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Abstract

This thesis aims to investigate how HERCULES performs when running a lock-exchange

gravity current case. The LANS-α model with stratification is also tested as a subgrid model

in HERCULES using the same gravity current case. Gravity currents have been studied using

both direct numerical simulation (DNS) and large eddy simulation (LES). On the other hand,

the LANS-α model has only been applied to several test cases which mainly focus on isotropic

turbulence and wall-bounded unstratified flows. We begin by reviewing the characteristics

of the turbulent structures in the gravity currents and the motivation to use the LANS-α

model. This is followed by the implementation of the model in HERCULES with both grid-

dependent and flow-dependent α2
k. For this numerical study, a gravity current is generated

using a lock release in a horizontal channel. With a fine grid, the front location and the three-

dimensionality of the gravity current can be resolved accurately using HERCULES. When

the grid resolution is coarse, the LANS-α model can improve the results considerably using

grid-dependent α2
k with both subgrid terms. The flow-dependent α2

k requires modification in

its definition as the grid-dependent α2
k outperforms it in resolving the front location and the

small-scale, three-dimensional structures.
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Chapter 1

INTRODUCTION

The purpose of this thesis is to investigate the application of the Lagrangian-Averaged

Navier-Stokes alpha (LANS-α) model in a numerical study of full-release gravity currents.

The investigation consists of studying the LANS-α model and evaluating the performance of

an open-source solver, HERCULES [21], in a gravity current with and without the LANS-

α model. Gravity currents, sometimes referred to as density currents, are fundamentally

horizontal flows driven by density differences in a gravitational field. The phenomenon can be

generated numerically from a lock release in a horizontal channel where the initially stationary

lock fluid with a relatively high density is released to propagate into a stationary, low-density

ambient fluid. The understanding of gravity currents is essential because of the significant

role they play in our environment.

The LANS-α model is the first turbulence model that addresses the turbulence closure

problem by averaging a Lagrangian and using Hamilton’s principle [23]. The derivation of the

LANS-α equations from Hamilton’s principle guarantees that the properties of the fluid at

scales above the cut-off scale based on the length parameter, α, are resolved accurately and

the solution converges to the Navier-Stokes solution as α approaches zero [23].

Although application of the LANS-α model is still in its infancy and simulation results are

available for only few cases, the results so far suggest the model is emerging as a promising

approach to obtain closure [23]. In this preliminary investigation, we will first review the

results from numerical studies of the gravity current with a lock-exchange configuration. These

studies identify and describe the turbulent structures and their effects on the dynamics of the

flow. They demonstrate that turbulence characteristics develop differently in various flow

zones and the flow in the zones eventually interact with each other. We will then discuss the

motivation to use the LANS-α model as a turbulence model. We will also review the derivation

of the LANS-α equations with stratification and the application of LANS-α modeling in wall-
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bounded turbulence and mixing layer studies. The numerical study of the gravity current

and the LANS-α model is conducted using HERCULES. We will discuss how the model is

implemented in HERCULES and analyze the direct numerical simulation (DNS) results of the

gravity current obtained from HERCULES. Lastly, we will gain insight into how the LANS-α

model performs with and without including the density subgrid term and discuss how the

model should be improved for future study on the gravity currents or other stratified flow

phenomena.
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Chapter 2

BACKGROUND

2.1 Gravity Currents

2.1.1 Introduction

Gravity currents, sometimes referred to as density currents, are predominantly horizontal

flows driven by density differences in a gravitational field. In nature, gravity currents appear

at various scales. Examples include thunderstorm outflows in the atmosphere caused by

temperature differences, and turbidity currents formed from water carrying a high amount

of sediment. Due to the significant role they play in many problems in engineering and

science, many theoretical studies have been conducted under idealized conditions to address

the flow mechanisms. For example, Benjamin describes the spreading rate of the current

front using the theory of hydraulic jumps [3]. For ideal fluids which are incompressible and

inviscid, heavy fluid of density ρ1 moves into lighter fluid of density ρ0 with a front velocity of

c =
√

(2g′H) where g′ = g ρ1−ρ0ρ1
is the reduced gravity and H is the asymptotic height of the

current above the bottom. Although these idealized studies have shown that the propagation

of gravity currents can be mostly explained using shallow-water theory, there are still several

unresolved questions concerning the instabilities at the current head where at sufficiently

large Reynolds numbers a pronounced lobe-and-cleft structure is developed at the leading

edge along the solid boundary. In this respect, numerical simulations can be a complementary

tool to provide useful insight. For numerical studies, a gravity current can be generated using

a lock-exchange configuration where two initially stationary fluids of different densities start

to propagate freely due to the density difference in a horizontal channel. In a full-release

case, the initial depth of the lock fluid is equal to the channel height. The high density fluid

called the lock fluid will propagate between the bottom surface and the low density ambient

fluid. Recent studies, such as Cantero et al. [9], show strong agreement with the theory of

3



hydraulic jumps and highlight the development of the lobe-and-cleft instability at the front

interface. We will review these studies as they provide us with information on the turbulence

characteristics of the phenomenon, as well as a baseline for our investigation with the LANS-α

model. Note that Figures 2.1-2.5 in the following sections are reproduced from Cantero et al.

[9].

2.1.2 Results from direct numerical simulations

2.1.2.1 Transition time between phases

The flow evolves in a sequence of phases characterized by the balance of dominant forces

in the Navier-Stokes equation [9]. Initially, the flow accelerates from rest due to the driving

pressure gradient that arises from the density difference. This driving pressure is then balanced

by the inertial force in the slumping phase where the flow moves at nearly constant speed.

Following this is the inertial phase where the flow moves under the balance of the inertial

force and buoyancy. The last phase of the evolving gravity current is described as the viscous

phase in which the flow is dominated by the balance of viscous effect and buoyancy. During the

initial phases of spreading, which includes the initial acceleration, slumping and the subsequent

inertial phases, there is, as we will discuss later, strong vortex formation at the front of the

current. The final viscous phase is marked by the dominance of the viscous force, which

results in decay of the vortical structures. The slumping phase can transition to the viscous

phase directly if the Reynolds number is low and the viscous force is always dominant. In

Figure 2.1, the initial acceleration extends up to t̃ ≈ 4 with the inertial force reaching its

maximum at t̃ ≈ 1.4 and then dropping to a local minimum at t̃ ≈ 4. The slumping phase

spans from t̃ ≈ 4 to t̃ ≈ 14 during which time the inertial force decreases at an overall rate of

Fi ∝ t̃−3/4. The inertial phase spans from t̃ ≈ 14 to t̃ ≈ 26 during which period the inertial

force decreases at a faster rate of Fi ∝ t̃−3. From t̃ ≈ 26 to the end, the decay of the inertial

force becomes Fi ∝ t̃−1. The transition times are computed as the location where the best fit

curves intersect. It will be shown in the next section that these transition times agree well

with the evolution of the front speed. The relationship between the inertial and viscous forces

is easier to observe in the inset of Figure 2.1. It shows that the inertial force is dominant

before t̃ ≈ 14 and that afterward the ratio decays steadily until the end. These results are all

from Cantero [9].
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Figure 2.1: Time evolution of inertial force, Fi, and viscous force, Fv for a gravity current at Re =

15000. The inset shows the ratio of inertial and viscous forces in the current. Reproduced from Cantero

et al. [9] with permission.

2.1.2.2 Speed of current front

Figure 2.2 demonstrates the time evolution of front velocity, uF , which is defined as

uF =
dxF

dt̃
. (2.1.1)

This definition considers that the front speed is the speed at which the foremost point of the

front, xF , travels in the streamwise direction. Cantero et al. [8] proposed that the foremost

point of the current can be defined as the location where spanwise-averaged equivalent height,

h, becomes smaller than 0.01. Spanwise-averaged equivalent height is

h(x, t) =
1

Ly

∫ Ly

0
h̃ dy, (2.1.2)

where h̃ is the local equivalent height defined as h̃ =
∫ 1
0 ρ dz, and Ly is the spanwise dimension

of the domain. Note that the density, ρ = ρ̃−ρ̃0
ρ̃1−ρ̃0 , is a dimensionless quantity. The density

with tilde is the dimensional density; ρ̃0 is the density of the ambient fluid and ρ̃1 is the

density of the lock fluid. The density of the lock fluid is ρ1 = 1, and the ambient fluid has a

density of ρ0 = 0. Thus, at locations where they are occupied entirely by the lock fluid, the

equivalent height is unity, whereas the equivalent height is zero at locations where they are

occupied entirely by the ambient fluid. Following an initial acceleration-deceleration phase at
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Re = 15000, the flow settles at a constant speed of uF ≈ 0.42 in the slumping phase. The flow

transitions from the slumping phase to the inertial phase, which can be observed in Figure

2.2 at t̃ ≈ 13. The viscous effect then becomes important and the flow transitions to the

viscous phase at t̃ ≈ 25. The DNS results are also compared against theoretical relationships

established in Cantero et al. [8] from shallow-water theory. In the inertial phase, the front

speed scales as

uF = 0.98(h0x0)
1/3t̃−1/3. (2.1.3)

In the viscous phase, the front speed scales as

uF = 0.64(h0x0)
3/5Re1/5t̃−4/5, (2.1.4)

where h0 and x0 are the spanwise-averaged height and length of the initial heavy fluid, respec-

tively. These two front speed relations can be used to estimate the theoretical transition time

and in Figure 2.1, the relations show good agreement with the numerical front speed results.

Figure 2.2: The speed of current front at different Reynolds numbers. Theoretical relationships are

plotted for comparison. Reproduced from Cantero et al. [9] with permission.

2.1.2.3 Flow structure development

One of the characteristics of gravity currents is the lobe-and-cleft structure at the front.

During the slumping phase, the flow develops a complete structure of head, body, and tail.

Once the complete structure is developed, several zones can be identified in the flow as shown

6



in Figure 2.3, where the turbulent structures are visualized by isosurfaces of swirling strength,

λci. The swirling strength is defined as the absolute value of the imaginary part of the complex

eigenvalues of the local velocity gradient tensor, ∇u, and it is used to highlight the regions of

intense vorticity [9]. In Figure 2.3, zone 1 is where the shear layer forms with two-dimensional

vortical structures at the upper portion of the front. Zone 3, on the other hand, represents

the region where the structures in zone 1 destabilize to form three-dimensional, smaller-scale

turbulent structures. Zone 2 resembles a turbulent wall layer that forms at the bottom portion

of the front, where it features several quasi-streamwise vortices. Away from the front, the wall

and shear layers in zone 2 and zone 3, respectively, interact in zone 4. It is easy to see that

zone 4 (the body of the current) is more turbulent than the head (zone 1-3). Finally, zone 5

is a relatively quiescent region.

Figure 2.3: Turbulent structures visualized by the isosurface of λci = 6.4 during the slumping phase

at t̃ = 8, Re = 15000. Reproduced from Cantero et al. [9] with permission.

Figure 2.4 shows a top view of the isosurface with λci = 3.1. Six clefts can be identified

and the paths they travel are marked by dashed lines in Figure 2.4a. Close to the front, the

location of the quasi-streamwise vortices is well correlated with the clefts. Inspection of the

Figure 2.4: Top view of the isosurface λci = 3.1 at t̃ = 8, Re = 15000. (a) Four front locations (black)

corresponding to t̃ = 6.5, 7.1, 7.6, and 8. (b) The front corresponding to t̃ = 8 and the streamwise

velocity contours show the low-speed streaks (green) at z = 0.03. The spanwise spacing between

low-speed streaks is marked by thick black lines. Reproduced from Cantero et al. [9] with permission.
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quasi-streamwise vortices shows that they appear in pairs and are located on either side of a

cleft. The spacing between each pair of quasi-streamwise vortices correlates with the lobe size.

Farther away from the front, the location of the vortices is less correlated with the clefts and

the spacing becomes uneven. The same vortices are shown in Figure 2.4b with the inclusion

of streamwise velocity contours (red and green) on a horizontal plane at z = 0.03. Close to

the front, the low-speed streaks (green) are located between the quasi-streamwise vortex pairs

that are correlated to the clefts. It is observed in Cantero et al. [9] that the flow near the

bottom wall diverges from the center of the lobes and settles in the clefts. As a result, the

flow moves upward in the cleft corresponding to the low-speed streaks, while the wall-normal

flow that is downward in the lobes becomes the high-speed streaks.

