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Abstract An importance sampling approach for sampling from copula models is
introduced. The proposed algorithm improves Monte Carlo estimators when the
functional of interest depends mainly on the behaviour of the underlying random
vector when at least one of its components is large. Such problems often arise from
dependence models in finance and insurance. The importance sampling framework
we propose is particularly easy to implement for Archimedean copulas. We also
show how the proposal distribution of our algorithm can be optimized by making
a connection with stratified sampling. In a case study inspired by a typical insur-
ance application, we obtain variance reduction factors sometimes larger than 1000
in comparison to standard Monte Carlo estimators when both importance sampling
and quasi-Monte Carlo methods are used.

1 Introduction

Many applications in finance and insurance lead to the problem of calculating a
functional of the form µ = E(Ψ0(XXX)), where XXX = (X1, . . . ,Xd) : Ω → Rd is a ran-
dom vector on a probability space (Ω ,F ,P) and Ψ0 : Rd → R is a measurable
function. If the components of XXX cannot be assumed to be independent, it is popular
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to model the distribution function H of XXX with a copula C, such that H(x1, . . . ,xd) =
C(F1(x1), . . . ,Fd(xd)), xxx ∈Rd , where Fj(x) = P(X j ≤ x), j ∈ {1, . . . ,d}, are the uni-
variate margins of H and C : [0,1]d → [0,1] is a copula. A copula allows one to
separate the dependence structure from the marginal distributions, which is useful
for constructing multivariate stochastic models. We assume the reader to be familiar
with copulas and refer to [15] or [17] for an introduction; see also Section 2 for
important background information.

A drawback of using such flexible models is that an analytical form for the quan-
tity of interest E(Ψ0(XXX)) rarely exists, and thus numerical methods must be applied
to evaluate it. Preferably, the employed techniques should be applicable to high-
dimensional problems, which are common in finance. An advantage of Monte Carlo
(MC) simulation is that the rate of convergence of its error is independent of the
dimensionality of a given problem. Nevertheless, the convergence rate of plain MC
is generally slow so that MC is often combined with some variance reduction tech-
nique (VRT) to improve the precision of estimators.

Importance sampling (IS) is a VRT often used for rare event simulations. IS at-
tempts to reduce the variance of the MC estimator of E(Ψ0(XXX)) by sampling XXX more
frequently from the important region where |Ψ0(XXX)| is large. While there are many
publications that design IS for Gaussian and t-copula models, [2, 8, 12, 19] for in-
stance, not much attention has been given to IS for other types of copulas, including
Archimedean copulas. To our knowledge, [3] is the only work which develops IS
for Archimedean copulas.

The main contribution of this paper is the study of IS techniques that do not
rely on a specific copula structure. We consider the case where the functional Ψ0 of
interest depends mainly on the behaviour of the random vector XXX when at least one
of the components is large. Such problems often arise from dependence models in
the realm of finance and insurance. We propose a new IS framework for this setup
which can be implemented for all classes of copula models from which sampling
is feasible. The main idea of our proposed IS approach is to oversample sets of
the form [0,1]s\[0,λk]

s for 0 ≤ λ1 ≤ . . . ≤ λM ≤ 1. Explicit algorithms are given
in the case of Archimedean copulas. We also examine how to optimally choose the
proposal distribution by making a connection with stratified sampling (SS), which
is then used to propose yet another estimator based on our general IS setup.

While the plain MC method generates samples based on pseudo-random num-
bers, quasi-Monte Carlo (QMC) methods use a low-discrepancy sequence (LDS) to
draw samples. An LDS has the property of covering the unit cube [0,1)d more uni-
formly than pseudo-random numbers generally do. This usually leads to approxima-
tions whose error converges to 0 faster than with MC. Furthermore, these methods
can be randomized in a way that preserves their low discrepancy but allows for error
estimation. Such randomized QMC methods can thus be seen as a VRT. QMC has
been primarily used for multinormal models and has shown substantial improve-
ments over plain MC. Recently, its effectiveness for sampling copula models was
studied and demonstrated theoretically and empirically in [1]. Building up on that
work, it is natural to try to combine QMC with our proposed IS approach.
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The rest of this work is organized as follows. In Section 2, we motivate our pro-
posed IS method and give the necessary background on Archimedean copulas and
QMC methods for copulas. In Section 3 we introduce a general IS setup for copula
models, and then show in Section 4 how to exploit the Marshall–Olkin stochastic
representation of Archimedean copulas to design an efficient sampling algorithm for
IS. We show that the proposed IS scheme is very similar to stratified sampling and
then develop sampling methods for SS estimators. In Section 5, we derive variance
expressions for the IS and SS estimators. By minimizing such variance expressions,
we derive the optimal calibration for our proposal distribution, for both IS and SS
estimators. In Section 6, we investigate the effectiveness of the proposed IS and SS
schemes using numerical experiments. All proofs are deferred to the appendix.

2 Motivation and Background

In a copula model, we may write µ = E(Ψ0(XXX)) = E(Ψ(UUU)), where UUU = (U1, . . . ,
Ud) : Ω → Rd is a random vector with distribution function C, Ψ : [0,1]d → R is
given by

Ψ(u1, . . . ,ud) =Ψ0(F−1
1 (u1), . . . ,F−1

d (ud)), (1)

and F−1
j (p) = inf{x ∈ R : Fj(x)≥ p} for j ∈ {1, . . . ,d}.

If C and F1, . . . ,Fd are known, we can use MC simulation to estimate E(Ψ(UUU)).
For a random sample {UUU i : i = 1, . . . ,n} of UUU , the MC estimator of E(Ψ(UUU)) is

µ̂MC,n =
1
n

n

∑
i=1

Ψ(UUU i). (2)

In this paper, we consider the case where Ψ is large only when at least one of
its arguments is close to 1, or equivalently, if at least one of the components of XXX is
large. This assumption is inspired by several applications in insurance:

• The fair premium of a stop loss cover with deductible D is E(max{∑d
j=1 X j −

D,0}). The corresponding functional is Ψ(uuu) = max{∑d
j=1 F−1

j (u j)−D,0}; see
the left-hand side of Figure 1 for a contour plot of Ψ for two Pareto margins.

