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Abstract

In this work, I study the relationship between a local, intrinsic update mechanism and

a synaptic, error-based learning mechanism in ANNs. I present a local intrinsic rule that

I developed, dubbed IP, that was inspired by the Infomax rule. Like Infomax, this IP rule

works by controlling the gain and bias of a neuron to regulate its rate of fire. I discuss the

biological plausibility of this rule and compare it to batch normalisation.

This work demonstrates that local information maximisation can work in conjunction

with synaptic learning rules to improve learning. I show that this IP rule makes deep net-

works more robust to increases in synaptic learning rates, and that it increases the average

value for the slope of the activation functions. I also compare IP to batch normalisation

and Infomax, whose family of solutions were shown to be the same.

In addition, an alternative rule is developed that has many of the same properties as

IP, but instead uses a weighted moving average to compute the desired values for the

neuronal gain and bias rather than the Adamised update rules used by IP. This rule,

dubbed WD, demonstrates universally superior performance when compared to both IP

and standard networks. In particular, it shows faster learning and an increased robustness

to increases in synaptic learning. The gradients of the activation function are compared

to those in standard networks, and the WD method shows drastically larger gradients

on average, suggesting that this intrinsic, information-theoretic rule solves the vanishing

gradient problem. The WD method also outperforms Infomax and a weighted moving

average version of batch normalisation.

Supplementary analysis is done to reinforce the relationship between intrinsic plasticity

and batch normalisation. Specifically, the IP method centers its activation over the median
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of its input distribution, which is equivalent to centering it over the mean of the input

distribution for symmetric distributions. This is done in an attempt to contribute to the

theory of deep ANNs.

Analysis is also provided that demonstrates the IP rule results in neuronal activities

with levels of entropy similar to that of Infomax, when tested on a fixed input distribu-

tion. This same analysis shows that the WD version of intrinsic plasticity also improves

information potential, but fails to reach the same levels as IP and Infomax. Interestingly,

it was observed that batch normalisation also improves information potential, suggesting

that this may be a cause for the efficacy of batch normalisation—an open problem at the

time of this writing.
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Chapter 1

Introduction

The study of how neural learning occurs in the biological brain has led to the development

of artificial neural networks (ANNs) in computer science. The resulting research has largely

focused on the ability of networks to learn through altering the strength of their synapses.

This learning mechanism has a variety of different forms, such as Hebbian learning [1] and

its variants [2], as well as error-based learning, particularly back propagation [3]. I refer to

this family of mechanisms generally as synaptic plasticity.

However, there are other biological mechanisms in neural networks that remain far less

studied. In this thesis, I aim to extend research on one such mechanism: intrinsic plasticity.

Intrinisic plasticity, or IP, refers to the phenomenon of neurons modulating their firing rate

in response to changes in the distribution of their stimuli. This mechanism seems to have

two primary benefits for biological neural networks. The first is that it controls the energy

consumption of a neuron. A biological neuron that is firing all the time consumes far

more calories than a neuron with a low firing rate. This advantage is lost in ANNs, where
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the cost of storing different firing rates is constant. This may be why machine learning

researchers have largely focused on synaptic mechanisms rather than intrinsic ones.

The second benefit is computational and founded in information theory [4]. A neuron

that never fires cannot propagate a signal, but a neuron that fires all the time also fails to

propagate any information about its inputs. Researchers such as Jochen Triesch have built

single-neuron models demonstrating that neurons can effectively learn the ideal activation

function that maximises the information potential of a neuron for a fixed mean firing rate

[5, 6]. As previously noted, artificial networks are unconcerned with maintaining a low

firing rate, and so a rule can be used that strictly maximises information potential. Bell

and Sejnowski’s Infomax rule [7] does exactly this.

Previously, Li and Li used synaptic, error-based algorithms to update the weights in

ANNs in combination with local, intrinsic rules that maximise the information potential of

each neuron by tuning its activation function [8]. This method, which they referred to as

“synergistic learning” has demonstrated that an intrinsic update rule improves performance

when used in conjunction with the error-entropy maximisation (MEE) algorithm, but their

study was limited to networks with only one hidden layer. Recently, deep learning has

shown that networks with multiple hidden layers can greatly improve performance across

domains [9]. For this reason, it remains an important open area of research to evaluate the

impact of IP on learning in deep network architectures.

In this work, I present two novel IP rules, inspired by—but distinct from—the Infomax

rule. I demonstrate that these rules can improve learning when combined with an error

propagating algorithm for learning weights for shallow networks, mirroring the results of

Li and Li for the MEE algorithm.
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I then test the impact that these IP rules have on learning in deep neural networks. The

results show that IP makes deep networks more robust to increases in synaptic learning

rates, indicating that this IP rule may solve the vanishing gradient problem through its

influence on synaptic weight updates. I also compare intrinsic plasticity to batch normali-

sation (BN) [10], showing that both rules have the same family of solutions. Unlike batch

normalisation, the IP rules are more biologically plausible, as they do not require a neuron

to look ahead in time to adjust the activation function, nor do they perfectly shift the

activation function for every distribution of inputs. I build an incremental version of batch

normalisation that is biologically plausible and compare it to these rules. The results sug-

gest that batch normalisation may work because of its impact on the information potential

of neurons, rather than the previously proposed reasons of reducing internal co-variate

shift [10], smoothing the loss function [11], or performing length-direction decoupling [12].

Computational Neuroscience and Machine Learning

Traditionally, computational neuroscience seeks to understand biological brains and neu-

rological systems through the implementation of mathematical models and tools. While

some researchers believe this to include only biologically plausible models, it is my view

that strict adherence to biological plausibility may hinder the rate at which researchers dis-

cover the mathematical principles that underlie brain function and the connection between

neural networks and theory of mind. Simplifying abstractions can behoove the understand-

ing of large-scale network behaviour and macroscopic phenomena without the need for a

perfect model of neurons found in the brain.

3



The work presented here is centered on the study of neural networks, and implementing

mechanisms that improve the ability of a network to perform a given task. While this

may be viewed more appropriately as machine learning, this research draws heavily from

biological inspiration, and the methods implemented are biologically plausible wherever

possible. Network properties that are not the focus of this work, such as synaptic learning

rules, are thus abstracted in a manner that diminishes biological plausibility. Nevertheless,

I feel that this work is best viewed through the lense of computational neuroscience, as its

end is not strictly to improve how a computer may learn to solve a problem, but rather

to view neural behaviour—both biological and artificial—in the context of information

theory. So, rather than being solidly described as either machine learning or theoretical

neuroscience, this work aims to be firmly placed at the intersection of the two.

Outline

This work will first provide the background knowledge that underlies my research in Chap-

ter 2. I begin with Section 2.1 by reviewing the biological brain; first focusing on the fun-

damental computational unit, the neuron, then extending the scope of focus to networks

of neurons and what properties characterise them. I then discuss artificial neural networks

in Section 2.2 and Section 2.3, providing an brief overview of their history as well as the

algorithms that drive their learning.

Section 2.4 then focuses more specifically on the regulatory mechanisms that locally

control a neuron’s rate of fire. These mechanisms, broadly refered to as “intrinsic plasticity”

are central to this work, and the computational advantages provided by them are intimately
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related to information-theoretic principles. I then relate these mechanisms to related work

in machine learning in Section 2.5, by comparing and contrasting them to the method of

batch normalisation.

I then present my own contributions to this area of research in Chapter 3 and Chapter 4.

I present the hypotheses I formulated, regarding the effects of intrinsic plasticity on network

behaviour. I then describe the intrinsic plasticity mechanism I developed and discuss its

biological plausibility. After, I describe the experiments designed to test my hypotheses.

Chapter 3 performs the above experiments for a rule that has a stronger theoretical basis,

while the rule presented in Chapter 4 has stronger results, but has less theoretical support.

Supporting analysis is presented in Chapter 5, where I provide proof that the IP rule

presented in Chapter 3 centers the activation function over the median of its input distri-

bution, demonstrate that the IP rule improves entropy, and expand upon the derivation of

the IP rule.
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Chapter 2

Background

What follows will be an overview of the key areas of research that this thesis extends. It will

be assumed that the reader has a background in high school biology, a basic understanding

of implementating and analysing simple algorithms, and university-level mathematics. In

particular, a background in calculus, linear algebra, basic probability theory, and introduc-

tory ordinary differential equations are important for the reading of this thesis.

2.1 The Biological Brain

The skills of learning, problem solving, and cognition in most complex organisms are al-

most entirely attributed to the functions of our brain. It is important to note that certain

intelligent organisms, such as the octopi, exhibit non-centralised, distributed nervous sys-

tems [18]. However, even in these creatures, the foundations of biological computation are

largely built upon the computational unit of the neuron. Neurons are interesting in how
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they facilitate neuron-to-neuron communication, so it is also useful to describe the connec-

tion between neurons, called synapses. A synapse is a very small gap between two neurons

that facilitates the transmission of chemicals, called neurotransmitters. The convention

used here will be to refer to neurons in terms of “pre-synaptic” neurons sending signals to

“post-synaptic” neurons. A more detailed explanation of neurons and synapses follows.

2.1.1 The neuron

Neurons are cells that are specialised to process and propagate electrical signals. They are

comprised of three main components: dendrites, the soma, and the axon.

Dendrites, or dendrons, are protrusions from the main body of the neuron that receive

stimulus from other neurons. This stimulus arrives in the form of various neurotransmitters,

which are molecules sent from pre-synaptic neurons and bind to the membrane of the

post-synaptic neuron, causing ion channels to open or close. These ion channels allow ions

to flow both in and out of the neuron to change the neuron’s membrane potential—the

difference between the electrical potential inside the neuron as compared to outside the

neuron. Both the dendrites and the soma integrate signals across the membrane, and both

introduce non-linearities into the overall propagation of the signal [19].

The soma is the main body of the neuron. It houses various organelles, each of which

performs a specialised task to maintain the healthy functioning of the cell. Such tasks in-

clude energy production, cellular blueprinting, and the production of the chemicals required

to manufacture the neurotransmitters that send signals between neurons. The computa-

tional role of the soma is sophisticated and not fully understood, but can be simplified

as facilitating the propagation of signals from the dendrites to the axon of the neuron. It
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impacts how this signal is transformed through how it integrates inputs from the dendrites,

and which neurotransmitters are sent down the axon to send signals to later neurons. As

signals are integrated, they may result in the membrane potential becoming more nega-

tive, referred to as hyperpolarisation, or less negative, called depolarisation. For excitatory

neurons, becoming sufficiently depolarised can result in an “action potential”. This action

potential results in the rapid (in the order of a few milliseconds) rise and fall of the neuron’s

membrane potential. For this reason, action potentials are often called spikes.

