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Abstract

Multi-server architectures are ubiquitous in today’s information infrastructure whether for

supporting cloud services, web servers, or for distributed storage. The performance of

multi-server systems is highly dependent on the load distribution. This is affected by the

use of load balancing strategies. Since both latency and blocking are important features,

it is most reasonable to route an incoming job to a server that is lightly loaded. Hence a

good load balancing policy should be dependent on the states of servers. Since obtaining

information about the remaining workload of servers for every arrival is very hard, it is

preferable to design load balancing policies that depend on occupancy or the number of

progressing jobs of servers. Furthermore, if the system has a large number of servers, it is

not practical to use the occupancy information of all the servers to dispatch or route an

arrival due to high communication cost. In large-scale systems that have tens of thousands

of servers, the policies which use the occupancy information of only a finite number of

randomly selected servers to dispatch an arrival result in lower implementation cost than

the policies which use the occupancy information of all the servers. Such policies are

referred to as occupancy based randomized load balancing policies.

Motivated by cloud computing systems and web-server farms, we study two types of

models. In the first model, each server is an Erlang loss server, and this model is an

abstraction of Infrastructure-as-a-Service (IaaS) clouds. The second model we consider is

one with processor sharing servers that is an abstraction of web-server farms which serve

requests in a round-robin manner with small time granularity. The performance criterion

for web-servers is the response time or the latency for the request to be processed. In

most prior works, the analysis of these models was restricted to the case of exponential

job length distributions and in this dissertation we study the case of general job length

distributions.

To analyze the impact of a load balancing policy, we need to develop models for the

system’s dynamics. In this dissertation, we show that one can construct useful Marko-

vian models. For occupancy based randomized routing policies, due to complex inter-

dependencies between servers, an exact analysis is mostly intractable. However, we show

that the multi-server systems that have an occupancy based randomized load balancing

policy are examples of weakly interacting particle systems. In these systems, servers are

interacting particles whose states lie in an uncountable state space. We develop a mean-

field analysis to understand a server’s behavior as the number of servers becomes large. We
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show that under certain assumptions, as the number of servers increases, the sequence of

empirical measure-valued Markov processes which model the systems’ dynamics converges

to a deterministic measure-valued process referred to as the mean-field limit. We observe

that the mean-field equations correspond to the dynamics of the distribution of a non-linear

Markov process. A consequence of having the mean-field limit is that under minor and

natural assumptions on the initial states of servers, any finite set of servers can be shown

to be independent of each other as the number of servers goes to infinity. Furthermore,

the mean-field limit approximates each server’s distribution in the transient regime when

the number of servers is large.

A salient feature of loss and processor sharing systems in the setting where their time

evolution can be modeled by reversible Markov processes is that their stationary occupancy

distribution is insensitive to the type of job length distribution; it depends only on the

average job length but not on the type of the distribution. This property does not hold when

the number of servers is finite in our context due to lack of reversibility. We show however

that the fixed-point of the mean-field is insensitive to the job length distributions for all

occupancy based randomized load balancing policies when the fixed-point is unique for

job lengths that have exponential distributions. We also provide some deeper insights into

the relationship between the mean-field and the distributions of servers and the empirical

measure in the stationary regime.

Finally, we address the accuracy of mean-field approximations in the case of loss models.

To do so we establish a functional central limit theorem under the assumption that the

job lengths have exponential distributions. We show that a suitably scaled fluctuation of

the stochastic empirical process around the mean-field converges to an Ornstein-Uhlenbeck

process. Our analysis is also valid for the Halfin-Whitt regime in which servers are critically

loaded. We then exploit the functional central limit theorem to quantify the error between

the actual blocking probability of the system with a large number of servers and the

blocking probability obtained from the fixed-point of the mean-field. In the Halfin-Whitt

regime, the error is of the order inverse square root of the number of servers. On the

other hand, for a light load regime, the error is smaller than the inverse square root of the

number of servers.
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Chapter 1

Introduction

Computer systems such as web-server farms, high-traffic websites, and cloud computing

systems often contain hundreds of thousands of servers for meeting the incoming de-

mands [1–3]. All these systems are examples of large-scale multi-server systems. The

main challenge is to distribute the incoming jobs (requests) that generate tasks to servers

so that the system achieves good system performance. Multi-server systems use job dis-

patchers to dispatch an incoming job to one of the servers. A basic multi-server model

with three servers and one job dispatcher is shown in Figure 1.1.

Load balancing in multi-server systems is the process of balancing the load on servers

so that individual servers are not overburdened that can lead to performance degradation.

The job dispatchers dispatch an incoming job according to a load balancing policy that

can improve the system performance. The main focus of this dissertation is the design and

analysis of load balancing policies for multi-server systems with one central job dispatcher.

When a job arrives at the system, the best method is to dispatch the arrival to the least

loaded or best server in the entire system as the job would get processed more efficiently.

Since the job sizes are unknown in practice, the estimation and exchange of the remaining

workload information is impractical and hence the policies that require only the knowledge

of the occupancy or number of jobs of servers are preferred. If an incoming job is dispatched

to a server with the least occupancy among all the servers, then the load balancing policy

is referred to as the Join-the-Shortest-Queue (JSQ) policy [4–6]. The implementation of

this policy requires information about the occupancy of all the servers for every arrival.

Since many cloud computing systems and web-server farms often contain hundreds of

thousands of servers, the implementation of the JSQ policy for large-scale systems results
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Arrivals
Job Dispatcher

Server A

Server B

Server C

Figure 1.1: A multi-server system with three servers

in huge communication overhead and implementation cost. Hence, the JSQ policy is not

preferred for large systems. An alternative type of policies that are easy to implement are

randomized load balancing policies according to which the dispatcher first samples a few

servers uniformly at random upon an arrival and one of them is chosen as the destination

server for the arrival based on their occupancies. The criteria for selecting the destination

server depends on the load balancing policy.

A popular randomized load balancing policy is the Shortest-Queue-Among d (SQ(d))

or Power-of-d policy according to which the dispatcher selects the server with the least

occupancy among d randomly selected servers as the destination for an incoming job. This

policy was introduced in [7] for multi-server systems with First-Come-First-Served (FCFS)

servers when the job lengths have exponential distributions. The exact analysis of the

system is not tractable due to complex interactions between servers as a result of the

fact that the dispatcher uses the occupancy information of multiple servers to dispatch

an arrival. Although servers are coupled, it was shown that the model is an example

of a weakly interacting particle system. They used mean-field techniques to characterize

the impact of the SQ(d) policy on the system performance. We give an introduction to

mean-field techniques in Section 1.3.

The analysis of a randomized load balancing policy strongly depends on the type of

servers that are present in the system. For example, servers could be FCFS, Erlang loss, or

processor sharing (PS) servers. Each type of servers are used to study systems that serve

jobs coming from different types of applications. For example, the FCFS model can be used

to study supermarkets, hospitals, and path selection in networks. The loss models have

2



Arrivals

Job Dispatcher

Occupied

Empty

Server A

Server B

Server C

Figure 1.2: A multi-server Erlang loss model with C = 3.

applications in call centers and cloud computing systems. The PS servers have applications

in web-server farms that provide service to delay-sensitive applications. Furthermore, the

metric to measure the system performance also depends on the type of the system’s servers.

For FCFS, loss, and PS systems, the metrics of interest are the average delay, the average

blocking probability, and the average response time (total execution time of a job) to

measure the system performance, respectively. In this dissertation, we study occupancy

based randomized load balancing for multi-server systems with Erlang loss servers and PS

servers.

We now give a brief introduction to the architecture of the multi-server loss model that

we study in this dissertation. Each loss server has capacity to serve only a finite number of

jobs simultaneously, the maximum number of simultaneous jobs that a server can process

is referred to as the server’s capacity denoted by C. Furthermore, each job is processed at

a constant unit rate irrespective of the occupancy of the server. A job arriving at a server

will be accepted for service if its occupancy is less than the capacity C. Otherwise, the job

is blocked from service and it is considered to be discarded from the system immediately.

In Figure 1.2, we show a multi-server loss model with three servers each with capacity

C = 3. In this figure, Server A, Server B, and Server C have occupancies one, two, and

three, respectively. If an arrival is routed to Server C, then it will be blocked. On the

other hand, if the destination for an arrival is either Server A or Server B, then it will be

accepted. This example clearly shows the importance of a careful design of load balancing

policies for efficient usage of resources so that the resulting average blocking probability is

minimized.