Another important feature is the Kelvin-Helmholtz billows which are formed at the inter-

face between the heavy and light fluids. Figure 2.5 shows Kelvin-Helmholtz billows visualized

by spanwise-averaged λci. The three instances shown in Figure 2.5 are t̃ = 8 (slumping phase),

t̃ = 20 (inertial phase) and t̃ = 40 (viscous phase). Figure 2.5a clearly illustrates a train of

four Kelvin-Helmholtz vortices at the interface located at x ≈ 1.2, 2.2, 2.6, 3.3. There is also

an incipient formation of a vortex at x ≈ 3.7. As the simulation progresses, the signature of

the vortices becomes less defined in Figure 2.5b and the only indication of Kelvin-Helmholtz

billows is observed very close to the head in Figure 2.5c. Although the intensity of the

Figure 2.5: Contours of spanwise-averaged λci at Re = 15000. a) Slumping phase. b) Inertial phase.

c) Viscous phase. Reproduced from Cantero et al. [9] with permission.
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vortices remains high in Figures 2.5a and 2.5b as indicated by the local maxima of λci, the

intensity decreases in the final viscous phase as the roll-up at the interface becomes flat.

Closer inspection of the results in Cantero et al. [9] shows that the interface roll-up undergoes

stretching and tilting to develop a complex structure and eventually, the vortices break up

into smaller structures which result in a flatter contour.

2.1.3 Results from large eddy simulation

Simulations have also been conducted using large eddy simulation (LES) to investigate

the evolution of gravity currents. LES is a powerful tool to study gravity currents when the

computational cost becomes expensive for high Reynolds number DNS with non-dissipative

solvers. Based on the three-dimensional gravity current test case with lock-exchange config-

uration reported by Ooi et al. [43], LES is a good alternative for studying gravity currents.

In that study, the LES solver uses a dynamic Smagorinsky model to account for the effect of

the unresolved scales. The front speed, in the slumping phase, has a constant value of 0.41,

which is in excellent agreement with the DNS value of 0.42 established by Cantero et al. [9].

In the inertial and viscous phases, the front speed is reported to be consistent with the theory

where the speed is proportional to t̃−β and β is 1/3 and 4/5, respectively. After the slumping

phase, the Kelvin-Helmholtz billows also lose their coherence and only the first two or three

billows can be clearly identified. Similar to DNS results, the body of the current becomes

populated with small eddies in the inertial phase. These three-dimensional eddies stretch,

tilt, and eventually break into even smaller eddies in the viscous phase, resulting in a current

with flat body. In addition, close inspection of the results in Ooi et al. [43] shows that similar

lobe-and-cleft structure can be observed at the front. These structures, in part, contribute to

the disturbance in the predominantly two-dimensional Kelvin-Helmholtz billows, leading to

the loss of their spanwise coherence.

2.2 LANS-α Model

2.2.1 Introduction

Over the past decades, many turbulence models have been developed for obtaining closure.

Here, obtaining closure means that the physical phenomenon of turbulence is captured at low

resolution by modeling the effects of the small scales on the larger ones without calculating

the small scales explicitly. The LANS-α model was proposed to address the turbulence closure

problem using Lagrangian averaging and Hamilton’s principle. These principles ensure that

the properties of the flow, such as energy transport, instability and circulation, can be modeled
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accurately [23]. In this section, we will discuss the motivation to use the LANS-α model and

the derivation of the model under the Boussinesq approximation.

2.2.2 How the LANS-α model differs from others

The main difference between the LANS-α model and other turbulence models is the av-

eraging technique used to derive the model equations. In the LANS-α model, the effects of

small scales on the large scales are modeled by introducing fluctuations to a Lagrangian, which

is the difference between kinetic energy and potential energy [25]. The governing equations

are then obtained by averaging the Lagrangian and applying Hamilton’s principle. In com-

parison, traditional turbulence models use Reynolds decomposition to split the velocity into

its mean and fluctuating component. For LES, the equations are spatially filtered. Initially,

the LANS-α model was developed to regularize the Navier-Stokes equations without violat-

ing Kelvin’s circulation theorem [23]. The averaging principle used in the LANS-α model

introduces two velocities, ũ and v, which are related through the inversion of the Helmholtz

operator, H = (1−α2∆), i.e. ũ = H−1v. When the length scale, α, approaches zero, the two

averaged velocities are equal and one recovers the fundamental Kelvin’s circulation theorem

for the Navier-Stokes equation [23].

2.2.3 Relation of the LANS-α model to Large Eddy Simulations

As mentioned above, the basis for obtaining the LANS-αmodel is averaging the Lagrangian

in the Eulerian frame, whereas the foundation for the LES approach is the spatial filtering of

the Navier-Stokes equations in the Eulerian frame. Although the two models are derived from

different fundamental principles, similarities between the two approaches arise because both

yield expressions for conservation of momentum. Similar to LES, the LANS-α model also

involves a filtering operation. However, the type of filter used in LES can be chosen freely.

In the LANS-α model, the filter is specified as a Helmholtz operator. The numerical solution

of the model equations involves using the Helmholtz operator explicitly or approximating

the operator. In addition, the role of the filters in both approaches are different. In the

traditional LES approach, the difference between the filtered product of velocities and the

product of filtered velocity is modeled as the symmetric strain rate tensor multiplied with

a positive eddy viscosity, which introduces dissipation. In contrast, the modification of the

nonlinearity resulting from the filtering in the LANS-α model is dispersive and inhibits forward

energy transfer to the smaller scales below the length scale, α [23].
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2.2.4 Model formulation

For the present study, we will review the procedures and assumptions demonstrated in

Scott [50] and Holm [25] to include the Boussinesq approximation in the model for our nu-

merical study. We start by splitting the density, ρ, into a constant reference density, ρ0 and a

density variation, ρ′ where variation is much smaller in magnitude than the reference density.

Therefore, ρ(x, t) = ρ0 + ρ′(x, t) and |ρ′| � ρ0. We then make the Boussinesq approxima-

tion to obtain the averaged Lagrangian documented in Holm [25]. Following the procedures

that have been used by Holm [25] to derive Euler’s equations, we consider a Lagrangian, L,

that comprises of kinetic energy and potential energy with a volume preservation constraint

enforced by a Lagrange multiplier, P , which is the pressure,

L(X, Ẋ, ρ′) =

∫
d3a

(
ρ0
2

∣∣Ẋ(a, t)
∣∣2︸ ︷︷ ︸

1

− gρ′(X(a, t), t)z︸ ︷︷ ︸
2

+P (X(a, t), t)(det(X ′a)(a, t)− 1)︸ ︷︷ ︸
3

)
,

(2.2.1)

where the first term is the fluid kinetic energy, and the second term is the perturbation

potential energy with g as the constant acceleration of gravity and z as the vertical depth

relative to a surface with zero potential energy. In this study, we consider an incompressible,

isentropic fluid. The incompressibility is enforced by the volume preservation constraint shown

in the third term. Holm [25] defines X(a, t) as the Lagrangian fluid trajectory. Therefore,

x = X(a, t) is the current position of the fluid parcel with an initial position, a, at t = 0.

He also denotes the derivatives of X(a, t) by Ẋ = ∂X/∂t and X ′a = ∂X/∂a. To obtain the

Eulerian description of (2.2.1), we follow Holm’s approach [25] where he defines the Eulerian

fluid velocity, u(x, t) and volume element, D(x, t) via the kinematic relations,

u(x, t) = Ẋ(a, t) and D(x, t) = (det(X ′a)(a, t))
−1 at x = X(a, t). (2.2.2)

Holm et al. [22] also shows that the volume element, D, can be expressed as the Jacobian

for the transformation from Lagrangian to Eulerian coordinates. Thus, the volume element

satisfies Dd3x = d3a. Now, we can divide (2.2.1) by ρ0 and rewrite it in Eulerian variables

L(ui, D, ρ
′) =

∫
Dd3x

(
1

2
u2i (x, t) + p

(
1

D
− 1

)
− g ρ

′

ρ0
(x, t)z

)
(2.2.3)

=

∫
d3x

(
D

2
u2i + p(1−D)− gbDz

)
. (2.2.4)

Here, we define the pressure, p(x, t) = P (x, t)/ρ0 and b(x, t) = ρ′(x, t)/ρ0. Holm [25] refers

to b as “buoyancy”. From Salmon [49], Dθ
Dt = 0 where θ = ρ′g

ρ0
. Since g is a constant,

Db

Dt
= 0. (2.2.5)
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Note that θ in Salmon [49] is also referred to as the buoyancy, but it includes the gravitational

acceleration, g. Therefore, we will simply refer to b defined above as a non-dimensional density

in the rest of the thesis. We can now write the action for the incompressible fluid with the

Boussinesq approximation as

A =

∫
Ldt =

∫ ∫ (
D

2
u2i + p(1−D)− gbDz

)
d3x dt. (2.2.6)

The Eulerian velocity is expressed as the sum of a mean component, ũi, and a random

fluctuation, u′i,

ui(x, t;w) = ũi(x, t) + u′i(x, t;w), (2.2.7)

where w denotes rapid time variation [25] and only appears in ui. The averaging operator 〈·〉

and ũi are defined as [50]

ũi(x, t) = 〈ui(x, t;w)〉 = lim
T→∞

1

T

∫ T

0
ui(x, t;w) dw. (2.2.8)

Holm [25] demonstrates that the velocity fluctuation is determined by equating Eulerian and

Lagrangian velocities at a point, x+ ξ,

ui(x+ ξ, t;w) =
D(xi + ξi(x, t;w))

Dt
. (2.2.9)

where ξi is the particle displacement from its mean trajectory. The mean of ξi is assumed to

be zero, i.e. 〈ξi〉 = 0 [25]. Note that the dependence on the random variable is contained in

the velocity field on the LHS, while w is contained in the particle displacement field on the

RHS. With the velocity expression in (2.2.7) and first-order Taylor expansion, (2.2.9) becomes

ũi(x, t)︸ ︷︷ ︸
O(1)

+ ξj(x, t;w)
∂ũi(x, t)

∂xj︸ ︷︷ ︸
O(ξ)

+u′i(x, t;w)︸ ︷︷ ︸
O(ξ)

+ ξj(x, t;w)
∂u′i(x, t;w)

∂xj︸ ︷︷ ︸
O(ξ2)

=
Dxi
Dt︸︷︷︸
O(1)

+
Dξi(x, t;w)

Dt︸ ︷︷ ︸
O(ξ)

.

(2.2.10)

It is assumed that ξ is small and that the velocity fluctuation is of the same order of magnitude

as ξ [25]. Equating the terms with O(ξ) and ascribing all of the turbulent fluctuations to those

of the Eulerian velocity [25] lead to the following two expressions

u′i = −ξj
∂ũi
∂xj

, (2.2.11)

Dξi
Dt

= 0. (2.2.12)

The first equation gives us an expression for the velocity fluctuation. The second equation

is interpreted as Taylor’s “frozen turbulence” hypothesis applied to the particle displacement
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field [50]. Substituting the mean velocity and velocity fluctuation into the Lagrangian in

(2.2.6), we obtain the action in term of the averaged Lagrangian, 〈L〉, shown in Holm [25]

A =

∫
< L > dt =

∫ ∫ (
D

2

〈(
ũi +

(
− ξk

∂ũi
∂xk

))2〉
+ p(1−D)− gbDz

)
d3x dt

=

∫ ∫ (
D

2

(
ũiũi + 〈ξkξl〉

∂ũi
∂xk

∂ũi
∂xl

)
+ p(1−D)− gbDz

)
d3x dt,

(2.2.13)

where ũi is the averaged velocity, and 〈ξkξl〉 represents the covariance of a particle’s displace-

ment away from its mean trajectory [50].

Now we have the averaged Lagrangian, so the first variation of the action is

δA =

∫
dt

∫ (
∂〈l〉
∂ũi

δũi +
∂〈l〉
∂D

δD +
∂〈l〉

∂〈ξkξl〉
δ〈ξkξl〉+

∂〈l〉
∂b

δb

)
d3x, (2.2.14)

where 〈l〉 is the Lagrangian density. Since the Lagrangian multiplier, p, imposes the incom-

pressibility constraint [25],
∂〈l〉
∂p

= 0 = 1−D. (2.2.15)

This means that the incompressibility constraint requires the volume element to satisfy D = 1.