An action potential then causes a chain reaction of action potentials that travel along

the axon towards the axon terminals. At the axon terminals there are vesicles that undergo

exocytosis when they receive this electrical signal. These vesicles contain the neurotrans-

mitters produced by the soma and are released into the synapses, where they diffuse across

the small gap and stimulate the dendrites of successive neurons. Often, a neuron is stim-

ulated enough that it will generate spikes in quick succession, causing a “spike train”.

The frequency of spikes occurring in this spike train are used to generate a metric of how

much neurotransmitter is being sent to later neurons and is called the “activity” of the

neuron. Since this is the point at which a signal is sent to the next neuron, the axon

computationally acts as the output of the neuron.

In summary, a neuron receives inputs through its dendrites and integrates these inputs

to adjust its membrane potential. When the membrane potential of a neuron reaches a

certain threshold, the neuron generates a spike that is sent down its axon to axon terminals

that output neurotransmitters. Often, these spikes occur in rapid succession, generating

a spike train. The rate of this spike train is often summarised the activity of the neuron,

which acts as a measure of its output.
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2.1.2 The synapse

While the synapse is simply a small space that connects neurons, its role is so vital, and

its behaviour so subtle, that it merits further description here.

Consider for a moment how interesting it is that neurons function by generating electri-

cal signals that are then converted into chemical ones, via their neurotransmitters, only to

be converted back into an electrical signal in the next neuron. At first glance, it seems that

this introduces an unnecessary amount of complexity into the manner by which neurons

communicate with one another. However, this process endows synapses with computational

mechanisms that are critical to communication.

First, it allows them to use different neurotransmitters for different tasks. This allows

them to effectively apply different filters to their spike trains, changing the rate that stim-

ulus is diffused across the synapse and the integrity of this information. Second, axon

terminals may flexibly adjust how sensitive a synapse is independent of other axon ter-

minals that are all receiving the same spike train. This means that a single electrical

signal can be used to send different signals through differences in the concentrations and

properties of different neurotransmitters.

To demonstrate this first property, consider two different tasks that one may wish to

perform: blocking a fast-moving object with one’s arm versus resolving a small image at a

distance (such as in an eye exam). The first is time-sensitive, and requires a quick response.

Furthermore, precision is not as necessary to perform the task successfully; there are a

variety of positions that may prevent the object from hitting one’s face. In this instance,

neurons in the corresponding region of the motor cortex may opt to use neurotransmitters

that diffuse rapidly across the synapse, resulting in the signal being propagated quickly.
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However, doing so also causes the resulting signal to more closely resemble the original

spike train that it is integrating, so the signal will be more sensitive to noise, and thus less

precise.

In contrast, when resolving the small image, precision is more important than the

speed at which the image is resolved. For this task, neurons may use neurotransmitters

that integrate the spike train over a longer period of time, but more closely resemble the

signal that they wish to propagate.

2.1.3 Networks

Now that a description of individual neurons and synapses has been presented, it remains

to be discussed how these manifest when combined into larger networks. In particular, this

subsection will briefly address how neurons are organised into hierarchical structures and

through what method biological networks learn.

When discussing brain architectures, it is important to note that many structural fea-

tures of a brain are selected for by evolution and are thus species-specific. Since this thesis

is not concerned with the physiology of the brain, but rather the emergent computational

properties found in brains, only the more universal properties will be discussed. Namely,

neural networks in brains are commonly

1. Hierarchical: Many structures in the brain are organised into layers of neurons

that have connections projecting to other layers. These hierarchies enable efficient

computation for complex and non-linear tasks [21].

10



2. Recurrent: Neurons are frequently connected in series that form cycles. This means

that the activity of a neuron in one point in time will impact its actvity at a later

point in time. This allows the brain to effectively encode dynamical systems and

maintain longer term representations.

3. Parallel: Networks in the brain often have up to thousands of computations occur-

ring simultaneously. This allows for a variety of benefits, such as being able to quickly

compile and process multi-modal stimuli, maintain rich representations within pop-

ulations of neurons, and allow for a high degree of multi-tasking when performing

regulatory and control tasks for various bodily functions at once. This also allows

the brain to be extremely efficient when performing computations when compared to

traditional computing, as the information pipeline is much wider.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) adapt the learning and signal propogation mechanisms

in the brain and use them to perform computational tasks. For decades, their use as

a learning model was met with skepticism; One early model, called the perceptron, was

proven to be incapable of computing even simple functions, such as the exclusive-OR (XOR)

function. Even when more sophisticated, multi-layer models were introduced, it was not

until the advent of the error backpropagation algorithm and more powerful hardware that

ANNs saw significant use from researchers and software engineers. Now, with improved

learning algorithms, more data, and more powerful, parrallelised GPUs, artificial neural

networks have become the leading method for learning functions and models.
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2.2.1 The Perceptron

First conceived in 1957 by Rosenblatt [20], the perceptron is a computational unit based

loosely off the functioning of a single neuron. It can be formalised as a function, σw : Rn →

{0, 1}, where

σ(x)w =


1 if w · x+ b > 0

0 otherwise

for some n-dimensional input x, n-dimensional weight vector w, and scalar b. Here, the

operation (·) is the canonical inner/dot product for vectors.

This model is largely inspired by the function of a single neuron; x may be considered

the input current/stimulus, where the dimension n of x corresponds to the number of

pre-synaptic neurons that contribute stimulus to the given neuron, w corresponds to the

relative strengths of the associated synapses, and b corresponds to amount of current

required to induce a spike. This analogy is supported by evidence that perceptrons do in

fact capture some of the behaviour seen in biological neurons—they are non-linear, have

a threshold, and model the accumulation of stimuli. This model abstracts out many of

the more complex mechanisms found in biological neurons, but is still capable of learning

functions within a fairly large class of functions called “binary classification functions,”

so named because they separate inputs into one of two classes (0 or 1). Intuitively, one

may think of the function that a perceptron learns as a line or hyperplane that separates

a vector space.

Learning in perceptrons can be achieved with very simple algorithms. An example is

simply increasing a weight if the corresponding input contributes to a correct classification,

and decreasing a weight if an input contributes to a misclassification. This simplicity made
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perceptrons very appealing until it was shown by Minsky and Papert that perceptrons are

incapable of learning a large class of functions [22]. The simplest, and most canonical of

these, is the XOR function mentioned above, defined in the two-dimensional case as

XOR(x) =


1 if x1 ≥ 0 and x2 < 0 or vice versa

0 otherwise.

A proof of this result is outside the scope of this thesis, but can be found in [22]. That

being said, using a “proof by picture,” it is clear that there is no straight line capable

of separating the two classes of XOR. When considered in relation to the brain, this is

not surprising—it is not a single neuron, but rather a large network of neurons, that give

the brain the computational power that it has. For this reason, perceptrons were largely

ignored in the field of machine learning, as researchers began to favour other models, such

as decision trees and statistical optimisation.

2.2.2 Deeper models

During the 1970’s and 80’s, many researchers continued to study algorithms inspired by

neuroscience. While it was known that a single layer perceptron was incapable of com-

puting even simple functions, it was quickly demonstrated that stacking multiple layers of

perceptrons extended the class of functions that could be learned considerably1 [23]. These

networks are referred to as multi-layer perceptrons or feed-forward neural networks. Such

networks are composed of an input layer, an output layer, and one or more hidden layers,

1In fact, any function can be learned with just a single hidden layer, though the number of neurons

needed may be computationally intractable.
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Figure 2.1: A simple artificial neural network with one hidden layer. Image

courtesy of the Wikipedia commons. Note that x is the value going into the neuron and y

is the value that is output from the neuron.

with weights connecting a given layer to the next in a hierarchical manner. An example of

a simple neural network can be see in Figure 2.1.

The convention that will be used throughout this thesis is using superscripts to denote

a given layer in a network, with 0 denoting the input layer and k − 1 denoting the output

layer in a network that is k layers deep. A subscript will be used to denote a particular

neuron within a layer, but this level of detail will largely be unnecessary, so its inclusion

will largely be foregone. For a given layer, its inputs will be denoted as x, and its outputs
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as y. For example, in a network with three layers (i.e. one hidden layer), x(1) will refer to

the input into the first hidden layer, while y
(0)
2 refers to the output of the second neuron

in the input layer. To maintain consistency with the notation introduced in the previous

section, σ will be the “activation function” of a neuron or layer of neurons.

Since the weights exist between layers, they can be enumerated by either treating them

as coming out of the previous layer (where w(0) would be the set of weights between the

input layer and the first hidden layer), or as going into the next layer (where w(1) would

be the set of weights stated above). The convention in this thesis will be to use the latter

method of enumerating weights. To simplify notation, rather than discussing the weights

from one layer to a particular neuron in the next layer, the connections between all neurons

from one layer to the next will be denoted by the m×n matrix, W , where n is the dimension

of the ingoing layer, and m is the dimension of the outgoing layer. Finally, the bias for

each layer will be denoted b, with dimension equal to that of the outgoing layer, m.

It is important to note that this notation does not distinguish between singleton values

and vectors. This is because it is usually unimportant to make the distinction when refer-

ring to neural networks, where the context often makes it clear. It will be stated explicitly

when it is unclear whether a particular value or an entire vector is being referenced.

With these conventions introduced, an ANN can now be formalised as:

1. A set of “nodes”, organised into layers, with associated inputs and outputs, x and y;

2. A set of connection weights and biases, W and b respectively, and;

3. A propagation function, σ, such that y = σ(W · x+ b). This function will be applied

sequentially, beginning at the first layer to compute the input to the next layer,
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until the output of the final layer has been computed. It should be noted that the

σ defined in the previous subsection is almost always replaced with a continuous

function—often a logistic function or rectified linear function, which will be defined

later.

These three components are all that is needed to define a model that is capable of

computing any desired function. However, without a means of learning a given function,

neural networks would only be useful for modelling predefined functions. For this reason,

we also include

4. A learning rule, which specifies a means of modifying W and b to improve the per-

formance.

2.3 Learning in Artificial Neural Networks

Machine learning, or ML for short, is the field of computer science concerned with defining

algorithms that learn to perform some computational task, rather than defining the com-

putation involved in the task. Simply put, conventional computation defines a set of known

inputs, s, and some known function, f , on those inputs to generate unknown outputs, t.

In contrast, ML takes, a set of known inputs, s, and outputs, t, to learn an unknown func-

tion, f . While much broader than the study of neural networks, this work will focus on

learning algorithms that are implemented on neural network architectures. The study of

neural networks with more than one hidden layer is typically referred to as “deep learning”

and has gained considerable attention in the past few years after demonstrating success in
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problems considered previously to be intractable, such as learning to play Go [24] or how

to drive a car [25].

