
|X| is called the degree.

Permutations are bijective transformations and can be described using cycle notation.
Let K = {x1, . . . , xk} ⊆ X ; the permutation of X that maps xi to xi+1 for i < k, maps xk
to x1, and fixes x ∈ X \K is denoted (x1, . . . , xk) and is called a k-cycle. A 2-cycle is also
called a transposition. The symmetric group on X is denoted SX or Sn if X = {1, 2, . . . , n}.
A permutation group on X is a subgroup of SX and is a special type of transformation
monoid. The alternating group is denoted AX or An.

Monoids and groups: when working with arbitrary monoids and groups, usually the
operation is denoted by juxtaposition and the identity element is denoted e. A submonoid
or subgroup of a monoid M must contain the identity element of M ; it cannot have a
different identity. We write G ≤ M to mean that G is a subgroup of M . For a group G
and S ⊆ G, the group generated by S is denoted 〈S〉. We write M ∼= M ′ to mean that
monoids M and M ′ are isomorphic.
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Actions: a monoid action of M on X can be defined in two ways: as a function ψ : X ×
M → X or as a family of transformations ψm : X → X for each m ∈M . Instead of writing
(x,m)ψ or xψm we usually just write xm. Often we do not specify a symbol such as ψ for
the action at all and just say, “let M act on X”. We use the term group action when M is
a group. A transformation monoid on X has a natural action which just applies the given
transformation to the given element of X .

Kernels and quotients: the kernel of a monoid homomorphism is a congruence, but the
kernel of a group homomorphism is a normal subgroup. We write kerϕ for the kernel of
the homomorphism ϕ. If ρ is a congruence on a monoid M , we write M/ρ for the quotient
monoid. If N is a normal subgroup of a group G, we write G/N for the quotient group.

Finite fields of order pk are denoted Fpk . The field Fp is the integers modulo p. We may
explicitly construct Fpk as a quotient Fp[x]/〈f〉, where f is an irreducible polynomial of
degree k over Fp and (f) is the ideal generated by f .

Alphabets, words, languages: alphabets are finite sets whose elements are called letters.
Words over an alphabet are finite in length, and the length of a word w is denoted |w|. The
set of all words over an alphabet Σ is denoted Σ∗. The empty word is denoted ε. If L ⊆ Σ∗,
we say L has alphabet Σ. Formally, a word over Σ of length n is a function from {1, . . . , n}
into Σ; thus under the restricted viewpoint, two words over different alphabets are never
equal, and every language has a unique alphabet. Under the unrestricted viewpoint, words
over different alphabets can be equal, and a language can have multiple alphabets; however
every language has a unique alphabet of minimal size called the minimal alphabet.

Regular expressions use ∪ as the union symbol, as opposed to + or | like some authors.
The star operator has the highest precedence and union has the lowest. For example, the
expression aa∗ ∪ b means (a(a∗)) ∪ b.

Finite semiautomata (FSAs), or simply semiautomata, are triples (Q,Σ, T ) where Q is a
finite set whose elements are called states, Σ is an alphabet, and T ⊆ (Q×Σ)×Q is a binary
relation whose elements are called transitions. For elements of T we write (q, a, q′) instead
of ((q, a), q′). The binary relation T extends to a monoid action T : P(Q)×Σ∗ → P(Q) of
Σ∗ on P(Q), and so we can use our usual notation for monoid actions and write STw = S ′ or
simply Sw = S ′ instead of (S, w)T = S ′. We also write S

w
−→ S ′ to mean Sw = S ′. If T is a

function, then the semiautomaton is called deterministic; we write DFSA for deterministic
finite semiautomaton. In the deterministic case, we can extend T to a monoid action
T : Q×Σ∗ → Q of Σ∗ on Q, and the actions of words are transformations of Q; these word
actions form a transformation monoid on Q called the transition monoid of the DFSA,
which acts naturally on Q. This interpretation of FSAs and DFSAs as essentially being a
way to specify monoid actions on finite sets is fundamental to this thesis.
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Finite automata (FAs), or simply automata, are quintuples (Q,Σ, T, I, F ) where (Q,Σ, T )
is an FSA, I ⊆ Q is a set of initial states and F ⊆ Q is a set of final states. The triple
(Q, I, F ) is called the state configuration of the FA, and it is deterministic if |I| = 1. An FA
is deterministic if the semiautomaton (Q,Σ, T ) and the state configuration (Q, I, F ) are
both deterministic; we write DFA for deterministic finite automaton. Usually the state set
Q is assumed to be a finite set of integers such as {1, 2, . . . , n} and the unique initial state
is taken to be 1 without loss of generality. All definitions for semiautomata are inherited by
automata, e.g., a DFA has a transition monoid which is equal to the transition monoid of
the underlying DFSA. If A is an FA, its language is denoted L(A). The indistinguishability
relation on states of a DFA with respect to S ⊆ Q (defined in Section 2.4.1) is denoted
∆S; if S = F we simply write ∆ rather than ∆F .

Reachability and accessibility: as usual, a state of an automaton is called reachable if
there is a path to it from an initial state in the underlying state graph. Automata in which
all states are reachable are called accessible.

State complexity: the state complexity of a regular language L is denoted sc(L). The
state complexity of an operation Φ on regular languages is denoted sc(Φ). The state com-
plexity of an operation with two or more operands is affected by one’s choice of restricted
or unrestricted viewpoint. Under the restricted viewpoint we assume that all operands as
well as the result share the same alphabet. Under the unrestricted viewpoint, we make no
such assumption, but we compute the state complexity of the operands and the result with
respect to their minimal alphabets.

Concatenation automata: we use some slightly unorthodox notation for automata rep-
resenting the concatenation of two languages. Applying the usual construction to two
DFAs with state sets Q and Q′ respectively, we obtain a DFA whose states are subsets of
P(Q∪Q′) which contain at most one state of Q. We write these special subsets as ordered
pairs (X, Y ), where X is a subset of Q with at most one element, and Y is an arbitrary
subset of Q′. In other words, we treat the state set as a subset of (Q ∪ {∅}) ×P(Q′).

2.2 Relations and Functions

Binary relations. A binary relation ρ between X and Y is a subset of X × Y . We often
write x ρ y to mean (x, y) ∈ ρ. When X = Y , we simply refer to ρ as a binary relation on
X .

If ρ ⊆ X × Y and τ ⊆ Y × Z, the composition of ρ and τ is the relation

ρτ = {(x, z) ∈ X × Z : there exists y ∈ Y such that (x, y) ∈ ρ and (y, z) ∈ τ}.
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For x ∈ X and ρ ⊆ X × Y , the image of x under ρ is the set xρ = {y ∈ Y : (x, y) ∈ ρ}.
For x 6∈ X we define xρ = ∅.

The converse of a binary relation ρ ⊆ X × Y is the relation ρ−1 = {(y, x) : (x, y) ∈
ρ} ⊆ Y × X . The set yρ−1 = {x ∈ X : (x, y) ∈ ρ} is called the preimage of y under ρ.
Elements of this set are called preimages of y; for example, if x ∈ yρ−1 we say that x is a
preimage of y.

Relations as maps. If we write P(S) for the power set of a set S (that is, the set of all
subsets of S), then we can view ρ as a map ρ : X → P(Y ). We may also extend ρ by union
to a map ρ : P(X) → P(Y ) as follows: for S ⊆ X , we define

Sρ =
⋃

s∈S

sρ.

We thus have two ways to make sense of an expression like xρτ : it is the image of x under
the composite relation ρτ ⊆ X × Z, and it is also the image of the set xρ ⊆ Y under
the map τ : P(Y ) → P(Z). Additionally, we have a way to make sense of a composition
ρτ : X → P(Z) of maps ρ : X → P(Y ) and τ : Y → P(Z): take the composition of the
corresponding relations.

Equivalence relations. An equivalence relation on X is a binary relation ρ on X with
the following properties:

• Reflexivity : (x, x) ∈ ρ for all x ∈ X .

• Symmetry : if (x, x′) ∈ ρ, then (x′, x) ∈ ρ.

• Transitivity : if (x, x′) ∈ ρ and (x′, x′′) ∈ ρ, then (x, x′′) ∈ ρ.

The set xρ is called the equivalence class of ρ containing x. The equivalence classes of an
equivalence relation on X form a partition of the set X . The set of equivalence classes of
X under ρ is denoted X/ρ.

Partial orders. A partial order on X is a binary relation ≤ on X that is reflexive,
transitive, and antisymmetric: if x and x′ are distinct and x ≤ x′, then we must not have
x′ ≤ x. If x ≤ x′ or x′ ≤ x, then we say x and x′ are comparable with respect to the partial
order ≤. A total order on X is a partial order on X such that every pair of elements in
X ×X is comparable.

Functions. A function f : X → Y is a binary relation f ⊆ X × Y such that |xf | = 1 for
all x ∈ X . The set X is the domain of the function and the set Y is the codomain. Follow-
ing our notation for binary relations, we write functions to the right of their arguments.
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Composition of functions is defined by composing the corresponding relations. Thus the
order of composition is left-to-right ; in a composition fg, first f is applied and then g.

The restricted and unrestricted viewpoints. There are two different points of view
one can take on equality of functions. We outline them here, as some of our later definitions
will be significantly affected by one’s point of view. The simplest and least restrictive point
of view is that two functions are equal if they are equal as sets of ordered pairs. We call
this the unrestricted viewpoint on function equality. The restricted viewpoint also requires
that the domain and codomain of the two functions are equal. For example, consider the
functions f : N → N and g : N → Z defined by nf = ng = n+ 1. These functions are equal
under the unrestricted viewpoint, since the sets f ⊆ N × N and g ⊆ N × Z contain the
same elements, but they are not equal under the restricted viewpoint, since the codomain
N of f is not the same as codomain Z of g.

Transformations and permutations. A transformation of a set X is a function t : X →
X , that is, a function from X into itself. We say t is a permutation of X if Xt = X . We
say t acts as a permutation on S ⊆ X if St = S. If t acts as a permutation on S,
then every element of S has at least one preimage under t, that is, for all s ∈ S, the set
st−1 = {x ∈ X : xt = s} is non-empty.

A cyclic permutation of a set {x1, . . . , xk} ⊆ X is a permutation p such that xip = xi+1

for 1 ≤ i < k, xkp = x1, and xp = x for all x ∈ X \ {x1, . . . , xk}. We denote such a
permutation as (x1, . . . , xk), and we call it a cycle of length k or simply k-cycle. A cyclic
permutation of a two-element set is also called a transposition. It is well known that every
permutation can be expressed as a product of cyclic permutations; in fact, a product of
transpositions suffices. A permutation is called even if it can be expressed as a product of
an even number of transpositions, and odd if it cannot.

2.3 Abstract Algebra

2.3.1 Monoids and Groups

Basic definitions. A monoid is a set M equipped with an associative binary operation ·
and an identity element e such that m · e = e ·m = m for all m ∈ M . Typically we omit
the symbol for the operation; so the previous equation could be written as me = em = m.
For n ≥ 1 we write mn for the n-fold product of m with itself, and define m0 = e for all
m ∈ M . If for each m ∈ M , there exists m′ ∈ M such that mm′ = m′m = e, then M
is called a group, and m′ is called the inverse of m and denoted m−1. A group with a
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commutative binary operation is called an abelian group. The order of a monoid M is the
size of the set M . The order of an element m of a monoid is the least integer n ≥ 1 such
that mn = e, if such an integer exists; otherwise the element is said to have infinite order.

Submonoids and subgroups. A submonoid of M is a subset M ′ ⊆ M which is closed
under · and contains the identity e of M . If additionally M ′ is a group, it is called a
subgroup of M ; we write M ′ ≤ M to mean that M ′ is a subgroup of M . Note that we do
not allow submonoids or subgroups of M to have an identity element different from that of
M . If x1, . . . , xk are elements of a group G, then 〈x1, . . . , xk〉 denotes the group generated
by x1, . . . , xk, the smallest subgroup of G containing x1, . . . , xk. A group generated by a
single element is called a cyclic group.

Homomorphisms. Let M and M ′ be monoids with identity elements e and e′ respectively.
A homomorphism from M to M ′ is a function ϕ : M → M ′ such that (mm′)ϕ = (m)ϕ(m′)ϕ
for all m,m′ ∈ M and eϕ = e′. A bijective homomorphism is called an isomorphism, and
two monoids are said to be isomorphic if there exists an isomorphism from one to the
other. We write M ∼= M ′ to mean that M and M ′ are isomorphic.

Congruences and quotients. An equivalence relation ρ on M is a congruence if mρm′

and n ρ n′ implies mn ρ m′n′ for all m,m′, n, n′ ∈ M . If ρ is a congruence, then whenever
mρ = m′ρ and nρ = n′ρ, we have (mn)ρ = (m′n′)ρ. This means we can extend the
operation of the monoid to equivalence classes in a well-defined way: for m,m′ ∈ M ,
define (mρ)(m′ρ) = (mm′)ρ. Thus M/ρ, the set of equivalence classes of M under ρ,
becomes a monoid when equipped with this equivalence class product. This monoid is
called the quotient monoid of M by ρ.

Kernels and the First Isomorphism Theorem. IfM andM ′ are monoids and ϕ : M →
M ′ is a homomorphism, the kernel of ϕ is the relation kerϕ = {(m,m′) : mϕ = m′ϕ}.
The kernel of a homomorphism is always a congruence, and the converse also holds: every
congruence of a monoid is the kernel of a homomorphism. Thus the quotient monoid
M/ kerϕ can be formed, and in fact it is isomorphic to Mϕ, the image of ϕ. This is called
the first isomorphism theorem.

If G and G′ are groups and ϕ : G → G′ is a homomorphism, the kernel of ϕ is defined
differently: it is the set kerϕ = {g ∈ G : gϕ = e′}, that is, the set of elements of G that
map to the identity of G′. These two definitions are related as follows: the “group-kernel”
of a homomorphism from G to G′ is precisely the equivalence class of the “monoid-kernel”
of the homomorphism that contains the identity element of G. For groups, the full set of
equivalence classes of the “monoid-kernel” is completely determined by just the equivalence
class of the identity element.

Normal subgroups. If G is a group, N ≤ G, and gng−1 ∈ N for all g ∈ G and n ∈ N ,
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we say N is a normal subgroup of G. A group G is simple if it has no non-trivial proper
normal subgroups, that is, the only normal subgroups of G are G itself and the trivial
group (containing just the identity element of G). The kernel of a homomorphism from G
to another group is always a normal subgroup of G, and conversely every normal subgroup
of G arises as a kernel of a homomorphism of groups. Occasionally we use the following
elementary facts about normal subgroups and homomorphisms.

Proposition 2.3.1. If ϕ : G → G′ is a homomorphism of groups and kerϕ is the trivial
one-element subgroup of G, then ϕ is injective.

Proof. Let e be the identity of G and e′ the identity of G′. Fix g, h ∈ G with g 6= h. If
gϕ = hϕ then (gϕ)(hϕ)−1 = e′. Thus (gh−1)ϕ = e′ and it follows that gh−1 = e, since a
homomorphism must map identity elements to identity elements. Thus g = h, which is a
contradiction; so gϕ 6= hϕ and it follows that ϕ is injective.

Proposition 2.3.2. If ϕ : G → G′ is a surjective homomorphism of groups and N is a
normal subgroup of G, then Nϕ is a normal subgroup of G′.

Proof. We leave it as an exercise to prove the following fact: if H is a subgroup of G,
and ϕ : G → G′ is a group homomorphism, then Hϕ is a subgroup of G′. Thus Nϕ is a
subgroup of G′; it remains to prove that it is normal.

Fix g′ ∈ G′ and n′ ∈ Nϕ. Since ϕ is surjective, there exists g ∈ G with gϕ = g′.
Also, since n′ ∈ Nϕ, there exists n ∈ N with nϕ = n′. Since N is normal in G, we have
gng−1 ∈ N . Thus (gng−1)ϕ = g′n′(g′)−1 ∈ Nϕ, and it follows that Nϕ is normal in G′.

Quotient groups and cosets. The notion of a quotient group is usually defined in
terms of normal subgroups, rather than congruences. There is no fundamental difference
mathematically, since there are correspondences between normal subgroups and kernels
and between kernels and congruences. The quotient of a group G by a normal subgroup
N , denoted G/N , is the set of left cosets gN = {gn : n ∈ N} for g ∈ G, with the operation
on cosets defined by (gN)(g′N) = (gg′)N . Right cosets may be defined analogously and
produce an isomorphic group.

2.3.2 Actions, Transitivity and Primitivity

Actions. A monoid action of M on a set X is a function ψ : X ×M → X such that
((x,m)ψ,m′)ψ = (x,mm′)ψ and (x, e)ψ = x for all m,m′ ∈ M and x ∈ X . Equivalently,
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it is a family of functions ψm : X → X such that ψmψm′ = ψmm′ for all m,m′ ∈ M and
ψe is the identity map on X . The map ψm is called the action of m. To simplify the
notation, we often omit the action symbol ψ and just write xm instead of xψm or (x,m)ψ.
Furthermore, we often avoid assigning a symbol to the action at all; rather than “let ψ be
a monoid action of M on X” we write “let M be a monoid acting on X”, meaning that
M has a specific but nameless action on X associated with it. If M is a group, we use the
term group action rather than monoid action.

The following fact is useful for defining monoid and group actions.

Proposition 2.3.3. If S ⊆M generates the monoid M , a monoid action ψ is completely
determined by its values on elements of S.

Proof. Let ψ : X×S → X be an arbitrary function; we show that ψ has a unique extension
to a monoid action ψ : X ×M → X .

To see that an extension exists, fix m ∈ M . Since S generates M , we can write
m = s1s2 · · · sk for some elements s1, . . . , sk ∈ S. We define the extension ψ : X ×M → X
by induction on k. If k = 0, then m is the “empty product” which is by convention defined
to be the identity element e; we set (x, e)ψ = x. If k = 1 then set (x,m)ψ = (x, s1)ψ. If
k > 1 then set (x,m)ψ = ((x, s1)ψ, s2 · · · sk)ψ. To see that this is a monoid action, note
that if s, s′ ∈ S then ψss′ = ψsψs′ . Now suppose m = s1 · · · sk and m′ = s′1 · · · s

′
ℓ. Then we

have
xψmm′ = xψs1···sks

′
1···s

′
ℓ

= xψs1···skψs′1···s
′
ℓ

= xψmψm′ .

Thus (x,mm′)ψ = ((x,m)ψ,m′)ψ. Since we also have (x, e)ψ = x, it follows that ψ is a
monoid action.

To see that this extension is unique, let ψ′ : X ×M → X be a monoid action such that
(x, s)ψ′ = (x, s)ψ for all x ∈ X and s ∈ S. Then ψs = ψ′

s for all s ∈ S. Thus we have

(x,m)ψ = xψm = xψs1 · · ·ψsk = xψ′
s1
· · ·ψ′

sk
= xψ′

m = (x,m)ψ′.

Hence ψ = ψ′.

Stabilizers. Let G be a group acting on X . For x ∈ X , the stabilizer subgroup or simply
stabilizer of x is the subgroup {g ∈ G : xg = x} of G. For S ⊆ X , the setwise stabilizer of
S is the subgroup {g ∈ G : Sg = S}. Elements of the setwise stabilizer need not fix every
element of S; for example, if 1g = 2 and 2g = 1 then g is in the setwise stabilizer of {1, 2}.

Transformation monoids and the natural action. Let X be a finite set. Recall that
a function t : X → X is called a transformation of X . The set of all transformations of X

14



is a monoid under composition called the full transformation monoid TX . A submonoid of
TX is called a transformation monoid on X . The degree of a transformation monoid on X
is the size of X . If M is a transformation monoid on X , the monoid action ψ : X×M → X
given by (x, t)ψ = xt for x ∈ X , t ∈M is called the natural action of M . If X = {1, . . . , n}
we write Tn for TX .

Permutation groups, symmetric and alternating groups. Recall that a bijective
transformation of X is called a permutation of X . The set of all permutations of X is a
subgroup of TX called the symmetric group SX . A subgroup of SX is called a permutation
group on X ; this is a special type of transformation monoid and we have the same notions
of degree and natural action. The alternating group AX is the subgroup of SX consisting
of all permutations that can be expressed as a product of an even number of transpositions
(cycles of length two). If X = {1, . . . , n} we write Sn for SX and An for AX .

Congruences of actions. Separate from the notion of monoid congruences, there is a
notion of congruence for monoid actions specifically. A congruence of a monoid action of
M on X is an equivalence relation on X that is M-invariant in the following sense: if E
is an equivalence class of the congruence, then for all m ∈ M , there exists an equivalence
class E ′ of the congruence such that Em ⊆ E ′. In other words, if x and x′ are equivalent,
then xm and x′m are equivalent for all m ∈M . The equality congruence {(x, x) : x ∈ X}
in which elements are equivalent only if they are equal, and the full congruence X ×X in
which all elements are equivalent, are called trivial congruences. If M is a transformation
monoid on X , a congruence of the natural action is called an M-congruence.

We now introduce the notions of transitivity and primitivity, which are used heavily
in Chapter 4 but seldom appear outside of it. The reader may wish to skip this material
until they arrive at Chapter 4.

Transitivity. Let G be a group acting on X . We say that the action of G is transitive or
that G acts transitively on X if for all x, x′ ∈ X , there exists g ∈ G such that xg = x′. We
say the action of G is k-transitive or G acts k-transitively on X if for all pairs of k-tuples
(x1, . . . , xk), (x

′
1, . . . , x

′
k) ∈ Xk, there exists g ∈ G such that for 1 ≤ i ≤ k we have xig = x′i;

informally, k-transitive means “transitive on k-tuples”.

Blocks and primitivity. A non-empty set B ⊆ X is called a block for G if for all g ∈ G,
either Bg ∩ B = B (equivalently, Bg = B) or Bg ∩ B = ∅. A block B is trivial if it is a
singleton or the entire set X . We say the action of G is primitive or that G acts primitively
on X if it is transitive and all of its blocks are trivial. Equivalently, a transitive group
action of G is primitive if for every set S ( X with at least two elements, there exists
g ∈ G such that ∅ ( Sg ∩ S ( S.
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Primitivity, block systems and congruences. There is an important alternate char-
acterization of primitivity in terms of congruences. In the case of a permutation group G
on X , notice that for all S ⊆ X and g ∈ G, the set Sg has the same size as S. Hence a
G-congruence has the following property: if E is an equivalence class, then for all g ∈ G,
the set Eg is also an equivalence class. In particular, we either have E ∩ Eg = E or
E ∩ Eg = ∅ for all g ∈ G; thus the classes of G-congruences are blocks.

In fact, if G is transitive, then every G-congruence arises from the blocks of G as follows.
If B is a block for G, the block system corresponding to B is the set {Bg : g ∈ G}. As the
name implies, each set in a block system is also a block for G. Indeed, for all g′ ∈ G, we
either have Bgg′∩Bg = ∅ or Bgg′∩Bg 6= ∅, and in the latter case, Bgg′g−1 ∩B 6= ∅. But
B is a block, so this implies Bgg′g−1 = B and thus Bgg′ = Bg. Thus every set in a block
system is a block, so in particular, all distinct sets in a block system are pairwise disjoint.
Furthermore, since G is transitive, each element of X appears in at least one block of the
system. It follows that block systems are partitions of X , and thus equivalence relations
on X . It is easy to see that block systems are G-invariant, and thus are G-congruences.

Thus every block gives rise to a block system that is a G-congruence, and every G-
congruence consists of blocks; it follows block systems and G-congruences are one and the
same if G is transitive. If all G-congruences are trivial, then all block systems of G consist
only of trivial blocks, and vice versa. Thus we obtain our alternate characterization of
primitivity:

Proposition 2.3.4. A transitive permutation group G on X is primitive if and only if all
G-congruences are trivial.

Transitive and primitive groups. If G is a permutation group and the natural action
of G is transitive (k-transitive, primitive), then we say G is a transitive group (k-transitive
group, primitive group). For example, the cyclic group 〈(1, 2, 3, 4)〉 ≤ S4 is a transitive
group, since its natural action on {1, 2, 3, 4} is transitive. This terminology can cause
confusion, since transitivity, k-transitivity and primitivity are properties of actions and
not groups; statements like “G is transitive” or “G is primitive” are statements about
a particular action of G (the natural action) rather than the abstract group itself. In
particular, these properties are not preserved under isomorphism; for example, the group
〈(5, 6, 7, 8)〉 ≤ S8 is not transitive, but it is isomorphic to the transitive group 〈(1, 2, 3, 4)〉 ≤
S4.

The following fact is frequently useful:

Proposition 2.3.5. If H is a subgroup of G and H is transitive (primitive), then G is
also transitive (primitive).
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Proof. Suppose H acts transitively on X . Then for all x, x′ ∈ X , there exists h ∈ H such
that xh = x′. Since H is a subgroup of G, it follows that for all x, x′ ∈ X , there exists
g ∈ G such that xg = x′ (taking g to be the appropriate h ∈ H). Thus G acts transitively
on X .

Suppose H is primitive. Then H is transitive, so G is transitive by the above argument.
It remains to show that all blocks of G are trivial. Suppose B is a block for G. Then for all
g ∈ G, we either have Bg ∩ B = B or Bg ∩ B = ∅. Since H is a subgroup of G, it follows
that for all h ∈ H , we either have Bh ∩ B = B or Bh ∩ B = ∅. Thus B is a block for H .
But H is primitive, so B is a trivial block. Thus G is primitive, since all of its blocks are
trivial.

2.3.3 Examples of Transitive and Primitive Groups

Since the notions of transitivity and primitivity are central to Chapter 4, we give a number
of examples to aid with understanding.

Example 2.3.6 (An imprimitive cyclic group). Consider the group G = 〈(1, 2, 3, 4, 5, 6)〉 ≤
S6. This group is clearly transitive, since its natural action on {1, 2, 3, 4, 5, 6} is transitive.
However, it is imprimitive, since {1, 3, 5} and {2, 4, 6} are non-trivial blocks. Indeed, if we
let a = (1, 2, 3, 4, 5, 6), then {1, 3, 5}a = {2, 4, 6} and {2, 4, 6}a = {3, 5, 1}. Hence for all
k ≥ 0, we either have {1, 3, 5}ak ∩ {1, 3, 5} = ∅ or {1, 3, 5}ak ∩ {1, 3, 5} = {1, 3, 5}, and
similarly for {2, 4, 6}. One may also verify that {1, 4}, {2, 5} and {3, 6} are non-trivial
blocks, and that there are no blocks of size 4 or 5.

How do the block systems we have found correspond to non-trivial G-congruences? Put
an equivalence relation ρ on X = {1, . . . , 6} by writing i ρ j if i and j have the same parity
(odd or even). Notice that for i ∈ X , the elements i and ia have opposite parity. Thus ρ
is a G-congruence, since if i ρ j then ia ρ ja, and so for each equivalence class iρ, the set
(iρ)a = (ia)ρ is also an equivalence class. In fact, the classes of ρ are just the blocks {1, 3, 5}
and {2, 4, 6}; thus the G-congruence ρ corresponds to the block system {{1, 3, 5}, {2, 4, 6}}.
If we define an equivalence relation by i ρ j if i and j are equivalent modulo 3, we obtain
a non-trival G-congruence corresponding to the block system {{1, 4}, {2, 5}, {3, 6}}. As
for the trivial G-congruences, the equality congruence corresponds to the block system
{{1}, {2}, . . . , {6}} containing the singletons, and the full congruence corresponds to the
block system {{1, . . . , 6}} that just contains X . �

Example 2.3.7 (A primitive cyclic group). Consider the group G = 〈(1, 2, 3, 4, 5)〉 ≤
S5. This group is clearly transitive, and it is also primitive. To see this, suppose for a
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contradiction that B is a non-trivial block. Let a = (1, 2, 3, 4, 5) and let k = |b− b′|, where
b and b′ are distinct elements of B. Then Bak ∩B 6= ∅, so we must have Bak = B since B
is a block. Thus for each i ∈ B, we have iak ∈ Bak, and thus iak ∈ B. Then since iak ∈ B,
we have ia2k ∈ Bak, and thus ia2k ∈ B. By induction it follows that {iank : n ≥ 0} ⊆ B.
We claim {iank : n ≥ 0} = {1, 2, 3, 4, 5}, which contradicts the fact that B is a non-trivial
block. Indeed, for j ∈ {1, 2, 3, 4, 5}, we have iank = j if and only if i + nk ≡ j (mod 5).
Since 5 is prime and 0 < k < 5, we see that k is coprime with 5. Hence by elementary
number theory, there exists n such that nk ≡ j − i (mod 5) and so i+ nk ≡ i+ j − i ≡ j
(mod 5) as required. Hence j ∈ {iank : n ≥ 0} for all j ∈ {1, 2, 3, 4, 5}, which proves the
claim. It follows G has no non-trivial blocks, and so is primitive.

Using the notion of G-congruences, we can give an alternate, simpler proof that this
group is primitive. Fix a G-congruence on X . By G-invariance, all classes of the G-
congruence must have the same size, say m. If the congruence has n classes, then we have
mn = |X| = 5. So m is either 1 or 5 since 5 is prime, which means the classes are either
singletons (giving the equality congruence) or the full set X (giving the full congruence).
Thus all G-congruences are trivial, and thus G is primitive. Alternatively, we could make
the same argument in terms of block systems, using the fact that all blocks in a system
have the same size to show all blocks must be trivial. This argument actually shows that
not only are cyclic groups of prime order primitive, but all transitive groups of prime degree
are primitive (since |X| is the degree of a permutation group on X). �

Example 2.3.8 (An intransitive subgroup of S6). Consider G = 〈(1, 2, 3), (4, 5, 6)〉 ≤ S6.
This group is intransitive, since (for example) it does not contain a permutation mapping 1
to 4. Thus it is imprimitive by definition. Alternatively, observe that {1, 2, 3} and {4, 5, 6}
are non-trivial blocks for G.

Generally an intransitive group will always have non-trivial blocks, but there is one
exception: the trivial subgroup of S2 (containing only the identity element). The natural
action of this group is clearly not transitive on {1, 2}, but its only blocks are the trivial
blocks {1}, {2} and {1, 2}. To avoid dealing with this exceptional case, we require primitive
groups to be transitive by definition. �

The next example shows that we have the following hierarchy of permutation group
properties:

(2-transitive) =⇒ (primitive) =⇒ (transitive).

These implications do not reverse. Cyclic groups of composite order give examples of
transitive imprimitive groups, while cyclic groups of prime order p ≥ 5 give examples of
primitive, non-2-transitive groups. (For example, the group 〈(1, 2, 3, 4, 5)〉 ≤ S5 is not
2-transitive on {1, 2, 3, 4, 5} since nothing maps the pair (1, 2) to the pair (1, 3).)
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Example 2.3.9 (A two-transitive group). The alternating group An is 2-transitive for
n ≥ 4. Indeed, given i, i′, j, j′ ∈ {1, . . . , n}, the permutation (i, i′)(j, j′) is the product of
an even number of 2-cycles, and it maps the pair (i, j) to (i′, j′). We claim An is also
primitive for n ≥ 2. To see this, first note that An is a cyclic group of prime order for
2 ≤ n ≤ 3. For n ≥ 4, suppose for a contradiction that B is a non-trivial block. Then B
has at least two elements i and j, but B is not all of {1, . . . , n}. Choose k ∈ {1, . . . , n}\B.
Since An is 2-transitive, there exists an element g ∈ An which maps the pair (i, j) to (j, k).
Then Bg ∩ B 6= ∅ (since Bg and B contain j), and thus Bg ∩ B = Bg = B since B is
a block. But Bg contains k and B does not, which is a contradiction. Thus all blocks of
An are trivial, and thus An is primitive. In fact, this argument shows that all 2-transitive
groups are primitive. �

By Proposition 2.3.5, the symmetric group Sn is primitive for n ≥ 2, since it contains
the primitive group An. We could also show the symmetric group is primitive directly by
mimicking the argument above.

So far, we have mostly only looked at cyclic groups and the symmetric and alternating
groups. For our last pair of examples, we consider two subgroups of S6 that are a little
more interesting.

Example 2.3.10 (A transitive, imprimitive subgroup of S6). Define a = (2, 4, 6), b =
(1, 5)(2, 4) and c = (1, 4, 5, 2)(3, 6), and let G = 〈a, b, c〉. We claim this group is transitive

on {1, . . . , 6}. For g ∈ G and i, j ∈ {1, . . . , 6}, we write i
g
−→ j to mean ig = j. Observe

that

1
c3

−→ 2
a2

−→ 6
c
−→ 3, 1

c
−→ 4

c
−→ 5.

Thus for each i 6= 1, there is some group element that maps 1 to i. If g ∈ G maps 1 to i,
then g−1 maps i to 1. It follows for each i, j, there is some element x that maps i to 1, and
another element y that maps 1 to j, giving

i
x
−→ 1

y
−→ j.

Thus G is transitive. It is also imprimitive, with non-trivial blocks {1, 3, 5} and {2, 4, 6}.
Indeed, we see that

{1, 3, 5}
a
−→ {1, 3, 5}, {1, 3, 5}

b
−→ {5, 3, 1}, {1, 3, 5}

c
−→ {4, 6, 2}.

Hence these sets are non-trivial blocks. �
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Example 2.3.11 (A primitive subgroup of S6). Define permutations a = (1, 2, 3, 4, 6) and
b = (1, 2)(3, 4)(5, 6) and let G = 〈a, b〉. It is easy to see that this group is transitive on
{1, . . . , 6}: just verify that 1 can be mapped to every other element and use the argument
from the previous example. This group is also primitive. To see this, first note that the
subgroup 〈a〉 acts primitively on {1, 2, 3, 4, 6}, since it is a cyclic group of prime order.
Hence a non-trivial block of G cannot be a subset of {1, 2, 3, 4, 6}, so in particular a non-
trivial block of G must contain 5. Suppose B is a non-trivial block that contains 5; then
Ba ∩ B contains 5 and hence Ba ∩ B = Ba = B. Since B is non-trivial, it contains some
element i 6= 5, and since Ba = B we have {i, ia, ia2, ia3, ia4} = {1, 2, 3, 4, 6} ⊆ B. This
implies B = {1, 2, 3, 4, 5, 6}, and so B is trivial, which is a contradiction. Thus all blocks
of G are trivial, and thus G is primitive. �

Examples 2.3.8, 2.3.10 and 2.3.11 show that a primitive group such as S6 may contain
intransitive subgroups, transitive but imprimitive subgroups, and primitive subgroups.

2.3.4 Finite Fields

The following background material on finite fields is needed only for a single construction in
Chapter 4. We omit many proofs throughout this section; proofs can be found in abstract
algebra textbooks such as [33].

Basic definitions. A field is a set F equipped with two binary operations + and · (addition
and multiplication) and two distinguished elements 0, 1 ∈ F , satisfying the following field
axioms :

1. F is an abelian group under + with identity 0. That is:

(a) + is associative and commutative.

(b) For all a ∈ F we have a + 0 = a.

(c) Each a ∈ F has an additive inverse −a ∈ F such that a+ (−a) = 0.

2. F is an abelian group under · with identity 1. That is:

(a) · is associative and commutative.

(b) For all a ∈ F we have a · 1 = a.

(c) Each a ∈ F has a multiplicative inverse a−1 ∈ F such that a · a−1 = 1.

3. + and · satisfy the distributive law : for all a, b, c ∈ F , we have a · (b+ c) = a · b+a · c.
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As for groups and monoids, we typically write ab rather than a · b. The group F with
operation + is called the additive group of the field, and 0 is called the additive identity of
the field. Similarly, F with operation · is called the multiplicative group of the field, and 1
is called the multiplicative identity of the field. The order of the field F is the size of the
set F . A finite field is a field of finite order.

Bases. Let F and F ′ be finite fields with F ⊆ F ′. A basis for F ′ over F is a set
B = {b1, . . . , bk} ⊆ F ′ satisfying the following conditions:

• B is a spanning set for F ′, that is, we have F ′ = {a1b1 + · · ·+ akbk : a1, . . . , ak ∈ F}.

• B is linearly independent : for a1, . . . , ak ∈ F , we have a1b1 + · · · + akbk = 0 if and
only if a1 = · · · = ak = 0.

Existence and construction. A finite field of order n exists if and only if n = pk for
some prime p and integer k ≥ 1. Furthermore, up to isomorphism there is only one field
of order pk. This field is denoted Fpk . The finite field Fp is simply the integers modulo p
with the usual addition and multiplication. We can construct Fpk for k > 1 as a field of
equivalence classes of polynomials, as follows.

Let Fp[x] = {a0 + a1x+ a2x
2 + · · ·+ anx

n : a0, . . . , an ∈ Fp, n ≥ 0}. That is, Fp[x] is the
set of all polynomials with coefficients in Fp. A polynomial f(x) ∈ Fp[x] is reducible if there
exist non-constant polynomials g(x), h(x) ∈ Fp[x] such that f(x) = g(x)h(x); otherwise it
is irreducible. It is a non-trivial fact that Fp[x] contains an irreducible polynomial of degree
k for all k > 1. Let f(x) ∈ Fp[x] be an irreducible polynomial of degree k.

Define the set 〈f(x)〉 = {f(x)q(x) : q(x) ∈ Fp[x]}. One may verify that the binary
relation ρ on Fp[x] given by g(x)ρh(x) if and only if g(x)−h(x) ∈ 〈f(x)〉 is an equivalence
relation. Define Fp[x]/〈f(x)〉 to be the set of equivalence classes of Fp[x] under ρ. We
define addition and multiplication of two polynomial equivalence classes g(x)ρ and h(x)ρ
in the expected way: g(x)ρ+h(x)ρ = (g(x) +h(x))ρ and g(x)ρ ·h(x)ρ = (g(x)h(x))ρ. One
can show that these operations are well-defined.

We claim that Fpk = Fp[x]/〈f(x)〉 with operations + and · as defined above, additive
identity 0ρ, and multiplicative identity 1ρ is a finite field of order pk.

In practice, when working with Fp[x]/〈f(x)〉, we generally omit the equivalence relation
symbol ρ for convenience and readability. So if x3 is equivalent to x+ 1, we would simply
write x3 = x+ 1. This should not cause confusion, as long as we are clear whether we are
working in Fp[x]/〈f(x)〉 versus Fp[x].

Properties. There are two important properties of finite fields we will use:
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• There exists a basis for Fpk over Fp with k elements. In particular, if we construct
Fpk as above, the set {1, x, x2, . . . , xk−1} is a basis.

• The multiplicative group of Fpk is cyclic.

We now illustrate these concepts and results with an example.

Example 2.3.12 (A finite field of order 8). The polynomial x3 + x + 1 is irreducible in
F2[x]; if it were reducible, it would have a factor of the form (x− a) for a ∈ F2, and thus
it would have a root in F2. However, neither 0 nor 1 is a root. It follows that we can
construct the finite field F23 = F8 as F2[x]/〈x3 +x+ 1〉. One can show that F8 constructed
this way is indeed a field; we omit a proof of this, as it is rather tedious to check all the
axioms.

Let F2 denote the field of integers modulo two. Let f(x) = x3 + x + 1 ∈ F2[x].
Note that in F2, addition and subtraction behave the same; thus we have x3 + x + 1 =
x3 − x− 1 = x3 − (x + 1). Let g(x) = x3 and h(x) = x + 1. Then g(x) − h(x) = f(x), so
g(x) − h(x) ∈ 〈f(x)〉. Thus in F8 we have x3 = x + 1.

From this fact, it follows that every element of F8 can be represented by a polynomial
of degree at most two. To see this, consider an element a0 + a1x+ a2x2 + · · · + anx

n ∈ F8

with an 6= 0 and n ≥ 3. If n ≥ 3, we have

a0 + a1x+ a2x2 + · · · + anx
n = a0 + a1x + a2x

2 + · · · + anx
n−3x3

= a0 + a1x + a2x
2 + · · · + anx

n−3(x+ 1)

= a0 + a1x + a2x
2 + · · · + anx

n−3 + anx
n−2.

By making the substitution x3 = x + 1, we reduce the degree of the polynomial by two.
We can keep making these substitutions until the degree of the polynomial is two or less.

Intuitively, we can think of F8 as being the set of polynomials over F2 of degree at
most two, with ordinary addition and a special “two-step” multiplication operation: first
multiply the polynomials as usual, then apply the rule x3 = x + 1 to reduce the result to
a polynomial of degree at most two. To illustrate this, we show that the multiplicative
group of F8 is cyclic and is generated by x.

In addition to the rule x3 = x + 1, we know that addition and subtraction behave the
same in F2, and thus for all polynomials f(x) ∈ F8, we have 2f(x) = 0. For example,
x + x = x(1 + 1) = x(1 − 1) = x0 = 0. Combining these facts, we calculate:

x3 = x + 1, x4 = x2 + x, x5 = x3 + x2 = x2 + x+ 1,
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x6 = x3 + x2 + x = x2 + x+ x + 1 = x2 + 1, x7 = x3 + x = x+ 1 + x = 1.

We see from these calculations that every polynomial of degree at most two is equivalent
to a power of x, and thus every element of F8 is expressible as a power of x. Thus x
is a generator of the multiplicative group of F8. In general, it is not always true that x
generates the multiplicative group of a finite field of order Fpk for k > 1; it depends on the
particular irreducible polynomial used to construct the field.

Next, we show that F8 has order eight. To see this, first observe that no two distinct
polynomials a0 + a1x+ a2x

2, b0 + b1x+ b2x
2 ∈ F2[x] are equivalent in F8. If they were, we

would have
(a0 − b0) + (a1 − b1)x + (a2 − b2)x

2 = f(x)q(x)

for some q(x) ∈ F2[x]. But the left hand side is a non-zero polynomial of degree at most
two. The right hand side is either the zero polynomial (if q(x) = 0), or it has degree at
least three since f(x) has degree three. It follows that there is a one-to-one correspondence
between triples (a, b, c) ∈ F3

2 and elements a + bx + cx2 of F8. There are eight distinct
triples (a, b, c) ∈ F3

2, and thus F8 has order eight.

Finally, we prove thatB = {1, x, x2} is a basis for F8 over F2. Clearly B is a spanning set
for F8. To see that it is a basis, suppose it is not linearly independent; then a+bx+cx2 = 0
in F8 for some a, b, c ∈ F2, with a, b, c not all zero. Thus the polynomial a+bx+cx2 ∈ F2[x]
is equivalent to the zero polynomial. Thus in F2[x], we have a + bx + cx2 − 0 = f(x)q(x)
for some q(x). Again, this is impossible since a+ bx+ cx2 is non-zero with degree at most
two, while f(x)q(x) is either the zero polynomial or has degree at least three. �

2.4 Languages and Automata

2.4.1 Basic Concepts

Alphabets, words and languages. An alphabet Σ is a finite set whose elements are
called letters. A word over Σ is a finite-length sequence of letters. Formally, a finite-length
sequence of letters from Σ is a function from an initial segment {1, 2, . . . , n} of the positive
integers into Σ. We write a1 · · ·an for the sequence that sends i to the letter ai ∈ Σ. Two
words x and y over Σ can be concatenated as follows: if x = a1 · · · am and y = b1 · · · bn,
then the concatenation xy is the sequence a1 · · ·amb1 · · · bn. The set of all words over Σ
forms a monoid under the operation of concatenation, called the free monoid generated by
Σ and denoted Σ∗. The identity element of this monoid is the empty word, denoted ε. A
language over Σ is a subset of Σ∗.
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The restricted and unrestricted viewpoints. Since words are formally defined as
functions, the definition of word equality depends on one’s viewpoint on function equality
(as discussed in Section 2.2). Under the unrestricted viewpoint, words over different al-
phabets may be equal; for example, the word acab over the alphabet {a, b, c} is the same
as the word acab over the alphabet {a, b, c, d}. Under the restricted viewpoint, these words
are different.

Semiautomata and automata. A finite semiautomaton (FSA) is a triple (Q,Σ, T )
where Q is a finite set of states, Σ is an alphabet, and T ⊆ (Q × Σ) × Q is a binary
relation called the transition relation. Elements of T are called transitions. Rather than
the cumbersome notation ((q, a), q′) for transitions, we just write (q, a, q′). Additionally,
the notation q

a
−→ q′ means (q, a, q′) ∈ T . This notation can be “chained”: for example, the

expression q
a
−→ q′

b
−→ q′′ means (q, a, q′), (q′, b, q′′) ∈ T .

A state configuration is a triple (Q, I, F ) where Q is a finite set of states, I ⊆ Q is
a set of initial states, and F ⊆ Q is a set of final states. A 5-tuple A = (Q,Σ, T, I, F )
where (Q,Σ, T ) is a finite semiautomaton and (Q, I, F ) is a state configuration is called
a finite automaton (FA). If S = (Q,Σ, T ) is a finite semiautomaton, we write S(I, F ) for
the finite automaton (Q,Σ, T, I, F ). We often omit the word “finite” when speaking of
finite (semi)automata, since we do not consider any form of “infinite” (semi)automata.
All concepts that we define for semiautomata carry over to automata by looking at the
“underlying semiautomaton”.

The distinction between semiautomata and automata is as follows. Automata are lan-
guage recognizers ; the additional information given by the state configuration is enough
to associate a unique language with each automaton. We will describe the correspon-
dence between automata and languages shortly. Semiautomata, which do not recognize
languages, are used as templates for automata, or used for extra conciseness in contexts
where languages are not important or relevant.

Determinism. A semiautomaton (Q,Σ, T ) is deterministic if T is a function from Q×Σ
to Q. A state configuration (Q, I, F ) is deterministic if |I| = 1; in this case the unique
initial state is generally taken to be 1. An automaton A = (Q,Σ, T, I, F ) is deterministic
if it is comprised of a deterministic semiautomaton and a deterministic state configuration,
that is, if (Q,Σ, T ) and (Q, I, F ) are both deterministic. We write DFSA for deterministic
finite semiautomaton and DFA for deterministic finite automaton.

Automata as monoid actions. Given an semiautomaton A = (Q,Σ, T ), we can view
the transition relation as a map T : Q× Σ → P(Q). We can extend this map to a monoid
action T : P(Q) × Σ∗ → P(Q) of Σ∗ on P(Q) in two steps. First, extend to T : Q× Σ∗ →
P(Q) by induction on words: set (q, ε)T = {q} and for w = xa with w, x ∈ Σ∗ and
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a ∈ Σ, set (q, w)T = ((q, x)T, a)T . Then, extend to T : P(Q) × Σ∗ → P(Q) by setting
(S, w)T =

⋃
q∈S(q, w)T . Now we can use our usual notation for monoid actions and write

Sw = S ′ instead of the cumbersome (S, w)T = S ′. We also sometimes write S
w
−→ S ′ to

mean Sw = S ′, as an extension of our notation for transitions.

If we have a deterministic semiautomaton, we get an even nicer monoid action. If T is
a function, then notice that our extension to words T : Q×Σ∗ → P(Q) actually maps each
state to a singleton subset of Q. So we can view this extension as a map T : Q× Σ∗ → Q,
and in fact this is an action of Σ∗ on Q. Now, recall that an action of Σ∗ on Q can be
specified in two ways: as a function T : Q × Σ∗ → Q, or as a family of transformations
Tw : Q→ Q, one for each word w ∈ Σ∗, which are called the actions of the words w ∈ Σ∗.
This family of word actions under composition forms a transformation monoid on Q. This
monoid is called the transition monoid of the DFSA and it acts naturally on Q.

This shows deterministic semiautomata can be viewed as free monoids acting on finite
sets or as transformation monoids acting naturally on finite sets. This point of view is
fundamental to our work.

The above definition of the transition monoid is abstract to the point of being nearly
incomprehensible, so let us give an more concrete definition that constructs it directly from
the transitions of the semiautomaton. Afterwards, we will look at some examples.

In a deterministic semiautomaton, the transition relation T is a function T : Q×Σ → Q.
This means that for each state-letter pair (q, a) with q ∈ Q and a ∈ Σ, there is exactly one
transition q

a
−→ q′. If we view our semiautomaton as a directed graph with labelled edges,

where the nodes are states and the labelled edges are transitions, determinism means
that each node has exactly one outgoing edge for each letter. Now, let us build some
transformations of Q out of the transitions. First we construct letter actions Ta : Q → Q
for each letter a ∈ Σ. The letter action of a ∈ Σ takes an element of q, and produces the
unique element q′ such that q

a
−→ q′. In terms of the directed graph, the letter action of a

tells us, for each node of the graph, which node we will move to if we follow the unique
outgoing edge labelled with a. Next we construct word actions Tw : Q→ Q for each word
w ∈ Σ∗. The action Tε of the empty word is just the identity transformation of Q. The
action of a non-empty word is given by composing the letter actions for each letter in the
word: if w = a1 · · ·ak, where a1, . . . , ak ∈ Σ, then Tw = Ta1 · · ·Tak . In terms of the directed
graph, the word action of w tells us, for each node, which node we will end up at if we
follow the path whose edge labels spell out w. Determinism guarantees that this path is
unique. The transition monoid of the semiautomaton is just the set {Tw : w ∈ Σ∗} of all
word actions. Composing word actions behaves just like concatenating words: TxTy = Txy.
When working with letter actions and word actions, it is convenient to just write a or
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w instead of Ta or Tw in cases when it is clear from context what the relevant transition
relation is.

Example 2.4.1 (A semiautomaton with transition monoid T2.). Consider the deterministic
semiautomaton depicted in Figure 2.4.1. We will show that its transition monoid is T2,
the set of all transformations of {1, 2}.

1 2

a
a, b

b

Figure 2.4.1: A deterministic semiautomaton with transition monoid T2

First, what are the letter actions? For the letter a, we have transitions 1
a
−→ 2 and

2
a
−→ 2. Thus the corresponding letter action is the constant transformation ({1, 2} → 2),

which sends every state to state 2. For the letter b, we have transitions 1
b
−→ 2 and 2

b
−→ 1.

The corresponding letter action is the permutation (1, 2), which swaps states 1 and 2.

Now, the transition monoid is the monoid of word actions generated by composing
these letter actions. To compute the word action ab, we compose the transformations a
and b:

1ab = 1({1, 2} → 2)(1, 2) = 2(1, 2) = 1,

2ab = 2({1, 2} → 2)(1, 2) = 2(1, 2) = 1.

We see that ab is the constant transformation ({1, 2} → 1) that maps everything to 1. We
could have also determined this by looking at the path labelled with ab starting from each
state:

1
a
−→ 2

b
−→ 1,

2
a
−→ 2

b
−→ 1.

Both methods of computation give the same result.

There are only four transformations of {1, 2}, and we have seen three of them so far.
The last one is the identity transformation. This turns out to be the word action of bb:

1bb = 1(1, 2)(1, 2) = 2(1, 2) = 1,

2bb = 2(1, 2)(1, 2) = 1(1, 2) = 2.
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We can also see this by looking at the path labelled with bb:

1
b
−→ 2

b
−→ 1,

2
b
−→ 1

b
−→ 2.

This shows that the transition monoid of the semiautomaton is T2. Because we have seen
all transformations of {1, 2}, the word actions of other words will all be equivalent to one of
the word actions we have seen. For example, consider the word action of ababba. Because
this word ends with the constant transformation a, it should just be equivalent to a. We
can confirm this by looking at paths:

1
a
−→ 2

b
−→ 1

a
−→ 2

b
−→ 1

b
−→ 2

a
−→ 2,

2
a
−→ 2

b
−→ 1

a
−→ 2

b
−→ 1

b
−→ 2

a
−→ 2.

Indeed, we get the transformation ({1, 2} → 2) as expected. �

Example 2.4.2 (A semiautomaton with transition monoid Sn). Consider the n-state de-
terministic semiautomaton depicted in Figure 2.4.2. We will show for n ≥ 2 that its
transition monoid is Sn, the set of all permutations of {1, . . . , n}.

1 2 3 · · · n− 1 n

a, b
a a a a

a

b

b b b

Figure 2.4.2: A deterministic semiautomaton with transition monoid Sn.

In case the definition of the transition function is not clear from the image, here is a
formal definition. Fix a state i ∈ {1, 2, . . . , n}. We define:

• T (i, a) = (i+ 1) mod n.

• T (1, b) = 2 and T (2, b) = 1.

• T (i, b) = i for i 6∈ {1, 2}.

It is not hard to see from this definition and from the picture that the letter actions are as
follows:
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• a is the cyclic permutation (1, 2, . . . , n).

• b is the transposition (1, 2).

In the future, we will start using letter actions to define the transition functions of
(semi)automata. That is, instead of writing out the value of T for each state-letter pair,
we will just specify the action of each letter. It is much more convenient to just write
“b = (1, 2)” than to write “T (1, b) = 2, T (2, b) = 1 and T (i, b) = i for i 6∈ {1, 2}”, and the
same information is conveyed.

To prove that the transition monoid of this semiautomaton is Sn, we must show that
these two letter actions generate all permutations of {1, 2, . . . , n}; that is, we must show
that each permutation can be represented as a word action. We must also show that
no other elements can be generated, but this part is easy: the letter actions are both
permutations, and the composition of two permutations is a permutation, so all the word
actions will be permutations.

We will take for granted the intuitive fact that if you have an ordered collection of
objects, you can rearrange the collection in any order by just repeatedly swapping elements
one at a time. Mathematically, this is equivalent to saying that the set of all transpositions
of {1, 2, . . . , n}, the permutations that swap two elements, generates the symmetric group
Sn. So we just need to find a word action corresponding to each transposition.

First we show that all transpositions of the form (i, i + 1) are word actions. This is
true for i = 1, since b = (1, 2). Now, if we have w = (i, i + 1) for some word w, then we
claim an−1wa = (i + 1, i + 2). First we show that this word action swaps i + 1 and i + 2
(arithmetic below is performed modulo n):

(i+ 1)an−1wa = (i + 1 + n− 1)wa = iwa = (i + 1)a = i+ 2,

(i+ 2)an−1wa = (i + 2 + n− 1)wa = (i+ 1)wa = ia = i+ 1.

Next we show that all other elements j 6∈ {i + 1, i + 2} are unaffected. Since jan−1 =
j − 1 6∈ {i, i + 1}, it follows that (j − 1)w = j − 1. Then (j − 1)a = j. It follows that
an−1wa = (i + 1, i+ 2). Hence we have

b = (1, 2),

an−1ba = (2, 3),

an−1an−1baa = (3, 4),

. . .
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To construct word actions for all transpositions of the form (1, i), notice that

(i, i + 1)(1, i)(i, i+ 1) = (1, i+ 1).

Thus if wi = (i, i+ 1), we have:

w1 = (1, 2),

w2w1w2 = (1, 3),

w3w2w1w2w3 = (1, 4),

. . .

Finally, for arbitrary transpositions (i, j), notice that (1, i)(1, j)(1, i) = (i, j). Thus all
transpositions have corresponding word actions, and it follows that all permutations have
corresponding word actions.

For example, if n = 4, consider the transposition (2, 4). We have:

(2, 4) = (1, 2)(1, 4)(1, 2)

= w1(w3w2w1w2w3)w1

= (1, 2)(3, 4)(2, 3)(1, 2)(2, 3)(3, 4)(1, 2)

= b(a3a3baa)(a3ba)b(a3ba)(a3a3baa)b

= ba6ba5baba3ba7ba2b.

We can simplify this word a bit by noting that a4 is the identity transformation.

ba6ba5baba3ba7ba2b = ba2bababa3ba3ba2b.