3
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Job Dispatcher

Server A

Server B

Server C

Figure 1.3: A multi-server PS model

Next, we give a brief introduction to the PS model. We assume that each server has

capacity to serve jobs at a unit rate. A server with n jobs simultaneously processes all

the n jobs at the rate of 1
n
. A job arriving at a server will be accepted for service and its

processing begins immediately. In Figure 1.3, we show a PS model with three servers each

having capacity to serve jobs at unit rate. The servers A, B, and C have occupancies one,

two, and three, respectively. Hence, the processing speeds of jobs at severs A, B, and C

are 1, 1
2
, and 1

3
, respectively. If an incoming job is routed to Server A, then it would get

the highest possible instantaneous service rate in the system.

Our focus of interest in this dissertation is to study occupancy based randomized load

balancing for the loss and PS models. In most prior works [8–12], the analysis was restricted

to the case when job lengths have exponential distributions by using mean-field techniques.

However, in many applications, the service time distributions are not exponential. For

example, the service times follow log-normal distributions in call centers [13], and Gamma

distributions in automatic teller machines (ATMs) [14] etc. Hence, it is of great interest

to study the case of general job length distributions (JLDs). Our objective is to develop a

mean-field analysis for this case.

1.1 Models

We now introduce the problems which we investigate in this dissertation. We study mean-

field models in which servers are interacting particles, and the interactions between servers

4



take place when a job arrives at the system. The task of dispatching an incoming job to a

server introduces dependence amongst the servers.

We study three problems. The first problem is on establishing the mean-field limit for

large-scale multi-server loss models with general JLDs when the SQ(d) policy is used to

dispatch the incoming jobs. This model is inspired by cloud computing systems which can

be modeled as blocking models. We give an analysis of this problem in Chapter 2.

The second problem is on the mean-field analysis of randomized routing schemes for the

PS model under the assumption of general JLDs. In this problem, we study not only the

SQ(d) policy but also all occupancy based randomized routing schemes under a common

framework. This model has applications in cloud computing systems and web-server farms

that provide service to delay-sensitive applications. We provide an analysis of this problem

in Chapter 3.

In Chapter 4, we investigate the third problem on the accuracy of mean-field approxi-

mations for multi-server loss models with the SQ(d) policy under the assumption of expo-

nential JLDs. For this, we establish a suitable functional central limit theorem.

We next give a detailed description of all the three problems that we study in this

dissertation. We also discuss the contributions of previous works and provide a summary

of our contributions.

1.1.1 The SQ(d) Policy for Erlang Loss Systems

Due to tremendous growth in the trend to externalize storage and computing resources,

cloud computing systems maintain a large number of servers to provide an efficient service

to jobs. In particular, in Infrastructure-as-a-service (IaaS) clouds such as Microsoft’s Azure

[2] and Amazon EC2 [1], the incoming job requests are mapped into virtual machines (VMs)

that request resources such as processor power, I/O bandwidth, disk etc. from a server that

is picked from a large set of distributed servers. When a job arrives, the incoming request

is routed to one of the servers where it is accepted for service if the requested amount of

resources are available. Otherwise, it is blocked from service. Then the job is discarded

from the system immediately. The resources allocated to a job will be released once the

service of a job ends. Every incoming job requests a certain amount of resources for usage

from a server in the system and clearly, since servers have finite amount of resources, we

assume that servers can process only a limited number of jobs simultaneously. Therefore,
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the available resources in the system should be used as efficiently as possible. The system’s

performance is measured in terms of the average blocking probability of a job. To serve jobs

efficiently, the service provider of a cloud computing system should design a mechanism to

quickly identify a server that has enough resources for an incoming arrival. Since the job

requests arrive randomly and their job lengths are random too, the main challenge is to

quickly choose the server that is the least loaded or has the smallest number of jobs in the

system as the destination server for an arrival.

Cloud computing systems are distributed systems in practice. Hence, they have job

dispatchers to distribute incoming jobs to servers. The job dispatchers follow a predefined

load balancing policy to distribute the incoming job requests to servers. We focus on the

homogeneous model in which all the servers have the same amount of resources and also the

incoming jobs request same amount of resources and have identical JLDs. Each accepted

job is assumed to be processed at a constant unit rate. Furthermore, we assume that the

system has a single central job dispatcher to distribute the incoming jobs to servers. A

server in IaaS clouds with capacity C indicating the maximum number of jobs that can be

served simultaneously at the server can be viewed as an Erlang loss server with capacity

C. In particular, an IaaS cloud with N servers each with capacity C can be modeled by a

multi-server Erlang loss system with N servers each with capacity C.

Since cloud computing systems often contain hundreds of thousands of servers, the

JSQ policy for such large-scale systems suffers from high implementation cost. On the

other hand, if an arrival is routed to a server that is picked uniformly at random, then

the resulting blocking probability is much larger than the resulting blocking probability

under the JSQ policy although the implementation cost is less. In the literature [8,10,15],

the SQ(d) (d ≥ 2) policy was studied for loss models. This policy was shown to improve

the system performance significantly over the random routing (d = 1) policy even for the

small value of d = 2. Although the SQ(d) policy performs worse than the JSQ policy, but

it reduces the implementation cost drastically.

For systems with a finite number N of servers, characterizing the impact of the SQ(d)

policy on each server thereby on the average blocking probability is a challenging task due

to inter-dependencies between servers. However, under the assumption that the job arrival

process is a Poisson process with rate Nλ, due to weak interactions between servers, it

was shown in previous works [8,10,15] by using mean-field techniques that a deterministic

process referred to as the mean-field limit and its fixed-point approximate the distribution

of a server’s state of the system with large N in the transient and stationary regimes,
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respectively. As a consequence, it can be shown that a function of the fixed-point of the

mean-field approximates the average blocking probability.

Objective and Key Challenges

Our objective is to develop the mean-field analysis to study the impact of the SQ(d) routing

policy for a multi-server Erlang loss system with N servers each with capacity C under the

assumption of general JLDs. Furthermore, we consider the case when jobs arrive according

to a Poisson process with rate Nλ. If a routed job gets accepted at its destination, then its

processing begins immediately at a unit rate until its service is completed. This model was

investigated in previous works under the assumption of exponential JLDs [8, 10]. Since in

practice jobs have general JLDs, it is important to characterize the impact of the SQ(d)

policy on each server and more importantly, on the average blocking probability. Motivated

by this, we aim to obtain the mean-field limit and understand whether this can approximate

the distribution of a server under the assumption of general JLDs. Moreover, we would like

to investigate the impact of the routing policy on the average blocking probability when

job lengths have general distributions.

To analyze complex stochastic systems, the starting point is often the mathematical

modeling of the time evolution of the system as the time evolution of a Markov process.

For the mean-field analysis, the first step is also to obtain a mathematical formulation of

the time evolution of the system starting from an initial state. For exponential JLDs, due

to the memoryless property of exponential distributions, it is sufficient to keep track of

only the occupancy information of a server and tracking the age indicating the amount of

time for which the job is in service or the residual service time is not required to construct

a Markov process that models the system dynamics. In this simple case, each server’s

state is its occupancy. Due to symmetry of the system to servers’ identities (as servers

are homogeneous and the SQ(d) policy never uses the identities of servers), the process

(X(N)(t), t ≥ 0) where X(N)(t) = (X
(N)
i (t), 0 ≤ i ≤ C) and X

(N)
i (t) denotes the fraction of

servers with at least i progressing jobs at time t out of N servers is a Markov process. Let

S
(N)
i (t) be the random variable denoting the state of the ith server at time t, then

X
(N)
i (t) =

1

N

N∑
k=1

I{
S
(N)
k (t)≥i

}.
The mean-field limit which is a deterministic process is the limit of the process (X(N)(t), t ≥
0) as N →∞. The proof of the existence of a mean-field limit mainly uses techniques on
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the convergence of a sequence of Markov processes. In this case, the results in [8,10] imply

that the following interchange holds,

lim
N→∞

lim
t→∞

X(N)(t) = lim
t→∞

lim
N→∞

X(N)(t) (1.1)

where we consider the limit of a random element as its weak convergence limit. From (1.1),

we obtain the equivalence between the stationary distribution of the limiting system given

by the left-hand side and the globally stable fixed-point or equilibrium of the mean-field

given by the right-hand side under the SQ(d) load balancing policy. The key is that the

mean-field evolves according to a set of ordinary differential equations (ODEs) referred

to as the mean-field equations (MFEs). We can study these equations to understand the

behavior of the mean-field in stationary regime. Moreover, (1.1) can be used to show that

any finite set of servers become statistically independent of each other [10] in the limit as

N → ∞. As a result, if π = (πn, 0 ≤ n ≤ πC) is the unique fixed-point of the mean-field,

then πn is the probability that a server has at least n jobs and πdc is the blocking probability

in the stationary regime as N →∞.