2.3.1 Back Propagation

Of the various learning algorithms implemented in feed-forward neural networks, the most

widely studied and implemented is the error back propagation (BP) algorithm [23]. Simply

put, error back propagation works by providing a dataset of input-output pairs, applying

the inputs to the neural network, propagating that input forward through the weights

and activations of the network, and using this output along with the target output to

generate an error signal with some specified loss function. Once this error signal has been

computed, the gradient of the error with respect to each weight is calculated using the

chain rule. These errors indicate which updates should be made to the weights to reduce

the loss of the network on the given task. Thus, back propagation is essentially performing

gradient descent on a high-dimensional manifold in the parameter space of the network. A

detailed description of the back propagation algorithm can be found in Appendix A. The

point of importance is that the gradient of the error, E, can be computed for any given

connection weight in the network, wij, connecting the i-th neuron in the previous layer

to the j-th neuron in the current layer. Through applying the chain rule, this gradient is

expressed as

∂E

∂wij
=
∂E

∂yj
· ∂yj
∂xj
· ∂xj
∂wij

, (2.1)

where yj is the output of the neuron, and xj =
∑

k wkjyk is the input of the neuron, com-

puted by taking the linear sum of the outputs from the previous layer times the associated

weights.
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Each term in Equation 2.1 is fairly straightforward to compute. ∂E
∂yj

is typically just

(y − t) for the output layer. For internal layers, it is somewhat less clear, but can be

computed recursively to yield

∂E

∂yj
=
∑
h

(
∂E

∂yh
· ∂yh
∂xh
· wjh

)
(2.2)

for all neurons h in the subsequent layer. The term
∂yj
∂xj

is simply the slope of the activation

function, y = σ(x), alternatively denoted as σ′(x). The final term,
∂xj
∂wij

, is less immediate,

but remember that xj =
∑

k(wkj · yk). So the only term containing wij is exactly (wij · yi)

whose gradient is yi. Biases are computed in a similar manner through recursion. With all

the values for ∂E
∂yj

and ∂E
∂wij

found for the current layer, the errors for the previous layer can

now be readily found in the same manner. This is done recursively for every layer until all

the gradients for each weight have been found.

Having obtained all the values of ∂E
∂wij

, the goal is to then use these gradients to improve

the performance of the network. Since the objective/loss function provides a concrete

measure of performance, and the gradients of that error have been found, a simple update

can be made to adjust all parameters of the network such that the loss decreases. This

method is called “gradient descent” and gives weight updates of

wnew = wold − η ·
∂E

∂wold

for some learning rate, η. In general, when discussing any objective function, f , parame-

terised by a set of weights/values, θ, one may denote their gradients as ∇θf(θ).

It is important to note that this method of gradient descent has a number of concerns.

For one, it is sensitive to the size of η. If η is too small, then the algorithm may not

converge to a minimum for the error in a reasonable amount of time. What is worse, if η

18



is too large, then it may overshoot the desired minimum and actually cause the error to

grow. This could result in increasing values for the gradient of the error, causing divergent

behaviour. Another concern is that converging to a solution where the gradient of the

error is zero may not mean that the ideal solution has been found. More precisely, if the

manifold of the objective function is not convex, then there may be multiple local minima.

Since back propagation works by descending along the gradients, the slopes around these

minima cannot be climbed out of to find a better, global minimum.

It is also important to note that this process of gradient descent can be heavily influ-

enced by the order in which samples are shown to the network, as each sample has its

own optimization manifold, or “landscape.” This can result in a phenomenon referred to

as “overfitting,” where a network’s learned state is dictated more by the circumstances of

training rather than the nature of the problem itself2. For this reason, the full training

process of back propagation usually involves randomising the order in which samples are

presented, and is called stochastic gradient descent. In modern implementations, much of

this work is vectorised, with each tensor being composed of multiple samples for the inputs,

called a “batch.” However, even with a fixed batch size being passed into the network,

the batches themselves will be randomised to prevent the network from overfitting during

training.

2A much larger contributor to overfitting is actually which samples are chosen for training, and is

the reason that networks are commonly validated using a separate test dataset that the network has not

previously seen. The details of this topic are largely outside the scope of this research.
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2.3.2 Other error propagating algorithms

Back propagation is not the only error propagating algorithm. While not of key impor-

tance to this work, two of these algorithms are outlined here. The first algorithm is the

error-entropy minimisation (MEE) algorithm [17], and is included due to its use in the work

by Li and Li that this research extends. The second is the widely used error propagating

algorithm, Adam [13]. Adam is a variant on back propagation that uses per-parameter

learning rates, and scales them in a manner that provides some “momentum” to the gra-

dients. We provide an outline of it here, as we use it in place of traditional stochastic

gradient descent.

Error-entropy minimisation, or minimisation of error entropy, differs from back prop in

that it attempts to minimise the entropy3 of the error rather than the error (typically mean

squared error, or MSE) itself. This has the benefit of taking into consideration higher order

moments of the error distribution when adjusting weights, where MSE only considers the

first two moments of the error distribution. The precise details of how the entropy of the

error is minimised is quite involved, and will not be included here, since it is not used in

my work. In short, the objective is to minimise Renyi’s quadratic entropy, H2(p)
4, for a

random variable, X, with distribution p, given by

H2(p) = − log

∫
p2(X)dX.

3Entropy and, more broadly, information theory are discussed in more detail in Section 2.4 as well as

Appendix B. For now, it can be conceptualised as the level of uncertainty in predicting a sample from a

distribution, given previously observed samples.
4Conventions for notation are taken from Li and Li in [8].
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Hence, minimising H2 is equivalent to maximising

V2(p) =

∫
p2(X)dX.

This is equivalent to the expectation of the distribution p(X) under itself, expressed as

E[p(X)]Xp̃(X). This can be approximated using Gaussian kernel density estimation for a

specified bandwidth, and used to compute the final weight update of a weight, w, as

∆w = η
∂V2(p(E))

∂w

for error E and learning rate η.

A key thing to note is that minimising the entropy is invariant to changes in the mean.

Hence, while all uncertainty in the error may be eliminated, the value that the MEE

algorithm converges to may have non-zero error. This can be addressed by simply adding

a biasing term to bring the error to zero.

While this thesis extends the work of Li and Li, who use the MEE algorithm, the

synaptic learning rule in this work is the Adam algorithm. As stated above, Adam is

essentially back propagation with the two added features of per-parameter learning rates

and momentum. Explicitly, to optimise some set of parameters, θ, the algorithm requires

a global stepsize, η, decay parameters β1 and β2, an initial set of parameters, θ0, and

an objective function with respect to the parameters f(θ). A time index, t, and first

and second order moments, m0 and v0 respectively, are all initialised to zero. The main

optimisation loop then consists of

1. Increment the timestep. t is set to t+ 1.

2. Compute the gradients. The gradients of θ w.r.t. f , gt = ∇θft(θt−1), are then

obtained (using back propagation, for example).
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3. Update the biased first-order moment. Compute mt using mt−1 and the gradi-

ent, gt (computed above) as

mt = β1 ·mt−1 + (1− β1) · gt.

4. Update the biased second-order moment. Do the same thing for vt, but with

g2t :

vt = β2 · vt−1 + (1− β2) · g2t .

5. Apply bias correction. Transform mt by

m̂t =
mt

(1− βt1)

and vt by

v̂t =
vt

(1− βt2)
.

Note that the t in the superscript is exponentiation—not some additional notation.

6. Update the parameters. Using the computed values for m̂t and v̂t, update θt by

θt = θt−1 − η ·
m̂t√
v̂t + ε

for some extremely small ε (10−8 is recommended by the original authors).

This loop is performed iteratively until some halting condition is met—usually when θ

converges or some specified number of iterations/epochs has been reached.

Adam boasts many benefits. For one, it requires very little extra overhead, as the

first and second order moments are the only additional parameters, excluding the added

hyperparamters of the stepsize and decay rates. Furthermore, the computational overhead
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is similarly small, with all of the outlined steps being easily computed in an efficient manner.

This makes Adam able to deal with problems that have a large number of parameters or

are quite noisy. The use of exponential moving means also means that Adam is also well-

suited to both online and offline learning problems. Additional benefits, and both analytic

and empirical support for Adam’s utility are provided by Kingma and Ba in [13].

2.3.3 The Vanishing Gradient Problem

The vanishing gradient problem is a well known issue in deep learning conerning how error

is propagated back through a large network. Consider an ANN with many layers, that uses

the logistic function or the tanh function for its activation function. Both of these functions

start to “saturate” for large positive and negative values—that is, they are bounded at their

extremes and only have large slopes for input values close to zero. During the backward

phase of learning, their error will be propagated back through each layer, as presented

in Equation 2.1. If the activation of the function is in these saturated regions, then the

∂y
∂x

will be very close to zero, so ∂E
∂w

will be close to zero. Similarly, computing ∂E
∂y

using

Equation 2.2 will result in error values close to zero (hence “vanishing”) if the subsequent

layer is also in the saturated region of its activation function. Hence, regardless of how

large an error may be, learning may progress very slowly or not at all. This problem is

compounded for each layer of saturated neurons that an error signal is propagated through,

so deeper networks are more susceptible to vanishing gradients.

One method of solving the vanishing gradient problem is using rectified linear units, or

“ReLUs”, as an activation function rather than the more traditional sigmoidal functions.

Proposed by Glorot et al. [26], ReLUs are simply the identity function that returns zero
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for negative inputs. More precisely, a ReLU is a function f : R→ R such that

f(x) =


0 for x < 0

x otherwise.

Since a ReLU, f , has f ′(x) = 1 for all positive x, ReLUs avoid saturating in the positive

direction, while still maintaining the ability to compute non-linear functions. They also

simplify the computation of gradients for back prop, as the vector representing ∂y
∂x

will be

just an array of ones and zeros. However, ReLUs are biologically implausible in that real

neurons do saturate when exposed to large stimuli.

In contrast with ReLUs, that address the vanishing gradient problem locally by im-

proving gradients, some researchers have suggested structural solutions. The most notable

of these is the inclusion of “skip connections”—weights that connect lower layers of a neu-

ral network directly to higher layers of the network, skipping over intermediary layers. As

stated above, the vanishing gradient problem is compounded when error signals are pushed

back through multiple layers with very small gradients for the activation function. Thus,

including connections from the bottom layers directly to the input allow the error to more

directly inform the updates in those layers. A famous example of this method is ResNET

[27], which has become the gold standard architecture for deep learning.

Conversely, ANNs may also face the issue of “exploding” gradients. This phenomenon

poses a serious concern to neural networks, as it results in divergent behaviour. In short,

when the gradients of the activation function are large and the weights of a network are very

large, the error signal propagated backwards will grow each layer, resulting in extremely

large weight updates for lower layers of the network. However, this issue is outside the

scope of this work, and will not be discussed further.
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2.4 Intrinsic Mechanisms in Neurons

It is well known by neuroscientists that the brain does not only change by updating the

strength of synapses between neurons. These different forms of change are generally re-

ferred to as “plasticity”. The altering of synapses through either long-term potentiation or

Hebbian mechanisms is broadly referred to as “synaptic plasticity”. In contrast, neuronal

mechanisms that regulate the firing rate of a neuron on both short and long timescales can

be referred to as “intrinsic plasticity”, or IP, and they often keep the firing of a neuron in

a stable regime independent of its stimulus.