If you wish, you can verify using Figure 2.4.3 that the action of this word really does swap
2 and 4 and leave the other states undisturbed. We leave it as an exercise to construct a
word action for the cyclic permutation (1, 2, 3). �

1 2 3 4

a, b
a a

a

b

b b

Figure 2.4.3: A deterministic semiautomaton with transition monoid S4.
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Example 2.4.3 (A semiautomaton with transition monoid Tn). Consider the n-state de-
terministic semiautomaton depicted in Figure 2.4.4. We will show for n ≥ 2 that its
transition monoid is Tn, the set of all transformations of {1, . . . , n}. The transition monoid
of an n-state automaton cannot be larger than Tn, since every word action is a transforma-
tion. Thus this automaton has a maximal transition monoid for each n. Automata with
maximal transition monoids turn out to be really useful in state complexity.

1 2 3 · · · n− 1 n

a, b
a a a a

a, c

b

c c b, c b, c b

Figure 2.4.4: A deterministic semiautomaton with transition monoid Tn.

This semiautomaton is a modified version of the semiautomaton from Figure 2.4.2, with
one new letter action added: the action c = (n → 1) that sends state n to state 1 and
fixes all other states. Together with the letter actions a = (1, 2, . . . , n) and b = (1, 2) that
generate the symmetric group, these three transformations are sufficient to generate the
full transformation monoid Tn.

To show that the transition monoid of this semiautomaton is Tn, first we prove a
technical lemma.

Lemma 2.4.4. Tn is generated by permutations together with the set of transformations
of the form (i→ j).

Proof. Fix an arbitrary transformation t of {1, . . . , n}. Construct a directed graph G
where the vertices are {1, . . . , n} and the edges are {(i, it) : 1 ≤ i ≤ n}. Divide the
graph into connected components C1, . . . , Cm. For each component Ck, we will construct a
transformation tk such that the composition t1 · · · tm is t, and such that ti is a composition
of permutations and transformations of the form (i→ j).

First we observe that each component has exactly one cycle. Indeed, suppose u1 →
u2 → · · · → uk → u1 and v1 → v2 → · · · → vℓ → v1 are distinct cycles. If the cycles
overlap at any point, say ui = vj , then the next edge has the from (ui, uit) = (vj , vjt), and
so ui+1 = vj+1. Applying this fact repeatedly shows then that the cycles are identical. So
if the cycles are distinct, they are also disjoint, and there cannot be an edge leading from
one cycle to the other. But these cycles are part of a single connected component, so there
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must be a vertex i outside the cycles and two distinct directed paths leading from i to each
of the cycles. This is impossible, since each vertex i has exactly one outgoing edge (i, it).
So there must be exactly one cycle v1 → v2 → · · · → vℓ → v1 in each component Ck. For
each Ck, define ck = (v1, v2, . . . , vℓ); this will be the “permutation part” of tk.

Since each Ck has at most one cycle, the vertices and edges outside of the cycle form
acyclic paths that lead into the cycle. We call the vertices outside the cycle the external
vertices. Let dk be the maximum length of a path from an external vertex to a cycle
vertex. We define transformations tk,1, . . . , tk,dk as follows. Let {u1, . . . , ukd} be the set
of external vertices of Ck with distance d from the cycle, i.e., those vertices which have
a path of length d leading into the cycle. (Note that for each vertex there is exactly one
path leading to the cycle, since each vertex has exactly one outgoing edge.) Then set
tk,d = (u1 → u1t) · · · (ukd → ukdt). Finally, we define

tk = cktk,1 · · · tk,dk .

We claim that t = t1 · · · tm. To see this, consider the value of it1 · · · tm. The transformation
tk affects only vertices in component Ck, so if i belongs to component Cj, then we have

it1 · · · tm = itj = icjtj,1 · · · tj,dj .

Notice that cj affects only vertices in the cycle of Cj, and tj,d affects only vertices that are
distance d from the cycle. If i belongs to the cycle, we have icj = it, and it still belongs
to the cycle, so it is unaffected by the subsequent transformations. Thus it1 · · · tm = it as
required. If i is distance d from the cycle, then we have icjtj,1 · · · tj,d = itj,d = it. Now,
it is distance d − 1 from the cycle (or in the cycle if d = 1), so it is unaffected by all the
transformations that come after tj,d since they operate on elements of distance greater than
d. It follows that it1 · · · tm = it as required. This shows that each transformation t can be
expressed by a composition of permutations and transformations of the form (i→ j).

This lemma shows that it suffices to just find word actions for transformations of the
form (i → j) with i 6= j (since if i = j then (i → j) is the identity permutation). First
note that if i 6∈ {1, n}, then we have

(i→ 1) = (i, n)(n→ 1)(i, n).

So we can construct a word action for (i → 1) from c = (n → 1) and a word action for
(i, n). Then for j 6∈ {i, 1}, we have

(i→ j) = (1, j)(i→ 1)(1, j).
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So using a word action for (1, j) we can get word actions for all transformations (i → j),
as desired. It follows that our semiautomaton has transition monoid Tn, the monoid of all
transformations of {1, 2, . . . , n}. �

Reachability and distinguishability. Let (Q,Σ, T ) be a semiautomaton. For p, q ∈ Q,
we say q is reachable from p via w if q ∈ pw (or pw = q in the deterministic case). If
we view the semiautomaton A as a directed graph, this is equivalent to saying there is a
directed path from p to q in the graph, and the labels of the transitions in the path spell
out w. We say q is reachable from p if there exists a word w such that q is reachable from
p via w. In an automaton (Q,Σ, T, I, F ), we say q is reachable if Iw = q, that is, every
path from a state of I on w leads to q. In a DFA, this is just saying there is a path from
the unique initial state to q.

These notions extend to subsets of states: for S, S ′ ⊆ Q, we say S ′ is reachable from S
via w if Sw = S ′. We say S ′ is reachable from S if there exists a word w such that S ′ is
reachable from S via w. We say S is reachable if S is reachable from I. An automaton is
called accessible if every state is reachable from some state of I.

Let (Q,Σ, T ) be a deterministic semiautomaton. Fix S ⊆ Q and define an equivalence
relation ∆S on Q as follows: for p, q ∈ Q, let p ∆ q if and only if for all z ∈ Σ∗, pz ∈
S ⇐⇒ qz ∈ S. Equivalent states under this relation are called indistinguishable under
S, and non-equivalent states are called distinguishable under S. If z ∈ Σ∗ is a word such
that pz ∈ S ⇐⇒ qz 6∈ S, we say that p and q are distinguishable under S by z, or that z
distinguishes p and q under S. For a deterministic automaton (Q,Σ, T, I, F ), in the case
S = F we simply say states are indistinguishable or distinguishable without mentioning
the set, and we write ∆ instead of ∆F for the indistinguishability relation.

The notions of reachability and distinguishability play an important role in the theory
of minimal automata, which will be discussed in Section 2.4.2.

DFA isomorphism. We say two DFAs D = (Q,Σ, T, 1, F ) and D′ = (Q′,Σ′, T ′, 1′, F ′)
are isomorphic if Σ = Σ′ and there is a bijection ϕ : Q → Q′ such that 1ϕ = 1′, Fϕ = F ′,
and p

a
−→ q if and only if pϕ

a
−→ qϕ. Informally, two DFAs are isomorphic if they have the

same alphabet, and they are identical in structure, but they possibly have different names
for their states.

Automata as language recognizers. Let A = (Q,Σ, T, I, F ) be a finite automaton.
The language recognized by A, or simply the language of A, is the set of words L(A) =
{w ∈ Σ∗ : Iw ∩ F 6= ∅}. If A is deterministic, this becomes L(A) = {w ∈ Σ∗ : 1w ∈ F}.
In other words, a word w is in the language of A if the action of w maps an initial state
to a final state. If w is in the language of A, we say that A accepts w.
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There is also a useful notion of the language accepted from a state. Fix a state q ∈ Q.
The language of the automaton Aq = (Q,Σ, T, q, F ), which has q as its sole initial state,
is called the language accepted from q or simply the language of q. If w is in the language
of q, we say q accepts w. Observe that two states p and q are indistinguishable (under F )
if and only if they have the exact same language.

1 2 1 2

b a, b

a

aa

a, b

Figure 2.4.5: Deterministic automaton (left) and nondeterministic automaton (right).

To illustrate the concept of language recognition, let us revisit our example automata
from Chapter 1. See Figure 2.4.5. The automata from Figure 1.1.1 of Chapter 1 have now
been assigned initial states and final states. Initial states are denoted by an unlabelled
arrow pointing into the state, and final states are denoted by a double-circled node. In
this case, both automata have 1 as the sole initial state and 2 as the sole final state.
Deterministic automata can only have one initial state, but in nondeterministic automata,
multiple initial states are allowed. In both types of automata, multiple final states are
allowed, but there is only one final state in this example.

What is the language recognized by each automaton? In both cases, it will be a subset
of Σ∗ = {a, b}∗, the set of all finite-length words comprised of as and bs. In both cases,
a word w ∈ Σ∗ is in the language of the automaton if w maps an initial state to a final
state. Both automata have a unique initial state, 1, and a unique final state, 2, so we are
looking for words w such that 2 ∈ 1w. That is, we are looking for words w such that 2 is
reachable from 1 via w. Recall that in terms of the directed graph representation of the
automata, this corresponds exactly to saying that there is a path from 1 to 2 for which the
edge labels spell out w.

We will use this observation to figure out which languages are recognized by the au-
tomata of Figure 2.4.5. First, let us focus on the left automaton, the deterministic one.
Notice that we can reach the final state 2 from the initial state 1 only by taking the transi-
tion 1

a
−→ 2; thus all words accepted by the automaton must contain at least one a. In fact,

all words over {a, b} that contain at least one a are accepted, and no others. We can see

that since there is a loop 1
b
−→ 1, we can have any number of bs before the first a occurs.

After reading the first a, we are forced to transition to state 2. In state 2 there are loops

2
a
−→ 2 and 2

b
−→ 2, so every possible word we can read will keep us in state 2, and thus

arbitrary words containing at least one a are accepted. If a word does not contain at least
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one a, then it must consist entirely of bs, and the corresponding path will leave us stuck in
the non-final state 1. Thus the language of the left automaton consists of all words over
{a, b} that contain at least one a.

Now consider the right automaton, which is not deterministic. The determinism of
a deterministic automaton implies that for each word over the alphabet Σ, there is a
exactly one path labelled with that word. In a nondeterministic automaton, there could
be multiple paths or no paths corresponding to a word. We claim the language of the right
automaton consists of all non-empty words which either contain no bs, or contain exactly
one b occurring at the very end of the word. First we show all such words are accepted by
the right automaton. A word w of the form described above can be written as w = xσ,
where x is a (possibly empty) word consisting only of as, and σ is either a or b. Then
there is an accepting path labelled with w: take the transition 1

a
−→ 1 for each a in x, then

take the transition 1
σ
−→ 2. Next we show that no other words are accepted by the right

automaton. The empty word is accepted only if the initial state is final, and this is not
the case. If a non-empty word w contains a b, but this b does not occur at the end of the
word, we can write w = xbσy, where x and y are possibly empty words and σ is either a
or b. A path starting at state 1 and labelled with xb necessarily ends in state 2, since b
forces a transition from state 1 to state 2. There are no paths starting from state 2 except
from the “empty path”, so in particular there are no paths with non-empty labels starting
from state 2. But σy is non-empty, so it follows that w = xbσy cannot be the label of a
path at all, let alone an accepting path. This proves the claim.

Regular languages. A language L over Σ∗ is called regular if it satisfies one of the
following conditions:

• L = ∅, L = {ε}, or L = {a} for a ∈ Σ.

• L is the union of two regular languages.

• L is the concatenation of two regular languages: L = R′R = {xy : x ∈ R′, y ∈ R},
where R′ and R are regular languages over Σ.

• L is the Kleene star of a regular language: L = R∗ = {ε} ∪ R ∪ RR ∪ RRR ∪ · · ·
where R is a regular language over Σ.

Kleene’s theorem. It was proved by Kleene [56] that a language is regular if and only
if it is recognized by a finite automaton (in fact a deterministic automaton suffices). In
light of this theorem, we treat the term “regular language” as essentially equivalent to
“language recognized by a DFA”; we rarely use the inductive definition above. We will
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essentially prove one direction of this theorem in Section 2.4.4 by constructing DFAs for
the union and concatenation of two regular languages and the star of a regular language.
Then to show that every regular language has a DFA, it remains just to construct DFAs
for ∅, ε and languages of the form {a}, which is an easy task. We omit a proof of the other
direction, that every language recognized by a DFA is regular, since the techniques used
to prove it are not especially useful in the context of state complexity.

2.4.2 Minimal Automata and the Syntactic Monoid

An automaton is minimal if it has the least number of states amongst all automata which
recognize the same language. Minimal automata are useful for efficiently representing
languages. A language can have multiple minimal automata, and in the case of nondeter-
ministic automata it is generally quite difficult to describe the set of all minimal automata
for a particular language, or even to produce one example of a minimal automaton. How-
ever, for deterministic automata, the situation is much nicer. For each regular language,
there is a canonical minimal DFA which is essentially unique: given two minimal DFAs
for the same language, they are necessarily isomorphic (that is, they are either equal or
differ only in the names assigned to the states). In this section, we present three equivalent
constructions of this canonical minimal DFA. We will also define the syntactic monoid
of a language and prove that it is isomorphic to the transition monoid of the language’s
minimal DFA.

The Myhill-Nerode theorem. The first construction is based on a fundamental char-
acterization of regular languages due to Myhill and Nerode [65, 66].

Theorem 2.4.5 (Myhill and Nerode). Let L ⊆ Σ∗ and define the following equivalence
relation ρL on Σ∗: let x ρL y if and only if for all z ∈ Σ∗, xz ∈ L ⇐⇒ yz ∈ L. The
following are equivalent:

1. L is a regular language.

2. Σ∗/ρL is finite.

Furthermore, every minimal DFA for L has Σ∗/ρL states.

Proof. Suppose L is regular. Then there exists a DFA D = (Q,Σ, T, 1, F ) for L. We may
define an equivalence relation ρD on Σ∗ as follows: x ρD y if and only if for all z ∈ Σ∗,
1xz ∈ F ⇐⇒ 1yz ∈ F . We make two claims: that ρD has at most |Q| classes, and that
ρL ⊆ ρD.
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To see that ρD has at most |Q| classes, we define a surjection from a subset of Q to
Σ∗/ρD. The subset of Q we will use is R = {1w : w ∈ Σ∗}. For each q ∈ R, select a word
wq such that 1wq = q and consider the map q 7→ wqρD. This map is surjective since for
each class xρD ∈ Σ∗/ρD, we have xρD = w1xρD.

To see that ρL ⊆ ρD, suppose (x, y) ∈ ρL. Then for all z ∈ Σ∗, we have 1xz ∈ F ⇐⇒
xz ∈ L ⇐⇒ yz ∈ L ⇐⇒ 1yz ∈ F , so (x, y) ∈ ρD. Since ρL ⊆ ρD, ρL either has the same
number or fewer equivalence classes than ρD, and thus the set Σ∗/ρL is finite and has size
at most |Q|.

Now, suppose Σ∗/ρL is finite. To show L is regular, we construct a DFA DL =
(Σ∗/ρL,Σ, TL, ερL, FL) for L, as follows:

• The state set is Σ∗/ρL, the equivalence classes of ρL.

• The initial state is ερL, the equivalence class of the empty word.

• The final state set is FL = {wρL : w ∈ L}, the equivalence classes of words in L.

• The transitions TL have the form wρL
a
−→ (wa)ρL, for all w ∈ Σ∗ and a ∈ Σ.

We must justify two things: that the transition relation is a well-defined function (so this
automaton is indeed deterministic) and that this DFA recognizes L.

To see that TL : (Σ∗/ρL) × Σ → (Σ∗/ρL) is a function, it suffices to show for all a ∈ Σ
that if xρL = yρL, then (xa)ρL = (ya)ρL. If xρL = yρL, then for all z ∈ Σ∗ we have
xz ∈ L ⇐⇒ yz ∈ L. In particular, this holds for z = az′, where z′ ∈ Σ∗. Thus for all
z′ ∈ Σ∗ we have (xa)z′ ∈ L ⇐⇒ (ya)z′ ∈ L, and it follows that (xa)ρL = (ya)ρL.

To see that DL recognizes L, suppose w ∈ L. Then ερL
w
−→ wρL ∈ FL, so w is accepted

by DL. Conversely, if w is accepted by DL, then (ερL)w ∈ FL. But (ερL)w = wρL, and
wρL ∈ FL implies w ∈ L. So DL recognizes L.

Finally, to see that every minimal DFA for L has Σ∗/ρL states, note that we have
proved that if D is an arbitrary DFA for L, then the size of Σ∗/ρL is bounded above by
the number of states in D. So |Σ∗/ρL| is a lower bound on the number of states in a
minimal DFA. But we also constructed a minimal DFA for L with exactly Σ∗/ρL states.
Thus |Σ∗/ρL| is also an upper bound, and the result follows.

Example 2.4.6 (A minimal automaton via the Myhill-Nerode theorem). Let Σ = {a, b}
and consider the following language:

L = {w ∈ Σ∗ : w has an even number of as and an odd number of bs}.
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What are the classes of the equivalence relation ρL? First consider the equivalence class
ερL of the empty word ε. We have wρL ε if and only if for all z ∈ Σ∗, we have wz ∈ L ⇐⇒
z ∈ L. If z is in L, then the number of as in z is even and the number of bs in z is odd.
When we concatenate z onto a word w, we essentially add an even number of as and an
odd number of bs to w. So to have wz ∈ L, we need that:

• w has an even number of as, so that wz has an even number of as.

• w has an even number of bs, so that wz has an odd number of bs.

Therefore, a word w is ρL-related to ε if and only if it has an even number of as and a even
number of bs.

The other equivalence classes of ρL are based on the other possibilities for the parities
of as and bs in a word. One may verify the following statements using similar arguments
to above:

• aρL consists of all words with an odd number of as and an even number of bs.

• bρL consists of all words with an even number of as and an odd number of bs.

• (ab)ρL consists of all words with an odd number of as and an odd number of bs.

There are no other possible parities, so ρL has exactly four equivalence classes. The Myhill-
Nerode theorem therefore tells us that:

• L is a regular language.

• Every minimal DFA for L has exactly four states.

• A minimal DFA for L can be constructed from the classes of ρL.

The minimal DFA we obtain by following the procedure in the proof of Theorem 2.4.5 is
shown below, in Figure 2.4.6. �

The quotient automaton. The second minimal DFA construction we will discuss was
first described by Brzozowski [4, 5], and uses the notion of quotients of languages. The left
quotient of a language L ⊆ Σ∗ by a language L′ ⊆ Σ∗ is (L′)−1L = {y ∈ Σ∗ : ∃x ∈ L′, xy ∈
L}. Similarly, the right quotient of L by a L′ is L′(L)−1 = {x ∈ Σ∗ : ∃y ∈ L′, xy ∈ L}.
This is the most general definition of quotients, but we are mostly interested in the special
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ερL aρL

bρL (ab)ρL

a

a

a

a

bb bb

Figure 2.4.6: Minimal DFA for the language of words over {a, b} with an even number of
as and an odd number of bs.

case of left quotients by single words : sets of the form w−1L = {x ∈ Σ∗ : wx ∈ L}. When
we speak of the quotients of a language without further qualification, we mean the left
quotients of the language by words.

The following theorem, similar in spirit to the Myhill-Nerode theorem, characterizes
regular languages in terms of their quotients.

Theorem 2.4.7. Let L ⊆ Σ∗. The following are equivalent:

1. L is a regular language.

2. L has finitely many quotients.

Furthermore, the number of quotients of L is equal to the number of states in a minimal
DFA for L.

Proof. Suppose L is regular. Then there exists a DFA D = (Q,Σ, T, 1, F ) for L. For each
q ∈ Q, let Lq be the language of state q in D. We claim that each quotient of L lies in the
set {Lq : q ∈ Q}. Since there are only |Q| languages in this set, this means there are at
most |Q| distinct quotients of L. To prove the claim, simply note that

x ∈ w−1L ⇐⇒ wx ∈ L ⇐⇒ 1wx ∈ F ⇐⇒ x ∈ L1w,

and thus w−1L = L1w for all w ∈ Σ∗.

Now, suppose L has finitely many quotients. We construct a DFA D = (Q,Σ, T, L, F )
for L:

• The state set Q is {w−1L : w ∈ Σ∗}, the set of all quotients of L. We know by
assumption that this set is finite.
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• The initial state is L itself, which is a quotient of L (in particular, the quotient ε−1L).

• The final state set is F = {w−1L : w ∈ L}, the quotients of L by words that belong
to L. Equivalently, these are the quotients that contain the empty word.

• The transitions T have the form w−1L
a
−→ (wa)−1L, for all w ∈ Σ∗ and a ∈ Σ.

We must justify that T is a well-defined function and that D recognizes L.

To see that T is a function, it suffices to show that if x−1L = y−1L, then (xa)−1L =
(ya)−1L. If x−1L = y−1L then w ∈ (xa)−1L ⇐⇒ xaw ∈ L ⇐⇒ aw ∈ x−1L ⇐⇒ aw ∈
y−1L ⇐⇒ yaw ∈ L ⇐⇒ w ∈ (ya)−1L, so this holds.

To see that D recognizes L, simply note that w ∈ L ⇐⇒ w−1L ∈ F ⇐⇒ (ε−1L)w ∈
F , where ε−1L = L is the initial state of D. Thus D accepts w if and only if w ∈ L.

Finally, to see that the number of quotients of L is equal to the number of states in a
minimal DFA for L, note that we proved that if D = (Q,Σ, T, 1, F ) is an arbitrary DFA
for L, then L has at most |Q| quotients. If we take D to be a minimal DFA, we see that
the number of quotients of L is upper-bounded by the number of states in a minimal DFA
for L. But we also proved there is a DFA for L with exactly as many states as there are
quotients of L, giving a matching lower bound.

Example 2.4.8 (A minimal automaton using quotients). As before, let Σ = {a, b} and
consider the following language:

L = {w ∈ Σ∗ : w has an even number of as and an odd number of bs}.

One of the quotients of this language is L itself, the quotient by the empty word. Now,
consider an arbitrary quotient w−1L = {x ∈ Σ∗ : wx ∈ L}. If we have wx ∈ L, then
wx has an even number of as and an odd number of bs. So if x ∈ w−1L, there are four
possibilities depending on the parity of as and bs in w:

• If w has an even number of as and an even number of bs, then x must have an even
number of as and an odd number of bs.

• If w has an even number of as and an odd number of bs, then x must have an even
number of as and an even number of bs.

• If w has an odd number of as and an even number of bs, then x must have an odd
number of as and an odd number of bs.
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• If w has an odd number of as and an odd number of bs, then x must have an odd
number of as and an even number of bs.

It follows that L has exactly four quotients, which can be represented as L, b−1L, a−1L,
and (ab)−1L.

• If x ∈ L, then x must have an even number of as and an odd number of bs.

• If x ∈ b−1L, then x must have an even number of as and an even number of bs.

• If x ∈ a−1L, then x must have an odd number of as and an odd number of bs.

• If x ∈ (ab)−1L, then x must have an odd number of as and an even number of bs.

Thus L is regular, and we can construct a minimal DFA out of these quotients. The
minimal DFA we obtain by following the procedure in the proof of Theorem 2.4.7 is shown
below, in Figure 2.4.7. Note that (for example) the quotient a−1L is not equal to the
Myhill-Nerode class aρL as a set of words, even though they correspond to the same state
in the minimal DFA! Quotients are not equivalence classes. �

L a−1L

b−1L (ab)−1L

a

a

a

a

bb bb

Figure 2.4.7: Minimal DFA for the language of words over {a, b} with an even number of
as and an odd number of bs.

Quotients and languages of states. Recall that in the proof of Theorem 2.4.7, we
showed that that given a DFA for L, each quotient of L is equal to the language accepted
from a particular state of the DFA. In particular, if q is the state reached by following
the path labelled by w from the initial state, the quotient w−1L is equal to the language
accepted from q. This is a very important property of quotients! You may wish to verify
that this property holds for the DFA of Figure 2.4.7.

40



Minimization, reachability and indistinguishability. We have seen two constructions
of a minimal DFA. We now prove that not only are these constructions equivalent, but that
all minimal DFAs for a language, no matter how they are obtained, are isomorphic. The
key result gives a third way of constructing a minimal DFA: via a minimization procedure
which converts an arbitrary DFA to a minimal DFA.

Theorem 2.4.9. Given D = (Q,Σ, T, 1, F ) be a DFA for a regular language L, we may
construct a minimal DFA DM for L by modifying D as follows:

1. Remove all unreachable states from DR to obtain a DFA DR = (QR,Σ, TR, 1, FR),
where QR = {1w : w ∈ Σ∗} is the set of reachable states of D, the transition function
TR : QR × Σ → QR is the restriction of T to reachable states, and FR = QR ∩ F is
the set of reachable final states.

2. Let ∆ = ∆FR
, the indistinguishability relation under the reachable final states FR.

Set DM = (QM ,Σ, TM , 1∆, FM), where QM = QR/∆, the set of equivalence classes
obtained by merging the reachable states of D according to indistinguishability; the
function TM is given by transitions q∆

a
−→ (qa)∆ for all q ∈ QR and a ∈ Σ, and

FM = {f∆ : f ∈ FR} is the set of equivalence classes of reachable final states.

Furthermore, every minimal DFA for L is isomorphic to DM .

In summary, an arbitrary DFA can be minimized by removing unreachable states and
combining indistinguishable states.

Proof. First, we prove that DM is in fact a DFA by showing that TM is a well-defined
function. Suppose p∆ = q∆; we want to show for all a ∈ Σ that (pa)∆ = (qa)∆. For
all z ∈ Σ∗, we have pz ∈ FR ⇐⇒ qz ∈ FR; in particular this holds for z = az′ for
arbitrary z′ ∈ Σ∗, and thus for all z′ ∈ Σ∗ we have (pa)z′ ∈ FR ⇐⇒ (qa)z′ ∈ FR. Hence
(pa)∆ = (qa)∆ as required.

Next, we prove that DM recognizes L. We have w ∈ L ⇐⇒ 1w ∈ F ⇐⇒ 1w ∈ FR,
since a state which can be written as 1w is necessarily reachable. Now, 1w ∈ FR ⇐⇒
(1w)∆ ∈ FM ⇐⇒ (1∆)w ∈ FM , and thus w ∈ L if and only if w is accepted by DM .

Finally, we show two things: that DM is minimal, and that every minimal DFA for
L is isomorphic to DM . To see this, let D′ = (Q′,Σ, T ′, 1′, F ′) be a minimal DFA for L.
Note that if we apply the minimization procedure to D′, then we must obtain a DFA for
L with the same number of states as D′, since D′ is minimal. Thus D′ cannot have any
unreachable states, and it cannot have any pairs of indistinguishable states.

41



Now, we construct an isomorphism between DM and D′ as follows. For each equivalence
class q∆ ∈ QM , since q ∈ QR, we may write q = 1wq for some wq ∈ Σ∗. Fix such a word
wq for each q ∈ QR. Now define ϕ : QM → Q′ by q∆ 7→ 1′wq. We must show that ϕ is
well-defined, bijective, and satisfies the requirements for a DFA isomorphism.

To see that ϕ is well-defined, suppose p∆ = q∆. We want to show that 1′wp = 1′wq.
Suppose not; then as we observed, 1′wp and 1′wq are distinguishable, and so there exists
a word z such that 1′wpz ∈ F ′ ⇐⇒ 1′wqz 6∈ F ′. Without loss of generality, assume
1′wpz ∈ F ′. Then wpz ∈ L and wqz 6∈ L. Thus 1wpz = pz ∈ FR and 1wqz = qz 6∈ FR,
which contradicts the fact that p∆ = q∆.

To see that ϕ is injective, suppose p∆ 6= q∆; we want to show that 1′wp 6= 1′wq. Since
p∆ 6= q∆, states p and q are distinguishable by some word z. Without loss of generality,
assume pz ∈ FR and qz 6∈ FR. Then 1wpz ∈ FR and 1wqz 6∈ FR, so wpz ∈ L and wqz 6∈ L.
It follows that 1′wpz ∈ F ′ and 1′wqz 6∈ F ′, so 1′wp and 1′wq are distinguishable. Since they
are distinguishable, they cannot be equal.

To see that ϕ is surjective, fix a state q′ ∈ Q′. Every state in Q′ is reachable, and so
we can write q′ = 1′w for some w ∈ Σ∗. Let p = 1w; we claim that ϕ maps p∆ to 1′w.
It suffices to show that 1′wp = 1′w. If not, then 1′wp and 1′w are distinguishable by some
word z. So without loss of generality, assume wpz ∈ L and wz 6∈ L. Then (1w)z = pz ∈ L
and (1wp)z = pz 6∈ L, which is a contradiction.

Finally, we show that ϕ is a DFA isomorphism. To see that it preserves the initial
state, note that 1∆ is mapped to 1′w1, and we can take w1 = ε without loss of generality.
To see that it preserves final states, let f∆ be a final state in DM . We want to show that
1′wf is final in D′. Suppose 1′wf is non-final; then wf 6∈ L. But 1wf = f ∈ FR, so wf ∈ L,
which is a contradiction. Finally, to see that it preserves transitions, fix q∆ ∈ QM and
a ∈ Σ. Then we have (q∆)a = (qa)∆. We must show that (1′wq)a = 1′wqa. Suppose not;
then these states are distinguishable by some word z. Without loss of generality, assume
wqaz ∈ L and wqaz 6∈ L. Since wqaz ∈ L, we have 1wqaz = (qa)z ∈ FR, but since wqaz 6∈ L
we have 1wqaz = (qa)z 6∈ FR, which is a contradiction.

Thus ϕ is a DFA isomorphism between DM and the minimal DFA D′. Since DM is
isomorphic to a minimal DFA for L, it follows that DM is itself a minimal DFA for L.

Example 2.4.10 (Minimizing an automaton). Consider the following language over al-
phabet Σ = {a, b, c}:

L = {w ∈ Σ∗ : w starts with a or b, ends with c and has length at most 3.}.

Figure 2.4.8 shows an automaton for this language. Although the transition diagram is
complicated, this automaton is based on a fairly simple idea: track the first, second and
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third character of the word and decide whether it should be accepted accordingly. If the
word does not start with a or b, we go to the “first c” state, which is inescapable; this
enforces that the word must start with a or b. If the word starts with a or b, but only has
two symbols, we will either reject it from the “second a” or “second b” state, or we will
accept it from the “second c” state since then it ends in c. If the word has three symbols,
we either reject it from the “third a” or “third b” state, or accept it from the “third c”
state. If the word has any more symbols, we go to the inescapable, non-final “too long”
state and the word is rejected.

initial

first a

first b

first c

second a

second b

second c

third a

third b

third c

too long

a

b

c

a

b
c

a

b

c

a, b, c

a

b
c

a

b

c

a b

c

a, b, c

a, b, c

a, b, c

a, b, c

Figure 2.4.8: Overly complicated DFA for the language over {a, b, c} of words which start
with a or b, end with c, and have length at most 3.

It is not hard to see that we can find a smaller DFA for this language; for example, the
“first c” and “too long” states could be combined into a single “fail” state. Let us perform
the minimization procedure on the DFA of Figure 2.4.8 to see which other states can be
combined. (We don’t need to remove unreachable states, since all states are reachable.)

First, let us give simpler names to the states for convenience, as shown in Figure 2.4.9.

Now we compute the indistinguishability classes with respect to the final state set
F = {2c, 3c}. Recall that two states p, q are indistinguishable if for all z ∈ Σ∗, we have
pz ∈ F ⇐⇒ qz ∈ F . Intuitively, this means that if we put our fingers on the states p
and q in the graph of the DFA, and follow the two paths on z from the two states, the pair
of states we end up at is always either a pair of final states or a pair of non-final states,
no matter what z is chosen. Distinguishability means that we can find some z where one
path leads to a final state and the other leads to a non-final state.
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1a
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2a
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2c

3a

3b

3c

X

a

b

c

a

b
c

a

b

c
a, b, c

a

b
c

a

b

c

a b

c

a, b, c

a, b, c

a, b, c

a, b, c

Figure 2.4.9: DFA of Figure 2.4.8 with the states renamed.

Indistinguishability can also be defined in terms of the language recognized from a state.
If two states recognize the same language, they are indistinguishable, and otherwise they
are distinguishable by a word in the symmetric difference of their two languages. Thus
one way to find indistinguishable states in an automaton is to look for states which clearly
recognize the same language. For example, states 1c and X both obviously recognize
the empty language, so they are indistinguishable. States 3a and 3b also both recognize
the empty language. Thus X , 1c, 3a and 3b all belong to one indistinguishability class.
For each of the remaining states, we can always find a path from the state to a final
state, so the remaining states recognize a non-empty language and thus are distinguishable
from the empty language states. It follows that one of the indistinguishability classes is
X∆ = {X, 1c, 3a, 3b}. As an intermediate step, let us construct an automaton with these
states merged; see Figure 2.4.10.

Let us look for more indistinguishability classes. Notice that the final state 3c accepts
only the word ε. The only other state which accepts ε is 2c; but 2c also accepts c, so 2c
and 3c are distinguishable. These final states are distinguishable from all non-final states,
and thus they both belong to their own one-element indistinguishability classes. That is,
we have (2c)∆ = {2c} and (3c)∆ = {3c}.

What about the remaining non-final states? Let’s start with the ones closest to the
final states, 2a and 2b. Notice that both of these states recognize exactly the language
{c}; every other word leads to the inescapable non-final state X∆. Thus 2a and 2b are
indistinguishable. They are distinguishable from 0, 1a and 1b since those states each
recognize a word of length greater than one. Hence we have (2a)∆ = {2a, 2b}. We merge
these states; see Figure 2.4.11.
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c
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Figure 2.4.10: DFA of Figure 2.4.9 with the states in X∆ merged.

0

1a

1b

(2a)∆

(2c)∆ X∆

(3c)∆
a

b

c

a, b

c

a, b

c

a, b

c

a, b

c
a, b, c

a, b, c

Figure 2.4.11: DFA of Figure 2.4.10 with the states in (2a)∆ merged.

Notice now that 1a and 1b both recognize the language {c, ac, bc, cc}. These states are
indistinguishable from 0 since 0 recognizes words of length three. Thus (1a)∆ = {1a, 1b}
and 0∆ = {0}. We have now fully determined the equivalence classes of ∆:

0∆ = {0}, (1a)∆ = {1a, 1b}, (2a)∆ = {2a, 2b},

(2c)∆ = {2c}, (3c)∆ = {3c}, X∆ = {X, 1c, 3a, 3b}.

Merging the remaining states gives a minimal DFA for our language, shown in Figure
2.4.12.

Let us consider how the states of this minimal DFA correspond to the logic required to
recognize the language.
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0∆ (1a)∆
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a, b

c

a, b
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a, b
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c
a, b, c

a, b, c

Figure 2.4.12: Minimization of DFA of Figure 2.4.10.

• State 0∆ is the initial state. We don’t know yet what the word starts or ends with,
so it’s non-final.

• State X∆ is a failure state – once we reach it, we know the word is invalid, either
because it is too long or because it does not satisfy the necessary conditions on the
starting and ending letter.

• State (1a)∆ represents that we have read a valid starting letter (either a or b).

• State (2a)∆ represents that we have read a valid starting letter, but haven’t yet read
a valid ending letter.

• State (2c)∆ represents that we have read a valid starting letter followed by a valid
ending letter, so it is accepting.

• State (3c)∆ represents that we have read a valid starting letter and a valid ending
letter, so it is accepting. We can’t combine this with state (2c)∆ even though they
seem to keep track of similar things, because if we did, we would lose track of how
many total letters have been read. �

The syntactic monoid. Given a regular language L over Σ, we define the following
congruence on Σ∗:

x σL y ⇐⇒ ∀u, v ∈ Σ∗, uxv ∈ L ⇐⇒ uyv ∈ L.

The quotient monoid Σ∗/σL is called the syntactic monoid of L. It turns out that this
monoid is isomorphic to the transition monoid of the minimal DFA of L. There is deep
algebraic theory surrounding syntactic monoids, but we are interested mainly in transition
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monoids in this thesis, and we define the syntactic monoid mostly to have a convenient
shorthand for the unwieldy phrase “the transition monoid of the minimal DFA”.

Proposition 2.4.11. Let L ⊆ Σ∗ be a regular language with minimal DFA D. The syn-
tactic monoid of L is isomorphic to the transition monoid of D.

Proof. For D we use the Myhill-Nerode construction described in Theorem 2.4.5. The
states of D are equivalence classes of ρL. Thus the elements of the transition monoid are
transformations t : Σ∗/ρL → Σ∗/ρL. The syntactic monoid of L is Σ∗/σL. We must produce
an isomorphism which maps equivalence classes of σL to transformations of equivalence
classes of ρL.

Let ϕ be the map that sends wσL to the transformation zρL 7→ (zw)ρL. We must prove
this is well-defined, injective, surjective, and a homomorphism.

To see that it is well-defined, suppose xσL = yσL. We must show that for all classes zρL,
we have (zx)ρL = (zy)ρL. We know that for all u, v ∈ Σ∗, we have uxv ∈ L ⇐⇒ uyv ∈ L,
so in particular this holds for u = z; hence for all v ∈ Σ∗, we have (zx)v ∈ L ⇐⇒ (zy)v ∈
L, and so (zx)ρL = (zy)ρL as required.

To see that it is injective, suppose xσL 6= yσL. We must produce a class zρL such that
(zx)ρL 6= (zy)ρL. Since xσL 6= yσL, there exist u, v ∈ Σ∗ such that uxv ∈ L ⇐⇒ uyv 6∈ L.
We may set z = u and it follows that (zx)ρL 6= (zy)ρL.

To see that it is surjective, simply note that every transformation in the transition
monoid has the form zρL 7→ (zρL)w for some w ∈ Σ∗. But (zρL)w = (zw)ρL by definition.

Finally, to see that ϕ is a homomorphism, we must show that (xσL)ϕ(yσL)ϕ = (xy)σLϕ.
Note that (xσL)ϕ is the transformation zρL 7→ (zx)ρL, and (yσL)ϕ is the transformation
zρL 7→ (zy)ρL. Composing these gives zρL 7→ (zxy)ρL, which is precisely (xy)σLϕ.

2.4.3 State Complexity

Definition. The state complexity of a regular language is the number of states in its
minimal DFA. This is sometimes called deterministic state complexity elsewhere in the
literature, to distinguish it from other measures such as nondeterministic state complexity
(the number of states in a minimal NFA for the language). However, we do not consider
other types of state complexity in this thesis. We write sc(L) for the state complexity of a
regular language L.
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Computing state complexity. To determine the state complexity of a particular lan-
guage, we must count the number of states in its minimal DFA. The minimization pro-
cedure described in Theorem 2.4.9 shows that it is sufficient to find an arbitrary DFA
for the language, count the number of reachable states in this DFA, and then count the
number of indistinguishability equivalence classes among the reachable states. This will be
our standard technique for computing state complexity. The other minimization theorems
in Section 2.4.2 give two additional methods of computing state complexity: by Theo-
rem 2.4.5, we can count the equivalence classes of the Myhill-Nerode relation ρL, and by
Theorem 2.4.7, we can count the number of left quotients of the language by words.

State complexity of operations. A regular operation of arity k (or k-ary regular opera-
tion) is a function that takes k regular languages as input and outputs a regular language.
This thesis is about methods for determining the state complexity of regular operations.

What do we mean by the state complexity of an operation, as opposed to a language?
This is similar to the notion of space complexity of a computable function, a fundamental
topic in computer science. Space complexity is a measure of how much memory a computer
needs to compute the function in the worst case. Specifically, the space complexity is the
worst-case amount of memory needed to compute the function, expressed in terms of
the amount of memory needed to store the inputs to the function. Similarly, the state
complexity of an operation is the maximal possible state complexity of the result of the
operation, expressed in terms of the state complexities of the operands.

More formally, the state complexity of an k-ary regular operation Φ is the following
function, which takes k positive integers as input and outputs a positive integer:

(n1, n2, . . . , nk) 7→ max{sc((L1, L2, . . . , Lk)Φ) : sc(Li) ≤ ni, 1 ≤ i ≤ k}.

The inputs to the function do not represent the exact state complexities of the operands,
but rather upper bounds on the state complexities of the operands. The state complexity of
the operation is computed by taking the maximum over all operand languages whose state
complexity is bounded by the specified values. The statement “sc(Li) ≤ ni” is equivalent
to “Li is recognized by an ni-state DFA”, so one may also view the input integers as
specifying the numbers of states in the DFAs for the operands.

Restricted and unrestricted state complexity. The definition of state complexity of
operations is significantly affected by one’s choice between the restricted and unrestricted
viewpoints (introduced in Section 2.2). When using the restricted viewpoint, if we are
working with an operation of arity two or higher, we assume that all operands share
the same alphabet. This is justified by the fact that in the restricted viewpoint, words
over different alphabets are necessarily distinct; hence, for example, the union of two
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languages over different alphabets would be a set containing a mixture of words over
different alphabets, which is not a language.

To perform a multiary operation on languages over different alphabets, one must first
convert the operands to languages over a common alphabet. This model of state complex-
ity (where we assume operands have the same alphabet, and convert them to languages
over the same alphabet if not) is called restricted state complexity. When using the unre-
stricted viewpoint, there is no issue with performing operations on languages over different
alphabets, and so we consider a larger class of operands when computing the state com-
plexity of an operation. This model of state complexity (where operands may have different
alphabets, and no conversion is needed) is called unrestricted state complexity.

The notions of restricted and unrestricted state complexity were introduced by Brzo-
zowski in 2016 [7]. Prior to Brzozowski’s work, it was standard in the state complexity
literature to use restricted state complexity. Brzozowski showed that restricted state com-
plexity actually leads to incorrect state complexity bounds when applied to languages over
different alphabets, since converting the input languages to a common alphabet can change
their state complexities. Unrestricted state complexity produces correct bounds for lan-
guages over different alphabets. We consider mainly restricted state complexity in this
thesis, but will occasionally discuss unrestricted state complexity.

2.4.4 Automaton Constructions

To determine the state complexity of an operation, we need to find the maximal possible
state complexity of the result of the operation. If we can find a generic DFA construction for
the result of the operation, the size of this DFA gives an upper bound on the maximal state
complexity. We can also obtain lower bounds by choosing particular languages, applying
the operation, and constructing the minimal DFA of the result. For both upper and lower
bounds, it is useful to know how to construct a DFA that describes the result of a regular
operation.

However, it is not always obvious how to do these constructions. For example, suppose
we have two regular languages L and L′. How can we construct a DFA for the union
L∪L′? Does a DFA even exist in all cases? If we figure out how to construct an FA for the
union, can we convert it to a DFA? Questions like these have been studied heavily since the
beginning of the theory of automata. In this section, we describe automaton constructions
for some commonly used regular operations.

Determinization: the subset construction. The subset construction allows one to
convert an arbitrary FA to a DFA. The idea is to construct a DFA which has one state for
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each subset of states in the FA. Let A = (Q,Σ, T, I, F ). Define D = (P(Q),Σ, TD, I, FD)
by setting TD = {(S, a, STa) : S ∈ P(Q), a ∈ Σ} and FD = {S ∈ P(Q) : S ∩ F 6= ∅}. We
refer to D as the determinization of A.

Example 2.4.12 (Determinization of an FA). Let A = (Q,Σ, T, I, F ) be the finite au-
tomaton shown in Figure 2.4.13.

1 2 3

b

a

a, c

a, b

c c b

Figure 2.4.13: A finite automaton A.

Observe that the letter actions of a and b are just a = (3, 2, 1) and b = (1, 2). The
letter action of c is the following element-to-set map:

c =

(
1 2 3

{1, 3} {2} ∅

)

Using these letter actions, we construct a transition table for the determinization. We
will use a determinization algorithm that computes only the reachable states of the deter-
minization. In general this saves some work, although in this particular case we will see
that all states in P(Q) are reachable. We start with just one row, for the initial state {1},
and add new rows as we reach new states.

S a b c
{1} {3} {2} {1, 3}

We have reached three new states: {2}, {3} and {1, 3}. It is straightforward to compute
{2}σ and {3}σ for σ ∈ Σ. To compute {1, 3}σ, we apply the letter action σ to both states
of the set {1, 3}, and take the union. For {1, 3}c, we have 1c = {1, 3} and 3c = ∅, so
{1, 3}c = {1, 3} ∪ ∅ = {1, 3}. For {1, 3}a and {1, 3}b we simply apply the permutation to
each element of the set.

S a b c
{1} {3} {2} {1, 3}
{2} {1} {1} {2}
{3} {2} {3} ∅
{1, 3} {2, 3} {2, 3} {1, 3}
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The new states we have reached are ∅ and {2, 3}. The empty set is simply fixed by every
letter action, and we compute {2, 3}σ similarly to how we handled {1, 3}σ.

S a b c
∅ ∅ ∅ ∅

{1} {3} {2} {1, 3}
{2} {1} {1} {2}
{3} {2} {3} ∅
{1, 3} {2, 3} {2, 3} {1, 3}
{2, 3} {1, 2} {1, 3} {2}

We get one new state, {1, 2}, on this iteration.

S a b c
∅ ∅ ∅ ∅

{1} {3} {2} {1, 3}
{2} {1} {1} {2}
{3} {2} {3} ∅
{1, 2} {1, 3} {1, 2} {1, 2, 3}
{1, 3} {2, 3} {2, 3} {1, 3}
{2, 3} {1, 2} {1, 3} {2}

Now we have reached {1, 2, 3}.

S a b c
∅ ∅ ∅ ∅
{1} {3} {2} {1, 3}
{2} {1} {1} {2}
{3} {2} {3} ∅
{1, 2} {1, 3} {1, 2} {1, 2, 3}
{1, 3} {2, 3} {2, 3} {1, 3}
{2, 3} {1, 2} {1, 3} {2}
{1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}

There are no new reached states, so the determinization algorithm terminates. We have
found all the reachable states (in this case, every set in P(Q) is reachable) and computed
the transitions between them. The determinized automaton is shown in Figure 2.4.14.
Since state 3 was final in the original FA, the final states of the determinization are all the
sets that contain 3.
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∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

b

a

a

a, b

c b

c

c
c

a, b

b
a

a

b

a, b, c a, b, c

c

c

Figure 2.4.14: The determinization of the finite automaton A.

As we see from Figure 2.4.14, in some cases the determinization of an FA can be
significantly more complicated than the original and have many more states (up to 2n

if the original automaton has n states). Nonetheless, determinization is incredibly useful.
Several of the DFA constructions for operations in this section are done by first constructing
an FA, and then determinizing it to obtain a DFA. �

Proposition 2.4.13. The determinization D as defined above is deterministic, and L(D) =
L(A).

Proof. It is clear that D is deterministic since there is exactly one transition for each
state-letter pair. Also, since ITw = ITD

w , we have

w ∈ L(A) ⇐⇒ ITw ∩ F 6= ∅ ⇐⇒ ITw ∈ FD ⇐⇒ ITD
w ∈ FD ⇐⇒ w ∈ L(D),

and so L(D) = L(A) as required.

Reversal. Given a word w = a1 · · ·ak, with w ∈ Σ∗ and a1, . . . , ak ∈ Σ, define the reverse
of w to be wR = ak · · · a1. The reverse of a language L is LR = {wR : w ∈ L}. The reverse
automaton is a DFA used to recognize the reverse of a regular language.
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Let L be a regular language with FA A = (Q,Σ, T, I, F ). We construct a DFA R for
LR as follows. First construct an FA (Q,Σ, TR, F, I) where TR = {(q, a, p) : (p, a, q) ∈ T}.
Essentially, this FA is obtained by reversing the transitions of A and swapping the initial
and final state sets. This FA recognizes LR. Now let R be the determinization of this FA.

Example 2.4.14 (Reversal of a DFA). Let A = (Q,Σ, T, 1, F ) be the deterministic au-
tomaton shown in Figure 2.4.15.

1 2 3

a, b
a

a, c

b

c c b

Figure 2.4.15: A deterministic automaton A.

The FA used as an intermediate step to construct the reverse automaton R is shown
in Figure 2.4.16. It is obtained by swapping the roles of the initial and final states, and
reversing the transition arrows.

1 2 3b a

a, c

a, b
c c b

Figure 2.4.16: FA recognizing the reverse of L(A).

Notice that this FA is has the same transition structure as the FA of Figure 2.4.13, but
different initial and final states. Thus the reverse automaton R, obtained by determinizing
this FA, will look like the DFA of Figure 2.4.14 but with different initial state and final
states.

Let us pick a word in L(A), and verify that its reverse is accepted by the FA. We choose
bacaba. In the reverse FA we have the following path from the initial state 2 to the final
state 1 with label (bacaba)R = abacab:

2
a
−→ 1

b
−→ 2

a
−→ 1

c
−→ 3

a
−→ 2

b
−→ 1.

So the reverse automaton accepts abacab. �
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Proposition 2.4.15. Let A = (Q,Σ, T, I, F ) be an FA. For the reverse automaton R of
A, we have L(R) = L(A)R.

Proof. First we prove that TR
w = T−1

wR for all w ∈ Σ∗. This is clear for w = ε. For a ∈ Σ
we have Ta = {(p, q) : (p, a, q) ∈ T}, and thus

TR
a = {(q, p) : (p, a, q) ∈ T} = {(q, p) : (p, q) ∈ Ta} = T−1

a = T−1
aR
.

Then if w = a1 · · · ak, we have TR
w = T−1

a1
· · ·T−1

ak
= (Tak · · ·Ta1)−1 = T−1

wR .

Now, note that the initial state of R is the set F , and the final state set is {S ∈ P(Q) :
S ∩ I 6= ∅}. Thus we have

w ∈ L(R) ⇐⇒ FTR
w ∩ I 6= ∅ ⇐⇒ FT−1

wR ∩ I 6= ∅

⇐⇒ ∃f ∈ F, fT−1
wR ∈ I

⇐⇒ ∃f ∈ F, f ∈ ITwR

⇐⇒ ITwR ∩ F 6= ∅ ⇐⇒ wR ∈ L(A).

Thus L(R) = L(A)R as required.

Concatenation. The concatenation automaton recognizes the concatenation of two reg-
ular languages. Let L′ and L be regular languages with DFAs A′ = (Q′,Σ′, T ′, 1′, F ′) and
A = (Q,Σ, T, 1, F ), respectively. (This construction can be done with arbitrary FAs, but
we will only use it with DFAs, and using DFAs makes it a bit simpler to describe.) We
construct a DFA C for the concatenation L′L = {xy : x ∈ L′, y ∈ L} as follows. First
define an FA (Q′ ∪Q,Σ′ ∪ Σ, T C, IC, F ), where:

• T C = T ′ ∪ T ∪ {(q′, a, 1) : q′ ∈ Q′, q′a ∈ F ′, a ∈ Σ}.

• IC = {1′} if 1′ 6∈ F ′, and otherwise IC = {1′, 1}.

We define C be the determinization of this FA.

While the state set of C is P(Q′ ∪Q), the structure of the DFA means that a reachable
state can only contain at most one state of Q′. Thus instead of writing the states of C
as sets, we write them as ordered pairs (q′, S) with q′ ∈ Q′ and S ⊆ Q (or (∅, S) for sets
which contain no elements of Q′). In other words, we are treating the state set as if it was
Q′ ×P(Q).

Here is some intuition behind this construction. A word in the concatenation L′L has
the form xy, with x ∈ L′ and y ∈ L. Let’s call the position in the word where y begins
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the “split point”. Now, suppose our automaton C is given some word w. The automaton
should use A′ to read the first part of w (before the split point) and check if this part
belongs to L′, and then use A to check that the remaining part of the word (after the split
point) belongs to L. The problem is that the automaton has no way to know where the
split point is! It could be at any position in the word, or it may not even exist if there is
no way to split up the word into a part from L′ followed by a part from L.

The key insight is that we can use nondeterminism to guess where the split point is.
This is how our automaton works. It starts reading the input word using the automaton
A′, up until the point where a final state is reached. At this point, the automaton has read
a complete word from L′, so it knows that the split point could be at the current position.
So the computation splits off into two branches : a “stay” branch that stays within the
automaton A′, and a “split” branch takes the appropriate transition of the form (q′, a, 1),
leading to the automaton A. Now, if this “split” branch reaches a final state in A, this
means the split point was guessed correctly, and the word really can be split into a part
from L′ and a part from L; thus the word is accepted. It’s possible that this never happens,
and then the split branch just dies off once the word is fully processed. Meanwhile, the
“stay” branch keeps processing the word in A′, looking for new places where a split point
might occur, and spawning new “split” branches as necessary.

This process of guessing and checking split points allows the automaton C to recognize
the concatenation. The states of C have the form {q′}∪S, where q′ is the state of the “stay”
branch, and S keeps track of which states are occupied by the different “split” branches.

Example 2.4.16 (Concatenation of two DFAs). Let A′ and A be the two automata shown
in Figure 2.4.17.

1′ 2′ 3′

a, b
a

a, c

b

c c b

1 2 3 4

a, b
a a

a, c

b

c c b, c b

Figure 2.4.17: Deterministic automata A′ (left) and A (right).

The FA used as an intermediate step to construct the concatenation automaton C is
shown in Figure 2.4.18. We take copies of the DFAs A′ and A and join them with new
transitions. For each transition p

σ
−→ q such that q is a final state, we add a new transition

from p to the initial state 1 of A:
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• Since 1′ a
−→ 2′ and 1′ b

−→ 2′, and 2′ is final, we add transitions 1′ a
−→ 1 and 1′ b

−→ 1.

• Since 2′ a
−→ 3′ and 2′ c

−→ 2′, and 2′ and 3′ are both final, we add transitions 2′ a
−→ 1

and 2′ c
−→ 1.

• Since 3′ b
−→ 3′ and 3′ is final, we add a transition 3′ b

−→ 1.

After adding these new transitions, we make state 1 non-initial and make states 2′ and 3′

non-final.

1′ 2′ 3′

a, b
a

a, c

b

c c b

a, b

a, c

b
1 2 3 4

a, b
a a

a, c

b

c c b, c b

Figure 2.4.18: FA for the concatenation L(A′)L(A).

The determinization of this FA is rather large, so we will not compute it. But let us
verify that the word acabbaca is accepted by this FA. The word acab is accepted by A′,
and the word baca is accepted by A, so acabbaca should be in the concatenation. Indeed,
we have the following path in our FA:

1′ a
−→ 2′ c

−→ 2′ a
−→ 3′ b

−→ 1
b
−→ 2

a
−→ 3

c
−→ 3

a
−→ 4,

with state 1′ initial and state 4 final as required.

To illustrate the “nondeterministic branching” process we described, let use choose
a shorter word to verify: abaa. The automaton verifies that this word belongs to the
concatenation as follows:

• We begin in state 1′ with a single branch: the “stay” branch.

• Process a: the “stay” branch goes to state 2′. Since 2′ is final, we spawn a “split”
branch in state 1.

• Process b: the “stay” branch goes to state 1′ and the “split” branch to state 2.
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• Process a: the “stay” branch goes to state 2′ and the “split” branch to state 3. Since
2′ is final, we spawn a second “split” branch in state 1.

• Process a: the “stay” branch goes to state 2′, the first “split” branch to state 4, and
the second “split” branch to state 2. Since 2′ is final, we spawn a third “split” branch
in state 1.

• We have reached the end of the word. Since the first “split” branch is in the final
state 4, we accept the word; on this branch, the split point was correctly guessed to
be after the first letter. �

Now, we prove formally that the construction works.