For general JLDs, due to the absence of the memoryless property, each progressing job’s

state must also be included in server’s state. We can use either the age or residual service

time of a job to track its status. In this dissertation, we use the ages of progressing jobs as

their states. The state of a server must include the ages of all the jobs that are currently in

progress at the server. At any time t, the state of a server for the case of general JLDs is of

the form (n, x1, · · · , xn) where n denotes the number of progressing jobs and xi denotes the

age of the ith progressing job at the server. Since the age of a job increases linearly with

time and the state of a server lies in Rn
+ when it has n jobs, the classical methods used to

study the exponential case cannot be used. We can overcome these challenges if we model

the system evolution by a measure-valued Markov process, and then the mean-field limit

can be established by using techniques on the convergence of a sequence of measure-valued

Markov processes. We model the time evolution of the system as the time evolution of the

measure-valued Markov process (η
(N)
t , t ≥ 0) where

η
(N)
t =

1

N

N∑
k=1

δ
S
(N)
k (t)

and δa is the Dirac measure with unit mass at a. The result that (η
(N)
t , t ≥ 0) is a Markov

process follows from [16, Proposition 2.3.3]. Our main aim is to establish the limit of

the process (η
(N)
t , t ≥ 0) as N → ∞. If the limit exists, then the limiting process is
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referred to as the mean-field limit. We then plan to show that the obtained mean-field

limit approximates the distribution of a server’s state in the transient regime.

To study the impact of the SQ(d) policy in the stationary regime, we first need to

characterize the fixed-point of the mean-field, we then need to show that the stationary

distribution of a server’s state can be approximated by the fixed-point of the mean-field if

it is unique.

An important feature of Erlang loss systems for the case d = 1 is that the system is

insensitive. That is, the stationary distribution of a server’s occupancy is independent

of the type of the JLD, but it depends only on the average job length. This implies the

robustness of the system to variations in the JLDs. Hence, one can dimension the system

by assuming the exponential JLD for the given average job length. Motivated by this, we

would like to understand whether the stationary distribution of a server’s occupancy is

insensitive or not in our model. In the system with N servers, the stationary distribution

is not insensitive when d ≥ 2 due to violation of the Whittle balance condition [17] by

the resulting routing probabilities which is a necessary condition to have insensitivity [18].

However, it was observed in simulation results of [10] that the stationary distribution of

a server’s occupancy for different classes of JLDs coincide with that of the exponential

case as N → ∞. This implies that if the fixed-point of the mean-field coincides with

the stationary distribution of a server’s state as N → ∞, then the fixed-point of the

mean-field should exhibit insensitivity. The proof of insensitivity of the fixed-point of the

mean-field and the stationary distribution of a server’s occupancy when N → ∞ are still

open problems. We investigate these issues by characterizing the fixed-point of the mean-

field. A major challenge for our model is that the resulting MFEs are partial differential

equations (PDEs). As a result, understanding the behavior of the mean-field as t→∞ is

much more challenging than the exponential case since in that case the MFEs are ODEs.

Related Literature

The SQ(d) scheme was first introduced in [7] for multi-server systems with the First-Come-

First-Served (FCFS) service discipline assuming d = 2 and exponential service times. When

the number of servers N is finite, analyzing the impact of the SQ(d) policy is a difficult

task due to dependence amongst the servers introduced by the SQ(d) policy. However,

they obtained an elegant tractable way of characterizing the stationary distributions in the

limit as N →∞ by using mean-field techniques. Their results were then extended for the
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case of d > 2 in [12] where it was argued that the case d = 2 provides most of the gains

and hence, the term ‘The power-of-2’ came to be used.

Multi-server loss models with randomized load balancing schemes were first studied

in [15] when job lengths are exponentially distributed using a formal mean-field approach.

However, the existence and uniqueness of the fixed-point of the mean-field were not shown.

In [8,10,19], the existence and uniqueness of the fixed-point of the mean-field for the homo-

geneous loss model of [15] was addressed. For the heterogeneous loss model, the existence

and uniqueness of the fixed-point of the mean-field were established in [8] under the assump-

tion of asymptotic independence of servers in the stationary regime while [10] showed the

asymptotic independence of servers and the interchange of limits (1.1). The propagation of

chaos on path space implying that any finite set of random elements {(S(N)
i (t), t ≥ 0)}1≤i≤N

become independent of each other as N → ∞ was established by [20, 21] in the context

of alternate routing in circuit-switched networks. The notion of propagation of chaos is

further explained in Definition 1.1.

The impact of the SQ(d) policy for the loss models similar to the one considered here was

analyzed in [8,10,15,19] under the assumption of exponential JLDs. They also considered

the more general heterogeneous case with an appropriate modification of the SQ(d) policy

to account for server and job heterogeneity. It was shown in [19] that the SQ(d) load

balancing scheme yields almost optimal blocking performance in that the average blocking

is very close to the theoretical lower bound on the minimum average blocking achievable

by any load balancing policy.

It is well known that the stationary distributions of single server loss systems even with

state-dependent Poisson arrival rates are insensitive to the service time distribution, i.e.,

they only depend on the mean of the service times [22]. Hence, it is essential to investigate

whether the insensitivity property carries over to systems with randomized load balancing

such as the SQ(d) policy. When N is finite, randomized load balancing policies result

in the individual servers being coupled. It can be shown as in [18, 23] that when N is

finite, the system is not insensitive since the SQ(d) policy does not satisfy the necessary

condition of state-dependent arrival rates to be balanced. However, the insensitivity of the

fixed-point or equilibrium of the mean-field was observed for the limiting case (i.e., when

N → ∞) via simulations in [8, 10] but no proofs were provided. This requires a proof in

our context because as N → ∞, the resulting MFEs represent the time evolution of the

distribution of a nonlinear Markov process that models a queueing system with a single

server in which the arrival rates of jobs depend both on the instantaneous state and the
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instantaneous distribution of the state of the server whereas in the classical models, the

underlying Markov process is linear since the arrival rates of jobs are independent of the

instantaneous distribution of the server’s state. The main goal of the chapter is to address

this issue.

For the case of general JLDs, Markovian modeling of the system requires us to keep

track of the age or residual service time of each job that is in progress in the system.

Therefore, the underlying space on which the Markov process is defined is not discrete,

and hence the classical Markov chain techniques cannot be used. As a result, establishing

the mean-field limit and characterizing the properties of its stationary behavior for general

JLDs is a challenging task.

In the literature, some prior works discussed later in this section have studied queueing

models in which either jobs or servers are interacting particles under the assumption of

general JLDs by using mean-field techniques. Also, some works have investigated the

randomized load balancing for multi-server systems with general JLDs but the analysis

is not complete. There are still several open problems in the literature that need to be

addressed. We now discuss contributions and drawbacks of some related works for the case

of general JLDs below.

In [24], randomized load balancing schemes for queueing systems with general service

time distributions were investigated when servers use the service disciplines FCFS, PS,

and Last-In-First-Out (LIFO). The steady-state results were characterized by assuming

the asymptotic independence of servers in the system when N → ∞. However, the proof

of asymptotic independence of servers remains an open problem and also, the mean-field

limit and its fixed-point were not studied in any detail.

In [25], mean-field techniques were used to study a closed queueing network with M

jobs and N queues under the FCFS service discipline. In this model, a job once served at

a queue joins another queue chosen with probability 1
N

from N queues. The mean-field

limit was established for the regime when limM,N→∞
M
N
→ α̃. However, the equilibrium

behavior of the system was not studied. Recently, the SQ(d) setting in a system of N

servers with FCFS service discipline where jobs arrive according to a time-inhomogeneous

Poisson process and general i.i.d. service times were studied in [26]. They studied only

the transient behavior of the mean-field. The steady-state analysis of the model was not

investigated.

The mean-field and fluid analysis of queues are closely related, the former usually in
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the space of probability measures and the latter on the space of finite measures. The

fluid limit analysis of the FCFS and the PS queues with general service time distributions

has been studied using a measure-valued processes approach developed by Dawson [16]

in [27–31]. In this chapter, we use the age of a progressing job, indicating the amount of

time elapsed since its arrival to construct a measure-valued Markov process that models

the system dynamics. We use this framework to establish the mean-field limit by studying

the limit of the empirical measure-valued process when the number of servers N →∞, as

in [16, 29]. Our proof techniques closely follow those in [29] in which a fluid limit and a

functional central limit theorem for a sequence of M/GI/∞ systems were established by

using measure-valued processes.

In [32], the FCFS model was studied with exponential distributions under the SQ(d)

policy by using measure-valued processes. In the exponential case, the set of states of

servers is Z+. In [32], the law of large numbers on path space is established by studying

the limit of the sequence of empirical measures with samples in M1(DZ+([0,∞))) where

DZ+([0,∞)) is the space of right continuous with left limits (RCLL) functions in Z+ and

M1(DZ+([0,∞))) is the space of probability measures on DZ+([0,∞)). For our analysis, we

study stochastic processes with sample paths in DM1(U)([0,∞)) where U is the set of states

of severs which is uncountable.