The role of intrinsic mechanisms is still an open topic of research, however there are two

main benefits that have been proposed. The first is that it controls the energy expenditure

of a neuron. A biological neuron with a high firing rate consumes far more calories than a

neuron with a low firing rate. In ANNs, the cost of storing different firing rates is constant,

and so energy constraints have no bearing. This may be why machine learning researchers

have largely focused on synaptic mechanisms rather than intrinsic ones.

The second benefit is computational and founded in information theory, the study of

communication first pioneered by Claude Shannon [4]. A comprehensive introduction to

information theory is outside the scope of this thesis, however a brief primer is attached

for the reader as Appendix B. This research focuses on studying how effective a neuron is

as a unit of communication by measuring how a neuron improves its information potential,

or information entropy, as it adjusts its activation function to best suit its stimulus. The

information entropy, S, for a given neuron is computed as

S = −
∑

P logP
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for a probability distribution P , and is a measure of how much information is observed

for said distribution, on average. To illustrate, imagine a neuron that never fires. Clearly

it cannot send a signal to other neurons. However, a neuron that fires all the time also

carries very little information, as downstream neurons gain no information about such a

neuron’s input—it would fire equally often for both large and small stimuli. As such, a

neuron best propagates signals when it effectively distinguishes between inputs with high

and low activities.

Researchers, such as Jochen Triesch, have demonstrated that neurons can effectively

learn the activation function that maximises a neuron’s information potential for a fixed

mean firing rate (or “energy budget”) [5]. As previously noted, artificial networks are

unconcerned with maintaining a low firing rate, as energy consumption is not a concern.

Thus, a rule can be used that strictly maximises information potential. Bell and Sejnowski’s

Infomax rule does exactly this [7]. The ideal activation function turns out to be one that

results in an output distribution as close to uniform as possible, as the uniform distribution

possesses the highest entropy. Thus, the Infomax rule shifts and scales the activation

function such that it is approximately centered over the input distribution, with a steepness

that is proportional to the input distribution.

The exact rules that achieve this vary depending on the choice of non-linearity used as

the activation function. For the purposes of this research, the tanh function is chosen, and

for an input distribution x, and parameters αIM and βIM, the transformation

y = tanh(αIM · x + βIM)
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is applied with update rules

αIM = αIM + η

(
1

αIM

− 2E[xy]

)
(2.3)

βIM = βIM + η(−2E[y]), (2.4)

where E is the expected value, and η is some specified learning rate [7].

While this rule is provably optimal [7], it has a number of issues in practice. One is

that it has been shown to be unstable, and will result in divergent behaviour over time [30].

Another issue is that errors in numerical approximation may result in unwanted negative

values for αIM, as the 1
αIM

term may fail to push αIM away from zero, as would happen in

the continous case.

While interesting in its own right, intrinsic plasticity is also fascinating when its effects

are studied in tandem with synaptic plasticity mechanisms. Intrinsic plasticity has com-

monly been implemented in reservoir computing [28], where outputs are sampled from a

highly recurrent network of neurons. Here, IP plays a natural role in keeping the activity

of the reservoir in a stable regime.

Intrinsic plasticity has also been implemented in feedforward networks, which will be

the main focus of this research. Previously, Li and Li implemented neural networks that

used the Infomax rule as a local rule for regulating rate of fire, while using an error-based

algorithm for updating the weights of a network [8]. Their work showed that intrinsic

plasticity improves the efficiency of networks with a single hidden layer, leading to improved

performance and higher information potential. In fact, they were able to demonstrate that

a network with three neurons and the IP rule could outperform a regular network with as

many as fifteen neurons. In this work, they studied the interaction between Infomax, which
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was used as a local intrinsic rule, and the error-entropy minimisation (MEE) algorithm,

which was used to train the weights.

2.5 Batch Normalisation

Batch normalisation is a recent method in machine learning, developed by Ioffe and

Szegedy, that normalises the input into each layer of a network such that it has zero

mean and unit variance [10]. To expand, consider the input to a given layer in a neural

network, x. The batch norm algorithm normalises the input using the statistics of the

input distribution of x for the batch, then denormalises using error-based parameters, k

and h, in the following way

µ = E[x] (2.5)

τ =
√
Var(x) + ε (2.6)

n =
x− µ
τ

(2.7)

x′ = k · x+ h. (2.8)

where ε is a very small value to prevent variances too close to zero when the batch size

is small. This new value, x′, is then used as the new input into the layer. Since this

algorithm requires no information other the distribution of x, it can be implemented as its

own layer in a neural network, interleaved between every hidden layer in a deep network.

However, it may also be viewed as an affine transformation on the activation function that

is applied to x′5. In this way, batch normalisation is capable of computing the same family

5In fact, it is a combination of two affine transformations. While this is equivalent to a single transfor-

mation, it is important to note that k and h are error-based parameters, learned through back propagation,
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of functions as the Infomax rule, though they converge to different solutions.

Batch normalisation is such a versatile rule that it can be applied to almost any network

to improve learning. Where it seems to be particularly useful is in deep ANNs, where the

vanishing gradient problem causes error signals to zero out before reaching early layers

in the network. This is likely due to batch norm centering inputs in the middle of the

activation function, reducing the likelihood of inputs occurring in the saturated regime

of the non-linearity. Many researchers have addressed the vanishing gradient problem

using ReLUs (rectified linear units) as their non-linearity, however networks that use batch

normalisation may use functions such as the logistic function or the hyperbolic tan function

in place of ReLUs and still see learning occur where previously it would not have.

That being said, batch normalisation also improves learning in shallow networks, sug-

gesting that the cause of its success is more than simply improving the relative size of the

gradients. Initially, Ioffe and Szegedy suggested that this was due to reducing “internal co-

variate shift” [10]. This means that a network does not need to learn its weights while also

learning how to accommodate a broad variety of inputs. Another possible way to interpret

this is to say that batch normalisation separates the tasks of learning representation and

computation. Since the representations are all normalised within each layer, the only thing

that the network needs to learn is how to distinguish its inputs in a manner relevant to

the task.

Since its introduction, other researchers have contested the initial claim that batch norm

works by reducing internal co-variate shift. In [11], Santurkar et al. designed experiments

that showed batch normalisation improves performance through improving the smoothness

while µ and τ are computed using local statistics.
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of the optimisation landscape. More precisely, batch normalisation yields smaller changes

in loss and the gradients of the loss function are reduced in magnitude and made more

Lipschitz.

Kohler et al. suggest that batch normalisation creates a length-direction decoupling

effect, and that this improves learning [12]. That is, each parameter is reparameterised

as two values, one representing the direction (in the vector sense) of the parameter, and

the other representing the length. They used this to distinguish batch normalisation not

just as a practical tool, but as a provably converging algorithm. However, their work only

applied to learning Halfspace problems and neural networks with Gaussian inputs. For

this reason, the source of batch norm’s efficacy remains a somewhat open problem.
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Chapter 3

A Stable IP Rule

This section will outline the work that I have done to connect and extend the ideas pre-

sented in the previous section. I will first present my initial hypotheses when first encoun-

tering the topic of intrinsic plasticity, describe how the model was extended and imple-

mented in networks deeper than previously studied, then provide experimental data related

to my hypotheses. The work done here studies the first of two rules I implemented. This

rule has stronger theoretical support than the rule presented in Chapter 4.

3.1 Hypotheses

Since the work by Li and Li [8] only studied networks with a single hidden layer, the effects

of IP on deeper networks remains an open area of research. My first hypothesis was that

implementing an IP mechanism in deep ANNs would solve the vanishing gradient problem.

This is because centering the activation function of a neuron over its input distribution
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would naturally result in activities in the steep part of the activation function, rather

than out on the wings of the non-linearity. This effect is illustrated in Figure 3.1. Since

back propagation works by propagating error through the network, and one of the terms

is ∂a
∂x

(i.e. the slope of the activity with respect to its input) larger slopes will result in

proportionally larger error signals.

My second hypothesis was that the Infomax rule could be tailored such that an IP

mechanism would not be prone to the same instabilities observed in other research [8, 30].

A natural way to achieve this would be to focus on the primary properties that Infomax

has and develop a rule that could possess these properties, but be governed by simpler

updates. Specifically, Infomax is characterised by centering the activation function and

scaling it to match the steepness of the input distribution. As such, I aimed to develop a

rule that biased the function such that it would be centered over the median1 and scaled

by 2E[xy]—the value in the Infomax rule that keeps the output from always being in the

saturated regimes of the activation function. It is important to note that these values are

specific to networks where the tanh function is used as the activation function. While I only

studied networks using the tanh function in my research, it would be fairly straightforward

to apply these rules to other activation functions. For example, rather than biasing by the

median and scaling by 2E[xy], a network that uses the logistic function would shift by the

mean of the input, E[x], and scale by the standard deviation
√

Var(x). This would result

in an IP rule very similar to batch normalisation.

My third hypothesis was that an altered version of the Infomax rule would demonstrate

behaviour similar to that of batch normalisation. Both rules work by applying an affine

1A proof that the IP rule I develop is centered over the median is provided in Section 5.1
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Figure 3.1: Effect of the IP rule on the gradient of the activation function. When

the activation function is centered over its input distribution, the gradients of the activation

function are much larger. Since error propagation multiplies by these gradients, centered

activation functions will propagate larger error signals than off-center ones.
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transformation to the input of the activation function, and are parametrised by two values.

As such, they are capable of learning the same family of functions. Furthermore, batch

normalisation works by shifting the activation function to be centered over the mean of the

input distribution, a value that is comparable to the mean of the activity for a variety of

input distributions and activation functions. The gain is also updated in a similar manner

in both rules, with narrower input distributions resulting in steeper activation functions.

Finally, my fourth hypothesis was that a local IP rule would work in networks using

error propagating algorithms besides the MEE algorithm, since Li and Li only studied the

relationship of Infomax with the MEE algorithm. Specifically, I suspected that using IP

would improve a network that trained weights using the Adam algorithm.

3.2 Model Design and Implementation

In this section, I start by describing the design of my main contribution: the stable intrinsic

plasticity mechanism. I highlight the changes made to the implementation of the local,

Infomax rule used in [7] and provide some intuition for the changes. Then, I outline the full

algorithm, when implemented in conjunction with a synaptic learning rule. I then present

the features of the rule that make it biologically plausible. Finally, I discuss the specific

implementation used in my experiments, as well as the datasets used for testing my model.

Note that IP will henceforth refer specifically to the rule explained below, while the

full term “intrinsic plasticity” will be used when discussing other intrinsic mechanisms or

when discussing intrinsic mechanisms generally.

