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Supplementary information to the paper titled “Analytical Study of Coupling Effects for Vibrations 

of Cable-Harnessed Beam Structures” by Karthik Yerrapragada and Armaghan Salehian is provided in this 

document. Where applicable in the research paper, the readers are pointed to this document to obtain more 

information. 

 

S1.   Supplementary to Mathematical Modeling 

In the section 2, mathematical modeling of the paper, Equations. (13a)- (13f) and (17a) - (17d) are 

coupled through stiffness terms. All the coordinates of motion are coupled because of the pre-tension in the 

cable, Young’s modulus and radius of the cable. In mathematical terms, the first derivative of displacement 

represents the slope, second derivative represents moment, third derivative represents shear and the fourth 

derivative represents the intensity of load. Mathematically, Equations. (17b) and (17c) corresponding to the 

in-plane and out-of-plane bending coordinates. The axial and torsion coordinates are coupled to these modes 

because of equivalent shear terms (third derivative of displacement and second derivative of angle). The 

torsion mode Equation. (17d) is coupled to the in-plane and out-of-bending modes because of equivalent 

moment terms. The axial mode Equation. (17a) is coupled to the bending coordinates because of equivalent 

shear terms. Equations (17b) and (17c) show that the coupling term related to the in-plane and out of plane 

bending is fourth derivative which physically corresponds to load. In Timoshenko model, Equations (13a)-

(13f), the coupling coefficients in addition to depending on the cable parameters like position coordinates 

along y and z axis, cable radius and cable pre tension, also depends on the geometry of the host structure. 

In a Timoshenko beam, apart from the cable coupling, the rotation of cross section are geometrically 

coupled to the bending coordinates. In Equation (13a), the axial mode is coupled to the rotations of cross-

sections through the cable parameters. In Equation (13b), the in-plane bending mode is coupled to the 

torsion mode through the cable parameters and to the rotation of cross-section about z axis because of 

geometry of the beam (𝑐11). Similarly, in Equation (13c) the out of plane bending mode is coupled to the 
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torsion mode through cable parameters and to the rotation of cross-section through the geometric term. In 

Equation (13d), the torsion mode is coupled to the bending terms through the cable parameters. Similarly, 

in Equations (13e) and (13f), the rotations of cross-section about z and y-axis are coupled to other 

coordinates through the cable parameters and beam geometry terms. In Timoshenko beam, we can also 

observe that unlike Euler-Bernoulli, we do not see presence of in-plane bending terms 𝑣 in the out of plane 

bending mode equation 𝑤 (Equation (13c)) and vice-versa (Equation (13b)). The two bending terms here 

are coupled through the rotations of cross-section related terms (Equations (13e) and (13f)).   

 

S2.    Supplementary to Results and Discussions section. 

a)  

Mode 3 (964.32 Hz) Mode 4 (1023.7 Hz) 

   
 

Mode 5 (1650.8 Hz) Mode 22 (10890 Hz) 

  

Fig s1: Vibrations mode shapes for fixed-fixed boundary conditions using coupled EB theory for  

Out of plane bending dominant (Mode 4), In plane bending dominant (Mode 3), Torsion dominant (Mode 

5) and Axial dominant (Mode 22). 
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For the mode shape analysis, the mass normalized mode shapes obtained from the coupled Euler 

Bernoulli model are presented. The results in Figure. (s1) for fixed-fixed boundary condition indicate that 

for the 4th mode, the out-of-plane bending is the dominant mode. The 3rd mode is predominantly an in-plane 

bending mode, and the 5th mode is the torsional mode. The first predominantly axial mode is also shown in 

this figure, which corresponds to the 22nd mode.  

 

Mode 3 (186.53 Hz) Mode 4 (522.35 Hz) 

    

Mode 5 (825.38 Hz) Mode 16 (5447.9 Hz) 

   
 

 

Fig s2: Vibrations mode shapes for cantilever boundary conditions using coupled EB theory for 

Out of plane bending dominant (Modes 3 and 4), Torsion dominant (Mode 5) and Axial dominant (Mode 

16). 
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Mode 3 (436.40 Hz) Mode 4 (755.34 Hz) 

   

Mode 5 (1336.58 Hz) Mode 6 (1650.44 Hz) 

   

  
Mode 23 (10797.1 Hz) 

 

Fig s3: Vibrations mode shapes for simply supported boundary conditions using coupled EB theory for 

Out of plane bending dominant (Modes 4 and 5), In plane bending dominant (Mode 3), Torsion dominant 

(Mode 6) and Axial dominant (Mode 23). 

