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Abstract

The equilibrium phase behavior of main-chain liquid-crystalline polymer brushes in

good solvent is investigated using self-consistent field theory. The calculation assumes

semi-dilute brushes, where the grafting density is sufficient to cause overlap among the

polymers but low enough to allow the solvent to be treated implicitly. The polymers

are modeled as semi-flexible worm-like chains with Maier-Saupe interactions. Previ-

ous calculations based on freely-jointed chains have predicted that extended brushes

collapse into folded nematic brushes, as the liquid-crystalline interaction strength is

increased. For the more sophisticated model of worm-like chains, which penalizes hair-

pin folds, we find that extended brushes become unstable with respect to tilting prior

to the onset of folding. This implies that the brushes spontaneously collapse by a

symmetry-breaking transition, where the chains tilt rather than fold.
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Introduction

Grafting polymers to a surface provides a simple and convenient way of modifying its prop-

erties.1–3 Much of the focus has been on densely grafted brushes in good solvent, where the

chains stretch out in order to maximize their contact with the solvent. Early theoretical

descriptions by Alexander4 and by de Gennes5 were based on scaling theories that assumed

uniform stretching with all the chain ends at the outer edge of the brush, resulting in a step

concentration profile. Milner, Witten and Cates6 later used an analytical strong-stretching

theory (SST) for Gaussian chains to show that the chain ends are distributed throughout

the brush, resulting in a parabolic concentration profile. Numerical self-consistent field the-

ory (SCFT) for finite degrees of stretching has since revealed a couple notable deviations

from the parabolic shape, in particular a depletion layer near the grafting surface and an

exponentially-decaying tail at the outer edge of the brush.7,8 This has brought the theory

into good agreement with simulations9,10 and experiments.11–15 Nevertheless, this simple

model is not without its limitations.

Brush calculations typically ignore the orientational interactions between polymer chains,

which generally favor parallel alignment. Even though they are relatively weak for flexible

polymers, they still enhance the degree of stretching.16 More interesting, however, are the

stiffer liquid-crystalline (LC) polymers that tend to align into a nematic phase. Using an

Alexander-de Gennes type calculation, Halperin and Williams17,18 demonstrated how LC

brushes could be used to control the alignment of a liquid-crystalline solvent, an important

issue for LC display technology. This potential application, along with others such as organic

electronics, switches, and sensors, has spurred numerous experimental studies.19–29

Subsequent theoretical calculations have, so far, concentrated on the simpler system of

LC brushes in conventional solvents. In particular, Birshtein et al.30 examined freely-jointed

chains interacting by Maier-Saupe LC interactions.31 They initially solved the statistical me-

chanics of the brush assuming uniform stretching (i.e., the Alexander-de Gennes approxima-

tion) with the rigid segments constrained to the bonds of a simple-cubic lattice. Provided the
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solvent quality was sufficiently good, increasing the LC interactions produced a first-order

transition from a conventional brush (CB) to a collapsed liquid-crystalline brush (LCB).

Kuznetsov and Chen32 performed a similar off-lattice calculation, which likewise predicted

an analogous transition for good solvents.

The Birshtein group33–36 later dropped the Alexander-de Gennes approximation and

instead solved the statistical mechanics using lattice SCFT. By allowing for nonuniform

stretching, they found that the brush evolved from CB to LCB via the formation of a

microphase-segregated brush (MSB), with an inner high-density nematic region and an outer

low-density conventional brush. Computer simulations of brushes with freely-jointed poly-

mers also observed this phase.37 In order to create a high concentration while maintaining

nematic order, the polymer chains reverse direction multiple times resulting in a series of

hairpin folds. Naturally, freely-jointed chains omit the usual penalty for hairpin folds.17,18,38

Including this penalty may very well cause the brush to increase its concentration in a dif-

ferent way.

Indeed, simulations of short-chain LC molecules with a bending penalty have observed

tilting.39–42 Although some of the calculations by Birshtein and coworkers33 did in fact

restrict the bending between consecutive chain segments, their lattice nevertheless precluded

the possibility of tilting. Off-lattice SCFT calculations have been performed by Deng et

al.,43 for worm-like chains44,45 with Onsager LC interactions.46 However, that study only

considered azimuthally-symmetric phases (i.e., invariant with respect to rotations about

axes normal to the grafting surface), which likewise precluded tilted phases.