Summary of Contributions

We obtained the following results for the two regimes of interest. Preliminary results were

presented in [33] and the detailed results will appear in [34].

For the Transient Regime: We first establish the mean-field limit by using measure-valued

processes. We then use this result to show the asymptotic independence of any finite set

of servers at a given finite time t as in [26] under the exchangeability assumptions of ini-

tial servers’ states. The MFEs represent dynamics of a classical single server system with

Poisson job arrival process whose intensity depends both on the occupancy of the server

and the distribution at any time t. From the initial form of the MFEs whose solution is a

measure-valued process, we show that under certain assumptions, the mean-field satisfies

a set of PDEs.

For the Stationary Regime: We show the existence of a unique fixed-point of the mean-
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field. The fixed-point of the mean-field satisfies a product form given in (2.21) and the

occupancy distribution obtained from the fixed-point of the mean-field coincides with the

fixed-point in the exponential case having the same average job length. This concludes

insensitivity of the fixed-point of the mean-field. We also provide numerical evidence sug-

gesting that the fixed-point is globally asymptotically stable (GAS) as t → ∞ when job

lengths have mixed-Erlang distributions.

1.1.2 Occupancy Based Randomized Routing for Processor Shar-

ing Systems

Due to the emergence of the cloud computing paradigm and other applications, the server

farms often contain large numbers of servers to process the incoming jobs. Unlike the

model discussed in Section 1.1.1 which is a blocking model, we now consider a model in

which servers provide service to delay-sensitive applications such as online-search (Google),

Social networking (Facebook) etc. The main objective in this model is to minimize the

average response time experienced by a job in the system. Furthermore, each server has

an infinite buffer, and there is no blocking of jobs in the system. A server always accepts

an incoming job.

The front end job dispatchers in web-server farms route an arriving job to one of

the servers that provide minimal response times as the tasks in most cases are delay-

sensitive. Therefore, the main challenge in these systems is to design low complexity load

balancing algorithms that yield efficient usage of available resources, thereby good system

performance. The system performance is measured in terms of the average response time

experienced by a job in the system. In server farms, the resources are shared by processing

requests in a round-robin manner with small time granularity. This model can be well

approximated by a model with servers having the PS service discipline [4, 35, 36] in which

the processing speed of a server is equally shared by all the progressing jobs. In practice,

the service requirements of jobs are highly variable. Under the PS service discipline, as

the processing speed of a server is shared by all the jobs, the short jobs will be processed

quickly and the PS service discipline avoids the chance of getting waited for a long time by

small jobs before their service begins. As a result, the average response time is minimized.

Hence, the PS service discipline is preferred for delay-sensitive applications.

Traditionally, small-scale server farms such as Cisco Local Director, IBM Network Dis-

patcher, Microsoft Sharepoint use the classical Join-the-Shortest-Queue (JSQ) load balanc-
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ing policy [4, 8]. It was shown in [4–6] that the JSQ policy is nearly optimal and further,

it is robust to the JLDs since it is almost insensitive. For large scale systems that contain

hundreds of thousands of servers, the JSQ policy requires information about the number

of progressing jobs at all the servers. However, it was shown in [7,9,10,12,24,37] that the

SQ(d) policy can achieve almost the same gains at a much smaller sampling cost.

Objective and Key Challenges

We consider a multi-server system with N servers which employ the PS service discipline.

Each server has capacity to process jobs at a unit rate and hence, a server with n jobs

processes every job at rate 1
n

because of the PS service discipline assumption. The job

arrival process is a Poisson process with rate Nλ and jobs have general JLDs with finite

average job length. We study occupancy based randomized routing schemes which imply

sampling of a finite number of servers upon an arrival and the dispatcher selects a server

from this set as the destination server. Any occupancy based policy can be viewed as

a mapping of occupancies of sampled servers to routing probabilities. For example, let

us assume d servers are sampled upon an arrival and let ni be the occupancy of the ith

sampled server. Furthermore, let (n1, · · · , nd) be the vector of occupancies of sampled

servers. Then the routing decision according to a load balancing policy can be viewed

as finding a probability vector (p1, · · · , pd) based on (n1, · · · , nd) where pi denotes the

probability with which the arrival should be routed to the ith sampled server. Based on

this logic, we aim to develop a mean-field analysis under a common framework to include

all occupancy based routing policies which require sampling of a finite number of servers

upon an arrival. The study of occupancy based routing policies for the loss model easily

follows from the analysis developed for the PS model. This is because each server in the

loss model can process at most C jobs simultaneously each with constant unit processing

rate and hence, it can be seen that the analysis of the loss model follows easily from the

analysis of the PS model.

In the literature, the complete mean-field analysis for the model of interest exists only

for the SQ(d) policy [7,11] and for some threshold based policies [12] under the assumption

of exponential JLDs but the analysis for general JLDs remains an open problem. The mean-

field analysis of the SQ(d) policy was developed in [7] under the assumption of Poisson

arrival process of jobs with rate Nλ and jobs have exponential JLDs for the case d = 2.

Later in [12], the analysis was extended to the case d > 2. Unlike the Erlang loss model
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considered in Section 1.1.1 that is stable iff the average job length is finite, if 1
µ

is the

average job length, then the PS model requires λ < µ for the stability of the system [38].

In [7, 12], under the assumption of λ < µ, they used mean-field techniques to understand

the impact of the SQ(d) policy on large-scale system behavior. In this approach, they first

characterized the system’s dynamics with time by studying the evolution of the empirical

process (X(N)(t), t ≥ 0) where X(N)(t) = (X
(N)
i (t), i ≥ 0) and X

(N)
i (t) denotes the fraction

of servers with at least i progressing jobs at time t. Then they showed that under certain

initial conditions, the empirical process (X(N)(t), t ≥ 0) converges to a deterministic process

referred to as the mean-field. The mean-field is a unique solution of a set MFEs which

are ODEs. Moreover, they showed that the interchange of limits (1.1) holds. As a result,

the mean-field and its fixed-point can be used to approximate the transient and stationary

distribution of a server when N is large. In fact, for d ≥ 2, they found the fixed-point of

the mean-field π = (πi, i ≥ 0) given by πi =
(
λ
µ

) di−1
d−1

. Then the average delay of a job in

the system when the number of servers N is large is nearly
∑

i≥1

(
λ
µ

) di−1
d−1

. For the random

routing case of d = 1, we have πi = (λ
µ
)i. This clearly shows a significant improvement in

the system performance since πi decreases double exponentially with i for d ≥ 2 whereas

πi decreases exponentially with i for the case d = 1.

Since the JLDs are not exponential in practice, it is crucial to understand the impact

of the SQ(d) policy for the PS model with general JLDs. In the literature, although there

are some previous works [39], the complete analysis remains an open problem. There is

another reason why the PS model is interesting: it is known to be insensitive if the arrival

process to each individual server is a Poisson process, and so showing insensitivity of the

mean-field under very general occupancy based randomized routing can then lead us to

conclude that insensitivity is a generic property of the PS service discipline rather than

the precise input to a queue that is controlled by the routing policy. Also, by using our

analysis, one can obtain the mean-field limit immediately for the policies that fall into

our framework and thereby, the considered policy’s impact can be studied by using the

obtained mean-field limit. It is known that the random routing SQ(d) with d = 1 is

insensitive. We need to understand whether this holds for the SQ(d) policy with d ≥ 2

and also, for other occupancy based routing policies. The system with finite N under

the SQ(d) policy is not insensitive as the arrival rate of jobs do not satisfy the Whittle

balance condition [17], which is a necessary condition [18, 23]. However, when N → ∞,

it was observed through simulations that the insensitivity property holds for the SQ(d)
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policy [11]. For other routing policies, insensitivity was not studied.

We now discuss why it is essential to study occupancy based randomized routing policies

in addition to the SQ(d) policy. Upon an arrival, if the dispatcher samples a fixed number

of d servers to decide the destination server, then the SQ(d) policy is optimal [5, 6]. Now

let us consider the following example. For the case d ≥ 2, if the first server sampled upon

an arrival is found to be idle, then the dispatcher can stop further sampling of servers to

decide the destination. For some systems, limiting the amount of information exchanged

to dispatch an arrival is important. Hence, while designing a routing policy, we need

to consider both its performance and complexity. Furthermore, a routing policy should

provide the system performance that is robust to variations in the system congestion level.

For example, when the dispatcher uses the SQ(d) policy, if the system is heavily loaded,

then it could result in bad system performance when d is fixed at a small value. On the

other hand, if the system is lightly loaded, then the dispatcher might unnecessarily sample

more servers when d is fixed at a large value. Since variations in the system congestion

level are common in practice, the routing policy should be able to adapt to the system

congestion level. Our framework should also include policies that are robust to variations

in the system traffic.