34



3.2.1 IP mechanism

The IP rule is implemented by taking the input into a neuron, x, and applying an affine

transformation

u =
x− β
α

. (3.1)

The non-linearity is then applied in the form of the tanh function2,

y = tanh(u). (3.2)

At the end of each feed-forward pass, α and β are then updated using the following rules:

α = α + η · Adam(2E[xy]) (3.3)

β = β + η · Adam(E[y]). (3.4)

The second term in both updates is the component that contributes to changing the IP

parameters. E[xy] and E[y] are both computed using the input and output statistics for

the current batch, and η is the learning rate for the IP rule. Adam is used to smooth the

updates. The parameters, α and β, are initialised at 1 and 0, respectively.

Intuitively, α and β respectively scale and shift the activation function so that it is

centered over the median of the distribution3, with the steepness of the sigmoid being

adjusted so that it is steeper for narrow distributions and shallower for wider distributions.

This is done to adjust the output distribution of the neurons so that it is as close to uniform

as possible, since the uniform distribution has the highest information entropy. This is the

same effect illustrated above in Figure 3.1.

2Again, note that the IP rule can work with non-linearities besides tanh.
3Support for this is provided in the Chapter 5.
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3.2.2 Complete algorithm for a feedforward neural network

Due to the prevalence of machine learning literature, a complete overview of the algorithm

used here will omit details that are universal to neural networks. Additionally, unless it

is important to specify a particular layer or neuron, subscripts and superscripts will be

dropped to improve readability, and no distinction will be made between vectors of one

dimension or more than one dimension.

Step 1: Initialisation

The network is constructed with the specified hyperparameters and its weight matrices

initialised randomly. The α and β for each neuron are initialised to 1 and 0, respectively.

Step 2: Feedforward pass

Inputs x(0) are fed into the network’s input layer, and the activation function of each neuron

is applied

u(0) =
x(0) − β(0)

α(0)
, (3.5)

y(0) = tanh(u(0)). (3.6)

These values are then multiplied by the weight matrix, W (0), with dimensions m×n, where

n is the dimension of the input layer and m is the dimension of the subsequent layer, then

biased by b(0), yielding

x(1) = W (0) · y(0) + b(0). (3.7)
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This is then repeated for every layer until the final, output layer, where ReLUs are used in

lieu of the tanh function and the IP mechanism is not applied. The output of the network

will be referred to as yout.

Step 3: Update IP parameters

After the feedforward pass, the IP parameters for each neuron in the network are then

updated using the update rules specified above in Equations 3.3 and 3.4. Note that the IP

parameters here are updated every batch, rather than every epoch, as done by Li and Li.

Step 4: Compute error and update weights

The output of the network, yout, and the target output, t, are then used to compute the

error for some given loss function. Typically, the L2 or cross entropy error are used, however

this algorithm is agnostic to the choice of loss function. Since the following experiments

will be comparing performance for classification tasks, cross entropy will be used for our

purposes. The weights of the network are then updated using the Adam algorithm with

back propagation.

Step 5: Loop or halt

This process is then repeated for each batch in the data set. Then, if the halting condition is

reached (either by having sufficiently low loss or running for enough epochs), the algorithm

terminates. Otherwise, the algorithm re-randomises the data set and returns to Step 2.
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3.2.3 Biological plausibility

The IP rule, as implemented in the above algorithm, possesses many biologically plausible

features. First, it is spatially local. The update rules for α and β only require informa-

tion about the neuron’s input and output, x and y. Second, the rule is temporally local

and consistent4. The mechanism stores information about the neuron’s input and output

distributions using persistent parameters, and the statistics used to compute the update

rules only observe a relatively small number of samples in the past. It is likely that the

brain is capable of computing the described statistics through the regulated, local supply

of ambient chemicals.

Furthermore, updates to the IP parameters only occur after a neuron has observed an

input. This distinguishes IP from the batch normalisation (BN) method, which applies a

transformation to inputs for the current batch, requiring that a neuron update its activation

function prior to actually seeing some inputs. This ability to look forward in time improves

the effectiveness of BN, but it is unlikely that this is biologically plausible, unless it is later

discovered that dendrites are capable of performing normalisation tasks prior to changes

in the somatic membrane potential. Batch normalisation also computes its bias using

the input to a neuron, whereas our IP rule use the activity of a neuron to update its

activation function, which is consistent with the behaviour of biological neurons. For both

these reasons, the IP rule we present appears more biologically plausible than conventional

implementations of BN.

While the IP mechanism possesses these biologically plausible features, it has been

implemented and tested with back propagation—a learning rule that has been widely crit-

4By “consistent,” I mean that it does not look forward in time.
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icised for its biological implausibility. However, many papers have suggested that the

biological implausibility of back prop is overstated [14]. Also, other algorithms that im-

plement local learning rules have been shown to converge to the error gradients computed

during back propagation [29]. For these reasons, we feel that the use of back propagation is

justified, and may be treated as a simplifying abstraction of other biological mechanisms.

It should be noted that this computational model omits many biological features for

the sake of simplicity and more clearly illustrating how the IP rule operates in isolation. I

do not claim that the algorithm replicates actual brain function.

3.2.4 Implementation

The networks used in the following sections were built in Python using the pytorch package.

A github repository containing the code used in this project can be found at https:

//github.com/Shawfest/ip.

3.2.5 Data sets used

The two data sets used to run the following experiments are the MNIST database of

handwritten digits [15], and the CIFAR-10 data set [16], which consists of images from ten

classes of objects. Examples images for each of these data sets are shown in Figure 3.2.
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(a) A hand-written five in MNIST. (b) A frog in CIFAR-10.

Figure 3.2: Example inputs used for experiments. The above images are two inputs

from the MNIST and CIFAR-10 datasets.

3.3 Experimentation

The goal of my work was not to design a competetive algorithm, but rather to test the

effect on learning of the IP rule in isolation. For this reason, I chose a basic, fully-connected

feedforward architecture for all experiments.

3.3.1 Effects of IP when using back propagation

The easiest hypothesis to test was the fourth hypothesis—that the benefits of intrinsic

mechanisms were not restricted to the MEE algorithm. Furthermore, since the IP rule is

novel, testing it on a shallow network to mirror the studies done by Li and Li would help

establish a foundation that the IP rule can be beneficial. This test was also done to ensure
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that IP actually works.

A network with the IP mechanism and a standard network without IP were trained

on MNIST. Both networks have fully connected layers, with the input layer having 784

neurons to match the size of the MNIST digits, the hidden layer having 50 neurons, and the

output layer having 10 neurons—one for each class of digit. For the sake of fair comparison,

the weight matrices for both networks were initialised to the same values. The synaptic

learning rate for the Adam algorithm was set to 0.03, and the intrinsic learning rate, η, was

set to 0.0001. This experiment was run ten times for different weight matrix initialisations,

with the results averaged and presented in Figure 3.3.

Figure 3.3: Learning curves for shallow networks. The averaged learning curves for

both IP and standard networks trained on MNIST across 20 epochs. Observe that the IP

networks achieve higher performance after training than their standard counterparts.

The same experiment was run for the CIFAR-10 data set with the input layer size

changed to 3072 to match the three colour channels of the 32 × 32 images. To account

for the increased difficulty of the problem, both networks had their synaptic learning rates
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turned down to 0.0001 and were given 150 neurons in their hidden layer. These results can

be seen in Figure 3.4.

Figure 3.4: Learning curves for shallow networks on CIFAR-10. The averaged

learning curves for both IP and standard networks trained on CIFAR-10 across 40 epochs.

Here, the IP rule fails to improve the performance over a standard network.

The results in these experiments are mixed, with a small improvement in performance

on MNIST, and worse performance than a standard network on CIFAR-10. In both cases,

a network with IP is still capable of learning, so at least IP is capable of working with back

propagation rather than just MEE shown in the Li and Li work. Also, it is worth noting

that the improved performance on MNIST is likely not due to improved gradients, since

there is only one hidden layer. Rather, it is likely that the improved performance is due to

the improved efficiency of the neurons, as observed in [8].
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3.3.2 IP improves learning in Deep ANNs

Having shown that IP improves learning in shallow networks, I then tested my first hypoth-

esis: that the IP mechanism improves learning in deep ANNs and is robust to increases in

synaptic learning rates.

To test this hypothesis, I designed a series of experiments that would compare IP

networks to standard networks for various synaptic learning rates. Inspired by the ex-

periments in [10], I suspected that, while an improvement in learning would be seen for

small synaptic learning rates, the benefits of IP would become clearer for large synaptic

learning rates. This is because standard networks tend to fail due to divergent behaviour

and having activities stuck in the saturated regimes of the activation function.

Like the previous experiments, the networks tested were fully connected but with seven

hidden layers rather than one. The results for MNIST are presented in Figure 3.5. As

suspected, IP provides a small improvement in learning when the synaptic learning rate is

small, but becomes more pronounced as the synaptic learning rate is increased. A standard

network will slowly lose performance and eventually diverge as the synaptic learning rate

grows, but a network with IP will continue to learn effectively for a longer period.

The results on CIFAR-10 shown in Figure 3.6 are less clear, but maintain a similar

pattern. For very small synaptic learning rates, the standard network actually outperforms

the network with IP. However, once this learning rate is turned up, a standard network

begins to perform comparably worse than the IP rule.

As indicated by Ioffe and Szegedy, further research is required to confirm that robust-

ness to increased learning rates indicates better gradients. To support our hypothesis that
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Figure 3.5: Learning curves for deep networks on MNIST. The averaged learning

curves for both IP and standard networks trained on MNIST across 20 epochs. The

synaptic learning rates for each are, in order, 0.003, 0.01, 0.012.
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Figure 3.6: Learning curves for deep networks on CIFAR-10. The averaged learning

curves for both IP and standard networks trained on CIFAR-10 across 40 epochs. The

synaptic learning rates for each are, in order, 0.0006, 0.001, 0.0013.
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Figure 3.7: Value of activation gradients. The graph shows the average value of ∂y
∂u

for

a particular layer during training. The fourth layer of the network (i.e. the third hidden

layer), was chosen. As you can see, the gradient of y when IP is implemented is much

larger than a standard network over the course of learning.

the network is improving error propagation through larger slopes in the activation func-

tion, we re-ran the MNIST experiment with the synaptic learning rate set to 0.005, and

recorded the values of ∂y
∂u

in an intermediary layer of the network. The results are shown

in Figure 3.7. Furthermore, these results indicate that even if the IP rule does not directly

solve the vanishing gradient problem, it still greatly improves the stability of a network

across learning rates.
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3.3.3 Comparing IP to the original Infomax rule and batch nor-

malisation

Having demonstrated the effects of IP on deep ANNs, I then compare the IP rule to the

original Infomax rule. This was done to test the second hypothesis that a more stable

version of the Infomax rule could be implemented. Additionally, as stated in my third

hypothesis, the IP rule bears striking similarity to batch normalisation. Both rules are

applied as affine transformations on the input, parameterised by two values. For this reason,

both rules are capable of learning the same families of functions. However, unlike IP, batch

normalisation works by transforming its input to each hidden layer using the statistics of

the current batch, rather than storing this information in persistent parameters. For this

reason, batch normalisation has the biologically-implausible advantage of allowing nodes

to update their gains and biases perfectly and before observing their input.