Proposition 2.4.17. Let A′ = (Q′,Σ′, T ′, 1′, F ′) and A = (Q,Σ, T, 1, F ) be DFAs, and set
L′ = L(A′) and L = L(A). Let C is the concatenation automaton constructed from these
DFAs. We have L(C) = L′L.

Proof. First we show that L(C) ⊆ L′L. Fix w ∈ L(C). If w = ε, then we must have
IC = {1′, 1} and 1 ∈ F . So ε ∈ L. But since IC = {1′, 1} we have 1′ ∈ F ′; thus ε ∈ L′. So
w = ε ∈ L′L.

Suppose w is nonempty and write w = a1 · · ·ak. Since w is accepted by C, there exists

a sequence of transitions q1
a1−→ q2

a2−→ · · ·
ak−1
−−→ qk

ak−→ qk+1, where q1, . . . , qk+1 ∈ Q ∪ Q′,
q1 ∈ IC, and qk+1 ∈ F .

If q1 = 1, then 1w ∈ F and thus w ∈ L. Also, by definition 1′ ∈ F ′ and so ε ∈ L′. It
follows w = εw ∈ L′L.

Suppose q1 = 1′. Note that there are no transitions that lead from a state of A to
a state of A′. Also, the only transitions that lead from A′ to A are those of the form
(q′, a, 1) with q′ ∈ Q′ and q′a ∈ F ′ in A′. Thus we can partition the aforementioned
sequence of transitions into three sections: the “left” which consists only of transitions
of A′, the “right” which consists only of transitions of A, and the “bridge” which is the
unique transition in the sequence that leads from A′ to A.

Suppose qi
ai−→ qi+1 is the “bridge”; by definition we have qi ∈ Q′, qiai ∈ F ′ in A′, and

qi+1 = 1. The “left” is the sequence q1
a1−→ · · ·

ai−1
−−→ qi and the “right” is the sequence

qi+1
ai+1
−−→ · · ·

ak−→ qk+1. Now, since qiai ∈ F ′, it follows that 1′a1 · · · ai ∈ F ′ in A′, and thus
a1 · · · ai ∈ L′. Also, since qi+1 = 1 we have 1ai+1 · · · ak = qk+1 ∈ F , and thus ai+1 · · · ak ∈ L.
Hence w ∈ L′L.
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This proves that L(C) ⊆ L′L. For the other containment, fix w ∈ L′L. Write w = xy
where x ∈ L′ and y ∈ L. If x = ε, then ε ∈ L′ and thus 1′ ∈ F ′. Thus IC = {1′, 1} and
since 1y ∈ F we have ICy ∩ F 6= ∅ in C; it follows that w = εy = y ∈ L(C).

If x 6= ε, write x = za where z ∈ Σ∗ and a ∈ Σ. Since 1′za ∈ F ′, there is a transition
(1′z, a, 1) in T C. Thus in C we have transitions 1′ z

−→ 1′z
a
−→ 1

y
−→ 1y, with 1y ∈ F since

y ∈ L. It follows that w = zay ∈ L(C). Thus L′L = L(C) as required.

Kleene star. The star automaton is used to recognize the star of a regular language. The
star of L is the language L∗ = {ε} ∪ L ∪ L2 ∪ L3 ∪ · · · , where L2 is the concatenation
LL, L3 is the concatenation LLL, and so on. Let L be a regular language with DFA
A = (Q,Σ, T, I, F ) (again the construction can be made to work with arbitrary FAs, but
we will only use it with DFAs). We construct a DFA S for L∗ as follows. Assume I = {1}.
Define an FA (Q∪{s},Σ, T S , {s}, F ∪{s}), where T S = T ∪{(s, a, 1a) : a ∈ Σ}∪{(q, a, 1) :
q ∈ Q ∪ {s}, qa ∈ F, a ∈ Σ}. Define S be the determinization of this FA.

Since star is an iterated version of concatenation, the intuition behind the construction
is very similar. Words can now have multiple “split points” instead of at most one, but we
can use the same idea of nondeterministically “guessing” split point locations and branching
the computation on each guess. The main difference is now instead of jumping to a second
automaton on each “split” branch, we just have one automaton and we jump back to its
initial state. This means split branches can themselves spawn new split branches upon
reaching a final state! Fortunately, keeping track of all these branches is not difficult since
all we care about is what state of the automaton a particular branch is in. If two branches
occupy the same state, they are functionally equivalent and will have identical behavior
moving forward. Thus we can just use sets of states to keep track of all the branches.

Since the star of a language always contains the empty word ε, the star automaton
also needs an special initial state s to guarantee that ε is accepted. The state s behaves
exactly the same as the original initial state 1 in terms of transitions, but it is final and
thus accepts ε.

Example 2.4.18 (Star of a DFA). Let A be the DFA of Figure 2.4.19.

We construct the FA for the star. For each transition leading into a final state, we add
a transition back to the initial state:

• Since 1
a
−→ 2 and 1

b
−→ 2, and 2 is final, we add transitions 1

a
−→ 1 and 1

b
−→ 1.

• Since 2
a
−→ 3 and 2

c
−→ 2, and 2 and 3 are both final, we add transitions 2

a
−→ 1 and

2
c
−→ 1.
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1 2 3

a, b
a

a, c

b

c c b

Figure 2.4.19: A deterministic automaton A.

• Since 3
b
−→ 3 and 3 is final, we add a transition 3

b
−→ 1.

Then we add the new initial-final state s and the transitions s
σ
−→ 1σ for each σ ∈ Σ. Since

s
a
−→ 2 and s

b
−→ 2, and 2 is final, we add transitions s

a
−→ 1 and s

b
−→ 1. See Figure 2.4.20.

s

1 2 3

a, b

a, b, c

a, b
a

a, b, c

a, b, c

a, b, c c b

Figure 2.4.20: FA for the star L(A)∗.

To obtain the star DFA S, we take the determinization. Using the algorithm from
Example 2.4.12, we obtain the following transition table:

S a b c
{s} {1, 2} {1, 2} {1}
{1} {1, 2} {1, 2} {1}
{1, 2} {1, 2, 3} {1, 2} {1, 2}
{1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2}

The star automaton S is shown in Figure 2.4.21.

Notice that this final DFA is not minimal; states {1, 2} and {1, 2, 3} are both final, and
we can never move from one of these states to a non-final state, and thus these states are
indistinguishable (they both accept the language Σ∗). We can merge these states to obtain
a minimal DFA for the star; see Figure 2.4.22.
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s

1 {1, 2} {1, 2, 3}

a, bc

a, b

c

a

b, c a, b

c

Figure 2.4.21: Star automaton S for the DFA A.

s

1 {1, 2}∆

a, bc

a, b

c a, b, c

Figure 2.4.22: Minimized star automaton for the DFA A.

It is clear now that S accepts the following language:

L = {w ∈ Σ∗ : w is either empty, or contains at least one a or b}.

Is this really the star of the language of A? The language of A is difficult to describe, but
we can see that it contains a and b, and thus the star contains all words in {a, b}∗. In fact,
the language of A contains all words of the form ack and bck for k ≥ 0. An arbitrary word
in the language L can be split into blocks of the form wσck, where w is a word over {a, b}∗

and σ ∈ {a, b}. Therefore, every word in L can be written as a concatenation of words in
L(A), that is, L ⊆ L(A)∗. Also, every word accepted by A contains at least one a or b, so
L(A)∗ ⊆ L. Thus the language of S is indeed the star of the language of A. �

Proposition 2.4.19. Let A = (Q,Σ, T, 1, F ) be a DFA with language L and let S be the
star automaton of A. We have L(S) = L∗.

Proof. First we show that L(S) ⊆ L∗. Fix w ∈ L(S). If w = ε, then w ∈ L∗, so suppose w
is non-empty. We will call a transition of T S a start transition if it has the form (s, a, 1a),
and a split transition if it has the form (q, a, 1) with qa ∈ F . Note that if a transition is
not a split transition, it must lie in T . However, T might contain split transitions if 1 ∈ F .
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Now, we prove the following statement: let q1
a1−→ q2

a2−→ · · ·
ak−1
−−→ qk be a sequence of

transitions in T S such that q1 ∈ {s, 1} and there are ℓ split transitions. If T contains a

transition qk
ak−→ q with q ∈ F , then a1 · · ·ak ∈ Lℓ+1.

We proceed by induction on ℓ. If ℓ = 0, then every transition in our sequence except
possibly the first lies in T . The only way we can have q1

a1−→ q2 not in T is if q1 = s. But
then q1

a1−→ q2 is a start transition, and thus we have a corresponding transition 1
a1−→ q2 in

T . So in A we have 1a1 · · ·ak−1 = qk. Since the transition qk
ak−→ q is also in T , in fact we

have 1a1 · · · ak = q ∈ F . Thus a1 · · · ak ∈ L = L1.

If ℓ > 0, assume the statement holds for sequences with fewer than ℓ split transitions.

Let qj
aj
−→ qj+1 be the last split transition in our sequence. Then the sequence q1

a1−→

· · ·
aj−1
−−→ qj has fewer than ℓ split transitions. Furthermore, in A we have qjaj ∈ F , so

T contains a transition qj
aj
−→ q with q ∈ F . By induction we have a1 · · · aj ∈ Lℓ. Now,

note that since qj
aj
−→ qj+1 is a split transition, we have qj+1 = 1. Also, by assumption

T contains a transition qk
ak−→ q with q ∈ F . Thus the sequence qj+1

aj+1
−−→ · · ·

ak−1
−−→ qk,

which contains no split transitions, also satisfies the induction assumption. It follows that
aj+1 · · ·ak ∈ L. Hence a1 · · · ak ∈ Lℓ+1.

With this statement proved, we can show that L(S) ⊆ L∗. If w ∈ L(S) with w =

a1 · · · ak, we must have a sequence of transitions q1
a1−→ q2

a2−→ · · ·
ak−1
−−→ qk

ak−→ qk+1 with
q1 = s and qk+1 ∈ F and finitely many split transitions. As long as the final transition
qk

ak−→ qk+1 lies in T , we can use the above statement to get w ∈ L∗. So suppose that
qk

ak−→ qk+1 does not lie in T . Then it must be a split transition qk
ak−→ 1 such that qkak ∈ F

in A. But this means that T contains some transition qk
ak−→ q with q ∈ F ; so we can

replace the final transition in our sequence with a transition from T , and then apply the
statement. In any case, we have w ∈ L∗.

Next we show that L∗ ⊆ L(S). Fix w ∈ L∗. If w = ε then it is accepted by L(S).
Otherwise, for some k we can write w = w1 · · ·wk with w1, . . . , wk ∈ L. Assume without
loss of generality that each wi is nonempty and write wi = xia, where xi ∈ Σ∗ and a ∈ Σ.
Then since xia ∈ L for all i, in A we have 1xiai ∈ F for all i. Thus in S there are split
transitions 1xi

ai−→ 1 for all i. Also, there is a transition 1xk
ak−→ q for some ak ∈ Σ and

q ∈ F . It follows that in S we have a sequence of transitions

s
x1−→ 1x1

a1−→ 1
x2−→ 1x2

a2−→ 1
x3−→ · · ·

ak−1
−−→ 1

xk−→ 1xk
ak−→ q,

and thus w = x1a1x2a2 · · ·xkak ∈ L(S). It follows that L(S) = L∗.

The state set of S is P(Q∪{s}), but only states of the following forms can be reached:
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• The singleton {s}.

• Sets S ⊆ Q \ F .

• Sets S ⊆ Q such that S ∩ F 6= ∅ and i ∈ S.

We assume without loss of generality that the state set of S consists of only states of these
forms.

Union, intersection, and other boolean operations. The direct product construction
is used to recognize boolean operations on regular languages. For simplicity, we consider
only binary boolean operations below, but the construction has a straightforward general-
ization to boolean operations of arbitrary arity.

Fix a function ◦ : {0, 1}2 → {0, 1}; this is called a binary boolean function. For a set S,
let χS denote the characteristic function of S, defined by xχS = 1 if x ∈ S and xχS = 0
otherwise. (The inputs to χS are assumed to come from some “universal set” containing
S.) We can think of xχS as giving the “truth value” of the proposition “x ∈ S ”, where 0
is false and 1 is true. For each binary boolean function ◦, we define a corresponding binary
boolean operation L′ ◦ L on languages L ⊆ Σ∗ and L′ ⊆ (Σ′)∗ as follows:

L′ ◦ L = {w ∈ (Σ ∪ Σ′)∗ : wχL′ ◦ wχL = 1}.

For example, if ◦ : {0, 1}2 → {0, 1} is the “logical or” function, then L′ ◦ L = L′ ∪ L, since
w ∈ L′ ◦ L if w ∈ L′ or w ∈ L. Similarly, the “logical and” function gives the intersection
L′ ∩ L.

Now, let L′ and L be regular languages with DFAs A′ = (Q′,Σ′, T ′, I ′, F ′) and A =
(Q,Σ, T, I, F ), respectively. Fix a binary boolean operation ◦. We construct a DFA B =
A′ ×A for L′ ◦ L as follows. Define

B = ((Q′ ∪ {∅}) × (Q ∪ {∅}),Σ′ ∪ Σ, T B, (1′, 1), F ′ ◦ F ),

where T B contains a transition (q′, q)
a
−→ (q′a, qa) for each q ∈ Q ∪ {∅}, q′ ∈ Q′ ∪ {∅},

and a ∈ Σ′ ∪ Σ, the initial state is (1′, 1), and the final state set is F ◦ F ′ = {(q′, q) ∈
(Q′ ∪ {∅}) × (Q ∪ {∅}) : q′χF ′ ◦ qχF = 1}. If Σ′ = Σ, then states with ∅ in one or both of
the components are not reachable, and we can just take the state set to be Q′ ×Q.

Intuitively, the idea behind this construction is to run two automata in parallel on the
same input word, and accept depending on the results of this parallel computation. The
states of the direct product are simply pairs of states from the original automata, and the
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transitions are given by following the transitions in the original automaton component-
wise. (The ∅ marker is needed to account for the possibility that one of the automata has
no transitions on a particular letter.) Acceptance is based on checking whether the states
reached at the end of this parallel computation satisfy a particular boolean condition; for
example, for intersection we want that both automata reached a final state, but for union
we want that at least one reached a final state. For boolean operations of higher arity, we
use the same idea but with a larger number of automata.

Example 2.4.20 (Direct product of DFAs). Let us construct a DFA for the following
language over Σ = {a, b}:

L = {w ∈ Σ∗ : w has an even number of as and an odd number of bs}.

We already saw the minimal DFA for this language in Examples 2.4.6 and 2.4.8. However,
we can also construct it by taking a direct product of DFAs for the following languages:

{w ∈ Σ∗ : w has an even number of as} and {w ∈ Σ∗ : w has an odd number of bs}.

DFAs A′ and A for these languages are shown in Figure 2.4.23.

0 1 0 1

a

a

b b

b

b

a a

Figure 2.4.23: DFAs for the languages over {a, b} of words an even number of as (left) and
words with an odd number of bs (right).

The direct product of A′ and A is shown in Figure 2.4.24. The states are pairs in
{0, 1} × {0, 1}. If we are in state (i, j), this means the parity of as is i modulo 2, and the
parity of bs is j modulo 2. The initial state is the pair (0, 0); the components are the initial
states of the original DFAs. The final state set is {(0, 1)}, the unique pair which represents
reaching a final state in both of the original DFAs simultaneously.

We can modify the final state set of this direct product to recognize other boolean
operations. For example, suppose we are interested in the following language:

L = {w ∈ Σ∗ : w has an even number of as or an odd number of bs}.

We just take the final state set to be the set of all pairs in which one of the components
is final: this is the set {(0, 0), (0, 1), (1, 1)}. �
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(0, 0) (1, 0)

(0, 1) (1, 1)

a

a

a

a

bb bb

Figure 2.4.24: Direct product DFA for the language of words over {a, b} with an even
number of as and an odd number of bs.

Proposition 2.4.21. Let A′ = (Q′,Σ′, T ′, 1′, F ′) and A = (Q,Σ, T, 1, F ) be DFAs with
languages L′ and L respectively. Let ◦ be a binary boolean function, and let B be the
direct product A′ × A with final state set F ′ ◦ F . The automaton B is deterministic, and
L(B) = L′ ◦ L.

Proof. The automaton is deterministic because there is one transition for each state-letter
pair. To see that L(B) = L′ ◦ L, note that

1wχF = 1 ⇐⇒ 1w ∈ F ⇐⇒ w ∈ L ⇐⇒ wχL = 1.

Thus 1wχF = wχL and similarly 1′wχF ′ = wχL′. It follows that

w ∈ L(B) ⇐⇒ 1′wχF ′ ◦ 1wχF = 1 ⇐⇒ wχL′ ◦ wχL = 1 ⇐⇒ w ∈ L′ ◦ L,

as required.

Inverse homomorphism. Let ϕ : Γ∗ → Σ∗ be a homomorphism. Let L be a reg-
ular language with DFA A = (Q,Σ, T, 1, F ). We may define a DFA recognizing the
inverse homomorphism language Lϕ−1 as follows. Define Aϕ−1 = (Q,Γ, T ′, 1, F ) with
T ′ = {(q, a, qTaϕ) : q ∈ Q, a ∈ Σ}.

Note that the inverse homomorphism DFA Aϕ−1 has the same state configuration as
A. The only difference is that the transitions have been “rewired”. In particular, this
implies that sc(Lϕ−1) ≤ sc(L). This fact will be frequently useful.

Proposition 2.4.22. Let L be a regular language with DFA A = (Q,Σ, T, 1, F ). Fix a
homomorphism ϕ : Γ∗ → Σ∗ and let Aϕ−1 be the inverse homomorphism DFA of A. We
have L(Aϕ−1) = Lϕ−1.

Proof. We have w ∈ L(Aϕ−1) ⇐⇒ 1wϕ ∈ F ⇐⇒ wϕ ∈ L ⇐⇒ w ∈ Lϕ−1.
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2.4.5 State Complexity of Basic Operations

We have defined the notion of state complexity of operations in Section 2.4.3, and demon-
strated how to construct automata for these operations in Section 2.4.4. Now, we put all
these concepts together and compute the state complexities of the following operations:
reversal, concatenation, star, and binary boolean operations.

The n-state DFSA defined in Example 2.4.3, which has Tn as its transition monoid,
will play an important role in the following proofs. Figure 2.4.25 shows an automaton
derived from this semiautomaton, where state 1 has been made initial and state n has
been made final. Brzozowski was the first to demonstrate the power of this automaton in a
state complexity context; he used it to prove all the results we will prove in this section [6].
The results were originally proved by Maslov [62] and independently by Yu, Zhuang and
Salomaa [79] using an assortment of different automata.

1 2 3 · · · n− 1 n

a, b
a a a a

a, c

b

c c b, c b, c b

Figure 2.4.25: Deterministic automaton An with transition monoid Tn.

This DFA has letter actions a = (1, 2, . . . , n), b = (1, 2), and c = (n → 1), and every
transformation of {1, . . . , n} can be represented as the action of a word over {a, b, c}.
Throughout this section, we will call this automaton An = (Q,Σ, T, 1, F ). We write Ln

for the language of An.

We also introduce an automaton A′
n, which is the same as An but with the states

renamed to {1′, 2′, . . . , n′} and the letter actions of a and b swapped: a = (1′, 2′) and
b = (1′, 2′, . . . , n′). This automaton is shown in Figure 2.4.26. We write L′

n for its language.

Reversal. Let A be an n-state automaton with state set Q. Then the state complexity of
L(A)R is at most 2n. To see this, recall that we can construct an automaton R for L(A)R

with state set P(Q), and there are 2n subsets of a set of size n. Thus L(A)R cannot have
state complexity higher than 2n, since there is a 2n-state automaton that recognizes it.

Our goal is to show that this upper bound 2n is tight for n ≥ 2, i.e., for each n there is
a DFA A with n states such that the state complexity of L(A)R is exactly 2n. For n = 1,
the only languages recognizable by one-state DFAs are Σ∗ and ∅, which are both equal to
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1′ 2′ 3′ · · · (n− 1)′ n′

a, b
b b b b

b, c

a

c c a, c a, c a

Figure 2.4.26: Deterministic automaton A′
n with transition monoid Tn; this automaton is

essentially the same as An but the roles of a and b are swapped.

their own reverse. Thus for n = 1, the worst-case state complexity of reversal is 1 rather
than 21 = 2.

We use the DFA An = (Q,Σ, T, 1, F ) with language Ln as our witness. We construct
the reverse automaton, which we denote by Rn = (Q,Σ, TR, F, 1). Figure 2.4.27 shows the
intermediate FA that is determinized to obtain the DFA Rn.

1 2 3 · · · n− 1 n

a, b

a a a a

a, c

b

c c b, c b, c b

Figure 2.4.27: FA for the reverse of Ln.

Now we prove that the reverse of our witness Ln reaches the state complexity upper
bound 2n.

Theorem 2.4.23. For n ≥ 2, the DFA Rn recognizing LR
n is minimal and has 2n states.

To prove that Rn is minimal, we must show that all states of Rn are reachable and
all pairs of states are distinguishable. Before jumping into the proof, we establish some
general facts about reverse automata that will be useful.

Recall from the proof of Proposition 2.4.15 that if A is an automaton with transition
function T , and R is the reverse of A with transition function TR, then we have TR

w = T−1
wR .

Thus each reachable state of R has the form Fw−1 for some word action w of A. This
means that determining which states are reachable in the reverse automaton R is equivalent
to computing the preimages of the set F under the word actions of A. Furthermore, if R
is constructed from a DFA with all states reachable, the following proposition shows that
it is easy to determine which states of the reverse automaton are distinguishable:
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Lemma 2.4.24. Let A = (Q,Σ, T, 1, F ) be a DFA in which all states are reachable. Let
R be the reverse of A. Let X, Y ⊆ Q be distinct reachable states of R. Then X and Y are
distinguishable.

Proof. Choose a state q that is in X but not in Y . (We can do this without loss of
generality; if X is a proper subset of Y then just swap the names of X and Y .) Since q
is reachable in A, there exists w such that 1w = q. Then 1 ∈ qw−1. Furthermore, for all
p 6= q, we have 1 6∈ pw−1; otherwise we would have p ∈ 1w, but A is deterministic. Hence
we have 1 ∈ XTR

w = XT−1
w and 1 6∈ Y TR

w = Y T−1
w , so XTR

w is final and Y TR
w is non-final.

That is, X and Y are distinguishable.

These facts make it easy to prove Theorem 2.4.23.

Proof of Theorem 2.4.23. By Lemma 2.4.24, all reachable states of Rn are distinguishable.
So it suffices to show that Rn has 2n reachable states. This means we need to show that
each set S ⊆ Q is reachable. As we remarked, the reachable states of Rn are those of the
form Fw−1, where w is a word action of An. Since F = {n}, we must show that for every
set S ⊆ Q, there exists w ∈ Σ∗ such that nw−1 = S.

This turns out to be fairly simple, since we have proved that An has transition monoid
Tn. Thus for every transformation of Q = {1, . . . , n}, there is a corresponding word action.
Fix S and let w be a transformation such that Sw = n and (Q \S)w = 1. Since n ≥ 2, we
have nw−1 = S and we are done.

Notice that constructing the reverse automaton Rn was not really necessary for this
proof, since we reduced the problem to just looking at preimages of An’s final state set
under An’s word actions.

This proof illustrates the importance of the transition monoid is in state complexity.
There is a direct relationship between the transition monoid of an automaton A and the
number of reachable states in its reverse R. By choosing a witness automaton with a maxi-
mal transition monoid, we were able to show very easily that the maximal number of states
is reachable. No matter what the operation is, increasing the number of transformations in
the transition monoids of the operands will potentially allow new states to be reached or to
be distinguished in the DFA resulting from the operation. Thus, a general rule of thumb
when looking for state complexity witnesses is to choose automata with maximal transition
monoids relative to the constraints of the problem. This is not a foolproof strategy, but it
is a good heuristic.
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Concatenation. Because concatenation is a binary operation, its state complexity is
affected by our choice between the restricted and unrestricted viewpoints. In this section
we will just compute the restricted state complexity of concatenation, since the process is
simpler.

Let A′ = (Q′,Σ′, T ′, 1′, F ′) and A = (Q,Σ, T, 1, F ) be DFAs with m states and n
states, respectively, and a common alphabet Σ′ = Σ. We claim that their concatenation
automaton C has at most (m− 1)2n + 2n−1 reachable states. By our convention of writing
the states of C as ordered pairs, the initial state is either (1′, ∅) (if 1′ 6∈ F ′) or (1′, 1) (if
1′ ∈ F ′). The transition from a state (q′, S) on a letter a can be described as follows:

(q′, S)
a
−→

{
(q′a, Sa ∪ 1), if q′a ∈ F ;

(q′a, Sa), if q′a 6∈ F .
.

Why is this? Recall that the transition set of the FA used to constructed C is just T ′∪T ∪
{(q′, a, 1) : q′ ∈ Q′, a ∈ Σ, q′a ∈ F ′}. Thus if q′a is non-final, we just follow the transition
q′

a
−→ q′a from T ′ and the transitions s

a
−→ sa from T for each s ∈ S, ending up at (q′a, Sa).

But if q′a is final, we have the additional transition q′
a
−→ 1 to follow, so the state 1 gets

added to the second component.

Because of this transition structure, if a state of the form (f ′, S) with f ′ ∈ F is reach-
able, then S must contain 1. Therefore the reachable states fall into one of two categories:

1. States of the form (q′, S) with q′ 6∈ F ′ and S ⊆ Q.

2. States of the form (f ′, S) with f ′ ∈ F ′, S ⊆ Q, and 1 ∈ S.

Suppose |F ′| = k. Then there are (m − k)2n states in the first category and k2n−1 states
in the second category. Thus (m − k)2n + k2n−1 is an upper bound on the number of
reachable states of C. This number is maximized when k = 1, giving the upper bound
(m − 1)2n + 2n−1. This upper bound on the number of reachable states of C is also an
upper bound on the state complexity of the concatenation of two languages, where the first
is recognized by an m-state DFA and the second by an n-state DFA.

Now, we prove this upper bound is tight, using A′
m and An as our witness languages.

Let Cm,n be the concatenation automaton constructed from A′
m and An. The intermediate

FA used to construct Cm,n is shown in Figure 2.4.28.

The following table shows the letter actions of A′
m and An:

a b c
A′

m (1′, 2′) (1′, 2′, . . . , m′) (m′ → 1′)
An (1, 2, . . . , n) (1, 2) (n→ 1)
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1 2 3 · · · n− 1 n

a, b
a a a a

a, c

b

c c b, c b, c b

1′ 2′ 3′ · · · (m− 1)′ m′

b

a

a, b
b b b b

b, c

a

c c a, c a, c a

Figure 2.4.28: FA for the concatenation L′
mLn.

Theorem 2.4.25. If m,n ≥ 3, the minimization of Cm,n has exactly (m − 1)2n + 2n−1

states.

Proof. First we show that (m−1)2n + 2n−1 states are reachable. The initial state is (1′, ∅).
We prove by induction on |S| that all states of the form (q′, S) with q′ 6= m′ and (m′, S∪1)
are reachable.

The base case is |S| = 0. From (1′, ∅), we reach (q′, ∅) for q′ 6= m′ via bq−1. We reach
(m′, 1) via bm−1.

To show (q′, S) for q′ 6= m′ and (m′, S ∪ 1) are reachable for |S| > 0, first consider the
case q′ = 1′. Let q be the minimal element of S.

If q is even, set i = q−2 and set T = (S \q)a−ib−1. Since a and b are both permutations
in An, the set T has size |S|−1. Assume by induction that we can reach (m′, T ∪1). Then
(m′, T ∪ 1)b = (1′, (S \ q)a−i ∪ 2). Since i is even and a = (1′, 2′) in A′

m, we have 1′ai = 1′,
and the path from 1′ labelled with ai just cycles between 1′ and 2′ and never passes through
a final state. Thus (1′, (S \ q)a−i ∪ 2) = (1′, (S \ q) ∪ 2ai). But 2ai = 2 + q − 2 = q, so we
reach (1′, S).

If q is odd and n is odd, set i = 2n + (n + 1)(q − 2) (note that this is even and is a
positive integer, since q ≥ 1 and thus q−2 ≥ −1). By the same argument as above we can
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reach (1′, (S \ q)∪ 2ai). Modulo n, we have 2ai ≡ 2 + 2n+ (n+ 1)(q− 2) ≡ 2 + q − 2 ≡ q.
Hence we reach (1′, S).

If q is odd and n is even, set i = n− 2 and consider the set T = (S \ q)(baibaq)−1. Note
that i is even and q is odd. Thus 1′ai = 1′, but 1′aq = 2′ and 2′aq = 1′. Assume as before
that we can reach (m′, T ∪ 1). We have

(m′, T ∪ 1)
b
−→ (1′, T b ∪ 2)

ai

−→ (1′, T bai ∪ n)
b
−→ (2′, T baib ∪ n)

aq

−→ (1′, T baibaa ∪ q).

Since Tbaibaq = S \ q, we reach (1′, S).

To reach (q′, S) for q′ 6= m′ and q′ > 1′, first reach (1′, Sb−(q′−1)) and then apply bq
′−1.

To reach (m′, S ∪ 1), first reach ((m− 1)′, Sb−1) and then apply b.

This completes the inductive proof; we have shown that all states of the form (q′, S)
with q′ 6= m and (m′, S∪1) are reachable. We counted earlier that there are (m−1)2n+2n−1

such states.

To finish the proof, we show that all of these reachable states are pairwise distinguish-
able. Let (p′, S) and (q′, T ) be two distinct reachable states. If S 6= T , without loss of
generality we can find q ∈ S such that q 6∈ T . Applying an−q to both states sends S to
a set containing n, and T to a set that does not contain n. Thus (p′, S)an−q is final, but
(q′, T )an−q is not final; we have distinguished the states.

If S = T , then since the states are distinct we must have p′ 6= q′. Assume without loss
of generality that p′ < q′. Apply bm

′−q′ to both states to reach ((m + p− q)′, Sbm
′−q′) and

(m′, Sbm
′−q′ ∪ 1). If Sbm

′−q′ 6= Sbm
′−q′ ∪ 1, we can distinguish these latter states by the

same argument from earlier. We cannot apply this argument in the case where Sbm
′−q′

contains 1. Since b = (1, 2) in An, this can only happen if S contains 1 or 2.

Suppose S contains 1 or 2. Assume without loss of generality that p′ < q′ < m′;
otherwise we can repeatedly apply b until neither p′ nor q′ is equal to m′, and then rename
the variables if necessary so that they are ordered as desired. Now, let q be the minimal
element of S.

• By applying an−q we reach a set containing n.

• Then via c we reach a set containing 1 but not n.

• Via a we reach a set containing 2 but not 1.

• Via an−2 we reach a set containing n but not n− 1.
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• Via c we reach a set containing 1, but neither n nor n− 1.

• Via a2 we reach a set containing 3, but neither 1 nor 2.

So if S contains 1 or 2, then w = an−qcan−1ca2 sends S to a set that does not contain 1
or 2. Furthermore, since a = (1′, 2′) in A′

m and m ≥ 3, applying a will not send p′ or q′

to m′. So applying c will leave p′ and q′ untouched. Thus p′w and q′w are distinct states.
It follows that by starting in (p′, S) and (q′, S) and applying w, we reach states (p′w, Sw)
and (q′w, Sw) with p′w 6= s′w and 1, 2 6∈ Sw. We proved in a previous case that states of
this form are distinguishable; it follows that (p′, S) and (q′, S) are distinguishable.

We have shown that all reachable states are distinguishable, completing the proof.

This argument was rather long and technical compared to the one for reversal. The
relationship between the word actions of the concatenation automaton and the word actions
in the operand automata is not as simple and direct as for reversal, so we needed to make
careful arguments by building up words from individual letter actions. Despite having a
maximal transition monoid in both of the operand automata, we could not really take
advantage of these transition monoids in the same way as for reversal. Later in the thesis,
we will learn some techniques that make concatenation state complexity proofs simpler.

Star. As before, we first derive an upper bound on the state complexity of star. Let
A = (Q,Σ, T, 1, F ) be an n-state DFA and construct its star automaton S. We claim that
S has at most 2n−1 + 2n−2 reachable states. The states of S (aside from the initial state
{s}) are subsets of Q, and the transitions between subsets can be described as follows:

S
a
−→

{
Sa ∪ 1, if Sa ∩ F 6= ∅;

Sa, if Sa ∩ F = ∅.

Thus if a reachable state S contains a final state, it must also contain the initial state 1.
We can divide the potentially reachable states into three groups:

• The initial state {s}.

• Non-empty subsets of Q which do not contain a final state.

• Subsets of Q which contain a final state and also 1.

Let us count these states. Suppose there are k final states. Then there are 2n−k subsets of
Q that do not contain a final state. The empty subset is not reachable, so we subtract 1
to get a count of 2n−k − 1.
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Now consider subsets S of Q which contain a final state and also contain 1. We can
write S as a disjoint union X ∪ Y , where X ⊆ Q \ F and Y ⊆ F . There are two cases,
depending on whether 1 ∈ F .

If 1 ∈ F , then X is potentially empty, so there are 2n−k choices for X . Since Y must
contain 1, there are 2k−1 choices for Y . In total there are 2n−k(2k−1) = 2n−1 choices in this
case.

If 1 6∈ F , then there are 2n−k−1 choices for X since it must contain 1. Since Y must
contain a final state, it cannot be empty, so there are 2k − 1 choices for Y . In total there
are 2n−k−1(2k − 1) = 2n−1 − 2n−k−1 choices in this case.

That deals with subsets of Q; we also need to add 1 for the initial state {s}. In
summary:

• If 1 ∈ F , there are at most (2n−k − 1) + 2n−1 + 1 = 2n−1 + 2n−k reachable states.

• If 1 6∈ F , there are at most (2n−k−1)+(2n−1−2n−k−1)+1 = 2n−1 +2n−k−1 reachable
states.

The maximum value of the bound in both cases is given by taking k = 1. However, in
the case where 1 ∈ F and k = 1 (that is, A has a unique final state which is also initial)
we claim that only {s} and the n singleton subsets {q}, q ∈ Q are reachable. Indeed,
if qa is non-final then we just have {q}a = {qa}. If qa is final, then qa = 1, and thus
{q}a = {1} ∪ {1} = {1}.

Additionally, if 1 ∈ F then the states {s} and {1} are both final in S, and they both
accept the same language, so they are indistinguishable, which reduces the upper bound
on state complexity by 1. Thus we have the following more precise upper bounds:

• If F = {1}, there are at most n indistinguishability classes of reachable states.

• If F 6= {1} and 1 ∈ F , there are at most 2n−1 + 2n−k − 1 indistinguishability classes
of reachable states.

• If 1 6∈ F , there are at most 2n−1 + 2n−k−1 reachable states.

The maximal upper bound is 2n−1 + 2n−2, given by taking 1 6∈ F and k = 1.

Later on we will prove that the upper bounds above are tight for all configurations
of initial and final states, but for now we will just prove that the absolute upper bound
2n−1 + 2n−2 is tight. We use An as our witness language; let Sn be the star automaton
constructed from An. The intermediate FA used to construct Sn is shown in Figure 2.4.29.
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Figure 2.4.29: FA for the star of Ln.

Theorem 2.4.26. If n ≥ 3, the minimization of Sn has exactly 2n−1 + 2n−2 states.

Proof. First we show that 2n−1 + 2n−2 states are reachable in Sn. The initial state {s} is
trivially reachable. We prove by induction on |S| that all non-empty sets S ⊂ Q \ F , and
all sets 1 ∪ S with 1 6∈ S and S ∩ F 6= ∅, are reachable. Note that S ∩ F 6= ∅ is equivalent
to n ∈ S, since F = {n}.

For the base case |S| = 1, we have

{s}
c
−→ {1}

a
−→ {2}

a
−→ {3} · · ·

a
−→ {n− 1}

a
−→ {1, n}.

Now suppose |S| = k. Write S = {q1, . . . , qk} with q1 < · · · < qk.

Suppose S ⊆ Q \ F , and q1 = 1. Let T = {q3 − q2 + 1, . . . , qk − q2 + 1, n}. This set has
size |S| − 1, so we may assume that 1 ∪ T is reachable by induction. Let w = a(ab)q2−2.
We claim that (1 ∪ T )w = S. Indeed, observe that

{1, n}
a
−→ {1, 2}

ab
−→ {1, 3}

ab
−→ · · ·

ab
−→ {1, n− 1}.

Thus {1, n}a(ab)k = {1, 2 +k} for k ≤ n−3. In particular, {1, n}a(ab)q2−2 = {1, q2}. Now

consider (T \n)w = {q3−q2+1, . . . , qk−q2+1}w; we have qi−q2+1
a
−→ qi−q2+2

(ab)q2−2

−−−−−→= qi.
Thus (1 ∪ T )w = {1, q2, q3, . . . , qk} = S.

Now suppose S ⊆ Q \ F and q1 > 1. Reach {1, q2 − q1 + 1, . . . , qk − q1 + 1} by the
above argument, and apply aq1−1 to reach S. Finally, consider 1∪S with 1 6∈ S and n ∈ S.
Reach {q1 − 1, . . . , qk − 1} by previous arguments, then apply a to reach 1 ∪ S.
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This shows that 2n−1 + 2n−2 states are reachable. Now we show all of these states are
pairwise distinguishable. If S and T are distinct states, without loss of generality we can
find q ∈ S such that q 6∈ T . Applying an−q sends S to a final state (containing n), and T
to a non-final state (not containing n). Hence we have distinguished the states.

Boolean operations. We consider only binary boolean operations, and as with concate-
nation, we consider only restricted state complexity. Recall that binary boolean operations
such as union and intersection are recognized by a direct product of two DFAs. If the two
DFAs have m and n states respectively, the direct product has (m+ 1)(n+ 1) states in the
unrestricted case, but in the restricted case mn states suffice. Thus we immediately get an
upper bound of mn on the state complexity of all binary boolean operations.

For the lower bound, we once again use A′
m and An as our witnesses. Figure 2.4.30

shows an example direct product for m = 3, n = 4.

There are 16 binary boolean operations; six of these are improper operations which are
either constant or depend on only one argument. The other ten are proper operations which
depend on both arguments: union L′ ∪ L, intersection L′ ∩ L, two difference operations
L′ \ L and L \ L′, symmetric difference L′ ⊕ L = (L′ \ L) ∪ (L \ L′), and the complements
of these operations: (Σ′ ∪Σ)∗ \ (L′ ◦L), where ◦ is one of the previous five operations and
Σ′ (respectively Σ) is the alphabet of L′ (respectively L).

To prove a particular boolean operation has state complexity mn, the idea is to first
show that all mn states of the direct product A′

m × An are reachable. Then we look at
the final state set corresponding to the boolean operation of interest, and show that all
mn states are distinguishable under this final state set. This method requires a separate
distinguishability argument for each boolean operation we consider, and these arguments
are often very similar. To avoid too much repetition, we will just look at union and
intersection, which should be enough to get a rough idea of how these proofs work. Later
we will learn some general techniques that allow us to deal with many operations at once
and avoid splitting the proof into individual cases for each operation.

For convenience, we reproduce the table of letter actions for A′
m and An:

a b c
A′

m (1′, 2′) (1′, 2′, . . . , m′) (m′ → 1′)
An (1, 2, . . . , n) (1, 2) (n→ 1)

Lemma 2.4.27. In the direct product A′
m × An, all mn states are reachable using words

over {a, b}.

74



(1′, 1) (1′, 2) (1′, 3) (1′, 4)

(2′, 1) (2′, 2) (2′, 3) (2′, 4)

(3′, 1) (3′, 2) (3′, 3) (3′, 4)

Figure 2.4.30: Direct product A′
3 × A4, with no final states assigned. Solid lines denote

transitions on a and dashed lines denote transitions on b. Transitions on c are omitted.

Proof. First we show that all states of the form (3′, q) are reachable. From the initial state
(1′, 1), via ab we reach (3′, 1). Then via bq−1 we reach (3′, q). Now to reach (p′, q), first
reach (3′, qa−(m+p−3)) and then apply am+p−3 to reach (m′ + p′, q) = (p′, q).

Theorem 2.4.28. Let Bm,n be the direct product A′
m ×An with final state set (Q′ × F ) ∪

(F ′ ×Q); this DFA recognizes the union L′
m ∪ Ln. If m,n ≥ 3, then Bm,n is minimal with

mn states.

Proof. By Lemma 2.4.27 we know all mn states are reachable. For distinguishability, let
(p′, q) and (r′, s) be distinct states. Since they are distinct, we have p′ 6= r′ or q′ 6= s′. Call
the first component of a state the “row” and the second component the “column”. Since
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F = {n} and F ′ = {m′}, a state in the direct product is final if the row is m′ or the column
is n′.

Suppose q 6= s; without loss of generality assume q > s. Apply an−q to send (p′, q) to a
final state in column n, and (r′, s) to a state outside of column n. If (r′, s)an−q is non-final,
we have distinguished the states; otherwise (r′, s)an−q is final and so must lie in row m′.
So our new states are (p′an−q, n) and (m′, san−q). Applying b distinguishes these states,
since n ≥ 3 implies the first state will stay in column n and stay final, while the second
state will move from row m′ to row 1′ and stay non-final. Now suppose p′ 6= r′; without
loss of generality assume p′ > r′. Then a symmetric argument shows that since m ≥ 3,
either bm−p or bm−pa distinguishes the states. Thus all mn states are distinguishable.

Theorem 2.4.29. Let Bm,n be the direct product A′
m × An with final state set F ′ × F ;

this DFA recognizes the intersection L′
m ∩ Ln. If m,n ≥ 3, then Bm,n is minimal with mn

states.

Proof. Again it suffices to show all states are pairwise distinguishable. Let (p′, q) and (r′, s)
be distinct states. This time there is a unique final state, which is (m′, n).

If q 6= s, assume without loss of generality that q > s. Then an−q sends (p′, q) to the
state (p′an−q, n) in column n and (r′, s) to a state outside of column n. Now let i′ = p′an−q

and apply bm−i; the first state is sent to the final state (m′, n) and the second is sent to
some non-final state, thus distinguishing the two states.

Conclusions. We have now established the state complexity of what are commonly called
the “basic operations” on regular languages: reversal, concatenation, star and boolean op-
erations. As discussed in the introduction, we can look at many variations of the problems
we solved in this section:

• We can try to reduce the number of letters used in our witnesses. In particular, for
reversal, concatenation and star it is possible to only use two letters instead of three
(for boolean operations we already used just a and b).

• We can try to prove more general tight upper bounds. For example, we saw in the
case of star that the upper bound 2n−1 + 2n−2 is only tight in the case where 1 6∈ F
and |F | = 1; we can try to establish tight bounds for other state configurations.

• For concatenation and boolean operations, we can look at the unrestricted state
complexity – state complexity with respect to the unrestricted viewpoint, where the
operands are allowed to have different alphabets.
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• We can consider basic operations on subclasses of the regular languages.

It is feasible to attack all of these problems using ad-hoc combinatorial arguments, like
we did for concatenation, star and boolean operations. But after writing many proofs this
way, it starts to become tedious. These proofs are similar in structure, but not quite similar
enough that it is easy to reuse arguments. These proofs are elementary and feel routine,
but can still require significant amounts of time and thought to produce.

The proof for reversal is more like what we want – it is made up of straightforward,
reusable arguments. While it took some effort to establish that the transition monoid of
our witness is the full transformation monoid Tn, afterwards the reachability argument
was extremely easy. Furthermore, this reachability argument applies to all DFAs whose
transition monoid is Tn. The distinguishability argument is also very general and can
be reused in other reversal state complexity proofs. If we had results like this for other
operations, the corresponding state complexity proofs would be much simpler.

The goal of this thesis is to make state complexity proofs easier for researchers to
produce. In the following chapters, we describe general, reusable techniques to shorten
and simplify state complexity proofs. In Chapter 7, we will revisit the state complexity
problems discussed in this section and see how our new techniques help with them.
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Chapter 3

The One-Letter-Per-Action Approach

3.1 Witnesses for Worst-Case State Complexity

As we saw in Section 2.4.5, to establish the state complexity of a regular operation, we
must first derive an upper bound on the state complexity and then find witness languages
that attain this upper bound. State complexity papers rarely elaborate on how witnesses
are discovered. The witnesses A′

m and An we used in Section 2.4.5 are taken from a 2013
paper of Brzozowski [6]; according to a private communication, he discovered them by
hand, playing around with 3-state automata until he was able to make a general conjecture.
(Brzozowski notes that similar automata have appeared before; in 1963, Lupanov [61] used
the reverse of an automaton very much like An, but with letter action (2 → 1) replacing
(n→ 1), to establish the state complexity of FA to DFA conversion. Mirkin [64] observed
in 1966 that this witness can be used to establish a lower bound on the state complexity
of reversal.) Witnesses are often found by computer search rather than by hand; in one
paper, Domaratzki and Okhotin describe checking all minimal 4-state DFAs over a 4-
letter alphabet (364,644,290 DFAs in total) to find examples that attain the maximal state
complexity for the “cube” operation [31].

In the early papers on state complexity of basic operations by Maslov [62] and Yu,
Zhuang, and Salomaa [79], the witnesses A′

m and An were not used. In fact, totally
different witnesses were generally presented for each operation studied (though Yu, Zhuang
and Salomaa did use essentially the same witnesses for both union and intersection). It
was quite a breakthrough when Brzozowski showed that just one “universal” witness and
a slight modification of that witness are sufficient for the basic operations.
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Part of the reason the witnesses A′
m and An are so effective is that they have max-

imal transition monoids. A witness with a maximal transition monoid is guaranteed to
maximize the state complexity of reversal. However, it is not the case that a witness with
maximal transition monoid must maximize the state complexity of star, or that a pair of
witnesses with maximal transition monoids must maximize the state complexities of con-
catenation or binary boolean operations. Nonetheless, having a maximal transition monoid
is helpful because the number of reachable and distinguishable states in an automaton de-
pends directly on the transformations in its transition monoid. If we take automata with
maximal transition monoids and apply an operation to them, the resulting automaton will
not necessarily have a maximal transition monoid, but will usually at least have a large
transition monoid that hopefully has useful transformations in it.

Usefulness of the transformations in the transition monoid is the other part of the
equation when it comes to maximizing state complexity. For example, a constant transfor-
mation can be used to reach one particular state, but no others, and it cannot distinguish
pairs of states. By contrast, a cyclic permutation of the entire state set is much more
useful since it can be used to reach every state, and may also be able to distinguish many
states depending on what the final state set is. We do not just want a maximal transfor-
mation monoid, but we want the letter actions that generate it to be as useful as possible.
Unfortunately, this notion of “usefulness” is rather vague and hard to quantify, compared
to “maximality” which has a mathematical definition. It is not clear how to choose the
most useful transformations for a witness – at best we can make educated guesses based on
intuition and data (such as which transformations commonly appear in known witnesses).

This is the situation we are stuck with when it comes for searching for witnesses,
provided we want our witnesses to have small alphabets. State complexity researchers
often are concerned with this – partly because witnesses with small alphabets are easier
to describe and more useful in a practical context, but also just because minimizing the
alphabet size of witnesses is an interesting theoretical problem. But if we do not care about
alphabet size, there is a simple solution to the “usefulness” problem that works in a large
number of cases. Instead of trying to decide which transformations are the most useful to
have as letter actions, what if we just include them all? That is, what if our witness simply
includes one letter for each possible action on the state set?

We will henceforth refer to this idea as the one-letter-per-action (OLPA) approach.
This will be our primary approach to finding witnesses in this thesis. The purpose of this
section is to formalize this approach and establish its power and limitations – what kinds
of regular operations do OLPA witnesses work for? We will initially focus on the simple
special case of unary operations, and then generalize to operations of arbitrary arity.
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The way we have presented this approach might make it seem almost obvious – having
more letter actions generally helps with reachability and distinguishability, so of course
including all possible letter actions will maximize state complexity in most cases. But this
is only obvious if one has learned to think of automata in terms of letter actions! Automata
are often presented to students as directed graphs, whose fundamental components are
states and transitions rather than states and actions. From the viewpoint of graphs, “the
function determined by the collection of transitions associated with a letter” does not seem
like a natural concept to define. Compare the following two equivalent problems:

• You are given an automaton with states {1, 2, . . . , n}, initial state 1, and unique
final state n, but no transitions. Draw transitions between the states such that the
automaton remains deterministic and such that when the automaton is reversed and
determinized, it has 2n reachable states.

• Construct a transformation monoid T on {1, 2, . . . , n} such that for each subset S of
{1, 2, . . . , n}, there is a transformation t ∈ T with nt−1 = S.

The second problem has an immediately obvious solution: take T to be the full trans-
formation monoid. Whereas the first seems to require much more thought – the natural
approach is to try to figure out the correspondence between transitions in the original
automaton and the reversed determinized version, which takes some effort to work out.

In summary, the reason the OLPA approach might seem obvious is that we have chosen
to view automata primarily as monoid actions on finite sets – as algebraic objects. This
algebraic viewpoint makes state complexity problems more approachable and their under-
lying principles more understandable compared to the common graph-theoretic viewpoint.
The OLPA approach to finding witnesses arises naturally from this viewpoint; it is the cor-
nerstone of this thesis and the centerpiece of our algebraic approaches to state complexity
of regular operations.

Remark. We assume throughout this chapter that all regular operations considered are
alphabet-preserving. For a unary operation, this means the alphabet of the output language
must be the same as the alphabet of the input language. For operations of higher arity,
this means all input languages must have the same alphabet, and the output language
must also have this alphabet.
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3.2 History of the OLPA Approach

In 2018, I posted a paper to the arXiv [26] which is, to my knowledge, the first comprehen-
sive account of the OLPA approach in the specific context of deterministic state complexity
of regular operations. Caron, Hamel-De le court, Luque and Patrou independently discov-
ered the idea and posted a similar paper on the arXiv ten days later [24]. However, we
were not the first to think of this idea, or even the first to apply it to state complexity
problems. The OLPA approach has a rather long and interesting history.

The key insight dates back to a 1978 paper of Sakoda and Sipser [72]. They constructed
languages wherein the alphabet letters were directed graphs representing behaviours of
ordinary finite automata and a different model known as “two-way deterministic” finite
automata, with one letter corresponding to each possible behaviour of these models. They
used these languages to prove results on the state complexity of conversions between various
automaton models.

Perhaps the closest ancestor of my work (and that of Caron et al.) is a 1990 paper
of Ravikumar [69], who treated the “Sakoda-Sipser technique” as a “systematic method
to prove lower bounds on the size complexity of finite automata”, and applied it to five
different problems, two of which were operational state complexity problems. This is the
first work we are aware of to present the OLPA approach as a general problem-solving
method. Unfortunately, the field of state complexity was not so well-developed at the
time, and Ravikumar seemingly did not realize the full generality and applicability of the
approach in operational state complexity. Furthermore, Ravikumar’s use of the OLPA
approach was less refined than the version we will present; OLPA witnesses for unary
operations were applied to k-ary operations without a proper generalization.

In 1992, building on Ravikumar’s work, Birget [3] used this “unrefined” version of the
OLPA approach to prove lower bounds on the state complexity of k-ary intersection and
union.

In 1994, Yu, Zhuang and Salomaa [79] published their seminal paper on the state
complexities of basic operations. Notably, even though Yu, Zhuang and Salomaa cited
Ravikumar’s work, they did not use or mention the “Sakoda-Sipser technique” anywhere
in their paper. The technique then seemingly faded into obscurity for a while. It reappeared
as the “full automata technique” in a 2006 paper of Yan [77], who credited Sakoda and
Sipser for the idea, and applied it to nondeterministic state complexity of finite automata,
as well as to automata on infinite words (ω-automata). Yan’s paper is frequently cited in
the field of ω-automata, so the technique seems to have gained some currency there.

Despite not being used by Yu, Zhuang and Salomaa, the OLPA approach made occa-
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sional appearances in deterministic state complexity papers prior to 2018. Jirásková and
Okhotin [55] and later Domaratzki and Okhotin [31] used the OLPA approach to compute
the exact worst-case complexity of the “cyclic shift” and “power” operations for small val-
ues. Brzozowski, Jirásková, Liu, Rajasekaran, and Szyku la [13] used the OLPA approach
to obtain reachability results for the state complexity of the “shuffle” operation. However,
these authors did not present the approach as a general technique or demonstrate its wider
applicability.

3.3 Unary Operations

In this section, we formalize the OLPA approach for unary operations, that is, operations
which take a single regular language as input. There are three steps to the formalization:

1. Define the one-letter-per-action DFAs that will be used as witnesses.

2. Define a class of unary regular operations for which the OLPA approach works.

3. Prove that our witnesses maximize the state complexity of all these operations.

3.3.1 Full Transformation Languages

We now formally define the witness languages that are used in the OLPA approach.

Fix Q and let Σ be a set of transformations of Q. For 1 ∈ Q and F ⊆ Q, the
transformation language Σ(1, F ) is the language of the DFA (Q,Σ, T, 1, F ), where T =
{(q, t, qt) : q ∈ Q, t ∈ Σ}. This DFA is called the standard DFA for the transformation
language. A word w ∈ Σ∗ lies in the transformation language Σ(1, F ) if and only if the
corresponding transformation (given by composing the letters of w) maps 1 into F .

Definition 3.3.1. Recall that TQ denotes the full transformation monoid on Q. The
language TQ(1, F ) is called the full transformation language with respect to the state
configuration (Q, 1, F ).

Notice that the language TQ(1, F ) has alphabet TQ, and the standard DFA for TQ(1, F )
has transitions {(q, t, qt) : q ∈ Q, t ∈ TQ}. This DFA has one letter per transformation of
the state set Q, that is, one letter per possible action on the DFA’s states. Full transfor-
mation languages are the languages used as witnesses when applying the OLPA approach
to unary operations.
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Figure 3.3.1 shows the standard DFA for the language T{1,2}(1, {2}). To illustrate the
construction with a three-state DFA, we would need 33 = 27 alphabet letters!

1 2

a11, a12 a12, a22
a21, a22

a11, a21

Figure 3.3.1: Standard DFA of the full transformation language T{1,2}(1, {2}), where aij
represents the transformation that sends 1 to i and 2 to j.

Definition 3.3.2. Let L be a regular language over Σ recognized by D = (Q,Σ, T, 1, F ).
The standard transformation map of L (with respect to D), denoted by ϕL : Σ∗ → T ∗

Q, is
the monoid homomorphism defined by wϕL = Tw. That is, each word over the alphabet
of L is mapped to the transformation the word induces in D.

Using the standard transformation map, we may establish the following identity, which
shows that every regular language is the preimage of a full transformation language under
a homomorphism of free monoids.

Proposition 3.3.3. L = TQ(1, F )ϕ−1
L .

Proof. We have w ∈ L ⇐⇒ 1w ∈ F ⇐⇒ Tw ∈ TQ(1, F ) ⇐⇒ wϕL ∈ TQ(1, F ) ⇐⇒
w ∈ TQ(1, F )ϕ−1

L .

3.3.2 Uniform Unary Operations

Our goal in this section is to define a large class of unary regular operations for which the
OLPA approach “works”, in the sense that full transformation languages can be used as
witnesses for the maximal state complexity of all operations in the class. The approach
certainly does not work for all regular operations. For example, consider an operation
which sends all languages recognized by DFAs with one letter per action to the empty
language, and acts as the identity on all other languages. Clearly our witnesses will not
maximize the state complexity of this operation.