 

The mode shape results in Figure. (s2) pertain to the cantilever boundary conditions. For this boundary 

condition, it is shown that the out-of-plane bending is dominant in the third and the fourth modes; the 

torsional mode is dominant at the fifth frequency, and the sixteenth mode shown corresponds to the first 

axial mode. For the simply supported boundary condition, Figure. (s3), the out-of-plane bending is 

dominant in the first, second, fourth and the fifth modes. In-plane bending is dominant in the third mode. 

Torsion is dominant in the sixth mode, and the mode 23 shown relates to the axial dominant mode. In the 

modes 5, 22 of Figure. (s1), modes 5, 16 of Figure (s2) and modes 5, 23 of Figure. (s3) respectively, due to 
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the effect of coupling, coordinates of motion related to the in-plane bending, out-of-plane bending and the 

torsion exhibit different behavior when compared to the decoupled theory. Mathematically speaking, the 

mode shape expression for each coordinate of motion includes the effect of all wave numbers (𝛼1 − 𝛼12). 

For example, in mode 5 of Figure (s1), consider the out of plane bending curve, 𝑊(𝑥), mode 5 is a torsion 

dominant mode. So the mode shape parameters 𝛼 related to torsion also contribute significantly to the out 

of plane bending response. As a result, we see distinct behavior in the mode shape of out of plane bending 

for mode 5 of Figure (s1) when compared to the decoupled model. The same explanation related to the 

dominance of the mode shape parameter 𝛼 can be extended to other modes for all the boundary conditions 

wherever distinct behavior is seen. 

b)  

 

𝜔1 = 87.05 𝐻𝑧 𝜔2 = 439.59 𝐻𝑧 

 

(a)                                                                        (b)  

Fig s4: Mode shapes corresponding to n=1 for the system with coupled bending at 0.0043 𝑚 cable 

offset position  

 

After substituting the general solution in the coupled PDEs (Equations (29a) and (29b)) in the paper and 

converting the simultaneous algebraic equations into the matrix form, we obtain the following equation 

(s1). 

[
 
 
 −

𝑏2𝑛
4𝜋4

𝑙4
+ 𝑘2𝜔

2 −
𝑏5𝑛

4𝜋4

𝑙4

−
𝑏5𝑛

4𝜋4

𝑙4
−

𝑏3𝑛
4𝜋4

𝑙4
+ 𝑘3𝜔

2
]
 
 
 

{
𝑉
𝑊

} = {
0
0
} 

 

  

(s1) 

For the system to have a non-trivial solution, the determinant of the matrix in Equation. (s2) should vanish.  

𝑏2𝑏3𝑛
8𝜋8

𝑙8
−

𝑏5
2𝑛8𝜋8

𝑙8
+ (−

𝑏3𝑘2𝑛
4𝜋4

𝑙4
−

𝑏2𝑘3𝑛
4𝜋4

𝑙4
)𝜔2 + 𝑘2𝑘3𝜔

4 = 0 
(s2) 

Solving Equation. (s2) for 𝜔, we obtain the expressions for the natural frequencies as follows as shown in 

Eq. (32) of the paper. 
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𝜔1 =
√

𝑏3𝑘2𝑛
4

𝑙4
+

𝑏2𝑘3𝑛
4

𝑙4
−

√(𝑏3𝑘2)
2𝑛8 − 2𝑏2𝑏3𝑘2𝑘3𝑛

8 + 4(𝑏5)
2𝑘2𝑘3𝑛

8 + (𝑏2𝑘3)
2𝑛8

𝑙4

2𝑘2𝑘3
𝜋2 

  

 

 

 

(s3) 

𝜔2 =
√

𝑏3𝑘2𝑛
4

𝑙4
+

𝑏2𝑘3𝑛
4

𝑙4
+

√(𝑏3𝑘2)
2𝑛8 − 2𝑏2𝑏3𝑘2𝑘3𝑛

8 + 4(𝑏5)
2𝑘2𝑘3𝑛

8 + (𝑏2𝑘3)
2𝑛8

𝑙4

2𝑘2𝑘3
𝜋2 

 

The next step is to plot the mode shapes. The spatial solutions can be obtained by satisfying the linear 

dependency criterion for the following equation. 