Our objective is to study the mean-field of the empirical distributions for policies that

fall into our framework introduced in Section 3.1.2. This includes policies that are adaptive

to the system congestion level and threshold based policies. We provide results for four

occupancy based policies defined in Section 3.4 that include the SQ(d) policy, and the

remaining three are generalized threshold based policies. Such policies have been studied

in other contexts. For example, in [12], a threshold based policy was studied in which for

an incoming arrival, the dispatcher randomly selects a server as the destination server if its

occupancy is less than or equal to the chosen threshold value. Otherwise, the dispatcher

samples another server, and the same procedure is repeated until the dispatcher samples d

servers. If all the d sampled servers have occupancy higher than the threshold value, then

the shortest queue is chosen as the destination. This policy has lower complexity than the

SQ(d) policy at the cost of a small drop in the performance. We investigate this policy in

this dissertation, and we show that the fixed-point of the mean-field is insensitive, which

is also confirmed by our simulation results. In [12], insensitivity of the threshold based

policy was not studied.

In [24], a d-adaptive algorithm was studied using simulations to overcome the bad

performance of the SQ(d) policy for small values of d for the case of Power-law distributions
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in First-In-First-Out (FIFO) models. According to this policy, if the occupancy of the first

selected server is k, then the dispatcher selects further f(k) severs and then chooses the

server with the least occupancy as the destination. They observed through simulations

that for f(k) = k, the d-adaptive algorithm samples with high probability three servers per

arrival providing the system performance that is similar to the SQ(4) scheme. This policy

also belongs to the class of occupancy based policies that we study in this dissertation.

Our simulation results show that the system exhibits insensitivity under this scheme when

N →∞. In [24], insensitivity of the d-adaptive policy was not discussed.

For queueing systems with general service times, we need to use the occupancy state

as well as the age or residual service times of the progressing jobs in service to model

the system’s evolution by a Markov process. For the FCFS models, this results in a bi-

dimensional Markov process defined on Z+ × R+. On the other hand, for the PS model,

the Markov process is defined on
⋃
n∈Z+

(n,Rn
+) as we need to track both occupancy and

age of each progressing job. The analysis is much more difficult because the rate at which

a job is served at a server depends on the server’s occupancy. Similar to the loss model,

we use measure-valued Markov processes to establish the mean-field limit under certain

assumptions on initial conditions.

Related Literature

In [24], the SQ(d) policy was investigated for the PS, FCFS, and LIFO systems with general

service time distributions under the assumption of asymptotic independence of any finite

set of servers and the existence of a unique limiting stationary distribution as stated in an

ansatz. However, the proofs of the assumptions considered in the ansatz are still unknown.

The asymptotic independence of finite set of servers has been shown for the PS and the

Erlang loss models in [9, 10,20] for the case of exponential distributions.

The assumption of asymptotic independence of servers for the PS model for the case

of general JLDs renders the arrival process to each server as a state-dependent Poisson

process. Then the resulting model satisfies the Whittle’s condition [17], which implies

insensitivity. A proof of the ansatz remains an open problem except for the FCFS models

when JLDs have decreasing hazard rate functions [40] that give rise to monotonicity in the

model. From [40], the proof techniques cannot be extended to the PS model as we do not

have ordering between the server states, unlike the FCFS systems.

A mean-field analysis to characterize the transient and stationary distributions has been
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extended to heterogeneous systems in which servers are classified into different classes based

on their capacity to process jobs but with exponential service distributions. This was done

in a series of works [9, 11,37].

Recently, the SQ(d) policy for FCFS systems with generally distributed service times

was studied in [26] by using a mean-field approach. However, the analysis was restricted to

the transient case, and no results were given on the stationary regime. Another important

parameter of a policy is its complexity. Hence, it is of interest to generalize the mean-

field analysis for occupancy based policies where the number of samples is adaptive to the

system congestion level, which is what we also consider in this chapter.

In [27, 28], measure-valued processes have been used to study PS models with general

JLDs in a different context. The fluid limit was obtained in [27] for the GI/GI/1 system

with a single PS queue by using measure-valued processes. They used residual service

times of jobs to construct measure-valued processes. The analysis was extended to the

case when the customers are impatient in [28].

Summary of Contributions

Preliminary results were presented in [41,42]. Our contributions are the following:

For the Transient Regime: The main contribution of our analysis is to show the ex-

istence of a mean-field limit for occupancy based randomized routing policies under the

assumption of general JLDs. The MFEs are now PDEs, unlike the exponential case that

results in ODEs. We also show asymptotic independence of servers for any given finite

time. We observe that the MFEs represent dynamics of a classical single server system

with Poisson job arrival process having intensity that depends on both the instantaneous

occupancy of the server and the instantaneous distribution of the Markov process that

models the system’s dynamics. Any load balancing policy influences only the intensity of

the job arrival process.

For the Stationary Regime: We show that every fixed-point of the PDEs that describe

the mean-field limit corresponds to a probability measure on Z+, is also a fixed point of

the MFEs under exponential distributions having the same average job length. The fixed

point is unique when the corresponding property can be shown in the exponential case.

Therefore, insensitivity of the fixed-point holds if the exponential case has a unique fixed-
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point. Finally, we present four occupancy based policies that have been discussed in the

literature. We obtain the MFEs for these policies from our generalized mean-field analysis

of occupancy based routing schemes. For the threshold based policies, Policy 2 and Policy 4

defined in Section 3.4, when job lengths are exponentially distributed, we show that the

mean-field has a globally stable fixed-point. In these cases, it follows that the fixed point

is the stationary distribution of the individual servers when N → ∞. We also provide

simulation results providing evidence for insensitivity of the stationary distribution of a

server as N →∞ for all the considered policies.

For the SQ(d) policy, under the assumption of mixed-Erlang JLDs, we numerically

solve the MFEs. We observe that the mean-field is not quasi-monotonic while it is in

the exponential case. Furthermore, if π(N) is the stationary distribution of the empirical

process and Z is a limit point of a subsequence {π(Nk)}k≥1, then in the limiting model as

k →∞ we show that any finite set of servers are independent of each other if and only if

Z = δπ, where π is the unique fixed-point of the mean-field. If Z is not a Dirac measure,

then servers are coupled through the position of the mean-field where the initial point of

the mean-field has distribution Z. This result is also true for other mean-field models.

1.1.3 A Functional Central Limit Theorem for Erlang Loss Sys-

tems Under the SQ(d) Policy

In the previous two problems stated in Sections 1.1.1 and 1.1.2, the objective was to study

the mean-field and its fixed-point as an approximation of the transient and stationary

distribution of a server’s state when N is large. We need to characterize the resulting

approximation error as a function of N . We focus on loss models with exponential JLDs

because these results require a complete mean-field analysis that is lacking when general

JLDs are assumed. The results that are obtained for the loss model case are suggestive of

the more general type of results that can be obtained for other models.

Objective and Key Challenges

We consider large-scale multi-server loss systems with N servers where each server has

capacity to process at most C jobs simultaneously at unit rate. We assume that the

service times are exponentially distributed with unit mean. The central job dispatcher

dispatches the incoming jobs according to the SQ(d) policy. For this model under the
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assumption that the jobs arrive according to a Poisson process with rate Nλ, from the

previous works [8,10], the mean-field analysis shows that limN→∞X(N)(t) = x(t,u), where

(x(t,u), t ≥ 0) is the mean-field limit with initial point u. Now the key question is, how

do we characterize the stochastic fluctuation process (X(N)(t)− x(t,u), t ≥ 0)? Moreover,

if P
(N)
block is the actual blocking probability in the system with N servers, can we quantify

the gap between P
(N)
block − πdC as a function of N?

Similarly, we study the Halfin-Whitt regime by assuming that the arrival process is a

Poisson process with rate Nλ(N) where λ(N) is a function of N with limN→∞
√
N(1− λ(N)

C
) =

b for some b 6= 0. In this case, how do we obtain approximations to P
(N)
block when N is large?

In this case, the system is heavily loaded when N is large. One way is first to obtain the

asymptotic results when N → ∞, and then estimate the error terms. The interest in the

Halfin-Whitt regime is because, for d = 1, there is a phase change in the behavior of the

blocking probabilities going from exponential (in C) decrease to a 1√
C

scaling as C becomes

large (see [43], [44]). As explained later in this section, we also have the similar result for

the complete resource pooling case, i.e., a loss system with a single server having arrival

rate of Nλ(N) with capacity NC, then the blocking probabilities satisfy 1√
N

scaling as N

becomes large. Although loss systems are stable for any finite average load, this phase

change shows that the critically loaded regime is important for appropriate dimensioning

of systems because of the change in the blocking sensitivity. Our objective is to investigate

the existence of such a phenomenon for loss systems under the SQ(d) load balancing for

d ≥ 2. The main challenge is that we do not know P
(N)
block while it is computed using the

Erlang-B formula for the case d = 1.