One problem with this operation is that its behaviour is not “uniform” across all lan-
guages; it detects particular languages and has special behaviour for them. Consider how
this operation behaves on DFAs. Here are two ways we could implement this operation as
a DFA-to-DFA mapping:
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• If the input DFA has one letter per action, output a DFA with no final states.
Otherwise, output the input DFA.

• If the input DFA has one letter per action, output a DFA in which the initial state is
non-final and all the actions send the initial state to a sink state. Otherwise, output
the input DFA.

In the first case, the operation does not behave uniformly on states: for most DFAs it
preserves the final state set, but for DFAs with one letter per action it can change the final
state set. In the second case, the operation is not uniform on states or on actions: for
most DFAs it preserves the state configuration and actions, but for DFAs with one letter
per action, it can change whether the initial state is final, and also replace the actions by
completely different actions.

By contrast, consider a common operation like star. Recall that the star opera-
tion can be implemented by the following DFA construction, which takes an input DFA
(Q,Σ, T, 1, F ):

1. Add a new state s, make it the only initial state, and also make it final.

2. Add transitions (s, a, 1a) for each a ∈ Σ.

3. Add transitions (f, a, 1a) for each f ∈ F .

4. Perform the subset construction to obtain a DFA.

The behaviour on states is “uniform”: no matter what the input DFA looks like, we always
add a single new state that is both initial and final, and perform the subset construction.
The behaviour on actions is also “uniform”: it depends on the choice of initial and final
states, but this dependence is consistent across all DFAs, in the sense that if two DFAs
have the same state configuration then the star operation will modify their actions in a
consistent way. For each action in the input DFA, there is a corresponding action in the
output DFA, and this corresponding action depends only on the input action and the state
configuration.

If we have an operation which behaves uniformly like this, the OLPA approach should
work. If we add a new action to the input DFA, then the output DFA will gain a cor-
responding new action, which will potentially mean new states are reachable or pairwise
distinguishable in the output DFA; so adding new actions to the input DFA does not de-
crease the state complexity of the output DFA. Additionally, if we have two letters which
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perform the same action in the input DFA, those two letters will perform the same cor-
responding action in the output DFA. It follows that if the input DFA has every possible
action, as the DFAs of full transformation languages do, then adding more letters will not
affect the state complexity; the state complexity of the output DFA can only be potentially
increased by changing the state configuration. But if the number of states is fixed, the
number of possible state configurations is finite. Thus there exists a state configuration
for which the corresponding full transformation language maximizes the state complexity
of the operation!

We now attempt to formally define this idea of “uniformity” for unary operations. Let
Φ be a unary regular operation. Let Ψ be a unary DFA operation, that is, a function
which maps DFAs to DFAs. We say Φ is equivalent to Ψ if for all DFAs D, we have
L(D)Φ = L(DΨ); that is, if performing the language operation on the language of a DFA
D is the same as performing the DFA operation on D and taking the language of the result.

Definition 3.3.4. A unary DFA operation Ψ is uniform if for every pair of DFAs A =
(Q,Σ, TA, 1, F ) and B = (Q,Γ, TB, 1, F ) with the same state configuration, the image DFAs
AΨ = (Q′

A,Σ, T
′
A, 1

′
A, F

′
A) and BΨ = (Q′

B,Γ, T
′
B, 1

′
B, F

′
B) satisfy the following conditions:

1. (Q′
A, 1

′
A, F

′
A) = (Q′

B, 1
′
B, F

′
B).

2. Whenever (TA)a = (TB)b for a ∈ Σ and b ∈ Γ, we have (T ′
A)a = (T ′

B)b.

A unary regular operation Φ is uniform if there exists a uniform unary DFA operation
equivalent to Φ.

We can interpret this definition intuitively as follows. The first condition says that
the operation is uniform with respect to state configurations: if the operation is given
two input DFAs with the same state configuration, it will produce two output DFAs with
the same state configuration. The second condition says that the operation is uniform
with respect to actions: if the operation is given two input DFAs with the same state
configuration and a common action, then it will produce two output DFAs with a common
action, and furthermore the same letters which induce the common action in the input
DFAs will induce the common action in the output DFAs.

The definition of uniformity is heavily dependent on DFAs. Thus, it may come as a
surprise that there is a simple and purely language-theoretic characterization of uniformity,
as follows. A monoid homomorphism ϕ : Σ∗ → Γ∗ is called 1-uniform if it maps letters to
letters.
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Proposition 3.3.5. The following are equivalent:

1. The regular operation Φ is uniform.

2. For all 1-uniform homomorphisms ϕ : Σ∗ → Γ∗, and all regular languages L ⊆ Σ∗

and K ⊆ Γ∗ such that L = Kϕ−1, we have LΦ = KΦϕ−1.

Proof. (1) =⇒ (2): Since Φ is uniform, there is a uniform DFA operation Ψ equivalent
to Φ. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ such that L = Kϕ−1. Let A =
(QA,Σ, TA, 1A, FA) be a DFA for L, and let B = (QB,Γ, TB, 1B, FB) be a DFA for K. We
write wA for (TA)w, and wB for (TB)w.

Note that we can choose our DFAs so that they have the same state configuration.
This follows from the fact that L = Kϕ−1, and thus we can take A = Bϕ−1 which has
the same state configuration as B. Henceforth write QA = QB = Q, 1A = 1B = 1, and
FA = FB = F .

Let AΨ = A′ = (Q′
A,Σ, T

′
A, 1

′
A, F

′
A) and let BΨ = B′ = (Q′

B,Γ, T
′
B, 1

′
B, F

′
B). Write w′

A

for (T ′
A)w and w′

B for (T ′
B)w. The DFA A′ recognizes LΦ, and the DFA B′ recognizes KΦ.

By the uniformity of Ψ, we can write Q′
A = Q′

B = Q′, 1′
A = 1′

B = 1′, and F ′
A = F ′

B = F ′.

Now, we want to show that LΦ = KΦϕ−1. Since A = Bϕ−1, for all q ∈ Q and a ∈ Σ
we have qaA = q(aϕ)B by definition. Thus aA and (aϕ)B are equal as transformations of
Q for all a ∈ Σ. By the uniformity of Ψ, a′A and (aϕ)′B are equal as transformations of Q′.
It follows that w′

A and (wϕ)′B are equal as transformations of Q′ for all w ∈ Σ∗. Hence we
have

w ∈ LΦ ⇐⇒ 1′w′
A ∈ F ′ ⇐⇒ 1′(wϕ)′B ∈ F ′ ⇐⇒ wϕ ∈ KΦ ⇐⇒ w ∈ KΦϕ−1.

This proves that LΦ = KΦϕ−1.

(2) =⇒ (1): We are given a regular operation Φ. We want to produce a uniform DFA
operation Ψ such that for all DFAs A, we have L(AΨ) = L(A)Φ.

Fix an n-state DFA A = (Q,Σ, T, 1, F ) and let L be its language. We define AΨ
as follows. By Proposition 3.3.3, we have L = TQ(1, F )ϕ−1

L , where ϕL : Σ∗ → T ∗
Q is the

standard transformation map of L. By assumption, we then have LΦ = TQ(1, F )Φϕ−1
L .

Let D′ = (Q′, TQ, T
′, 1′, F ′) be a minimal DFA for TQ(1, F )Φ, and set AΨ = D′ϕ−1

L .

It is clear that we have L(AΨ) = TQ(1, F )Φϕ−1
L(A) = L(A)Φ as required. To see that

Ψ is uniform, fix DFAs A = (Q,Σ, TA, 1, F ) and B = (Q,Γ, TB, 1, F ). We compute the
images AΨ = A′ = (Q′

A,Σ, T
′
A, 1

′
A, F

′
A) and BΨ = B′ = (Q′

B,Γ, T
′
B, 1

′
B, F

′
B). Now, let D′ =
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(Q′, TQ, T
′
D, 1

′, F ′) be the minimal DFA for TQ(1, F )Φ. By definition, we have A′ = D′ϕ−1
L(A)

and B′ = D′ϕ−1
L(B). So A′ and B′ both have the same state configuration as D′. It follows

that (Q′
A, 1

′
A, F

′
A) = (Q′

B, 1
′
B, F

′
B), as required.

Next, fix a ∈ Σ and b ∈ Γ such that (TA)a = (TB)b. We have q(T ′
A)a = q(T ′

D)aϕL(A)
for

all q. Also, q(T ′
B)b = q(T ′

D)bϕL(B)
for all q. By the definition of the standard transformation

map, we have aϕL(A) = bϕL(B), since (TA)a = (TB)b. It follows that (T ′
A)a = (T ′

B)b, as
required. Thus Ψ is uniform.

3.3.3 Main Theorem: The Unary Case

Now we prove that the OLPA approach works for all uniform unary operations. Thanks
to Proposition 3.3.5, this is not especially difficult.

The following lemma formalizes a “weak” version of the OLPA approach for unary
operations. The short proof contains all the essential ideas, but the expression it gives for
the state complexity function is not practical, since it involves taking a maximum over all
sets of size n. Obtaining a more practical expression for the state complexity function is
just a technical matter that we will deal with after this proof.

Lemma 3.3.6. Let Φ be a uniform unary regular operation. Let L be a regular language
recognized by a DFA (Q,Σ, T, 1, F ). Then sc(LΦ) ≤ sc(TQ(1, F )Φ). In particular, the state
complexity of Φ is given by the following function:

n 7→ max{sc(TQ(1, F )Φ) : |Q| = n, 1 ∈ Q,F ⊆ Q}.

Proof. Fix L, and recall that L = TQ(1, F )ϕ−1
L , where ϕL is the standard transformation

morphism of L. Since Φ is uniform, we have LΦ = TQ(1, F )Φϕ−1
L by Proposition 3.3.5.

Recall that an inverse homomorphic image of a regular language has state complexity
bounded by that of the original language; thus sc(LΦ) ≤ sc(TQ(1, F )Φ) as required.

Now, we show that to compute the state complexity function, it suffices to just consider
the set {1, . . . , n} instead of all sets of size n. Furthermore, we show that we may assume
that F is either {1, . . . , k} or {n − k + 1, . . . , n} for some k ≤ n. Thus it suffices to just
check 2n OLPA witnesses. Let Fn,k,1 = {1, . . . , k} and let Fn,k,0 = {n− k + 1, . . . , n}.

Theorem 3.3.7. Let Φ be a uniform unary regular operation. Let L be a regular language
recognized by a DFA (Q,Σ, T, 1, F ). Then sc(LΦ) ≤ sc(Tn(1, Fn,k,j)Φ), where n = |Q|,
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k = |F |, and j is defined to be 1 if 1 ∈ F and 0 if 1 6∈ F . The state complexity of Φ is the
following function:

n 7→ max{sc(Tn(1, Fn,k,j)Φ) : 0 ≤ j ≤ 1, 0 + j ≤ k ≤ n− 1 + j}.

Proof. We know from Lemma 3.3.6 that sc(LΦ) ≤ sc(TQ(1, F )Φ). We will prove that
sc(TQ(1, F )Φ) ≤ sc(Tn(1, Fn,k,j)Φ), with n, k and j defined as in the statement of the
theorem.

By the uniformity of Φ, it suffices to exhibit a 1-uniform homomorphism ϕ : T ∗
Q → T ∗

n

such that TQ(1, F ) = Tn(1, Fn,k,j)ϕ
−1. To define ϕ, first we define a bijection β : Q →

{1, . . . , n}. We take β to be a bijection with the following properties: 1β = 1 and Fβ =
Fn,k,j. The remaining elements of Q are mapped to the remaining elements of {1, . . . , n}
arbitrarily. Note that this definition of β is only possible because of our choice of the
parameter j. Indeed, we are mapping 1β to 1, so if i ∈ F then we better have 1 ∈ Fn,k,j;
but i ∈ F implies j = 1 and thus Fn,k,j = {1, . . . , k}. On the other hand, if i 6∈ F then we
better have 1 6∈ Fn,k,j, but in this case we have j = 0 giving Fn,k,j = {n − k + 1, . . . , n}.
Given this definition of β, for each t : Q → Q, we define tϕ be the transformation of
{1, . . . , n} that sends m to mβ−1tβ.

We show that w ∈ TQ(1, F ) if and only if w ∈ Tn(1, Fn,k,j)ϕ
−1. Let w = t1 · · · tk for

t1, . . . , tk ∈ TQ.

w ∈ TQ(1, F ) ⇐⇒ 1w ∈ F ⇐⇒ 1β−1w ∈ F ⇐⇒ 1β−1wβ ∈ Fβ

⇐⇒ 1β−1wβ ∈ Fn,k,j ⇐⇒ 1β−1t1t2 · · · tkβ ∈ Fn,k,j

⇐⇒ 1β−1t1ββ
−1t2β · · ·β

−1tkβ ∈ Fn,k,j

⇐⇒ 1(t1ϕ)(t2ϕ) · · · (tkϕ) ∈ Fn,k,j ⇐⇒ 1(wϕ) ∈ Fn,k,j

⇐⇒ wϕ ∈ Tn(1, Fn,k,j) ⇐⇒ w ∈ Tn(1, Fn,k,j)ϕ
−1.

Thus TQ(1, F ) = Tn(1, Fn,k,j)ϕ
−1, as required. This completes the proof.

3.4 Multiary Operations

We now extend our formalization of the OLPA approach to operations of arbitrary arity.
We must define new witnesses, extend the notion of uniformity to multiary operations, and
prove that our witnesses maximize the state complexity of uniform operations.
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3.4.1 Full Transformation Tuple Languages

Full transformation languages do not suffice as OLPA witnesses for operations of arity
greater than one. When applying the OLPA approach to operations of arity m, we want to
use an m-tuple (D1, . . . ,Dm) of DFAs (where Dj = (Qj ,Σ, Tj , 1, Fj) for 1 ≤ j ≤ m) with
the following property: for each m-tuple (t1 : Q1 → Q1, . . . , tm : Qm → Qm), there exists a
letter a ∈ Σ such that a induces transformation tj in Dj for 1 ≤ j ≤ m. That is, we have
one letter for every possible combination of actions across all the input DFAs.

For this purpose, we define transformation tuple languages. Let Q1, . . . , Qm be finite
sets and let T = TQ1 × · · · × TQm

. For Σ ⊆ T, j with 1 ≤ j ≤ m, 1 ∈ Qj , and F ⊆ Qj, the
transformation tuple language Σj(1, F ) is the language of the DFA (Qj ,Σ, T, 1, F ) where
T = {(q, (t1, . . . , tm), qtj) : q ∈ Qj , (t1, . . . , tm) ∈ Σ}. This DFA is called the standard DFA
of the transformation tuple language.

Definition 3.4.1. A transformation tuple language of the form Tj(1, F ) is called a full
transformation tuple language.

The full transformation tuple languages are our OLPA witnesses for m-ary operations.
There is also a generalization of Proposition 3.3.3 for full transformation tuple languages.

Definition 3.4.2. Let (L1, . . . , Lm) be an m-tuple of regular languages over Σ, where Lj

is recognized by the DFA Dj = (Qj ,Σ, Tj , 1, Fj) for 1 ≤ j ≤ m. Let T = TQ1 × · · · ×
TQm

as before. The standard transformation tuple map of (L1, . . . , Lm) (with respect to
(D1, . . . ,Dm)), denoted ϕ(L1,...,Lm) : Σ∗ → T∗, is defined by aϕ(L1,...,Lm) = ((T1)a, . . . , (Tm)a).

As shorthand, let ϕ = ϕ(L1,...,Lm) in the following proposition and proof.

Proposition 3.4.3. We have (L1, . . . , Lm) = (T1(1, F1)ϕ
−1, . . . ,Tm(1, Fm)ϕ−1).

Proof. It suffices to show for all w ∈ Σ∗ that w ∈ Lj ⇐⇒ wϕ ∈ Tj(1, Fj). Fix j and let
(Qj ,T, T, 1, Fj) be the standard DFA of Tj(1, Fj). Then we have

w ∈ Lj ⇐⇒ 1(Tj)w ∈ Fj ⇐⇒ 1Twϕ ∈ Fj ⇐⇒ wϕ ∈ Tj(1, Fj),

as required.

The second two-way implication may not be obvious. To see that it holds, first note
that if w is empty, then (Tj)w and Twϕ are both the identity map on Qj. Otherwise,
suppose w = a1 · · · ak with a1, . . . , ak ∈ Σ. We may write wϕ = (a1ϕ) · · · (akϕ), and thus
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Twϕ = Ta1ϕ · · ·Takϕ. By definition, we have aiϕ = ((T1)ai , . . . , (Tm)ai) for 1 ≤ i ≤ k.
This m-tuple of transformations is a “letter” of the alphabet T = TQ1 × · · ·TQm

. Then
Taiϕ is the transformation of Qj induced by the “letter” aiϕ. By definition, this induced
transformation is the map q 7→ q(Tj)ai for q ∈ Qj . Thus Taiϕ = (Tj)ai for 1 ≤ i ≤ k. It
follows that

Twϕ = Ta1ϕ · · ·Takϕ = (Tj)a1 · · · (Tj)ak = (Tj)w.

Hence the implication holds.

3.4.2 Uniform Operations

We now generalize the notion of uniformity to operations of higher arity. We say an m-ary
regular operation Φ is equivalent to an m-ary DFA operation Ψ if for all m-tuples of DFAs
(D1, . . . ,Dm), we have L((D1, . . . ,Dm)Ψ) = (L(D1), . . . , L(Dm))Φ.

Definition 3.4.4. An m-ary DFA operation Ψ is uniform if for every pair of m-tuples of
DFAs (A1, · · · ,Am) and (B1, . . . ,Bm), where for each j with 1 ≤ j ≤ m, the DFAs Aj and
Bj have the same state configuration, the DFA Aj has alphabet Σ and transition set TAj

,
and the DFA Bj has transition set TBj

and alphabet Γ; the image DFAs A = (A1, · · · ,Am)Ψ
and B = (B1, . . . ,Bm)Ψ have transition sets TA and TB respectively, and the following
conditions hold:

1. The image DFAs A and B have the same state configuration.

2. If there exist letters a ∈ Σ and b ∈ Γ such that (TAj
)a = (TBj

)b for each j with
1 ≤ j ≤ m, then (TA)a = (TB)b.

An m-ary regular operation Φ is uniform if it is equivalent to a uniform m-ary DFA
operation.

While this definition may seem complicated, it is simply a natural generalization of
the unary definition. As in the unary case, we have a language-theoretic characterization
of uniformity. Recall that a monoid homomorphism ϕ : Σ∗ → Γ∗ is called 1-uniform if it
maps letters to letters.

Proposition 3.4.5. The following are equivalent:

1. The m-ary regular operation Φ is uniform.
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2. For all 1-uniform homomorphisms ϕ : Σ∗ → Γ∗, and all m-tuples (L1, . . . , Lm) and
(K1, . . . , Km) where Lj is a regular language over Σ and Kj is a regular language
over Γ for 1 ≤ j ≤ m, if Lj = Kjϕ

−1 for 1 ≤ j ≤ m, then (L1, . . . , Lm)Φ =
(K1, . . . , Km)Φϕ−1.

The proof is very similar to the proof of Proposition 3.3.5, except the general defini-
tion of uniformity is used and full transformation tuple languages are used instead of full
transformation languages.

Proof. (1) =⇒ (2): Since Φ is uniform, there is a uniform DFA operation Ψ equivalent
to Φ. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ such that Lj = Kjϕ

−1 for 1 ≤ j ≤ m.
We want to show that (L1, . . . , Lm)Φ = (K1, . . . , Km)Φϕ−1.

Since Lj = Kjϕ
−1, for each j we can find a DFA Aj for Lj and a DFA Bj for Kj

such that Aj = Bjϕ
−1. Each pair of DFAs Aj and Bj has a common state configuration

(Qj , 1, Fj). For 1 ≤ j ≤ m, let Aj = (Qj,Σ, TAj
, 1, Fj) be the DFA for Lj and let

Bj = (Qj ,Γ, TBj
, 1, Fj) be the DFA for Kj. By the uniformity of Ψ, the image DFAs

A = (A1, . . . ,Am)Ψ and B = (B1, . . . ,Bm)Ψ have a common state configuration (Q, 1, F ).
Write A = (Q,Σ, TA, 1, F ) and B = (Q,Σ, TB, 1, F ).

Since Aj = Bjϕ
−1 for 1 ≤ j ≤ m, for all q ∈ Qj and a ∈ Σ, we have q(TAj

)a = q(TBj
)aϕ

by definition. Thus (TAj
)a = (TBj

)aϕ for all a ∈ Σ and all 1 ≤ j ≤ m. By the uniformity
of Ψ, it follows that (TA)a = (TB)aϕ. Hence (TA)w = (TB)wϕ for all w ∈ Σ∗. Thus we have

w ∈ (L1, . . . , Lm)Φ ⇐⇒ 1(TA)w ∈ F ⇐⇒ 1(TB)wϕ ∈ F

⇐⇒ wϕ ∈ (K1, . . . , Km)Φ ⇐⇒ w ∈ (K1, . . . , Km)Φϕ−1.

This proves that (L1, . . . , Lm)Φ = (K1, . . . , Km)Φϕ−1.

(2) =⇒ (1): We want to produce a uniform m-ary DFA operation Ψ such that for
all tuples of DFAs (A1, . . . ,Am) over a common alphabet, we have L((A1, . . . ,Am)Ψ) =
(L(A1), . . . , L(Am))Φ.

Fix a tuple (A1, . . . ,Am) of DFAs over Σ, where Aj has state configuration (Qj , 1, Fj),
and let Lj = L(Aj) for 1 ≤ j ≤ m. We define the image A = (A1, . . . ,Am)Ψ as follows.
By Proposition 3.4.3 we have Lj = Tj(1, Fj)ϕ

−1
(L1,...,Lm), where ϕ(L1,...,Lm) is the standard

transformation tuple map of (L1, . . . , Lm) with respect to (A1, . . . ,Am), and T = TQ1×. . .×
TQm

. Let D be a minimal DFA for (T1(1, F1), . . . ,Tm(1, Fm))Φ, and set (A1, . . . ,Am)Ψ =
Dϕ−1

(L1,...,Lm).
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We claim that L((A1, . . . ,Am)Ψ) = (L(A1), . . . , L(Am))Φ. Indeed, since we have Lj =
Tj(1, Fj)ϕ

−1
(L1,...,Lm), we have

(L1, . . . , Lm)Φ = (T1(1, F1), . . . ,Tm(1, Fm))Φϕ−1
(L1,...,Lm).

It follows that

L((A1, . . . ,Am)Ψ = L(Dϕ−1
(L1,...,Lm)) = (T1(1, F1), . . . ,Tm(1, Fm))Φϕ−1

(L1,...,Lm)

= (L1, . . . , Lm)Φ = (L(A1), . . . , L(Am))Φ,

as required.

To see that Ψ is uniform, fix m-tuples of DFAs (A1, . . . ,Am) and (B1, . . . ,Bm) such
that for 1 ≤ j ≤ m, the DFAs Aj and Bj have the same state configuration (Qj , 1, Fj),
the DFA Aj has alphabet Σ and transition set TAj

, and the DFA Bj has alphabet Γ and
transition set TBj

. Write (A1, . . . ,Am)Ψ = A = (QA,Σ, TA, 1, FA) and (B1, . . . ,Bm)Ψ =
B = (QB,Γ, TB, 1, FB). Let D be the minimal DFA for (T1(1, F1), . . . ,Tm(1, Fm))Φ used in
the definition of Ψ. Then A and B are both inverse homomorphism DFAs constructed from
D, so they both have the same state configuration as D. Write (Q, 1, F ) for this common
state configuration.

It remains to show that whenever we have a ∈ Σ and b ∈ Γ such that (TAj
)a =

(TBj
)b for 1 ≤ j ≤ m, it follows that (TA)a = (TB)b. Fix a ∈ Σ and b ∈ Γ with this

property. Write ϕA as shorthand for ϕ(L(A1),...,L(Am)), and write ϕB for ϕ(L(B1),...,L(Bm)).
By definition, we have A = Dϕ−1

A and B = Dϕ−1
B . Let TD be the transition set of D.

Then for q ∈ Q, we have q(TA)a = q(TD)aϕA
and q(TB)b = q(TD)bϕB

. By the definition of
the standard transformation tuple map, we have aϕA = ((TA1)a, . . . , (TAm

)a) and bϕB =
((TB1)b, . . . , (TBm

)b). But we are assuming that (TAj
)a = (TBj

)b for 1 ≤ j ≤ m, so in fact
aϕA = bϕB. It then follows that (TA)a = (TB)b, as required.

This proves that Ψ is uniform, and thus Φ is uniform, since it is equivalent to a uniform
DFA operation.

3.4.3 Main Theorem: The General Case

We now consider uniform operations of arbitrary arity. The proof strategies in this case are
much the same, except full transformation tuple languages are used as witnesses, rather
than full transformation languages.

92



Lemma 3.4.6. Let Φ be a uniform m-ary regular operation. Let (L1, . . . , Lm) be regular
languages, where Lj is recognized by a DFA (Qj ,Σ, Tj , 1, Fj). Let T = TQ1 × · · · × TQm

.
Then sc((L1, . . . , Lm)Φ) ≤ sc((T1(1, F1), . . . ,Tm(1, Fm))Φ).

Proof. Fix (L1, . . . , Lm), and recall from Proposition 3.4.3 that we have (L1, . . . , Lm) =
(T1(1, F1)ϕ

−1, . . . ,Tm(1, Fm)ϕ−1), where the homomorphism ϕ = ϕ(L1,...,Lm) is the standard
transformation tuple map of (L1, . . . , Lm). Since Φ is uniform, we have

(L1, . . . , Lm)Φ = (T1(1, F1), . . . ,Tm(1, Fm))Φϕ−1,

by Proposition 3.4.5. Thus we have

sc((L1, . . . , Lm)Φ) ≤ sc((T1(1, F1), . . . ,Tm(1, Fm)Φ),

as required.

As before, it suffices to only check a finite number of witnesses. Recall that we defined
Tn = T{1,...,n}, and for k ≤ n we defined Fn,k,1 = {1, . . . , k} and Fn,k.0 = {n− k+ 1, . . . , n}.

Theorem 3.4.7 (The “Fundamental Theorem of the OLPA Approach”). Let Φ be a uni-
form m-ary regular operation. Let (L1, . . . , Lm) be regular languages, where Lj is recognized
by a DFA (Qj ,Σ, Tj, 1, Fj). Let nj = |Qj | and let T = Tn1 × . . . Tnm

. Then we have

sc((L1, . . . , Lm)Φ) ≤ sc((T1(1, Fn1,k1,ℓ1), . . . ,Tm(1, Fnm,km,ℓm))Φ),

where kj = |Fj|, and ℓj is defined to be 1 if 1 ∈ Fj and 0 if 1 6∈ Fj. The state complexity
of Φ is the function

(n1, . . . , nm) 7→ max sc((T1(1, Fn1,k1,ℓ1), . . . ,Tm(1, Fnm,km,ℓm))Φ),

where the maximum is taken over all possible values in the following ranges: 1 ≤ j ≤ m,
0 ≤ ℓj ≤ 1, and 0 + ℓj ≤ kj ≤ nj − 1 + ℓj.

To compute the worst-case state complexity of an m-ary operation for m input DFAs
of sizes n1 through nm, we use 2(n1 + · · ·+nm) different languages, each with an alphabet
of size nn1

1 · · ·nnm
m . The number of input m-tuples that must be tested is 2mn1 · · ·nm, since

for the j-th component there are 2nj choices.
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Proof. Define T′ = TQ1 × . . .× TQm
. We know from Lemma 3.4.6 that

sc((L1, . . . , Lm)Φ) ≤ sc((T′
1(1, F1), . . . ,T

′
m(1, Fm))Φ).

Let us prove the following:

sc((T′
1(1, F1), . . . ,T

′
m(1, Fm))Φ) ≤ sc((T1(1, Fn1,k1,ℓ1), . . . ,Tm(1, Fnm,km,ℓm))Φ),

where nj , kj, ℓj for 1 ≤ j ≤ m are defined as in the statement of the theorem.

Since Φ is uniform, it suffices to exhibit a homomorphism ϕ : (T′)∗ → T∗ such that
T′
j(1, Fj) = Tj(1, Fnj ,kj ,ℓj)ϕ

−1 for 1 ≤ j ≤ m. To define ϕ, first we define bijections
βj : Qj → {1, . . . , nj} for 1 ≤ j ≤ m. As in the proof of Theorem 3.3.7, we take each βj
to be a bijection with the following properties: 1β = 1 and Fjβ = Fnj ,kj ,ℓj . The remaining
elements of Qj are mapped to the remaining elements of {1, . . . , nj} arbitrarily. Then
for each tuple (t1, . . . , tm) ∈ T′, we define (t1, . . . , tm)ϕ to be the transformation tuple
(β−1

1 t1β1, . . . , β
−1
m tmβm), which lies in T.

Now, for 1 ≤ j ≤ m, we show that w ∈ T′
j(1, Fj) ⇐⇒ wϕ ∈ Tj(1, Fnj ,kj ,ℓj). Let

w = (t1,1, . . . , tm,1) · · · (t1,k, . . . , tm,k), where each of these transformation tuples lies in T′.

w ∈ T′
j(1, Fj) ⇐⇒ 1w ∈ Fj ⇐⇒ 1tj,1tj,2 · · · tj,k ∈ Fj

⇐⇒ 1β−1
j tj,1tj,2 · · · tj,kβj ∈ Fnj ,kj ,ℓj

⇐⇒ 1β−1
j tj,1βjβ

−1
j tj,2βj · · ·β

−1
j tj,kβj ∈ Fnj ,kj ,ℓj

⇐⇒ 1wϕ ∈ Fnj ,kj ,ℓj ⇐⇒ wϕ ∈ Tj(1, Fnj ,kj,ℓj).

Thus T′
j(1, Fj) = Tj(1, Fnj ,kj ,ℓj)ϕ

−1, as required.

3.5 Uniform and Non-Uniform Operations

To demonstrate the wide applicability of the OLPA approach, we will now prove that a
number of common operations (as well as a few more esoteric ones) are uniform, and that
the class of uniform operations is closed under composition. We also give some examples
of non-uniform operations.

3.5.1 Uniform Operations

First we consider a class of operations called shuffles on trajectories [32, 63]. Operations
in this class include shuffle, literal shuffle, balanced literal shuffle, insertion, balanced in-
sertion, concatenation, and anti-concatenation [63, Remark 3.1]. We denote the shuffle
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of languages L and L′ along the set of trajectories X ⊆ {0, 1}∗ by L X L′. The shuffle
on trajectories L X L′ is regular if and only if X is regular [63, Theorem 5.1]. For the
definition of L X L

′, see [63, Section 3]; for the following proof we only need to know the
DFA construction.

Proposition 3.5.1. For all regular languages X ⊆ {0, 1}∗, the shuffle on trajectories
operation (L, L′) 7→ L X L′ is uniform.

Proof. Following [63], we define a DFA operation Ψ equivalent to the shuffle on trajectories
operation. Let D1 = (Q1,Σ, T1, 1, F1) and D2 = (Q2,Σ, T2, 1, F2) be arbitrary DFAs. Let
DX = (QX , {0, 1}, TX, 1, FX) be a DFA for the set of trajectories X . We set (D1,D2)Ψ
to be the determinization of the following FA D. The FA D has state set Q1 ×QX ×Q2,
alphabet Σ, initial state (1, 1, 1), final state set F1 ×FX ×F2, and transition set T defined
as follows: for each a ∈ Σ, we have

(q1, qX , q2)Ta = {(q1(T1)a, qX(TX)0, q2), (q1, qX(TX)1, q2(T2)a)}.

It was proved in [63, Theorem 5.1] that L((D1,D2)Ψ) = L(D1) X L(D2).

Let (A1,A2) and (B1,B2) be pairs of DFAs such that for 1 ≤ j ≤ 2, the DFAs Aj and
Bj have the same state configuration (Qj, 1, Fj), the DFA Aj has alphabet Σ and transition
set TAj

, and the DFA Bj has alphabet Γ and transition set TBj
.

It is clear that the image DFAs A = (A1,A2)Ψ and B = (B1,B2)Ψ will have the same
state configuration. Additionally, by inspecting the definitions of the transition sets TA of
A and TB of B, it is clear that if (TAj

)a = (TBj
)b for a ∈ Σ, b ∈ Γ and 1 ≤ j ≤ 2, then

(TA)a = (TB)b. Indeed, let S ⊆ Q1 ×QX ×Q2. Then we have

S(TA)a =
⋃

(q1,qX ,q2)∈S

{(q1, qX , q2)}(TA)a

=
⋃

(q1,qX ,q2)∈S

{(q1(TA1)a, qX(TX)0, q2), (q1, qX(TX)1, q2(TA2)a)}

=
⋃

(q1,qX ,q2)∈S

{(q1(TB1)b, qX(TX)0, q2), (q1, qX(TX)1, q2(TB2)b)}

=
⋃

(q1,qX ,q2)∈S

{(q1, qX , q2)}(TB)b = S(TB)b.

Thus Ψ is uniform, and it follows that the shuffle on trajectories operation is uniform.
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The above proof illustrates the fact that once one understands the definition of uni-
formity, it is often easy to determine whether an operation is uniform just by inspecting
the DFA construction. There are no difficult ideas in this proof; it is just a statement of a
DFA construction and a rudimentary calculation.

One can also use the language-theoretic characterization of uniformity to prove that
operations are uniform. Typically, proofs using the language-theoretic characterization
require somewhat more thought to write and read, but are shorter and have less of the
“boilerplate” needed for DFA-based proofs. The rest of our uniformity proofs will use the
language-theoretic characterization.

Proposition 3.5.2. The reversal operation L 7→ LR is uniform.

Proof. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ and suppose L = Kϕ−1. Since ϕ is
1-uniform, we have (wR)ϕ = (wϕ)R for all w ∈ Σ∗. It follows that

w ∈ LR ⇐⇒ wR ∈ L ⇐⇒ wR ∈ Kϕ−1 ⇐⇒ (wR)ϕ ∈ K

⇐⇒ (wϕ)R ∈ K ⇐⇒ wϕ ∈ KR ⇐⇒ w ∈ KRϕ−1.

Thus LR = KRϕ−1. Therefore, by Proposition 3.3.5, reversal is uniform.

The cyclic shift operation [55] is defined by Lcyc = {uv : vu ∈ L}.

Proposition 3.5.3. The cyclic shift operation L 7→ Lcyc is uniform.

Proof. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ and suppose L = Kϕ−1. We want to
show that Lcyc = Kcycϕ−1.

If w ∈ Lcyc, we can write w = uv for some u, v ∈ Σ∗ such that vu ∈ L. Since
L = Kϕ−1, we have (vu)ϕ = (vϕ)(uϕ) ∈ K. Thus (uϕ)(vϕ) = wϕ ∈ Kcyc, and it follows
that Lcyc ⊆ Kcycϕ−1.

If w ∈ Kcycϕ−1, then wϕ ∈ Kcyc. Thus we can write wϕ = uv for some u, v ∈ Σ∗ such
that vu ∈ K. Since ϕ is 1-uniform, w has length |u| + |v|. Write w = xy where |x| = |u|
and |y| = |v|. Then (yx)ϕ = (yϕ)(xϕ) = vu ∈ K. It follows that yx ∈ L, which implies
xy = w ∈ Lcyc. Hence Lcyc = Kcycϕ−1. By Proposition 3.3.5, cyclic shift is uniform.

Proposition 3.5.4. The star operation L 7→ L∗ is uniform.
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Proof. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ and suppose L = Kϕ−1. For a
language M , let t(M) be the set of all finite-length tuples of elements of M , and let
ψM : t(M) → M∗ be the map (w1, . . . , wn)ψM = w1 · · ·wn (the empty tuple is sent to
ε). We claim that wψ−1

L 6= ∅ ⇐⇒ (wϕ)ψ−1
K 6= ∅. Indeed, if (w1, . . . , wn) ∈ wψ−1

L

then (w1ϕ, . . . , wnϕ) ∈ (wϕ)ψ−1
K . Conversely, if we have (x1, . . . , xn) ∈ (wϕ)ψ−1

K , then
wϕ = x1 · · ·xn. Since ϕ is 1-uniform, we can write w = w1 · · ·wn with |wj| = |xj | and
wjϕ = xj for 1 ≤ j ≤ n. Then since xj = wjϕ ∈ K =⇒ wj ∈ Kϕ−1 = L, we have
(w1, . . . , wn) ∈ wϕ−1

L as required. It follows that:

w ∈ L∗ ⇐⇒ wψ−1
L 6= ∅ ⇐⇒ (wϕ)ψ−1

K 6= ∅ ⇐⇒ wϕ ∈ K∗ ⇐⇒ w ∈ K∗ϕ−1.

Thus L∗ = K∗ϕ−1. Therefore, by Proposition 3.3.5, star is uniform.

An m-ary boolean function is a function β : {0, 1}m → {0, 1}. Each m-ary boolean
function defines a corresponding m-ary boolean operation on languages over Σ∗, as follows.
For L ⊆ Σ∗, let χL : Σ∗ → {0, 1} be the characteristic function of L: if w ∈ L then
wχL = 1, and if w 6∈ L then wχL = 0. Then we define

(L1, . . . , Lm)β = {w ∈ Σ∗ : (wχL1, . . . , wχLm
)β = 1}.

Examples of commonly used boolean operations on languages include union and intersec-
tion (m-ary for m ≥ 2), difference and symmetric difference (binary), and complement
(unary).

Proposition 3.5.5. Boolean operations on languages are uniform.

Proof. Let β be an m-ary boolean operation on languages. Fix a 1-uniform homomorphism
ϕ : Σ∗ → Γ∗ and suppose Lj = Kjϕ

−1 for 1 ≤ j ≤ m. We have

w ∈ (L1, . . . , Lm)β ⇐⇒ (wχL1, . . . , wχLm
)β = 1

⇐⇒ (wχK1ϕ−1 , . . . , wχKmϕ−1)β = 1

⇐⇒ (wϕχK1, . . . , wϕχKm
)β = 1

⇐⇒ wϕ ∈ (K1, . . . , Km)β ⇐⇒ w ∈ (K1, . . . , Km)βϕ−1.

Therefore, by Proposition 3.4.5, β is uniform.

We have seen that binary concatenation is uniform, since concatenation belongs to the
class of shuffles on trajectories. Next we give a direct proof that m-ary concatenation is
uniform.
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Proposition 3.5.6. The m-ary concatenation operation (L1, . . . , Lm) 7→L1 · · ·Lm is uni-
form.

Proof. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ and suppose Lj = Kjϕ
−1 for 1 ≤ j ≤

m. Define ψL : L1 × · · · × Lm → L1 · · ·Lm by (w1, . . . , wm)ψL = w1 · · ·wm and similarly
define ψK : K1×· · ·×Km → K1 · · ·Km. Using similar arguments to the proof of Proposition
3.5.4, we can show that wψ−1

L 6= ∅ ⇐⇒ (wϕ)ψ−1
K 6= ∅. Thus:

w ∈ L1 · · ·Lm ⇐⇒ wψ−1
L 6= ∅ ⇐⇒ (wϕ)ψ−1

K 6= ∅ ⇐⇒ wϕ ∈ K1 · · ·Km.

Therefore, by Proposition 3.4.5, m-ary concatenation is uniform.

Next, we show that the class of uniform operations is closed under composition. It
is easy to see that this holds for unary uniform operations: if Φ and Φ′ are uniform
and L = Kϕ−1 for a 1-uniform homomorphism ϕ, then LΦ = KΦϕ−1 and subsequently
(LΦ)Φ′ = (KΦ)Φ′ϕ−1. The general case is not much harder; the only difficulty is in dealing
with the notation.

Proposition 3.5.7. Let Φ be an m-ary uniform operation, and let Φ1, . . . ,Φm be uniform
operations where Φj has arity nj. Set Nj = n1 + · · · + nj for 1 ≤ j ≤ m, and consider the
operation of arity Nm that maps (L1, . . . , LNm

) to

((L1, . . . , LN1)Φ1, (LN1+1, . . . , LN2)Φ2, . . . (LNm−1+1, . . . , LNm
)Φm)Φ.

This operation, which we denote by Φ′, is uniform.

Proof. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ and suppose Lj = Kjϕ
−1 for 1 ≤ j ≤

Nm. By Proposition 3.4.5, it suffices to show that (L1, . . . , LNm
)Φ′ = (K1, . . . , KNm

)Φ′ϕ−1.
Let N0 = 0; then by the uniformity of Φj , for 1 ≤ j ≤ m we have

(LNj−1+1, . . . , LNj
)Φj = (KNj−1+1, . . . , KNj

)Φjϕ
−1.

Set Mj = (LNj−1+1, . . . , LNj
)Φj and M ′

j = (KNj−1+1, . . . , KNj
)Φj . Then Mj = M ′

jϕ
−1 for

1 ≤ j ≤ m. By the uniformity of Φ, we have

(L1, . . . , LNm)Φ
′ = (M1, . . . ,Mm)Φ = (M ′

1, . . . ,M
′
m)Φϕ−1 = (K1, . . . ,KNm)Φ

′ϕ−1,

as required.
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This shows that all “combined operations” formed by compositions of the uniform
operations we have seen so far are also uniform.

The following “substitution lemma” can also be used to construct new uniform opera-
tions from known ones.

Lemma 3.5.8. Let Φ be a k-ary operation. Fix m ≥ 1 and i1, . . . , ik ∈ {1, . . . , m}. Then
the operation Φ′ defined by (L1, . . . , Lm) 7→ (Li1 , . . . , Lik)Φ is uniform.

Proof. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ and suppose Lj = Kjϕ
−1 for 1 ≤ j ≤

m. Then by the uniformity of Φ, we have

(L1, . . . , Lm)Φ′ = (Li1 , . . . , Lik)Φ = (Ki1 , . . . , Kik)Φϕ−1 = (K1, . . . , Km)Φ′ϕ−1.

Therefore, by Proposition 3.4.5, the operation Φ′ is uniform.

As an example, we show that the power operation is uniform. Define L0 = {ε} and for
n ≥ 1, set Ln = Ln−1L.

Proposition 3.5.9. For n ≥ 0, the power operation L 7→ Ln is uniform.

Proof. For n ≥ 2, in Lemma 3.5.8, let Φ be the n-ary concatenation operation, set m = 1
and set i1, . . . , in = 1. For n = 1, it is immediate that L 7→ L is uniform. For n = 0, see
Proposition 3.5.10 below.

Another example is the anti-concatenation operation (L, L′) 7→ L′L. This belongs to
the class of shuffles on trajectories, so we already know that it is uniform, but an alternate
proof could be given using Lemma 3.5.8: let Φ be binary concatenation, set m = 2, set
i1 = 2 and set i2 = 1.

Next we consider some operations which depend only on the alphabet of the input
languages. These are not interesting from a state complexity perspective, but can be used
to construct interesting combined operations.

Proposition 3.5.10. Let S ⊆ N. The operation (L1, . . . , Lm) 7→
⋃

n∈S Σn, where Σ is
the common alphabet of the inputs, is uniform. In particular, the following operations are
uniform for all arities m:

1. (L1, . . . , Lm) 7→ ∅.

2. (L1, . . . , Lm) 7→ {ε}.
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3. (L1, . . . , Lm) 7→ Σ∗.

4. (L1, . . . , Lm) 7→ Σ+.

Proof. Fix a 1-uniform homomorphism ϕ : Σ∗ → Γ∗ and suppose Lj = Kjϕ
−1 for 1 ≤ j ≤

m. We claim that Σn = Γnϕ−1 for all n ≥ 0. Indeed, take a word w ∈ Σn; then wϕ is in
Γn by 1-uniformity, and so w ∈ Γnϕ−1. Conversely, if w ∈ Γnϕ−1 = {x ∈ Σ∗ : xϕ ∈ Γn}
then certainly w ∈ Σn. It follows that:

⋃

n∈S

Σn =
⋃

n∈S

Γnϕ−1 =

(
⋃

n∈S

Γn

)
ϕ−1.

By Proposition 3.4.5, operations of this type are uniform.

For a language L over Σ, the right ideal generated by L is Σ∗L, the left ideal generated
by L is LΣ∗, the two-sided ideal generated by L is Σ∗LΣ∗, and the all-sided ideal generated
by L is L Σ∗, where is (ordinary) shuffle. By combining our earlier results, we can show
that the operations which map L to one of the ideals it generates are uniform. For example,
let Φ be ternary concatenation, let Φ1 and Φ3 be L 7→ Σ∗, and let Φ2 be L 7→ L. Then the
operation (L1, L2, L3) 7→ (L1Φ1, L2Φ2, L3Φ3)Φ is uniform by closure under composition.
Then by substitution, L 7→ (LΦ1, LΦ2, LΦ3)Φ = Σ∗LΣ∗ is uniform.

In summary, we have proved that the following operations are uniform: reversal, cyclic
shift, star, power, m-ary concatenation, m-ary boolean operations (including union, in-
tersection, difference, symmetric difference and complement), shuffles on trajectories (in-
cluding shuffle, literal shuffle, balanced literal shuffle, insertion, balanced insertion, and
anti-concatenation), and the “alphabet-dependent” operations of Proposition 3.5.10. We
also proved that the class of uniform operations is closed under composition, meaning that
all combined operations formed by composing the aforementioned operations are uniform,
such as “star-complement-star” or “star of union”. Additionally, we proved a substitution
lemma that gives another way to construct new uniform operations from old, such as the
“ideal generated by” operations.

3.5.2 Non-Uniform Operations

First we remark that constant operations, which output a fixed language regardless of the
input, are not in general uniform. One issue is that our theoretical framework assumes
that all regular operations are alphabet-preserving, so we cannot even define true “constant
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operations” that take arbitrary regular languages as inputs; we must restrict the inputs to
have the same alphabet as the constant output language. The more fundamental problem
is that constant operations need not behave uniformly with respect to transformations.
For example, let Ψ be a constant DFA operation, and suppose that in DFA A, the letter a
induces transformation t, and in DFA B, the letter b also induces transformation t. If Ψ is
uniform, then the transformation induced by a in AΨ will be the same as the transformation
induced by b in BΨ. But the constant operation Ψ could produce a DFA in which a and b
induce different transformations, violating uniformity. The only way to ensure uniformity is
if Ψ produces a DFA in which every letter induces the same transformation; if we enforce
this condition, we essentially obtain the alphabet-dependent operations of Proposition
3.5.10.

Our first example of an interesting non-uniform operation is the following:

1

2
L = {x ∈ Σ∗ : xy ∈ L, |x| = |y|}.

This “half” operation is an example of a proportional removal ; the state complexity of
proportional removals was studied by Domaratzki [29]. We could prove that this operation
is not uniform directly from the definition, or using the language-theoretic characterization,
but instead we will show something even stronger: the OLPA approach does not maximize
the state complexity of this operation.

If the OLPA approach worked for this operation, then by Lemma 3.3.6, the state
complexity of the operation would be maximized by a language of the form 1

2
TQ(1, F ) for

some state configuration (Q, 1, F ). However, it is not hard to see that if F is non-empty,
then 1

2
TQ(1, F ) is either T ∗

Q or T ∗
Q \ {ε}, depending on whether i ∈ F . Indeed, let w be

a non-empty word in T ∗
Q. We have 1w = q for some q ∈ Q. Let t be a transformation

that sends q into F . Then wt id
|w|−1
Q maps 1 into F , and so this word is in the language

TQ(1, F ). But w is exactly half the length of this word, so w ∈ 1
2
TQ(1, F ). This means

that sc(1
2
TQ(1, F )) ≤ 2; but Domaratzki [29] shows that there are languages L of state

complexity n such that sc(1
2
L) = n. A similar argument shows that OLPA approach fails

for many other proportional removal operations as well, although we have not tried to
characterize the proportional removals for which the approach fails.

Next we consider deletions along trajectories [30, 40], a class of operations which in-
cludes left quotient, right quotient, deletion, scattered deletion, bi-polar deletion, and
k-deletion [30, p. 296]. We will show that the left quotient operation and the deletion
operation are not uniform. We have not investigated uniformity for other deletions along
trajectories.
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The case of left quotient is interesting, because the OLPA approach actually works for
this operation despite its non-uniformity. The left quotient of L by L′ is (L′)−1L = {x ∈
Σ∗ : wx ∈ L for some w ∈ L′}. This operation satisfies a weak version of the language-
theoretic characterization of uniformity:

For all 1-uniform homomorphisms ϕ : Σ∗ → Γ∗, if Lj = Kjϕ
−1 and Lj 6= ∅ for 1 ≤ j ≤

2, then (L−1
2 L1)Φ = (K−1

2 K1)Φϕ
−1.

Because empty languages are excluded here, the OLPA approach would fail if maxi-
mizing the state complexity in certain cases required the use of empty languages. But this
does not happen for left quotient.

To see that left quotient is not uniform, let Σ = {a, b} and define ϕ : Σ∗ → Σ∗ by
aϕ = bϕ = b. Then define K1 = {ab}, K2 = {a}, L1 = K1ϕ

−1, and L2 = K2ϕ
−1. If left

quotient was uniform, we would have L−1
2 L1 = (K−1

2 K1)ϕ
−1. But L1 = L2 = ∅, and so

L−1
2 L1 = ∅. Meanwhile, (K−1

2 K1)ϕ
−1 = ({a}−1{ab})ϕ−1 = {b}ϕ−1 = {a, b}.

The deletion of L′ from L is L  L′ = {xz ∈ Σ∗ : xyz ∈ L for some y ∈ L′}. We will
show that the OLPA approach fails for this operation.

If the OLPA approach worked, the state complexity would be maximized by some pair
of OLPA witnesses. Consider the language T1(1, F1) T2(1, F2) where T = TQ1 × TQ2 for
some finite sets Q1 and Q2. We claim that T1(1, F1)  T2(1, F2) = T∗, which has state
complexity one.

Indeed, fix a word w ∈ T∗. Write w = (t1,1, t2,1) · · · (t1,k, t2,k). Let w1 = t1,1 · · · t1,k, set
q1 = 1w1, and choose a transformation t1 : Q1 → Q1 that sends q1 into F1. Next, choose a
transformation t2 : Q2 → Q2 that sends 1 into F2. Then 1w1t1 ∈ F1, so w(t1, t2) ∈ T1(1, F1).
However, 1t2 ∈ F2, so (t1, t2) ∈ T2(1, F2). It follows w ∈ T1(1, F1) T2(1, F2) since it can
be obtained by deleting a word in T2(1, F2) from a word in T1(1, F1).

This shows that using OLPA witnesses for deletion only produces languages of state
complexity one. However, Han, Ko and Salomaa [40] proved that if L has state complexity
n, then n2n−1 is a tight upper bound on the state complexity of L L′. Hence the state
complexity of deletion is not maximized by the OLPA approach.

It is interesting that our main examples of operations for which the OLPA approach
fails involve the idea of “deletion” in some sense.
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Chapter 4

Techniques for Boolean Operations

4.1 Introduction

In this chapter, we take a deep dive into some of the principles behind maximizing the
state complexity of boolean operations on regular languages. We focus on the special
case of regular languages whose syntactic monoid is a group, or equivalently, DFAs in
which all transformations in the transition monoid are permutations. This case is simpler
to deal with than the general case, and allows us to use group-theoretic arguments to
obtain results that turn out to be applicable even in a more general setting. We also
focus exclusively on binary boolean operations, as this is the case most commonly studied
in state complexity research, and the relevant problems are already rich and challenging
enough without generalizing to higher arity.

The main inspiration for the work in this chapter is a paper of Bell, Brzozowski, Mor-
eira, and Reis [2], which considers the following question: for which pairs of languages
(Lm, L

′
n) (with state complexities m and n respectively) does Lm ◦ L′

n reach the maximal
state complexity mn for every proper binary boolean operation ◦? (“Proper” means that
the operation is not constant or a function of only one argument; in these cases the worst-
case state complexity is lower.) Bell et al. give sufficient conditions for this to occur. The
conditions are based on the transition monoids of the minimal DFAs of Lm and L′

n; essen-
tially, if the transition monoids contain the symmetric groups Sm and Sn, then “usually”
(i.e., excluding a known class of counterexamples) the language Lm ◦ L′

n will have state
complexity mn. The main result of this chapter is a refinement of these sufficient condi-
tions. We prove that if the transition monoids contain 2-transitive groups, then “usually”
Lm ◦ L′

n has state complexity mn (though our notion of “usually” is more restrictive than

103



that of Bell et al.). We obtain an number of other results, including necessary and sufficient
conditions for Lm ◦ L′

n to have state complexity mn in the special case where the minimal
automata for Lm and L′

n have exactly one final state and their transition monoids contain
a transitive permutation group.

To obtain these results, we exploit a connection between a class of permutation groups
called primitive groups, previously discussed in Section 2.3.2, and the notion of uniformly
minimal automata introduced by Restivo and Vaglica [70]. A minimal DFA is uniformly
minimal if it remains minimal whenever the final state set is replaced by a non-empty
proper subset of the state set. For a DFA whose transition monoid is a permutation
group, uniform minimality is equivalent to primitivity of the transition monoid. Although
uniform minimality played an important role in the paper of Bell et al., this connection
with primitive groups was not used in their paper.

This chapter is structured as follows. In Section 4.2 we explore the aforementioned
relationship between primitive groups and uniform minimality. In Section 4.3 we intro-
duce the notion of uniform boolean minimality, a weakening of uniform minimality that is
more relevant to boolean operations. In Section 4.4 we investigate conditions for boolean
operation automata to be accessible, that is, have all states reachable. In Section 4.5 we
consider distinguishability of states in boolean operation automata. In Section 4.6 we de-
fine a notion of similarity for DFAs, and prove our main result for pairs of dissimilar DFAs.
In Section 4.7 we briefly look at the case of similar DFAs, where our main result does not
hold. In Section 4.8 we show how to extend these results to DFAs whose transition monoid
contains non-permutations. In Section 4.9 we construct a counterexample to show that a
certain hypothesis in our main result is necessary. Finally, in Section 4.10 we summarize
all the results proved in this chapter.

We suggest the reader be familiar with the definitions and examples of transitive and
primitive groups given in Section 2.3.2 before proceeding further with this chapter. It may
also help to review the direct product construction for binary boolean operations given in
Section 2.4.4.

4.2 Primitive Groups and Uniform Minimality

A DFA A = (Q,Σ, T, 1, F ) is called a permutation DFA if the transition monoid of A is a
permutation group on Q. In this case we use the term transition group rather than transi-
tion monoid. The languages recognized by permutation DFAs are called group languages.

Figure 4.2.1 shows a permutation DFA, on the left, and a non-permutation DFA (that
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Figure 4.2.1: Example of a permutation DFA (left) and a non-permutation DFA (right).

is, a DFA that is not a permutation DFA) on the right. In the left DFA, the action of a
is the identity permutation id and the action of b is the 2-cycle (1, 2). Thus the transition
group is the permutation group generated by id and (1, 2). In the right DFA, the action
of a is not a permutation: it maps 1 to 2 and 2 to itself, so nothing is mapped to 1.
Note that the action of b is still (1, 2) in the right DFA; the transition monoid of the
right DFA contains permutations, but it is not a permutation group since it also contains
non-permutations.

Recall that an automaton (Q,Σ, T, I, F ) is accessible if every state in Q is reachable
from some state of I. For a DFA (Q,Σ, T, 1, F ), this is equivalent to every state being
reachable from 1. We say an automaton is strongly connected if for each ordered pair of
states (p, q), state q is reachable from state p. This is equivalent to the automaton being
strongly connected when viewed as a directed graph.