 (−
𝑏2𝑛4𝜋4

𝑙4
+ 𝑘2𝜔

2 ) 𝑉 + (−
𝑏5𝑛4𝜋4

𝑙4
)𝑊 = 0 (s4) 

Therefore, the coupled mode shapes for 𝑛 = 1 of the system are as follows. 

𝑉(𝑥) = 𝑏𝑚 (
𝑏5𝜋

4

𝑙4
)sin(

𝜋𝑥

𝑙
) 𝑊(𝑥) = 𝑏𝑚 (−

𝑏2𝜋
4

𝑙4
+ 𝑘2𝜔

2 ) sin(
𝜋𝑥

𝑙
) 

(s5) 

The mode shape constant 𝑏𝑚 can be found out by using the following mass normalization criterion. 

∫ (𝑘2𝑉𝑛(𝑥)𝑉𝑛(𝑥) + 𝑘3𝑊𝑛(𝑥)𝑊𝑛(𝑥))𝑑𝑥 = 1
𝑙

0

 
(s6) 

The coupled mode shapes corresponding to the lower and higher natural frequency roots of Equation. (32) 

are plotted in Figures. s4 (a) and s4 (b) respectively.  In Figure s4 (a), the mode shapes corresponding to 

the out of plane bending and in-plane bending are out of phase with each other. The magnitudes for the 

mass normalized mode shapes shown in this figure indicates that the lower root corresponds to the out-of-

plane bending dominant mode, and the other corresponds to the in-plane bending. 
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c) 

 

Fig s5: Effect of cable pre-tension on the natural frequencies for first in-plane bending, out-of-plane 

bending and torsional mode using the system parameters of Table (1) of the paper. 

 

                    Figure (s5) shows the natural frequency variations for the first in-plane and out-of-plane 

bending and torsional modes with respect to the cable pre-tension for the system parameters shown in Table 

(1) of the paper. From this figure, it can be understood that the pre-tension has negligible effect on the 

system’s natural frequencies. This is because of the relatively large bending stiffness that makes it less 

susceptible to the effects of tension. 
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d) 

 

 

Fig. s6:  I-beam cross section and dimensions 

 

Table. s1: Material and geometrical properties for the tension case study, I-cross section beam 

 

System parameters  Value 

Beam length  0.25 m 

Beam density 1,300 Kg/m3 

Beam modulus of elasticity 1 GPa 

Beam shear modulus 0.35 GPa 

Beam Poisson’s ratio  0.4 

Cable radius  0.0002 m 

Cable density 1,200 Kg/m3 

Cable modulus of elasticity 1.1 GPa 

 

To further, study the impact of tension on the natural frequencies, an I-beam cross-section shown 

in Figure. (s6) (Front View) with the numerical parameters presented in Table (s1) is also considered. The 

position coordinates of the center of the cable in this case are (𝑦𝑐 , 𝑧𝑐) = (0.0048,0.0052) 𝑚. This geometry 

was chosen due to its smaller torsional stiffness. As shown in Figure. (s7a), the fundamental mode for the 

fixed-fixed boundary condition corresponds to the torsional dominant mode. In Figures. (s7b) and (s7c), 

for cantilever and simply supported boundary conditions, the fundamental mode corresponds to the in-plane 

bending dominant mode. 

As expected for the I cross-section, the in-plane bending has much smaller critical loading 

compared to the out-of plane bending due to the smaller moment of inertia in that direction. Therefore, the 

in-plane bending is shown to be more prone to buckling in Figures. (s7b) and (s7c). Also, the critical loading 

for the simply supported is shown to be larger than the cantilever beam as expected. For fixed-fixed 

boundary condition, because the torsion mode is the fundamental one, the I section beam experiences 

torsional buckling. For cantilver and simply supported boundary conditions, the system experiences 

buckling in the in-plane direction. 
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(a)                                                                                 (b) 

 

(c) 

Fig s7: Effect of cable pre-tension on the natural frequencies of first in-plane bending, out-of-plane 

bending and torsional mode using the system parameters of Table (6) for an I-cross section beam. 
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e) 

 

(a) 

 

(b) 

Fig s8: Frequency response functions for a) Fixed-fixed b) Simply Supported boundary conditions. 

 

The sensing and actuation locations are 𝑥𝑠 = 0.2276 𝑚 & 𝑥𝑎 = 0.0498 𝑚, 𝑥𝑠 = 0.199 𝑚 & 𝑥𝑎 =

0.136 𝑚 respectively for fixed-fixed and simply supported boundary condition respectively. 