• Risk measures for an aggregate sum S =∑
d
j=1 X j, such as value-at-risk, VaRα(S),

or expected shortfall, ESα(S), α ∈ (0,1), cannot in general be written as an
expectation of type E(Ψ0(XXX)). However, they are functionals of the aggre-
gate distribution function FS(x) = P(S ≤ x) = E(Ψ(UUU ;x)), where Ψ(uuu;x) =
I{F−1

1 (u1)+···+F−1
d (ud)≤x}. We can therefore write

VaRα(S) = inf{x ∈ R : E(Ψ(UUU ;x))≥ α}, ESα(S) =
1

1−α

∫ 1

α

VaRu(S)du,

(3)
which depend only on those x for which E(Ψ(UUU ;x)) ≥ α holds. This is deter-
mined by the tail behaviour of S, which is strongly influenced by the properties
of the copula C when at least one component is close to 1. Note that capital
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Fig. 1 Left: Contour lines for the excess function Ψ(u1,u2) = max{F−1
1 (u1)+F−1

2 (u2)−10,0},
where the margins are Pareto distributed with F1(x) = 1−(1+x/4)−2 and F2(x) = 1−(1+x/8)−2.
The grey area indicates where Ψ is zero. Right: Contour lines for the product function Ψ(u1,u2) =
F−1

1 (u1)F−1
2 (u2), where X1 ∼ LN(2,1) and X2 ∼ LN(1,1.5).

allocation methods such as the Euler principle for expected shortfall behave sim-
ilarly, see [21] and [15], page 260.

Note that in this framework we follow the convention of [15, Remark 2.1] that XXX
refers to a loss and −XXX to a profit, which is more common in an actuarial context.
One could have equally well worked with the profit-and-loss random variable −XXX
by changing the area of interest to where components of XXX are small.

2.1 Archimedean Copulas and Sampling Methods

Archimedean copulas form a popular class of copulas in actuarial science and risk
management, as they can capture various types of tail dependence. An Archimedean
copula admits the representation

C(u1, . . . ,ud) = ψ(ψ−1(u1)+ · · ·+ψ
−1(ud)), (4)

where ψ is a univariate function called generator and is such that ψ : [0,∞)→ [0,1]
with ψ(0) = 1 and ψ(∞) = limt→∞ ψ(t) = 0; also ψ(t) is continuous and strictly
decreasing on [0, inf{t : ψ(t) = 0}]. We review two sampling techniques applicable
to Archimedean copulas.

Conditional distribution method
The conditional distribution method (CDM) is a sampling technique that in principle
works for any copula. For j ∈ {2, . . . ,d}, let

C j|1... j−1(u j |u1, . . . ,u j−1) = P(U j ≤ u j |U1 = u1, . . . ,U j−1 = u j−1)
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be the conditional distribution of the jth component given the first j−1 components.
As a function of u j, C j|1... j−1(u j |u1, . . . ,u j−1) is a univariate distribution function on
[0,1] and thus can be sampled via inversion. Doing this iteratively in j based on the
previously computed component samples leads to a sample from C according to the
CDM. The efficiency of this sampling method depends on the computational cost
required to evaluate the conditional quantile functions C−1

j|1... j−1(u j |u1, . . . ,u j−1),
which in many cases are not available in closed form. For Archimedean copulas,
there exists a more efficient sampling method, which we now describe.

Marshall–Olkin algorithm
It is well established that ψ induces an Archimedean copula for any dimension d≥ 2
if and only if ψ is the Laplace–Stieltjes transform of a distribution function of some
positive random variable V , the so-called frailty. Based on V , one can derive the
stochastic representation (

ψ

(E1

V

)
, . . . ,ψ

(Ed

V

))
∼C, (5)

where E1, . . . ,Ed
ind.∼ Exp(1) are independent of the positive frailty random vari-

able V whose Laplace–Stieltjes transform is ψ . This sampling method is known
as Marshall–Olkin (MO) algorithm; see [14].

For many popular Archimedean copulas, the frailty random variable V from the
MO algorithm has a known distribution, for instance V is Gamma distributed for
Clayton copulas; see Table 1 for information about five popular Archimedean cop-
ulas and the corresponding frailty random variables V , and see [11, Table 1] for the
details concerning Table 1. In Section 4 we develop an IS algorithm that exploits the
MO representation of Archimedean copulas.

Family Parameter ψ(t) V
Ali-Mikhail-Haq θ ∈ [0,1) (1−θ)/(exp(t)−θ) Geo(1−θ)

Clayton θ ∈ (0,∞) (1+ t)−1/θ Γ (1/θ ,1)
Frank θ ∈ (0,∞) − log(1− (1− e−θ )exp(−t))/θ Log(1− e−θ )

Gumbel θ ∈ [1,∞) exp(−t1/θ ) Stable(1/θ ,1,cosθ (π/(2θ)), I{θ=1};1)
Joe θ ∈ [1,∞) 1− (1− exp(−t))1/θ Sibuya(1/θ)

Table 1 Popular Archimedean generators and corresponding frailty distributions.

2.2 Quasi-Monte Carlo and Copula Models

The combination of QMC and copulas is studied in depth in [1]. To describe how
it works, let η : [0,1)d+k → [0,1)d for k ≥ 0 be some transformation function such
that η(UUU ′) ∼C for UUU ′ ∼ U[0,1)d+k. The choice of η corresponds to the choice of
sampling methods for C, such as CDM or MO. The plain MC estimator (2) thus
becomes

µ̂MC,n =
1
n

n

∑
i=1

Ψ(η(UUU ′i)), UUU ′i
ind.∼ U[0,1)d+k. (6)
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To use QMC, we replace the point set {UUU ′i, i = 1, . . . ,n} by a low-discrepancy point
set. The choice of sampling algorithm η is not very important to control the MC
error, but it is for QMC, as explained in [1]. The sampling algorithms we propose
in this work are applicable to both MC and QMC, and numerical results for both
methods are reported in Section 6. For QMC we use a Sobol’ sequence [20] and ap-
ply to it a randomization based on a digital-shift (see [13, Section 6.2.2]) so that we
can construct unbiased estimators and compute confidence intervals for the quantity
of interest by using replication.