Proposition 4.2.1. For a permutation DFA A with transition group G, the following are
equivalent:

1. A is accessible.

2. A is strongly connected.

3. G is transitive.

Proof. (1) =⇒ (3): Since A is accessible, for each q ∈ Q there exists wq ∈ Σ∗ such that
1wq = q. Since G is a group, each element wq has an inverse. Furthermore, since G is a
permutation group, the identity element is the identity permutation. Thus q(wq)

−1wq = q,
and it follows that we must have q(wq)

−1 = 1 for all q ∈ Q. Thus for all p, q ∈ Q we have
p(wp)

−1wq = 1wq = q. It follows G is transitive.

(3) =⇒ (2): Since G is transitive, for all p, q ∈ Q there exists w ∈ Σ∗ such that
pw = q. This is precisely saying that A is strongly connected.

The last implication (2) =⇒ (1) is immediate.
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Note that (2) ⇐⇒ (3) holds for arbitrary DFAs, not only permutation DFAs.

Let A = (Q,Σ, T, 1, F ) be a DFA and let L = L(A) be its language. For S ⊆ Q, we
write A(S) for the DFA A = (Q,Σ, T, 1, S) obtained by replacing the final state set of A
with S. We say a regular language L′ is a cognate of L if L′ = L(A(S)) for some S ⊆ Q.
We say a DFA A′ is a cognate of A if A′ = A(S) for some S; so a language is a cognate of
L if and only if it is recognized by a cognate of A. If S = Q or S = ∅, then A(S) is called
a trivial cognate of A, since L(A(S)) is either Σ∗ or the empty language ∅.

We say A is uniformly minimal if all non-trivial cognates of A are minimal. That is,
we can reassign the final state set of the DFA in any non-trivial way and the new DFA will
always be minimal. Equivalently, all cognates of L = L(A) have the same state complexity
|Q|. This definition is essentially restricted to accessible DFAs, since if A is not accessible,
then not all states are reachable and hence no cognate of A can be minimal.

Restivo and Vaglica introduced and studied uniformly minimal DFAs in [71]. Their
notion of uniform minimality is almost the same as ours, except it is restricted to strongly
connected DFAs. Presumably, Restivo and Vaglica were interested in DFAs that are min-
imal for every reassignment of initial and final states; if a DFA is not strongly connected,
we can reassign the initial state to obtain a new DFA which is not accessible and hence not
minimal. However, for strongly connected DFAs, the choice of initial state has no effect on
minimality since every state is reachable from each possible choice of initial state. Hence
we lose nothing by fixing an initial state and generalizing to accessible DFAs.

Remark. Restivo and Vaglica also studied uniformly minimal DFAs in [70], but they used
different terminology. They used the term “almost uniformly minimal” for the notion
discussed above, and used “uniformly minimal” for a stronger condition that can only be
met by “incomplete” DFAs (which we do not discuss in this thesis).

Recall that if M is a transformation monoid on X , an M-congruence is an equivalence
relation on X that is invariant under the natural action of M on X . That is, if x and x′

are equivalent, then xm and x′m are equivalent for all m ∈ M . An M-congruence is trivial
if it is either the equality congruence, in which elements are equivalent if and only if they
are equal, or it is the full congruence, in which all elements are equivalent.

Proposition 4.2.2. Let A be a DFA with transition monoid M . The indistinguishability
relation ∆S, under which two states are equivalent if and only if they are indistinguishable
under S ⊆ Q, is an M-congruence.

Proof. Let p and q be states of A that are equivalent under ∆S. Then by definition, for
all w ∈ Σ∗, we have pw ∈ S ⇐⇒ qw ∈ S. It follows that for a fixed x ∈ Σ∗ and for all
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w ∈ Σ∗, we have pxw ∈ S ⇐⇒ qxw ∈ S. This shows that if p and q are equivalent under
∆S, then for all x ∈ Σ∗, the states px and qx are equivalent under ∆S . In other words, ∆S

is an M-congruence.

A DFA A with transition monoid M is called simple if all M-congruences are trivial.
Ésik proved the following result for strongly connected DFAs (in a private communication
to Restivo and Vaglica; the result appeared as Proposition 1 in [71]). The same proof
works for accessible DFAs.

Proposition 4.2.3. An accessible DFA A is uniformly minimal if and only if it is simple.

Proof. Let M be the transition monoid of A. Suppose A is simple, that is, all M-
congruences are trivial. Then in particular, for every S ⊆ Q, the indistiguishability relation
∆S is trivial. If ∆S is the equality relation, then each state lies in its own class, so all pairs
of states are distinguishable. Since A is accessible, all states are reachable, and hence A is
minimal. If ∆S is the full relation, then all states are indistinguishable. But final states are
always distinguishable from non-final states, so this can only happen if all states are final
(S = Q) or all states are non-final (S = ∅). Hence if ∅ ( S ( Q, then A(S) is minimal, so
it follows that A is uniformly minimal.

Conversely, suppose A is not simple, and there exists a non-trivial M-congruence. Then
this congruence has a class E which has at least two elements, but is not all of Q. Let E
be the final state set of A and let p, q ∈ E. For all w ∈ Σ∗, the states pw and qw both
lie in the set Ew, which is contained in some congruence class E ′. If E ′ = E, then we
have pw, qw ∈ E. If E ′ ∩ E = ∅, then we have pw, qw 6∈ E. Thus for all w ∈ Σ∗, we have
pw ∈ E ⇐⇒ qw ∈ E, and so p and q are not distinguishable under E. Hence A is not
uniformly minimal, since A(E) is not minimal.

In the special case of permutation DFAs, we have:

Corollary 4.2.4. An accessible permutation DFA A is uniformly minimal if and only if
its transition group G is primitive.

Proof. By Proposition 4.2.3, if A is uniformly minimal, then it is simple, and so all G-
congruences are trivial. Now, by Proposition 2.3.4, a group G is primitive if and only if all
G-congruences are trivial. Hence G is primitive.

Conversely, if G is primitive, then all G-congruences are trivial. Hence A is simple and
hence uniformly minimal by Proposition 4.2.3.
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Note that both implications in Corollary 4.2.4 are vacuously true if A is not accessible:
A cannot be uniformly minimal, and G cannot be transitive and thus cannot be primitive.
Thus one can technically omit the accessible assumption.

The wealth of results on primitive groups makes Corollary 4.2.4 quite useful for studying
and constructing uniformly minimal DFAs. For example, we can use this corollary to easily
prove that for each n ≥ 2, there exists a uniformly minimal DFA with n states. Restivo
and Vaglica proved this using a rather complicated construction [70, Theorem 3].

Proposition 4.2.5. For each n ≥ 2, there exists a uniformly minimal permutation DFA
with n states.

Proof. The symmetric group Sn is primitive for all n ≥ 2, and clearly for each n ≥ 2
there exists an n-state DFA with transition group Sn. For example, let {g1, . . . , gk} be a
generating set of the symmetric group; such a generating set exists since Sn is a finite group
(for example, we could just take the set of all elements of Sn). Once we have a generating
set, let A be a DFA with states {1, . . . , n}, alphabet Σ = {a1, . . . , ak}, and letter actions
ai = gi for 1 ≤ i ≤ k.

In fact, we can use a binary alphabet, since Sn has generating sets of size two for all
n ≥ 2. For example, the set {(1, . . . , n), (1, 2)} generates Sn.

This proof illustrates a technique that we frequently use for producing examples of
DFAs. If we have a generating set for a transformation monoid, we can construct a DFA
which has that monoid as its transition monoid.

Example 4.2.6. Let A be the DFA with alphabet {a, b} defined as follows.

• The states are {1, 2, 3, 4}, the initial state is 1, and the final states are {3, 4}.

• The letter actions are the permutations a = (2, 3, 4) and b = (1, 2)(3, 4).

The permutations (1, 2)(3, 4) and (2, 3, 4) generate the alternating group A4; this can be
verified computationally. Thus the transition group of A is A4. We saw in Example 2.3.9
that A4 is transitive and primitive. Hence by Proposition 4.2.1, A is strongly connected,
and by Corollary 4.2.4, A is uniformly minimal.

A state diagram of A is given in Figure 4.2.2. It is tedious, but possible to verify that
A is uniformly minimal by checking that it is minimal with respect to every non-empty,
proper subset of {1, 2, 3, 4}. �
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a
a, b

a

Figure 4.2.2: Uniformly minimal DFA A of Example 4.2.6.

Example 4.2.7. Let A be the DFA with alphabet {a}, states {1, . . . , 6}, initial state 1,
final states F = {1, 3, 5} and a = (1, 2, 3, 4, 5, 6). A diagram is in Figure 4.2.3.

The transition group G of A is the cyclic group of order six, which is imprimitive.
We saw in Example 2.3.6 that F = {1, 3, 5} is a block for this group. Hence for all k,
we either have Fak = F or Fak ∩ F = ∅. Thus if i, j ∈ F , then for all k we have
iak ∈ F ⇐⇒ jak ∈ F . This means all pairs of states in F are indistinguishable under F ,
and hence A is not minimal.

This argument actually shows that whenever F is a non-trivial block of G, the DFA A
is not minimal. In fact, this also holds whenever F is a union of non-trivial blocks of G
(see Lemma 4.2.8 below).

Note that if we construct a DFA from a cyclic group of prime order, we get a uniformly
minimal DFA, since cyclic groups of prime order are primitive. �

1 2 3 4 5 6
a a a a a

a

Figure 4.2.3: Non-minimal DFA A of Example 4.2.7 with an imprimitive transition group.

Remark. Steinberg has extended the notion of primitivity to transformation monoids [76].
Steinberg defines a transformation monoid M to be primitive if there are no non-trivial
M-congruences. Under this definition, an accessible DFA A is uniformly minimal if and
only if the transition monoid M is primitive. However, we have not investigated whether
any of our other results that hold for primitive groups are also true for primitive monoids.

We close this section with a technical lemma that generalizes Proposition 4.2.3. If M is
a transformation monoid on X and S ⊆ X , we say that S is saturated by an M-congruence
if it is a union of classes of the M-congruence.
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Lemma 4.2.8. An accessible DFA A with ∅ ( F ( Q and transition monoidM is minimal
if and only if there is no non-trivial M-congruence that saturates F .

It follows that if all M-congruences are trivial, then A is uniformly minimal. Conversely,
if there is a non-trivial M-congruence, then it saturates its own congruence classes and at
least one class is a proper non-empty subset of Q, and thus A is not uniformly minimal.
Hence this indeed generalizes Proposition 4.2.3.

Proof. We prove the contrapositive: A is not minimal if and only if there exists a non-trivial
M-congruence that saturates F .

Suppose A is not minimal. Then the indistinguishability relation ∆ of F is a non-
trivial M-congruence, since at least two states are indistinguishable. Suppose there is an
indistinguishability equivalence class E that is neither contained in F nor disjoint from
F . Then there exist p, q ∈ E such that p ∈ F and q 6∈ F . But then p and q are
distinguishable under F , which cannot happen since E is an indistinguishability class.
Thus for each indistinguishability class q∆, we have q∆ ⊆ F or q∆∩F = ∅. Then we have
F =

⋃
f∈F f∆, so F is saturated by its indistinguishability relation.

Conversely, let E1, . . . , Ek ⊆ Q be the congruence classes of a non-trivial M-congruence
that saturates F . Choose a congruence class Ei of size at least two. Then for all w ∈ Σ∗

we have Eiw ⊆ Ej for some j. Since F is a union of congruence classes, either Ej ⊆ F or
Ej ∩ F = ∅. Hence for p, q ∈ Ei and all w ∈ Σ∗, we have pw ∈ F ⇐⇒ Ej ⊆ F ⇐⇒
Eiw ⊆ F ⇐⇒ qw ∈ F . It follows that states in Ei are indistinguishable, and thus A is
not minimal.

In the special case of permutation DFAs, this has a nice consequence.

Corollary 4.2.9. Let A be a permutation DFA with transition group G. If |F | = 1 or
|F | = |Q| − 1, then A is minimal if and only if it is accessible.

Proof. Recall that if G is a transitive permutation group and E and E ′ are classes of a
G-congruence, then |E| = |E ′|. It follows that if |F | = 1, then a non-trivial G-congruence
cannot saturate F since all the congruence classes have size at least two. Furthermore, a
G-congruence saturates F if and only if it saturates Q\F , and if |F | = |Q|−1 then a non-
trivial G-congruence cannot saturate the set Q \ F of size one. Hence if A is accessible,
it is minimal by Lemma 4.2.8. On the other hand, if A is not accessible, it cannot be
minimal.
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4.3 Uniform Boolean Minimality

Throughout the remainder of this chapter, A′ = (Q′,Σ′, T ′, 1, F ′) and A = (Q,Σ, T, 1, F )
are minimal DFAs. We assume these DFAs have a common alphabet Σ = Σ′. The
languages of A′ and A are L′ and L, and the transition monoids are M ′ and M , respectively.
For w ∈ Σ∗, we abbreviate T ′

w to w′ and Tw to w. Often we will assume A′ and A are
permutation DFAs, and then we will use G′ and G for the transition groups rather than
M ′ and M . For the direct product A′ × A (as defined in Section 2.4.4), we write M× for
its transition monoid, or G× if A′ and A are both permutation DFAs.

We recall the definition of binary boolean operations on languages. Given a binary
boolean function ◦ : {0, 1}2 → {0, 1}, the corresponding binary boolean operation on lan-
guages is defined by:

L′ ◦ L = {w ∈ Σ∗ : wχL′ ◦ wχL = 1}.

Here χS : S → {0, 1} denotes the characteristic function of the set S, defined by xχS = 1
if x ∈ S and xχS = 0 otherwise. We can also define binary boolean operations on sets of
DFA states: for S ′ ⊆ Q′ and S ⊆ Q, we have S ′ ◦ S = {(q′, q) ∈ Q′ ×Q : q′χS′ ◦ qχS}. The
language L′ ◦ L is recognized by the direct product DFA A′ ×A when equipped with the
final state set S ′ ◦ S.

Recall also that a binary boolean function (and the associated binary boolean operation
on languages) is proper if its output depends on both of its arguments.

Definition 4.3.1. A pair of languages (L′, L) has maximal boolean complexity if sc(L′◦L) =
sc(L′) sc(L) for all proper binary boolean operations ◦; in other words, the pair (L′, L) is
a witness for every proper binary boolean operation simultaneously.

Our goal in this chapter is to describe techniques for proving pairs of languages have
maximal boolean complexity. We can reformulate the definition of maximal boolean com-
plexity in terms of automata by introducing the following notion:

Definition 4.3.2. Suppose that ∅ ( S ′ ( Q′ and ∅ ( S ( Q. We say a subset of Q′ ×Q
is (S ′, S)-compatible if it is equal to S ′ ◦ S for some proper binary boolean operation ◦.

Notice now that if L′ is recognized by A′ and L is recognized by A, then (L′, L) has
maximal boolean complexity if and only if A′ ×A is minimal for every (F ′, F )-compatible
subset of Q′ ×Q.

To attack the problem of proving languages have maximal boolean complexity, we study
the following stronger notion.
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Definition 4.3.3. The pair of DFAs (A′,A) (or the direct product A′ × A) is uniformly
boolean minimal if for every pair of sets (S ′, S) with ∅ ( S ′ ( Q′ and ∅ ( S ( Q and every
(S ′, S)-compatible set S ′ ◦ S, the DFA (A′ ×A)(S ′ ◦ S) is minimal.

Let us compare the definitions of maximal boolean complexity and uniform boolean
minimality. The pair (L, L′) has maximal boolean complexity if A′ × A is minimal for
every (F ′, F )-compatible subset, where F ′ and F are fixed final state sets, chosen so that
A′ recognizes L′ and A recognizes L. But what if this property holds for every possible
choice of F ′ and F , excluding the trivial cases where F ′ or F is empty or the full state
set? If this happens, A′ ×A is uniformly boolean minimal.

We give an example of a pair of DFAs that are not uniformly boolean minimal, as well
as a pair of DFAs that are.

Example 4.3.4. Define two DFAs over alphabet Σ = {a, b, c} as follows:

• A′ has state set Q′ = {1, 2}, initial state 1, final state set F ′ = {1}, and actions
a′ = c′ = id, b′ = (1, 2).

• A has state set Q = {1, 2}, initial state 1, final state set F = {1}, and actions
a = b = id, c = (1, 2).

We show that (L(A′), L(A)) does not have maximal boolean complexity, and thus A×A
is not uniformly boolean minimal.

To see this, consider the symmetric difference operator ⊕, arising from the “exclusive
or” boolean function: for u, v ∈ {0, 1}, the “exclusive or” u⊕ v is zero if u = v and one if
u 6= v. The corresponding operation on languages over Σ is

L′ ⊕ L = {w ∈ Σ∗ : w ∈ L′ or w ∈ L, but not both} = (L′ \ L) ∪ (L \ L′).

The final state set that makes A′ ×A recognize L(A′) ⊕ L(A) is:

F ′ ⊕ F = {(q′, q) ∈ Q′ ×Q : q′ ∈ F ′ or q ∈ F , but not both} = {(1, 2), (2, 1)}.

State diagrams of the DFAs A′, A and (A′×A)(F ′⊕F ) are shown in Figure 4.3.1. Notice
that (A′ ×A)(F ′ ⊕F ) is not minimal: the states (1, 2) and (2, 1) cannot be distinguished.
Since F ′ ⊕ F is an (F ′, F )-compatible set, it follows that (L(A′), L(A)) does not have
maximal boolean complexity, and that A′ ×A is not uniformly boolean minimal. �
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Figure 4.3.1: DFAs A′, A and A′ × A of Example 4.3.4. The final state set of A′ × A is
chosen so that A′ ×A recognizes the symmetric difference of the languages of A′ and A.

Example 4.3.5. Define two DFAs over alphabet Σ = {a, b} as follows:

• A′ has state set Q′ = {1, 2} and actions a′ = (1, 2), b′ = id.

• A has state set Q = {1, 2, 3} and actions a = (1, 2), b = (1, 2, 3).

The initial and final states are not important for this example.

The direct product A′ × A is shown in Figure 4.3.2. Notice that the transition group
of A is S3. We will see much later (Theorem 4.6.6) that this implies A′ × A is uniformly
boolean minimal.

Note that A′×A is not uniformly minimal; for example, it is not minimal with respect
to the final state set {(1, 1), (1, 2), (1, 3)}. If |Q′|, |Q| ≥ 2, a direct product DFA with state
set Q′ × Q can never be uniformly minimal; in particular, it cannot be minimal for final
state sets of the form S ′×Q (“unions of rows”) or Q′×S (“unions of columns”). However,
the definition of uniform boolean minimality excludes these sets. �

Bell, Brzozowski, Moreira and Reis found sufficient conditions for a pair of DFAs to
be uniformly boolean minimal [2]. However, these conditions require that the transition
monoids of the DFAs contain the symmetric group, in the sense that they contain every
permutation of the DFA’s state set. In particular, for permutation DFAs, these conditions
only apply when the transition group is the symmetric group on the state set. We obtain
more general sufficient conditions for uniform boolean minimality in permutation DFAs,
which apply to a larger class of transition groups. Additionally, we show that DFAs whose
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Figure 4.3.2: Uniformly boolean minimal DFA A′ ×A of Example 4.3.5.

transition monoids contain 2-transitive groups “usually” meet these conditions, up to some
technical assumptions we will state later.

We also obtain necessary and sufficient conditions for a pair of languages (L′, L) to
have maximal boolean complexity in the special case where L′ and L are recognized by
permutation DFAs A′ and A with exactly one final state. In this special case, it turns out
(L′, L) has maximal boolean complexity if and only if A′×A is accessible. We give several
group-theoretic conditions that are equivalent to A′ ×A being accessible.

We begin with a proposition which characterizes (F ′, F )-compatible subsets. If Q is
the state set of a DFA and S ⊆ Q, write S for Q \ S. Similarly, if L is a language over Σ,
write L for Σ∗ \ L.

Proposition 4.3.6. Let ∅ ( F ′ ( Q′ and ∅ ( F ( Q. A subset of Q′ × Q is (F ′, F )-
compatible if and only if it is equal to one of the following sets:

(a) F ′ × F (corresponding to L′ ∩ L).

(b) F ′ × F (corresponding to L′ ∩ L = L′ \ L).

(c) F ′ × F (corresponding to L′ ∩ L = L \ L′).

(d) F ′ × F (corresponding to L′ ∩ L = L′ ∪ L).

(e) (F ′ × F ) ∪ (F ′ × F ) (corresponding to symmetric difference (L′ \ L) ∪ (L \ L′)).

(f) The complement (Q′ ×Q) \ S, where S is one of the above sets.
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Proof. Let ◦ be a proper binary boolean function. Let k be the number of pairs (u, v) ∈
{0, 1} × {0, 1} such that u ◦ v = 1.

Case 1 (k = 1): If k = 1, then there is a unique pair (u, v) such that u ◦ v = 1. Hence
F ′ ◦ F = {(q′, q) : q′χF ′ = u and qχF = v}. Consider possible values for (u, v):

• If (u, v) = (0, 0) then F ′ ◦ F = F ′ × F .

• If (u, v) = (0, 1) then F ′ ◦ F = F ′ × F .

• If (u, v) = (1, 0) then F ′ ◦ F = F ′ × F .

• If (u, v) = (1, 1) then F ′ ◦ F = F ′ × F .

Hence F ′ ◦ F is a set of type (a), (b), (c) or (d).

Case 2 (k = 2): If k = 2, there are exactly two pairs (u, v) and (u′, v′) such that
u ◦ v = u′ ◦ v′ = 1. We claim that u 6= u′ and v 6= v′. To see this, suppose u = u′.
Then we must have v 6= v′, or else the pairs are not distinct. Thus {v, v′} = {0, 1} and it
follows u ◦ 0 = u ◦ 1 = 1. Hence ◦ only depends on the value of the first argument, which
contradicts the fact that ◦ is proper. By a symmetric argument, we cannot have v = v′.
Now, observe that (q, q′) is in F ′ ◦ F if and only if

q′χF ′ = u and qχF = v or q′χF ′ = u′ and qχF = v′.

Suppose (u, v) = (1, 0). Then we necessarily have (u′, v′) = (0, 1) and we get

F ′ ◦ F = (F ′ × F ) ∪ (F ′ × F ).

If (u, v) = (0, 1), then (u′, v′) = (1, 0) and we get the same set. If (u, v) = (1, 1) or
(u, v) = (0, 0), then we get

F ′ ◦ F = (F ′ × F ) ∪ (F ′ × F ).

But this is simply the complement of the previous set. So we either get a set of type (e)
or the complement of such a set, which is type (f).

Case 3 (k = 3): If k = 3, then there is a unique pair (u, v) such that u ◦ v = 0. Hence
F ′ ◦ F is the complement of a set of type (a), (b), (c) or (d), that is, a set of type (f).

This proves that every (F ′, F )-compatible set, that is, every set of the form F ′◦F where
◦ is a proper binary boolean function, has one of the given forms (a)–(f). Conversely, if
we are given sets F ′ and F and a set X ⊆ Q′ ×Q with one of the forms (a)–(f), the proof
shows how to construct a proper binary boolean function ◦ such that X = F ′◦F . It follows
X is (F ′, F )-compatible if and only if it has one of the forms (a)–(f).
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4.4 Accessibility of the Direct Product

In this section, we consider the problem of determining when A′ × A is accessible. This
is essential for proving that A′ × A is minimal for a certain final state set, and also an
interesting question in its own right. By Proposition 4.2.1, if A′ × A is a permutation
DFA, then it is accessible if and only if its transition group is transitive. The following
proposition describes the structure of the transition monoid of A′ ×A.

Proposition 4.4.1. Recall that M× denotes the transition monoid of A′ ×A.

1. M× is isomorphic to the submonoid of M ′ ×M generated by {(a′, a) : a ∈ Σ}. We
often identify M× with this submonoid.

2. The projections π′ : M× → M ′ and π : M× → M given by (w′, w)π′ = w′ and
(w′, w)π = w are surjective.

3. If M ′ and M are groups, then M× is a group.

Proof. (1): Write w× for the action of w in M×. Consider the map ϕ : M× → M ′ ×M
given by w× 7→ (w′, w). This map is clearly a monoid homomorphism. Furthermore, if
(x′, x) = (y′, y) then q′x′ = q′y′ and qx = qy for all q′ ∈ Q′ and q ∈ Q, and thus in M× we
have (q′, q)x× = (q′, q)y× for all (q′, q) ∈ Q × Q′. Hence x× = y× whenever x×ϕ = y×ϕ,
and it follows that ϕ is injective.

Since ϕ is injective, (M×)ϕ is a finite monoid of the same size as M×. It follows ϕ
is bijective when viewed as homomorphism between M× and (M×)ϕ, and thus ϕ is an
isomorphism between these monoids. Since {a× : a ∈ Σ} generates M×, we see that
{(a′, a) : a ∈ Σ} generates (M×)ϕ. Hence we have M×

∼= (M×)ϕ = 〈(a′, a) : a ∈ Σ〉 as
required.

(2): Fix w ∈ M . Then for the element (w′, w) ∈ M× we have (w′, w)π = w. Hence π′

maps surjectively onto M ′. Similarly, π′ maps surjectively onto M ′.

(3): Since M× is a monoid, it suffices to show every element of M× has an inverse.
Recall that the identity elements of M ′ and M are ε′ and ε respectively. For (w′, w) ∈M×,
pick m and n such that (w′)m = ε′ in M ′ and wn = ε in M . This is possible since M ′ and
M are finite groups. We have ((w′)mn−1, wmn−1) ∈ M×, and (w′, w)((w′)mn−1, wmn−1) =
((w′)mn, wmn) = (ε′, ε), the identity of M×. It follows that ((w′)mn−1, wmn−1) is an inverse
of (w′, w).
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Recall that for permutation DFAs A′ and A, we denote the transition group of A′ by
G′ and the transition group of A by G. In this case, by Proposition 4.4.1 (3), the transition
monoid of A′ × A is a group, and (as stated earlier) we denote it by G×. If A′ and A
are permutation DFAs, the transitivity of G× is a necessary and sufficient condition for
all states of A′ × A to be reachable. However, the structure of G× can be difficult to
understand. Hence we will derive a simpler characterization of transitivity that depends
only on properties of G′ and G.

Suppose that A′ and A are permutation DFAs. As before, let π′ : G× → G′ and
π : G× → G denote the projections given by (w′, w)π′ = w′ and (w′, w)π = w, respectively.
Consider the subgroup ker π′ ≤ G×. It contains all (w′, w) ∈ G× such that w′ is the identity
in G. View Q′ × Q as a grid, where elements of Q′ are “row indices” and elements of Q
are “column indices”. Then ker π′ consists of the elements of G× which fix all row indices.
Similarly, the group ker π consists of the elements which fixes all column indices. Thus we
make the following definitions:

Definition 4.4.2. The group R = ker π′ is called the full row stabilizer. The group
C = ker π is called the full column stabilizer.

Recall that kernels of homomorphisms are normal subgroups; thus both R and C are
normal subgroups of G×.

Fix q′ ∈ Q′ and q ∈ Q. Let (q′, ∗) denote the set {(q′, i) ∈ Q′ ×Q : i ∈ Q}, that is, the
“q′-th row” of Q′ × Q. Similarly, let (∗, q) = {(i′, q) ∈ Q′ × Q : i ∈ Q} denote the “q-th
column” of Q′ ×Q. Recall that if G is a group acting on X , then for S ⊆ X , the setwise
stabilizer of S is the subgroup {g ∈ G : Sg = S}.

Definition 4.4.3. For q′ ∈ Q′ and q ∈ Q, let Rq′ ≤ G× be the setwise stabilizer of (q′, ∗)
and let Cq ≤ G× be the setwise stabilizer of (∗, q). The subgroups Rq′ are called single row
stabilizers and the subgroups Cq are called the single column stabilizers.

The group Rq′ is the subgroup of G× consisting of all elements that fix the row index
of elements in row q′, and act arbitrarily on the column index. Hence if g ∈ Rq′ and
(q′, q) ∈ (q′, ∗), the element (q′, q)g will always lie in (q′, ∗). On the other hand, if (p′, p) 6∈
(q′, ∗), we do not know whether g will fix the row index p′; it is only guaranteed to stabilize
row (q′, ∗). Symmetrically, Cq consists of all elements of G× that fix the column index of
elements in column q, and act arbitrarily on the row index. The full row stabilizer R is the
intersection of all single row stabilizers, and hence is a subgroup of each Rq′ ; the analogous
fact holds for C.

We now give necessary and sufficient conditions for A′ ×A to be transitive in the case
where A′ and A are permutation DFAs.
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Lemma 4.4.4. Let A′ and A be permutation DFAs. The following are equivalent:

1. A′ ×A is accessible.

2. G′ and G are transitive and for all q′ ∈ Q′ and q ∈ Q, the subgroups Rq′π ≤ G and
Cqπ

′ ≤ G′ are transitive.

3. G is transitive and Rq′π ≤ G is transitive for some q′ ∈ Q′, or G is transitive and
Cqπ

′ ≤ G′ is transitive for some q ∈ Q.

4. G× is transitive.

Proof. Since A′×A is a permutation DFA, we see that (1) ⇐⇒ (4). Also, the implication
(2) =⇒ (3) is immediate.

(3) =⇒ (4): Fix (i′, i), (j′, j) ∈ Q′ × Q. Suppose that G is transitive and some Cqπ
′

is transitive; the case where G′ is transitive and Rq′π is transitive for some q′ ∈ Q′ is
symmetric.

• Since G is transitive, there exists x ∈ G such that ix = q. Let k′ ∈ Q′ be the element
such that i′x′ = k′. Then (i′, i)

x
−→ (k′, q).

• Since G is transitive, there exists y ∈ G such that qy = j in G.

• Since Cqπ
′ ≤ G′ is transitive on Q′, there exists z′ ∈ Cqπ

′ such that k′z′ = j′(y′)−1.

Since (z′, z) ∈ Cq, we have qz = q. Hence (k′, q)
z
−→ (j′(y′)−1, q).

It follows that
(i′, i)

x
−→ (k′, q)

z
−→ (j′(y′)−1, q)

y
−→ (j′, qy) = (j′, j).

Thus G× is transitive on Q′ ×Q, since for all elements (i′, i), (j′, j) ∈ Q′ ×Q, there exists
an element of G× that maps one to the other.

(4) =⇒ (2): If G× is transitive, then for all q′, i′, j′ ∈ Q′ and q, i, j ∈ Q, there exist
x, y ∈ Σ∗ such that

(q′, i)
x
−→ (q′, j) and (i′, q)

y
−→ (j′, q).

Thus q′x′ = q′ and ix = j, and also qy = q and i′y′ = j′. It follows that:

• Since q′x = q′, we have (x′, x) ∈ Rq′ , and since qy = q, we have (y′, y) ∈ Cq.

• For all i′, j′ ∈ Q′, there exists a word x ∈ Rq′π ≤ G that maps i to j.
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• For all i, j ∈ Q, there exists a word y′ ∈ Cqπ
′ ≤ G′ that maps i′ to j′.

Hence for all q′ ∈ Q′ and q ∈ Q, we see that Cqπ
′ is transitive on Q′ and Rq′π is transitive

on Q. Since Cqπ
′ ≤ G′ and Rq′π ≤ G, it follows that G′ and G are transitive.

This establishes a cycle of implications (2) =⇒ (3) =⇒ (4) =⇒ (2). Since we also
have (1) ⇐⇒ (4), all the statements are equivalent.

This lemma reduces the problem of checking the transitivity of G× to just checking the
the transitivity of a row stabilizer on the column indices, or of a column stabilizer on the
row indices. The following proposition reinterprets this in terms of reachability in DFAs;
this version may be easier to understand and apply for readers who are not well-versed
in group theory. It is not difficult to prove that accessibility of A′ × A is equivalent to
condition (1) of the following proposition without appeal to group theory; however, for
illustrative purposes we will connect it with condition (3) of Lemma 4.4.4.

Proposition 4.4.5. Let A′ and A be permutation DFAs. The following statements are
equivalent:

1. A′ is accessible and there exists q′ ∈ Q′ such that all states in (q′, ∗) are reachable,
or A is accessible and there exists q ∈ Q such that all states in (∗, q) are reachable.

2. G′ is transitive and Rq′π ≤ G is transitive for some q′ ∈ Q′, or G is transitive and
Cqπ

′ ≤ G′ is transitive for some q ∈ Q.

Proof. (1) =⇒ (2): Suppose A is accessible, and there exists q ∈ Q such that all states
in (∗, q) are reachable. By Proposition 4.2.1, since A is an accessible permutation DFA, G
is transitive on Q.

To see that Cqπ
′ ≤ G′ is transitive on Q′, fix i′, j′ ∈ Q′. Since all states in (∗, q) are

reachable from the initial state (1, 1) of A × A′, there is some word x ∈ G× such that

(1, 1)
x
−→ (i′, q). Also, there is some y ∈ G× such that (1, 1)

y
−→ (j′, q). Since A′ × A is a

permutation DFA, there is some z ∈ Σ∗ such that z = x−1. Thus we have

(i′, q)
z
−→ (1, 1)

y
−→ (j′, q).

We see that zy maps q to itself, so z′y′ ∈ Cqπ
′. Hence Cqπ

′ is transitive on Q′.

By a symmetric argument, if A′ is accessible and there exists q′ ∈ Q′ such that all states
in (q′, ∗) are reachable, it follows that G′ is transitive on Q′ and Rq′π ≤ G is transitive on
Q.
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(2) =⇒ (1): Suppose G is transitive and Cqπ
′ ≤ G′ is transitive for some q ∈ Q.

Since G is transitive, A is accessible. In particular, there exists w ∈ Σ∗ such that 1w = q,
and it follows that (1, 1)

w
−→ (1w′, q) in A′×A. Since Cqπ

′ is transitive on Q′, for all q′ ∈ Q′

there exists x′ ∈ Cqπ
′ such that (1w′, q)

x
−→ (q′, q). Hence every state in (∗, q) is reachable.

In the case where G′ and some Rq′π are transitive, we can use a symmetric argument.

We now prove one of our main results, which gives necessary and sufficient conditions for
pairs of group languages recognized by DFAs with exactly one final state to have maximal
boolean complexity.

Theorem 4.4.6. Suppose |Q′| ≥ 3 or |Q| ≥ 3. Let A′ and A be permutation DFAs with
exactly one final state. Then the following are equivalent:

1. A′ ×A is accessible.

2. For all proper binary boolean operations ◦, the language L′ ◦ L has maximal state
complexity. That is, (L′, L) has maximal boolean complexity.

3. There exists a proper binary boolean operation ◦ such that the language L′ ◦ L has
maximal state complexity.

Normally, when one is trying to prove that L′◦L has maximal state complexity, proving
that A′ × A is accessible is just the first step in the process; the second is to show that
(A′ ×A)(F ′ ◦ F ) is minimal using distinguishability arguments. This theorem shows that
for a special class of DFAs, the first step is actually sufficient. However, it is not always
easy to prove that A′ × A is accessible. The reachability-based condition of Proposition
4.4.5 can aid with this; it states that assuming A′ and A are accessible, the direct product
A′ ×A is accessible if either of the following holds.

• There exists a row (q′, ∗) such that all states in (q′, ∗) are reachable.

• There exists a column (∗, q) such that all states in (∗, q) are reachable.

This reduces the problem to just checking reachability for a single row or column.

The group-theoretic conditions of Lemma 4.4.4 may also help, but they are perhaps
harder to understand. Later on (in Section 4.6) we will use these to obtain simpler group-
theoretic conditions for accessibility of A′ × A. In particular, provided that A′ and A
are both accessible, and also satisfy an additional criterion called dissimilarity (which is
usually easy to check), we have:
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• If G′ and G are transitive simple groups, then A′ ×A is accessible.

• If G′ and G are primitive groups, then A′ ×A is accessible.

(Recall that a group G is simple if it has no non-trivial proper normal subgroups, that is,
the only normal subgroups of G are G itself and the trivial group.)

Theorem 4.4.6. The only difficult implication here is (1) =⇒ (2). Suppose A′ × A is
accessible; we want to show that L′ ◦ L has maximal state complexity for every proper
binary boolean operation ◦. That is, we want to show that all pairs of states of A′×A are
distinguishable under each (F ′, F )-compatible subset of Q′ ×Q.

Note that since A′×A is accessible, by Lemma 4.4.4 we know that G× is transitive and
that Cqπ

′ ≤ G′ and Rq′π ≤ G are transitive for all q′ ∈ Q′ and q ∈ Q. What this means is:

• For every pair of states (p′, p) and (q′, q) of A′ ×A, there exists a word w ∈ Σ∗ such
that (p′, p)

w
−→ (q′, q). (Transitivity of G×)

• Fix a state q ∈ Q. For every pair of states i′, j′ ∈ Q′, there exists a word w ∈ Σ∗

such that (i′, q)
w
−→ (j′, q). (Transitivity of Cqπ

′)

• Fix a state q′ ∈ Q′. For every pair of states i, j ∈ Q, there exists a word w ∈ Σ∗ such
that (q′, i)

w
−→ (q′, j). (Transitivity of Rq′π)

We will use these facts repeatedly throughout the proof.

Let F ′ = {f ′} and F = {f}, so that F ′×F = {(f ′, f)}. Let (p′, p) and (q′, q) be distinct
states of A′×A that we wish to distinguish. We will show these states are distinguishable
under each type of set described in Proposition 4.3.6.

We only need to consider types (a) through (e), since sets of type (f) are just comple-
ments of sets of types (a) through (e), and two states are distinguishable under a set X if
and only if they are distinguishable under the complement of X .

Case 1 (States in the same row or same column): Suppose p = q, that is, both
states (p′, p) and (q′, q) are in the same column. Then we necessarily have p′ 6= q′, since
the states are distinct.

• By transitivity of G×, for all r ∈ Q there exists w ∈ Σ∗ such that (p′, p)
w
−→ (f ′, r).

• Since p = q and p′ 6= q′, we have (q′, q)
w
−→ (s′, r) for some s′ 6= f ′. (Since w′ is a

permutation, it must map p′ and q′ to different states.)
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If r ∈ F , we have (f ′, r) ∈ F ′ × F and (s′, r) ∈ F ′ × F . Hence we can distinguish the
states if the final state set is F

′ × F , F ′ × F , or (F ′ × F ) ∪ (F ′ × F ),

If r 6∈ F , we have (f ′, r) ∈ F ′ × F and (s′, r) ∈ F ′ × F . Hence we can distinguish the
states if the final state set is F

′ × F or F ′ × F .

This covers all the possible sets of final states. If p 6= q and p′ = q′ (that is, the states
are in the same row) we can use a symmetric argument.

Case 2 (States in different rows and different columns): Assume p 6= q and
p′ 6= q′. We consider each possible set of final states in turn.

F
′ × F : Here A′ ×A has exactly one final state (f ′, f), so it is minimal by Corollary

4.2.9.

F
′ × F : We make a few observations:

• By transitivity of G×, there exists w ∈ Σ∗ such that (p′, p)
w
−→ (f ′, f).

• Since p 6= q, p′ 6= q′ and w is a permutation, we must have qw 6= f and q′w′ 6= f ′.

• Since Rf ′π is transitive, there exists x ∈ Σ∗ such (f ′, qw)
x
−→ (f ′, f).

It follows that

(p′, p)
w
−→ (f ′, f)

x
−→ (f ′, fx), (q′, q)

w
−→ (q′w′, qw)

x
−→ (q′w′x′, f).

• Since qwx = f , qw 6= f and x is a permutation, we have fx 6= f . It follows that
(f ′, fx) ∈ F ′ × F .

• Since f ′x′ = f ′, q′w′ 6= f ′ and x′ is a permutation, we have q′w′x′ 6= f ′. It follows
that (q′w′x′, f) ∈ F ′ × F .

Hence wx maps (p, p′) to a final state and (q, q′) to a non-final state. Thus we have
distinguished the two states.

F ′ × F : We can use a symmetric argument to the previous case.

F × F ′: As in the case of F ′ × F , pick w such that (p′, p)
w
−→ (f ′, f). Then (q′, q)

w
−→

(q′w′, qw), which is in F ′ × F since q′w′ 6= f ′ and qw 6= f . Thus w sends (q′, q) to a final
state. But (p′, p)

w
−→ (f ′, f) is non-final, so we have distinguished the states.

(F ′ × F ) ∪ (F ′ × F ): This is the most complicated case.
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• By transitivity of G×, there exists u ∈ Σ∗ such that (p′, p)
u
−→ (r′, f), where r′ 6= f ′.

• We have (r′, f) ∈ F ′ × F , so u sends (p′, p) to a final state. If (q′, q)
u
−→ (q′u′, qu) is

non-final, then u distinguishes the states, so we may assume without loss of generality
that it is final.

• We cannot have qu = f , since p 6= q and pu = f . Thus qu ∈ F . Since (q′u′, qu) is
final we therefore must have q′u′ ∈ F ′, that is, q′u′ = f ′.

Define r = qu; now we have reduced the problem to distinguishing two states of the forms
(r′, f) and (f ′, r), with r′ 6= f ′ and r 6= f .

Suppose |Q| ≥ 3; if we only have |Q′| ≥ 3 we can use a symmetric argument to the
argument below.

• Since Rf ′π is transitive and |Q| ≥ 3, there is a word v ∈ Σ∗ such that (f ′, f)
v
−→ (f ′, s)

for some s 6∈ {r, f}.

• It follows that (r′, f)
v
−→ (r′v′, s), where r′v′ 6= f ′.

• The state (r′v′, s) is in F ′×F , and thus is non-final. If (f ′, r)
v
−→ (f ′, rv) is final, then

v distinguishes (r′, f) and (f ′, r). Hence we may assume without loss of generality
that (f ′, rv) is non-final.

• A non-final state either lies in F × F ′ or F × F ′. Since f ′ ∈ F ′, we must have
(f ′, rv) ∈ F × F ′. But then rv = f .

Thus we have

(p′, p)
u
−→ (r′, f)

v
−→ (r′v′, s), (q′, q)

u
−→ (f ′, r)

v
−→ (f, f ′).

Now, apply v again to both states.

• Since s 6= r and rv = f , we have sv 6= f .

• Since f ′v′ = f ′ and r′ 6= f ′, we have r′v′ 6= f ′ and r′v′v′ 6= f ′.

• It follows that (r′v′, s)
v
−→ (r′v′v′, sv) ∈ F ′ × F , and thus is non-final.

• However, recall that fv = s and s 6= f ; thus (f ′, f)
v
−→ (f ′, s) is in F ′ × F .

123



Hence (p′, p) and (q′, q) are distinguished by uv2.

We have shown that all pairs of states of A×A′ are distinguishable under all (F ′, F )-
compatible sets of final states, and so this proves (1) =⇒ (2).

The implication (2) =⇒ (3) is immediate. For (3) =⇒ (1), just note that for each
proper binary boolean operation ◦, the language L′ ◦ L is recognized by (A′ × A)(X) for
some set of final states X . If (A′ × A)(X) is not accessible, it cannot be minimal and so
L′ ◦ L cannot have maximal state complexity.

Note that Example 4.3.4 gives a pair of languages recognized by two-state permutation
DFAs which have maximal complexity for intersection, but not symmetric difference (see
also [2, Example 2]). Hence in the previous theorem, it was necessary to assume that at
least one DFA has three or more states.

Note that Theorem 4.4.6 also holds in the following cases:

• A′ and A both have exactly one non-final state.

• A′ has exactly one final state and A has exactly one non-final state.

• A′ has exactly one non-final state and A has exactly one final state.

The same arguments we gave in Theorem 4.4.6 can be used in the above three cases, but
the role of each argument is changed. For example, consider the case where A′ has one
final state and A has one non-final state. Let F ′ = {f ′} and let F = Q \ F = {q}. We
can use the same arguments as in the original proof of Theorem 4.4.6, except wherever F
appears we substitute F . So for example, we deal with the case of F ′ × F = {(f ′, q)} by
appealing to Corollary 4.2.9, just like we did for F ′ × F in the original proof. This works
because distinguishability arguments are the same whether we distinguish with respect to
a set of final states or a set of non-final states.

We now apply Theorem 4.4.6 to show that the original witnesses for the maximal state
complexity of union (found by Maslov and later by Yu, Zhuang and Salomaa) are in fact
witnesses for all proper binary boolean operations.

Example 4.4.7. In [62], Maslov defined two families of DFAs over alphabet {0, 1} as
follows, and claimed that the languages they recognize are witnesses for union. The DFA
A has states {S0, . . . , Sm−1} with S0 initial and Sm−1 final, and the transitions are given by
Si0 = Si, Si1 = Si+1 for i 6= m−1, and Sm−11 = S0. The DFA B has states {P0, . . . , Pn−1}
with P0 initial and Pn−1 final, and the transitions are given by Pi1 = Pi, Pi0 = Pi+1 for
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i 6= n− 1, and Pn−10 = P0. It is easy to see that A×B is accessible: the state (Si, Pj) can
be reached from (S0, P0) via the word 1i0j. Furthermore, A and B are permutation DFAs:
the symbol 0 acts as the identity permutation in A and as a cyclic permutation of the
states in B, while 1 acts as a cyclic permutation in A and the identity in B. They also have
exactly one final state. So in fact, for m,n ≥ 3, the pair of languages (L(A), L(B)) has
maximal boolean complexity by Theorem 4.4.6. That is, Maslov’s languages are witnesses
for all proper binary boolean operations, not only for union.

Yu, Zhuang and Salomaa gave a different family of witnesses in [79]. For a word w ∈ Σ∗

and a ∈ Σ, let |w|a denote the number of occurrences of the letter a in w. Yu et al. defined
languages Lm = {w ∈ {a, b}∗ : |w|a ≡ 0 (mod m)} and Ln = {w ∈ {a, b}∗ : |w|b ≡ 0
(mod n)}, then proved that Lm∩Ln and Lm∪Ln both have state complexity mn. In fact,
(Lm, Ln) has maximal boolean complexity for m,n ≥ 3. Indeed, one may verify that the
minimal DFA of Lm has m states, with the initial and final states equal; the letter a acts
as a cyclic permutation of the state set, and the letter b acts as the identity. The minimal
DFA of Ln is similar, except there are n states, b is the cyclic permutation, and a is the
identity. These DFAs are almost identical to the DFAs defined by Maslov, except with a
different choice of final state. This does not change the fact that they are permutation
DFAs with one final state and an accessible direct product, and hence meet the conditions
of Theorem 4.4.6. �

4.5 Distinguishability in the Direct Product

We now give sufficient conditions for a pair of permutation DFAs (A′,A) to be uniformly
boolean minimal. This involves examining the distinguishability of states. Just as with
uniform minimality, primitive groups play an important role in our conditions for uniform
boolean minimality. To state our conditions, we need some new notation.

Definition 4.5.1. For p′, q′ ∈ Q′ and p, q ∈ Q, we write Rp′,q′ for the setwise stabilizer
of (p′, ∗) ∪ (q′, ∗), and Cp,q for the setwise stabilizer of (∗, p) ∪ (∗, q). If p′ = q′ then
Rp′,q′ = Rp′ = Rq′ , and similarly if p = q then Cp,q = Cp = Cq. We call these subgroups
double row stabilizers and double column stabilizers.

Under this definition, single row stabilizers are special cases of double row stabilizers,
and similarly for column stabilizers. Note that Rp′ and Rq′ are not necessarily subgroups
of Rp′,q′, nor the other way around: the group Rp′ might contain elements that map q′ to
some state r′ 6∈ {p′, q′}, while the group Rp′,q′ might contain elements that swap p′ and
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q′. However, the full row stabilizer R is a common subgroup of Rp′ , Rq′ and Rp′,q′. The
analogous facts hold for column stabilizers.

Lemma 4.5.2. Suppose A′ and A are permutation DFAs.

1. If |Q| ≥ 3, the group G is primitive, and Cp,qπ
′ ≤ G′ is primitive for all p, q ∈ Q,

then A′ ×A is uniformly boolean minimal.

2. If |Q′| ≥ 3, the group G′ is primitive, and Rp′,q′π ≤ G is primitive for all p′, q′ ∈ Q′,
then A′ ×A is uniformly boolean minimal.

Note that we do not require p 6= q or p′ 6= q′, so in case (1) both the single and double
column stabilizers must have primitive projections, and in case (2) both the single and
double row stabilizers must have primitive projections.

Proof. Suppose that the conditions of (1) hold, that is, |Q| ≥ 3, G is primitive and for all
p, q ∈ Q, the subgroup Cp,qπ

′ ≤ G′ is primitive. The case where the conditions of (2) hold
is symmetric. We want to show that for every pair of sets ∅ ( S ′ ( Q′ and ∅ ( S ( Q
and each (S ′, S)-compatible subset X ⊆ Q′ ×Q, the DFA (A′ ×A)(X) is minimal.

It suffices to consider the cases where X = S ′ × S and where X = (S ′ × S) ∪ (S ′ × S).
It may seem that this would only cover sets of type (a) and complements of sets of type
(e) from Proposition 4.3.6. However, these two cases actually cover all possible types of
(S ′, S)-compatible sets.

To see this, consider a set S ′ × S of type (b). If we prove that (A′ × A)(T ′ × T ) is
minimal for all pairs of sets ∅ ( T ′ ( Q′ and ∅ ( T ( Q, then in particular we can take
T ′ = S ′ and T = S to show that (A′ × A)(S ′ × S) is covered. A similar argument works
for sets of type (c) and (d) .

Now note that if (A′×A)(X) is minimal, then (A′×A)(X) is also minimal, so we also
cover sets of type (e) and (f). So all types of sets from Proposition 4.3.6 are covered by
just looking at the cases X = S ′ × S and X = (S ′ × S) ∪ (S ′ × S).

Let (i′, i) and (j′, j) be distinct states of A′ ×A; we will show they are distinguishable
under X .

Case 1 (States in the same column): Suppose i = j, that is, the states are in the
same column. Since the states are distinct, we have i′ 6= j′.

• Since G is primitive, it is transitive, and thus there exists a word w ∈ G that maps
i = j to some element s ∈ S. Thus (i′, i)

w
−→ (i′w′, s) and (j′, j)

w
−→ (j′w′, s).
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• Suppose w does not distinguish (i′, i) and (j′, j) with respect to X . Then (i′w′, s) ∈
X ⇐⇒ (j′w′, s) ∈ X .

• Since Csπ
′ is primitive, all permutation DFAs with state set Q′ and transition group

Csπ
′ are uniformly minimal by Corollary 4.2.4. It follows there exists x′ ∈ Csπ

′ that
distinguishes i′w′ and j′w′ with respect to S ′.

We have:

(i, i′)
w
−→ (i′w′, s)

x
−→ (i′w′x′, s), (j, j′)

w
−→ (j′w′, s)

x
−→ (j′w′x′, s).

• Since x′ distinguishes i′w′ and j′w′ with respect to S ′, we see that i′w′x′ ∈ S ⇐⇒
j′w′x′ 6∈ S.

• Hence (i′w′x′, s) ∈ S ′ × S ⇐⇒ (j′w′x′, s) ∈ S ′ × S.

It follows that either w or wx distinguishes (i, i′) and (j, j′) with respect to X , regardless
of whether we have X = S × S ′ or X = (S × S ′) ∪ (S × S ′).

Case 2 (States in the same row): Suppose i′ = j′, that is, the states are in the
same row but different columns. Since G is primitive, by Corollary 4.2.4, all permutation
DFAs with state set Q and transition group G are uniformly minimal. Hence there exists
x ∈ G that distinguishes i and j under S. Suppose without loss of generality that ix ∈ S
and jx 6∈ S. Since Cix,jxπ

′ is primitive, it is transitive, and thus there exists y′ ∈ Cix,jxπ
′

such that i′x′y′ ∈ S ′. Since Cix,jx stabilizes the set (ix, ∗) ∪ (jx, ∗), for (y′, y) ∈ Cix,jx,
we must have {ix, jx}y = {ixy, jxy} = {ix, jx}. Thus y either fixes ix and jx, or it
swaps ix and jx. If y fixes ix and jx, then (i′x′y′, ixy) = (i′x′y′, ix) ∈ S ′ × S, and
(j′x′y′, jxy) = (j′x′y′, jx) ∈ S ′×S since i′ = j′ implies i′x′y′ = j′x′y′. If y swaps ix and jx
then (i′x′y′, ixy) = (i′x′y′, jx) ∈ S ′ × S and (j′x′y′, jxy) = (j′x′y′, ix) ∈ S ′ × S. In either
case, it follows that xy distinguishes (i′, i) and (j′, j) under X , regardless of whether we
have X = S ′ × S or X = (S ′ × S) ∪ (S ′ × S).

Case 3 (States in different rows and different columns): Suppose i′ 6= j′ and
i 6= j. We divide this case into two subcases.

Subcase 3a (X = S × S
′): We may assume without loss of generality that (i′, i)

and (j′, j) are both in X . To see this, observe that since G is transitive and Cqπ
′ ≤ G′

is transitive for each q ∈ Q, we know that G× is transitive by Lemma 4.4.4. Thus there
exists w ∈ Σ∗ that maps (i′, i) to a state in X . Hence either w distinguishes the states, or
w also maps (j′, j) into X .
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Suppose we have (i′, i), (j′, j) ∈ X = S ′ × S. Since Ci,jπ
′ is primitive, there exists

w ∈ Ci,jπ
′ that distinguishes i′ and j′ under S ′. Without loss of generality, assume i′ ∈ S ′

and j′ 6∈ S ′. Then (i,′ i)(w′, w) = (i′, i) ∈ S ′ × S and (j′, j)(w′, w) ∈ S ′ × S. Hence w
distinguishes the states.

Subcase 3b (X = (S × S
′) ∪ (S × S′)): This is the final case we must deal with,

and most complicated part of the proof. We introduce a notion of polarity to simplify the
arguments. We assign a polarity of 1 or −1 to each state in Q′ × Q as follows. First, let
q ∈ Q′ have polarity 1 if q′ ∈ S ′ and polarity −1 if q′ 6∈ S ′. Similarly, q ∈ Q has polarity 1
if q ∈ S and polarity −1 if q 6∈ S. Then the polarity of (q′, q) ∈ Q′ × Q is the product of
the polarities of q′ and q.

Next, we partition Q′ × Q into four quadrants : S ′ × S, S ′ × S, S ′ × S, and S ′ × S.
Notice that in each quadrant, all states have the same polarity. Furthermore, the set
X = (S ′ × S) ∪ (S ′ × S) is the set of all states with positive polarity, and the set X =
(S ′ × S) ∪ (S ′ × S) is the set of all states with negative polarity. Hence to show all states
are distinguishable under X , we must show that for each pair of states of equal polarity,
there is a word that preserves the polarity of one state and reverses the polarity of the
other state.

We now prove two claims, which together complete the proof of this subcase. First we
show that pairs of states in the same quadrant are distinguishable, and then we show that
pairs of states in different quadrants are distinguishable.

Claim 1 (States in the same quadrant are distinguishable): Suppose (i′, i) and
(j′, j) are in the same quadrant. This means that (i′, i) and (j′, j) have the same polarity;
furthermore, i′ and j′ have the same polarity, and i and j have the same polarity.

• Choose a word w′ ∈ Ci,jπ
′ that distinguishes i′ and j′ under S ′ (by primitivity of

Ci,jπ
′).

• Notice that w preserves the polarity of both i and j, since it either fixes both i and
j or it swaps them, and i and j have the same polarity.