We address the two cases λ(N) = σ and the Halfin-Whitt regime as special cases of our

framework in which we assume that

λ(N) = σ − α̃/
√
N (1.2)

for σ ∈ R+ and α̃ ∈ R. Here, if α̃ = 0, then we get the first case in which the arrival

process rate is Nσ. On the other hand, if σ = C and α̃ 6= 0, then we get the Halfin-Whitt

regime.

Related Literature

So far, in the literature [8,10,19], only the mean-field analysis was investigated for λ(N) = σ.

An important problem which was not studied in the literature is the quantification of the
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error between the actual blocking probability for a system with large N and the asymptotic

blocking probability, as a function of N .

We now discuss related existing works and provide some insights into the system per-

formance in the Halfin-Whitt regime. The average blocking probability depends on how

efficiently we use the system resources. For example, let us consider the random routing

case where an arrival is routed to a randomly selected server in the Halfin-Whitt regime.

Then the average blocking probability experienced by an arrival is the same as in the single

server loss system with capacity C where the jobs arrive at a Poisson process with intensity

λ(N). In this case, since the arrival process to each server is a Poisson process, due to re-

versibility, the average blocking probability is equal to Er(λ(N), C), where Er(a, n) denotes

the Erlang-B formula for Poisson arrivals with rate a and server’s capacity n. Then since

C is fixed and Er(λ(N), C) is a continuous function of N , the average blocking probability

converges to Er(C,C) when N → ∞. On the other hand, if we consider the complete

resource pooling case that corresponds to the single server system with Poisson job arrival

process having rate Nλ(N) and server capacity NC, then the average blocking probability

is given by Er(Nλ(N), NC). Then from [45],

lim
N→∞

√
N(Er(Nλ(N), NC)) =

φ(normal)(α̃)√
CΦ(normal)(α̃)

, (1.3)

where φ(normal)(·) and Φ(normal)(·) denote the density and distribution functions of the

standard normal distribution, respectively.

It was shown in [46] that under the JSQ scheme, we obtain the same result (1.3) as in

the case of complete resource pooling, i.e.,

lim
N→∞

√
NP

(N)
block =

φ(normal)(α̃)√
CΦ(normal)(α̃)

. (1.4)

This is expected since an arrival will not be blocked from service when there is an

empty spot in the system similar to the case of complete resource pooling. As a result, the

average blocking probability under the JSQ policy is equal to Er(Nλ(N), NC). This result

was not explicitly stated in [46] for the system with N servers. Under the influence of the

SQ(d) policy, an arrival could be blocked from service even if there is an empty spot in the

system. Therefore, we expect a decrease in the system utilization when we use the SQ(d)

policy, but it has less computational cost than the JSQ policy. However, it was shown

in [46] that if d is a function of N denoted by d(N), and if limN→∞
d(N)

√
N log(N)

=∞, then we

still obtain (1.4) for the SQ(d(N)) scheme.
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Thus, we observe that even if we scale up the system capacity NC with N when the

arrival rate of jobs scales as Nλ(N), if we do not assign available resources to job requests

cleverly, the system performance may not be optimal. This is because for a fixed d, an

arrival could be blocked from service even if there is an empty spot in the system under the

SQ(d) scheme. We would like to understand the impact of the SQ(d) policy on blocking

probabilities in the Halfin-Whitt regime.

The key challenge in our model with λ(N) = σ− α̃/
√
N is that we cannot compute P

(N)
block

using the Erlang formula. Moreover, we cannot obtain an explicit expression for P
(N)
block as

the system is non-reversible and non-tractable.

In our analysis, we first establish a functional central limit theorem (FCLT) that char-

acterizes the fluctuations of the empirical process around the mean-field of our model and

then use this result to obtain efficient approximations for P
(N)
block when N is large. The

limiting diffusion scaled fluctuation process is an Ornstein-Uhlenbeck (OU) process that is

characterized by the mean-field limit. We then exploit the obtained FCLT to quantify the

error between P
(N)
block and the asymptotic blocking probability πdC , where π = (πi, 0 ≤ i ≤ C)

is the fixed-point of the corresponding mean-field and πC is the probability that a server is

fully occupied when N →∞. Our results conclude that limN→∞
√
N(P

(N)
block−πdC) goes to a

limit that can be explicitly characterized in terms of α̃,π, σ, and C. More importantly, we

show that limN→∞
√
N(P

(N)
block − πdC) is non-zero if and only if α̃ is non-zero. Graham [47]

established a similar FCLT for the FCFS queueing model under the SQ(d) policy but did

not exploit the FCLT result further to characterize the system performance. An FCLT

approach was also used by Hunt [48] to analyze large symmetric star loss networks where

asymptotic independence between nodes was established and also, the error between the

actual blocking probabilities and approximate blocking probabilities was quantified.

A by-product of our result is to show that the empirical occupancy process converges

to the fixed point of the MFE at a rate of O( 1√
N

), a result that was also shown by Ying [49]

using Stein’s method and more recently by Gast [50] where a refined O( 1
N

) approximation

was also obtained by using Stein’s method under the assumption that the mean-field is

exponentially stable. More importantly, in [49,50], the focus was on quantifying the mean-

square error between X(N)(t) and x(t,u) for both the transient and stationary regimes but

they did not study the fluctuation process (X(N)(t)− x(t,u), t ≥ 0).

In [51], it was shown that even the the gap between E
[
f(X(N)(t))

]
and f(x(t,u))

is O( 1
N

) for both the transient and stationary regimes where f is a twice differentiable

performance function. As a result, it was concluded that for the FCFS model, the gap
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between the average waiting time of the system with N servers and the asymptotic average

waiting time computed as function of the fixed-point of the mean-field is O( 1
N

). The result

of [51] can be applied to loss models to conclude that P
(N)
block − πdC = O( 1

N
). However, the

analysis of [51] assumes α̃ = 0.

Recently, Eschenfeldt and Gamarnik [52] studied the CLT scaling of the queue occu-

pancy process for a system of M/M/1 queues with the JSQ policy in the Halfin-Whitt

where they showed that asymptotically the distribution concentrates on queues having up

to two jobs. They did not study the stationary regime. In [53], it was shown that for the

system with M/M/1 queues, under the SQ(d(N)) policy where d(N)
√
N log(N)

→∞, the limiting

diffusion process is the same as in the case of the JSQ policy in the Halfin-Whitt regime.

Their analysis was also restricted to the transient regime.

In [54], for the system with M/M/1 queues and Poisson arrival process of jobs with

rate Nλ(N), the impact of the SQ(d) policy was studied under the assumption that there

exists a sequence {γN}N≥1 such that limN→∞ γN = ∞ and limN→∞ γN(1 − λ(N)) = α̃

where α̃ > 0. They showed that in the stationary regime, majority of queues have queue

lengths at least logd(1− λ(N))−1−O(1) and the fraction of such queues approaches one as

N → ∞ with probability one. Therefore an incoming job experiences a delay of at least

logd(1− λ(N))−1 −O(1) with probability one as N →∞. For the case γN = O(
√
N), they

showed that the behavior of queues that have queue lengths less than logd(1−λ(N))−1−O(1)

can be studied by the time evolution of a deterministic process even under the diffusion

scale. The complete diffusion limit analysis that characterizes queues of all sizes remains

an open problem.

It is worth pointing out that the result we obtain is interesting: for the Halfin-Whitt

regime, the effect of the randomized SQ(d) routing results in individual loss servers that

are critically loaded but whose blocking cannot be obtained from the classical Halfin-Whitt

blocking limit, instead, the blocking is obtained from the mean-field or a functional law of

large numbers limit of the empirical occupancy distribution.

Summary of Contributions

We characterize the asymptotics of the gap between the stochastic empirical process

(XN(t), t ≥ 0) and the corresponding mean-field limit (x(t,u), t ≥ 0) when N → ∞
for both the transient and stationary regimes. To achieve this, we study the limit of the

fluctuation process (Z(N)(t), t ≥ 0) where Z(N)(t) =
√
N(X(N)(t) − x(t,u)) for both the
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transient and stationary regimes when N →∞. We show that the limiting diffusion pro-

cess is an OU process which depends on the mean-field limit in the transient regime and

on the fixed-point of the mean-field in the stationary regime. We then use this result to

show that limN→∞
√
N(P

(N)
block − πdC) is a finite real number (Theorem 4.7). Since πdC is a

finite constant real number, we conclude that limN→∞ P
(N)
block =∞. Preliminary results for

the lightly loaded case were presented in [55].

1.2 Common Notation

In this section, we introduce the notation and terminology that is used in the rest of the

dissertation. Let Z, R be the set of integers and real numbers, respectively. Further, let

Z+, R+ be the set of non-negative integers and non-negative real numbers, respectively.