A few studies have allowed for the possibility of tilting when considering LC polymeric

brushes subjected to external forces, either shear47 or compression.48–50 However, it seems

that the possibility of spontaneous tilting due to strong LC interactions has so far been

overlooked. Therefore, we reconsider the SCFT for worm-like chains by Deng et al.43 allowing

for breaking of the azimuthal symmetry. We also switch to the more general Maier-Saupe

interactions, rather than the Onsager interactions specific to hard-core cylindrical segments.
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Theory

Here we consider a brush with np polymers grafted to a flat substrate of area, A, at z = 0,

immersed in a solvent of ns molecules. Each polymer has N segments of length b, giving a

total contour length of `c = Nb. The configuration of the α’th polymer chain is specified by

the space curve rp,α(s), where the backbone parameter runs from s = 0 at the grafted end to

s = 1 at the free end. From this, we obtain the unit vector up,α(s) = `−1c
d
ds
rp,α(s) specifying

the orientation of the chain. It then follows that the dimensionless probability density of

finding a segment at position r with orientation u is

φ̂p(r,u) =
N

ρ0

np∑
α=1

∫ 1

0

dsδ(r− rp,α(s))δ(u− up,α(s)) (1)

where ρ−10 is the volume of an individual polymer segment. Integrating the distribution over

all orientations provides the polymer concentration,

φ̂p(r) =

∫
duφ̂p(r,u) (2)

where du = sin(θ)dθdϕ. Likewise, the dimensionless solvent concentration is

φ̂s(r) = vs

ns∑
α=1

δ(r− rs,α) (3)

where vs is the volume of each solvent molecule and rs,α is the position of the α’th solvent

molecule. Assuming incompressibility, the solvent concentration is given by φ̂s(r) = 1−φ̂p(r),

which allows the interaction energy, Uint, to be expressed solely in terms of the polymer

concentration. Here, we choose the Maier-Saupe interaction energy

Uint

kBT
=
ρ0
2

∫
drdudu′φ̂p(r,u)f(u,u′)φ̂p(r,u

′) (4)
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where

f(u,u′) = ν0 − ν2P2(u · u′) (5)

involves the Legendre polynomial P2(x) = (3x2 − 1)/2.

The model is solved using SCFT with the polymers treated as worm-like chains.44,45 As

such, the energy of an individual polymer takes the form

Hp

kBT
=

∫ 1

0

ds

[
κ

2N

∣∣∣∣dup,αds

∣∣∣∣2 + w(rp,α,up,α)

]
(6)

The first term is the energy penalty due to bending of the polymer chain. The dimensionless

modulus, κ, controls the persistence length, `p = bκ, and statistical segment length, a =

b
√

2κ. The second term is the energy from the self-consistent field

w(r,u) = N

∫
du′f(u,u′)φp(r,u

′) (7)

which represents interactions with the ensemble-average distribution, φp(r,u
′) ≡ 〈φ̂p(r,u′)〉.

Within the mean-field approximation, the entropy of the solvent molecules can be ex-

panded as

−Ss
kB

=
1

vs

∫
drφs lnφs

=
1

vs

∫
dr

[
−φp +

φ2
p

2
+
φ3
p

6
+ · · ·

]
(8)

where φs(r) ≡ 〈φ̂s(r)〉 and φp(r) ≡ 〈φ̂p(r)〉 are ensemble-average concentrations. The linear

term of the expansion has no effect because it integrates to a constant, and the quadratic

term can be incorporated into ν0 for the isotropic interactions. We then assume a semi-dilute

brush, where the concentration is sufficient for mean-field theory to be accurate but small

enough for the higher-order terms to be ignored. As such, the effect of the solvent size, vs,

is absorbed into ν0, and the solvent degrees of freedom are removed from the problem.
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Furthermore, the semi-dilute approximation with implicit solvent allows the grafting

density, σ = np/A, to be absorbed into the scaled concentration

φ(z,u) ≡ bρ0
σ
φp(r,u) (9)

which is normalized such that

1

`c

∫
dzφ(z) = 1 (10)

where φ(z) =
∫
duφ(z,u). Note that the grafting density is assumed to be sufficient such

that there is no need to constrain the lateral positions of the grafting points, which leads

to ensemble-average concentrations that are independent of x and y. In terms of the scaled

concentrations, the field equation becomes

w(z,u) =

∫
du′G(u,u′)φ(z,u′) (11)

where

G(u,u′) = Λ0 − Λ2P2(u · u′) (12)

involves the reduced interaction parameters

Λ0 ≡
ν0σN

bρ0
and Λ2 ≡

ν2σN

bρ0
(13)