The first three terms in (2.2.14) are the same as Equation 3.46 in Scott [50] except that the

partial derivative with respect to the volume element, D, becomes

∂〈l〉
∂D

=
ũiũi

2
+
〈ξkξl〉

2

∂ũi
∂xk

∂ũi
∂xl
− p− gbz = −pα − gbz. (2.2.16)

We define pα as

pα = p− ũiũi
2
− 〈ξkξl〉

2

∂ũi
∂xk

∂ũi
∂xl

. (2.2.17)

The partial derivative of the averaged Lagrangian with respect to b is

∂〈l〉
∂b

= −Dgz. (2.2.18)

To determine the variation of density, δb , we follow the approach in Scott [50] where δb is

related to the variation in the particle trajectory. Using the same notation, η is the function

that maps particle labels, a, to particle positions, x, i.e. x = η(a, t). The particle trajectory

variation is then defined as δη = d
dε

∣∣∣
ε=0

(η+ εδη) = d
dε

∣∣∣
ε=0

ηε. In the Lagrangian frame, (2.2.5)

means that the density of each particle doesn’t change, i.e.

b(x, t) ◦ η = b0, (2.2.19)

where the ◦ operator denotes a composition of maps and the subscript 0 represents the initial

density of the particle. Now we take variation on both sides in 2.2.19, and differentiate with

respect to ε,

d

dε

∣∣∣
ε=0

(bε ◦ ηε) = 0, (2.2.20)
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d

dε

∣∣∣
ε=0

b(ηε, t) + εδb(ηε, t) = 0, (2.2.21)(
∂b

∂ηε
· ∂
∂ε
ηε
)∣∣∣

ε=0
+ δb(ηε, t)

∣∣∣∣∣
ε=0

= 0, (2.2.22)

∇b · δη + δb ◦ η = 0. (2.2.23)

Following the procedures in Scott [50] and composing both sides of (2.2.23) with the inverse

mapping, η−1, we have

δb = −∇b ·w, (2.2.24)

where w is the trajectory variation, and it is defined as w = δη ◦ η−1.

Substituting the variations of δũ, δ〈ξkξl〉 and δD calculated in Scott [50] and (2.2.24) into

(2.2.14) yields

δA =

∫ t2

t1

∫
V

[
∂〈l〉
∂ũi

(
∂wi
∂t

+ ũ
∂wi
∂xj
− wj

∂ũi
∂xj

)
− ∂

∂xi
(Dwi)

∂〈l〉
∂D

− ∂

∂xi
〈ξkξl〉

∂〈l〉
∂〈ξkξl〉

wi −
∂b

∂xi

∂〈l〉
∂b

wi

]
dx3 dt.

(2.2.25)

Integration by parts gives

δA =

∫ t2

t1

∫
V
−
[(

∂

∂t
+ ũj

∂

∂xj

)
∂〈l〉
∂ũj

+
∂〈l〉
∂ũj

∂ũj
∂xi

+D
∂pα

∂xi
+ gbDδi3 +

∂〈l〉
∂〈ξkξl〉

∂〈ξkξl〉
∂xi

]
wi dx

3 dt

+

∫
V

∂〈l〉
∂ũi

dx3
∣∣∣∣t2
t1︸ ︷︷ ︸

1

+

∫ t2

t1

∫
A

∂〈l〉
∂ũi

ũjwi dAj︸ ︷︷ ︸
2

−
∫ t2

t1

∫
A

∂〈l〉
∂D

wi dAi︸ ︷︷ ︸
3

−2

∫ t2

t1

∫
A
Dgzb dAi︸ ︷︷ ︸
4

.

(2.2.26)

The reasons for which term 1-3 are zero are documented in Scott [50], namely:

1. variations are zero at the beginning and end times,

2. velocity is either periodic or has zero normal component for a solid surface,

3. the trajectory variation, w, is tangent to the bounding surface [39].

The last term results from the variational derivative with respect to D and b. It is zero because

b is either periodic or has zero normal component at a solid surface. Setting the first variation

to zero and imposing the incompressibility constraint, D = 1, yield(
∂

∂t
+ ũj

∂

∂xj

)
δ〈L〉
δũi

+
δ〈L〉
δũi

∂ũj
∂xi
−D ∂

∂xi

δ〈L〉
δD

+
δ〈L〉
δ〈ξkξl〉

∂〈ξkξl〉
∂xi

+
δ〈L〉
δb

∂b

∂xi
= 0. (2.2.27)

Substituting the partial derivatives into (2.2.27) gives

∂vi
∂t

+ ũj
∂vi
∂xj

+ vj
∂ũj
∂xi

= −∂p
α

∂xi
− gbδi3 −

1

2

∂〈ξkξl〉
∂xi

∂ũm
∂xk

∂ũm
∂xl

, (2.2.28)
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vi =
δ〈L〉
δũi

= ũi −
∂

∂xk

(
〈ξkξl〉

∂ũi
∂xl

)
, (2.2.29)

pα = p− ũiũi
2
− 〈ξkξl〉

2

∂ũi
∂xk

∂ũi
∂xl

. (2.2.30)

Note that (2.2.28)–(2.2.30) are the Euler-Poincaré equations with stratification in Holm [25].

To obtain the LANS-α equations with stratification from which we can recover the Navier-

Stokes equations, we first examine (2.2.28). Holm defines v as the Lagrangian mean velocity

and ũ as the Eulerian mean velocity [25]. Through the inversion of the Helmholtz operator,

H =
(

1− ∂
∂xk

(
〈ξkξl〉 ∂∂xl

))
, ũ = H−1v and ũ is smoother than v [23]. To develop an equation

with ũ only, we follow the approach taken in Scott [50] and apply the commutator between

the material derivative, D
Dt = ∂

∂t + ũj
∂
∂xj

and the Helmholtz operator, H. The details of the

procedures have been demonstrated in Scott [50], so the LANS-α equation with stratification

is
∂ũi
∂t

+ ũj
∂ũi
∂xj

= − ∂p̃

∂xi
+ v

∂2ũi
∂x2k

− gb̃δi3 −H−1
(
∂mij

∂xj

)
, (2.2.31)

where p̃ and b̃ are the smoothed pressure and smoothed density, respectively. H−1 represents

the inverse Helmholtz operator. Note that a viscous term has been added to diffuse momentum

and dissipate energy. The subgrid stress, mij is

mij = 〈ξkξl〉
∂ũi
∂xk

∂ũj
∂xl

+ 〈ξjξl〉
∂ũk
∂xl

∂ũi
∂xk
− 〈ξkξj〉

∂ũm
∂xi

∂ũm
∂xk

. (2.2.32)

To solve (2.2.31), we need to find an expression for the smoothed density, b̃. This can be

done by applying the same approach for the material derivative, Db
Dt = 0. We apply the same

commutator
[
D
Dt , H

]
to b̃ and use the relation b = H(b̃),

[
D

Dt
,H

]
b̃ =

D

Dt

(
H(b̃)

)
−H

(
Db̃

Dt

)
, (2.2.33)[

D

Dt
,H

]
b̃+H

(
∂b̃

∂t
+ ũj

∂b̃

∂xj

)
=
Db

Dt
= 0, (2.2.34)(

∂b̃

∂t
+ ũj

∂b̃

∂xj

)
= H−1

(
−
[
D

Dt
,H

]
b̃

)
. (2.2.35)

Evaluating
[
D
Dt , H

]
b̃ directly gives

[
D

Dt
,H

]
b̃ =

D

Dt

[(
1− ∂

∂xk

(
〈ξkξl〉

∂

∂xl

))
b̃

]
−
(

1− ∂

∂xk

(
〈ξkξl〉

∂

∂xl

))(∂b̃
∂t

+ ũj
∂b̃

∂xj

)
,

=− ∂

∂t

(
∂

∂xk

(
〈ξkξl〉

∂b̃

∂xl

))
+

∂

∂xk

(
〈ξkξl〉

∂

∂xk

)(
∂b̃

∂t

)
− ũj

∂

∂xj

(
∂

∂xk

(
〈ξkξl〉

∂b̃

∂xl

))
+

∂

∂xk

(
〈ξkξl〉

∂

∂xl

)(
ũj

∂b̃

∂xj

)
.

(2.2.36)
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Expanding every term and applying
∂ũj
∂xj

= 0,[
D

Dt
,H

]
b̃ =

∂

∂xj

(
〈ξkξl〉

∂ũj
∂xk

∂b̃

∂xl
+ 〈ξjξl〉

∂ũk
∂xl

∂b̃

∂xk

)
. (2.2.37)

Substituting (2.2.37) into (2.2.35) and incorporating a viscous term with diffusivity, Γ, the

transport equation of density is

∂b̃

∂t
+ ũj

∂b̃

∂xj
= Γ

∂2b̃

∂x2j
−H−1

(
∂Bj
∂xj

)
, (2.2.38)

with the subgrid term,

Bj = 〈ξkξl〉
∂ũj
∂xk

∂b̃

∂xl
+ 〈ξjξl〉

∂ũk
∂xl

∂b̃

∂xk
. (2.2.39)

Therefore, the LANS-α equations with stratification are

∂ũj
∂xj

= 0, (2.2.40)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= − ∂p̃

∂xi
+v

∂2ũi
∂x2k

− gb̃δi3 −H−1
(
∂mij

∂xj

)
, (2.2.41)

mij = 〈ξkξl〉
∂ũi
∂xk

∂ũj
∂xl

+〈ξjξl〉
∂ũk
∂xl

∂ũi
∂xk
− 〈ξkξj〉

∂ũm
∂xi

∂ũm
∂xk

, (2.2.42)

∂b̃

∂t
+ ũj

∂b̃

∂xj
=Γ

∂2b̃

∂x2j
−H−1

(
∂Bj
∂xj

)
, (2.2.43)

Bj = 〈ξkξl〉
∂ũj
∂xk

∂b̃

∂xl
+ 〈ξjξl〉

∂ũk
∂xl

∂b̃

∂xk
. (2.2.44)

The continuity equation (2.2.40) comes from the invariance relation of the volume element,

D, shown in Holm [25] where ∂D/∂t + ∇ · (Dũ) = 0. Setting D = 1 yields a continuity

equation that implies incompressibility. When we set 〈ξkξl〉 = 0, we recover the Navier-Stokes

equations with the Boussinesq approximation. In addition, we impose isotropy to 〈ξkξl〉 and

replace it with 〈ξkξl〉 = α2δkl. For the rest of the discussion in this thesis, we shall refer to

constant α2 as isotropic α2 and direction-dependent α2 as anisotropic α2
k.

2.2.5 Numerical study of LANS-α modeling

Since applications of the LANS-α model are still in its infancy, literature is not available on

the application of the LANS-α model to a gravity current at the time of this study. However,

studies have been conducted on other wall-bounded flows, as well as on temporal mixing

layers with isotropic α. As discussed earlier, the head and body of a gravity current present

Kelvin-Helmholtz instabilities that are similar to those observed in mixing layers. Although

the mechanisms behind the phenomena are rather different, these studies can provide some

insights on how we should implement the model.

For application of the LANS-α model with isotropic α2, it is necessary to choose a relation-

ship that determines α2. Since α can be considered as a length scale, it is reasonable to relate
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α2 to the grid spacing or grid volume. For example, the isotropic definition of α2 is given by

α2 = Ch2 in Scott [50] with h being the grid spacing and C = 1
6 . Using the same isotropic

definition of α2 with different C values, Geurts and Holm noticed that under-resolution of the

LANS-α model results in higher turbulent intensity and unphysical small-scale features in their

temporal mixing layer study [17]. By keeping α2 constant and refining the grid resolution,

they managed to observe results that correspond very well with filtered DNS data. Com-

bined with their observations and treatments to obtain a grid-independent solution, Geurts

and Holm [17] concludes that turbulent mixing based on the LANS-α model requires α ≈ h,

where h is the grid spacing.

Problems were encountered in Scott [50] when the definition of α is based on the mesh size

for a lid-driven cavity flow with different grid-stretching ratios. When the grid is stretched near

walls, abrupt changes in α2 at the solid boundaries can cause unphysical numerical oscillations.

Similar to a gravity current, the lid-driven cavity is a complex flow in the sense that many

structures develop at the same time. Therefore, an alternative definition of α2 was proposed in

Scott [50] where α2 is a function of the flow. In the present study, we adopt the methodology

demonstrated by Scott [50]. In theory, α2 is a measure of the mean-squared deviation of a

particle from its averaged trajectory. If the time, T , over which the particle travels between

two points is sufficiently short such that the particle velocities are well-correlated during the

motion, α2 can then be defined as

α2 = [u2]T 2, (2.2.45)

where u is the velocity of the particle and the square brackets represent a statistical average.