• Since (i′, i) and (j′, j) are in the same quadrant, we either have i′, j′ ∈ S ′ or i′, j′ ∈ S ′.

• Since w′ distinguishes i′ and j′ under S ′, it follows that w′ acts on i′ and j′ by
preserving the polarity of one state and reversing the polarity of the other.

It follows that (w′, w) acts on (i′, i) and (j′, j) by preserving the polarity of one state and
reversing the polarity of the other. In other words, w distinguishes these states.
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Claim 2 (States in different quadrants are distinguishable): Suppose that (i′, i)
and (j′, j) lie in different quadrants.

• We may assume without loss of generality that (i′, i) and (j′, j) have the same polar-
ity; otherwise they are trivially distinguishable.

• We may also assume without loss of generality that (i′, i), (j′, j) ∈ X , by the same
argument we used in Subcase 3a. Thus we must have (i′, i) ∈ S × S ′ and (j′, j) ∈
S × S ′, or vice versa.

• We may assume without loss of generality that (i′, i) ∈ S × S ′ and (j′, j) ∈ S × S ′,
by swapping the names of (i′, i) and (j′, j) if necessary.

So we have reduced to the case where one state is in the quadrant S ′ × S and the other is
in the quadrant S ′ × S.

• Since G is primitive, S and S are either not blocks, or they are trivial blocks.

• S and S are proper non-empty subsets of Q, so they can only be trivial blocks if
|S| = |S| = 1.

• This would imply |Q| = |S| + |S| = 2, and we are assuming |Q| ≥ 3, so they cannot
both be trivial blocks. So at least one of S or S is not a block. Note that in the
symmetric case where G′ is primitive, we would use |Q′| ≥ 3 here.

If S is not a block, let w ∈ G be a word such that ∅ ( Sw ∩ S ( S. Otherwise, S is not a
block, so let w ∈ G be a word such that ∅ ( Sw ∩ S ( S.

Now, we partition Q into two sets:

P = {q ∈ S : qw ∈ S} ∪ {q ∈ S : qw ∈ S},

P = {q ∈ S : qw ∈ S} ∪ {q ∈ S : qw ∈ S}.

Note that P is non-empty, since if it were empty we would have Sw∩S = ∅ and Sw∩S = ∅.
Similarly, P is non-empty, since otherwise we would have Sw ∩ S = S and Sw ∩ S = S.
Thus both P and P are proper subsets of Q.

Observe that if i, j ∈ P , then P is a proper subset of Q with size at least two, so it
cannot be a block for G. Hence some word in G distinguishes i and j under P . Similarly,
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if i, j ∈ P , then i and j are distinguishable under P . So we may assume that either i ∈ P
and j ∈ P , or i ∈ P and j ∈ P .

Suppose that i ∈ P and j ∈ P . Recall that we have (i′, i) ∈ S ′ × S and (j′, j) ∈
S ′ × S. Thus since i ∈ S we have iw ∈ S, and since j ∈ S we have jw ∈ S. Hence
(i′w′, iw), (j′w′, jw) ∈ Q′×S, that is, w maps both (i′, i) and (j′, j) into Q′×S. There are
two possibilities:

• The states (i′w′, iw) and (j′w′, jw) are in the same quadrant, and thus are distin-
guishable by Claim 1.

• The states (i′w′, iw) and (j′w′, jw) are in different quadrants. Since iw and jw are
both in S, one state must lie in S ′ × S and the other S ′ × S. Thus w distinguishes
(i′, i) and (j′, j), and we are done.

So if i ∈ P and j ∈ P , we have proved the claim. If we have i ∈ P and j ∈ P , then
we have iw ∈ S and jw ∈ S, and so a symmetric argument shows that the states are
distinguishable. This completes the proof of Claim 2. By Claim 1 and Claim 2, we see
that all pairs of states are distinguishable under sets of the form (S ′ × S) ∪ (S ′ × S),
completing the proof of Subcase 3b and hence Case 3.

We have shown that for every pair of sets ∅ ( S ′ ( Q′ and ∅ ( S ( Q and each
(S ′, S)-compatible subset X ⊆ Q′×Q, each pair of states in (A′×A)(X) is distinguishable
by X . Thus A′ ×A is uniformly boolean minimal.

While Lemma 4.5.2 gives sufficient conditions for uniform boolean minimality, the con-
ditions are not necessary. We will demonstrate this later, in Example 4.9.4.

In the above proof, most of the difficulty came from dealing with the case (S ′ × S) ∪
(S ′ × S), which corresponds to the operation of symmetric difference (or complement
of symmetric difference). In fact, if we choose to ignore symmetric difference and its
complement, we can obtain necessary and sufficient conditions for the corresponding weaker
version of uniform boolean minimality. First we need a lemma.

Lemma 4.5.3. Let G be a finite transitive group acting on X and fix S ⊆ X. If there
exists g ∈ G such that ig 6∈ S and jg ∈ S, then there exists h ∈ G such that ih ∈ S and
jh 6∈ S.

Proof. Fix g ∈ G such that ig 6∈ S and jg ∈ S. By transitivity of G, we can choose x ∈ G
such that (ig)x = jg. Thus igx ∈ S. If igx ∈ S and jgx 6∈ S, we can take h = gx.
Otherwise, we construct h as follows:
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• Step 1: We know that jgx ∈ S. Then since igx = jg, we have igx2 = jgx ∈ S. If
jgx2 6∈ S, take h = gx2. Otherwise, we know that jgx2 ∈ S.

• Step k > 1: Assume we know that jgxk ∈ S. Then igxk+1 = jgxk ∈ S. If jgxk+1 6∈ S,
take h = gxk+1.

This construction necessarily terminates, since G is a finite group, and thus there exists k
such that xk is the identity. Once we reach step k − 1, we know that jgxk−1 ∈ S, and so
igxk = jgxk−1 = ig ∈ S; also, jgxk = jg 6∈ S. So we take h = gxk = g and stop. Hence we
can always produce an element h with the desired property.

Proposition 4.5.4. Suppose A′ and A are permutation DFAs. The following are equiva-
lent:

1. Cqπ
′ ≤ G′ and Rq′π ≤ G are primitive for all q ∈ Q and q′ ∈ Q′.

2. For all sets ∅ ( S ′ ( Q′ and ∅ ( S ( Q, the DFA (A′ ×A)(S ′ × S) is minimal.

Proof. (1) =⇒ (2): We proceed as in the proof of Lemma 4.5.2. Let (i′, i) and (j′, j) be
distinct states of A′ ×A; we will show they are distinguishable under S ′ × S.

Case 1 (States in the same row): In the proof of Lemma 4.5.2, we proved that
states in the same row are distinguishable, using the facts that G is transitive and Cqπ

′

is primitive for all q ∈ Q. Those facts still hold under our new hypotheses, so the same
argument can be used here.

Case 2 (States in the same column): The argument we used for this case in
Lemma 4.5.2 relied on the double row stabilizers being transitive, so we cannot use it here.
However, under our new hypotheses, we know that G′ is transitive and Rq′π is primitive
for all q′ ∈ Q. Thus we can just use a symmetric argument to the one for states in the
same row.

Case 3 (States in different rows and different columns): Suppose i′ 6= j′ and
i 6= j. As in the proof of Lemma 4.5.2, we may assume without loss of generality that
(i′, i), (j′, j) ∈ S ′ × S. Since Ri′π is primitive, there exists w ∈ Ri′π that distinguishes
i and j under S. Then we either have iw ∈ S and jw 6∈ S, or we have iw 6∈ S and
jw ∈ S. In the latter case, by Lemma 4.5.3, there exists x ∈ Ri′π such that ix ∈ S and
jx 6∈ S. So without loss of generality, we may assume iw ∈ S and jw 6∈ S. Then we
have (i′, i)

w
−→ (i′, iw) ∈ S × S ′, but (j′, j)

w
−→ (j′w′, jw) 6∈ S × S ′ since jw 6∈ S. Thus w

distinguishes the states. We have now shown that all pairs of states (i′, i) and (j′, j) are
distinguishable.
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(2) =⇒ (1): Suppose that for all sets ∅ ( S ′ ( Q′ and ∅ ( S ( Q, the DFA
(A′ × A)(S ′ × S) is minimal. Assume for a contradiction that there exists q′ ∈ Q′ such
that Rq′π is not primitive. Then there exists a non-trivial block B ( Q for Rq′π. We claim
that (A′ ×A)({q′} × B) is not minimal:

• Since B is a non-trivial block, it contains at least two distinct elements. Let i, j ∈ B
be distinct and consider the states (q′, i) and (q′, j) of A′ ×A.

• If q′w′ 6= q′, then w does not distinguish (q′, i) and (q′, j). Indeed, if q′w′ 6= q′, then
(q′w′, iw) and (q′w′, jw) both lie outside of {q′} × B.

• Hence if w ∈ Σ∗ distinguishes (q′, i) and (q′, j), we must have q′w′ = q′, and thus
w ∈ Rq′π.

• Since B is a block forRq′π, we either have iw, jw ∈ B (if Bw = B) or {iw, jw}∩B = ∅
(if Bw ∩B = ∅).

• Thus w ∈ Rq′π cannot distinguish (q′, i) and (q′, j): if iw, jw ∈ B then w maps both
states to {q′} × B; otherwise it maps both states to {q′} ×B.

• It follows that no word can distinguish (q′, i) and (q′, j) under {q′} ×B.

This shows that (A′ × A)({q′} × B) is not minimal, which is a contradiction. It follows
that Rq′π must be primitive for all q′ ∈ Q′. A symmetric argument shows that Cqπ

′ must
be primitive for all q ∈ Q.

One may wonder whether condition (1) of Proposition 4.5.4 is actually sufficient to
prove Lemma 4.5.2. We will show later (Example 4.9.3) that this is not the case.

4.6 Dissimilar DFAs and the Main Result

While the conditions of Lemma 4.5.2 are somewhat complicated, there are cases where we
can easily verify that they hold. We consider some of these cases next.

Recall that the projection maps π′ : M× → M ′ and π : M× → M , given by (w′, w)π′ =
w′ and (w′, w)π = w respectively, are surjective by Proposition 4.4.1. We will say that the
DFAs A′ and A are similar if the maps π′ and π are injective. If these maps are both
surjective and injective, they are isomorphisms. Hence if A′ and A are similar, the map
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(π′)−1π : M ′ → M given by w′ 7→ w is a well-defined monoid isomorphism. If A′ and A
are not similar, we say they are dissimilar. If π′ and π both fail to be injective, we say that
A and A′ are strongly dissimilar.

We give some examples of dissimilar DFAs. All DFAs will be over the two-letter al-
phabet {a, b}, and we will not specify the initial and final states since they do not affect
whether DFAs are similar.

Example 4.6.1. Let A′ have states {1, 2} and actions a′ = (1, 2) and b′ = id. Let A
have states {1, 2} and actions a = id and b = (1, 2). Notice that in the transition group
of A×A′, we have (b′, b) = (id, (1, 2)) and (ε′, ε) = (id, id). Thus (b′, b)π′ = (ε′, ε)π′ = id
and it follows that π′ is not injective. Hence A and A′ are dissimilar. In fact, a symmetric
argument shows that π is not injective, and thus these DFAs are strongly dissimilar.

Another way to see that these DFAs are dissimilar is to consider the binary relation
w′ 7→ w. This relation is not a well-defined function, since we have b′ 7→ b which gives
id 7→ (1, 2), but we also have ε′ 7→ ε which gives id 7→ id. This means A′ and A cannot
be similar, since we know that if they are similar, then (π′)−1π must be a well-defined
isomorphism which sends w′ to w.

Alternatively, without even checking whether the relation w′ 7→ w is a function, we
can see that since id = b′ 7→ b = (1, 2), this relation sends an element of order one to an
element of order two, and thus it cannot possibly be a group isomorphism (since group
isomorphisms preserve the order of elements). But then A′ and A cannot be similar. �

Usually, the easiest way to prove that a pair of DFAs is dissimilar is to examine the
relation w 7→ w′ and show that it is not an isomorphism.

Example 4.6.2. Let A′ have states {1, 2} and actions a′ = (1, 2) and b′ = (1, 2). Let
A have states {1, 2, 3, 4} and actions a = (1, 2)(3, 4) and b = (1, 3)(2, 4). The transition
group of A′ has two elements: ε′ = id and a′ = b′ = (1, 2). However, the transition group
of A has four elements:

ε = id, a = (1, 2)(3, 4), b = (1, 3)(2, 4), ab = (1, 4)(2, 3).

Hence these DFAs must be dissimilar, since they have different transition groups. Similar
DFAs always have isomorphic transition monoids or groups.

These DFAs are not strongly dissimilar. To see this, observe that the transition group
of A×A′ has four elements:

(ε′, ε) = (id, id), (a′, a) = ((1, 2), (1, 2)(3, 4)),
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(b′, b) = ((1, 2), (1, 3)(2, 4)), (a′b′, ab) = (id, (1, 4)(2, 3)).

It is easy to verify that any other product of elements will be equal to one of these four.
Now note that π is a bijection but π′ is not, and thus A′ and A are not strongly dissimilar.
In this case, the relation w′ 7→ w is not a function. However, the relation π−1π′ given by
w 7→ w′ is a function, and in fact is a group homomorphism (but not an isomorphism). �

As for examples of similar DFAs, we have the following fact: isomorphic DFAs are
necessarily similar. Indeed, suppose there is an isomorphism f : Q′ → Q. Then for all
q′ ∈ Q′ and a ∈ Σ, we have (q′a′)f = (qf)a, and thus q′a′ = q(faf−1). It follows that
a′ = faf−1 for all a ∈ Σ∗, and thus w′ = fwf−1 for all w ∈ Σ∗. Hence π′ : M× → M ′

is given by (w′, w)π′ = (fwf−1, w)π′ = fwf−1, and this map is clearly injective since if
fwf−1 = fxf−1 then w = x. Similarly, we have w = f−1w′f and π : M× →M is injective.

This shows that DFA similarity is a generalization of DFA isomorphism. However, the
next example shows that it is possible for two DFAs with different numbers of states to be
similar, and that the monoid isomorphism w′ 7→ w does not necessarily have to have the
form w′ 7→ f−1wf for a permutation f .

Example 4.6.3. Consider the symmetric group S10. This group contains an intransitive
subgroup that is isomorphic to S5, given by permutations of the set {1, . . . , 10} which
fix every point in {6, . . . , 10}. This can be considered the “natural” embedding of S5 in
S10. However, there is also a primitive subgroup of S10 that is isomorphic to S5. Using
the computer algebra system GAP [38], which contains a library of primitive groups, this
subgroup can be accessed with the command PrimitiveGroup(10,2). We can use GAP
to compute an explicit isomorphism between S5 and this subgroup:

gap> IsomorphismGroups(SymmetricGroup(5),PrimitiveGroup(10,2));

[ (3,4), (1,2,3)(4,5) ] ->

[ (1,2)(6,8)(7,9), (2,6,4,5,3,7)(8,10,9) ]

The GAP output tells us that the map sending (3, 4) to (1, 2)(6, 8)(7, 9) and (1, 2, 3)(4, 5)
to (2, 6, 4, 5, 3, 7)(8, 10, 9) can be extended multiplicatively to an isomorphism between S5

and the aforementioned primitive subgroup of S10. We use this isomorphism to construct
similar permutation DFAs of different sizes.

Let A′ have states {1, . . . , 5} and actions a′ = (3, 4) and b′ = (1, 2, 3)(4, 5). Let A have
states {1, . . . , 10} and actions a = (1, 2)(6, 8)(7, 9) and b = (2, 6, 4, 5, 3, 7)(8, 10, 9).

The transition group G′ of A′ is S5, and the transition group G of A is a primitive
subgroup of S10 that is isomorphic to S5. Furthermore, the map w′ 7→ w is an isomorphism
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of G and G′. Hence A′ and A are similar. Note that the map w′ 7→ w cannot be written in
the form w′ 7→ f−1wf for a permutation f ; if it could, we would have a′ = f−1af , but one
can show that f−1af = (1f, 2f)(6f, 8f)(7f, 9f). This pair of DFAs has other interesting
properties; we will revisit them in Example 4.7.1.

Notice that similarity of DFAs is a very fragile property; if we simply switch the roles
of a and b in A, giving a = (3, 4) and a′ = (2, 6, 4, 5, 3, 7)(8, 10, 9), then A and A′ are no
longer similar. Indeed, after the switch, we see that w′ 7→ w sends an element of order two
to an element of order six, which means it cannot be an isomorphism of G′ and G. �

Dissimilar permutation DFAs have the following nice property. Recall that R = ker π′

and C = ker π, the full row stabilizer and full column stabilizer (respectively) are normal
subgroups of G×, the transition group of A′ × A. Indeed, they are kernels of homomor-
phisms, which are always normal.

Proposition 4.6.4. If A′ and A are dissimilar permutation DFAs, then at least one of
the following statements holds:

1. Cπ′ is a non-trivial normal subgroup of G′.

2. Rπ is a non-trivial normal subgroup of G.

If A′ and A are strongly dissimilar, then both hold.

Proof. Recall that by Proposition 2.3.2, if N is a normal subgroup of G and ϕ : G → H
is a surjective homomorphism, then Nϕ is a normal subgroup of H . Since π′ and π are
surjective, Cπ′ is a normal subgroup of G′ and Rπ is a normal subgroup of G.

• We have ker π = {(w′, w) ∈ G× : w = ε}, so Cπ′ = {w′ ∈ G′ : w = ε} and similarly
Rπ = {w ∈ G : w′ = ε′}.

• If Cπ′ is trivial, then whenever w = ε we have w′ = ε′, and so C = ker π = {(ε′, ε)}
is trivial; hence π is injective.

• Similarly, if Rπ is trivial, then R = ker π′ is trivial, and thus π′ is injective.

Thus we see that if A′ and A are dissimilar, then π′ and π cannot both be injective, and
so Cπ′ and Rπ cannot both be trivial. Furthermore, if A′ and A are strongly dissimilar,
then neither π′ nor π can be injective, and so neither Cπ′ nor Rπ can be trivial.
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This leads to a powerful lemma:

Lemma 4.6.5. Let A′ and A be dissimilar permutation DFAs and suppose |Q′|, |Q| ≥ 3.

1. Suppose G′ and G are transitive. If all non-trivial normal subgroups of G′ and of G
are transitive, then A′ ×A is accessible.

2. Suppose G′ and G are primitive. If all non-trivial normal subgroups of G′ and of G
are primitive, then A′ ×A is uniformly boolean minimal.

Proof. By Proposition 4.6.4, since A′ and A are dissimilar, one of Cπ′ or Rπ is a non-trivial
normal subgroup. Suppose that Rπ ≤ G is non-trivial; the other case is symmetric.

(1): Since all non-trivial normal subgroups of G are transitive, Rπ is transitive. Hence
Rq′π is transitive for all q′ ∈ Q′, since Rq′π ≥ Rπ. Since G′ is transitive, we see that
condition (3) of Lemma 4.4.4 holds. Thus A′ ×A is accessible.

(2): Since all non-trivial normal subgroups of G are primitive, Rπ is primitive. Hence
Rp′,q′π is primitive for all p′, q′ ∈ Q, since Rp′,q′π ≥ Rπ. Since G′ is primitive, we see
that A′ and A meet the conditions of Lemma 4.5.2. Thus A′ × A is uniformly boolean
minimal.

Several interesting classes of groups have the property that all non-trivial normal sub-
groups are transitive or primitive. The following theorem gives numerous examples of when
Lemma 4.6.5 can be applied.

Theorem 4.6.6. Let A′ and A be dissimilar permutation DFAs and suppose |Q′|, |Q| ≥ 3.

1. Suppose G′ and G are transitive.

(a) If G′ and G are transitive simple groups, then A′ ×A is accessible.

(b) If G′ and G are primitive groups, then A′ ×A is accessible.

2. Suppose G′ and G are primitive.

(a) If G′ and G are primitive simple groups, then A′ × A is uniformly boolean
minimal.

(b) If G′ is SQ′ or AQ′, and G is SQ or AQ, and (|Q′|, |Q|) 6∈ {(3, 4), (4, 3), (4, 4)},
then A′ ×A is uniformly boolean minimal.
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(c) If G′ and G are 2-transitive groups which are not of affine type, then A′ ×A is
uniformly boolean minimal.

Before proving this, we will explain what we mean by “affine type”. The notion of “affine
type” comes from the O’Nan-Scott theorem [28, Theorem 4.1A], a structure theorem for
primitive groups. The O’Nan-Scott theorem divides the primitive groups into different
types based on their socle. The socle of a group G is the subgroup generated by all the
minimal normal subgroups of G, that is, the normal subgroups N of G for which there
does not exist a non-trivial normal subgroup N ′ of G with N ′ ( N .

A primitive group with an abelian socle is necessarily of affine type, which means it is
a permutation group of degree pd for p prime and d ≥ 1, and is isomorphic to a subgroup
of the affine group AGL(d, p). This is a group of permutations of the set Fd

p, where
Fp is the finite field with p elements; it consists of all maps of the form (γ1, . . . , γd) 7→
(αγ1 + β, . . . , αγd + β), where α, β, γ1, . . . , γd ∈ Fp. In Section 4.9, we will show that there
exist DFAs A′ and A whose transition groups are 2-transitive groups of affine type, such
that A′ × A is not uniformly boolean minimal. Hence in the statement of Theorem 4.6.6
(2c), excluding 2-transitive groups of affine type is necessary. We remark that A3, S3, A4

and S4 happen to be groups of affine type; we will see in the proof that this is not true for
symmetric and alternating groups of larger degree.

Proof. (1a): Recall that a group is simple if it has no non-trivial proper normal subgroups.
Hence if G is a transitive simple group, then the only non-trivial normal subgroup of G
is G itself. Similarly, the only non-trivial normal subgroup of G′ is G′ itself. Thus the
conditions of Lemma 4.6.5 hold.

(1b) Suppose G′ and G are primitive. It is an easy exercise in group theory to show that
all non-trivial normal subgroups of a primitive group are transitive (e.g., see [28, Theorem
1.6A]). Thus the conditions of Lemma 4.6.5 hold in this case.

(2a): Since G is a primitive simple group, then the only non-trivial normal subgroup
of G is G itself, and similarly for G′. Thus the conditions of Lemma 4.6.5 hold.

(2b): First suppose |Q′| 6= 4 and |Q| 6= 4. It is well-known that An is simple for
n 6= 4 (e.g., see [28, Corollary 3.3A]). Thus AQ′ and AQ are primitive simple groups. So if
G′ = AQ′ and G′ = AQ, this case follows from (2a).

Now, consider the symmetric groups. We claim that for n 6= 4, the only non-trivial
normal subgroups of Sn are An and Sn. This is also a fairly well-known fact, but in this
case we will give a proof.
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Let N be a non-trivial normal subgroup of Sn. If An ≤ N , we claim that either N = An

or N = Sn. Indeed, if N properly contains An, then it contains some permutation p that
cannot be written as a product of an even number of 2-cycles. But every permutation
can be written as a product of 2-cycles, so p can be written as a product of an odd
number of 2-cycles. Thus for each 2-cycle (i, j), we have (i, j)p ∈ An ≤ N . So N contains
(i, j)pp−1 = (i, j); since N contains all 2-cycles, we must have N = Sn.

If N ≤ An, consider ghg−1 for g ∈ An and h ∈ N . Since g, h and g−1 are all in An, each
can be written a product of an even number of 2-cycles, and thus ghg−1 can be written
this way as well. So N is also a non-trivial normal subgroup of An; but An is simple for
n 6= 4, so we must have N = An.

Thus a non-trivial normal subgroup is either Sn or An, both of which are primitive.
Thus if (G′, G) ∈ {(AQ′, SQ), (SQ′, AQ), (SQ′, SQ)}, Lemma 4.6.5 applies and gives the
result. Note we have also shown that for n ≥ 5, the alternating group An is the unique
minimal normal subgroup of Sn and An. Thus the socle of Sn and An is non-abelian, which
shows that Sn and An are not of affine type when n ≥ 5.

Now, suppose |Q′| = 4 or |Q| = 4 and (|Q′|, |Q|) 6∈ {(3, 4), (4, 3), (4, 4)}. Then |Q′| ≥ 5
or |Q| ≥ 5. Assume without loss of generality that |Q′| ≥ 5 and |Q| = 4; the other case is
symmetric. Consider the normal subgroup Cπ′ of G′. If Cπ′ is trivial, then as we argued
in the proof of Proposition 4.6.4, the map π : G× → G must be injective. Since G is either
A4 or S4, this means |G×| ≤ |S4| = 24. But the map π′ : G× → G′ is surjective, and G′ is
either AQ′ or SQ′ for |Q′| ≥ 5. This means |G×| ≥ |A5| = 60. So we have 60 ≤ 24, which
is a contradiction. Thus Cπ′ cannot be trivial. So Cπ′ is a non-trivial normal subgroup of
G′, and thus it is primitive, since G′ is SQ′ or AQ′ and |Q′| ≥ 5. Thus the arguments in
the proof of Lemma 4.6.5 apply and A′ ×A is uniformly boolean minimal.

(2c): The results from permutation group theory that we use for this case are somewhat
more advanced. We will need the fact that a 2-transitive group has a unique minimal
normal subgroup; this follows from two theorems in [28] (Theorem 4.1B and Theorem
4.3B), or alternatively is stated as a single result in [21] (Proposition 5.2). The other
fact we need is that if the socle of a 2-transitive group is non-abelian, then the socle is
necessarily primitive [28, Theorem 7.2E].

Now, suppose G is 2-transitive. The socle of G is the subgroup generated by all the
minimal normal subgroups; but G has a unique minimal normal subgroup N , so the socle
of G is just equal to N . If N is abelian, then G is of affine type. Thus we may assume the
socle N is non-abelian; then it follows that N is primitive. Since N is the unique minimal
normal subgroup of G, every non-trivial normal subgroup of G contains N , and thus is
primitive. Similarly, every non-trivial normal subgroup of G′ is primitive. It follows that
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Lemma 4.6.5 applies.

4.7 Similar DFAs

In this subsection, we briefly consider what happens when the DFAs A′ and A are similar.
We have not investigated this case very deeply. In some ways, it seems much more difficult
than the dissimilar case. Particularly, most of our results rely on the projections of various
kinds of row and column stabilizers being transitive or primitive. For similar DFAs, the
projections of the full row and column stabilizers Rπ and Cπ′ are both trivial. Hence
there is no guarantee that other types of stabilizers such as Cqπ

′ or Rp′,q′π have useful
properties, or even that they are non-trivial, and so we cannot necessarily use these groups
to our advantage.

On the other hand, similarity imposes the very strong condition that the groups G′, G
and G× are all isomorphic. It may be possible to exploit this to prove some interesting
things in the similar case.

It is not difficult to prove that if A′ and A are isomorphic as DFAs, then G× is neces-
sarily intransitive, so the case of isomorphic similar DFAs is uninteresting for our purposes.
We give two examples demonstrating what can happen with non-isomorphic similar DFAs.

Example 4.7.1. Recall that in Example 4.6.3, we constructed two similar DFAs that are
of different sizes (and hence are non-isomorphic) and have primitive transition groups.
DFA A′ has states {1, . . . , 5} and actions a′ = (3, 4) and b′ = (1, 2, 3)(4, 5). DFA A
has states {1, . . . , 10} and actions a = (1, 2)(6, 8)(7, 9) and b = (2, 6, 4, 5, 3, 7)(8, 10, 9).
We have verified computationally that A′ × A has an intransitive transition group, and
so is not accessible. Thus even if non-isomorphic similar DFAs have primitive transition
groups, their direct product might have an intransitive transition group (compare this with
Theorem 4.6.6 for dissimilar DFAs).

Note that in Example 4.6.3, we also showed that by simply swapping the roles of a and
b in A, the two DFAs A′ and A become dissimilar. Furthermore, A′ has the symmetric
group S5 as its transition group. Thus by Theorem 4.6.6, the two DFAs actually become
uniformly boolean minimal if we swap the roles of a and b. �

Example 4.7.2. There is a primitive subgroup of S6 that is isomorphic to S5. Using GAP,
we can obtain an explicit isomorphism between S5 and this subgroup, just as we did in
Example 4.6.3.
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gap> IsomorphismGroups(SymmetricGroup(5),PrimitiveGroup(6,2));

[ (3,4), (1,2,3)(4,5) ] -> [ (1,2)(3,4)(5,6), (1,2,3,5,4,6) ]

We then use this isomorphism to construct similar DFAs: DFA A′ has states {1, . . . , 5}
and actions a′ = (3, 4) and b′ = (1, 2, 3)(4, 5). DFA A has states {1, . . . , 6} and actions
a = (1, 2)(3, 4)(5, 6) and b = (1, 2, 3, 4, 5, 6). Unlike the DFAs of Example 4.7.1, here we
verified computationally that A′ × A actually has a transitive transition group. Hence a
direct product of non-isomorphic similar DFAs with primitive transition groups may or
may not be accessible.

Note that A′ × A is not uniformly boolean minimal. For example, we have verified
computationally that (A′ × A)(X) is not minimal for X = {1} × {1, 3, 5}. We have not
found an example of two similar DFAs that are uniformly boolean minimal, but we also
have not proved that no such example exists. �

4.8 Beyond Permutation DFAs

Our next goal is to show that the results we have obtained in this chapter apply to a larger
class of DFAs than just permutation DFAs. It is sufficient that the transition monoids of
the DFAs A′ and A merely contain permutation groups that satisfy the hypotheses of our
results.

A restriction of A = (Q,Σ, T, 1, F ) is a DFA R = (QR,ΣR, TR, iR, FR) such that:

• QR is a subset of Q and ΣR is a subset of Σ.

• TR is given by the restriction of the monoid action T : Q × Σ∗ → Q to the set
QR × (ΣR)∗, and we have qTR

w ∈ QR for all q ∈ QR and w ∈ (ΣR)∗.

• iR ∈ QR is an arbitrary state, and FR ⊆ QR is an arbitrary set (they do not need
to be related to 1 and F in any way).

The key idea of this subsection is to take DFAs which are not permutation DFAs, and
form restrictions that are permutation DFAs. We can then apply our previous results to
the restrictions. Since restrictions share the transition structure of the original DFAs, we
can usually conclude something non-trivial about the original DFAs.

The following proposition can help extend results about restrictions to results about
the original DFAs.
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Proposition 4.8.1. Let R be a restriction of A. Let p, q ∈ QR.

1. If q is reachable from p in R, then q is reachable from p in A.

2. Suppose F = FR∪X for some set X ⊆ Q \QR. If p and q are distinguishable under
FR in R, then they are distinguishable under F in A.

Proof. (1): If q is reachable from p in R, then there exists w ∈ (ΣR)∗ such that pTR
w = q.

But TR is a restriction of T , so we have pTw = q. Thus q is reachable from p in A.

(2): Choose a word w ∈ (ΣR)∗ that distinguishes p and q under FR in R. We claim
that w distinguishes p and q under F in A. We have pTw ∈ F ⇐⇒ pTR

w ∈ F , since
p ∈ QR, w ∈ (ΣR)∗, and TR is the restriction of T to QR × (ΣR)∗. But pTR

w ∈ QR, so
pTR

w ∈ F ⇐⇒ pTR
w ∈ F ∩QR = FR. Thus we have pTw ∈ F ⇐⇒ pTR

w ∈ FR. Similarly,
qTw ∈ F ⇐⇒ qTR

w ∈ FR. Since w distinguishes p and q under FR, it follows that

pTw ∈ F ⇐⇒ pTR
w ∈ FR ⇐⇒ qTR

w 6∈ FR ⇐⇒ qTw 6∈ F,

as required.

We give two examples of using DFA restrictions in conjunction with our previous results.
Recall that for a set X and i, j ∈ X , the notation (i → j) denotes the transformation of
X that maps i to j and fixes all other elements of X .

Example 4.8.2. Fix integers m,n ≥ 3. Let A′ have states {1, . . . , m} and actions a′ =
(1, . . . , m), b′ = (1, 2), and c′ = (m → 1). Let A have states {1, . . . , n} and actions
a = (1, 2), b = (1, . . . , n), and c = (n → 1). It was proved in [6] that if A′ has final state
set F ′ = {m} and A′ has final state set F = {n}, then L′ ◦L has maximal state complexity
mn for ◦ ∈ {∪,∩, \,⊕}. One can then show using De Morgan’s laws that (L′, L) has
maximal boolean complexity.

We can give an alternate proof that (L′, L) has maximal boolean complexity using
Proposition 4.8.1 in conjunction with Theorem 4.4.6 and Theorem 4.6.6. We also must
recall the following group-theoretic facts:

• {a′, b′} generates Sm and {a, b} generates Sn.

• Sm and Sn are primitive.
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Let the restriction R′ be obtained by restricting the alphabet of A′ to {a, b} and leaving
everything else the same. Similarly, let R be obtained by restricting the alphabet of A
to {a, b}. Then R′ and R are permutation DFAs, and their transition groups are Sm

and Sn respectively. Since Sm and Sn are primitive, it follows from Theorem 4.6.6 that
R′×R is accessible. Let LR′ be the language recognized by R′, and let LR be the language
recognized by R. Then since |F ′| = 1 and |F | = 1, by Theorem 4.4.6, the pair (LR′ , LR)
has maximal boolean complexity. Thus (R′ ×R)(F ′ ◦ F ) is minimal for all proper binary
boolean operations ◦. In particular:

• All states of R′ ×R are reachable.

• All states of R′ ×R are distinguishable under F ′ ◦ F .

But the states and final states of R′ are the same as the states and final states of A′, and
similarly for R and A. Thus by Proposition 4.8.1:

• All states of A′ ×A are reachable.

• All states of A′ ×A are distinguishable under F ′ ◦ F .

Thus (A′ ×A)(F ′ ◦F ) is minimal for all proper binary boolean operations ◦. Thus (L′, L)
has maximal boolean complexity, as required.

In fact, we can prove that if (m,n) 6∈ {(3, 4), (4, 3), (4, 4)}, then A′ × A is uniformly
boolean minimal. Since the transition groups of R′ and R are symmetric groups, by
Theorem 4.6.6, the DFA R′ × R is uniformly boolean minimal. Then using Proposition
4.8.1 as before, we can conclude that A′ ×A is uniformly boolean minimal. �

Example 4.8.3. Fix integers m,n ≥ 4. Let A′ have states {1, . . . , m}, final state set {m},
and actions a′ = (1, . . . , m − 1), b′ = (2, . . . , m − 1), and c′ = (m − 1 → 1). Let A have
states {1, . . . , n}, final state set {n}, and actions a = (2, . . . , n − 1), b = (1, . . . , n − 1),
and c = (n− 1 → 1). The languages L and L′ are right ideals, that is, languages R which
satisfy the equation R = RΣ∗. It was proved in [10] that:

• L′ ∩ L and L′ ⊕ L have state complexity mn.

• L′ \ L has state complexity mn − (m − 1), and the state complexity of a difference
of right ideals of state complexities m and n cannot exceed this value.

• L′ ∪ L has state complexity mn − (m + n − 2), and the state complexity of an
intersection of right ideals of state complexities m and n cannot exceed this value.
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Hence L′ ◦ L has maximal state complexity relative to the class of right ideals for ◦ ∈
{∪,∩, \,⊕}. It can then be shown using De Morgan’s laws that L′ ◦ L has maximal state
complexity (relative to right ideals) for all proper binary boolean operations.

We cannot obtain this result as a direct consequence of our results, but we can signif-
icantly reduce the work needed to prove it. Let R′ be the restriction of A′ with state set
{1, . . . , m− 1} and alphabet {a, b}. Similarly, let R be the restriction of A with state set
{1, . . . , n− 1} and alphabet {a, b}. Then R′ and R are permutation DFAs. Furthermore,
the transition group of R′ is Sm−1, since bm−3a = (1, 2) and (1, . . . , m− 1) and (1, 2) gen-
erate Sm−1. Similarly, the transition group of R is Sn−1. Thus by Theorem 4.6.6, the pair
(R′,R) is uniformly boolean minimal unless (m− 1, n− 1) ∈ {(3, 4), (4, 3), (4, 4)}.

In particular, if we take FR′

= {m− 1} and FR = {n− 1}, then (R′ ×R)(FR′

◦ FR)
is minimal. Thus every pair of states in the set S = {1, . . . , m − 1} × {1, . . . , n − 1} is
distinguishable under FR′

◦FR. We claim that all states in S are pairwise distinguishable
under F ′ ◦ F . To see this, suppose that w ∈ {a, b}∗ distinguishes (p′, p) and (q′, q) under
FR′

◦ FR. We will show that wc distinguishes (p′, p) and (q′, q) under F ′ ◦ F . To see this,
recall that F ′ ◦ F = {(q′, q) ∈ Q′ × Q : q′χF ′ ◦ qχF = 1}, where χS is the characteristic
function of the set S that outputs 1 for elements in S and 0 for elements outside of S. For
i′ ∈ Q′, we have i′w′c′ = m if and only if i′w′ = m− 1, and for i ∈ Q we have iwc = n if
and only if iw = n− 1. Thus:

(p′w′c′, pwc) ∈ F ′ ◦ F ⇐⇒ p′w′c′χ{m} ◦ pwcχ{n} = 1

⇐⇒ p′w′χ{m−1} ◦ pwχ{n−1} = 1

⇐⇒ (p′w′, pw) ∈ FR′

◦ FR

⇐⇒ (q′w′, qw) 6∈ FR′

◦ FR

⇐⇒ q′w′χ{m−1} ◦ qwχ{n−1} = 0

⇐⇒ q′w′c′χ{m} ◦ qwcχ{n} = 0

⇐⇒ (q′w′c′, qwc) 6∈ F ′ ◦ F.

Thus all states in S are pairwise distinguishable under F ′ ◦ F . It remains to consider the
states in Q′ × Q \ S, and show that these states are distinguishable from each other, as
well as from states in S. This is far from trivial to show, but we have significantly reduced
the size of the problem by using Theorem 4.6.6.

The authors of [10] used a similar proof technique to the above, except after restricting
the DFAs, they applied the result of Bell, Brzozowski, Moreira and Reis [2, Theorem 1] that
served as an inspiration for the work in this chapter. Theorem 4.6.6 essentially generalizes
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the result of Bell et al. (it is not quite a true generalization, since Bell et al. handle some
additional small cases that we ignore). �

4.9 An Affine Group Construction

We now construct an infinite family of pairs of dissimilar permutation DFAs which have
2-transitive transition groups of affine type, and are not uniformly boolean minimal. The
details of the construction require some knowledge of finite fields; the reader may wish to
review the material in Section 2.3.4 before proceeding.

We first describe the DFA construction in full generality, and then use the construction
to produce an explicit pair of 8-state DFAs.

Example 4.9.1. For k ≥ 1, let F2k denote the finite field of order 2k. For α, β, ξ ∈ F2k

with α 6= 0, define tα,β : F2k → F2k to be the map ξ 7→ αξ + β. The set of all such maps
forms a group of permutations of F2k , which is called the 1-dimensional affine group on
F2k and is denoted AGL(1, 2k). Multiplication (that is, composition of maps) in the affine
group is given by the rule

tα,βtγ,ξ = tαγ,βγ+ξ.

As one would expect, the affine group is indeed of “affine type”; it is proved in [28, Chapter
4] that the affine group has an abelian socle. It is also 2-transitive; a routine calculation
shows that for α 6= β and γ 6= ξ, if we set x = (ξ − γ)(β − α)−1, y = γ − xα, and t = tx,y,
then (αt, βt) = (γ, ξ).

Since the multiplicative group of a finite field is cyclic, let g be a generator for the
multiplicative group of F2k . We claim that the elements tg,0 and t1,1 generate AGL(1, 2k)
(where 0 and 1 are respectively the additive and multiplicative identities of F2k). Indeed,
we can write every element of the form tα,0 as (tg,0)

n = tgn,0 for some n. Then tα−1,0t1,1tα,0 =
tα−1,1tα,0 = t1,α. Then t1,βα−1tα,0 = tα,β.

An element of AGL(1, 2k) of the form t1,β for some β ∈ F2k is called a translation. The
translations form a subgroup of AGL(1, 2k), which we call T . We claim that the subgroup
of translations T is imprimitive and contains a block B of size 2k−1.

For k = 1, just take B = {0}. For k > 1, recall that there is a basis for F2k over F2

with k elements. Let {b1, . . . , bk} be such a basis. Define B = {a1b1 + · · · + ak−1bk−1 :
a1, . . . , ak−1 ∈ F2}. We claim that B has size 2k−1. It suffices to show that there is a one-
to-one correspondence between tuples (a1, . . . , ak−1) ∈ Fk−1

2 and elements of B. Suppose
for a contradiction that this is not the case, and choose two distinct tuples (a1, . . . , ak−1)
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and (c1, . . . , ck−1) such that a1b1 + · · · + ak−1bk−1 = c1b1 + · · · + ck−1bk−1. Then (a1 −
c1)b1 + · · · + (ak−1 − ck−1)bk−1 + 0bk = 0, and ai − ci 6= 0 for at least one i, which implies
{b1, . . . , bk} is not linearly independent. Thus B has size 2k−1.

Now, we prove that B is a block for T . First observe that B is closed under addition
and subtraction. Then consider Bt1,β = {α + β : α ∈ B} for β ∈ F2k .

• If β ∈ B, then α + β ∈ B for all α ∈ B, since B is closed under addition; thus
Bt1,β = B.

• If β 6∈ B, then for all α ∈ B we have α + β 6∈ B. Indeed, if α + β were in B then
(α+ β) − α = β would be in B, since B is closed under subtraction. Thus if β 6∈ B,
then Bt1,β ∩B = ∅.

And so, we see that B is indeed a block for T .

Consider the subgroup A of AGL(1, 2k) × AGL(1, 2k) generated by the elements a =
(tg,0, tg,0), b = (t1,1, t1,0) and c = (t1,0, t1,1). We claim that every element (tα,β, tγ,ξ) of A has
the property that α = γ. For simplicity, we will call elements with this property balanced.

Certainly the elements a, b and c are balanced, and so is the identity element (t1,0, t1,0).
We will show that multiplying a balanced element on the right by a, b or c results in a
balanced element. Indeed, first observe that tα,βtg,0 = tαg,βg and tα,βt1,1 = tα,β+1. Thus if
we take an arbitrary balanced element (tα,β, tα,γ), then we have:

(tα,β, tα,γ)a = (tα,βtg,0, tα,γtg,0) = (tαg,βg, tαg,γg).

(tα,β, tα,γ)b = (tα,βt1,1, tα,γt1,0) = (tα,β+1, tα,γ).

(tα,β, tα,γ)c = (tα,βt1,0, tα,γt1,1) = (tα,β , tα,γ+1).

Since a, b and c and the identity are balanced, and multiplying a balanced element by a,
b or c results in a balanced element, it follows the group 〈a, b, c〉 = A consists solely of
balanced elements.

Next, let B = F2k \B and consider the set X = (B×B)∪ (B×B) ⊆ F2k ×F2k . Notice
that (0, 0), (1, 1) ∈ F2k ×F2k both lie in X . We claim that elements of A cannot distinguish
(0, 0) and (1, 1) under X , that is, for all g ∈ A we have (0, 0)g ∈ X ⇐⇒ (1, 1)g ∈ X .

• To see this, consider an arbitrary element g = (tα,β , tα,γ) of A.

• We have 0tα,β = β and 1tα,β = α + β. It follows that (0, 0)g = (β, γ) and (1, 1)g =
(α + β, α+ γ) = (βt1,α, γt1,α).
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• Since B is a block for the subgroup of translations T , we either have Bt1,α = B or
Bt1,α ∩B = ∅.

• But B has size 2k−1, which is exactly half the size of F2k , so if Bt1,α ∩ B = ∅ then
Bt1,α = B.

It follows that if (β, γ) is in B × B or B × B (that is, (β, γ) is in X) then (βt1,α, γt1,α) is
also in B ×B or B ×B (and thus in X).

Likewise, if (β, γ) is not in X , then it is either in B × B or B × B, and it follows
(βt1,α, γt1,α) is not in X . Thus (0, 0)g ∈ X ⇐⇒ (1, 1)g ∈ X for all g ∈ A.

Finally, for each k ≥ 1, we construct a pair of DFAs over the alphabet {a, b, c} with
2k states each, which both have AGL(1, 2k) as their transition group, but do not have a
uniformly boolean minimal direct product.

We define a DFA A′ as follows:

• The state set is F2k , the initial state is 0, and the final state set is B.

• The actions are a′ = tg,0, b
′ = t1,1 and c′ = t1,0.

We define A in the same way as A′, except the roles of b and c are swapped:

• The actions are a = tg,0, b = t1,0 and c = t1,1.

Since tg,0 and t1,1 generate AGL(1, 2k), it is clear that both DFAs have AGL(1, 2k) as their
transition group.

Now consider A′×A. Let ◦ be the “complement of symmetric difference” operation, so
that B ◦B = (B×B)∪ (B×B). Observe that the transition group of A′×A is simply the
group A. Thus the states (0, 0) and (1, 1) of A′ ×A are not distinguishable under B ◦ B.
Hence (A′×A)(B ◦B) is not minimal, and it follows that A′×A is not uniformly boolean
minimal. �

Example 4.9.2. We now carry out the construction of Example 4.9.1 for k = 3, 2k = 8.
As before, construct F8 as F3[x]/〈x3 + x + 1〉. Recall from Example 2.3.12 that x is a
generator of the multiplicative group of F8, and in particular we have:

x3 = x+ 1, x4 = x2 + x, x5 = x2 + x + 1,

x6 = x2 + 1, x7 = 1.
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Using these calculations, we can explicitly write out the permutations tx,0 and t1,1 in cycle
notation:

tx,0 = (x, x2, x3, x4, x5, x6, x7) = (x, x2, x+ 1, x2 + x, x2 + x+ 1, x2 + 1, 1).

t1,1 = (0, 1)(x, x + 1)(x2, x2 + 1)(x2 + x, x2 + x+ 1) = (0, x7)(x, x3)(x2, x6)(x4, x5).

Finally, we need a block B for the subgroup of translations of AGL(1, 8). The construction
tells us to pick two elements b1 and b2 from a basis of F8 over F2, and let B be the set
{a1b1 + a2b2 : a1, a2 ∈ F2}. If we take 1 and x, we get B = {0, 1, x, x+ 1}.

We now have all the information we need to construct A′ and A. A state diagram for A′

is shown in Figure 4.9.1, with the self-loops on c omitted. One may verify computationally
that A′ ×A is not minimal when it is assigned the final state set (B × B) ∪ (B × B). �

0

x

x2

x3

x4

x5

x6

x7

a

a

a

a, b

b

a

a

b

b

a

b b b

b

a

Figure 4.9.1: DFA A′ of Example 4.9.2. Each state also has a self-loop on letter c; these
transitions are omitted from the diagram. The final state set is B = {0, x7 = 1, x, x3 =
x+ 1}, the block of the subgroup of translations of AGL(1, 8) that was found in Example
4.9.2.

For k = 1, we get DFAs A′, A and A′×A that are isomorphic to the DFAs of Example
4.3.4. For k = 2, it happens that AGL(1, 4) is isomorphic to the alternating group A4.
Hence the k = 2 case gives an example of dissimilar DFAs that are not uniformly boolean
minimal, and have alternating groups as their transition groups. As Theorem 4.6.6 shows,
this example does not generalize to alternating groups of higher degree. The DFA A of
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Example 4.2.6 is isomorphic to the DFA A′ produced by the construction of Example 4.9.1
with k = 2.

The construction of Example 4.9.1 also shows that condition (1) of Proposition 4.5.4 is
not sufficient for uniform boolean minimality.

Example 4.9.3. The DFAs A′ and A constructed in Example 4.9.1 are not uniformly
boolean minimal. However, we claim the subgroups Cαπ

′ ≤ G′ and Rαπ ≤ G are primitive
for all α ∈ F2k , and thus A′ and A meet condition (1) of Proposition 4.5.4. In fact, the
groups Cαπ

′ and Rαπ are equal to AGL(1, 2k). First, we show that C0π
′ and R0π are equal

to AGL(1, 2k). Consider (a′, a) = (tg,0, tg,0).

• Since tg,0 fixes 0, it follows that (a′, a) ∈ C0 and (a′, a) ∈ R0.
Thus a′ = tg,0 ∈ C0π

′ and a = tg,0 ∈ R0π.

• Since (b′, b) = (t1,1, t1,0) and b = t1,0 fixes 0, we see that (b′, b) ∈ C0.
Thus b′ = t1,1 ∈ C0π

′.

• Similarly, since (c′, c) = (t1,0, t1,1), we see that (c′, c) ∈ R0.
Thus c = t1,1 ∈ R0π.

Since tg,0 and t1,1 generate AGL(1, 2k), and these elements are in C0π
′ and R0π, it follows

C0π
′ and R0π are equal to AGL(1, 2k) and thus are primitive.

To show that Rαπ
′ and Cαπ are primitive for all α 6= 0, we prove a general fact about

single row and column stabilizers: if Rp′π ≤ G is primitive for some p′ ∈ Q′ and G′ is
transitive, then Rq′π is primitive for all q′ ∈ Q′ (and similarly for single column stabilizers).

• To see this, choose w′ ∈ G′ such that p′w′ = q′.

• Let B be a block for Rq′π. We claim Bw−1 is a block for Rp′π.

• To see this, choose x ∈ Rp′π and consider Bw−1x ∩Bw−1.

• If Bw−1x ∩Bw−1 6= ∅, then Bw−1xw ∩ B 6= ∅.

• Now, for all x ∈ Rp′π, we have p′x′ = p′ by definition.

• It follows q′(w′)−1x′w′ = p′x′w′ = p′w′ = q′. Since (w′)−1x′w′ fixes q′, we have
w−1xw ∈ Rq′π.

• Since B is a block for Rq′π and Bw−1xw ∩B 6= ∅, we have Bw−1xw = B.
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• Hence Bw−1x = Bw−1, which proves Bw−1 is a block for Rp′π.

It follows that if B is a block for Rq′π, it must be a trivial block; otherwise Bw−1 is a
non-trivial block for the primitive group Rp′π, which is a contradiction.

Thus Rαπ is primitive for all α ∈ F2k , and symmetrically we see that Cαπ
′ is primitive

for all α ∈ F2k . This shows that A′ and A satisfy condition (1) of Proposition 4.5.4, yet
A′ ×A is not uniformly boolean minimal. �

We can also use DFAs derived from affine groups to show that the conditions of Lemma
4.5.2 are not necessary for uniform boolean minimality.

Example 4.9.4. As in Example 4.9.2, we define two DFAs A′ and A that have transition
group AGL(1, 8). However, this time the direct product of the DFAs will be uniformly
boolean minimal. We define A′ as follows (leaving the final state set unspecified).

• The state set is F8, constructed as in Example 4.9.2, and the initial state is 0.

• The actions are a′ = tg,0 and b′ = t1,1.

Define A to have the same states as A and actions a = t−1
g,0, b = t1,1.

Since A′ and A only have 8 states each, we were able to verify computationally that
A′ × A is uniformly boolean minimal by a brute force approach. We computed A′ × A,
and for each pair of sets ∅ ( S ′ ( Q′ and ∅ ( S ( Q, we checked the minimality of
(A′ ×A)(X) for all (S ′, S)-compatible sets X .

We have also verified computationally that C0,1π
′ and R0,1π are imprimitive, and hence

A′ and A do not meet the conditions of Lemma 4.5.2. We verified this by using the cycle
notation representation we found for tg,0 and t1,1 to explicitly construct the transition group
G× of A′ × A in GAP. Then we computed the setwise stabilizer C0,1 of {0, 1} × F8 (the
columns indexed by 0 and 1), and the setwise stabilizer R0,1 of F8×{0, 1} (the rows indexed
by 0 and 1). Next, we computed C0,1π

′ ≤ G′ and R0,1π ≤ G. These groups turned out to
both be equal to T , the subgroup of translations in AGL(1, 8). We saw earlier than T is
imprimitive. �

We suspect that if this construction is generalized to AGL(1, 2k), the resulting DFAs
will have the same property of being uniformly boolean minimal but having C0,1π

′ and
R0,1π imprimitive. However, we were unable to prove this.
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4.10 Summary

We summarize the major results proved in this chapter.

Theorem 4.4.6 gives necessary and sufficient conditions for a pair of regular languages
(L′, L) to have maximal boolean complexity, with the requirement that these languages are
recognized by permutation DFAs A′ and A with exactly one final state. In this special case,
it turns out that (L′, L) is uniformly boolean minimal if and only if A′ × A is accessible.
This gives a partial characterization of witnesses for the state complexity of proper binary
boolean operations.

We have several results which may help to determine whether A′ × A is accessible.
Lemma 4.4.4 gives group-theoretic conditions for accessibility, while Proposition 4.4.5
reduces the problem to just showing accessibility of states in one row or column of A′×A.

Lemma 4.6.5 gives a group-theoretic condition for accessibility of A′×A, as well as a
similar condition for uniform boolean minimality. The power of this lemma is demonstrated
by Theorem 4.6.6, which gives several classes of groups where the condition of Lemma
4.6.5 holds. If one can show that the transition group of A′ or of A lies in one of these
classes, one immediately gets information about A′ × A. Theorem 4.6.6 can also be used
to construct examples of DFAs whose direct product is accessible or uniformly boolean
minimal: one may pick a pair of groups from the classes mentioned in the corollary, and
use them as the transition groups of a pair of DFAs.

Lemma 4.5.2 gives some sufficient conditions for uniform boolean minimality of per-
mutation DFAs. The conditions are stronger than those of Lemma 4.6.5, but more difficult
to verify. Unfortunately, Example 4.9.4 shows that these conditions are not necessary.
Necessary and sufficient conditions for uniform boolean minimality are still unknown.

Proposition 4.5.4 gives a necessary and sufficient condition (1) for a property that is
slightly weaker than uniform boolean minimality to hold (in permutation DFAs). Specifi-
cally, condition (1) of Proposition 4.5.4 does not guarantee minimality for final state sets
corresponding to the symmetric difference operation or its complement.

Unfortunately, Example 4.9.3 shows that condition (1) of Proposition 4.5.4 is not suf-
ficient for uniform boolean minimality. This means a precise characterization of uniform
boolean minimality lies strictly between the conditions given by Lemma 4.5.2 and Propo-
sition 4.5.4.

All the results mentioned above are stated for permutation DFAs, that is, DFAs whose
transition monoid is a permutation group. Section 4.8 shows how to use restrictions of
DFAs to extend our results to certain non-permutation DFAs.
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Chapter 5

Techniques for Concatenation and
Kleene Star

5.1 Introduction

In the section, we examine the operations of concatenation and star, focusing on reachabil-
ity of states in concatenation and star automata. We develop a new technique for proving
that the maximal possible number of states is reachable in these automata, allowing us to
circumvent the induction-based methods we saw in Section 2.4.5.

We first discovered our technique in the context of concatenation. To test it, we applied
it to a variety of concatenation witnesses taken from the literature. The state complexity
of concatenation has been studied in the class of all regular languages, as well as many
subclasses. Table 5.1.1 lists some examples of subclasses that have been studied, and the
state complexity of concatenation in each subclass. See the cited papers for definitions of
each subclass and the derivations and proofs of each complexity. The complexities listed are
restricted complexities, that is, they are computed under the assumption that both inputs
to the concatenation operation share the same alphabet. Unrestricted state complexity of
concatenation (where the inputs may be languages over different alphabets) is not included
in the table, but our technique works for unrestricted state complexity, and we will see an
example of this later in the chapter.