The SCFT requires the statistical mechanics of a single polymer with Hamiltonian Hp,

where the s’th segment is constrained at position r and orientation u. The partition function

of the constrained polymer can be written as a product, q(z,u, s)q†(z,u, s), of partial par-

tition functions for the two portions of chain to either side of the constraint. The q(z,u, s)

for the portion attached to the substrate satisfies the diffusion equation45,51,52

∂q

∂s
+ `cuz

∂q

∂z
=

`c
2`p
∇2

uq − wq (14)
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with an initial condition q(z,u, 0) = g(z,u) related to the grafting potential. The q†(z,u)

for the portion with the free end satisfies Eq. (14) with the left-hand side multiplied by

−1 subject to q†(z,u, 1) = 1. The impenetrability of the substrate is enforced by applying

Dirichlet boundary conditions, q(0,u, s) = q†(0,u, s) = 0.

Once the partial partition functions are known, the distribution of polymer is given by

φ(z,u) =
`c
Z

∫ 1

0

dsq(z,u, s)q†(z,u, s) (15)

where

Z =

∫
dzdu q(z,u, s)q†(z,u, s) (16)

is the partition function of an unconstrained chain. Note that the integration in Eq. (16) is

independent of s. The field must be adjusted such that φ(z,u) satisfies Eq. (11).

The orientational order of the polymer chains can be characterized by the Q-tensor,51,53

Qi,j(z) =
3

2φ(z)

∫
du

(
uiuj −

δi,j
3

)
φ(z,u) (17)

where i, j ∈ {x, y, z}. The Kronecker delta is included to make the tensor traceless (i.e.,

TrQ = 0), such that it reduces to the diagonal form

Qi,j =
3S
2

(
ninj −

δi,j
3

)
+
P
2

(lilj −mimj) (18)

where n, l and m are orthonormal eigenvectors. The largest eigenvalue, S(z), and its corre-

sponding eigenvector, n(z), are referred to as the uniaxial order parameter and the nematic

director, respectively. S(z) varies from zero for an isotropic phase to one for a fully-ordered

nematic phase. The difference between the two smallest eigenvalues defines the biaxial order

parameter, P(z).

The field Eq. (11) generally has multiple solutions corresponding to different metastable

phases, and so we need to evaluate their free energies in order to determine which is stable.
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In mean-field theory, the free energy is given by

F = −npkBT lnZ − 1

`c

∫
dzU(z) (19)

The logarithmic term provides the free energy of np chains in the mean field, which double

counts the interaction energy. To correct for this, the second term subtracts Uint, where the

energy density can be expressed as

U(z)

npkBT
=

1

2

∫
dudu′φ(z,u)G(u,u′)φ(z,u′)

=

(
Λ0

2
− Λ2

3
TrQ2(z)

)
φ2(z)

=
1

2

[
Λ0 − Λ2

(
S2(z) +

P2(z)

3

)]
φ2(z)

(20)

As usual, the SCFT is solved numerically. For the diffusion Eq. (14), we use a generaliza-

tion of the algorithm in Ref. 54 that involves finite differences, ∆z = `c/800 and ∆s = 1/800,

for the spatial and the contour variables, respectively, and an expansion in spherical harmon-

ics, Y`,m(θ, ϕ) with ` ≤ 10, for the orientation. To avoid numerical difficulties, the grafting

function is chosen as g(z,u) = exp(−z2/ξ2), corresponding to a freely-jointed graft with a

small but finite range of ξ = `c/32. The field Eq. (11) is solved iteratively using Anderson

mixing,55 which has proven to be very effective for other polymeric systems.56,57 Naturally,

the expansion in spherical harmonics allows integrals over u to be performed analytically;

integrals over z and s are evaluated using the simple trapezoid rule.