3 Importance Sampling for Copula Models

IS is a popular variance reduction technique for rare event simulations. Suppose we
want to estimate E(Ψ(UUU)) where UUU ∼C, for a d-dimensional copula C. In IS, we
draw samples from some proposal distribution ŨUU ∼ G and construct the estimator

µ̂IS,n =
1
n

n

∑
i=1

Ψ(ŨUU i)w(ŨUU i), ŨUU i
ind.∼ G, (7)

where w(uuu) = dC(uuu)
dG(uuu) is the Radon-Nikodym derivative of C with respect to G. The

function w works as a weight function so that the estimator remains unbiased after
changing the distribution. Intuitively, the variance of the IS estimator is smaller than
the variance of the plain MC estimator if the proposal distribution is concentrated
around the important region, which we characterized in Section 2 as the region
where the maximal component of a sample point is close to 1.

In order to define the proposal distribution G, we suggest a mixing approach by
taking a weighted average of a multivariate distribution function Cλ : [0,1]d→ [0,1]
over different values of λ . Let FΛ denote a discrete distribution function of a random
variable Λ : Ω 7→ [0,1), defined by qk := P(Λ = λk), k = 1, . . . ,M. We then define
the distribution function G of ŨUU as a mixture of Cλ with respect to FΛ :

G(uuu) =
M

∑
k=1

qkCλk
(uuu),

where Cλ is a distorted version of the copula C itself that concentrates samples in
a region of the form [0,1]d \ [0,λ ]d . Note that the Cλ we will construct (see (8)) is
a copula only if C(λ111) = 0, but Cλ does not need to be copula for our approach to
work.

We will see that this mixture approach is natural in order to allow C to be abso-
lutely continuous with respect to G. In particular, the absolute continuity is guaran-
teed for any copula C if the following assumption is satisfied.

Assumption 1. The random variable Λ satisfies P(Λ = 0)> 0.

In order to obtain a well defined weight function w and an unbiased estimator
µ̂IS,n, Assumption 1 must be fulfilled. Note that this assumption does not require
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particular conditions on C. Although it seems restrictive, we will see that it is also
needed to have a consistent estimator µ̂IS,n. Moreover, ensuring P(Λ = 0) > 0 can
be seen as a form of defensive mixture sampling, where a fraction of samples are
drawn from the original distribution [9]. Defensive sampling bounds the IS weights
away from infinity (as will be seen in Lemma 2) so that the resulting estimator has a
finite variance. To that end, we assume Assumption 1 to be satisfied in what follows.

The construction of the proposal distribution G as a Cλ -mixture directly yields a
sampling method, as one can draw a realization of G by first drawing Λ ∼ FΛ and
then ŨUU ∼CΛ . Therefore, the following algorithm can be used to construct µ̂IS,n:

Algorithm 1 General IS algorithm for copulas
1: Fix n ∈ N.
2: Draw Λi ∼ FΛ , i ∈ {1, . . . ,n}.
3: Draw ŨUU i ∼CΛi , i ∈ {1, . . . ,n}.
4: Calculate w(ŨUU i) = dC(ŨUU i)/dG(ŨUU i), i ∈ {1, . . . ,n}.
5: Return µ̂IS,n =

1
n ∑

n
i=1Ψ(ŨUU i)w(ŨUU i).

The following lemma establishes consistency and asymptotic normality of the
estimator µ̂IS,n.

Lemma 1. Suppose that Var(Ψ(UUU)) < ∞ and that w( ·) ≤ B for a constant B < ∞.
Then

1. µ̂IS,n converges P-almost surely to µ;
2. σ2 = Var(Ψ(ŨUU)w(ŨUU))< ∞ and

√
n(µ̂IS,n−µ)→N (0,σ2) in distribution.

We will later show that under some mild assumptions on FΛ , the weight function
will indeed be bounded on [0,1].

The form of Cλ we propose to work with is the distribution of UUU conditioned on
the event that at least one of its components exceeds λ :

Cλ (uuu) = P(U1 ≤ u1, . . . ,Ud ≤ ud |max{U1, . . . ,Ud}> λ )

= P(U1 ≤ u1, . . . ,Ud ≤ ud |UUU /∈ [0,λ ]d)

=
C(uuu)−C (min{u1,λ}, . . . ,min{ud ,λ})

1−C(λ111)
, (8)

where λ111 = λ (1, . . . ,1) = (λ , . . . ,λ ) ∈ [0,1)d . By putting mass of Λ on (0,1), we
can put more weight on the region of the copula where at least one component is
large. For instance, if FΛ is discrete and P(Λ = 0) = P(Λ = 0.9) = 0.5, then 50% of
the samples of ŨUU are constrained to lie only in [0,1]d \ [0,0.9]d while the other 50%
of the samples will lie on [0,1]d . Note that the mass on [0,1]d \ [0,0.9]d would then
be higher than 50% since we can still sample from [0,1]d \ [0,0.9]d when Λ = 0. On
the other hand, the case P(Λ = 0) = 1 yields G =C since Cλ =C for λ = 0.

We now describe how the weight function w based on the above choice for Cλ

can be calculated.
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Theorem 1. The Radon–Nikodym derivative w(uuu) = dC(uuu)/dG(uuu) is given by

w(uuu) =
( M

∑
k=1

I{λk≤max{u1,...,ud}}
1−C(λk111)

qk

)−1
.

In order to simplify the notation, let w̃ : [0,1]→ [0,∞) be defined as

w̃(u) =
( M

∑
k=1

I{λk≤u}
1−C(λk111)

qk

)−1
. (9)

Therefore we have that w(uuu) = w̃(max{u1, . . . ,ud}). In order to evaluate w̃, it is suf-
ficient to calculate (or approximate) C(λk111) for k ∈ {1, . . . ,M}. These values must
be calculated only once and thus this approach is fast and can be easily implemented.
In particular, the density of C does not have to be evaluated to calculate w (or w̃).
This is in an advantage in comparison to most other IS algorithms, for which the
existence of the density of C is required.

Lemma 2. Under Assumption 1, w̃ is bounded from above by P(Λ = 0)−1 on [0,1].

As a consequence of Lemma 2, Assumption 1 is not only sufficient to obtain
existence of the weights, but it also guarantees that they are bounded. In virtue of
Lemma 1, this guarantees consistency and asymptotic normality of the IS estimator.