If the state complexity of concatenation grows exponentially with n (indicated in Table
5.1.1 by bold type), it is typical to use an induction argument to prove the desired number
of states is reachable. It is cases like this in which our technique is most likely to be useful.
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Subclass Complexity Subclass Complexity
Regular [6, 18, 62, 79] (m− 1)2n + 2

n−1 Prefix-closed [14, 18] (m+ 1)2n−2

Unary [67, 68, 79] ∼mn (asymptotically) Prefix-free [18, 42, 49] m+ n− 2
Finite unary [22, 78] m+ n− 2 Suffix-closed [14, 16] mn− n+ 1
Finite binary [22] (m− n+ 3)2n−2 − 1 Suffix-free [16, 41] (m− 1)2n−2 + 1

Star-free [15] (m− 1)2n + 2
n−1 Right ideal [10, 11, 18] m+ 2

n−2

Non-returning [9, 34] (m− 1)2n−1 + 1 Left ideal [10, 11, 16] m+ n− 1

Table 5.1.1: Subclasses of regular languages and the state complexity of the concatenation
operation within each subclass. Bold type indicates that the complexity grows exponen-
tially in terms of n.

We selected 16 concatenation witnesses, all from subclasses in which the state complexity
of concatenation is exponential in n, and tried to apply our technique to these witnesses. In
many cases we were able to produce shorter and simpler proofs than the original authors,
and we only found two cases in which our technique did not work or was not useful. This
suggests that our technique is widely applicable and should be considered as an viable
alternative to the traditional induction argument when attempting reachability proofs in
concatenation automata.

After conducting this research on concatenation, we discovered that a similar technique
can be applied to star. However, we have not evaluated the effectiveness of the star version
of the technique in the same way. Our discussion of star will be limited to a description of
the technique and one brief example.

5.2 Reachability and Construction Sets

Let A = (QA,ΣA, TA, 1′, FA) and B = (QB,ΣB, T B, 1, F B) be DFAs, where we have QA =
{1′, 2′, . . . , m′} and QB = {1, 2, . . . , n} for positive integers m and n. Let C = (Q,Σ, T, I, F )
denote the concatenation DFA of A and B as defined in Section 2.4.4.

Remark. Let p′, q′ ∈ QA, let X, Y, Z ⊆ QB, and let w ∈ Σ∗. Then in C, if (p′, X)w = (q′, Y ),
then (p′, X ∪ Z)w = (q′, Y ∪ Zw). Indeed, recall that the pair (p′, X) stands for the set
{p′} ∪ X . Thus ({p′} ∪ X)w = {p′w} ∪ Xw = {q′} ∪ Y . It follows that p′w = q′ and
Xw = Y . Hence ({p′} ∪X ∪Z)w = {p′w}∪Xw ∪Zw = {q′} ∪ Y ∪Zw, which in our pair
notation is (q′, Y ∪ Zw). We will readily use this basic fact in proofs.

Before stating our main result formally, we give some motivating exposition. Fix a
state s′ ∈ QA and a subset B of QB. The state s′ is called the focus state or simply focus ;
it is often taken to be the initial state 1′ but in general can be any state. The subset B
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is called the base. Fix a set T with B ⊆ T ⊆ QB, called the target. Our goal is to give
sufficient conditions under which starting from (s′, B), we can reach (s′, S) for all sets S
with B ⊆ S ⊆ T . That is, we can reach any state of the concatenation DFA C in which
the first component is the focus and the second component lies between the base and the
target.

The idea is to first assume we can reach (s′, B), the state consisting of the focus and the
base. Now, for q ∈ Q, define a q-word to be a word w such that (s′, B)w = (s′, B ∪ q). We
can think of this as a word that “adds” the state q to the base B. Our next assumption is
that we have a q-word for each state q in the target T . To reach a set S with B ⊆ S ⊆ T ,
we will repeatedly use q-words to add each missing element of S to the base B.

There is a problem with this idea, which we illustrate with an example. Suppose wp is
a p-word and wq is a q-word, and we want to reach (s′, B ∪ {p, q}). Starting from (s′, B)
we may apply wp to reach (s′, B ∪ p). But now if we apply wq, we reach (s′, B ∪ {pwq, q}).
There is no guarantee that we have pwq = p, and in many cases we will not. What we
should really do is find a state r such that rwq = p, use an r-word to reach (s′, B ∪ r), and
then apply wq to reach (s′, B ∪ {p, q}). But this idea only works if p has a preimage under
wq, which may not be the case.

We resolve this by making a technical assumption, which ensures that preimages will
always exist when we attempt constructions like the above. First, define a construction set
for the target T to be a set of words consisting of exactly one q-word for each q ∈ T . If W
is a construction set for T , we write W [q] for the unique q-word in W .

We say a construction set is complete if there is a total order ≺ on the target T such
that for all p, q ∈ T with p ≺ q, the state q has at least one preimage under the unique
p-word W [p], and at least one of these preimages lies in T . More formally, whenever p ≺ q,
the set qW [p]−1 = {s ∈ QB : sW [p] = q} intersects T non-trivially. Our final assumption
is that we have a complete construction set for T .

Note that the definition of a q-word depends not only on q, but also on s′ and B. Since
a construction set for T is a set of q-words, the definition of construction set also depends
on s′ and B. For simplicity, we omit this dependence on s′ and B from the notation for
q-words and construction sets.

We summarize the definitions that have just been introduced:

Definition 5.2.1. Fix a state s′ ∈ QA, called the focus, and a set B ⊆ QB called the base.

• For q ∈ QB, a q-word is a word w such that (s′, B)w = (s′, B ∪ q).
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• Given a target set T with B ⊆ T ⊆ QB, a construction set for T is a set of words
that contains exactly one q-word for each q ∈ T .

• The unique q-word in a construction set W is denoted by W [q].

• A construction set for T is complete if there exists a total order ≺ on T such that
for all p, q ∈ T with p ≺ q, we have

qW [p]−1 ∩ T = {s ∈ QB : sW [p] = q} ∩ T 6= ∅.

Now, we state our main theorem, which gives the formal version of the construction
described above.

Theorem 5.2.2. Fix a state s′ ∈ QA and sets B ⊆ T ⊆ QB. If there is a complete
construction set for T , then all states of the form (s′, S) with B ⊆ S ⊆ T are reachable
from (s′, B) in C. In particular, if (s′, B) itself is reachable, then all states (s′, S) with
B ⊆ S ⊆ T are reachable.

Proof. Note that if B ⊆ S ⊆ T , we can write S = R ∪ B with R ∩ B = ∅ and R ⊆ T .
Thus it suffices to show that all states of the form (s′, R ∪ B) with R ∩B = ∅ and R ⊆ T
are reachable from (s′, B). We proceed by induction on |R|. When |R| = 0, the only state
of this form is (s′, B) itself.

Now suppose every state (s′, R ∪ B) with R ∩ B = ∅, R ⊆ T and 0 ≤ |R| < k is
reachable from (s′, B). We want to show this also holds for |R| = k. Let W be a complete
construction set for T and let ≺ be the corresponding total order on T . Let p be the
minimal element of R under ≺. Let w be W [p], the unique p-word in W . For all q ∈ R \ p,
we have p ≺ q and thus qw−1 contains an element of T (since W is complete).

Construct sets X and Y as follows: starting with X = ∅, for each q ∈ R \ p, choose an
element of qw−1 ∩ T and add it to X . Then set Y = X \ B. Observe that X is a subset
of T of size |R \ p| = k − 1. Hence Y is a subset of T of size at most k − 1 such that
Y ∩B = ∅. It follows by the induction hypothesis that (s′, Y ∪B) is reachable from (s′, B).
But Y ∪ B = X ∪ B, so (s′, X ∪ B) is reachable from (s′, B). By the definition of X , we
have Xw = R \ p. Since w is a p-word, we have (s′, B)w = (s′, B ∪ p), and thus

(s′, X ∪ B)w = (s′, Xw ∪B ∪ p) = (s′, (R \ p) ∪ B ∪ p) = (s′, R ∪B).

Hence (s′, R ∪ B) is reachable from (s′, B), as required.
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The definition of completeness is somewhat complicated, which makes it difficult to use
Theorem 5.2.2. Thus, we next prove some results giving useful sufficient conditions for a
construction set to be complete. Before stating our first such result, we introduce some
notation.

Definition 5.2.3. Define Σ0 = ΣA ∩ ΣB. We call Σ0 the shared alphabet of A and B.

The following remark shows that when ΣA 6= ΣB, it is important to work exclusively
with the shared alphabet when looking for complete construction sets. Of course, if ΣA =
ΣB then the shared alphabet is just the common alphabet of both automata, and there is
nothing to worry about.

Remark. A construction set for a non-empty target cannot be complete unless it is a subset
of Σ∗

0. To see this, suppose W is a construction set and let w ∈ W . If w contains a letter
from ΣA \ ΣB, then w is not a word over ΣB. Recall that if w is not a word over ΣB, then
T B
w is defined to be the empty relation. Thus the converse relation (T B

w )−1 is also empty,
which means qw−1 is empty for all q. It follows W cannot be complete. On the other
hand, suppose w contains a letter from ΣB \ ΣA. Then (s′, B)w = (∅, Bw). Hence w is
not a q-word for any q, and so w cannot be an element of a construction set, which is a
contradiction. It follows that all words in a complete construction set are words over the
shared alphabet Σ0.

Lemma 5.2.4. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let x1, . . . , xj be words over Σ0 that act
as permutations on T , and let y be an arbitrary word over Σ0. Choose x0 ∈ {ε, x1, . . . , xj}.
Define

W = {x1, x2, . . . , xj} ∪ {x0y, x0y
2, . . . , x0y

k}.

If W is a construction set for T , then it is complete.

Proof. For 1 ≤ i ≤ j, let wi = xi. For 1 ≤ i ≤ k, let wj+i = x0y
i. Let ℓ = j + k. Then we

have W = {w1, . . . , wℓ}. Let qi be the state in T such that (s′, B)wi = (s′, B ∪ qi). Define
an order ≺ on T so that q1 ≺ q2 ≺ · · · ≺ qℓ. We claim this order makes W complete.
Notice that wr = W [qr], the unique qr-word in W . Thus we must show that whenever
qr ≺ qs, we have qsw

−1
r ∩ T 6= ∅.

Suppose r < s and r ≤ j. Then wr = xr acts as a permutation on T . Thus qsw
−1
r ∩ T

is non-empty, since qs ∈ T .

Suppose r < s and r > j. Since s − r > 0, we can write ws = x0y
s−j = x0y

s−ryr−j =
wj+s−ry

r−j. Thus (s′, B)ws = (s′, B∪qj+s−r)y
r−j = (s′, B∪qs). There are two possibilities:

qj+s−ry
r−j = qs, or qyr−j = qs for some q ∈ B.
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In either case, qs(y
r−j)−1 ∩ T is non-empty. That is, there exists q ∈ T such that

qyr−j = qs. Since x0 acts as a permutation on T , there exists p ∈ T such that px0 = q.
Thus px0y

r−j = pwr = qs. It follows that qsw
−1
r ∩ T is non-empty, as required.

Usually, we will use one of the following corollaries instead of Lemma 5.2.4 itself.

Corollary 5.2.5. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let x and y be words over Σ0 such
that x acts as a permutation on T . Suppose W is one of the following sets:

1. {y, y2, . . . , yk}.

2. {ε, y, y2, . . . , yk}.

3. {x, xy, xy2, . . . , xyk}.

4. {ε, x, xy, xy2, . . . , xyk}.

If W is a construction set for T , then it is complete.

Proof. All statements follow easily from Lemma 5.2.4:

1. Set j = 0.

2. Set j = 1 and x0 = x1 = ε.

3. Set j = 1 and x0 = x1 = x.

4. Set j = 2, x1 = ε and x0 = x2 = x.

Corollary 5.2.6. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let W ⊆ Σ∗
0 be a construction set

for T .

1. If every word in W acts as a permutation on T , then W is complete.

2. If there is a word w ∈ W such that every word in W \ w acts as a permutation on
T , then W is complete.

Proof. Both statements follow easily from Lemma 5.2.4:

1. Set k = 0 in Lemma 5.2.4.
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2. Set k = 1, x0 = ε and y = w in Lemma 5.2.4.

In the special case where W contains ε, Corollary 5.2.6 admits the following general-
ization, which we found occasionally useful.

Lemma 5.2.7. Fix s′ ∈ QA and sets B ⊆ T ⊆ QB. Let W = {ε, w1, . . . , wk} be a
construction set for T , where w1, . . . , wk are non-empty words over Σ0. Suppose that for
every word w ∈ W , there exists a set S with T \ B ⊆ S ⊆ T such that w acts as a
permutation on S. Then W is complete.

Proof. Write B = {q1, . . . , qj}. Note that ε is a qi-word for 1 ≤ i ≤ j. Thus by the
definition of a construction set, ε is the unique qi-word in W for each qi ∈ B, that is,
W [qi] = ε for 1 ≤ i ≤ j. In particular, each non-empty word in W is a q-word for some
q ∈ T \ B. For 1 ≤ i ≤ k, let qj+i be the state such that (s′, B)wi = (s′, B ∪ qj+i). Then
T = {q1, . . . , qj+k}. Note that W [qi] = ε if 1 ≤ i ≤ j, and W [qi] = wi−j if j+1 ≤ i ≤ j+k.

Define an order ≺ on T by q1 ≺ q2 ≺ · · · ≺ qj+k. We claim this order makes W
complete. Choose qr, qs ∈ T with qr ≺ qs; we want to show that qsW [qr]

−1 ∩ T 6= ∅.
Suppose qr ∈ B. Then W [qr] = ε, and we have qsε

−1 ∩ T non-empty as required. Now if
qr 6∈ B, then since qr ≺ qs we also have qs 6∈ B. In this case, W [qr] = wr−j, which acts
as a permutation on some superset S of T \ B. Since qs ∈ T \ B, it follows that qs has
a preimage under wr−j, and furthermore this preimage lies in T , since S is a subset of T .
Thus qsw

−1
r−j ∩ T 6= ∅ as required. This proves that W is complete.

Note that all words referred to in the above lemmas and corollaries are words over
Σ0, the shared alphabet of A and B. When working with automata that have different
alphabets, it is important to only use words over the shared alphabet when trying to find
a complete construction set.

The following “master theorem” summarizes all the results of this section.

Theorem 5.2.8. Let A = (QA,ΣA, TA, 1′, FA) and B = (QB,ΣB, T B, 1, F B) be DFAs. Let
C = (Q,Σ, T, I, F ) denote the concatenation DFA of A and B, as defined in Section 2.4.4.
Let Σ0 = ΣA ∩ ΣB.

Fix a state s′ ∈ QA and sets B ⊆ T ⊆ QB. Suppose that for each q ∈ T , there exists a

word wq ∈ Σ∗
0 such that (s′, B)

wq

−→ (s′, B ∪ q) in C. Let W = {wq : q ∈ T}. Suppose that
one of the following conditions holds:

1. There exist words x, y ∈ Σ∗
0, where x acts as a permutation on T , such that W can

be written in one of the following forms:
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• W = {y, y2, . . . , yk}.

• W = {ε, y, y2, . . . , yk}.

• W = {x, xy, xy2, . . . , xyk}.

• W = {ε, x, xy, xy2, . . . , xyk}.

2. Every word in W acts as a permutation on T .

3. There exists w ∈ W such that every word in W \ w acts as a permutation on T .

4. W contains ε, and for every non-empty word w ∈ W , there exists a set S such that
T \B ⊆ S ⊆ T and w acts as a permutation on S.

5. There exists a total order ≺ on T such that for all p, q ∈ T with p ≺ q, the set

qw−1
p = {s ∈ QB : s

wp

−→ q} contains an element of T .

If one of the above conditions holds, then every state of the form (s′, X) with B ⊆ X ⊆ T
is reachable from (s′, B) in C.

5.3 Concatenation Witness Examples

We now demonstrate our technique by applying it to various concatenation witnesses from
the literature.

Theorem 5.3.1 (Regular Language Witness. Brzozowski and Sinnamon, 2017 [18]). Let
t : QA → QA be a transformation such that j′t = 1′. Define A and B as follows:

a b Final States
A : (1′, . . . , m′) t {m′}
B : (1, . . . , n) (2 → 1) {n}

If gcd(j − 1, n) = 1, then C has (m− 1)2n + 2n−1 reachable states. In particular, transfor-
mations t with 2′t = 1′ work for all m and n.

The authors of [18] proved this result with t = (1′, 2′), but we prove a slightly more
general statement.
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Proof. The initial state of C is (1′, ∅). Set x = am and y = aj−1b. We have

(1′, ∅)
x
−→ (1′, 2)

yk

−→ (1′, 2 + k(j − 1)).

(Addition in the second component is performed modulo n.) Since j−1 and n are coprime,
it follows from elementary number theory that W = {x, xy, . . . , xyn−1} is a construction
set for QB (with s′ = 1′ and B = ∅). By Corollary 5.2.5, it is complete. Hence (1′, S) is
reachable for all S ⊆ QB. To reach (q′, S) for q′ non-final, first reach (1′, Sa−(q−1)) and
then apply aq−1. To reach (m′, S ∪ 1) for S ⊆ QB \ 1, first reach ((m− 1)′, Sa−1) and then
apply a.

Note that the above theorem only gives conditions for (m − 1)2n + 2n−1 states to be
reachable; it is not necessarily true that all the reachable states are pairwise distinguishable.
For example, if t is the constant transformation (QA → 1′) then (p′, QB) and (q′, QB) are
indistinguishable. However, in [18] the authors take t to be the transposition (1′, 2′) and
find that all reachable states are pairwise distinguishable.

In the remainder of our examples, all of the states we show are reachable will also be
pairwise distinguishable. Since the focus of this paper is reachability, we refer to the original
authors for distinguishability proofs in most cases. In cases where the original authors did
not provide a distinguishability proof, we give a brief argument for completeness.

The next example involves two DFAs with different alphabets: we have ΣA = {a, b, c}
and ΣB = {a, b, d}. Our construction set will consist of words over the shared alphabet
Σ0 = ΣA ∩ ΣB = {a, b}.

Theorem 5.3.2 (Regular Language Witness. Brzozowski, 2016 [7]). Define A and B as
follows:

a b c d Final States
A : (1′, . . . , m′) (1′, 2′) (m′ → 1′) {m′}
B : (1, 2) (1, . . . , n) id {n}

Then C has m2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). If n is odd, we have

(1′, ∅)
am

−→ (1′, 2)
bb
−→ (1′, 4)

bb
−→ · · ·

bb
−→ (1′, n− 1),

(1′, n− 1)
bb
−→ (1′, 1)

bb
−→ (1′, 3)

bb
−→ · · ·

bb
−→ (1′, n).
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Thus {am, ambb, am(bb)2, . . . , am(bb)n−1} is a construction set for QB (with s′ = 1′ and
B = ∅). By Corollary 5.2.5, it is complete (taking x = am and y = bb).

If n is even, we have

(1′, ∅)
am

−→ (1′, 2)
bb
−→ (1′, 4)

bb
−→ · · ·

bb
−→ (1′, n),

(1′, n)
ab
−→ (1′, 1)

bb
−→ (1′, 3)

bb
−→ · · ·

bb
−→ (1′, n− 1).

The words used to reach each state (1′, q) form a construction set for QB (with s′ = 1 and
B = ∅). We cannot use Corollary 5.2.5 to show it is complete (since the appearance of ab
breaks the pattern), but notice that all the words in the construction set are words over
{a, b}, and a and b both act as permutations on QB. Thus all words in the construction
set are permutations of QB, and so by Corollary 5.2.6 it is complete.

In either case, we have a complete construction set for QB and so (1′, S) is reachable
for all S ⊆ QB. We can reach (q′, S) for q′ 6= m′ and (m′, S ∪ 1) by words in a∗, as in
Theorem 5.3.1. This gives (m− 1)2n + 2n−1 reachable states. Additionally, from (q′, S) we
can reach (∅, S) by d, for an extra 2n states.

For distinguishability of the reached states, see [7].

The main differences in reachability proofs between the different-alphabet case (unre-
stricted state complexity) and the same-alphabet case (restricted state complexity) are as
follows:

• When looking for a complete construction set, we are restricted to using words over
the shared alphabet Σ0 = ΣA ∩ ΣB.

• Usually some additional states can be reached using letters in ΣA \ ΣB or ΣB \ ΣA,
e.g., the states of the form (∅, S) in the previous example.

As these differences are not too significant, we will stick to the same-alphabet case for the
remainder of our examples.

Theorem 5.3.3 (Regular Language Witness. Brzozowski, 2013 [6]). Define A and B as
follows:

a b c Final States
A : (1′, . . . , m′) (1′, 2′) (m′ → 1′) {m′}
B : (1, . . . , n) (1, 2) (n→ 1) {n}

Then C has (m− 1)2n + 2n−1 reachable and pairwise distinguishable states.
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Proof. The initial state of C is (1′, ∅). For 0 ≤ k ≤ n− 2 we have

(1′, ∅)
am

−→ (1′, 2)
(ab)k

−−−→ (1′, 2 + k).

Also, (1′, n)
c
−→ (1′, 1). Thus {am, amab, am(ab)2, . . . , am(ab)n−2, am(ab)n−2c} is a construc-

tion set for QB (with s′ = 1′ and B = ∅).

This construction set does not quite have the right form to apply Corollary 5.2.5, due
to the last word am(ab)n−2c. However, notice that all words in W except for am(ab)n−2c
are in fact permutations of QB, so Corollary 5.2.6 shows that W is complete. Hence all
states (1′, S) with S ⊆ QB are reachable. We can reach (q′, S) for q′ 6= m′ and (m′, S ∪ 1)
by words in a∗, as in Theorem 5.3.1.

For distinguishability of the reached states, see [6].

Theorem 5.3.4 (Regular Language Witness. Yu, Zhuang and Salomaa, 1994 [79]). Define
A and B as follows:

a b c Final States
A : (1′, . . . , m′) (QA → 1′) id {m′}
B : id (1, . . . , n) (QB → 2) {n}

Then C has (m− 1)2n + 2n−1 reachable and pairwise distinguishable states.

Proof. The initial state of C is (1′, ∅). For k ≤ n−2 we have (1′, ∅)
am

−→ (1′, 2)
bk

−→ (1′, 2+k),

and (1′, n)
b
−→ (1′, 1). It follows that {am, amb, . . . , abn−1} is a construction set for QB (with

s′ = 1′ and B = ∅). By Corollary 5.2.5, it is complete (taking x = am and y = b). Hence all
states (1′, S) with S ⊆ QB are reachable. We can reach (q′, S) for q′ 6= m′ and (m′, S ∪ 1)
by words in a∗.

Let (p′, S) and (q′, T ) be distinct states of C. If S 6= T , let r be a state in the symmetric
difference of S and T . Then bn−r distinguishes the states. If S = T and p′ < q′, then
cam−qbn−2 distinguishes the states.

Theorem 5.3.5 (Regular Language Witness. Maslov, 1970 [62]). Define A and B as
follows:

a b Final States
A : (1′, . . . , m′) id {m′}
B : (n− 1, n) (n−1

1 q → q + 1) {n}

Then C has (m− 1)2n + 2n−1 reachable and pairwise distinguishable states.
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Proof. The initial state is (1′, ∅). We have

(1′, ∅)
am

−→ (1′, 1)
bk

−→ (1′, 1 + k).

Thus {am, amb, amb2, . . . , ambn−1} is a construction set for QB (with s′ = 1′ and B = ∅).
By Corollary 5.2.5, it is complete. Hence (1′, S) is reachable for all S ⊆ QB. We can reach
(q′, S) for q′ 6= m′ and (m′, S ∪ 1) by words in a∗, as in Theorem 5.3.1.

Let (p′, S) and (q′, T ) be distinct states of C. If S 6= T , let r be a state in the symmetric
difference of S and T . Then bn−r distinguishes the states. If S = T and p′ < q′, by bn we
reach (p′, n) and (q′, n). Then by am−q we reach ((p+m− q)′, nam−q) and (m′, nam−q ∪ 1).
These states differ in their second component, so they are distinguishable.

Theorem 5.3.6 (Star-Free Witness. Brzozowski and Liu, 2012 [15]). Define A and B as
follows:

a b c d
A : (m−1

1 q′ → (q + 1)′) (m2 q
′ → (q − 1)′) id (QA → m′)

B : (n−1
2 q → q + 1) id (n−1

1 q → q + 1) (n2q → q − 1)

and let FA = {m′} and F B = {n−1}. Then C has (m−1)2n +2n−1 reachable and pairwise
distinguishable states.

Proof. The initial state is (1′, ∅). We have

(1′, ∅)
am

−→ (m′, 1)
ck

−→ (m′, {1, 1 + k}).

Hence {ε, c, c2, . . . , cn−1} is a construction set for QB (with s′ = m′ and B = {1}). By
Corollary 5.2.5, it is complete. Thus (m′, S ∪ 1) is reachable for all S ⊆ QB.

To reach (q′, S) for non-final q′ ∈ QA and S ⊆ QB, proceed as follows. If 1 ∈ S,
first reach (m′, S ∪ 1) then apply bm−q. If 1 6∈ S, let i be the smallest element of S. Set

T = {q − (i− 1) : q ∈ S \ i} and reach (m′, T ∪ 1). Then (m′, T ∪ 1)
bm−q

−−−→ (q′, T ∪ 1)
ci−1

−−→
(q′, (S \ i) ∪ i) = (q′, S).

For distinguishability of the reached states, see [15].

Theorem 5.3.7 (Non-Returning Witness. Brzozowski and Davies, 2017 [9]). Define A
and B as follows:

a b Final States
A : (2′, . . . , m′)(1′ → 2′) (2′, 3′)(1′ → 3′) {m′}
B : (2, . . . , n)(1 → 2) (3, . . . , n)(2 → 3)(1 → 2) {n}

Then C has (m− 1)2n−1 + 1 reachable and pairwise distinguishable states.
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Proof. The initial state is (1′, ∅). Let x = am−1 and y = ab. If n is even,

(1′, ∅)
a
−→ (2′, ∅)

x
−→ (2′, 2)

y
−→ (2′, 4)

y
−→ (2′, 6)

y
−→ · · ·

y
−→ (2′, n),

(2′, n)
y
−→ (2′, 3)

y
−→ (2′, 5)

y
−→ · · ·

y
−→ (2′, n− 1).

If n is odd,

(1′, ∅)
a
−→ (2′, ∅)

x
−→ (2′, 2)

y
−→ (2′, 4)

y
−→ (2′, 6)

y
−→ · · ·

y
−→ (2′, n− 1),

(2′, n− 1)
y
−→ (2′, 3)

y
−→ (2′, 5)

y
−→ · · ·

y
−→ (2′, n).

In both cases, Corollary 5.2.5 implies that {x, xy, . . . , xyn−2} is a complete construction set
for QB \ 1 (with s′ = 2′ and B = ∅). It follows that (2′, S) is reachable for all S ⊆ QB \ 1.
This gives 2n−1 reachable states.

To reach (q′, S) for non-final q′ ∈ QA\1 and S ⊆ QB\1, note that a acts as a permutation
on QB \ 1, and so there exists T ⊆ QB \ 1 such that Taq−2 = S. Thus we can first reach
(2′, T ) and then apply aq−2. To reach (m′, S ∪ 1) for S ⊆ QB \ 1, reach ((m− 1)′, T ) where
Ta = S and apply a. Counting the initial state (1, ∅), we get (m − 1)2n−1 + 1 reachable
states.

For distinguishability of the reached states, see [9].

Theorem 5.3.8 (Non-Returning Witness. Eom, Han and Jirásková, 2016 [34]). Define A
and B as follows:

a b c
A : (2′, . . . , m′)(1′ → 2′) (1′ → 2′) (1′ → 2′)
B : (1 → 2) (2, . . . , n)(1 → 2) (n−1

3 q → q + 1)(1 → 2)(n→ 2)

and let FA = {m′} and F B = {n}. Then C has (m − 1)2n−1 + 1 reachable and pairwise
distinguishable states.

Proof. The initial state is (1′, ∅). We have

(1′, ∅)
a
−→ (2′, ∅)

am−1

−−−→ (2′, 2)
bk

−→ (2′, 2 + k).

Hence by Corollary 5.2.5, {am−1, am−1b, . . . , am−1bn−2} is a complete construction set for
QB \ 1 (with s′ = 2′ and B = ∅). It follows that (2′, S) is reachable for all S ⊆ QB \ 1. To
reach (q′, S) for q′ non-final, reach (2′, S) and apply aq−2. For (m′, S∪1), reach ((m−1)′, S)
and apply a.

For distinguishability of the reached states, see [34].
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Theorem 5.3.9 (Prefix-Closed Witness. Brzozowski, Jirásková and Zou, 2014 [14]). De-
fine A and B as follows:

a b c Final States
A : id id (m−1

1 q′ → (q + 1)′) {1′, . . . , (m− 1)′}
B : (1, . . . , n− 1) (n−1

2 q → q + 1) id {1, . . . , n− 1}

Then C has (m+ 1)2n−2 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, 1). For k ≤ n− 2 we have (1′, 1)
ak

−→ (1′, {1, 1 + k}). Thus by
Corollary 5.2.5 the set {ε, a, a2, . . . , an−2} is a complete construction set for QB \ n, with
s′ = 1′ and B = {1}. Hence (1′, S ∪ 1) is reachable for each S ⊆ QB \ n. From (1′, S ∪ 1)
with S ⊆ QB \ n, we reach (q′, S ∪ 1) for 2 ≤ q ≤ m by cq−1. This gives m2n−2 reachable
states.

To reach (m′, S) with S ⊆ QB \ n, set S non-empty, and 1 6∈ S, let p be the smallest
element of S. Let T = Sa−(p−1); then 1 ∈ T since 1ap−1 = p. Reach (m′, T ) and apply
ap−1 to reach (m′, S). There are 2n−2−1 non-empty sets that exclude 1 and n, and we can
reach an additional state (m′, n) from (m′, n− 1) by b. This gives another 2n−2 reachable
states, for a total of (m+ 1)2n−2 states.

For distinguishability of the reached states, see [14].

Theorem 5.3.10 (Suffix-Free Witness. Brzozowski and Sinnamon, 2017 [16]). Define A
and B as follows:

a b c
A : (1′ → m′)(2′, . . . , (m− 1)′) (1′ → m′)(2′, 3′) (2′, m′)(1′ → 2′)
B : (1 → n)(2, 3) (2, n)(1 → 2) (1 → n)(2, . . . , n− 1)

and let FA = {(m − 1)′} and F B = {n − 1}. Then C has (m − 1)2n−2 + 1 reachable and
pairwise distinguishable states.

Proof. The initial state is (1′, ∅). We have

(1′, ∅)
c
−→ (2′, ∅)

am−3

−−−→ ((m− 1)′, 1)
c
−→ ((m− 1)′, {1, n}).

Then for k ≤ n− 3 we have

((m− 1)′, {1, n})
bb
−→ ((m− 1)′, {1, 2, n})

ck

−→ ((m− 1)′, {1, 2 + k, n}).
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Thus W = {ε, bb, bbc, bbc2, . . . , bbcn−3} is a construction set for QB, with s′ = (m− 1)′ and
B = {1, n}. In fact, W is complete by Lemma 5.2.7 since b and c act as permutations on
QB \ 1.

It follows that ((m − 1)′, S ∪ {1, n}) is reachable for all S ⊆ QB. To reach (q′, S ∪ n)
for 2 ≤ q ≤ m − 2 and 1 6∈ S, note that a acts as a permutation on QB \ 1. Thus we first
reach ((m − 1)′, Sa−(q−1) ∪ {1, n}) then apply aq−1. To reach (m′, S ∪ n) with 1 6∈ S, first
reach (2′, Sc−1 ∪ n) then apply c. Since there are 2n−2 subsets of QB \ {1, n}, this gives
(m− 1)2n−2 reachable states. Adding one for the initial state (1′, ∅) gives (m− 1)2n−2 + 1.

For distinguishability of the reached states, see [16]. Note that the authors of [16] use
a different concatenation DFA from our C: they first delete the sink states m′ from A and
n from B, and then form the concatenation of these modified DFAs. However, the same
words used for distinguishing states in [16] can be used to distinguish states of C.

Theorem 5.3.11 (Suffix-Free Witness. Han and Salomaa, 2009 [41]). Define A and B as
follows:

A : B :
a (2′, . . . , (m− 1)′)(1′ → m′) (1 → n)
b (1′ → m′) (2, . . . , n− 1)(1 → n)
c ((QA \ 1′) → m′)(1′ → 2′) (1 → n)
d ((QA \ 2′) → m′) (1 → 2)

and let FA = {2′} and F B = {2}. Then C has (m − 1)2n−2 + 1 reachable and pairwise
distinguishable states.

Proof. The initial state is (1′, ∅). For k ≤ n− 3 we have

(1′, ∅)
cb
−→ (2′, {1, n})

d
−→ (2′, {1, 2, n})

bk

−→ (2′, {1, 2 + k, n}).

Thus W = {ε, d, db, . . . , dbn−3} is a construction set for QB, with s′ = 2′ and B = {1, n}.
By Lemma 5.2.7, W is complete, since d and b act as permutations on QB \ {1, n}.

There are 2n−2 states of the form (2′, S ∪ {1, n}) with S ⊆ QB and S ∩ {1, n} = ∅. For
each of these states, we reach (q′, S ∪ n) for 3 ≤ q ≤ m− 1 by aq−2, and (m′, S ∪ n) by c.
Adding in the initial state (1′, ∅) gives a total of (m− 1)2n−2 + 1 reachable states.

For distinguishability of the reached states, see [41]. Note that the authors of [41]
work with a reduced concatenation DFA obtained by identifying, for each q′ and S, the
indistinguishable states (q′, S) and (q′, S ∪ n). Thus, for example, they write that (q′, ∅) is
reachable for 3 ≤ q ≤ m−1; these states are not reachable in our DFA C, but states (q′, n)
for 3 ≤ q ≤ m− 1 are reachable.
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Theorem 5.3.12 (Right Ideal Witness. Brzozowski and Sinnamon, 2017 [18]). Define A
and B as follows:

a b c Final States
A : (1′, . . . , (m− 1)′) (2′ → 1′) (m−1

1 q′ → (q + 1)′) {m′}
B : (1, . . . , n− 1) (2 → 1) (n−1

1 q → q + 1) {n}

Then C has m+ 2n−2 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). Note that (1′, ∅)
aq−1

−−→ (q′, ∅) for 1 ≤ q ≤ m− 1, so these
m− 1 states are reachable. For 0 ≤ k ≤ n− 3 we have

((m− 1)′, ∅)
c
−→ (m′, 1)

a
−→ (m′, {1, 2})

(ab)k

−−−→ (m′, {1, 2 + k}).

Hence {ε, a, aab, a(ab)2, . . . , a(ab)n−3} is a construction set for QB \ n, with s′ = m′ and
B = {1}. By Corollary 5.2.5, it is complete. Hence (m′, S∪1) is reachable for all S ⊆ QB\n.

We have reached (m− 1) + 2n−2 states so far. Additionally, we have (m′, {1, n− 1})
cb
−→

(m′, {1, n}), giving m + 2n−2.

For distinguishability of the reached states, see [18].

Theorem 5.3.13 (Right Ideal Witness. Brzozowski, Davies and Liu, 2016 [10]). Define
A and B as follows:

a b c Final States
A : (1′, . . . , (m− 1)′) (2′, . . . , (m− 1)′) ((m− 1)′ → m′) {m′}
B : (1, . . . , n− 1) (2, . . . , n− 1) (n− 1 → n) {n}

Then C has m+ 2n−2 reachable and pairwise distinguishable states.

Proof. The initial state is (1′, ∅). Note that (1′, ∅)
aq−1

−−→ (q′, ∅) for 1 ≤ q ≤ m− 1, so these
m− 1 states are reachable. For 0 ≤ k ≤ n− 3 we have

((m− 1)′, ∅)
c
−→ (m′, 1)

a
−→ (m′, {1, 2})

bk

−→ (m′, {1, 2 + k}).

Hence {ε, a, ab, ab2, . . . , abn−3} is a construction set for QB \ n, with s′ = m′ and B = {1}.
By Corollary 5.2.5, it is complete. Hence (m′, S ∪ 1) is reachable for all S ⊆ QB \ n.

We have reached (m− 1) + 2n−2 states so far. Additionally, we have (m′, {1, n− 1})
c
−→

(m′, {1, n}), giving m + 2n−2.

For distinguishability of the reached states, see [10].
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Theorem 5.3.14 (Right Ideal Witness. Brzozowski, Jirásková and Li, 2013 [11]). Define
A and B as follows:

a b Final States
A : (m−1

1 q′ → (q + 1)′) (m−1
1 q′ → (q + 1)′) {m′}

B : (1, . . . , n− 1) (n−1
2 q → q + 1) {n}

Then C has m+ 2n−2 reachable and distinguishable states.

Proof. The initial state is (1′, ∅). Note that (1′, ∅)
aq−1

−−→ (q′, ∅) for 1 ≤ q ≤ m− 1, so these
m− 1 states are reachable. For 0 ≤ k ≤ n− 3 we have

((m− 1)′, ∅)
a
−→ (m′, 1)

a
−→ (m′, {1, 2})

bk

−→ (m′, {1, 2 + k}).

Hence {ε, a, ab, ab2, . . . , abn−3} is a construction set for QB \ n, with s′ = m′ and B = {1}.
By Corollary 5.2.5, it is complete. Hence (m′, S ∪ 1) is reachable for all S ⊆ QB \ n.

We have reached (m− 1) + 2n−2 states so far. Additionally, we have (m′, {1, n− 1})
b
−→

(m′, {1, n}), giving m + 2n−2.

For distinguishability of the reached states, see [11]. Note that the authors of [11] use a
different concatenation DFA, constructed by removing state m′ from A and then forming
the concatenation in the usual way. However, the same words used in [11] can be used to
distinguish states in C.

We now give two examples where our method of proof does not seem applicable or
helpful. When attempting concatenation state complexity proofs, it seems best to consider
both traditional techniques and the technique we present in this chapter, switching between
the two options if one does not yield an easy argument.

Example 5.3.15 (Prefix-Closed Witness. Brzozowski and Sinnamon, 2017 [18]). Our
technique does not seem to work well with the following witness languages. Define A and
B as follows:

A : B :
a (1′, . . . , (m− 1)′) (1, . . . , n− 1)
b (1′, 2′) (2 → 1)
c (2′ → 1′) (n−1

1 q → q − 1)
d (m−1

1 q′ → (q − 1)′) (1, 2)

and let FA = {1′, . . . , (m− 1)′} and F B = {1, . . . , n− 1}.
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The inductive proof given by the authors of [18] has a different structure from the type
of argument captured by Theorem 5.2.2. To reach a state (q′, S), in Theorem 5.2.2 we
start from some state (q′, B) and apply a word that fixes the first component q′. In [18]
the authors instead start from a state (p′, B) and apply a word w such that p′w = q′. The
proof in [18] is short and clean, whereas a proof in the style of Theorem 5.2.2 seems to
require complicated arguments. It is possible that Theorem 5.2.2 could be generalized to
cover arguments of the form used in [18], but we have not found such a generalization. �

Example 5.3.16 (Finite Binary Witness. Câmpeanu, Culik, Salomaa and Yu, 2001 [22]).
Our technique does not apply to the following witness languages. Define A and B as
follows:

a b Final States
A : (m−1

1 q′ → (q + 1)′) (m−1
1 q′ → (q + 1)′) {1′, . . . , (m− 1)′}

B : (n−1
2 q → q + 1)(1 → n) (n−1

1 q → q + 1) {n− 1}

Additionally, assume that m+ 1 ≥ n > 2. Then C has (m− n+ 3)2n−2 − 1 reachable and
pairwise distinguishable states. This is the maximum for finite languages over a binary
alphabet when m + 1 ≥ n > 2.

Let us consider why Theorem 5.2.2 cannot be used here. The point of Theorem 5.2.2 is
to build up states (s′, S) by starting from (s′, B) and using words that fix the focus state
s′. But in this witness, no state of A is fixed by any word except for the non-final sink
state m′. So to use Theorem 5.2.2, the focus state must be m′. But from a state of the
form (m′, S), we can only reach sets (m′, T ) with |T | ≤ |S|, since m′ is a non-final sink
state. So there is no way to start from some base state (m′, B) and build up larger sets,
which is the strategy of Theorem 5.2.2. �

5.4 Construction Sets for Star

To close this chapter, we define a notion of construction sets for star and prove some
results analogous to those proved in Section 5.2. Let A = (Q,Σ, T, 1, F ) be a DFA and let
S = (QS ,Σ, T S , {s}, F S) be the star DFA as defined in Section 2.4.4.

Definition 5.4.1. Let B, T ⊆ Q be sets with B ∩ T = ∅; we call B the base and T the
target. Write T = {q1, . . . , qk} and let W = {w1, . . . , wk} be a set of |T | words. We say W
is a construction set for B and T if Bwi = B ∪ qi in S for 1 ≤ i ≤ k. A construction set
W is complete if there exists a total order ≺ on B ∪T such that whenever qi ≺ qj , we have
qjw

−1
i ∩ (B ∪ T ) 6= ∅.
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Since our research on construction sets for star was conducted after defining construc-
tion sets for concatenation, hindsight allowed us to modify the definition of construction
set slightly to make it easier to use. In the definition for concatenation automata, the base
B was always a subset of the target T . Thus it was often necessary to include the empty
word ε in a construction set solely to satisfy the condition that for each q ∈ B there is
a word w such that Bw = B ∪ q. In construction sets for star, the base and target are
disjoint, avoiding this issue.

It is easy to verify that the following results from Section 2.4.4 hold when updated to
account for the definition of star construction sets. This is because their proofs do not
rely on any properties of concatenation itself, but rather just properties of concatenation
construction sets that are mimicked by star construction sets.

Lemma 5.4.2. Let W be a construction set for B and T . If one of the following conditions
holds, W is complete:

1. There exist words x, y ∈ Σ∗, where x acts as a permutation on B ∪ T , such that
W = {x, xy, xy2, . . . , xyk}.

2. There exists a word y ∈ Σ∗ such that W = {y, y2, . . . , yk}.

3. Every word in W acts as a permutation on B ∪ T .

4. There exists w ∈ W such that every word in W \w acts as a permutation on B ∪ T .

5. For each w ∈ W , there exists a set S with T ⊆ S ⊆ B ∪ T such that w acts as a
permutation on S.

Complete construction sets can be used to demonstrate the reachability of certain
subsets in star automata.

Theorem 5.4.3. If there is a complete construction set for B and T , then all sets S with
B ⊆ S ⊆ B ∪ T are reachable from B in S.

Proof. Set R = S \B, so that S is the disjoint union B ∪R. We prove that S is reachable
from B by induction on |R|. If |R| = 0, we just have S = B.

Now suppose that every state S = B ∪R with B ∩R = ∅ and |R| < ℓ is reachable from
B. We want to show this holds for |R| = ℓ. Let T = {q1, . . . , qk}, let W = {w1, . . . , wk}
be a complete construction set for T , and let ≺ the corresponding total order on T . Note
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that R ⊆ T ; let qi be the minimal element of R under ≺. For all qj ∈ R \ qi, we have
qi ≺ qj and thus qjw

−1
i ∩ T 6= ∅.

Construct sets X and Y as follows: for each q ∈ R \ qi, choose an element of qjw
−1
i ∩

(B ∪T ) and add it to X . Then set Y = X \B. Observe that X is a subset of B ∪T of size
|R\qi| = ℓ−1. Hence Y has size at most ℓ−1, and Y is disjoint from B, and so it follows by
the induction hypothesis that B∪Y is reachable from B. But B∪Y = B∪(X\B) = B∪X ,
and thus B ∪X is reachable from B. By the definition of X , we have Xwi = R \ qi. Also,
since W is a construction set, we have Bwi = B ∪ qi. It follows that

(B ∪X)wi = Bwi ∪Xwi = (B ∪ qi) ∪ (R \ qi) = B ∪ R = S.

Hence S is reachable from B, as required.

The special initial state {s} might get in the way when using Theorem 5.4.3. We can
deal with this using the following proposition. Let t be the permutation of Q ∪ {s} that
swaps 1 and s and fixes all other elements.

Proposition 5.4.4. Let S 6= B. In S, if S is reachable from B, then S is reachable from
Bt.

Proof. If B contains {1, s}, or if B is disjoint from {1, s}, then B = Bt. Assume that B
contains exactly one element of {1, s}. Without loss of generality, assume s ∈ B. Note
then that Bt = (B \ s) ∪ 1.

Since S 6= B, it follows that S must be reachable from B via a non-empty word w. For
each transition (1, a, q), the star automaton is defined to have a corresponding transition
(s, a, q). Thus if w is non-empty, then sw = 1w. Therefore

Bw = (B \ s)w ∪ sw = (B \ s)w ∪ 1w = ((B \ s) ∪ 1)w = Btw.

Hence Bw = Btw = S as required.

Typically a star reachability proof using Theorem 5.4.3 will start by showing that all
sets containing the initial state are reachable. To show the remaining sets are reachable,
the following lemma is useful. A subset X of a totally ordered set (≺, Q) is downward
closed if whenever p ≺ q for some q ∈ X , we have p ∈ X .

Lemma 5.4.5. Let ≺ be a total order on Q and let qs denote the successor of q under the
total order. Let X be a downward closed subset of (Q \ F ) ∪ 1 such that for some a ∈ Σ,
we have qa = qs in A for all q ∈ X. If every subset of X containing the minimal element
of Q is reachable in S, then every non-empty subset of X is reachable.
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Proof. Write Q = {q1, . . . , qn} with q1 ≺ q2 ≺ · · · ≺ qn. Let S be a subset of X and let
qi be the minimal element of S. We may assume i > 1 since otherwise S contains the
minimal element q1 of Q and is reachable by assumption. Set Y = {q : qsi−1 ∈ S}. Since
q1s

i−1 = qi, the set Y contains the minimal element q1 of Q, and thus Y is reachable in S.

We claim that Y ai−1 = S, and thus S is reachable. First note that for each element
q ∈ Y we have q ≺ qs ≺ · · · ≺ qsi−1 with qsi−1 ∈ X . Since X is downward closed, it
follows that for all q ∈ Y and 0 ≤ j ≤ i − 1, we have qsj ∈ X . Now, we claim that
Y aj = {qsj : q ∈ Y }. We proceed by induction on j. The base case j = 0 is trivial.

Suppose that 0 < j ≤ i− 1 and that Y aj−1 = {qsj−1 : q ∈ Y }. In S, for q ∈ Q we have
q

a
−→ qa if qa is non-final in A and q

a
−→ {1, qa} if qa is final in A. Note that qsj−1 ∈ X ,

so qsj−1a = qsj in A. Since j ≤ i − 1, the state qsj belongs to X ⊆ (Q \ F ) ∪ 1. Thus
either qsj is non-final or qsj = 1. In both cases, in S we have qsj−1 a

−→ qsj for all q ∈ Y .
It follows that Y aj = {qsj : q ∈ Y }, as required. Since this holds for j = i − 1, we get
Y ai−1 = {qsi−1 : q ∈ Y } = S, and the proof is complete.

Corollary 5.4.6. Assume we either have F = {n − k + 1, . . . , n} for k ≥ 1, or F =
{1, n − k + 2, . . . , n} for k ≥ 2. Suppose that for some m and some a ∈ Σ, we have
qa = q + 1 for all q ≤ m in A. If every subset of {1, . . . , m} containing 1 is reachable in
S, then every non-empty subset of {1, . . . , m} is reachable. In particular, if every subset
of Q containing 1 is reachable, then at least 2n−1 + 2m−1 subsets are reachable.

Proof. Suppose every subset of {1, . . . , m} containing 1 is reachable in S. By applying
Lemma 5.4.5 with the total order < on Q and X = {1, . . . , m}, we see that every non-
empty subset of {1, . . . , m} is reachable.

Suppose now that every subset of Q containing 1 is reachable. Then there are 2n−1

subsets of Q containing 1, and 2m−1 − 1 non-empty subsets of {1, . . . , m} that do not
contain 1, and the initial subset {s}, giving 2n−1 + 2m−1 subsets.

Remark. Corollary 5.4.6 can be used to show that 2n−1 + 2m−1 subsets are reachable in S.
If 1 6∈ F , we can take m = n− k to get the upper bound 2n−1 + 2n−k−1. If 1 ∈ F , we can
take m = n− k + 1 to get 2n−1 + 2n−k reachable subsets; noting that sets {s} and {1} are
always indistinguishable gives the upper bound 2n−1 + 2n−k − 1.

We close this section by applying our results on star to a witness from the literature.

Theorem 5.4.7 (Yu, Zhuang and Salomaa, 1994 [79]). Define A as follows:

a = (1, . . . , n)
b = (n→ 1)(n−1

2 q → q + 1)
F = {n}
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Then S has 2n−1 + 2n−2 reachable states.

Proof. State {1} is reachable from {s} via b. We have

{1}
a
−→ {2}

a
−→ · · ·

a
−→ {n, 1}

a
−→ {1, 2}

bk

−→ {1, 2 + k}.

Thus {an, anb, . . . , anbn−3} is a construction set for B = {1} and T = Q \ 1. It is complete
by Lemma 5.2.4. Hence every subset of Q containing 1 is reachable in S. Taking m = n−1
in Corollary 5.4.6 gives 2n−1 + 2n−2 reachable states.
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Chapter 6

Reversal and Deterministic Finite
Automata with Output

6.1 Introduction

In this chapter, we take a bit of a detour and look at a state complexity problem for an
extension of the DFA model. Compared with previous chapters, the results here are not as
directly applicable to classical DFA state complexity problems. However, we will gain some
new insights into the reversal operation, some of which apply to the ordinary DFA case. I
thank Jeffrey Shallit for proposing this problem in his course on automatic sequences.

The problem of determining the worst-case state complexity of the reversal operation
on regular languages has been well-studied. Work on this problem dates back to the 1960s;
see Jirásková and Šebej [54] for a historical overview. It is known that if L is recognized
by an n-state DFA, then state complexity of the reverse LR is at most 2n, and this bound
can be reached over a binary alphabet; furthermore, it can be reached by DFAs which have
only one final state.

In this section, we study a generalization of this problem to deterministic finite au-
tomata with output (DFAOs). Rather than a set of final states, in a DFAO, each state is
assigned an output value from a finite output alphabet ∆. Rather than recognizing lan-
guages, DFAOs compute functions f : Σ∗ → ∆, where Σ is the input alphabet. The value
wf is defined to be the output value of the state reached by starting in the initial state
and following the path corresponding to the input word w. Note that the case |∆| = 2 can
be viewed as assigning a value of “final” or “non-final” to each state, so DFAOs directly
generalize DFAs.
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DFAOs are used in the study of automatic sequences [1]. If we treat the words w ∈ Σ∗

as representations of natural numbers in some base, we can view the function f : Σ∗ → ∆
as a function f : N → ∆, that is, an infinite sequence of elements of ∆. Sequences for
which the corresponding function can be computed by a DFAO are called automatic.

The reverse of the function f : Σ∗ → ∆ is the function fR : Σ∗ → ∆ defined by
wfR = wRf . The reversal operation on DFAOs can be thus be viewed as changing the
direction in which the DFAO reads input: from left-to-right to right-to-left, or vice versa.
Some functions are easier to compute with respect to one input-reading direction than the
other. For example, consider the function f : {0, 1}∗ → {0, 1}, which takes in the binary
representation of a natural number and outputs 1 if the number can be written as 8n+ 5,
n ≥ 0, and 0 otherwise. Numbers of the form 8n + 5 have binary representations of the
form w101, where w ∈ {0, 1}∗. Hence if the input is read from left-to-right, the entire string
must be read to determine whether it ends in 101, but if the input is read from right-to-left,
only three characters need to be checked. Likewise, some automatic sequences are easier to
generate if we read the input numbers from least-significant digit to most-significant-digit,
rather than the opposite way.

We are concerned with the maximal blow-up in size (number of states) when the input
reading direction of a DFAO is reversed. That is, given a function f computed by an
n-state DFAO, what is the worst-case state complexity of fR? The standard construction
for reversal of DFAOs [1, Theorem 4.3.3] gives an upper bound of |∆|n, where ∆ is the
output alphabet. However, it does not seem to be known whether this bound is reachable.

We prove that when the input alphabet has size three or greater, the upper bound |∆|n

is indeed reachable. When the input alphabet is binary, the problem becomes much more
complicated. We conjecture that if |∆| ≥ 3, the upper bound |∆|n is not reachable over a
binary alphabet, despite the fact that it is known to be reachable for |∆| = 2 (the ordinary
DFA case). While we could not prove that the upper bound is unreachable in all cases,
we have proved it is unreachable when |∆| = n and |∆| ≥ 3, and verified computationally
that it is unreachable for (|∆|, n) ∈ {(3, 4), (3, 5), (3, 6), (4, 5)}. We prove a lower bound
for the case of a binary input alphabet and 3 ≤ |∆| < n.

We also demonstrate that the state complexity of DFAO reversal is completely de-
termined by the transition monoid of the DFAO and the map which assigns outputs to
states. In particular, if function f is computed by a minimal n-state DFAO with state set
Q, transition monoid M , and output map τ : Q → ∆, then the state complexity of fR is
exactly |Mτ |, where Mτ = {mτ : m ∈ M}. Since DFAs are special cases of DFAOs, this
gives a surprising new characterization of the state complexity of DFA reversal in terms of
the transition monoid and the characteristic function of the final state set.
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6.2 Deterministic Finite Automata with Output

A deterministic finite automaton with output (DFAO) is a 6-tuple D = (Q,Σ, T, 1,∆, τ),
where: Q, Σ, T and 1 are as in a DFA, ∆ is the finite output alphabet, and τ : Q → ∆ is
the output map.

While traditional DFAs recognize languages, DFAOs instead compute functions. The
function computed by a DFAO is the function f : Σ∗ → ∆ defined by wf = 1wτ . That is,
we determine wf by starting in the initial state 1, following the path corresponding to w
to reach some state q, then applying the output map τ to get the output value associated
with q. A function that can be computed by a DFAO is called a finite state function.

Most definitions for DFAs that do not involve final states extend to DFAOs, such as
the concepts of reachability and accessibility, and the definition of the transition monoid.
Even notions which involve final states can often be generalized. For example, two states p
and q in a DFAO are distinguishable if there exists w ∈ Σ∗ such that pwτ 6= qwτ . A DFAO
is minimal if it has the least possible number of states among all DFAOs computing the
same function. We can generalize fundamental results on DFA minimality to DFAOs:

Proposition 6.2.1. A DFAO is minimal if and only if all states are reachable and every
pair of distinct states is distinguishable.

The proof is done by mimicking the corresponding proof for DFAs. For further reference
on the DFAO model, see Allouche and Shallit [1].

When working with multiple DFAOs with different transition functions, say D =
(Q,Σ, T, 1,∆, τ) and D′ = (Q′,Σ′, T ′, 1′,∆′, τ ′), the shorthand notation w for word ac-
tions is ambiguous: it is unclear whether this is the action of w in D or in D′. Thus in this
section, we adopt the following convention: the notation w always refers to the action of
w in a DFAO whose transition function is named “T”. Thus w would refer to the action
Tw of D, rather than T ′

w of D′.

The reverse of a finite state function f : Σ∗ → ∆ is the function fR : Σ∗ → ∆ defined
by wfR = wRf . Following Allouche and Shallit [1, Theorem 4.3.3], we give a DFAO
construction for fR in terms of a DFAO for f .