Results

We begin by examining azimuthally-symmetric solutions of the field Eq. (11), w0(z, uz)

where uz = cos(θ). This is achieved by restricting the expansion in spherical harmonics,

Y`,m(θ, ϕ), to m = 0. Figure 1 shows the concentration profile, φ(z), as the LC interaction

strength, Λ2, is increased for worm-like chains of different flexibility, `c/`p. In the absence of
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Figure 1: Concentration profiles, φ(z), corresponding to Λ0 = 10 and Λ2 = 0, 25, and 50,
calculated for worm-like chains of (a) `c = 16`p, (b) `c = 4`p, and (c) `c = `p. The dotted
curve in (a) denotes the parabolic profile predicted by SST for Gaussian chains with no LC
interactions.
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LC interactions (i.e., Λ2 = 0), the most flexible polymers in Fig. 1(a) have a parabolic-like

profile, similar to that predicted by SST for Gaussian chains. However, there is a considerable

quantitative deviation from the SST prediction (dotted curve), which can be attributed to

the fact that the SST brush height,6,8

L =

(
8Λ0`p
π2`c

)1/3

`c (21)

is nearly 80% of the polymer contour length, `c. Nevertheless, consistent with previous results

in Ref. 43, good quantitative agreement does occur for more flexible polymers, provided `c

is at least twice L which in turn is at least double R0 ≡ aN1/2 = (2`p`c)
1/2. In any case,

increasing the LC interactions and reducing the flexibility both cause the profile to deviate

further from the parabolic profile toward a step-like profile of height `c. For our most rigid

polymer with the strongest LC interactions in Fig. 1(c), the concentration profile corresponds

to more or less fully extended chains. In fact, the concentration extends slightly beyond the

total contour length of the polymer, which is only possible due to the finite width, ξ, of our

grafting function, g(z,u).

To assess the orientation of the polymer chains, we diagonalize the tensor, Qi,j(z), de-

fined in Eq. (17). Under azimuthal symmetry, the tensor has a single eigenvalue, λ⊥(z),

corresponding to an eigenvector in the z direction, and two degenerate eigenvalues, λ‖(z),

corresponding to eigenvectors in the x-y plane. Given that Qi,j(z) is traceless, it follows

that λ⊥(z) + 2λ‖(z) = 0, and therefore λ⊥(z) and λ‖(z) have opposite signs. In general,

λ⊥(z) is the positive eigenvalue, which implies that the nematic director, n(z), is normal

to the grafting surface with a uniaxial order parameter of S(z) = λ⊥(z) and a biaxial or-

der parameter of P(z) = 0. However, as illustrated in Fig. 2, there is a narrow surface

region, 0 < z < z∗, where n(z) lies in the x-y plane, S(z) = λ‖(z), and P(z) = 3λ‖(z).

This may seem counterintuitive given that the grafted chains extend outward through this

region. However, they do not contribute much to the surface concentration because of their
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perpendicular orientation. On the other hand, chains that, for example, loop back to the

surface tend to have a large fraction of their contour parallel to the surface, and thus con-

tribute considerably to the surface concentration despite their relatively small population.

Note though that the quantitative details of the surface layer are significantly affected by

the choice of grafting function, g(z, uz), and so we do not focus on it in this study.

Figure 2: Eigenvalues of the Q-tensor for worm-like chains of `c = 16`p and interaction
parameters of Λ0 = 10 and Λ2 = 25. The eigenvalue λ⊥(z) corresponds to an eigenvector in
the z direction and the degenerate eigenvalue λ‖(z) corresponds to eigenvectors in the x-y
plane. Their crossing point defines z∗.

Figure 3 shows the dependence of S(z) on the system parameters. Note that it becomes

computationally difficult to determine S(z) as the polymer concentration approaches zero,

and so the curves are only plotted for φ(z) & 0.01. As expected, S(z) is smallest for our

most flexible chains, `c = 16`p, without LC interactions, Λ2 = 0. Reducing the flexibility,

`c/`p, and increasing the LC interactions, Λ2, both cause an increase in orientational order.

Indeed, S(z) approaches the maximum allowed value of one for our most rigid polymer,

`c = `p, with the strongest LC interactions, Λ2 = 50. In all cases, the surface region (i.e.,

z < z∗) narrows as the LC interaction strength increases, which accounts for the widening

of the depletion in φ(z) next to the surface (see Fig. 1).