Scott [50] then demonstrates that a reasonable choice of timescale that is relevant to the

resolved flow is

T = (g̃ij g̃ij)
−1/2, (2.2.46)

where g̃ij is the resolved velocity gradient. For u2, the velocity increment is used. Velocity

increments are the differences of velocities between two spatial positions [29]. Thus, the

definition of the anisotropic α2
k based on the flow is

α2
x = max[(δxũ)2, (δyũ)2, (δzũ)2]T 2, (2.2.47)

α2
y = max[(δxṽ)2, (δyṽ)2, (δz ṽ)2]T 2, (2.2.48)

α2
z = max[(δxw̃)2, (δyw̃)2, (δzw̃)2]T 2, (2.2.49)

where δ denotes the velocity increment.
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Chapter 3

NUMERICAL METHODS AND

MODELS

3.1 HERCULES

HERCULES is an open-source code developed for high-performance turbulence simula-

tions. It can be used to conduct DNS of neutrally and stably stratified turbulent open or

closed channel flows. HERCULES is written in Fortran 90 and it has been tested on a num-

ber of high-performance computing systems showing excellent parallel efficiency with up to

10,000 CPU cores [21]. In HERCULES, a fractional time step method is utilized for the time

advancement where the governing equations are discretized by a semi-implicit scheme in time.

The Crank-Nicolson scheme is used for the viscous terms and Runge-Kutta scheme (RK3) is

used for the rest of the terms. For spatial discretization, the fourth-order central difference

scheme is used for the horizontal derivatives and the vertical derivatives are discretized using

the second-order central difference scheme.

3.1.1 Governing equations

HERCULES is configured for turbulent channel flows in a rectangular wall-bounded do-

main with periodic boundaries in the horizontal directions. The code solves the Navier-Stokes

and the density equations under the Boussinesq approximation using a finite-difference ap-

proach.

Under Boussinesq approximation, the non-dimensionalized Navier-Stokes equations and

density equation for incompressible flows are

∂uj
∂xj

= 0, (3.1.1)

18



∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui
∂x2j

− bδi3 + Sm, (3.1.2)

∂b

∂t
+
∂(buj)

∂xj
=

1

ScRe

∂2b

∂x2j
+ Sb. (3.1.3)

The governing equations are normalized by the height of the domain, h, and the velocity

scale, ub. The velocity scale is defined as ub =
√
g′h where g′ = g

(
b̃1− b̃0

)
/b̃0. For the gravity

currents, b̃1 and b̃0 are the lock fluid and the ambient fluid, respectively. The dimensionless

density and pressure are defined as b =
(
b̃ − b̃0

)
/
(
b̃1 − b̃0

)
and p = p̃/

(
b̃0u

2
b

)
, respectively.

The variables with tildes are the filtered variables from the LANS-α model equations. The

Reynolds number and Schmidt number are defined as Re = ubh/v and Sc = v/Γ, respectively.

Here v is the kinematic viscosity and Γ is the diffusivity. For the LANS-α model, Sm in the

momentum equation and Sb in the density equation are the non-dimensionalized subgrid model

terms, −H−1(∂mij

∂xj
) and −H−1(∂Bj

∂xj
) from (2.2.41) and (2.2.43), respectively. Note that the

equations are normalized using the friction velocity, uτ , and the half height of the domain

for the channel flow, and Sm in the momentum equation is the streamwise pressure gradient

driving the flow. The details are discussed in He [21].

3.1.2 Spatial discretization

The spatial derivatives in (3.1.1)–(3.1.3) are discretized on a staggered grid as illustrated

in Figure 3.1. Here u and w represent the velocity components in the x and z directions,

respectively. Note that x is the streamwise direction and z is the vertical direction, and the

grid looks exactly the same in the y−z plane except that u-velocity is replaced by the spanwise

velocity component, v, in the y direction. The velocity components are stored at the

Figure 3.1: Sketch of the staggered grid in HERCULES in the x-z plane.
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midpoint of the cell surfaces, whereas the density and pressure are stored in the cell centers.

The horizontal grids are uniformly spaced while a stretched grid with a hyperbolic tangent

profile is used in the z direction. Note that dzt(k) =
dz(k)+dz(k+1)

2 and dzb(k) =
dz(k−1)+dz(k)

2

are needed for the vertically stretched grid. The horizontal and vertical derivatives are dis-

cretized using the fourth-order central difference scheme and the second-order central differ-

ence scheme, respectively. The details of the schemes used can be found in He [21].

3.1.3 Advection schemes

The central difference method used in the original version of HERCULES introduces nu-

merical dispersion errors that may corrupt the solution with unphysical oscillations and these

oscillations do not necessarily become smaller with higher-order methods [34]. To reduce the

dispersive error caused by central difference methods, a first-order upwind scheme and the

third-order QUICK (Quadratic Upstream Interpolation for Convective Kinematics) scheme

are implemented in HERCULES. The 1st order upwind scheme is the simplest upwind scheme

whose leading truncation error term contains a second-order spatial derivative. The second-

order spatial derivative in the error introduces artificial diffusion, which leads to inaccurate

results [34]. On the other hand, QUICK which has been used in similar density-driven flow

simulations, such as Ooi et al. [43], has a leading fourth-order derivative that is dissipative

in the truncation error term. However, higher-order dispersion terms in the truncation error

term may still cause overshoots [34].

3.1.3.1 Implementation of 1st order upwind scheme and QUICK

Following the standard control-volume approach to model the derivative demonstrated in

Leonard [33], the convective term in (3.1.3) becomes
ujrbr
dxj
− ujlbl

dxj
where l and r represent the

variable’s values at the left and right surfaces, respectively. For both the 1st order upwind

scheme and QUICK, the interpolated density, bl and br, are stored at the same location as

their advecting velocity.

Figure 3.2: Sketch of 1D grid. The variables are stored at the same location as the 2D grid. The

dashed line represents the cell surface.
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For the 1st order upwind scheme, it is easy to derive an expression for a convective flux.

As shown in Figure 3.2 and assuming the velocity is positive (ujl, ujr > 0), the upstream

scalar convected by the left face velocity is bL and the upstream scalar of the right face is

bC . Therefore,
ujlbl
dxj

=
ujlbL
dxj

and
ujrbr
dxj

=
ujrbC
dxj

. Considering the four different combinations of

signs for ujl and ujr, the convective fluxes can be written as

ujlbl
dxj

=
[(ul + |ul|)bL + (ul − |ul|)bC ]

2dxj
, (3.1.4)

ujrbr
dxj

=
[(ur + |ur|)bC + (ur − |ur|)bR]

2dxj
, (3.1.5)

where L, C, and R represent the left, middle, and right cell center values, respectively.

The 1st order upwind scheme is equivalent to zeroth-order interpolation of the scalar

with the choice of direction depending on the sign of the surface velocity. On the other

hand, QUICK involves using a three-point upstream-weighted quadratic interpolation, so the

expression for the flux becomes more complicated. For a uniform grid, the general expression

for three-point upstream-weighted interpolation is

b =
6

8
bupadj +

3

8
bdownadj −

1

8
bup, (3.1.6)

where bupadj and bdownadj are the two adjacent nodes of the cell surface where ’up’ and ’down’

superscripts represent the node is upstream or downstream to the cell surface, respectively.

The upstream node of the two adjacent nodes is described by bup. Again, considering both

ujl and ujr are positive, the adjacent nodes are bL and bC , and the upstream node is bFL for

the left cell surface. For the right cell surface, the adjacent nodes become bC and bR, and the

upstream node is bL. Therefore, bl = 6
8bL + 3

8bC −
1
8bFL and br = 6

8bC + 3
8bR −

1
8bL. For other

combinations of face velocity directions, it is crucial to use the correct nodes for interpolation.

3.1.3.2 Validation: oblique step test

The oblique step test is a well known benchmark where the scalar with a transverse step

profile is convected in a square domain. The test is commonly used to test an advection

scheme because it is easy to implement, and the results can be visualized easily in 3D. The

constant advecting velocity has a direction parallel to the transverse step that is oblique to

the grid at an angle, θ, between 0◦ and 90◦. The detailed description of the benchmark setup

is listed in Leonard [34] and θ in this case is chosen to be 45◦ so the exact solution should be a

step travelling along the diagonal of the square domain as shown in Figure 3.3. The direction

of the advecting velocity is along the diagonal and points into the page. Figure 3.4 and Figure

3.5 are the results corresponding to 1st order upwind scheme and QUICK. As expected, 1st
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Figure 3.3: Three-dimensional representation of the scalar for the exact solution for θ = 45◦.

Figure 3.4: Oblique step test results for 1st order upwinding.
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Figure 3.5: Oblique step test results for QUICK.

order upwinding involves a severe smearing of the step due to the strong numerical diffusion in

the method. Instead of smearing, the obvious characteristic for QUICK is the anti-symmetrical

overshoot near the step. Also, the step resolved from QUICK has a steeper slope, which

better represents the oblique step. In Leonard’s paper [34], he defines the error by summing

over the difference between the computed scalar and the exact solution at all interior grid

points. Using the same error defined in Leonard [34], 1st order upwind scheme in HERCULES

approaches an error of 69.43 compared to a value of 68.2 in Leonard [34] and the error is 18.95

in HERCULES with QUICK compared to an error of 16.6 in Leonard [34]. For other values

of θ, similar behavior is expected from the two schemes.

3.1.4 LANS-α model implementation

For the present study, only the diagonal components of α2
k are retained. Therefore, non-

dimensionalized (2.2.42) becomes

mANISO
ij = α2

kδkl
∂ui
∂xk

∂uj
∂xl︸ ︷︷ ︸

Aij

+α2
l δjl

∂uk
∂xl

∂ui
∂xk︸ ︷︷ ︸

Bij

−α2
kδkj

∂um
∂xi

∂um
∂xk︸ ︷︷ ︸

Cij

, (3.1.7)

and non-dimensionalized (2.2.44) becomes

BANISO
j = α2

kδkl
∂uj
∂xk

∂b

∂xl
+ α2

l δjl
∂uk
∂xl

∂b

∂xk
, (3.1.8)
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where α2
k = 〈ξkξk〉. We follow the grid-dependent definition of α2

k established in Geurts and

Holm [17] and follow the flow-dependent definition of α2
k listed in (2.2.47)–(2.2.49).

We now have expressions for the source terms in (3.1.2) and (3.1.3). To implement the

source terms in HERCULES, the challenges are to determine the divergence of subgrid terms,

mij and Bj and apply the inverse Helmholtz filter. The first part requires using proper

boundary conditions for α2
k, mij , and Bj . These conditions may change depending on the

boundary condition of a test case. For the second part, depending on whether α2
k is grid-

dependent or flow-dependent, two different filters are implemented.

3.1.4.1 Boundary conditions for the LANS-α with anisotropic α2
k

For the current version of HERCULES, the boundary condition in the horizontal plane is

periodic for all variables. For the grid-dependent α2
k based on the grid volume, the values of α2

k

are only a function of vertical location, so the periodic boundary condition in the horizontal

plane is applicable. For the flow-dependent α2
k, every term in (2.2.47)–(2.2.49) is periodic at

the boundary, which guarantees that the flow-dependent α2
k is also periodic in the horizontal

plane. Similarly, the boundary values of mij and Bj are guaranteed to be periodic in the

horizontal direction as every term in (3.1.7) and (3.1.8) is periodic. In the vertical direction,

the boundary condition for α2
k is a homogeneous Dirichlet boundary condition, and thus the

boundary conditions for mij and Bj are also homogeneous Dirichlet. The top and bottom

boundary conditions can also be homogeneous Neumann boundary condition for α2
k, but the

boundary values of mij and Bj need to be determined dynamically, which can be costly.

3.1.4.2 Filter for the grid-dependent anisotropic α2
k

Following the mixing layer study of Geurts and Holm [17], the grid-dependent α2
k is

chosen to be α2
k = C(grid volume)2/3 with C = 1

6 . In addition, the inverse Helmholtz filter is

approximated using a explicit top-hat filter because the Taylor series expansion of the inverse

Helmholtz filter is identical to that of a top-hat filter up to the fourth order [17]. Filter width

ratio is a parameter that needs to be specified for the top-hat filter. For example, the chosen

α2
k with C = 1

6 corresponds to a filter width of twice the grid spacing in each direction.