Note that our approach could be generalized to other forms of Cλ and FΛ (e.g.,
not necessarily discrete). In such cases the evaluation of the weight function w̃ might
be more demanding and require the use of numerical integration schemes.

4 Importance Sampling Algorithm for Archimedean Copulas

While the IS method from the previous section can be applied to any copula, sam-
pling from Cλ is in general difficult. A possible solution could be to use rejec-
tion sampling, but we do not pursue this approach here as we expect it would not
work very well with QMC sampling. In this section, we instead focus on develop-
ing sampling algorithms for UUU |U(d) := max{U1, . . . ,Ud} > λ when UUU follows an
Archimedean copula with generator ψ . This corresponds to Step 3 in Algorithm 1.
In light of (5), we have (U1, . . . ,Ud)

d
= (ψ(E1

V ), . . . ,ψ(Ed
V )) where E j

ind.∼ Exp(1)
and V is the corresponding frailty random variable. The condition U(d) > λ can
then be written as E(1) < ψ−1(λ )V , where E(1) ∼ Exp(d) is the first order statis-
tic of {E1, . . . ,Ed}. In summary, sampling from UUU |U(d) > λ is equivalent to sam-
pling from (E1, . . . ,Ed ,V ) |E(1) < ψ−1(λ )V . Algorithm 2 summarizes the sampling
method for this conditional distribution where we let γ = ψ−1(λ ). Proposition 1
asserts that samples from Algorithm 2 have the right distribution.

Proposition 1. Let E1, . . . ,Ed be iid positive random variables and V be a positive
random variable independent of the E j’s. Then a sample (E1, . . . ,Ed ,V ) constructed
as in Steps 1–3 of Algorithm 2 has the distribution (E1, . . . ,Ed ,V ) |(E(1) < γV ).
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Algorithm 2 Sampling Step of the IS algorithm for Archimedean copulas
Require: 0 < γ = ψ−1(λ )< ∞.
1: Draw (E(1),V ) |(E(1) < γV ).
2: Draw (E1, . . . ,Ed) |E(1).
3: Let U j = ψ(E j/V ) for j ∈ {1, . . . ,d}.
4: return (U1, . . . ,Ud).

While Proposition 1 holds for general (positive) E j’s and V , we now give detailed
explanations of how to do the sampling for Steps 1 and 2 of Algorithm 2, i.e., when
E j

ind.∼ Exp(1) and V is the frailty random variable. We assume that V is continuous
for the derivations below. We need only minor modifications for the discrete case.

Step 1: Sample (E(1),V ) |(E(1) < γV )
We want to sample from the joint distribution of (E(1),V ) conditioned on the event
(E(1) < γV ). Let fE(1)(x) and fV (v) be the density of E(1) and V , respectively. Fur-
ther, let f(E(1),V )|(E(1)<γV )(x,v) be the conditional joint density of (E(1),V ) given
E(1) < γV . Then by independence of E(1) and V

f(E(1),V )|(E(1)<γV )(x,v) = β fE(1)(x) fV (v)I(x < γv), (10)

where 1/β = P(E(1) < γV ) = P(U(d) > λ ) = (1−C(λ111)) = (1−ψ(dψ−1(λ ))).
We use conditional sampling to sample from this density, that is, we first sample V
from the marginal conditional density fV |(E(1)<γV ) of (10) then draw E(1) from (10)
given V . Note that

fV |(E(1)<γV )(v) = β fV (v)
∫

γv

0
fE(1)(x)dx = β fV (v)(1− exp(−dγv)). (11)

Unfortunately, the density (11) does not belong to a known parametric family
for most Archimedean copulas. Nonetheless, there exist efficient numerical algo-
rithms that allow one to sample from a univariate distribution given its probability
density function. For instance, the NINIGL Algorithm in [4] achieves this through
numerical inversion techniques. Such algorithms could become costly if they had
to be applied for several values of Λ . However in our numerical experiments, the
threshold random variable Λ only takes a small number of distinct values, such as
10, which is much less than the number of simulations, which is of order 10,000.
Furthermore for each value of Λ = λ , we sample from (11) thousands of times,
which makes the overhead required to initialize the sampling algorithms negligible.

After sampling V from (11), we want to draw E(1) given V . Let the conditional
density of E(1) be denoted by fE(1)|(E(1)<γV,V )(x |V ). Then

fE(1)|(E(1)<γV )(x |V ) =
d exp(−dx)I(x < γV )

1− exp(−dγV )
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and we can draw a sample from this density using the inversion technique. In par-
ticular, we generate U ∼ U[0,1) and then let E(1) =− 1

d log(1−U(1− e−γdV )).

Step 2: Sampling (E1, . . . ,Ed) |E(1)

Suppose we have drawn E(1) = x(1) from Step 1. Let f (x1, . . . ,xd) = exp
(
−∑

d
i=1 xi

)
be the joint density of (E1, . . . ,Ed). Note that each E j is as likely to be the minimum.
Consider the case where E1 is the minimum. The conditional distribution is

f (x1, . . . ,xd |E1 = E(1), E(1) = x(1)) =
e−x(1)−∑

d
j=2 x j

(1/d)de−dx(1)
= e−∑

d
j=2(x j−x(1)) · I{E1=x(1)}.

(12)

We can sample from (12) by letting E j = Exp(1) + x(1) independently for j ∈
{2, . . . ,d}.

Since any of the E j’s can be the minimum, we pick the index for the minimum
component randomly from 1 to d and sample the rest of the components accordingly.
This sampling method works for MC, but may not work very well for QMC. When
randomly choosing the index for the minimum component, we potentially destroy
the structure of the LDS. So, if we are working with an LDS, the CDM based on
Proposition 2 below is preferred.

Proposition 2. Suppose E1, . . . ,Ed are iid Exp(1). Then

P(Ek ≤ xk |E1 = x1, . . . ,Ek−1 = xk−1,E(1) = x)

=

{
1− exp{−(xk− x)}, if x j = x for some j ∈ {1, . . . ,k−1},

1
d−k+1 I{xk<x}+

d−k
d−k+1 (1− exp{−(xk− x)}), otherwise.

(13)

To sample E1, . . . ,Ed , we let k take the successive values k ∈ {1, . . . ,d} in (13) and
proceed by inversion.