The isotropic and LC interactions enter U(z) in Eq. (20) with opposite signs, and thus

they compete against each other. Positive Λ0 favors low φ(z) (i.e., extended brushes), whereas

positive Λ2 favors high φ(z) (i.e., collapsed brushes). One way of increasing the polymer

concentration is for the polymer chains to fold. Indeed, a self-consistent field solution for
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Figure 3: Uniaxial order parameter, S(z), corresponding to Λ0 = 10 and Λ2 = 0, 25, and 50,
calculated for worm-like chains of (a) `c = 16`p, (b) `c = 4`p, and (c) `c = `p.
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folded polymers emerges once Λ2 is sufficiently large. Figure 4(a) compares its polymer

concentration to that of the extended state. Naturally, folding reduces the height of the

brush by half and doubles the concentration. To confirm the configuration of the polymer

chains, Figs. 4(b) and 4(c) examines the concentration distribution,

φ(z, s) =
`c
Z

∫
duq(z,u, s)q†(z,u, s) (22)

of the different segments, s. The density plot for the extended state shows the segments

monotonically shifting away from the grafting surface with increasing s, whereas the density

plot for the folded state reveals a sharp hairpin fold at s = 0.5. The reversal in direction

is responsible for an elevated concentration at the outer edge of the folded brush, which is

clearly evident in Fig. 4(a). Consistent with the high concentration of folds, the director,

n(z), switches from perpendicular to parallel beyond the point denoted by a solid dot.

Figure 5 demonstrates the energetic advantage of the folded state by comparing its inter-

action energy density, U(z), to that of the extended state. In the absence of LC interactions,

U(z) is positive for all z, which favors the low concentration of the extended state. How-

ever, as Λ2 increases, U(z) eventually becomes negative. Given that the energy density is

proportional to φ2(z), folding roughly doubles this energetic advantage. Nevertheless, the

transition cannot happen until U(z) is sufficiently negative to compensate for the energy

cost of folding. Indeed, the first-order transition to a folded state, shown in Fig. 6, occurs at

Λ2 = 43.3, which is well beyond the Λ2 ≈ 30 where U(z) first becomes negative. Naturally,

as Λ2 increases further, U(z) is able to compensate for additional folds per chain, thus pro-

ducing a series of discontinuous folding transitions. However, folding is not the most efficient

way of increasing φ(z).

The least costly way of increasing φ(z) is to simply tilt the nematic director, n(z), since

this avoids hairpin folds. However, as in the SCFT of Deng et al.,43 this is prevented by our

restriction to symmetric fields, w0(z, uz). To locate the spinodal where the extended phase
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folded phase

extended phase

(b)

(c)

(a)

Figure 4: (a) Concentration profiles, φ(z), of the extended and folded phases, calculated
for `c = 4`p, Λ0 = 10, and Λ2 = 50. The dot for the folded phase marks a change in the
nematic director, n(z), from perpendicular to parallel. The density plots show the s-segment
distributions, φ(z, s), in the (b) extended and (c) folded phases.

Figure 5: Energy density, U(z), for an extended brush of worm-like chains with `c = 4`p
and interaction strengths of Λ0 = 10 and Λ2 = 0, 25, and 50 (solid curves). The U(z) for a
folded brush is plotted but only for Λ2 = 50 (dashed curve).
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Figure 6: Free energy, F , as a function of Λ2 for the extended and folded phases, correspond-
ing to Λ0 = 10 and `c = 4`p. Dots denote the first-order folding transition and the spinodal,
where the extended phase becomes unstable with respect to tilting.

becomes unstable with respect to tilting, we examine the Jacobian,

JI,I′ = δI,I′ −
∫
du′′G(u,u′′)

Dφ(z,u′′)

Dw(z′,u′)
(23)

of the field Eq. (11) with its full u dependence. Here, the index I ≡ {z,u} is shorthand

notation for the arguments of w(z,u) and φ(z,u). The functional derivative inside the

integral represents the change in the polymer distribution at z and u′′ due to a small change

in the field at z′ and u′, which we calculate numerically. In practise, however, we expand

our functions in terms of spherical harmonics, Y`,m(θ, ϕ), and so the indices of the Jacobian

actually represent I ≡ {z, `,m}. Since we are interested in knowing when the azimuthal

symmetry is broken, we evaluate the Jacobian for the symmetric field solution, w0(z, uz).

The solution becomes unstable when the smallest eigenvalue of JI,I′ approaches zero. As

expected, the spinodal point where this happens, denoted by a dot in Fig. 6, preempts the

folding transition.

In order to confirm that the instability corresponds to tilting, we calculate the polymer

distribution, φ(z,u), for the field,

w(z,u) = w0(z, uz) + cδw(z,u) (24)
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where δw(z,u) is an eigenvector corresponding to the zero eigenvalue. Note that the eigen-

value is degenerate, due to the fact that the chains can tilt in any direction. We se-

lect the eigenvector corresponding to a tilt in the ϕ = 0 direction, normalized such that

`−1c
∫
dz du δw2(z,u) = 1. The fact that the eigenvalue is zero implies that the field in Eq.