To conduct a fair comparison of IP to batch normalisation, I implement BN in the same

incremental manner as IP. The feedforward phase remains the same, but the update rules

governing α and β are

αBN = αBN + η · Adam(σ[x]) (3.8)

βBN = βBN + η · Adam(E[x]) (3.9)

where σ[x] is the standard deviation of x.

The results of comparing the IP rule to Infomax and BN are shown in Figure 3.8. Over-

all, IP showed only a slight improvement in performance as compared to the Infomax rule,

which fails to support the hypothesis that the IP rule is more stable than Infomax. Also,
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(a) MNIST learning curves. (b) CIFAR-10 learning curves.

Figure 3.8: Learning curves for deep networks using Infomax, IP, and BN. For

this experiment, all three local rules had the same intrinsic learning rate of 0.0001. Again,

10 experiments were done with the results averaged.

the incremental version of BN outperformed a standard network and showed performance

comparable to that of the IP rule.

3.4 Discussion

Overall, the above results are fairly tepid. The experiments for shallow networks showed

that the local IP learning rule is compatible with synaptic weight updates, though improved

performance was only seen on MNIST. The results for deep networks were more promising,

with improved performance being seen for higher synaptic learning rates. Furthermore,
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Figure 3.7 confirms that larger gradients for the activation function are being observed over

the course of training. This supports the first hypothesis of this work—that information

maximising rules can address the vanishing gradient problem—but the results are not

overwhelmingly convincing.

Additionally, I was unable to show that the IP rule is more stable than Infomax. Further

testing is required to see if Infomax eventually diverges, if training continues for a long

enough time.
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Chapter 4

Weighted Decay Learning Rule

Over the course of searching fo a stable IP rule, I experimented with many different rules.

One of the first was simply taking the weighted moving average for each of α and β as

follows

α = (1− η) · α + η · 2E[xy] (4.1)

β = (1− η) · β + η · E[y]. (4.2)

This rule is appealing in that it does not use Adam to smooth the updates of 2E[xy] and

E[y], however it has a significant theoretical issue of not being able to center itself over

distributions whose medians are outside of [−1, 1]. To see this, assume a fixed value for η.

The tanh function always has an output in the range of [−1, 1], so E[y] is bounded between

these values. Hence |η · E[y]| ≤ |η|. If the second term is less than η, then values |β| > 1

are not possible equilibrium points.

Nevertheless, in the process of experimentation, the above rule demonstrated greatly
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improved results over all other methods. Not only did it learn far more quickly during

training, it also converged to better solutions. The same experiments conducted in Section 3

were conducted for this local rule and the results are presented below. This rule will

be referenced as “weighted decay” or “WD”, for short. Note that the only change in

parameters from the experiments in Chapter 3 was increasing η to 0.1 from 0.0001, since

the weighted decay rule is far more stable than the IP rule for large values of η.

4.1 Performance in shallow nets

The first test done was evaluating the effect of the WD rule in a network with a single

hidden layer. The parameters for the network are identical to the ones in Section 3.3.1,

aside from the intrinsic learning rate. The results are presented in Figure 4.1.

The results on MNIST are very noticeable, with around a quarter of the average training

loss for a network with WD as compared to a standard network. The results on CIFAR-10

are even more compelling. In particular, the networks with the WD rule are able to learn

extremely fast at first, as compared to their standard counterparts. As mentioned when

reporting the results for the IP rule on shallow networks, it is unlikely that the improved

performance is caused by larger gradients rather than improved neuronal efficiency.

4.2 Performance in deep nets

Having demonstrated the improved efficacy of the WD method in shallow networks, I then

replicated the test done for deep networks. Figure 4.2 and Figure 4.3 show these results.
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Figure 4.1: Performance of WD rule on MNIST and CIFAR-10. The results of

training a single-hidden layer network with the local WD rule on both MNIST and CIFAR-

10.
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Note that in both experiments, a change was made to the final synaptic learning rate,

changing it from 0.013 to 0.015 on MNIST, and from 0.0013 to 0.002 on CIFAR-10. This

was done to highlight that WD seems to be even more robust to increases in synaptic

learning than the IP rule.

The results for this experiment support the hypothesis that intrinsic plasticity can

improve synaptic learning through solving the vanishing gradient problem. First, initial

learning on both MNIST and CIFAR-10 is far quicker than found in a standard network.

Second, networks with WD converged to lower losses than their standard counterparts in

almost all the tests (MNIST seems to be simple enough that almost any deep network

will converge to low losses). Finally, Figure 4.4 shows that the gradients of the activation

functions are much larger than those found in standard networks. This strongly supports

the hypothesis that local, intrinsic rules can help solve the vanishing gradient problem.

4.3 Comparison to other methods

Like its IP counterpart, I compared the WD method to both Infomax and batch norm.

However, to test batch norm in a manner comparable to the WD method, a weighted decay

version of batch norm was implemented with update rules

αBN = (1− η) · αBN + η · σ[x] (4.3)

βBN = (1− η) · βBN + η · E[x] (4.4)

in lieu of the incremental version presented in Section 3.3.3.

The results for MNIST and CIFAR-10 in Figure 4.5 tell similar stories. The incremental

version of batch norm and our IP rule both outperform standard deep neural networks on
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Figure 4.2: Learning curves for deep networks on MNIST. The averaged learning

curves for both IP and standard networks trained on MNIST across 20 epochs. The

synaptic learning rates for each are the same except for the last subfigure, whose learning

rate is 0.015. This final learning rate was set higher to highlight the robustness of the WD

method
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Figure 4.3: Learning curves for deep networks on CIFAR-10. The averaged learning

curves for both IP and standard networks trained on CIFAR-10 across 40 epochs. The

synaptic learning rates for each are the same except for the last subfigure, whose learning

rate is 0.002. This final learning rate was set higher to highlight the robustness of the WD

method.
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Figure 4.4: Value of activation gradients. This graph shows the average value of ∂y
∂u

for a particular layer during training with WD. The fourth layer of the network (i.e. the

third hidden layer), was chosen again. The gradient of y when WD is implemented is much

larger than both IP networks and standard networks over the course of learning.
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(a) MNIST learning curves. (b) CIFAR-10 learning curves.

Figure 4.5: Learning curves for deep networks using Infomax, WD, and BN.

Note that the intrinsic learning rate was 0.1 for both WD and BN, however Infomax had

an intrinsic learning rate of 0.0001. The weighted moving average rule, WD, outperforms

other methods. Again, 10 experiments were done with the results averaged.
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MNIST, with WD slightly outpacing batch norm. On CIFAR-10, the incremental batch

norm rule was slightly outperformed by a standard network. It should be noted that

Infomax seemed to work best when a small exponential decay factor was added to the

intrinsic learning rate, η. Also, Infomax tended to diverge for a high η value, which

suggests that WD may be more stable than Infomax, supporting the second hypothesis

that Infomax may have a more stable implementation.

4.4 Discussion

The empirical results for the WD rule are far more compelling than the results for the IP

update rule in Section 3.3. For both MNIST and CIFAR-10, the networks with WD far

outperformed networks without. This was true for shallow networks, but the difference was

even more apparent in deep networks. In deep networks, it was shown that the gradients

of the activation function remain quite large throughout training. For this reason, the WD

method seems to solve the vanishing gradient problem even more than its IP counterpart.

It is worth noting that while performing the experiments in Section 3, values for β

outside [−1, 1] were not observed. I am uncertain as to why β remained in this range, even

when it was not strictly bounded to converge to values in this range. However, it does

suggest that the WD rule above could be used to compute values of β that correctly center

the distribution when implemented in synergy with weight updates.
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Chapter 5

Additional Analysis

5.1 Using neuronal activity to compute the median of

the input

The first theoretical observation is that my IP rule biases the activation functions of its

neurons such that they are centered over the median of their input distributions, when

tanh is used.

Lemma 1. β converges to x̃, the median of input distribution x, for activation y = tanh(u),

u = x−β
α

, and update rule β = β + η · E[y].

Proof. Since tanh is an odd function ranging between −1 and 1, it can be approximated

by the indicator function, 1[−1, 1], that returns −1 if its input is less than 0 and 1 if its

input is greater than or equal to 0. The error of this approximation is only large when u
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is close to zero, which occurs when the function is already close to centered over its input.

Hence, for a distribution, u,

E[y] = tanh(u) (5.1)

≈ 1[−1, 1](u) (5.2)

= −1 · p+ 1 · (1− p), where p is the proportion of inputs less than 0, (5.3)

which equals zero when p = 0.5. Thus, β continues updating until u is less than zero half

the time and more than zero the other half, i.e. when β = x̃.

A corollary of this observation is that β = x̄ (the mean of x) for symmetric distributions.

Some testing indicates that the distributions within networks tends to be approximately

Gaussian, indicating that computing the mean, as done in batch normalisation, causes β

to converge to similar values as the IP rule. Furthermore, this supports the idea that a

benefit of batch normalisation is improving the information potential of neurons.

5.2 Information potential

Since the IP rule used in this work is derived using simplifying assumptions for the equi-

librium solutions of the original Infomax rule, there should at least be empirical results to

demonstrate that it is improving the information potential/entropy of the neurons in the

network.

To this end, Figure 5.1 shows the results of an experiment performed by my collaborator,

Tyler Jackson. This experiment demonstrates that for two different input distributions,

uniform of width 4 centered on 1, and Gaussian with σ = 2 and µ = 1, the IP rule
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Figure 5.1: Neuronal information potential. These figures were generated by taking

the entropy of the distribution, as estimated using the density histograms of the values of

y as a Riemann approximation for the integral of the differential entropy. The update rules

for each mechanism were applied for multiple iterations on the same collection of 10000

samples.

does in fact increase the entropy of the output distribution. For comparison, the effect of

the incremental batch normalization rule is also included which also shows an increase in

entropy as well as the original Infomax rule. Note that the IP rule converges to entropy

levels similar to that of the Infomax rule, and outperforms the incremental implementation

of BN. This supports part of my second hypothesis that the IP rule achieves the same

purpose as Infomax, though the experiments in Section 3.3.3 failed to show that it is more

stable.

This test demonstrates that the IP rule does, in fact, converge to the same levels of

entropy as the Infomax rule (or at least very nearly). That being said, Infomax converges

to these levels far faster. It is worth noting just how well the incremental batch norm rule
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improves the information potential of a neuron. This indicates that increased information

entropy may be a cause of batch norm’s success.