For any given metric space E , let Kb(E),Cb(E),Cs(E) be the space of bounded mea-

surable real valued functions, the space of bounded continuous real valued functions, and

the space of continuous real valued functions with compact support, that are defined on

E , respectively. Furthermore, for a metric space E of interest in this dissertation, let C1(E)

be the space of continuously differentiable real valued functions defined on E and let the

subspace of functions in C1(E) which have compact support be denoted by C1
s(E). The

space of bounded functions in C1(E) whose first derivatives are also bounded is denoted

by C1
b(E). For any function f ∈ Kb(E), h ∈ C1(E), we define

‖f‖ = sup
x∈E
|f(x)| , ‖h‖1 = ‖h‖+ ‖h′‖,

where h′ denotes the first derivative of h. The space Cb(E) is equipped with the uniform

topology, i.e., we say that a sequence of functions {fn}n≥1 in Cb(E) converges to a function

f ∈ Cb(E) if ‖fn − f‖ → 0 as n → ∞. The space C1(E) is equipped with the topology

induced by the norm ‖·‖1. For two real valued functions f(·) and h(·), we write f(x) =

o(g(x)) as x→ l if limx→l
f(x)
h(x)

= 0. Similarly, we write f(x) = O(g(x)) as x→∞ if there

exists a > 0 such that |f(x)| ≤ a |g(x)| for sufficiently large values of x. For a given set A,

|A| denotes the number of elements in A and A denotes the complement of A.

For a given metric space E , let the Borel σ-algebra be denoted by B(E). Let the space

of finite non-negative measures on E be denoted by MF (E). We use the notation ν(B) and

ν({y}) to denote the measure of a Borel set B ∈ B(E) and an element y ∈ E with respect

to the measure ν ∈ MF (E), respectively. The space of probability measures is denoted by
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M1(E). For a measure ν ∈M1(E), we write the product measure obtained from the k-fold

product of ν as ν⊗k. Also, let M(N)
1 (E) ⊂ M1(E) be the subspace of probability measures

defined as

M(N)
1 (E) = {ν ∈M1(E) : N ν(B) ∈ Z+, ∀B ∈ B(E)}.

For any φ ∈ Kb(E), ν ∈MF (E), we define

〈ν, φ〉 =

∫
E
φ(y)ν(dy).

The space of measures MF (E) is equipped with the weak topology induced by the weak

convergence of measures. For a signed finite measure ν, the mapping φ 7→ 〈ν, φ〉 is a

continuous linear operator on the space of functions φ ∈ Cb(E) which induces a norm for

ν as follows,

‖ν‖ = sup
φ∈Cb(E)

|〈ν, φ〉|
‖φ‖

. (1.5)

For any Borel set B ∈ B(E), let us define the indicator function I{B} of B as

I{B}(u) =

1 if u ∈ B,

0 otherwise.

Let 1 be the function defined such that for all u ∈ E , we have

1(u) = 1.

We use bold-faced Greek letters to write random measures in Chapters 2 and 3, and we

use bold-faced capital letters to write other random variables. We also use small bold-faced

letters to write vectors.

Consider a Polish space H and T ∈ R+. Let DH([0, T ]) and DH([0,∞)) be the space

of the càdlàg functions (right continuous functions with left limits) that are defined on

[0, T ] and [0,∞) with values in H, respectively. The càdlàg functions are also referred to

as RCLL functions. Similarly, let CH([0, T ]) and CH([0,∞)) be the space of continuous

functions that take values in H defined on [0, T ] and [0,∞)), respectively. The spaces

DH([0, T ]) and DH([0,∞)) are equipped with the Skorohod J1-topology and hence, they

are Polish spaces [56, Thorem 5.6, p.121]. Let the covariation of two local martingales

(M1
t , t ≥ 0) and (M2

t , t ≥ 0) in DR([0, T ]) be denoted by (< M1,M2 >t, t ≥ 0) and the

quadratic variation of (M1
t , t ≥ 0) be denoted by (< M1 >t, t ≥ 0).
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For our analysis, in Chapters 2 and 3, we define a set U that contains all the possible

servers’ states as its elements. In these two chapters, we study H-valued stochastic pro-

cesses where H = MF (U). In Chapter 4, we define a set U that contains all the possible

states of X(N)(t). In this chapter, we study H-valued stochastic processes where H = U.

The considered stochastic processes are random elements defined on (Ω,F,P) with sample

paths in DH([0,∞)), and are equipped with the Borel σ−algebra generated by the open sets

under the Skorohod J1-topology [57]. We say that a sequence of random elements {Yn}n≥1

defined on (Ω,F,P) converges in distribution to Y defined on (Ω,F,P), if for every bounded,

continuous, and real valued functional f , we have limn→∞ E(f(Yn)) = E(f(Y)). We denote

the convergence of a random element {Yn}n≥1 in distribution to Y by Yn ⇒ Y. For a

random element Y, let us write its law as L(Y).

1.3 An Introduction to Mean-field Techniques

In this section, we first provide a brief introduction to the mean-field techniques. We then

summarize the mean-field analysis of the loss and PS models with the SQ(d) load balancing

under the assumption of exponential JLDs.

1.3.1 An Overview of the Mean-field Techniques

Many models that arise in Computer, Information, and Societal systems are examples of

complex stochastic systems can be modelled as interacting particle systems. A mathe-

matical study of these systems to obtain some meaningful insights typically requires us to

first model the time evolution of the system as the time evolution of a suitable Markov

process. We can then understand the system’s behavior by studying the Markov process.

However, due to complex interactions between particles, the exact analysis of the Markov

process is not tractable when the number of nodes or particles is finite. But as the number

of particles becomes large, for some models, the influence of a particle on the rest of the

system is negligible. In such a situation and under certain initial conditions, we can obtain

a simpler limiting model referred to as the mean-field model by taking N →∞ which can

be used to approximate the behavior of the system with a large number of particles.

Consider a system with N nodes. For the sake of simplicity, we assume that the state

of each particle lies in a finite set U = {1, 2, · · · , n}. Let S
(N)
i (t) be the state of the ith
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particle at time t. Furthermore, assume that the process (Ŷ(N)(t), t ≥ 0) is a Markov

process where Ŷ(N)(t) = (S
(N)
1 (t), · · · ,S(N)

N (t)). Then the state of Ŷ(N)(t) lies in UN where

UN is the N -fold product of U. Let R̂(x,y) be the rate of transition of Ŷ(N)(t) from the

state x ∈ UN to y ∈ UN . Then the time evolution of (Ŷ(N)(t), t ≥ 0) is governed through

a set of transition rates (R̂(x,y),x,y ∈ UN).

Recall that M1(U) is the space of probability measures on U. For x = (x1, · · · , xN) ∈
UN , let

ν(N,x) =
1

N

N∑
i=1

δxi . (1.6)

Let M(N)
1 (U) ⊂M1(U) be defined such that

M(N)
1 (U) , {ν(N,x) : x ∈ UN}. (1.7)

At time t, let η
(N)
t be the empirical measure defined as

η
(N)
t =

1

N

N∑
i=1

δ
S
(N)
i (t)

. (1.8)

Then the empirical process (η
(N)
t , t ≥ 0) is a measure-valued Markov process with values

in M(N)
1 (U) [16, Proposition 2.3.3].

We assume that with probability one, only one particle’s state jumps at any time t. For

p ∈ M1(U), let R̃(a, b, p) be the rate of transition of a particle from state a ∈ U to b ∈ U
given that the empirical measure of the system is p. Then the evolution of the process is

governed through a set of rates (R̃(p), p ∈ M1(U)) where R̃(p) = (R̃(a, b, p), a, b ∈ U) and

R̃(a, b, p) is given by

R̃(a, b, p) = lim
h→0

P
(
S

(N)
i (t+ h) = b|S(N)

i (t)) = a, η
(N)
t = p

)
h

. (1.9)

Because of the above assumption, a particle’s behaviour depends on its own state and

the state of η
(N)
t . That is, for every measurable function f : U → R, 1 ≤ i ≤ N , and

0 ≤ s ≤ t, we have

E
[
f(S

(N)
i (t))|Ŷ(N)(s)

]
= E

[
f(S

(N)
i (t))|S(N)

i (s), η(N)
s

]
. (1.10)

This means all the particles influence the state of η
(N)
t but the evolution of each particle’s

state is influenced by its own state and the state of η
(N)
t at any time t. Here, the interactions
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between particles take place through the empirical measure η
(N)
t . The system is a weakly

interacting particle system because the contribution of each particle is of order 1
N

towards

the empirical measure that captures the interactions between particles. As N → ∞, the

influence of any finite number of particles on the rest of the system is negligible.