(24) remains self-consistent for small c [i.e., satisfies Eq. (11)]. Figure 7 plots the angle of the

nematic director with respect to the z axis, θn(z), obtained from diagonalizing the Q-tensor

for different levels of asymmetry. As discussed previously in regards to Fig. 2, when the field

is symmetric (i.e, c = 0), the orientation switches discontinuously from θn(z) = 90◦ to 0◦ at

z = z∗. However, once the symmetry is broken (i.e., c > 0), the angle changes continuously.

Furthermore, adding a larger amount of the eigenvector, δw(z,u), to the symmetric solution,

w0(z, uz), increases the degree of tilt.

Figure 7: Tilt of the nematic director, n(z), as a function of distance from the grafting
surface, calculated for fields, w0(z, uz) + cδw(z,u), with different levels of broken symmetry.

The diagonalization of Qi,j(z) also provides the uniaxial, S(z), and biaxial, P(z), order

parameters plotted in Fig. 8. Naturally, the polymer concentration, φ(z), increases as the

chains tilt, which in turn enhances the level of LC order as evident by the increase in S(z).

Furthermore, the tilt of the grafting surface with respect to the nematic director, n(z),

creates a small degree of biaxiality, as illustrated in Fig. 8(b). The increase of both S(z)

and P(z) reduces the interaction energy density, U(z), shown in Fig. 8(c). It is worth

pointing out that U(z) tends to be less negative at large z, which explains why the tilt angle,

θn(z), diminishes towards the outer edge of the brush in Fig. 7. In any case, the reduction
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Figure 8: (a) Uniaxial order parameter, S(z), (b) biaxial order parameter, P(z), and (c)
energy density, U(z), corresponding to self-consistent fields, Eq. (24), with different levels
of broken symmetry, calculated for `c = 4`p, Λ0 = 10, and Λ2 = 27.8.
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in the total interaction energy, Uint, causes the free energy to decrease monotonically as c

increases. In the absence of any mechanism countering the decrease in free energy, the tilt

angle will simply jump discontinuously towards 90◦ as soon as the spinodal is crossed. As we

will discuss later, this unphysical behavior is a limitation of the semi-dilute approximation.

Figure 9: Diagram showing the spinodal where the extended brush becomes unstable with
respect to tilting, calculated for polymers of different flexibility. The dotted line, Λ2 = Λ0,
denotes the minimum LC interaction required before tilting can possibly occur.

Despite the fact that the current model is insufficient to determine the equilibrium prop-

erties of the tilted phase, it does provide the boundary between it and the extended phase.

Figure 9 plots the boundary in the Λ0-Λ2 plane for worm-like chains of different flexibility.

The position of the spinodal roughly coincides with
∫
dzU(z) = 0, where U(z) is given by

Eq. (20). Thus, the shift in the boundary with increasing chain stiffness (i.e., increasing

`p/`c) is readily explained by the increase in S(z) plotted in Fig. 3. Given that the energy

density satisfies the inequality U(z) ≥ 1
2
(Λ0 − Λ2)φ

2(z), it follows that tilting cannot occur

until Λ2 ≥ Λ0, denoted by the dotted line in Fig. 9.

Although the tilting instability preempts the occurrence of folded brushes, Fig. 10(a)

reveals behavior reminiscent of the microphase-segregated brush (MSB) of Birshtein and

coworkers,33–36 just prior to the spinodal of our most flexible chains. In particular, it shows

a pronounced concentration for the inner half of the brush relative to that for the outer half.

The distributions of individual segments, φ(z, s), plotted in Fig. 10(b) illustrate that the

first half of a chain (i.e., s . 0.5) is strongly aligned with the z axis, whereas the second
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(b)

(a)

0.00 0.25 0.50

Figure 10: (a) Concentration profile, φ(z), and (b) s-segment distribution, φ(z, s), for an
extended brush of relatively flexible polymers, `c = 16`p, just prior to the spinodal, Λ0 = 20
and Λ2 = 71

half (i.e., s & 0.5) is much less so. It is also evident that the enhanced concentration of the

inner brush is due to a small population of folded chains. Evidently, the entropy gained by

having two distinct populations is enough to compensate for a few folds, provided the chains

are not too stiff.