Proposition 6.2.2. Let D = (Q,Σ, T, 1,∆, τ) be a DFAO computing the function f . There
exists a DFAO R computing fR.

Proof. Let R = (∆Q,Σ, TR, τ,∆,Ω), where:
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• The state set is ∆Q, the set of all functions from Q to ∆.

• The initial state is τ : Q→ ∆, the output map of D.

• The transition function TR is defined as follows: gTR
a = ag, for g ∈ ∆Q and a ∈ Σ.

• The output map Ω: ∆Q → ∆ is defined by gΩ = 1g.

By definition, the function computed by D is wf = 1wτ . The function computed by R is
τTR

w Ω = 1τTR
w ; we must show this equals wfR = wRf . If w = a1a2 · · · an, then we have

τTR
w = τTR

a1
TR
a2
· · ·TR

an
= a1τT

R
a2
· · ·TR

an
= a2a1τT

R
a3
· · ·TR

an
= · · · = an · · · a2a1τ = wRτ.

It follows that
1τTR

w = 1wRτ = wRf = wfR,

as required.

The state complexity of a finite state function is the size of a minimal DFAO computing
the function. If a function f is computed by an n-state minimal DFAO (i.e., the function
has state complexity n), Proposition 6.2.2 shows that the state complexity of fR is bounded
above by |∆|n, since the size of the state set ∆Q of R is |∆||Q| = |∆|n.

The following proposition, analogous to Lemma 2.4.24, makes it easier to compute the
state complexity of fR.

Proposition 6.2.3. If D is accessible, then all states of R are pairwise distinguishable.

Proof. Let g and h be distinct states of R. There exists q ∈ Q such that qg 6= qh.
Since D is accessible, q is reachable. Choose w ∈ Σ∗ such that q0w

R = q. Observe
that gTR

w Ω = q0w
Rg = qg, and similarly hTR

w Ω = qh. Since qg 6= qh, g and h are
distinguishable.

If we take R and remove all unreachable states from it (which does not change the
function computed), we obtain a DFAO for fR with all states reachable and every pair
of distinct states distinguishable. By Proposition 6.2.1, this is a minimal DFAO for fR.
Hence given a function f computed by an accessible DFAO D, to determine the state
complexity of fR, we can simply count the number of reachable states in R.
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6.3 State Complexity of Reversal

We first prove an important proposition, which shows that the state complexity of reversal
of DFAOs is completely determined by the transition monoid and the output map.

Definition 6.3.1. Let X and Y be finite sets; for a transformation monoid M on X and
a function f : X → Y , define Mf to be the set of functions {mf : m ∈M}.

Proposition 6.3.2. Let D = (Q,Σ, T, 1,∆, τ) be an accessible DFAO computing function
f . Let M be the transition monoid of D. The state complexity of fR is |Mτ |, where
Mτ = {wτ : w ∈ Σ∗}.

Proof. The DFAO R = (∆Q,Σ, TR, τ,∆,Ω) computes fR. By Proposition 6.2.3, all states
of R are distinguishable, so the state complexity of fR is the number of reachable states
in R.

Recall from the proof of Proposition 6.2.2 that gTR
w = wRg for g : Q→ ∆ and w ∈ Σ∗.

In particular, since τ is the initial state of R, every reachable state of R has the form
τTR

w = wRτ . Hence the set of reachable states of R is {wRτ : w ∈ Σ∗}. But this is the
same set as Mτ = {wτ : w ∈ Σ∗}. It follows that the number of reachable states in R is
precisely |Mτ |.

Recall that for |∆| = 2, DFAOs are essentially the same as DFAs (if we view the output
map as a boolean function telling us whether a state is final or non-final). Hence we have
the following corollary:

Corollary 6.3.3. Let D = (Q,Σ, T, 1, F ) be an accessible DFA recognizing language L. Let
M be the transition monoid of D. The state complexity of LR is |MχF |, where χF : Q →
{0, 1} is the characteristic function of F .

Despite the simple proof, we found this result rather surprising. We have not seen a
similar characterization of the state complexity of DFA reversal anywhere in the literature.

Throughout the rest of this section, Q and ∆ will be finite sets with |Q| = n and
|∆| = k, the monoid M will be a transformation monoid on Q, and τ : Q → ∆ will be a
surjective function. Note that the surjectivity of τ implies |∆| ≤ |Q|. It is fine to make
this assumption, since if |∆| > |Q| there are more possible outputs than there are states,
and so we can shrink ∆ without loss of generality.

Theorem 6.3.4. Let M be the full transformation monoid on Q. Then |Mτ | = kn for all
surjective functions τ : Q→ ∆.

177



Proof. It suffices to show that every function h : Q→ ∆ lies in Mτ , i.e., every such function
h can be written as gτ for some g : Q→ Q.

For q ∈ Q, we define qg as follows. Since τ is surjective, there exists pq ∈ Q such that
pqτ = qh. Define qg = pq. Then qgτ = pqτ = qh for all q ∈ Q, so gτ = h as required.

Corollary 6.3.5. Let f be a finite state function computed by a minimal DFAO D =
(Q,Σ, T, 1,∆, τ) with |∆| ≤ |Q| (i.e., k ≤ n). The state complexity of fR is at most
|∆||Q| = kn, and this bound can be reached when |Σ| ≥ 3.

Proof. The upper bound on fR follows from the construction for R. It suffices to prove
this bound can be reached. We saw in Example 2.4.3 that the following three functions
are sufficient to generate the full transformation monoid Tn:

f1 = (1, 2, . . . , n), f2 = (1, 2), f3 = (n→ 1).

Choose {a, b, c} ⊆ Σ and let D be a DFAO with actions a = f1, b = f2 and c = f3.
Then the transition monoid M of D is the full transformation monoid. Furthermore, D is
accessible (all states can be reached via a). Hence Proposition 6.3.2 applies. If we take the
output map τ to be surjective, by Theorem 6.3.4 we get that the state complexity of fR is
|Mτ | = kn, as required.

The rest of this section is devoted to the case where |Σ| = 2, i.e., where the input
alphabet of the DFAO is binary. This case is significantly more complicated and difficult
than the |Σ| ≥ 3 case. Note that if |∆| = 2, this case is equivalent to studying reversal of
ordinary DFAs with binary alphabets, and it is known for DFAs that the upper bound of
2n is reachable [54]. Thus we will only be concerned with |∆| ≥ 3.

Since the state complexity of DFAO reversal is completely determined by the transition
monoid and output map, naturally there are connections between the |Σ| = 2 case and the
problem of finding the largest 2-generated transformation monoids of a particular degree.
This problem has been studied by Holzer and König [43] and Krawetz, Lawrence and
Shallit [59].

Following Holzer and König, we define two families of monoids. First and most im-
portant are the Uℓ,m monoids [43, Definition 5]. The monoid Uℓ,m is a transformation
monoid on Q = {1, . . . , ℓ + m} defined as follows. Let α : Q → Q be the permutation
(1, . . . , ℓ)(ℓ+ 1, . . . , ℓ+m).

Definition 6.3.6. A function γ : Q → Q belongs to Uℓ,m if and only if it satisfies one of
the following conditions:
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1. There exists i ≥ 0 such that γ = αi.

2. {1, . . . , ℓ}γ∩{ℓ+1, . . . , ℓ+m}γ 6= ∅, and there exists an element i ∈ {ℓ+1, . . . , ℓ+m}
such that i is not in the image of γ.

If 1 < ℓ < m and gcd(ℓ,m) = 1, then Uℓ,m can be generated by two elements [43,
Theorem 8]. Krawetz [58] gives an explicit generating set: one of the generators is α, and
the other is β : Q→ Q, where

β =

(
1 2 3 4 · · · ℓ+m− 1 ℓ+m

ℓ+ 1 2 3 4 · · · ℓ+m− 1 1

)

if k = 2 or ℓ is even, and otherwise

β =

(
1 2 3 4 · · · ℓ +m− 1 ℓ+m

ℓ+ 1 3 2 4 · · · ℓ +m− 1 1

)
.

Let n = ℓ+m. For n ≥ 7 and n prime, Holzer and König proved that there exist ℓ and m
with 1 < ℓ < m and gcd(ℓ,m) = 1 such that Uℓ,m is the largest 2-generated transformation
monoid [43, Theorem 15]. They conjecture that this also holds when n ≥ 7 and n is not
prime.

When n ≤ 6, the largest 2-generated transformation monoids belong to a different
family: the V d

n monoids [43, Definition 16]. Let α be the permutation (1, 2, . . . , n).

Definition 6.3.7. A function γ : Q→ Q belongs to V d
n if and only if it satisfies one of the

following conditions:

1. There exists i ≥ 0 such that γ = αi.

2. There exist i, j ∈ {1, . . . , n} such that iγ = jγ and j ≡ i+ d (mod n).

For 2 ≤ n ≤ 6, Holzer and König determined explicit generating sets for the largest
2-generated transformation monoids on Q = {1, . . . , n}, which are all V d

n monoids for some
d. One of the generators is always αn = (1, 2, . . . , n). For 2 ≤ n ≤ 6, the other generator
βn is:

β2 =

(
1 2
1 1

)
, β3 =

(
1 2 3
1 1 3

)
, β4 =

(
1 2 3 4
1 1 4 3

)
,

β5 =

(
1 2 3 4 5
1 1 4 5 3

)
, β6 =

(
1 2 3 4 5 6
1 4 1 5 6 2

)
.
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Holzer and König also give a more general construction for 2-element generating sets of V d
n

monoids [43, Theorem 18].

With these definitions done, we return to the problem of computing worst-case state
complexity of reversal for binary input alphabets. First we consider the special case |Q| =
|∆|. Here it turns out that the state complexity problem almost completely reduces to the
2-generated monoid problem:

Theorem 6.3.8. Let f be a finite state function computed by a minimal DFAO D =
(Q,Σ, ·, q0,∆, τ) with |Σ| = 2 and |Q| = |∆| = n. Let m2(n) denote the size of the largest 2-
generated transformation monoid on Q = {1, 2, . . . , n} that occurs as the transition monoid
of some accessible DFA. The state complexity of fR is at most m2(n), and this bound is
reachable.

Proof. Let Σ = {a, b}. By assumption, we can construct an accessible DFAO D so that a
and b generate a monoid of size m2(n). Let τ : Q→ ∆ be a bijection. By Proposition 6.3.2,
the state complexity of fR is |Mτ |. But τ is a bijection, so |Mτ | = |M | = m2(n).

It may be the case that for some values of n, the largest transformation monoid on
{1, 2, . . . , n} generated by two elements does not occur as the transition monoid of a
accessible DFA. Thus we do not quite get a complete reduction to the 2-generated monoid
problem. It seems very unlikely that a monoid which is not a transition monoid of a
accessible DFA could be maximal, since this would mean there is some state q for which
the monoid contains no functions mapping a reachable state to q, which would exclude
very many functions. Note that the Uℓ,m and V d

n monoids do occur as transition monoids
of accessible DFAs.

It is well known that if |Q| ≥ 3, the full transformation monoid on a finite set Q cannot
be generated by two elements. Hence m2(n) never reaches the upper bound of |∆||Q| = nn

except when |Q| = n = 2.

Table 6.3.1 shows the known values for m2(n) for 2 ≤ n ≤ 7, taken from [43, Table 1].
The value is not known for n > 7 except when n is prime, in which case m2(n) is the size
of the largest 2-generated Uℓ,m monoid. The values of nn are also shown for comparison.

We now turn to the case where |∆| < |Q|. Our main result in this case is a formula for
the size of |Uℓ,mτ |, which in turn leads to a lower bound on the worst-case state complexity
of fR.
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n 2 3 4 5 6 7
m2(n) 4 24 176 2110 32262 610871
nn 4 27 256 3125 46656 823543

Table 6.3.1: Values of m2(n) for 2 ≤ n ≤ 7.

Theorem 6.3.9. Let |∆| = k and let |Q| = ℓ + m = n, with 2 ≤ k < n and 1 ≤ ℓ ≤ m.
We define two functions:

(k, ℓ,m)F =
ℓ∑

i=1

(
k

i

)
i!

{
ℓ

i

}
(k − i)m.

(k, ℓ,m)G =





lcm(ℓ,m), if k ≥ 4;

m, if k = 3;

1, if k = 2.

There exists a function τ : Q→ ∆ such that

|Uℓ,mτ | = kn − (k, ℓ,m)F + (k, ℓ,m)G.

The notation
{
ℓ

i

}
means the number of partitions of the set {1, . . . , ℓ} into i parts (that

is, a Stirling number of the second kind).

Proof. We start with a brief outline of the proof strategy. Without loss of generality,
assume ∆ = {1, . . . , k} and Q = {1, . . . , n = ℓ + m}. Define Fℓ,m = {f : Q → ∆ :
{1, . . . , ℓ}f ∩ {ℓ+ 1, . . . , ℓ+m}f = ∅}.

• First, we show that ∆Q = Uℓ,mτ ∪ Fℓ,m for certain τ .

• After proving this, the inclusion-exclusion principle gives the formula

kn = |∆Q| = |Uℓ,mτ | + |Fℓ,m| − |Uℓ,mτ ∩ Fℓ,m|.

• We show that |Fℓ,m| = (k, ℓ,m)F .

• We show that |Uℓ,mτ ∩ Fℓ,m| = (k, ℓ,m)G.

• Rearranging the inclusion-exclusion formula above gives the result.
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Let us show that for an appropriate choice of τ : Q→ ∆, we have ∆Q = Uℓ,mτ ∪Fℓ,m. That
is, every function from Q to ∆ lies in one of Uℓ,mτ or Fℓ,m.

Let α : Q → Q be the permutation (1, . . . , ℓ)(ℓ + 1, . . . , ℓ + m). We select τ with the
following properties:

• τ : Q→ ∆ is surjective.

• {1, . . . , ℓ}τ ∩ {ℓ+ 1, . . . , ℓ+m}τ = ∅, that is, τ ∈ Fℓ,m.

• There exist distinct p, p′ ∈ {ℓ+ 1, . . . , ℓ+m} such that pτ = p′τ .

• The size of the set {αiτ : i ≥ 0} is precisely (k, ℓ,m)G.

We demonstrate that such a function exists after this proof, in Lemma 6.3.11. In that
lemma, we will see existence of such a function requires k < n and ℓ ≤ m; this is the only
place we use these hypotheses.

Now, let g : Q → ∆ be arbitrary. We will show that if g is not in Fℓ,m, then it must
be in Uℓ,mτ , thus proving that ∆Q = Uℓ,mτ ∪ Fℓ,m. To show that g ∈ Uℓ,mτ , we define a
function f : Q→ Q such that f ∈ Uℓ,m and fτ = g.

Since g 6∈ Fℓ,m, there exist distinct elements r ∈ {1, . . . , ℓ} and r′ ∈ {ℓ + 1, . . . , ℓ+ m}
such that rg = r′g. Since τ is surjective, there exists s such that sτ = rg. Furthermore,
we can choose s so that s 6= p′. Indeed, if p′ is one of the possible choices for s, then by
the fact that pτ = p′τ , we can choose s = p instead. Now, we define f : Q → Q for each
q ∈ Q as follows:

• If q ∈ {r, r′}, define qf = s.

• If qg = pτ and q 6∈ {r, r′}, define qf = p.

• Otherwise, choose an element q′ such that q′τ = qg (by surjectivity) and define
qf = q′.

We verify in each case that fτ = g:

• If q = r, then rf = s, so rfτ = sτ = rg.

• If q = r′, then qf = s, and since rg = r′g we have r′fτ = sτ = rg = r′g.

• If q 6∈ {r, r′} and qg = pτ , then qf = p, so qfτ = pτ = qg.
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• Otherwise, we have qf = q′ such that qfτ = q′τ = qg.

Now, we show that f ∈ Uℓ,m. First, note that there exist elements r ∈ {1, . . . , ℓ} and
r′ ∈ {ℓ + 1, . . . , ℓ + m} such that rf = r′f . Next, observe that the element p′ ∈ {ℓ +
1, . . . , ℓ + m} is not in the image of f . To see this, note that if we have qf = p′, then we
have qfτ = p′τ = pτ . But qfτ = qg, so this implies qg = pτ . In the case where qg = pτ ,
we defined qf = p 6= p′, so this is a contradiction. It follows that f meets the conditions
to belong to Uℓ,m.

This proves that if g : Q→ ∆ is not in Fℓ,m, then g ∈ Uℓ,mτ and thus ∆Q = Uℓ,mτ∪Fℓ,m.
Next, we show that |Fℓ,m| = (k, ℓ,m)F .

Write f ∈ Fℓ,m in “list notation” as [a1, a2, . . . , aℓ, b1, b2, . . . , bm], where if = ai and (ℓ+
i)f = bi. For this function to lie in Fℓ,m, we must have the property that {a1, a2, . . . , aℓ} ∩
{b1, b2, . . . , bm} = ∅. Note that since Fℓ,m is a set of functions from Q to ∆, we have
{a1, . . . , aℓ}, {b1, . . . , bm} ⊆ ∆. We count the number of distinct “function lists” in Fℓ,m as
follows:

• Fix a set S ⊆ ∆ and assume {a1, . . . , aℓ} = S. Let |S| = i.

• In the first segment [a1, . . . , aℓ] of the list, each ai can be a arbitrary element of S.
However, since {a1, . . . , aℓ} = S, each element of S must appear at least once in the
list. Thus the first segment [a1, . . . , aℓ] of the list represents a surjective function from
{1, . . . , ℓ} onto S. Since |S| = i, the number of such surjective functions is i!

{
ℓ

i

}
,

where
{
ℓ

i

}
denotes a Stirling number of the second kind (the number of partitions of

{1, . . . , ℓ} into i parts).

• In the second segment [b1, . . . , bm] of the list, each bi must be an element of ∆ \ S,
since we want {a1, . . . , aℓ} ∩ {b1, . . . , bm} = ∅. Since |S| = i and |∆| = k, there are
k − i elements to pick from in ∆ \ S, and we need to choose m of them. Thus there
are (k − i)m choices for the second segment of the list.

• In total, for a fixed set S of size i, there are i!
{
ℓ

i

}
(k − i)m distinct lists that have

{a1, . . . , ak} = S.

• Now, we take the sum over all possible choices for the set S. Since S = {a1, . . . , aℓ}
and S is non-empty, we have 1 ≤ |S| ≤ ℓ. For each set size i, there are

(
k

i

)
ways to

choose S ⊆ ∆ with |S| = i. Thus the total number of functions in Fℓ,m is

ℓ∑

i=1

(
k

i

)
i!

{
ℓ

i

}
(k − i)m = (k, ℓ,m)F.
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Next, we show that |Uℓ,mτ ∩ Fℓ,m| = (k, ℓ,m)G. We claim that

Uℓ,mτ ∩ Fℓ,m =

{
∅, if τ 6∈ Fℓ,m;

{αiτ : i ≥ 0}, if τ ∈ Fℓ,m.

Then the size equality with (k, ℓ,m)G follows from the properties of τ .

To see the claim, suppose that gτ ∈ Fℓ,m for some g ∈ Uℓ,m. Since g ∈ Uℓ,m, either
g = αi for some i, or there exists p ∈ {1, . . . , ℓ} and q ∈ {ℓ+1, . . . , ℓ+m} such that pg = qg.
In the latter case, pgτ = qgτ , which contradicts the assumption that gτ is in Fℓ,m. Hence
g = αi for some i ≥ 0, and so gτ = αiτ . Now, note that {1, . . . , ℓ}αiτ = {1, . . . , ℓ}τ , and
{ℓ+ 1, . . . , ℓ+m}αiτ = {ℓ+ 1, . . . , ℓ+m}τ . Thus αiτ is in Fℓ,m if and only if τ is in Fℓ,m,
and the claim follows.

Finally, we can conclude the proof. Recall that |∆| = k and |Q| = n, and thus
|∆Q| = |∆||Q| = kn. Thus by the inclusion-exclusion principle, we have

kn = |∆Q| = |Uℓ,mτ | + |Fℓ,m| − |Uℓ,mτ ∩ Fℓ,m|.

Rearranging this, we get:

|Uℓ,mτ | = kn − |Fℓ,m| + |Uℓ,mτ ∩ Fℓ,m|.

We proved that |Fℓ,m| = (k, ℓ,m)F and |Uℓ,mτ∩Fℓ,m| = (k, ℓ,m)G. It follows that |Uℓ,mτ | =
kn − (k, ℓ,m)F + (k, ℓ,m)G, as required.

This theorem gives the following lower bound on the worst-case state complexity of
DFAO reversal when |Σ| = 2.

Corollary 6.3.10. Let |Q| = n ≥ 2 and |∆| = k ≥ 2. There exists an accessible DFAO
D = (Q,Σ, T, 1,∆, τ) computing function f , with |Σ| = 2 and k < n, such that the state
complexity of fR is

max{kn − (k, ℓ,m)F + (k, ℓ,m)G : 1 < ℓ < m, ℓ+m = n, gcd(ℓ,m) = 1}.

Proof. Pick ℓ and m such that 1 < ℓ < m, ℓ + m = n and gcd(ℓ,m) = 1. Then Uℓ,m can
be generated by two elements. Hence we can construct a DFAO D over a binary alphabet
with state set Q = {1, . . . , n} and transition monoid Uℓ,m. This DFAO will be accessible:
all states in {1, . . . , ℓ} are reachable by α = (1, . . . , ℓ)(ℓ+ 1, . . . , ℓ+m), and Uℓ,m contains
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elements which map 1 to ℓ+ 1, so the rest of the states are reachable. By Theorem 6.3.9,
there exists τ : Q→ ∆ such that

|Uℓ,mτ | = kn − (k, ℓ,m)F + (k, ℓ,m)G.

Take τ as the output map of D. Then by Proposition 6.3.2, the state complexity of fR is
|Uℓ,mτ |. Taking the maximum over all values of ℓ and m that satisfy the desired properties
gives the result.

Table 6.3.2 gives the values of this lower bound for various values of |∆| = k and |Q| = n
with k < n. Note that for n ∈ {1, 2, 3, 4, 6} there are no pairs (ℓ,m) such that 1 < ℓ < m,
ℓ+m = n and gcd(ℓ,m) = 1, so those values of n are ignored. Note that for |∆| = 2, this

k\n 5 6 7 8 9
2 31 − 127 255 511
3 216 − 2125 6452 19550
4 826 − 15472 63403 258360
5 − − 71037 368020 1902365
6 − − 243438 1539561 9657446

Table 6.3.2: Values for the lower bound of Corollary 6.3.10.

lower bound is off by one from the upper bound of 2n. The known examples where the
upper bound 2n is achieved do not use Uℓ,m monoids.

We suspect the lower bound of Corollary 6.3.10 may be optimal for n ≥ 7. We were
unable to find any examples exceeding the bound through computational experiments.

The case of n = 5, which is the only case below 7 where our lower bound is defined,
is rather interesting. Holzer and König proved by brute force search that the largest 2-
generated transformation monoid of degree 5 is V 1

5 , so one might expect that the maximal
values of |Mτ | in the n = 5 case would be given by taking M = V 1

5 . Indeed, for (k, n) =
(3, 5), the true maximum is 218, and this is achieved by |V 1

5 τ | with τ = [1, 2, 1, 2, 3].
However, for (k, n) = (4, 5): the value 826 is achieved by |U2,3τ | with τ = [1, 2, 3, 4, 4],
while the maximal value of |V 1

5 τ | over all τ and d is 789, despite the fact that |U2,3| = 1857
and |V 1

5 | = 2110. Thus maximal monoids M do not necessarily give the maximal values
for |Mτ |.

In the proof of Theorem 6.3.9, we used the fact that a function with certain properties
exists. We now give a rather tedious proof of this fact.
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Lemma 6.3.11. Let ∆ = {1, . . . , k} and let Q = {1, . . . , n}, with 2 ≤ k < n. Fix
ℓ and m such that ℓ + m = n and 1 ≤ ℓ ≤ m. Let α : Q → Q be the permutation
α = (1, . . . , ℓ)(ℓ + 1, . . . , ℓ + m). There exists a function τ : Q → ∆ with the following
properties:

• τ : Q→ ∆ is surjective.

• {1, . . . , ℓ}τ ∩ {ℓ+ 1, . . . , ℓ+m}τ = ∅.

• There exist distinct p, p′ ∈ {ℓ+ 1, . . . , ℓ+m} such that pτ = p′τ .

• The size of the set {αiτ : i ≥ 0} is precisely given by the function (k, ℓ,m)G defined
in Theorem 6.3.9.

Proof. For |∆| = k ≥ 3 and (ℓ,m) 6= (2, 2), we define τ as follows:

1. We partition ∆ into two sets L and M , with |L| = min{k − 2, ℓ}.

2. (a) If |L| = ℓ, let L = {1, . . . , ℓ} and define iτ = i for 1 ≤ i ≤ ℓ.
(b) If |L| = k − 2 < ℓ, write L = {1, . . . , k − 2} and define iτ = i for 1 ≤ i ≤ k − 2.
Define iτ = k − 2 for k − 1 ≤ i ≤ ℓ.

3. Consider |M | = k − |L|.
(a) Suppose k−2 ≥ ℓ, and thus |L| = ℓ. Then ℓ+2 ≤ k < n = ℓ+m, so 2 ≤ k−ℓ < m.
Thus 2 ≤ |M | < m.
(b) Suppose k − 2 < ℓ, and thus |L| = k − 2. Then |M | = k − ℓ = 2.

4. (a) If |L| = ℓ, we have M = {ℓ + 1, . . . , ℓ + j}, where j < m is such that ℓ + j = k.
Define (ℓ+ i)τ = ℓ+ i for 1 ≤ i ≤ j. Define (ℓ+ i)τ = ℓ+ j = k for j + 1 ≤ i ≤ m.
(b) If |L| = k− 2, we have M = {k− 1, k}. Define (ℓ+ 1)τ = k− 1 and (ℓ+ i)τ = k
for 2 ≤ i ≤ m.

To illustrate this construction, we give three examples of τ for different values of k, ℓ and
m. If k = 6, ℓ = 3 and m = 5, we partition ∆ = {1, 2, 3, 4, 5, 6} into L = {1, 2, 3} and
M = {4, 5, 6}, and we get

τ =

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 6 6

)
.
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If k = 5, ℓ = 4 and m = 5, we partition ∆ = {1, 2, 3, 4, 5} into L = {1, 2, 3} and M = {4, 5},
and we get

τ =

(
1 2 3 4 5 6 7 8 9
1 2 3 3 4 5 5 5 5

)
.

If k = 3, ℓ = 4 and m = 4, we partition ∆ = {1, 2, 3, 4, 5} into L = {1} and M = {2, 3},
and we get

τ =

(
1 2 3 4 5 6 7 8
1 1 1 1 2 3 3 3

)
.

Note that in all cases, {1, . . . , ℓ}τ = L and {ℓ+ 1, . . . , ℓ+m}τ = M .

This covers the definition of τ for k ≥ 3 and (ℓ,m) 6= (2, 2). In the special case where
k ≥ 3 and (ℓ,m) = (2, 2), the fact that k < n = ℓ+m = 4 implies k = 3. Here we define

τ =

(
1 2 3 4
1 2 3 3

)
.

Finally, for k = 2, we define τ by iτ = 1 for 1 ≤ i ≤ ℓ and iτ = 2 for ℓ+ 1 ≤ i ≤ ℓ+m.

We now demonstrate τ has all the desired properties. The surjectivity of τ and the fact
that {1, . . . , ℓ}τ ∩ {ℓ + 1, . . . , ℓ + m}τ = ∅ can be easily verified by a close reading of the
definition.

Consider the third property: there exist distinct p, p′ ∈ {ℓ + 1, . . . , ℓ + m} such that
pτ = p′τ . We can see this from the construction of τ as follows:

• For k ≥ 3 and (ℓ,m) 6= (2, 2), observe that we have {ℓ + 1, . . . , ℓ + m}τ = M . If
|L| = ℓ, we have |M | < m, so τ must identify two elements of {ℓ + 1, . . . , ℓ+m}. If
|L| = k − 2, then |M | = 2, so we have |M | < m in all cases except m = 2. But if
m = 2, then ℓ ≤ m implies ℓ ≤ 2. Since (ℓ,m) 6= (2, 2), we must have ℓ = 1; but the
fact that k < n = ℓ + m implies k < 3, which is a contradiction. So if k ≥ 3 and
(ℓ,m) 6= (2, 2), then {ℓ+ 1, . . . , ℓ+m} gets mapped onto a set of size less than m by
τ .

• For k ≥ 3 and (ℓ,m) = (2, 2), we see that 3τ = 4τ .

• For k = 2, by the fact that k < n = ℓ + m we must have m ≥ 2, and so (ℓ + 1)τ =
(ℓ+m)τ = 2 and ℓ+ 1 6= ℓ+m.

Finally, consider the last property: the set {αiτ : i ≥ 0} has size G(k, ℓ,m). That is, it
has size lcm(ℓ,m) if k ≥ 4, size m if k = 3, and size 1 if k = 2.
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Write τ in “list notation” as [a1, a2, . . . , an], where iτ = ai for 1 ≤ i ≤ n. Note that
L = {a1, . . . , aℓ} and M = {aℓ+1, . . . , aℓ+m}. Observe that the list notation for ατ is
[a1α, a2α, . . . , anα]. Similarly, the list notation for αiτ is [a1αi , a2αi , . . . , anαi]. It follows that
the number of distinct “function lists” in the set {αiτ : i ≥ 0} is bounded by the order of
the permutation α, which is lcm(ℓ,m).

For k ≥ 4, we will show that all lcm(ℓ,m) of these lists are distinct. To see this, let
q be the smallest element of M , and consider where the values 1 and q appear in the list
[a1αi , a2αi , . . . , anαi ]. By the definition of α, the value 1 must appear at some position pi
with 1 ≤ pi ≤ ℓ and pi + i ≡ 1 (mod ℓ). Similarly, the value q must appear some position
ri with ℓ+ 1 ≤ ri ≤ ℓ+m and ri + i ≡ q (mod m). Notice that by the definition of τ , the
elements 1 and q have unique preimages under τ , and thus each only appears once in the
list.

We claim that if i 6≡ j (mod lcm(ℓ,m)), then (pi, ri) 6= (pj , rj). To see this, suppose
for a contradiction that (pi, ri) = (pj, rj). Since pi = pj, and we have pi + i ≡ pj + j ≡ 1
(mod ℓ), it follows that i ≡ j (mod ℓ). Similarly, we have i ≡ j (mod m). Write i = j+xℓ
for some integer x; then we have j+xℓ ≡ j (mod m). It follows xℓ ≡ 0 (mod m) and thus
m divides xℓ. Since m and ℓ both divide xℓ, it follows that lcm(ℓ,m) divides xℓ, and so
we can write xℓ = y lcm(m, ℓ) for some integer y. Thus i = j + y lcm(m, ℓ) and it follows
that i ≡ j (mod lcm(m, ℓ)).

This proves that if αi 6= αj, then the positions of 1 and q in the lists for αiτ and αjτ
will be different. Thus αiτ 6= αjτ , and it follows the size of {αiτ : i ≥ 0} is precisely the
order of the permutation α, which is lcm(ℓ,m).

This deals with the k ≥ 4 case. For k = 3, first suppose (ℓ,m) 6= (2, 2). Since k = 3,
we have k − 2 = 1, so we always have min{k − 2, ℓ} = k − 2. In this case, recall that we
have iτ = k − 2 = 1 for 1 ≤ i ≤ ℓ.

It follows that L = {a1, . . . , aℓ} = {1}, so the list notation for τ ◦ αi looks like
[1, 1, . . . , 1, a(ℓ+1)αi , . . . , a(ℓ+m)αi ]. Hence in this case, we get m distinct lists, corresponding
to the m possible positions of q (which still has a unique preimage under τ) in the second
part of the list.

For k = 3 and (ℓ,m) = (2, 2), it is easy to see we get m = 2 lists: [1, 2, 3, 3] and
[2, 1, 3, 3]. Finally, for k = 2, we just have one list [1, 1, . . . , 1, 2, 2, . . . , 2], where there are ℓ
1’s and m 2’s. This proves that {αiτ : i ≥ 0} = (k, ℓ,m)G in all cases, and thus completes
the proof of the lemma.

This concludes our excursion into the world of DFAOs. Although most of this chapter
was occupied by a challenging lower bound proof, we learned a useful fact about reversal
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that applies just as well to ordinary DFAs: the state complexity of reversal is completely
determined by the transition monoid and the output map (or final state set in the case of
DFAs). We also learned an alternative reverse automaton construction that is based on
function composition, rather than the intuitive method of reversing the transitions. This
gives us a new way of understanding DFA reversal, though it remains to be seen whether
this new perspective is useful for proofs.
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Chapter 7

Revisiting State Complexity of
Regular Languages

7.1 Applying the OLPA Approach

Armed with our new techniques, we revisit the four operational state complexity problems
covered in Section 2.4.5: reversal, concatenation, star and boolean operations. Through-
out this chapter, we consider only restricted state complexity and thus assume that the
operands of multiary operations are all over the same alphabet. This is because we have
not developed a version of our OLPA theory that applies to unrestricted state complex-
ity. While some of our other techniques can be applied to unrestricted state complexity
problems, the OLPA approach is the cornerstone of our methods.

Reversal. Using OLPA witnesses, we give two short proofs that the state complexity of the
reversal operation is 2n, The fact that 2n is an upper bound is clear from the construction
of the reverse automaton, so we simply prove tightness of the bound.

Proof 1. Fix a non-empty proper subset F of {1, . . . , n} and let D be the standard DFA
for the full transformation language Tn(1, F ). The transition monoid of the DFA is Tn. By
Corollary 6.3.3, the state complexity of the reverse (Tn(1, F ))R is |TnχF |. We claim that
TnχF contains all 2n functions f : {1, . . . , n} → {0, 1}. Indeed, since F is non-empty and
proper, there exist states p and q of D such that pχF = 0 and qχF = 1. To construct
f : {1, . . . , n} → {0, 1}, choose a transformation t ∈ Tn that maps i ∈ {1, . . . , n} to p if
if = 0, and maps i to q if if = 1. Then tχF = f .

Proof 2. Now we give a more direct proof that does not rely on the developments of Chapter
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6. Fix a non-empty proper subset F of {1, . . . , n} and let D = (Q,Σ, T, 1, F ) be the
standard DFA for the full transformation language Tn(1, F ). Let R be the corresponding
reverse automaton. The transition relation TR of R satisfies STR

a = {q ∈ Q : qTa ∈ S};
it maps a set S to the set of all states with transitions leading into S. The initial state
of R is the set F . For each S ⊆ Q, let t ∈ Tn be a function that maps S into F and
Q \ S into Q \ F ; this is possible since F is non-empty and proper, so F and Q \ F are
both non-empty. Then FTR

t = S, and it follows that all 2n states of R are reachable. By
Lemma 2.4.24, all states of R are pairwise distinguishable.

Star. Next, we apply OLPA witnesses to the star operation. In the case of reversal, the
upper bound 2n was independent of the number of final states in the input DFA for the
operation. However, for star, the number of final states matters; the absolute upper bound
2n−1 + 2n−2 can only be reached if the input DFA has exactly one final state which is
non-initial. We will establish more general upper bound formulas for star which account
for the number of final states and whether or not the initial state is final.

Theorem 7.1.1. Let L be a regular language recognized by D = (Q,Σ, T, 1, F ), where
|Q| = n and |F | = k. Suppose 1 ≤ |F | ≤ n − 1. If F = {1} then L = L∗, and otherwise
we have the following tight upper bounds on sc(L∗):

sc(L∗) ≤

{
2n−1 + 2n−k−1, if 1 6∈ F ;

2n−1 + 2n−k − 1, if 1 ∈ F and |F | ≥ 2.

Proof. By Theorem 3.3.7, it suffices to just compute the state complexity of L∗ for L ∈
{Tn(1, Fn,k,j) : 0 ≤ j ≤ 1, 0 + j ≤ k ≤ n − 1 + j} and show that the stated bounds are
attained. Indeed, we know that these particular witnesses are guaranteed to maximize the
state complexity, so whatever state complexity values we obtain for these languages will
be tight upper bounds.

Fix L in the aforementioned set of witnesses and let D = (Q, Tn, T, 1, Fn,k,j) be the
standard DFA for L. Let S be the star automaton corresponding to D. Henceforth we
assume that F 6= {1}, since otherwise S just recognizes L.

We show each non-empty set S ⊆ Q in S is reachable by induction on |S|. Since we
are working with OLPA witnesses, we are free to use whatever transformations we want in
this proof. From {s} we reach {q} for each q ∈ Q by a transformation that sends 1 to q.
Now suppose |S| ≥ 2 and smaller sets are reachable. Choose a set X of size |S| − 1 which
contains a final state but does not contain 1; this is possible since F 6= {1}. Fix q ∈ S and
choose a transformation t that maps X onto S \{q} and 1 to q; then t sends X to S. Thus
all non-empty subsets of Q are reachable.
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We show that sets in the following collection are pairwise distinguishable:

{S ⊆ Q : S 6= ∅ and S ∩ F = ∅} ∪ {S ⊆ Q : 1 ∈ S and S ∩ F 6= ∅}.

If a non-empty set S is not in this collection, it contains a final state but does not contain
1, and the set S is indistinguishable from S ∪ {1}. To distinguish distinct sets S and X
in this collection, choose an element q which appears (without loss of generality) in S but
not in X , and apply a transformation t which maps q into F and Q \ {q} into Q \F . Note
also that if 1 6∈ F then {s} is distinguishable from all states in this collection, but if 1 ∈ F
then {s} and {1} are indistinguishable.

Now we count the number of states in this collection. If 1 6∈ F , this collection has size
(2n−k−1) + 2n−k−1(2k−1) = 2n−1 + 2n−k−1−1. The final state {s} is distinguishable from
other final states in this collection by a transformation that sends 1 to a non-final state and
fixes all other elements; thus we add one more distinguishable state and reach the stated
bound. If 1 ∈ F , this collection has size (2n−k − 1) + 2n−k(2k−1) = 2n−1 + 2n−k − 1. Here,
{s} and {1} are indistinguishable, so there is no extra state to add.

Remark. In principle, we might be able simplify the above proof slightly by using the
results of Section 5.4 for the reachability argument, rather than using induction. However,
the OLPA approach makes the induction proof so short and simple that this is not really
worth the effort.

Concatenation. Similarly to star, the state complexity of binary concatenation is influ-
enced by the final state set of the left input. We will use the OLPA approach to establish
a general upper bound for binary concatenation.

Theorem 7.1.2. Let L′ be recognized by D′ = (Q′,Σ′, T ′, 1, F ′), and let L be recognized by
D = (Q,Σ, T, 1, F ), with Σ′ = Σ. Let |Q′| = m, |Q| = n, |F ′| = j, and |F | = k. Suppose
1 ≤ |F ′| ≤ m and 1 ≤ |F | ≤ n− 1. We have the following tight upper bounds on sc(L′L):

sc(L′L) ≤

{
(m− j)2n + j2n−1, if 1 6∈ F ′;

(m− j)2n + j2n−1 − (m− j), if 1 ∈ F ′.

Additionally, if |F | = n, we have sc(L′L) = m− j + 1.

Proof. First we deal with the special case of |F | = n. It is clear that two states (p′, S)
and (q′, T ) are indistinguishable if S and T are non-empty, since then they are both final
and there is no way to escape to a non-final state. All states of this form collapse into one
indistinguishability class. All that remains are states of the form (q′, ∅) with q′ non-final
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(if q′ is final, then the second component will be non-empty). These states are clearly
distinguishable from each other. There are m− j distinguishable states of the form (q′, ∅),
plus the one large indistinguishability class, for a total of m− j + 1.

Now assume 1 ≤ |F | ≤ n − 1. By Theorem 3.4.7, it suffices to compute the state
complexity for the OLPA witnesses of the form T1(1, Fm,j,ℓ1) and T2(1, Fn,k,ℓ2), where the
parameters m,n, j, k are as in the theorem statement, and the parameters ℓi for 1 ≤ i ≤ 2
determine whether the initial state is final in the standard DFA of each witness.

Let C be the concatenation automaton for our two witnesses. If 1 ∈ F ′, the initial state
of C is (1, {1}). We will use the techniques of Chapter 5 to show that the desired states are
reachable. Let 1 be the focus, let {1} be the base set, and let Q be the target set. Let aq
be a letter with action (id, (1, q)); that is, letter a acts as the identity in the left DFA D′

and acts as the cycle (1, 2, . . . , n) in the right DFA D. Then we have (1, {1})
aq
−→ (1, {1, q}),

so {a1, . . . , an} is a construction set. It is complete by Theorem 5.2.8, since each ai acts
as a permutation on the target Q. Thus every state (1, S) with S ⊆ Q and 1 ∈ S is
reachable. Via the action ((1, q′), id) we reach (q′, S) for each q′ ∈ Q′. To reach (q′, S) with
q′ non-final, S non-empty, and 1 6∈ S, fix s ∈ S and apply the action (id, (1 → s)).

Let us count the states we have reached. For each of the m− j non-final states q′, we
reach (q′, S) for arbitrary non-empty S; this gives (m− j)(2n − 1) = (m− j)2n − (m− j)
states. For each of the j final states q′, we reach (q′, S) for all S containing 1; this gives
j2n−1 states. In total we reach (m− j)2n + j2n−1 − (m− j) states, as required.

We claim that if 1 ∈ F ′, we cannot reach any more states. Indeed, suppose (q′, S) is
reachable. If q′ is final, then S must contain 1 by the nature of the concatenation transition
relation, and we have already reached all such states. If q′ is non-final, we have reached
all states except those of the form (q′, ∅); but these are not reachable since the second
component of the initial state is a non-empty set, and there is no action that can make
this component into an empty set.

This establishes that in the case where 1 ∈ F ′, the number of reachable states matches
the stated upper bound. If 1 6∈ F ′, then the initial state is (1, ∅), and via the action
((1, q′), id) we can reach (q′, ∅) for all non-final q′. So an additional m − j states are
reachable in this case, as expected. It is clear that no more states are reachable, so once
again the number of reachable states matches the stated upper bound.

Now we consider distinguishability. Let (p′, S) and (q′, T ) be distinct states of C. If
S 6= T , we define a transformation t that maps the elements of Q as follows:

• Map S ∩ T outside of F .
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• One of S \ T or T \ S must be non-empty. Choose one of the two that is non-empty,
and map it into F . Map the other one outside of F .

• Map everything remaining outside of F .

When we apply the action (id, t), the result is that either S or T is mapped to a set that
intersects F , and the other is mapped entirely outside of F . This distinguishes the states.

If S = T , then we must have p′ 6= q′. First, if S = T = Q, apply (id, (Q→ 1)) to reach
(p′, {1}) and (q′, {1}). Next, if p′ and q′ are both final, choose a non-final state r′ and a
final state s′ and apply the action ((p′, r′)(q′, s′), id). Now we have reached (r′, {1}) and
(s′, {1}) where r′ is non-final and s′ is final. Finally, apply (id, (1, 2)) to reach (r′, {2}) and
(s′, {1, 2}). Now the second components are not equal, and we can use previous arguments.

We have shown the desired numbers of states are reachable and pairwise distinguishable,
completing the proof.

Boolean operations. Next we use the OLPA approach to derive a general bound for
m-ary boolean operations. This proof is more complicated than the others in this section,
but only because the result is very general.

It is somewhat tricky to state a tight upper bound for the worst-case state complexity
of an arbitrary m-ary boolean operation, because the operation’s result might not depend
on all of its arguments. For example, if the inputs to a binary boolean operation have
state complexity n1 and n2 respectively, the worst-case state complexity can be 1, n1, n2,
or n1n2, depending on which arguments (if any) are relevant to the result.

To state our upper bound, we introduce some notation. Given an m-ary boolean
function β : {0, 1}m → {0, 1}, we define functions βj : N → N for 1 ≤ j ≤ m as follows. If
there exist two binary m-tuples (b1, . . . , bm) and (b′1, . . . , b

′
m) which differ only in the j-th

bit (that is, bj 6= b′j and bi = b′i for all i 6= j) such that (b1, . . . , bm)β 6= (b′1, . . . , b
′
m)β, then

we define nβj = n for all n ∈ N. Otherwise, it must be the case that for all binary m-tuples,
flipping the j-th bit does not change the result of β; in this case we define nβj = 1 for all
n ∈ N. If βj is the identity map, we say that β depends on argument j, and if βj is the
constant function sending everything to 1, we say that β does not depend on argument j.

Theorem 7.1.3. Let β be an m-ary boolean operation. Let (L1, . . . , Lm) be regular lan-
guages, where Lj is recognized by (Qj,Σ, Tj , 1, Fj) for 1 ≤ j ≤ m. Set nj = |Qj|. Then
sc((L1, . . . , Lm)β) ≤ (n1β1) · · · (nmβm) and this bound is tight.
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Proof. The m-ary direct product construction for boolean operations can be defined as
follows: B = (Q,Σ, T, (1, . . . , 1), F ) where the state set is Q = Q1×· · ·×Qm, the transition
relation is T = {((q1, . . . , qm), a, (q1(T1)a, . . . , qm(Tm)a)) : (q1, . . . , qm) ∈ Q, a ∈ Σ} and the
final state set is F = {(q1, . . . , qm) ∈ Q : (q1χF1, . . . , qmχFm

) = 1}. This construction gives
an upper bound of n1 · · ·nm. To get a tighter bound, we must consider distinguishability.
Consider the following set of states:

{(q1, . . . , qm) ∈ Q : qj = 1 whenever β does not depend on argument j}.

There are precisely (n1β1) · · · (nmβm) states in this set, and we claim that every state lying
outside this set is indistinguishable from a state within the set. To see this, fix a state
(q1, . . . , qm) which is not in the above set. Then there exists j such that qj 6= 1 and β
does not depend on argument j. We claim state (q1, . . . , qm) is indistinguishable from
(q1, . . . , qj−1, 1, qj+1, . . . , qm). Indeed, if two states differ only in component j, and β does
not depend on argument j, then either both states are final or both states are non-final.
Also, starting from a pair of states which differ only in component j, we can only reach
other pairs that differ only in component j. Thus there is no way to distinguish these
states.

Now we show that the upper bound is tight. Our witnesses will be OLPA witnesses
Lj = Tj(1, Fj), where T = Tn1 × · · · × Tnm

and Fj = {1} for 1 ≤ j ≤ m (it does not really
matter what we choose for Fj , as long as for nj ≥ 2 it is a proper non-empty subset of
{1, . . . , nj}).

The initial state of the direct product DFA is (1, . . . , 1). For each state (q1, . . . , qm) ∈ Q,
let tj be a transformation that sends 1 to qj . Then the letter (t1, . . . , tm) ∈ T sends the
initial state to (q1, . . . , qm); thus all states are reachable.

Next we show that all pairs of states in {(q1β1, . . . , qmβm) : (q1, . . . , qm) ∈ Q}, which has
size (n1β1) · · · (nmβm), are distinguishable. Suppose we have two states (q1β1, . . . , qmβm)
and (q′1β1, . . . , q

′
mβm). Since they are distinct, they must differ in some component j, and

for this j we must have qjβj = qj and q′jβj = q′j . Hence there exist two binary m-tuples
(b1, . . . , bm) and (b′1, . . . , b

′
m) which differ only in component j such that (b1, . . . , bm)β 6=

(b′1, . . . , b
′
m)β. Assume without loss of generality that (b1, . . . , bm)β = 1 and (b′1, . . . , b

′
m)β =

0.

Now, choose a tuple of transformations (t1, . . . , tm) ∈ T as follows:

• Choose tj so that qjtjχFj
= bj and q′jtjχFj

= b′j .

• For i 6= j, if β depends on argument i, choose ti so that (qiti)χFi
= bi = b′i. If β does

not depend on argument i, let ti be the identity map.
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Now, we claim that (q1β1, . . . , qmβm)(t1, . . . , tm) is a final state. To determine whether
the reached state (q1β1t1, . . . , qmβmtm) is final, we look at the following binary m-tuple:
(q1β1t1χF1, . . . , qmβmtmχFm

). If β depends on argument i (including the case i = j)
then we have qiβitiχFi

= bi. If β does not depend on argument i, then qiβi = 1,
transformation ti is the identity map, and Fi = {1}, so we have qiβitiχFi

= 1. Thus

(q1β1t1χF1, . . . , qmβmtmχFm
) = (b̃1, . . . , b̃m), where b̃i is bi if β depends on argument i, and

b̃i is 1 otherwise. Now, we know that if β does not depend on argument i, then flipping
the i-th bit in a binary m-tuple will not change the result of applying β to that m-tuple.
So by flipping bits if necessary, we see that

(b̃1, . . . , b̃m)β = (b1, . . . , bm)β = 1.

Hence (q1β1, . . . , qmβm)(t1, . . . , tm) is a final state.

On the other hand, consider the state (q′1β1, . . . , q
′
mβm)(t1, . . . , tm). For this state we

have (q′1β1t1χF1 , . . . , q
′
mβmtmχFm

) = (b̃′1, . . . , b̃
′
m), where b̃′i is b′i if β depends on argument

i, and b̃′i is 1 otherwise. Thus by the same bit-flipping argument, we have

(b̃′1, . . . , b̃
′
m)β = (b′1, . . . , b

′
m)β = 0.

Thus this state is not final, and we have distinguished the two states.

Minimal alphabets. Since the OLPA approach uses extremely large alphabets, we will
finish off this section by demonstrating that we can maximize the state complexity of
reversal, star, concatenation, and binary boolean operations using witnesses with only two
letters.

We have actually already seen this for three of these four operations:

• In Theorem 5.4.7, we saw a two-letter witness for star.

• In Section 5.3, we saw a number of two-letter witnesses for concatenation.

• In Example 4.4.7, we saw a two-letter witness that works for all proper binary boolean
operations.

It remains to consider reversal. To define our witness, we will use a generating set for the
monoid V 1

n of Definition 6.3.7. A similar witness appeared in [60].

Theorem 7.1.4. Let D = (Q,Σ, T, 1, F ) be a DFA with Q = {1, . . . , n}, actions a =
(1, 2, . . . , n) and b = (2 → 1), and final state set F = {2k : 1 ≤ k ≤ ⌊n/2⌋}. The state
complexity of L(D)R is 2n.
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Proof. We know from Section 6.3 that the transition monoid of D is V 1
n . It suffices to show

that |V 1
nχF | = 2n. For each function f : {1, . . . , n} → {0, 1}, we must find a transformation

t ∈ V 1
n such that tχF = f .

Recall that a transformation t : Q → Q belongs to V 1
n if and only if it satisfies one of

the following conditions:

1. There exists i ≥ 0 such that t = (1, 2, . . . , n)i = ai.

2. There exist i, j ∈ {1, . . . , n} such that it = jt and j ≡ i + 1 (mod n).

If if = 1, we need itχF = 1, and so it must be even. Similarly, if if = 0, then it must be
odd. Thus, we define t as follows:

• If if = 1 and i is even, then it = i.

• If if = 1 and i is odd, then it ≡ i− 1 (mod n).

• If if = 0 and i is even, then it ≡ i− 1 (mod n).

• If if = 0 and i is odd, then it = i.

We claim this transformation belongs to V 1
n . To see this, first assume that if = jf for

some i and j such that j ≡ i + 1 (mod n). Assume without loss of generality that if = 1
and i is even. Then jf = 1 and j is odd. Thus it = i, and jt ≡ j − 1 ≡ i (mod n), so
jt = i. Thus t identifies i and j and it follows that t belongs to V 1

n . Now suppose that this
assumption does not hold. Then if we write f in “list notation” as [1f, 2f, . . . , nf ], this
list cannot contain two adjacent elements that are equal. Furthermore, 1f and nf cannot
be equal. This implies that n is even and the list looks like either [0, 1, 0, 1, . . . , 0, 1] or
[1, 0, 1, 0, . . . , 1, 0]. A routine computation shows then that either t = a−1 = an−1 or t = id,
and so t belongs to V 1

n . It is then clear that tχF = f , completing the proof.

7.2 Future Work

To conclude the thesis, we discuss possible avenues for future research in the area of
algebraic approaches to state complexity.

The OLPA approach. The OLPA approach seems to be extensible in a number of
ways. In particular, it seems that it should be useful in certain subclasses of regular
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languages. For example, in the class of group languages, it seems that one could mimic
the approach, but use the symmetric group to play the role of the full transformation
monoid. Rather than marginal extensions like this, however, what would be ideal is a
generic theorem that applies to arbitrary subclasses. The author has made some progress
in this direction, but there are some difficulties in formulated such a general result. There
are some subclasses where the OLPA approach technically “works” but is simply not
useful because the number of OLPA witnesses that must be considered is too large. A
clear division should be articulated between classes like the group languages, where the
approach works just as well as for regular languages, and more badly-behaved classes where
the approach is not useful. Another issue is that the notation becomes very complex and
cumbersome when working in such generality.

It also seems feasible to extend the OLPA approach to unrestricted state complexity.
This would likely require looking at incomplete DFAs, where the transition function is
a partial function rather than a total function, since these DFAs are used in computing
unrestricted state complexity.

Only a handful of “interesting” operations are known for which the OLPA approach
does not work. It may be a fruitful project to attempt to find more of these operations,
and to study the state complexity problems for these operations.

Boolean operations. When studying boolean operations, we mostly restricted our at-
tention to group languages and other languages which contain a “significant” subgroup
of permutations in their syntactic monoid. However, there are languages whose syntactic
monoid contains no permutations! Thus it would be very interesting to investigate more
general monoids and see if some of our results can be generalized, or if useful new results
can be discovered.

Our results on boolean operations relied on the input DFAs being dissimilar. We only
briefly investigated the case of similar DFAs. Can we say anything interesting about this
case?

We considered only binary boolean operations. What can we say about boolean oper-
ations of higher arity?

Concatenation and star. We found two examples of concatenation witnesses for which
our construction set technique is not useful. Can we find more examples? Is there perhaps
a different general technique that applies to these examples?

We have done very little investigation on the efficacy of the construction set method
for star. It would be useful to have a survey of its effectiveness on different witnesses from
across the literature, similar to the one we conducted for concatenation.
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Reversal and DFAOs. The problem of finding a tight upper bound for DFAO reversal in
the binary alphabet case remains unsolved. In fact, we do not even know how to determine
the largest 2-generated transformation monoid! To our knowledge, the results of Holzer and
König [43] and Krawetz, Lawrence and Shallit [59] have not been improved, even though it
has been over a decade. Solving the 2-generated monoid problem would not immediately
solve the binary DFAO reversal problem, but the techniques used might bring us closer to
a solution.

In the ordinary DFA case, we have not deeply investigated necessary and sufficient
conditions for state complexity of reversal to be maximized. Considering that the state
complexity of reversal depends heavily on the transition monoid, it seems likely that there
could be nice algebraic conditions, similar to the ones we discovered for boolean operations.

Conclusion. The goal of this thesis was to impress upon the reader the usefulness of
a monoid-theoretic viewpoint in studying state complexity, and outline some interesting
algebraic techniques for simplifying proofs. There are many more operations, subclasses
and problems out there to investigate and understand. I hope this work will prove useful
and inspiring to other researchers.

– Sylvie
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[45] J. Jirásek and G. Jirásková. The exact complexity of star-complement-star. In
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[49] G. Jirásková and M. Krausová. Complexity in prefix-free regular languages. In I. Mc-
Quillan, G. Pighizzini, and B. Trost, editors, DCFS 2010, pages 236–244. University
of Saskatchewan, 2010.
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