4.1 Stratified Sampling Alternative to Importance Sampling

Recall from Algorithm 1 and the form of Cλ given in (8) that our IS scheme starts
with sampling a threshold random variable Λ = λk and then proceeds by sampling
ŨUU ∼UUU |(T =max{U1, . . . ,Ud}> λk). Instead, we can construct a stratified sampling
(SS) estimator based on the samples from UUU |(λk+1 > T ≥ λk). That is, we stratify
the domain of UUU along with T . Suppose Λ takes M distinct values as 0 = λ1 < · · ·<
λM < 1. Let λM+1 = 1 for convenience. Then we can define M strata as

Ωk = {uuu ∈ [0,λk+1)
d |uuu /∈ [0,λk)

d}, k = 1, . . . ,M. (14)

By construction, λk ≤ T < λk+1 if and only if uuu ∈Ωk. We can then construct the SS
estimator
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µ̂SS,n =
M

∑
k=1

pk

nk

nk

∑
i=1

Ψ(ŨUU (k)
i ), (15)

where pk is the stratum probability, nk is the number of samples allocated to the
stratum Ωk, and ŨUU (k)

i
ind.∼UUU |Ωk. For Archimedean copulas, pk = ψ(dψ−1(λk+1))−

ψ(dψ−1(λk)). In Section 5, we show that the SS estimator has a smaller variance
than the IS estimator. It is easy to show that sampling from Ωk is equivalent to
sampling from (E1, . . . ,Ed ,V ) |ψ−1(λk+1)V < E(1) ≤ ψ−1(λk)V . Let γk = ψ−1(λk)
for all k ∈ {1, . . . ,M + 1}. Algorithm 3 summarizes the procedure to sample from
each stratum.

Algorithm 3 Sampling UUUk, j in SS algorithm for Archimedean copulas
Require: 0 < γk+1 < γk < ∞.
1: Draw (E(1),V ) |(γk+1V < E(1) ≤ γkV ).
2: Draw (E1, . . . ,Ed) |E(1).
3: Let U j = ψ(E j/V ) for j ∈ {1, . . . ,d}.
4: return (U1, . . . ,Ud).

In this algorithm, Step 2 is exactly the same as for the IS case (Algorithm 2).
For Step 1, we use conditional sampling to draw samples from the joint conditional
density of (E(1),V ) |(γk+1V < E(1) ≤ γkV ). By using an argument similar to the one
used for Step 1 of Algorithm 2, we can show that the marginal conditional density
of V is

fV |(E(1)<γV )(v) = β fV (v)(exp(−dγk+1v)− exp(−dγkv)), (16)

where fV (v) is the density of V and β = 1/pk = 1/ψ[dψ−1(λk+1))−ψ(dψ−1(λk)].
Conditional on V drawn from (16), generate U ∼ U[0,1) and then let E(1) =

− 1
d log

[
e−γk+1dy−U(e−γk+1dy− e−γkdy)

]
. Then (E(1),V ) follows the desired distri-

bution.

Remark 1. We can follow Algorithm 3 to sample from the SS distribution under
QMC, if the number of samples to be drawn is fixed. In some cases, however, we
want to keep running simulations until some error criterion is met. Since SS requires
to have a subset of points allocated to each stratum, combining it with QMC for n
not fixed is challenging. This is because when the total sample size is increased by
successive increments, it means possibly disjoint subsets of a QMC point set will
be used in a given stratum, which is undesirable. Whether or not this allocation over
successive increments can be done in a clever way that exploits the uniformity of
low-discrepancy sequences is a question we leave for future research.
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5 Variance Analysis and Calibration Method

In this section, we analyze the variance of the IS and SS estimators and then propose
calibration methods for choosing the qk’s designed to minimize the variance of the
respective estimators. We also show that the SS scheme is more flexible to calibrate
and gives an estimate with a smaller variance than the IS estimator.

We define the strata Ω1, . . . ,ΩM as in (14) and Ck = C(λk111) for k ∈ {1, . . . ,M}.
The following proposition gives the variance of the IS estimator.

Proposition 3. Let µ̂IS,n be the IS estimator described in Algorithm 1 with Cλ given
in (8). Then its variance is given by

Var(µ̂IS,n) =
1
n

 M

∑
k=1

pk

(
k

∑
l=1

ql

1−Cl

)−1

µ
(2)
k −µ

2

 , (17)

where pk = P(UUU ∈Ωk), qk = P(Λ = λk) and µ
(2)
k = E(Ψ 2(UUU) |Ωk).

For the optimal calibration, we want to choose the qk’s so that (17) is minimized.
The following proposition gives an analytical expression for the optimal calibration.
For convenience, we define µ

(2)
0 = 0.

Proposition 4. The set of qk’s that minimize (17) under the condition µ
(2)
1 ≤ ·· · ≤

µ
(2)
M with µ

(2)
0 = 0 for convenience, is

qopt
k =

(1−Ck)

(√
µ
(2)
k −

√
µ
(2)
k−1

)
M
∑

k=1
(1−Ck)

(√
µ
(2)
k −

√
µ
(2)
k−1

) , k ∈ {1, . . . ,M}. (18)

Remark 2. If the condition µ
(2)
1 ≤ ·· · < µ

(2)
M is not met, some of the qopt

k ’s given
by (18) will be negative, which makes the IS scheme infeasible. Note that qopt

k < 0
means that ever having the event [Λ = λk] makes the overall variance greater than
when qopt

k = 0. We propose to then remove λk from the support of Λ if qopt
k < 0.

Accordingly, the strata Ωk’s will change so the stratum second moments need to be
recomputed for the optimal calibration.

Of course, we do not know the true values of the µ
(2)
k ’s in practice, so we have to

replace them with estimates. As often done for Neyman allocation, we can first run
a pilot study with a small number of simulations and estimate the µ

(2)
k ’s. The condi-

tion µ
(2)
1 ≤ ·· ·< µ

(2)
M means that the outer strata must have greater stratum second

moments than the inner strata. We refer to this condition as increasing second mo-
ment (ISM) condition. Whether this ISM condition is met depends on the problem
at hand. In this paper, we specifically work with Ψ(UUU) which is large when at least
one component of UUU is large. This assumption on Ψ and the ISM condition are not
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incompatible, although there is no guarantee that the former implies the latter. If the
ISM is satisfied, then we can substitute (18) into (17) and obtain

Var(µ̂opt
IS,n) =

1
n

( M

∑
k=1

pk

√
µ
(2)
k

)2

−µ
2

 . (19)

Using the Cauchy-Schwarz inequality, we can show that

VarQ(µ̂
opt
IS,n) =

1
n

( M

∑
k=1

pk

√
µ
(2)
k

)2

−µ
2

≤ 1
n

(
M

∑
k=1

pkµ
(2)
k −µ

2

)
= Var(µ̂MC,n).