3.1.4.3 Filter for the flow-dependent anisotropic α2
k

The filter for flow-dependent α2
k requires solving a Helmholtz equation. We begin with

the Helmholtz equation in physical space. Denoting the unfiltered and filtered variables by
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φ(i, j, k) and φ̃(i, j, k) respectively,

φ = φ̃− ∂

∂xk

(
α2
k

∂φ̃

∂xk

)
. (3.1.9)

The discretization of (3.1.9) can be simplified if we take an average of the α2
k values determined

from (2.2.47)–(2.2.49) in the horizontal plane. Since the values of α2
k are now only a function

of vertical direction, (3.1.9) becomes

φ = φ̃− α2
x

∂2φ̃

∂x2
− α2

y

∂2φ̃

∂y2
− ∂

∂z

(
α2
z

∂φ̃

∂z

)
. (3.1.10)

After discretizing the first and second order derivatives following the method in HERCULES,

(3.1.10) becomes

φ = φ̃− α2
x

φ̃i−1 − 2φ̃i + φ̃i+1

dx2
− α2

y

φ̃j−1 − 2φ̃j + φ̃j+1

dy2
−

(
h
∂φ̃

∂z
+ α2

z

∂2φ̃

∂z2

)
, (3.1.11)

where h = ∂α2
z

∂z . Note that the indices of the φ̃ are i, j and k if they are not explicitly specified.

To be consistent with the staggered grid shown in Figure 3.1, the following two equations are

derived where (3.1.12) is used for a variable that is staggered like density,

φ =φ̃− α2
x

φ̃i−1 − 2φ̃i + φ̃i+1

dx2
− α2

y

φ̃j−1 − 2φ̃j + φ̃j+1

dy2

−

(
h
φ̃k − φ̃k−1
dz(k)

+ α2
z

φ̃k+1−φ̃k
dzt(k)

− φ̃k−φ̃k−1

dzb(k)

dz(k)

)
,

(3.1.12)

and (3.1.13) is derived for a variable that is staggered like w-velocity

φ =φ̃− α2
x

φ̃i−1 − 2φ̃i + φ̃i+1

dx2
− α2

y

φ̃j−1 − 2φ̃j + φ̃j+1

dy2

−

(
h
φ̃k − φ̃k−1
dz(k)

+ α2
z

φ̃k+1−φ̃k
dz(k+1)

− φ̃k−φ̃k−1

dz(k)

dzt(k)

)
.

(3.1.13)

To understand the reason why there are two different discretizations, we look at the staggered

grid in HERCULES. In Figure 3.1, We can see that the second order finite difference approx-

imation of the second order derivative, ∂2φ̃
∂z2

, is
(
φ̃k+1−φ̃k
dzt(k)

− φ̃k−φ̃k−1

dzb(k)

)
/dz(k) for u, v-velocities

and density. The approximation becomes
(
φ̃k+1−φ̃k
dz(k+1)

− φ̃k−φ̃k−1

dz(k)

)
/dzt(k) for the w-velocity.

Therefore, (3.1.12) is for a variable that is staggered like density and (3.1.13) is for variable

that is staggered like w-velocity. Furthermore, (3.1.12) and (3.1.13) can be written in the

form

φ =

(
1 +

2α2
x

dx2
+

2α2
y

dy2
+

α2
z

dzt(k)dz(k)
+

α2
z

dzb(k)dz(k)
− h

dz(k)

)
φ̃− α2

x

dx2
φ̃i−1 −

α2
x

dx2
φ̃i+1

−
α2
y

dy2
φ̃j−1 −

α2
y

dy2
φ̃j+1 +

(
h

dz(k)
− α2

z

dzb(k)dz(k)

)
φ̃k−1 −

α2
z

dzt(k)dz(k)
φ̃k+1,

(3.1.14)
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φ =

(
1 +

2α2
x

dx2
+

2α2
y

dy2
+

α2
z

dzt(k)dz(k+1)
+

α2
z

dzt(k)dz(k)
− h

dz(k)

)
φ̃− α2

x

dx2
φ̃i−1 −

α2
x

dx2
φ̃i+1

−
α2
y

dy2
φ̃j−1 −

α2
y

dy2
φ̃j+1 +

(
h

dz(k)
− α2

z

dzt(k)dz(k)

)
φ̃k−1 −

α2
z

dzt(k)dz(k+1)
φ̃k+1.

(3.1.15)

respectively. The equations, (3.1.14) and (3.1.15), can then be efficiently solved using conju-

gate gradient method [2].

3.1.4.4 Validation: closed channel turbulent flow

Turbulent closed-channel flow is a pressure-driven flow in a rectangular domain. It is a

popular test case for validating a numerical solver because of its simplicity and importance in

the study of flow near solid boundaries, which is a fundamental problem in various real-world

challenges such as the design of aircraft wings, propellers and jet engine compressors.

However, this test case is not as simple as it looks. For an LES model that essentially

captures the large scales while modeling the small scales with some assumptions, problems

can arise when the boundary layers at the walls are not correctly resolved. Although the

thin near-wall regions are geometrically insignificant when compared with the bulk flow, the

energetic and dissipative scales overlap in these regions [31]. Therefore, correctly resolving

the energy-containing structures is crucial. For many LES studies, which use a dissipative

subgrid model, the impact of the model in the near-wall regions is reduced by applying a

damping factor to the subgrid scale viscosity or reducing the filter width near the wall [15].

For validating the LANS-α model implementation, the values of α2
k in grid-based anisotropic

alpha are damped near the walls with Van Driest damping function

f(y+) = 1− e−
y+

26 , (3.1.16)

where y+ is the normalized wall normal distance. This damping function has also been used

in the channel flow study of Scott [50]. Note that the values of flow-dependent α2
k are not

damped.

For validation, the results from HERCULES are compared with the publicly available DNS

results from Moser et al. [40]. The domain size is Lx × Ly × Lz = 2π × 2 × π and number

of grid points used in the validation is reduced to Nx ×Ny ×Nz = 643. Compared with the

grid, Nx×Ny×Nz = 256×193×192, used in Moser et al. [40], the resolution is fairly coarse.

At Reτ = 395, three simulations were conducted, namely coarse-resolution DNS, the LANS-α

model with grid-dependent α2
k and the LANS-α model with flow-dependent α2

k. Prior to these
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three simulations, a fine-resolution DNS at Reτ = 180 was conducted to ensure the base code

without a model can produce good results. This results are not shown in these study as the

validation for the base code is included in He [21]. For validation, we compare the behavior

of the model with that in Scott [50].

The solid red line in Figure 3.6 shows the results of coarse-resolution DNS. In Figure

3.6 a), we can see that away from the wall, the mean velocity is underpredicted, although

the slope of the logarithmic law is correct. This means that the boundary layer may not be

correctly resolved. The viscous sublayer is thinner than it should be, so the flow transitions

to the buffer layer at smaller vertical distance from the wall than it should. The friction

velocity, uτ is overpredicted by about 3.6%, indicating that the streamwise velocity gradient

and the shear stress at the wall is larger than it should be. This can be observed in Figure

3.6 e) where the shear stress close to the wall is slightly larger for the coarse-resolution DNS.

The velocity fluctuations are shown in Figure 3.6 b)–d). Although the values of the spanwise

and vertical velocity fluctuations are underpredicted, the streamwise velocity fluctuations

are underpredicted as well. This is unusual as insufficient resolution should overpredict the

streamwise velocity fluctuations due to the inadequately resolved streamwise vortices and

streaks [50]. Vorticity fluctuations are shown in Figures 3.7. We can see that the streamwise

and vertical vorticity fluctuations are low, which is reasonable considering the grid resolution.

However, the spanwise vorticity fluctuations are high near the wall. This is probably due to

the thinner viscous sublayer where larger streamwise velocity gradient can be expected.

We now look at the results with the LANS-α model turned on. When the α2
k is grid-

dependent, the results becomes worse. The viscous sublayer is even thinner and the shear stress

near wall is larger compared to the results of coarse-resolution DNS. The high spanwise velocity

and streamwise vorticity fluctuations becomes higher. As proposed in Scott [50], a possible

explanation for this is that vortex tilting in the numerical simulation generates streamwise

vorticity very close to the wall due to the interaction of the model and the streaks. On the

other hand, the flow-dependent definition of α2
k does not yield a visible improvement compared

to the coarse resolution case. However, it removes high streamwise vorticity fluctuations near

the wall compared to the grid-dependent α2
k. Figure 3.7 d) shows the subgrid scale energy

transfer, TSGS = H−1(mij)∂jui [50], of the model for the flow-dependent α2
k. Both the

total transfer due to mij and the individual contribution from the Aij , Bij and Cij terms

in (3.1.7) are shown. As expected, the total energy transfer of the model is net dissipative.

The contributions from both the Aij and Bij terms are net dissipative, while the Cij term

produces net backscatter. Although the Reynolds number here is different and the test case
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is a full channel instead of a minimal channel, the behaviors of the model do mostly match

what is seen in Scott [50].

Figure 3.6: Mean flow, rms and shear stress profiles, normalized by uτ . Moser et al. [40], Reτ = 395

(black circle); DNS with no model (solid red); LANS-α with α2
k based on the grid (dashed blue);

LANS-α with flow-dependent α2
k (dash green).
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Figure 3.7: RMS vorticity fluctuation profiles and SGS energy transfer, normalized by uτ , v. Vorticity

fluctuation profiles: Moser et al. [40], Reτ = 395 (black circle); DNS with no model (solid red);

LANS-α with α2
k based on the grid (dashed blue); LANS-α with flow-dependent α2

k (dash green). SGS

energy transfer for flow-dependent α2
k: total (solid black); Aij (dashed red); Bij (dotted blue); Cij

(dash-dotted green).
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Chapter 4

NUMERICAL SIMULATIONS of

GRAVITY CURRENT

4.1 Problem description

For the present investigation, we follow the numerical configuration in Cantero et al. [8].

As shown in Figure 4.1, the lock fluid (light gray) of density b1 with a width of x0 along the

flow direction is initially separated from the ambient fluid with density of b0. The height of

the lock fluid is the same as the channel height, h, which represents a full-depth release.

Figure 4.1: Sketch of a gravity current in lock-exchange configuration. Only half of the domain is

shown. The current develops the structure of a head followed by a body and a tail. The discussion in

this section will refer to these three regions.

The density difference is assumed to be small enough to allow the Boussinesq approximation

to account for the effect of stratification. With the same nondimensionalization as previously

discussed in section 3.1.1, the governing equations including the subgrid terms are

∂uj
∂xj

= 0, (4.1.1)

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui
∂x2j

− bδi3 −H−1
(∂mij

∂xj

)
, (4.1.2)
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∂b

∂t
+
∂(buj)

∂xj
=

1

ScRe

∂2b

∂x2j
−H−1

(∂Bj
∂xj

)
, (4.1.3)

where mij and Bj are described in (3.1.7) and (3.1.8), respectively. Periodic boundary con-

ditions are imposed in the horizontal plane for all variables. No-slip and zero-flux conditions

are enforced at the top and bottom walls for velocity and density, respectively.

The computational domain is a box of size Lx×Ly×Lz = 21×1.5×1. Since the boundary

condition is periodic in the horizontal directions, the domain, in streamwise direction, extends

from x ∈ (−10.5, 10.5). The initial condition data are generated in MATLAB. The flow is

initially stationary, with density varying from b = 1 in x ∈ (−1, 1) to b = 0 elsewhere. At

the interface between the lock fluid and the ambient fluid, density gradually transitions from

1 to 0 linearly over 20 grid cells and random noise is added initially in MATLAB using the

“randn” function to accelerate the growth of 3D instabilities. Note that the method to add

the initial perturbation might be different from that in Cantero et al. [9] and [8] as it is

not clearly documented in the literature. For Re = 8950 and Sc = 1, the resolution used is

Nx × Ny × Nz = 5760 × 256 × 256 for the fine-resolution simulation and Nx × Ny × Nz =

2048 × 128 × 256 for the coarse-resolution simulation and the LANS-α model simulations.

The vertical grid is stretched using a hyperbolic tangent profile. The simulation with the fine

resolution runs from t = 0 to 22, so we should expect results from all phases. The run time

for simulations with the coarse grid is from t = 0 to 12, so we should expect results from the

initial acceleration and the slumping phase. For the simulations with the coarse grid, Lx is

16 instead of 21 to reduce the computational cost. A summary of the test cases conducted is

given in Table 4.1.