It is also important to note that the WD method has fairly poor levels of entropy, depsite

it showing stronger results than IP in almost all other respects. This is unsurprising, as it

was pointed out early that the WD method does not allow values for β outside of [−1, 1].

However, these results are taken from fixed input distributions, rather than from within

networks during training. The interplay between synaptic learning, and its impact on the

input distribution of downstream layers, may mean that the WD rule does converge to

similarly high values of information potential in that setting.

To provide further validiation that the IP rule is working as intended, I conducted a

similar test where the output of an activation function with the IP rule is measured for

a fixed input distribution. In this case, the input was a Gaussian distribution with fixed

mean of µ = 5 and standard deviation of σ = 2. Figure 5.2 shows that a neuron with

the IP rule converges to an approximately uniform output distribution. Since the uniform

distribution has the highest information entropy, this supports the hypothesis that this IP

rule maximises information potential. The same graph for the WD rule is not included,

because it fails to shift the activation function correctly when the center of the distribution

is outside [−1, 1].
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Figure 5.2: Output distribution of a neuron with IP. The above graph is a histogram

that shows the ouput distribution for a neuron with the IP rule for a fixed Gaussian

distribution after 10000 iterations.
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5.3 Choosing the update rule for α

The inspiration for the choice of α comes from observing that the Infomax update rule for

α is

α = α + η

(
1

α
− 2E[xy]

)
(5.4)

i.e.

∆α ∝ 1

α
− 2E[xy]. (5.5)

Treating this as a dynamic system and rearranging for ∆α = 0 yields

0 =
1

α
− 2E[xy] (5.6)

⇒ 1

α
= 2E[xy] (5.7)

⇒α =
1

2E[xy]
(5.8)

Note that this ignores the non-linearities from y = tanh
(

(x−β)
α

)
in the E[xy] term.

However, the incremental nature of the IP rule may lessen the impact of these non-

linearities on the value that α converges to. Also, α being expressed as the inverse of

2E[xy] is why the IP rule was chosen to be applied as u = (x−β)
α

rather than u = α ·x+β,

as is done with Infomax.
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Chapter 6

Conclusion

6.1 Summary

In this work, I studied the relationship between a local, intrinsic learning mechanism

and a synaptic, error-based learning mechansim in ANNs. I developed a local intrinsic

rule, dubbed IP (after “intrinsic plasticity”, that was inspired by the Infomax rule. The

biological plausibility of this rule was discussed, and it was shown to be more biologically

plausible than the functionally similar batch normalisation method.

This work demonstrates that local information maximisation can work in conjunction

with synaptic learning rules other than the MEE algorithm, which aims to minimise the

entropy. In shallow networks, the IP rule improves learning on MNIST. It was shown that

this IP rule makes deep networks more robust to increases in synaptic learning rates, and

that it increases the average value for the slope of the activation functions. When compared

to batch normalisation and Infomax, whose family of solutions were shown to be the same,
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the IP rule demonstrates a negligible improvement in learning on MNIST and CIFAR-10.

In addition, an alternative rule was developed that had many of the same properties as

IP, but used a weighted moving average to compute the desired values for the neuronal gain

and bias rather than an Adamised update rule. This rule, dubbed WD, exhibits univer-

sally superior performance over IP. It improves performance in shallow networks on both

MNIST and CIFAR-10. In deep networks, it shows faster learning and a greatly increased

robustness to increases in synaptic learning. The gradients of the activation function were

again compared, and the WD method shows far larger gradients on average, suggesting

that this intrinsic, information-theoretic rule solves the vanishing gradient problem. The

WD method also outperforms Infomax and a weighted moving average version of batch

normalisation.

Supplementary analysis was done that reinforces the relationship between intrinsic plas-

ticity and batch normalisation. Specifically, it was shown that the IP method centers its

activation over the median of its input distribution, which is equivalent to centering it over

the mean of the input distribution for symmetric distributions.

Analysis was also provided that demonstrates the IP rule converging to similar levels

of neuronal entropy as the Infomax rule, when tested on a fixed input distribution. This

same analysis shows that the WD version of intrinsic plasticity also improved information

potential, but fails to reach the same levels as IP and Infomax. Interestingly, it was

observed that batch normalisation also improves information potential, suggesting that

this may be a cause for the efficacy of batch normalisation—an open problem as of the

writing of this thesis.
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6.2 Future Work

It was observed in some preliminary tests that the use of Cov(x,y) for updating α yields

more stable behaviour than 2E[xy], at the expense of a small decrease in performance. I

suspect that this may be due to approximation errors in y as the α and β parameters are

learned. Since Cov(x,y) = E[xy]− E[x]E[y], these approximation errors are partly offset

by the E[x]E[y] term when Cov(x,y) is used. Further reasearch is required to verify that

this is the case.

In addition, more work is required to explain the discrepancy in performance between

the more theoretically grounded IP rule presented in Section 3, and the better performing

WD rule presented in Section 4. As mentioned in Section 4.4, sampled values for β within

a learning network tended to be in the range of [−1, 1]. Since the test for entropy involved

evaluating these rules for fixed distributions, it would be interesting to see if the WD

method has improved levels of entropy when tested in an actual network, where input

distributions are constantly shifting. If this was the case, then that would improve the

theoretical justification of why the WD method works so well, meaning that the WD

method would have the best of both worlds—strong theory as well as greatly improved

performance.

Another concern with the work done is that occasionally α would become negative

during updates. This is a problem because negative values of α result in the activation

function being reflected in the y axis. With Infomax, this is not possible in the continuous

case, as the 1
α

term in the update rule pushes α away from zero when it becomes too

small. In the IP rule, 2E[xy] tends to be positive, since the activation function is initially

centered over zero, and E[xy] tends to be slightly positive when β reaches its equilibrium
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point. So both rules should never have negative values of α. However, in both cases, α

would occasionally cross into negative values due to numerical approximation errors from

the discrete updates. Strangely, this did not seem to adversely affect performance. Some

preliminary tests suggest that this is because tanh returns similar values when a reflection

occurs in cases where E[xy] is negative.

Furthermore, more involved experiments are required to test the hypothesis that IP is

more stable than Infomax, when used as a local rule. One possibility would be to increase

the intrinsic learning rates to test which rule fails first. Another possible test would be to

have a network continue learning for far longer than was done in these tests, to see if one

rule eventually diverges. In contrast, the WD rule worked for much larger values of η than

Infomax. This leads me to suspect that IP may be as well.

Finally, to further test the hypothesis that batch normalisation works because it im-

proves information entropy, experimentation should be done that compares the perfor-

mance of a “hard”, or instantaneous, version of IP to conventional batch norm, as we have

only compared the IP rule to an incremental rule that converges to the parameters used

in batch normalisation. Doing so would detract from the biological plausibility of the IP

rule, but may yield benefits in machine learning.

6.3 Closing Remarks

The concrete focus of this work has been the interplay between intrinsic and synaptic

plasticity, and attempting to show that intrinsic plasticity can solve the vanishing gradient

problem. More abstractly, the goal of my work is to close the gap between two views:
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that phenomenon in neurobiology can inform the theory of machine learning, and that

mathematical principles underlie the function of brains.

As a researcher in AI or ML, it is important not to forget that many advances in these

fields have happened after scientists and mathematicians directed their attention back to

the biological brain, and that biological plausibility is not just a vanity that needlessly

restricts the development of models. At the same time, work in neuroscience and neurobi-

ology could be bolstered by asking questions that lead to thinking of neurological functions

in terms of mathematical ideals. It is, after all, quite beautiful that information-theoretic

notions seem to be found in the brain just as much as a telecommunication channel or a

data compression algorithm, especially given that these phenomena are emergent in biology

rather than designed, as is the case in these latter examples.

Ultimately, while the majority of this work has focused on how intrinsic plasticity can

improve learning by using performance as a metric, I hope that the reader can appreciate

that the real goal is not to ask the question “How does this compete against other models?”

but rather to approach the study of neural networks in a principled manner, always keeping

theory within arm’s reach and keeping an eye out for how the insights gained from studying

neural networks may relate to other areas of research, and vice versa.
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Appendix A

The Back Propagation Algorithm

This appendix is provided as a reference for readers who are unfamiliar with the error

back propagation algorithm. While the details necessary for understanding this work are

provided in the main body of the text, the back prop algorithm is so fundamental to neural

networks that a full description may help readers who wish to develop more intuition for

how signals propagate in ANNs—both forward, as activities, and backwards, as errors.

A.1 Overview

A complete algorithm for updating the weights of an ANN consists of

1. The feedforward pass. This is when sample inputs are fed into the input layer of

the network, then propagated forward through each layer until an output is returned.

2. Computing the error. Once the output, yout, is returned, it is compared to a

75



target value, t, and a loss is computed to determine how “far” the output was from

the target. The L2 norm (a.k.a. the euclidean distance), or the categorical cross

entropy are typically used, for regression and classification problems respectively.

3. The backward pass. Now that an error signal has been computed, it is then

propagated back through the network, while the gradient of the error w.r.t. both

activities and weights are determined. This is done recursively, with the gradients

of the error w.r.t. the activities for later layers being used to compute the same

gradients in early layers.

4. Updating the weights. When the gradient of the error has been found with respect

to every weight, the weights are then updating simultaneously through the process

of gradient descent.

In practice, this is done many times. Learning to perform a task often requires observing

upwards of thousands or even millions of different samples, and the network may need

to observe each of these samples multiple times, since the improvement in performance is

typically incremental with each sample.

Note that the conventions for notation used in the main body of this work will continue

here. As a reminder, the superscript refers to the layer of the network, indexed from

zero, while the subscript will be used to refer to particular neurons, indexed similarly. For

weights, which sit between layers, their superscript will be indexed such that they match

the output layer, while their subscripts will refer first to the input neuron, then the output

neuron. For example, w
(1)
ij will refer to the connection that joins the i-th neuron in the

input layer to the j-th neuron in the first hidden layer.
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A.2 The Feedforward Pass

A sample from a dataset is composed of an input, x, and a target output, t. The first

step is to take x and pass it into the input layer of the network (so x = x(0)). Then,

y(0) = σ(x(0)) is computed for a given activation/transfer function, σ.

This value is transformed by the weight matrix, w(1), and biased by b(1) to yield the

input to the next layer

x(1) = y(0) · w(1) + b(1).

This is then done recursively for each of the k layers of the network, where the general

steps are

x(i) = y(i−1) · w(i) + b(i) (A.1)

y(i) = σ(x(i)) (A.2)

until a final output for the network, yout = y(k) is determined.

A.3 Computing the Error

With the output, yout, computed, it is now necessary to determine how well the network

performed and generate an error signal. The function used to compute this error signal

is typically called the loss function or objective function. In a regression problem, where

you are typically attempting to fit a hyperplane to some ground truth hyperplane, the L2

norm is typically used—to measure how far away the output is from the target. This is

given as

E = |yout − t|2
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whose derivative is (conveniently)

∂E

∂yout
= yout − t.