Equality holds only when µ
(2)
k is the same for all k. Except for this restrictive case,

the IS estimator with the optimal choice of qk’s always has a smaller variance than
the plain MC counterpart. If the ISM is not met, there is no analytical form for
the optimal qk’s. We can still find the optimal values using widely available convex
optimization solvers in this case. If we let q1 = 1 and qk = 0 for k = 2, . . . ,M, the
proposal distribution is the same as the original distribution. That is, IS becomes
plain MC. Hence, if we choose the qk’s appropriately, the IS estimator cannot do
worse than plain MC. In this sense, the IS estimator is similar to an SS estimator.

Now that we have derived the variance expression and the optimal choice of qk’s,
we move on to the stratified sampling estimator (15). Using simple algebra, one can
show that Var(µ̂SS,n) = ∑

M
k=1 p2

kσ2
k /nk, where σ2

k = Var(Ψ(UUU) |Ωk), k ∈ {1, . . . ,M}
are the stratum variances. The optimal nk’s are given by Neyman allocation

nk =
npkσk

∑
M
k=1 pkσk

. (20)

Unlike the IS estimator, there is no restriction on this optimal allocation, i.e., we do
not need σk to be increasing with k. In this sense, the SS estimator is more flexible.

Since the true strata variances are unknown, we have to replace them with esti-
mates. Investigating the optimal calibration formula for IS (18) and SS (20), it ap-
pears that the estimation error of the strata moments (the µ

(2)
k ’s for IS and the σ2

k ’s
for SS) has greater impact on the estimated calibration for IS than for SS. Since qk

for IS depends on
√

µ
(2)
k −

√
µ
(2)
k−1, the estimation error comes from both estimat-

ing µ
(2)
k−1 and µ

(2)
k . On the other hand, for SS, nk depends on σk, so the estimation

error comes from estimating σ2
k alone. Consequently, the approximation is likely to

deviate more from the actual optimal calibration for IS than for SS.
Going back to IS and as discussed in [9], instead of choosing Λ = λk with prob-

ability qk it is more efficient to stratify Λ . That is, take nk = nqk observations with
Λ = λk. Let µ̂det

IS,n denote such a stratified IS estimator. Generally nqk is not an in-
teger and needs to be rounded. If each nk is large enough, this rounding effect is
negligible. The following proposition compares the variance of the three estimators.
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Proposition 5. Suppose we have an IS estimator with P(Λ = λk) = qk,1≤ k≤M. If
the µk =E(Ψ(UUU)|Ωk) are not all equal and n is large enough, then there exists some
strata sample allocation (n1, . . . ,nM) for the SS estimator such that Var(µ̂SS,n) ≤
Var(µ̂det

IS,n)≤ Var(µ̂IS,n).

This result trivially holds when we use the optimal qk’s (18) for stratified and un-
stratified IS and use the optimal allocation (20) for SS. Since the SS estimator is
more flexible for calibration and it has a smaller variance than both IS estimators,
the SS approach is preferred if the sampling efforts for (11) and (16) are not sig-
nificantly different. Nonetheless, depending on the type of the underlying copula,
sampling from the IS distribution could be much easier than sampling from the SS
distribution.

6 Numerical Examples

In this section, we investigate the efficiency of the IS and SS estimators introduced
in this paper. We consider the valuation of tail-related quantities of a portfolio con-
sisting of stocks from companies in the financial industry listed on the S&P 100.
The five stocks in the portfolio are AIG, Allstate Corp., American Express Inc.,
Bank of New York and Citigroup Inc. Their stock symbols are AIG, ALL, AXP, BK
and C, respectively. We assume that the value of the portfolio is 100 and that all
the portfolio weights are equal. The data are daily negative log-returns of these five
companies from 2010-01-01 to 2016-04-01 (1571 data points). We fit GARCH(1,1)-
models with t-innovations to each return series to filter out the volatility clustering
effect using the R package “rugarch” [6]. The fitted standardized residuals do not
exactly follow a t-distribution, so we fit a semi-parametric distribution to the resid-
uals using the R package “spd” [7]. The fitted model uses a kernel density estimate
for the centre of the distribution and fits a generalized Pareto distribution to the tails.
The use of generalized Pareto distribution to model the GARCH filtered residuals to
estimate tail-related risk measures in a univariate setting is studied by McNeil and
Frey [16]. We let S = ∑

d
j=1 X j denote the portfolio loss over a one day period with

X j = 100ω j

(
1−

d

∑
j=1

exp(a j−b jF̃−1
j (U j))

)
,

where d is the number of assets, ω j’s are the portfolio weights, a j’s are the means
of the log-returns, b j’s are the fitted conditional standard deviations from the
GARCH(1,1) model, F̃j’s are the fitted semi-parametric distributions from the R
package “spd”, and (U1, . . . ,Ud) follows the fitted copula. We use the R package
“distr” [18] to sample from (11) and (16).

Using the R package “copula” [10], we fit the Gumbel, Frank, Clayton and Joe
copulas to the standardized residuals based on MLE. Among the four Archimedean
copulas, the Gumbel copula with θ = 1.604 gives the best fit in terms of log-
likelihood, followed by a Frank copula with θ = 4.06. Hence we proceed assuming
that the model we consider is well approximated by a Gumbel or a Frank copula.
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The three functionals we estimate are stop loss E(max{S−D,0}) with D = 3
for Gumbel and D = 2 for Frank, VaR0.99 and ES0.99 of S. To define CΛ , we use
λk = 1−

( 1
2

)k−1
for k = 1, . . . ,M, with M = 10. When constructing an IS estimator,

we stratify Λ regardless of whether we use MC or QMC. When we calibrate the
qk’s for IS according to (18) and SS according to (20), we use ES as our objective
function.