Table 4.1: Summary of test cases for the gravity currents at Re = 8950

Test case Domain size Number of grid points Runtime Type of α2
k Subgrid term

1 21 × 1.5 × 1 5760 × 256 × 256 22 NA NA

2 16 × 1.5 × 1 2048 × 128 × 256 12 NA NA

3 16 × 1.5 × 1 2048 × 128 × 256 12 grid-dependent momentum

4 16 × 1.5 × 1 2048 × 128 × 256 12 grid-dependent momentum & density

5 16 × 1.5 × 1 2048 × 128 × 256 12 flow-dependent momentum

4.2 Fine Resolution Results

4.2.1 Performance of 1st order upwind scheme and QUICK

A preliminary test is conducted at Re = 3450 with a fine-resolution grid of Nx×Ny×Nz =

2048×160×160 to evaluate the performance of the two advection schemes by comparing with
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the front location results from Cantero et al. [8] at the same Reynolds number. At this

Reynolds number, the current has started to develop the three-dimensional structures that

we want to study. The physical domain and the Schmidt number remain unchanged, and the

runtime is between t = 0 and 9. Figure 4.2 shows the evolution of the front location of the

gravity current. Following the definition of the front location described in (2.1.2), both the

1st order upwind scheme and QUICK resolve the location well. The results from QUICK,

illustrated with dash-dotted red line, unsurprisingly match the results in Cantero et al. [8]

better than those from the 1st order upwinding. Although the advection scheme used in

Cantero et al. [8] and [9] is not clearly stated, QUICK has been commonly used in other

density-driven flow simulations, such as Ooi et al. [42] and [43]. Considering that the front

location results from QUICK are better and it does not add artificial diffusion, the simulations

that will be discussed in the remainder of this thesis use QUICK as the advection scheme.

Figure 4.2: Evolution of front location for Re = 3450. The location of the front relative to the initial

interface between the lock fluid and the ambient fluid is plotted against time. Cantero et al. [8]

(black circle); 1st order upwinding (dashed blue); QUICK (dash-dotted red). Data reproduced using

DigitizeIt from Cantero et al. [8] with permission.

4.2.2 Front location and spanwise variation

Figure 4.3 shows the progression of the front for Re = 8950. The results are in excellent

agreement with the results from Cantero et al. [8] in the slumping phase. The speed of the

front is roughly at a constant value of 0.429 in the slumping phase, which agrees with the

previously reported value of 0.42 [8]. In the inertial and viscous phases after t ≈ 14, the

front location falls slightly behind the results from Cantero et al. [8]. This means that the

front moves at slower speed during these phases and the viscous force might become dominant

earlier.
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The non-uniform nature of the front is illustrated in Figure 4.4 where the spanwise variation

of the front location is plotted as a function of the spanwise location for t ≈ 8 and 12. As

we will see later, the lobe-and-cleft structure of the front is well-correlated with the spanwise

variation of front. The spanwise variation is defined as the difference between the local front

location based on the local equivalent height and the foremost point of the current calculated

from spanwise-averaged equivalent height. The local and spanwise-averaged equivalent heights

are defined in (2.1.2). The local minima in Figure 4.4 correspond to the clefts. We can see

that the size of the lobes increases with time. This means that the clefts merge continuously

to form larger lobes, which agrees with the observation in Cantero et al. [8].

Figure 4.3: Evolution of front location for Re = 8950. The location of the front relative to the initial

interface between the lock fluid and the ambient fluid is plotted against time. Cantero et al. [8] (black

circle); fine resolution (blue solid line). Data reproduced using DigitizeIt from Cantero et al. [8] with

permission.

Figure 4.4: Spanwise variation of the front location. t ≈ 8 (blue circle); t ≈ 12 (red square).
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4.2.3 Three-dimensionality of the flow

It has been demonstrated in Cantero et al. [8] that the gravity current at low Reynolds

number, such as Re = 895, remains two-dimensional at all times even with the initial three-

dimensional disturbances introduced in the initial condition. Unlike the Re = 15000 case

we have discussed previously in section 2.1, the instabilities in the gravity current at Re =

8950 grow slower and the flow becomes fully three-dimensional at a later time. However,

the pattern of lobes and clefts and a turbulent current body are still present. Figures 4.5

and 4.6 show a side view of an isosurface of swirling strength, λci at five time instances,

t ≈ 4, 8, 12, 18.4 and 22. As discussed in section 2.1.2.3, the swirling strength can accentuate

the regions of intense vorticity, but discriminates against planar shear layer where vorticity

is balanced by the strain rate [9]. Near the end of the acceleration phase at t ≈ 4 [9], the

interface between the lock fluid and the ambient fluid is marked by the complete formation of

two-dimensional Kelvin-Helmholtz billows. During the slumping phase between t ≈ 4 and 14.3

[9], the frontal lobe-and-cleft structure has appeared by t ≈ 8, but the instabilities are still

not strong enough for the body of the current to become turbulent and the billows remain

coherent. As the instabilities grow stronger, the body of the current become fully turbulent

at t ≈ 12. In Figure 4.6a), we can identify five zones similar to the ones identified in Cantero

et al. [9] shown previously in Figure 2.3. Zone 1 features the shear layer with predominant

two-dimensional billows formed at the upper portion of the front. These two-dimensional

structures destabilize in zone 3 to form smaller-scale three-dimensional vortical structures.

Zone 2 demonstrates the bottom boundary layer where several quasi-streamwise vortices are

present. Away from the front, the smaller-scale vortical structures from zone 3 interact with

the bottom boundary layer in zone 2 and this interaction results in the more three-dimensional

and turbulent structures in zone 4. Finally, the flow in zone 5 which represents the tail region

of the gravity current remains quiescent. In the last two instances, we can see that the three-

dimensional and turbulent vortical structures in the body are maintained in the inertial phase

(Figure 4.6b) and the viscous phase (Figure 4.6c). However, the region of the body with the

intense vortical structures has become shorter in the viscous phase. This is because the Kelvin-

Helmholtz billows experience stretching and tilting, and eventually break up into smaller

structures. The decay can be seen as illustrated in Figure 4.7 with the spanwise-averaged

swirling strength. In Figure 4.7a), which corresponds to the current in the slumping phase,

the signature of a sequence of Kelvin-Helmholtz billows can be seen at x ≈ 3.1, 3.8, 4.8 and 5.4

with large λci values. In the inertial phase as shown in Figures 4.7b), the billows are not well

defined, but the intensity of the billows is maintained in the inertial phase demonstrated by
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Figure 4.5: Turbulent structures visualized by an isosurface of swirling strength, λci = 3 for the current

at Re = 8950. a) t ≈ 4. b) t ≈ 8. The locations of the Kelvin-Helmholtz billows are indicated by the

arrows.

Figure 4.6: Turbulent structures visualized by an isosurface of swirling strength, λci = 3 for the current

at Re = 8950. a) t ≈ 12. b) t ≈ 18.4. c) t ≈ 22.
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the high λci values. At the last instance shown in Figure 4.7c), only a minor signature of

the Kelvin-Helmholtz billows can be observed very close to the front of the current, which

means that the billows are destabilized immediately after their incipient formation at the

upper portion of the head and the body of the current consists of only small-scale turbulent

structures.

Figure 4.7: Spanwise-averaged swirling strength for the current at Re = 8950. a) t ≈ 12. b) t ≈ 18.4.

c) t ≈ 22. The locations of the Kelvin-Helmholtz billows can be visualized by the regions with high

λci values. The intensity of the turbulence decays as the simulation progresses.

Figure 4.8a) shows a top view of the same isosurface of λci shown in zone 2 of Figure 4.6a)

between z = 0 and 0.1. The solid black line marks the lobe-and-cleft structure at z = 0.1 and

seven clefts can be clearly identified, which is the same number of clefts that can be observed

based on the spanwise variation in Figure 4.4. Close to the front of the current, this region

can be observed to be occupied by quasi-streamwise vortices. The spanwise location of the

the quasi-streamwise vortices is well correlated with the clefts. Similar to the observation in

Cantero et al. [9], these quasi-streamwise vortices appear in pairs and are located on either side

of the dashed lines which mark the location of the clefts. In the upstream region of the front,

the quasi-streamwise vortices no longer appear in pairs and are less aligned in the streamwise

direction. As we have discussed previously, the low-speed streaks are located between the

pairs of quasi-streamwise vortices [9]. If we look at the streamwise velocity contours close to
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Figure 4.8: Top view of an isosurface of λci = 3 for the current at t = 12. a) Near-wall structures

between z = 0 and 0.1. Front is marked by the black solid line and the dashed lines marks the

location of the clefts. An example of a quasi-streamwise vortex pair is marked by the dashed curve.

b) The streamwise velocity contours at z = 0.03 are included. Low-speed streaks (pink); high-speed

streaks(purple).

37



the front in Figure 4.8b), the high-speed streaks (purple) concentrate near the lobes. The

low-speed streaks (pink) can be seen between the quasi-streamwise vortices. Similar to the

findings in Cantero et al. [9], the streaks are observed farther upstream and the spacing

between the low-speed streaks is smaller than that in the front region.

4.2.4 Energy budget

Gravity currents are driven by the conversion of potential energy into kinetic energy, which

is then dissipated by viscosity. Following the same analysis conducted in Ooi et al. [42], the

total potential energy over the domain is

Ep(t) =

∫
b(x, t)z dV. (4.2.1)

The total kinetic energy is

Ek(t) =

∫
1

2
ui(x, t)ui(x, t) dV. (4.2.2)

The viscous dissipation rate, ε can be defined as

ε =

∫
εL(x, t) dV, (4.2.3)

where εL is the local viscous dissipation rate of the sum of potential energy and kinetic energy

in the domain. The transport equation for the total kinetic energy can be written as [42]

dEk
dt

= −ε− dEp
dt

. (4.2.4)

Integrating (4.2.4) with respect to time gives us an equation that shows the balance for the

mechanical energy,

Ek + Ep + Ed = constant = Ek0 + Ep0 = Ep0, (4.2.5)

where Ek0 and Ep0 represent the initial kinetic energy and potential energy, respectively. The

term Ed is the time integral of the viscous dissipation rate. Figure 4.9 shows the time history of

potential energy, kinetic energy and dissipation, which are normalized by the initial potential

energy. The dissipation is calculated based on the assumption that the sum of potential energy,

kinetic energy and dissipation remains constant. This assumption is checked by evaluating

each term in (4.2.4) and the difference between the two sides of (4.2.4) is small. The initial

fast decay of the potential energy, Ep, corresponds to the duration of the acceleration phase.

The decay plateaus around t ≈ 3.8, which indicates that the current has transitioned to the

slumping phase. This value roughly agrees with the transition time of t ≈ 4 in Cantero et

al. [9]. It is difficult to characterize the other transition times based on energy, but it seems

that the kinetic energy and the dissipation reach a inflection point around t = 14. When

38



the kinetic energy falls below the dissipation, this might indicate the dominant force has

transitioned from the inertial force to the viscous force and the current has started to shift

from the inertial phase to the viscous phase. Whether these signs are indications for transition

between phases are not documented in the literature, an additional study should be conducted

to investigate these signs. However, we are certain that the continuous decay of Ep means the

current becomes flatter and the turbulent structures break up into smaller structures. This

agrees with the observations in Cantero et al. [8].

Figure 4.9: Time history of the energy budget from t = 0 to t = 22, normalized by initial potential

energy. a) Potential energy. b) Kinetic energy (solid blue); dissipation (solid red).