Discussion

The tractability of our study has benefitted greatly from the standard semi-dilute approxima-

tion, which reduces the number of system parameters to three: Λ0, Λ2, and `c/`p. However,

this approximation does prevent us from solving for the equilibrium properties of the tilted

phase. Once the energy density, U(z), become sufficiently negative to favor tilting as a means

of increasing φ(z), there is nothing to stop the progression. One needs the higher-order terms

in Eq. (8) for the solvent entropy, Ss, in order to limit the degree of tilting.

This can be illustrated by including the cubic term of Ss in U(z), and considering a
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fully-ordered nematic brush (i.e., S = 1 and P = 0) of uniform tilt, θn. The cubic term adds

∆U(z)

npkBT
=

Λ′0
3
φ3(z) (25)

to Eq. (20), where Λ′0 = Nσ2/2b2vsρ
3
0. The assumption of perfect nematic order implies a

step profile of concentration φ(z) = 1/ cos(θn) and height `c cos(θn). Thus, the free energy

of the brush takes the simple form

F

npkBT
= − δΛ

2 cos(θn)
+

Λ′0
3 cos2(θn)

(26)

where δΛ ≡ Λ2 − Λ0. It immediately follows that the extended phase (i.e., θn = 0) remains

stable up to the spinodal,

δΛc =
4Λ′0
3

(27)

beyond which the equilibrium angle,

θn = cos−1(δΛc/δΛ) (28)

increases continuously. Hence, the spinodal coincides with a continuous tilting transition.

It is evident from Eq. (27) that the inclusion of ∆U(z) pushes the tilting instability

in Fig. 9 towards slightly larger Λ2. For less ordered brushes (i.e., S < 1), the weaker

LC interactions can be accounted for by making the substitution Λ2 → Λ2S2. This shifts

the spinodal to larger Λ2 by a factor of S−2, which is indeed qualitatively consistent with

our diagram in Fig. 9. However, we should also account for the fact that tilting increases

the nematic order, as demonstrated in Fig. 8(a). This is best done using a conventional

Landau expansion, where F is expanded in even powers of θn. (Note that odd powers are

excluded due to the symmetry between positive and negative tilts.) In this spirit, the angular

dependence of the uniaxial order parameter assumes the form S ≈ S0 + Cθ2n, where C > 0.

Expanding Eq. (26) with δΛ ≡ Λ2S2 − Λ0 is straightforward, albeit a bit involved. For
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small C, the spinodal, which is determined by equating the θ2n coefficient to zero, simply

shifts to smaller Λ2. However, as C becomes large, the θ4n coefficient changes from positive

to negative, which causes the tilting transition to switch from second to first order. Thus,

for small Λ0 or large `c/`p, we expect the spinodal to be preempted by a discontinuous tilting

transition.

In light of our findings, there are a considerable number of previous studies that ought to

be reconsidered, specifically those where strong LC interactions cause the brush to collapse

by way of chain folding. In such cases, it is essential to account for the penalty of hairpin

folds and to allow the nematic director, n(z), the freedom to tilt. Some of the phase behavior

predicted in the previous studies is likely to be replaced by tilted phases. This includes, for

example, the much discussed microphase-segregated brushes (MSB).33–37 Although Fig. 10

suggests that the MSB might preempt the tilting instability for sufficiently flexible polymers,

this is also the condition for which the tilted phase is expected to preempt the spinodal.

Therefore, it will be necessary to actually compare the free energies of the tilted and MSB

phases to know for sure which is stable.

Extending the SCFT for worm-like chains to tilted phases will be challenging. First of

all, one needs to improve upon the semi-dilute approximation. Including just the cubic term

for Ss adds one more system parameter, specifically the Λ′0 from Eq. (25). However, this

approximation would still breakdown at high concentrations, and so it is probably best to use

the full expression for Ss. This increases the number of system parameters to five: the scaled

isotropic interaction parameter, ν0N , the scaled anisotropic interaction parameter, ν2N , the

polymer flexibility, `c/`p, the dimensionless grafting density, σ/bρ0, and the relative size of

the solvent molecules, vsρ0/N . In addition to the large parameter space, the numerics of

solving the self-consistent field, w(z,u), for tilted phases will be computationally demanding.

When confronted with this problem, Tang et al.50 resorted to solving the statistical mechanics

of the single worm-like chain in w(z,u) using Monte Carlo simulations. Nevertheless, this

challenge can likely be overcome with new improved numerical methods.58 We leave this for
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a future study.