Gumbel Frank
MC QMC MC QMC

Objective function d Estimate IS SS Plain IS SS Estimate IS SS Plain IS SS
E(max{S−D,0}) 5 0.012 67 168 33 1730 8085 0.011 6.4 11 14 85 161

20 0.010 49 40 51 1128 3488 0.0034 4.6 4.1 5.7 46 46
VaR0.99(S) 5 3.2 10 26 8.4 39 98 2.4 9.7 9.0 2.6 32 26

20 3.04 7.9 7.2 5.8 19 28 2.1 4.3 4.8 3.6 16 19
ES0.99(S) 5 4.2 89 175 29 6019 16989 2.8 17 21 7.1 250 373

20 4.03 49 39 48 1296 4205 2.3 4.6 3.8 4.0 38 36

Run time 5 3.6 3.7 1.8 3.7 3.8 3.6 3.7 1.1 3.6 3.7
20 2.0 1.9 1.2 1.9 2.0 1.7 1.8 1.1 1.9 2.0

Table 2 Estimates and variance reduction factors for the Gumbel and Frank copulas based on
n = 30000, d = 5.

Table 2 shows the estimates, variance reduction factors and computational times
for the three functionals for the five different estimators based on Gumbel and Frank
copulas, respectively. We used 30 randomizations to estimate the variance of each
estimator (MC and QMC). The estimates shown are based on SS estimators with
QMC. Variance reduction factors are defined to be the ratios of the variance of the
plain MC estimators over the variance of the estimators with the respective VRTs.
The last row of Table 2 shows the increase in computation time compared to plain
MC. We see that both IS and SS reduce the variance by large amounts and this
is amplified when combined with QMC. Note that SS estimators generally give
smaller variances than the IS estimators, as suggested by Proposition 5. For IS and
SS estimators with and without QMC, we see that the largest variance reduction
factors are for ES. This makes sense as we calibrate the qk’s to minimize the variance
of the ES estimator.

We also repeat the same experiment but with a portfolio of 20 stocks from large
companies in the financial industry traded on NYSE (the full list is available from
the authors); the results are displayed under d = 20 in Table 2. Figures 2 and 3 show
the log-variance of the three different MC-based estimators for different n.

Appendix

Proof of Lemma 1. Since E(Ψ(ŨUU)w(ŨUU)) = E(Ψ(UUU)), consistency follows di-
rectly from the Strong Law of Large Numbers. Note that E

(
Ψ(ŨUU)2w(ŨUU)2

)
=

E
(
Ψ(UUU)2w(UUU)

)
≤ E

(
Ψ(UUU)2

)
B < ∞, where the first equality is justified by a
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Fig. 2 Estimated variances of plain MC, IS and SIS estimators of ES0.99 for a Gumbel copula
(left-hand side) and a Frank copula (right-hand side) for different n and for d = 5.
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Fig. 3 Estimated variances of plain MC, IS and SIS estimators of 99% ES for a Gumbel copula
(left-hand side) and a Frank copula (right-hand side) for different n and for d = 5
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change of measure. We can immediately deduce asymptotic normality of µ̂IS,n by
the Central Limit Theorem, see, for example, Section 2.4 in [5], page 110. ut
Proof of Theorem 1. Due to Leibniz’ integral rule, dG(uuu)=

∫ 1
0 dCλ (uuu)dFΛ (λ ). From

the definition of Cλ , we can derive the differential

dCλ (uuu) =

{
0, uuu ∈ [0,λ ]d ,

dC(uuu)
1−C(λ111) , otherwise.

Using both identities, we obtain

dG(uuu) = dC(uuu)
∫ 1

0

I{λ≤max{u1,...,ud}}
1−C(λ111)

dFΛ (λ ),

leading to the desired result. ut
Proof of Lemma 2. Since C(λ111),λ ∈ [0,1], the diagonal section of the copula C and
the distribution function FΛ are both increasing functions. The weight function w̃ is
thus decreasing on [0,1], and is bounded above by w̃(0) = P(Λ = 0)−1 < ∞. ut
Proof of Proposition 1. We sample (E1, . . . ,Ed ,V ) |(E(1) < γV ) using conditional
distribution sampling. That is, we first sample (E(1),V ) |(E(1) < γV ), which is
the Step 1 of Algorithm 2. Given the (E(1),V ) drawn, we then want to sample
(E1, . . . ,Ed) |(E(1) < γV,E(1),V ) which is equivalent to sampling (E1, . . . ,Ed) |E(1)
and this is the Step 2 of the algorithm. ut
Proof of Proposition 2. First, consider the case where x j = x for some j = 1, . . . ,k−
1. Without loss of generality assume that x1 = x, i.e., E1 = E(1). So we want to find
P(Ek ≤ xk |E1 = x1, . . . ,Ek−1 = xk−1,E(1) = E1 = x). From (12), the conditional
distribution of Ek is x+Exp(1). So the above probability equals

P(Ek ≤ xk |E1 = x1, . . . ,Ek−1 = xk−1,E(1) = x) = 1− e−(xk−x). (21)

Next, we consider the case x j 6= x for all j = 1, . . . ,k− 1. This means that E j =
E(1) for some j = k, . . . ,d. Since all E j are iid, there is a 1

d−k+1 probability that Ek =
E(1). In such a case Ek = x with probability 1 as we are given E(1) = x. Suppose Ek 6=
E(1), which occurs with probability of d−k

d−k+1 . Then we need to find the probability

P(Ek ≤ xk |E1 = x1, . . . ,Ek−1 = xk−1,E(1) = x,E j 6= E(1), j = 1, . . .k)

=
d

∑
j=k+1

1
d− k

P(Ek ≤ xk |E1 = x1, . . . ,Ek−1 = xk−1,E(1) = x,E j = E(1))

= P(Ek ≤ xk |E1 = x1, . . . ,Ek−1 = xk−1,E(1) = x,Ed = E(1)) = 1− e−(xk−x).