4.2.5 Summary

The fine-resolution gravity current results obtained from using HERCULES generally agree

well with those in the literature. At a Reynolds number of 8950, the Kelvin-Helmholtz billows

start to form in the acceleration phase. These billows remain two-dimensional until late stage

of the slumping phase when the instabilities at the front are strong enough to break up the

coherent billows into smaller-scale, three-dimensional turbulent structures. The intensity of

these turbulent structures remains high throughout the inertial phase, although less coherent

Kelvin-Helmholtz billows can be identified in the current. The instabilities become so intense

in the viscous phase that there is only a minor trace of the billows and the head and body

of the current are populated by the small-scale turbulent structures. In the slumping phase,

several quasi-streamwise vortices are present close to the front in the near-wall region. The

quasi-streamwise vortices can be located on either side of a cleft and they become less aligned

in the streamwise direction in the upstream region of the front.
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4.3 Coarse Resolution and LANS-α Results

4.3.1 Front location and spanwise variation

Figure 4.10 illustrates the front location from different coarse grid simulations. With the

black circles representing the fine-resolution results, it appears that the resolved front location

is not affected significantly by using the coarse grid. With closer inspection, the LANS-α

model does improve the results slightly compared to the results from the coarse-resolution

DNS. Surprisingly, the flow-dependent α2
k has the worst results, even worse than the results

of the simulation without using the LANS-α model. However, it is not surprising in the sense

that the flow-dependent α2
k definition we have adopted is solely based on the turbulence

Figure 4.10: Evolution of front location for Re = 8950. Y-axis represents the location of the front rel-

ative to the initial interface between the lock and ambient fluids. Fine resolution (black circle); Coarse

resolution (blue); Grid-dependent α2
k with subgrid model for momentum only (red);Grid-dependent α2

k

with both subgrid models (pink); Flow-dependent α2
k (green). b) is the same plot between t ≈ 9 and 12

for better illustration.
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nature of the flow by relating α2
k with the local velocity and velocity gradient. This might not

capture the effect of the nonlinearity in the density equation and the feedback from the density

in the w-momentum equation. Overall, the case of grid-dependent α2
k with both subgrid terms

yields the best front location results among the coarse-resolution simulations and it improves

upon the results of the simulation without using the model considerably. Despite the difference

in the front location, the front speed remains constant around 0.43 for all cases, which is still

in good agreement with Cantero et al. and the LES study [43]. However, the simulations are

only run until t = 12. The results might be different later in the inertial and viscous phases.

The effect of the coarse grid in the correlation between the spanwise variation of front

location and the lobe-and-cleft structure is also insignificant. Figure 4.11a) demonstrates the

spanwise variation of the front location for the coarse-resolution DNS. As discussed previously,

the spanwise variation of the front location captures the location of the lobes and clefts.

Figure 4.11: a) Spanwise variation of the front location for coarse grid DNS. b) Spanwise variation of

the front location for grid-dependent α2
k with both subgrid terms.
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Compared with the fine-resolution DNS results, the number of clefts is less in the coarse grid

simulation without using the LANS-α model. As shown in Figure 4.11a), there are only five

local minima which correspond to the number of clefts. This means that the size of each

lobe is larger and the occurrence of splitting and merging of the lobe-and-cleft structure is

less frequent. As we shall see later, the latter should affect the quasi-streamwise vortices that

are aligned with the clefts in coarse-grid DNS. Figure 4.11b) shows the spanwise variation for

the case of grid-dependent α2
k with both subgrid terms. Seven clefts are resolved, which is

the same as the fine-resolution DNS. However, the locations of these clefts in Figure 4.11 are

different from those in Figure 4.4. Flow-dependent α2
k case is also able to resolve seven clefts

and the case of grid-dependent α2
k with subgrid term for the momentum equation resolves six

clefts.

4.3.2 Three-dimensionality of the flow

Again, we use the swirling strength to demonstrate the intensity of the turbulent struc-

tures. Figure 4.12 demonstrates how the coarse resolution affects the three-dimensional struc-

tures. The figure is marked the same way as Figure 4.6a). Comparing Figure 4.12a) with

Figure 4.6a), the instabilities are less intense so the upper portion of the head is flat. It is

interesting to see that the bottom boundary layer in zone 2 is shorter in length and that the

three-dimensional turbulent structures that the Kelvin-Helmholtz billows break into in zone

3 interacts with the bottom boundary layer earlier. The turbulence in zone 4 is considerably

weaker as the region with intense three-dimensional structures is shorter. The decrease in

Figure 4.12: Turbulent structures of coarse-resolution DNS visualized by an isosurface of λci = 3 for

the current at Re = 8950, t = 12. a) Side view. b) Spanwise-averaged contours of λci.
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intensity can also be observed in Figure 4.12b) where the magnitude of the spanwise-averaged

swirling strength is lower. In the same figure, we can also identify that the three-dimensional

structures from the interface start to interact with the bottom boundary layer closer to the

front. In spite of the differences, we can still identify a sequence of four Kelvin-Helmholtz

billows at the interface and an incipient formation of a vortex near the front.

Since the turbulent structures start to interact with the bottom boundary layer closer to

the front, we should investigate whether this affects the quasi-streamwise vortices close to the

lobe-and-cleft structure. Figure 4.13 shows the top view of the same isosurface of λci = 3

between z = 0 and 0.1. The streamwise velocity contours are at z = 0.03. It is not surprising

Figure 4.13: Top view of an isosurface of λci = 3 of coarse-resolution DNS for the current at t = 12.

Near-wall structures are located between z = 0 and 0.1. The streamwise velocity contours are at

z = 0.03.
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that it is difficult to identify the quasi-streamwise vortex pairs because only five clefts are

resolved. In this case, the quasi-streamwise vortices appear to be shorter, but wider than

those from the fine-resolution simulation. However, these quasi-streamwise vortices are still

aligned in the streamwise direction close to the front, and they remain located on either side

of the clefts. Farther upstream away from the front, there is only minor indication of quasi-

streamwise vortices and they have become unaligned with the clefts at closer distance to the

front. This happens probably due to the premature interaction between zone 2 and zone 3.

Close to the front, the low-speed streaks illustrated by the gray color are still located between

the quasi-streamwise vortex pairs aligned with the clefts, while the high-speed streaks can be

found near the lobes. Similar to the fine-resolution results, the spacing of the streaks upstream

becomes smaller than that in the near-front region.

Looking at the same isosurface plot in Figure 4.14, applying the subgrid model can cer-

tainly improve the results obtained using the coarse grid. Figure 4.14a) shows the results

from the case of grid-dependent α2
k with the subgrid term for momentum equation only. The

improvement is minimal and the intensity of the three-dimensional turbulent structures is

rather unchanged. The location of the Kelvin-Helmholtz billows and the magnitude of the

Figure 4.14: Turbulent structures of coarse-resolution DNS visualized by an isosurface of λci = 3 for

the current at Re = 8950, t = 12. a) Grid-dependent α2
k with subgrid term for momentum only. b)

Grid-dependent α2
k with both subgrid terms. c) Flow-dependent α2

k with subgrid term for momentum

only.
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spanwise-averaged λci in Figure 4.15a) look similar to the results of coarse-resolution DNS.

Similarly, the improvement in the flow-dependent α2
k case with the subgrid term for momentum

equation only is also minimal, although the number of clefts is resolved correctly in this case.

On the other hand, the intensity of the three-dimensional turbulent structures resolved from

grid-dependent α2
k case with both subgrid terms looks comparable to the fine-resolution DNS;

the small-scale structures in Figure 4.14b) are akin to those in fine-resolution DNS except for

the premature interaction between zone 2 and zone 3. As shown in Figure 4.15, the magnitude

of the swirling strength is also comparable to the fine-resolution results and the locations of

the Kelvin-Helmholtz billow are roughly the same.

Figure 4.15: spanwise-averaged contours of λci for the current at Re = 8950, t = 12. a) Grid-dependent

α2
k with subgrid term for momentum only. b) Grid-dependent α2

k with both subgrid terms. c) Flow-

dependent α2
k with subgrid term for momentum only.

We now look at the top view of the isosurface for the case of grid-dependent α2
k with both

subgrid terms in Figure 4.16. As we have discussed, the number of clefts is resolved correctly

in this case, so the quasi-streamwise vortices close to the front are well correlated with the

location of the clefts and appear in pairs. When the vortices are aligned with the clefts,

the spacing between the quasi-streamwise vortex pairs correlates with the lobe size. With

only visual observation, the size of the lobes in this case is akin to the fine-resolution results.
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Although it is easy to identify the vortex pairs unlike in the coarse-resolution DNS results, the

length of each quasi-streamwise vortex pair is much shorter than the fine-resolution results.

In addition, the low-speed streaks are still located between the quasi-streamwise vortex pairs

that align with the clefts in the near-front region and the high-speed streaks can be found in

the lobes. Similar to the coarse-resolution DNS results, not only does the spacing between

the low-speed streaks decrease farther upstream but also the width of the low-speed streaks

increase. By comparison, the spacing between the low-speed streaks farther upstream in the

fine-resolution DNS decreases without changing the width. The results are not shown here,

but the other two implementations of the model do not improve on the bottom boundary

Figure 4.16: Top view of an isosurface of the swirling strength, λci = 3 for the current at t = 12.

Grid-dependent α2
k with both subgrid terms are used. Near-wall structures between z = 0 and 0.1.

The streamwise velocity contours are at z = 0.03.
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layer results either. One plausible explanation is that the streamwise streaks arise through

the process of redistribution of the streamwise momentum [4], and this process has to occur in

a shorter distance due to the premature interaction between the bottom boundary layer and

the top shear layer. In the slumping phase, the current moves roughly at a constant speed [8],

which is also our observation. This means that the merging and splitting of the streaks have

to take place in a shorter period of time, and the strength of streaks drop considerably every

time they merge and split. The broader width of the streaks is an indication that shows the

turbulence in the bottom boundary layer is weak [54].

4.3.3 Energy budget

In spite of the differences in the turbulent structures, the energy budget is not affected

significantly, based solely on observations, by the coarse grid or the application of the LANS-

α model . Figure 4.17 shows the energy budget in the fine-resolution DNS and the coarse-

resolution DNS. The potential energy in the coarse-resolution DNS decays at a slightly slower

rate in the initial acceleration phase, but the decay plateaus around the same time for both

cases, and the flow in the coarse-resolution DNS transitions to the slumping phase at roughly

the same time as well. In the slumping phase between t = 4 and t = 12, the rate of decay of

the potential energy is roughly the same for both cases. For the kinetic energy shown in

Figure 4.17: Time history of the energy budget from t = 0 to t = 12, normalized by initial potential

energy. a) Potential energy. b) Kinetic energy (solid line); dissipation (dashed line). Blue color

represents fine-resolution DNS results and red is for the coarse-resolution DNS results.

47



Figure 4.18: Time history of the energy budget from t = 0 to t = 12, normalized by initial potential

energy. a) Potential energy. b) Kinetic energy (solid line); dissipation (dashed line). Coarse-resolution

results (blue); grid-dependent α2
k with subgrid term for momentum only (red); grid-dependent α2

k with

both subgrid terms (green); flow-dependent α2
k with subgrid term for momentum only (purple).

Figure 4.17b), the same trend can be observed. However, the strong fluctuation can be

seen in the plots of the coarse-resolution DNS, which means that the grid is not sufficient to

accurately simulate the density field and the conversion of potential energy into kinetic energy.

It makes sense that the fluctuation starts to appear in the slumping phase because the complex

structures of gravity currents begin to form in this phase. In term of the dissipation, the effect

of the grid resolution is negligible.

The effect of the LANS-α model is demonstrated in Figure 4.18. The decay of potential

energy appears to be the same in all cases before t = 4. However, the rate of decay in the

case of grid-dependent α2
k with both subgrid terms is slightly faster than that in the coarse-

resolution DNS. The other two implementations of the model show slightly slower rate of

decay in the initial acceleration phase. In the slumping phase between t = 4 and t = 12, it

is clear that the fluctuation is still present except that the plots are slightly smoother for the

case of grid-dependent α2
k with both subgrid terms. The same trend can be observed in Figure

4.18b) where the difference in kinetic energy and dissipation becomes visible in the slumping

phase. The difference remains small, which means that the effect of the LANS-α model on

the conversion of energy is negligible over the entire domain. However, as we will see in the

next section, the effect of the LANS-α model is not negligible locally.
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4.3.4 Subgrid scale energy transfer

We will now assess the subgrid model by focusing on the subgrid energy transfer term,

TSGS . If we multiply (4.1.2) by ui, this results in the transport equation of the resolved

kinetic energy. This transport equation is the same as (4.21) in Scott [50] except for an

additional term of −buiδi3 on the right hand side. The subgrid energy transfer term for our

implementation of the LANS-α model is [50]

TSGS = H−1(mij)
∂ui
∂xj

. (4.3.1)

When the value of TSGS is negative, the model drains energy from the resolved scales to

subgrid scales, which is forward energy transfer. Positive TSGS means the model transfers

energy from the subgrid scales to the resolved scales, which is backscattering energy. For a

subgrid model used in gravity current simulations, it is important that the model is capable

of both forward and backward scatter of energy to capture the intricacies of turbulent energy

dynamics of the gravity currents. A dissipative subgrid model, such as the Smagorinsky model

and its variants, can only capture the forward energy transfer. In the case of the LANS-α

model, it does allow energy transfer in both directions as shown in Figures 4.19b) – 4.21b).