For classification problems, the categorical cross entropy can be used instead. This is

E = −
∑
i

[t · log(yout) + (1− t) · log(1− yout)]

for each class, i. The gradient for this loss function is (again, very conveniently)

∂E

∂yout
=
∑
i

yout − t.

There are many other possible loss functions. What is important is that ∂E
∂yout

can be

computed. This means that it must be possible to express the error in terms of the output

of the network. For training with multiple samples, it is also important that the error can

be averaged across samples.

A.4 The Backward Pass

Now that an error signal, E, has been generated, this error needs to be propagated back

through the network with respect to the parameters of the network. Consider ∂E
∂w(`) for an

arbitrary layer `. We know by the chain rule that this can be rewritten as

∂E

∂w(`)
=

∂E

∂y(`)
· ∂y

(`)

∂x(`)
· ∂x

(`)

∂w(`)
. (A.3)

Thus, provided that these three values on the right can be computed, it is possible to

compute the contribution to error for any weight in the network. ∂y(`)

∂x(`)
is simply the
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slope of the activation function, which can be easily found for any differentiable function.

Furthermore, since x(`) = w(`) · y(`−1), we have ∂x(`)

∂w(`) = y(`−1).

This breaks down the problem of assigning the contribution of error into three main

parts. Determining the gradient of the error w.r.t.

1. The activity of a given layer

2. A given weight

3. A given bias

First, consider the gradient of the error w.r.t. an activity, ∂E
∂y(`)

, when ` is the output

layer of the network. As shown in the previous section, this is often fairly straightforward,

and is simply the gradient of the loss function (which is why it was important to assume

that the loss was in terms of the output of the network).

Now consider when ` is not the output layer of the network. In this case, we can

recursively compute the error for this layer in terms of the error of the layer above. We

know that this can be done since we’ve already considered the base case of the output

layer. So, provided we have ∂E
∂y(`+1) , we can express ∂E

∂y(`)
as

∂E

∂y(`)
= w(`+1)T · ∂E

∂y(`+1)
,

where wT is the transpose of w. The intuition for this operation is that we are essentially

passing the error back through w by reversing the operation that it applies.

Having found ∂E
∂y(`)

, The lefthand side of Equation A.3 can now be computed by simply

multiplying the three values together elementwise on the righthand side. This gives a final
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expression for the error w.r.t. a given weight as

∂E

∂w(`)
=

(
w(`+1)T · ∂E

∂y(`+1)

)
· σ′(x(`)) · y(`−1) (A.4)

with each value on the righthand side having been previously determined.

Finally, we have to do the same thing for each bias in the layer. This is even simpler,

as

∂E

∂b(`)
=

∂E

∂y(`)
.

Since ∂E
∂y(`)

has already been computed, ∂E
∂b(`)

is obtained immediately.21

A.5 Updating the Weights

Finally, once all the gradients w.r.t. the weights and biases have been computed, they can

now be simultaneously updated. For some learning rate η, we wish to decrease loss and so

we have

w
(`)
old = w

(`)
old − η ·

∂E

∂w
(`)
old

and

b
(`)
old = b

(`)
old − η ·

∂E

∂b
(`)
old

for every layer `.

A.6 Practical Limitations and Implementation

The above algorithm presents back propagation in its simplest form, and only for one

interation. In practice, back prop is repeated for multiple iterations, as it incrementally
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converges to a minima for the error. While the algorithm should theoretically converge to

a minima for any continuous loss function, there are a large number of practical concerns

that limit its implementation. For one, the steps taken in gradient descent, dictated by

η, are discrete, and are thus prone to instability if the steps are too large, and taking

excessive time to converge if they are too small. Also, an immediate problem is that the

optimisation manifold, or “landscape”, may not be convex, and thus a discovered minima

may not be optimal.

Another issue is that optimisation manifolds for the loss function may not be well-

shaped, even if they are convex. For multi-dimensional loss functions, the surface may

be stretched such that the surface is very wide when projected along one axis, and very

narrow when projected along another. This can cause back propagation to converge very

slowly as it attemps to reach the bottom of its nearby valley rather than trying to go more

directly to the minima.

Many of these issues are currently being studied and are open topics of research. A

review of all the proposed solutions to these issues would be too involved for this work, but

I will briefly mention that augmenting back propagation with “momentum” mechanisms

is a common and fruitful means of addressing both the problems stated above, as learning

can gain enough momentum to “roll out of” local minima, and that it will improve the rate

at which longer valleys in the optimisation surface are traversed. The algorithm featured

in the main algorithm of this work, Adam, does exactly these things.

Finally, it is important to note that the cost function is actually conditional to the input

of the network. For this reason, training heavily on a certain sample can negatively condi-

tion the network when it attempts to generalise to new samples. This limits a network’s
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ability to generalise across a dataset of multiple samples and classes. For this reason, large

datasets often are fragmented, and the order that samples are presented to the network

is randomised. This randomisation is so key to learning that learning through gradient

descent of error is almost universally referred to as stochastic gradient descent, or “SGD”

for short.
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Appendix B

A Primer on Information Theory

The field of information theory is relatively young, born primarily out of the work of Claude

Shannon in 19481 [4]. Built upon probability and statistics, its central concern is the study

of communication and noise in a signal. Though grounded very naturally in the practical

world of communication (for instance, in telecommunication and networking), information

theory is important in the abstract as well. At its heart, it formalises the connection be-

tween probability distributions and sampling, quantifies the effects of functions on random

variables, and provides a principled grounds for relating statistics and probabilities to sig-

nals. Its generality in abstracting communication to probability and statistical theory make

the applications of information theory varied and many. These include (but are not limited

to) coding theory, cryptography, computer science, bioinformatics, linguistics, and—most

importantly for this work—neurobiology and computational neuroscience. Furthermore,

1Though it is important to note that many of the ideas that Shannon built upon had been developed

previously, though poorly formalised and not expressed with as much generality.
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its importance in the abstract is reinforced by its close similarity to many principles found

in thermodynamics, as the equation for entropy in statistical mechanics is identical to the

one given for information.

While too large a field to adequately outline here, I will make an effort to describe

two fundamental notions in information theory. The first is the measure of information

contained in a single random variable, which can be more concretely interpreted as a

“source” of information. This is measured in terms of “entropy,” and shares its name with

the same notion in thermodynamics due to the statistical connections between the two.

The second is measuring what information is shared by two random variables, and can

be thought of as the amount of information common to the sending and receiving ends of

a signal. This value is measured in terms of “mutual information.” Since this thesis is

primarily concerned with measuring the entropy of a neuron’s activity, less attention will

be dedicated to this second notion.

B.1 Information Entropy

Consider a random variable, p, taken from a distribution, P . If the distribution of P is

known, then each time you see a sample from P you can measure the new information, or

“surprise”, of the sample as p · log(1
p
). This can be interpreted as the first term stating the

likelihood of seeing p, multiplied by the amount of new information, log(1
p
) when p is seen.

This second part of term makes intuitive sense, as samples p with lower likelihoods will

lead to larger values of 1
p
, but thi should have diminishing returns, as captured by log(1

p
).

If you wish to ask what the average information/surprise is of this distribution then this
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is just the sum of the information gained for each sample, multiplied by the likelihood of

seeing that sample, formalised as

H(P ) =
∑(

p · log(
1

p
)

)
(B.1)

= −
∑

(p · log(p)) (B.2)

for each p that is a possible outcome/sample of P .

The value H defined above is the entropy of a distribution P . The unit that H is

measured in depends on the chosen base for log. If log2 is chosen, as is traditionally

done, then the entropy of a distribution is measured in “bits” (which is precisely where the

terminology comes from in computer science), or “shannons” in honour of Claude Shannon.

If taken in base e2, then the entropy is measured in terms of “nats”. Decimal digits, or

“hartleys”, are for log10, and other units such as bytes can be used. Just like changing

bases in counting systems, the effects of using different bases are largely unimportant, but

the convention used in this work will always be that log expressed without a base will be

treated as loge.

One property that stands out is that H should always be positive. Since P is a dis-

tribution, each p is bounded between 0 and 1. So the first part of the term p is positive,

and log(p) is always less than or equal to zero. Since every term is negative, H being the

negation of negative terms will always be positive. It should also be noted that in the case

where p is zero, p · log(p) will be evaluated as zero, since

lim
p→0+

p · log(p) = 0

2This will never be written as ln because we are real mathematicians.
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by L’Hopital’s rule. Also, if p = 1 for a particular p, say p′, then the entropy is zero, since

H(P ) = −
∑

(p · log(p))

= (p′ · log(p′) since no other p can have non-zero probability,

= 1 · log(1)

= 0 since log(1) = 0.

To develop more intuition of entropy in practice, let’s consider a simple, illustrative

example. Imagine a coin flip, with the two possible outcomes of head or tails. It is known

that the distribution of this probabilistic event is the binomial distribution. If the coin is

weighted such that it always returns heads, then heads will be seen every time, but there’s

no new information gained each time a heads is seen—it isn’t surprising to see yet another

instance of heads. So across all outcomes, there will be no new information. This is true

of tails as well. Now imagine that the coin is heavily weighted to one outcome. When the

unlikely outcome does happen it will be very rare, and so be very surprising. However,

the majority of outcomes will be unsurprising, and carry very little information. For this

reason, the average information across all outcomes will still be quite small, and so this

event will have very little entropy.

In fact, it quickly becomes clear that H is maximised for this event when the weight

of the coin is 0.5. This is because (p · log(p)) + ((1− p) · log(1− p)) is convex in p. Thus,

a fair coin yields the highest entropy3. This notion actually generalises for distributions

with more than two outcomes. This leads us to the central idea that much of this work is

founded upon.

3Perhaps gamblers simply wish to maximise entropy?
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Theorem 1. For a random event, P , with k outcomes, the entropy of P is maximised

when P is uniformly distributed. That is to say, when each of the k outcomes is equally

likely.

B.2 Mutual Information

Having discussed how information can be measured and maximised, we now focus briefly on

defining how much information two sources can share. The mutual information between two

sources of information is the amount of information gained about one distribution when

observing the other. Consider two random variables, A and B, whose joint probability

distribution is P (A,B). The mutual information I is given as

I(A;B) =
∑
a,b

P (a, b) · log

(
P (a, b)

P (a)P (b)

)
,

or

I(A;B) = P (A,B) · log

(
P (A,B)

P (A)P (B)

)
for short. This can be stated as either “the information gained about A while observing

B” or vice versa, as I is a symmetric property.

This property bears a lot of similarity to the notion of entropy. One such property

is that, like entropy, it is always non-negative. A key application of this concept is in

the measure of channel capacity. In communication, the channel capacity is how much

information can be carried from the input of the channel to the output, and it is exactly

the maximum mutual information between the input and output of the channel.
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