The previous study of worm-like chains by Deng et al.43 constrained the orientation of n,

but in any case their Onsager interaction, f(u,u′) = ε|u× u′|,46,51 was insufficient to cause

the brush to collapse. An expansion of the Onsager interaction in terms of Pn(u · u′) gives

ν2 = 5
8
ν0,

59 which according to Fig. 9 puts the system well in the extended brush regime.

This can be physically understood by noting that the Onsager interaction accounts for the

entropy loss due to the excluded volume of cylindrically-shaped polymers, and therefore

always favors low concentrations. One shortcoming of the Onsager interaction is that it

overlooks the enthalpic interactions (e.g., van der Waals forces). More seriously, it neglects

interactions involving the solvent as well as the solvent entropy, Ss, both of which contribute

to the excluded-volume parameter, ν0. This is inconsequential in bulk phases, because φ(z)

is uniform and thus the value of ν0 has no impact. However, this is not the case for polymer

brushes, which is why we used the more general Maier-Saupe interaction energy.

Although the SCFT for worm-like chains tends to be rather computational, it is also

very versatile. Once the solvent is treated explicitly, it is straightforward to switch to an

LC solvent, and to allow for distinct solvent-solvent, solvent-polymer, and polymer-polymer

interactions. The grafting function, g(z,u), can also include any desired dependence on the

orientation of the grafted segment, so as to address the tilting transition proposed by Halperin

and Williams.17,18 Furthermore, the model can be made more realistic. For instance, main-

chain liquid crystals, which involve rigid mesogenic segments joined together by relatively

flexible linkers,17 can be modeled by allowing the bending modulus, κ, to alternate as a

function of s between a finite value for the linkers and infinity for the mesogens. SCFT can

readily handle branched architectures, and therefore it can also be extended to side-chain

liquid crystals, where mesogen units are grafted to a semi-flexible backbone.19–22,27 Provided

the brush remains homogeneous in the lateral directions, the computational cost of such

extensions will be relatively modest.
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Summary

We have investigated semi-dilute main-chain LC polymer brushes in good solvent, using

SCFT for worm-like chains with Maier-Saupe interactions. The calculation assumes sufficient

overlap among the polymers such that the brush has no lateral structure (i.e., no dependence

on x and y), but a low enough polymer concentration such that the solvent can be treated

implicitly. Under these assumptions, the grafting density and solvent size can be scaled out

of the problem, reducing the number of system parameters to three: the scaled isotropic

interaction strength Λ0, the scaled anisotropic interaction strength Λ2, and the number of

persistence lengths per chain `c/`p. Our study focused on good solvent conditions that favor

an extended brush (i.e., Λ0 > 0) and LC interactions becoming strong enough to collapse the

brush (i.e., Λ2 & Λ0) for polymers ranging from semi-flexible (i.e., `c/`p = 16) to relatively

rigid (i.e., `c/`p = 1).

The study began by considering azimuthally-symmetric solutions, w0(z, uz), of the field

Eq. (11). Under this constraint, the extended brush collapses by a series of first-order folding

transitions, as the LC interactions become strong enough to compensate for an increasing

number of folds per chains. However, these transitions overlook the fact that the brush can

increase its concentration without the cost of hairpin folds, by instead tilting. Indeed, when

the constraint is relaxed, the extended brush becomes unstable with respect to tilting prior

to the folding transitions. Within the semi-dilute approximation, the brush concentration

increases indefinitely, and thus it becomes necessary treat the solvent entropy, Eq. (8),

more accurately. Doing so will produce a second-order tilting transition coinciding with the

spinodal, which will likely switch to a first-order transition preempting the spinodal as the

polymers become increasingly flexible.

In light of our new findings, it would be prudent to reconsider previous studies that omit-

ted the penalty for hairpin folds and/or assumed a nematic director normal to the grafting

surface. Although the SCFT for worm-like chains will become rather computational for

tilted phases, it should still be manageable provided the lateral symmetry is retained. The
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reward of using this approach is its remarkable versatility. For example, generalizations to

multicomponent brushes, orientational-dependent grafting conditions, and LC solvents are

trivial. The model can even be extended, with relatively little additional cost, to more elab-

orate architectures such as main-chain LC polymers consisting of rigid mesogens connected

by semi-flexible segments or side-chain LC polymers consisting of a semiflexible backbone

with mesogen side-groups. As such, the SCFT for worm-like chains should be able to handle

most systems that experimentalists are likely to study.
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