Comparing the vorticity magnitude contours and the subgrid energy transfer, the region with

high vorticity magnitude correlates with also having high values of either forward scatter

or back scatter of energy. In terms of the density, it is the region with high mixing that

accommodate the forward and backward scatter of energy. It is not surprising to see that the

case of grid-dependent α2
k with both subgrid terms demonstrates with the most significant

Figure 4.19: Contours of vorticity magnitude, instantaneous subgrid scale energy transfer and instan-

taneous density of grid-dependent α2
k with subgrid model for momentum only at y = 0.75 and t = 12.

a) Vorticity magnitude. b) Instantaneous SGS energy transfer. c) Instantaneous density.
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Figure 4.20: Contours of vorticity magnitude, instantaneous subgrid scale energy transfer and instan-

taneous density of grid-dependent α2
k with both subgrid models at y = 0.75 and t = 12. a) Vorticity

magnitude. b) Instantaneous SGS energy transfer. c) Instantaneous density.

Figure 4.21: Contours of vorticity magnitude, instantaneous subgrid scale energy transfer and instan-

taneous density of flow-dependent α2
k with subgrid model for momentum only at y = 0.75 and t = 12.

a) Contours of vorticity magnitude. b) Contours of instantaneous SGS energy transfer. c) Contours

of instantaneous density.

energy transfer. However, when we see that the subgrid energy transfer in the flow-dependent

α2
k case is not so dynamic, it reminds us that the definition of α2

k we have adopted for this study

may not adequately capture the turbulence in the gravity current. Furthermore, the spanwise

average of subgrid scale energy transfer shown in Figure 4.22 for the case of grid-dependent α2
k

with both subgrid terms demonstrates that the energy is removed from the resolved scales in

most of the domain, especially the region with the signature of a sequence of Kelvin-Helmholtz

billows. These billows break into small-scale, three-dimensional structures by stretching and
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tilting. The backscatter of energy happens in the region with high turbulence intensity, e.g.

near the interface between the current and the ambient, and in zone 4 where the bottom

boundary layer interacts with the top shear layer. It is reasonable to think that these small-

scale structures can interact with each other, resulting in the backscatter of energy. The other

two implementations of the model show similar behavior and the spanwise-averaged subgrid

energy transfer for the flow-dependent α2
k case is still not significant.

Figure 4.22: Contours of spanwise-averaged vorticity, spanwise-averaged instantaneous subgrid scale

energy transfer and spanwise-averaged instantaneous density of grid-dependent α2
k with both subgrid

models at t = 12. a) Spanwise-averaged vorticity magnitude. b) Spanwise-averaged instantaneous SGS

energy transfer. c) Spanwise-averaged instantaneous density.

To show the improvement from using the LANS-α model, Figure 4.23a) and b) show the

spanwise-averaged vorticity magnitude from the fine-resolution DNS and the coarse-resolution

DNS, respectively. As we have shown in Figure 4.7a), there are four billows in the fine-

resolution DNS indicated by the intense vorticity near the interface between the current and

the ambient. In Figure 4.23b), the vorticity magnitude near the interface has become less

intense, especially at the head of the current and the body of the current where the bottom

boundary layer interacts with the top shear layer (zone 4). Using the LANS-α model, the

intensity of the vorticity magnitude at the head of the current is improved. The change is less

noticeable in the case of grid-dependent α2
k with the subgrid model for momentum equation,

but for the other two cases, the intensity of vorticity magnitude at the locations of the first

two billows looks comparable. In addition, grid-dependent α2
k with both subgrid models also

show small improvement on resolving the fourth billow, but the vertical location of the third

billow is different. In addition to the same observations that we can make from Figure 4.23,

the density contours in Figure 4.24a) and b) show that the region of the current with unmixed
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Figure 4.23: Contours of spanwise-averaged vorticity magnitude at t = 12. a) Fine-resolution DNS.

b) Coarse-resolution DNS. c) Grid-dependent α2
k with subgrid model for momentum only. d) Grid-

dependent α2
k with both subgrid models. e) flow-dependent α2

k with subgrid model for momentum

only.
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Figure 4.24: Contours of spanwise-averaged density at t = 12. a) Fine-resolution DNS. b) Coarse-

resolution DNS. c) Grid-dependent α2
k with subgrid model for momentum only. d) Grid-dependent α2

k

with both subgrid models. e) flow-dependent α2
k with subgrid model for momentum only.

lock fluid is also different. The issue of the premature interaction between the bottom bound-

53



ary layer and the top shear layer results in a shorter, but taller unmixed region at the front

of the current. Since using the LANS-α model doesn’t resolve the issue of the premature

interaction, the unmixed region at the front of the current remains mostly unchanged.

4.3.5 Summary

For our study using a coarse grid, the simulations are run until t = 12, which is close to

the end of slumping phase. In this case, the effect of the grid resolution on the front location

is not significant. However, applying the subgrid model does improve the results, which is also

observed in the LES study of Ooi et al. [43]. On the other hand, applying the subgrid model,

especially the one for the density equation, is necessary for obtaining a solution that captures

the three-dimensionality of the flow. The case of grid-dependent α2
k with both subgrid terms

is able to produce a solution with all the features including the quasi-streamwise vortices in

the bottom boundary layer and highly turbulent current body. The flow-dependent α2
k case

with the subgrid term for momentum equation is able to capture the lobe-and-cleft structure,

but fails to resolve the highly turbulent current body and improve upon the bottom boundary

layer. It also produces the worst front location results among all the cases.
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Chapter 5

CONCLUSIONS AND

RECOMMENDATIONS

5.1 Outcome of the thesis

In the present study, a subgrid model has been developed for the LANS-α model with strat-

ification and implemented in HERCULES. Two additional advection schemes have also been

implemented in HERCULES for the study of gravity currents. Using a fine grid, HERCULES

is able to capture all the important features, such as the lobe-and-cleft front, predominantly

two-dimensional Kelvin-Helmholtz billows and highly turbulent current body. In terms of the

performance of the LANS-α model, the case of grid-dependent α2
k with both subgrid terms is

able to capture most of the structures well. When we apply the subgrid term for the momen-

tum equation only, both grid-dependent and flow-dependent α2
k yield similar results except

that flow-dependent α2
k captures the lobe-and-cleft structure correctly, but fails to capture

the foremost point of the current. All three cases with the LANS-α model are not able to

resolve the issue of premature interaction between the bottom boundary layer and the top

shear layer. This affects the alignment of the quasi-streamwise vortices with the lobes near the

front. Although there are still outstanding issues, such as the premature interaction between

the top shear layer and the bottom boundary layer, HERCULES is proven to be effective

in simulating the lock-exchange gravity current problem, as well as aiding the development

of the LANS-α model. Improvements that may help mitigate the issues encountered in this

thesis, and lead to further understanding of the LANS-α model are discussed below.
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5.1.1 Grid-independent solution in the channel flow and future test case

The implementation of the LANS-α model in HERCULES still needs additional testing.

Although the behavior of the model in the channel flow study is reasonable, only one grid

resolution and one Reynolds number have been tested, so the effect of the grid resolution is

still unknown and further testing should be carried out. In addition, the energy transfer in

the LANS-α model is not studied thoroughly in the present investigation. Therefore, the next

steps in testing the LANS-α model in HERCULES are to determine the cause for the thin

viscous sublayer in the channel flow results and to obtain grid-independent solutions for this

test case. The effect of the smaller scales on the larger ones should also be investigated by

looking at the energy spectra. Furthermore, the Leray model, which also allows both forward

and backscatter of energy, has been used for the channel flow simulations in Scott [50]. The

model helped identify some of the issues presented in the paper. Implementing Leray model

in HERCULES may help us identify the problems we have encountered. The Leray model

has demonstrated to be robust at high Reynolds number and the requirement of adequate

subgrid resolution is also less restrictive [17]. In terms of future work with LANS-α model

with stratification, we can start to look at stratified channel flow. From our gravity current

simulations, the computational cost to run a simulation with high enough Reynolds number

at which the current is turbulent is high. On the other hand, the cost is relatively lower for the

stratified channel flow as we can observe a turbulent channel flow at a lower Reynolds number,

thus fewer grid points are needed for a grid-independent solution. However, the stratified

channel flow may require longer time to become statistically stable. A future investigation is

needed to determine which is the better test case for the LANS-α model with stratification.

5.1.2 Non-periodic boundary condition

For the gravity current simulations, the biggest problem encountered with HERCULES is

that it is only configured for a periodic boundary condition in the horizontal plane. This is

because the solver in HERCULES solves the Poisson’s equation in Fourier space. However,

for our numerical setup of gravity currents, only the density field is truly periodic in the

horizontal plane. Hypothetically speaking, the streamwise velocity close to both ends should

be undisturbed and remain zero if the domain is long enough, but this is not the case for

our simulations. In the right half of the domain, we have the current moving to the right,

which forces the ambient fluid moving to the left. It is the opposite in the left half the

domain, so the periodic boundary condition introduces errors in determining the derivatives

near the ends. We have observed that oscillations are induced in the streamwise velocity
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close to the ends. Although the effect of these oscillations on the density field is not visible

because the ambient fluid has a density close to zero, they can certainly affect the results

for other cases, such as intrusion currents. In the intrusion current simulations, the lower

ambient fluid has a density of one, so the oscillations become visible in the density field and

these oscillations result in unphysical mixing near the end of the domain and this unphysical

mixing affects the upstream intrusion current. This problem can be resolved by applying

different boundary conditions at the ends instead of a periodic condition and implementing

an iterative algorithm to solve the Poisson’s equation. A similar procedure has already been

adopted for the explicit filter for flow-dependent α2
k where conjugate gradient method is used

to solve (3.1.14) and (3.1.15). This way saves time from doing Fast Fourier Transform which

is slow in HERCULES due to the parallelization. It also decreases the domain size by half,

which reduces the computational cost even further. The cost may become comparable to that

of channel flow simulations. Another way to resolve this issue is to use MITgcm. It has been

tested that the oscillations don’t appear in simulations run in MITgcm possibly because the

equations are discretized using finite volume method, so the derivative is determined from the

flux at the cell surface. However, the LANS-α model has not been implemented in MITgcm.

5.1.3 New definitions of α2
k and formulations of the LANS-α model for

stratified flows

In Scott [50], the definition of α2
k moved away from being interpreted as a filter width.

Considering α2
k as the mean-squared of the deviation in a particle’s trajectory away from

its mean trajectory seems to be more justifiable particularly for complex non-homogeneous

flows. Although the resulting flow-dependent α2
k doesn’t yield a significant improvement,

it does remove the near-wall problem that can cause the simulation to diverge in channel

flows. For gravity currents, this definition of α2
k doesn’t necessarily capture the stratification

effect. Therefore, it would be sensible to come up with a new flow-dependent α2
k definition

for stratified flows. The challenge is to come up with a new definition that is justifiable and

also relates the density to the particle’s trajectory. Furthermore, the new definition should

likely be anisotropic for a density-driven flow. Another subject we should investigate is the

development of a new version of the model for stratified flows. The derivation of the LANS-α

model for stratified flows shown in this thesis only considers the turbulence in the velocity

field. A possible new formulation may consider the fluctuations in the density as well.
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[35] E. Lévêque, F. Toschi, and L. Shao. Shear-improved Smagorinsky model for large-eddy

simulation of wall-bounded turbulent flows. J. Fluid Mech. 570 (2007), pp. 491–502.

[36] F. S. Lien and M. A. Leschziner. Upstream monotonic interpolation for scalar trans-

port with application to complex turbulent flows. International Journal for Numerical

Methods in Fluids 19 (1994), pp. 527–548.

[37] MITgcm user manual. url: https://mitgcm.readthedocs.io/en/latest/index.

html (visited on 07/10/2019).

[38] K. Mohseni et al. Numerical simulations of the Lagrangian averaged Navier-Stokes

equatiuouns for homogeneous isotropic turbulence. Physics of Fluids 15 (2003). doi:

10.1063/1.1533069.

62



[39] P. J. Morrison. Hamiltonian description of the ideal fluid. Reviews of Modern Physics

70 (1998), pp. 467–521.

[40] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of turbulent

channel flow up to Reτ = 590. Physics of Fluids 11 (1999).
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