The last equality again holds by (12) and the result follows. ut
Proof of Proposition 3. Recall that the IS estimator (7) is

µ̂IS,n =
1
n

n

∑
i=1

Ψ(ŨUU i)w(ŨUU i) =
1
n

n

∑
i=1

Ψ(ŨUU i)w̃(ti), (22)
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where ti = max(ŨUU i,1, . . . ,ŨUU i,d), and where the weight function (9) is

w̃(u) =
( M

∑
k=1

I{λk≤u}
1−Ck

qk

)−1
. (23)

Hence w̃ is constant over each stratum Ωk. Thus, for uuu ∈ Ωk, we can define the
stratum weight as

wk =
( k

∑
l=1

ql

1−Cl

)−1
, k ∈ {1, . . . ,M}. (24)

The second moment of w(ŨUU)Ψ(ŨUU) is

E(w2(ŨUU)Ψ 2(ŨUU)) = E(w(UUU)Ψ 2(UUU)) =
M

∑
k=1

pkE(w(UUU)Ψ 2(UUU) |UUU ∈Ωk)

=
M

∑
k=1

pkwkE(Ψ 2(UUU) |UUU ∈Ωk) =
M

∑
k=1

pkwkµ
(2)
k =

M

∑
k=1

pk

(
k

∑
l=1

1
1−Cl

ql

)−1

µ
(2)
k .

The third equality holds because the weight function w̃(t) is constant over each
stratum. The last equality follows from (24). Then the variance of the IS estimator

based on n samples is Var(µ̂IS,n) =
1
n

(
∑

M
k=1 pk

(
∑

k
l=1

1
1−Cl

ql

)−1
µ
(2)
k −µ2

)
. ut

Proof of Proposition 4. Since the variance expression (17) is convex in qk’s, we can
solve the minimization problem using Lagrange multipliers. First, we simplify (17)
so that the minimization problem becomes easier. Let p̃k = P(ŨUU ∈Ωk), the stratum
probability under the proposal distribution. Observe that

p̃k =
M

∑
l=1

ql ·P(UUU ∈Ωk |Λ = λk) =
k

∑
l=1

ql ·P(UUU ∈Ωk |Λ = λk)

=
k

∑
l=1

ql ·P(UUU ∈Ωk |Λ = λk) =
k

∑
l=1

ql
pk

1−Cl
= pk

k

∑
l=1

ql

1−Cl
. (25)

By (23) and (25), we can write wk = pk/ p̃k. The weight wk is the ratio of proba-
bilities of a sample falling onto stratum Ωk under the original distribution and the
proposal distribution. Plugging this expression into (17), we have

Var(µ̂IS,n) =
1
n

(
M

∑
k=1

p2
k

p̃k
µ
(2)
k −µ

2

)
. (26)

Using the Lagrange multiplier method, we can show that the optimal p̃k is

p̃opt
k = pk

√
µ
(2)
k

/ M

∑
k=1

pk

√
µ
(2)
k . (27)
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Note that this optimal choice of p̃k’s resembles the Neyman allocation, the optimal
allocation under stratified sampling.

Using the relation qk = (1−Ck)
(

p̃k
pk
− p̃k−1

pk−1

)
, (with p̃0/p0 = 0) the optimal qk is

qopt
k ∝ (1−Ck)

(√
µ
(2)
k −

√
µ
(2)
k−1

)
, (with µ

(2)
0 = 0). (28)

The assumption that µ
(2)
1 ≤ ·· · ≤ µ

(2)
M ensures that qopt

k ≥ 0 for k = 1, . . . ,M. ut
Proof of Proposition 5. We have µ̂det

IS,n =
1
n ∑

M
k=1 ∑

nqk
j=1Ψ(ŨUUki)w(ŨUUki), ŨUUki

iid∼UUU |Λ =

λk. Thus Var(µ̂det
IS,n) = E

[
Var(Ψ(ŨUU)w(ŨUU) |Λ)

]
/n+O(1/n2) (term due to round-

ing nqk). Since Var(µ̂IS,n) =
1
n Var(Ψ(ŨUU)w(ŨUU), we have Var(µ̂det

IS,n) ≤ Var(µ̂IS,n) as
long as n is large enough for the O(1/n2) term due to rounding to be smaller than
Var(E(Ψ(ŨUU)w(ŨUU)|Λ))/n > 0. As shown before, p̃k = P(ŨUU ∈ Ωk) = pk ∑

k
l=1

ql
1−Cl

.

Consider an SS estimator with nk = np̃k. Then Var(µ̂SS,n) =
1
n ∑

M
k=1

p2
k

p̃k
σ2

k . Also
Var(Ψ(ŨUU)w(ŨUU) |Λ = λk) = Var(Ψ(ŨUU)w(ŨUU) |T > λk) ≥ E[Var(Ψ(ŨUU)w(ŨUU) |T >
λk,T ∈Ω j)] = ∑

M
j=k

p j
1−Ck

w2
jσ

2
j . Then, using (24) and wk = pk/p̃k we get

Var(µ̂det
IS,n)≥

1
n

M

∑
k=1

qk

M

∑
j=k

p j

1−Ck
w2

jσ
2
j =

1
n

M

∑
k=1

pkw2
kσ

2
k

k

∑
j=1

q j

1−C j

=
1
n

M

∑
k=1

pkwkσ
2
k =

1
n

M

∑
k=1

p2
k

p̃k
σ

2
k = Var(µ̂SS,n).

ut
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11. Hofert, M., Mächler, M., et al.: Nested archimedean copulas meet R: The nacopula package.
Journal of Statistical Software 39(9), 1–20 (2011)

12. Huang, P., Subramanian, D., Xu, J.: An importance sampling method for portfolio cvar estima-
tion with gaussian copula models. In: Proceedings of the 2010 Winter Simulation Conference
(WSC), pp. 2790 – 2800 (2010)

13. Lemieux, C.: Monte Carlo and Quasi-Monte-Carlo Sampling. Springer (2009)
14. Marshall, A., Olkin, I.: Families of multivariate distributions. Journal of the American Statis-

tical Association 83(403), 834–841 (1988)
15. McNeil, A., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques,

Tools. Princeton University Press, Princeton (2005)
16. McNeil, A.J., Frey, R.: Estimation of tail-related risk measures for heteroscedastic financial

time series: an extreme value approach. Journal of Empirical Finance 7(3), 271–300 (2000)
17. Nelsen, R.: An Introduction to Copulas, second edn. Springer, New York (2006)
18. Ruckdeschel, P., Kohl, M., Stabla, T., Camphausen, F.: S4 classes for distributions. R News

6(2), 2–6 (2006)
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