For many systems, it is sufficient to study the empirical measure-valued process (η
(N)
t , t ≥

0). Let A(N)(·) be the generator of the Markov process (η
(N)
t , t ≥ 0). Then for f : M1(U) 7→

R and p ∈M1(U),

A(N)f(p) =
∑
x,y∈U

Npx

(
f

(
p+

1

N
δy −

1

N
δx

)
− f(p)

)
R̃(x, y, p). (1.11)

Then although (η
(N)
t , t ≥ 0) is a stochastic process for each N , this process converges to a

deterministic process referred to as the mean-field limit when N →∞ under certain initial

conditions. Let (X(N)(t), t ≥ 0) be the empirical process corresponding to the measure-

valued process (η
(N)
t , t ≥ 0). From applying the Kurtz theorem [58, Theorem 2.11], we

have

Theorem 1.1. Let R̃(x, y, ·) be Lipschitz continuous for all x, y ∈ U. For a constant u and

T > 0, if X(N)(0)→ u in probability as N →∞, then (X(N)(t), 0 ≤ t ≤ T )→ (x(t,u), 0 ≤
t ≤ T ) in probability as N →∞ uniformly in t where (x(t,u), t ≥ 0) is the unique solution

of
dx(t,u)

dt
= h(x(t,u)) x(0,u) = u, (1.12)

where h(·) = (hi(·), i ≥ 0) is a function that depends on the system’s dynamics.

The process (x(t,u), t ≥ 0) corresponds to the distribution of a non-linear Markov

process with distribution x(t,u) and infinitesimal generator h(x(t,u)) at time t. Existence

of the mean-field limit for an interacting particle system implies that if there is a law of

large numbers effect in the system at time t = 0, it guarantees the functional law of large

numbers (FLLN) result due to weak interactions between particles in the transient regime.

The initial law of large numbers effect can be achieved if we assume all the particles’ states

are i.i.d. random variables.

A consequence of having the mean-field limit for an interacting particle system is the

result of propagation of chaos. We now recall some results on the propagation of chaos

from [47,59].
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Definition 1.1. For Q ∈ M1(U), a sequence of random variables (W̃
(N)
i )1≤i≤N on UN is

said to be Q-chaotic if for any k ≥ 1,

lim
N→∞

L(W̃
(N)
1 , · · · ,W̃(N)

k ) = Q⊗k, (1.13)

weakly in M1(Uk). Similarly, if a sequence of processes (Z̃
(N)
i (t), t ≥ 0)1≤i≤N is chaotic

whenever (Z̃
(N)
i (0))1≤i≤N is chaotic, then we say that there is a propagation of chaos.

The Q-chaoticity for random variables implies that asymptotically any finite number of

random variables are independent of each other and furthermore, each random variable’s

law is Q. The propagation of chaos for processes implies that any finite collection of

processes are asymptotically independent of each other whenever the initial states satisfy

the chaoticity.

We define the notoin of exchangeability of random variables.

Definition 1.2. Exchangeability of Random Variables: Let {Yk, 1 ≤ k ≤ N} denote a

collection of N random variables. Then the collection is called exchangeable if the joint

law of the collection is invariant under any permutation of indices, 1 ≤ k ≤ N , of random

variables, i.e., if σ is a permutation on indices {1, 2, · · · , N}, then

L(Y1, · · · ,YN) = L(Yσ(1), · · · ,Yσ(N)). (1.14)

From [59, Proposition 2.2, p.177], we have

Proposition 1.1. For Q ∈ M1(U), let a collection of random variables (W̃
(N)
i )1≤i≤N on

UN be Q-chaotic, then for µ(N) = 1
N

∑N
i=1 δW̃(N)

i
, we have limN→∞ L(µ(N)) = δQ weakly in

M1(M1(U)). If (W̃
(N)
i )1≤i≤N is exchangeable for N ≥ 1 and limN→∞ L(µ(N)) = δQ weakly,

then (W̃
(N)
i )1≤i≤N is Q-chaotic.

Assuming that (S
(N)
i (0))1≤i≤N is exchangeable, we have the exchangeability of (S

(N)
i (t))1≤i≤N

for any time t ≥ 0. In this case, from Theorem 1.1 and Proposition 1.1, any finite set of par-

ticles are asymptotically independent of each other and furthermore, each particle’s distri-

bution is x(t,u). One can establish chaoticity not only for each t but also on the entire path

space. For example, in [47, Theorem 3.4], chatoicity on path space was established for the

FCFS model with exponential JLDs under the SQ(d) policy. Let S
(N)
i = (S

(N)
i (t), t ≥ 0).

A random variable µ(N) was defined as follows

µ(N) =
1

N

N∑
i=1

δ
S
(N)
i
. (1.15)
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Here, µ(N) has samples in M1(DZ+([0,∞))). Then Theorem 3.4 of [47] concludes that if

(S
(N)
i (0))1≤i≤N is η0-chaotic, then (S

(N)
i )1≤i≤N is η-chaotic where η = (ηt, t ≥ 0) is the

mean-field with initial point η0.

So far, we have studied both the mean-field limit and the system with N particles in the

transient regime. Often, we are interested in understanding the equilibrium or stationary

behavior of complex stochastic systems. For many systems of interest, it is a challenging

task to find the stationary distributions or their approximations. The key question is,

can we use the mean-field limit to obtain the stationary distribution of a particle in the

system with a large number of particles? Here, the main issue is that we have established

the mean-field limit under a strong assumption on the initial measures, but we do not

know whether such assumption holds in the stationary regime or not as it depends on the

system’s behavior. Suppose the mean-field has a unique fixed-point, then can we use the

fixed-point of the mean-field to approximate the stationary distribution of a particle in the

system with large N? In the literature, there are some sufficient conditions under which

the fixed-point of the mean-field can be used to approximate the stationary distribution of

a particle. The relationship between the mean-field and the stationary system was studied

in [49–51,60–65] for different contexts.

In [62], by working with empirical processes, the mean-field limit was established for

a generic context. Let x(·,u) be the mean-field limit with initial point u. In this case,

the mean-field limit is a solution to a set of MFEs. If the system with parameter N

is stationary, let π(N) be the stationary distribution of the empirical process, then the

support of every limit point of π(N) is a compact set included in the Birkhoff center of

the mean-field where the Birkhoff center is the closure of all the recurrent points of the

mean-field [62,65]. The Birkhoff center contains all the limit cycles and fixed-points of the

mean-field. As a result, it was argued that if the mean-field has a unique fixed-point π and

furthermore if it is GAS, then π(N) ⇒ δπ. As a result, as N → ∞, the distribution of a

particle in the stationary regime is π. In [61], it was shown that every limit of π(N) is an

invariant distribution of the mean-field. That is, let Z ∈M1(V) be a limiting point of π(N)

where V is the space in which the mean-field lies, if the initial point of the mean-field has

distribution Z, then for every f ∈ Cb(M1(V))→ R,∫
M1(V)

f(x(t,u)) dZ(u) =

∫
M1(V)

f(u) dZ(u). (1.16)

In [63], it was shown that if the system with N particles is reversible system, then

the support of every limit point concentrates on the fixed-points of the mean-field. As
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a result, if the fixed-point of the mean-field has a unique fixed-point π, then π(N) ⇒ δπ.

In several contexts, the existence of multiple fixed-points and limit cycles was observed

for the mean-field in the literature. In [60, 61], they give examples of models for which

the mean-field limit has a unique fixed-point, but the mean-field limit starting from other

than the fixed-point follows a cyclic path. It was also observed that the support of π(N)

lies closer to the limit cycle as N becomes large. In [65], a mean-field model was studied

for which the Birkhoff center of the mean-field is a limit cycle, and it was shown that the

support of π(N) lies inside the limit cycle when N becomes large. In [66], a mean-field limit

was found for which there exist two fixed-points of the mean-field, and a sample path of

the empirical process oscillates between two regions with each region having a fixed-point

supporting the meta-stability of the system. All these examples imply that although the

mean-field limit can be used to approximate the distribution of a particle in the transient

regime, it requires further investigation whether the obtained mean-field is useful or not

to obtain approximations for the stationary distributions.

1.3.2 Mean-field Analysis of the SQ(d) Policy

We now provide a summary of the mean-field analysis of the SQ(d) policy for the loss and

PS models under the assumption of exponential JLDs.

Analysis of the Loss System

In this section, we provide a summary of the analysis given in [8, 10]. Consider a system

of N loss servers each with capacity C. Assume that jobs arrive according to a Poisson

process with rate Nλ and furthermore, jobs are dispatched according to the SQ(d) policy.

The jobs have exponential JLDs with unit average job length. The first step is to obtain

a mathematical formulation to the time evolution of the system. The empirical process

(X(N)(t), t ≥ 0) is a Markov process where X(N)(t) = (X
(N)
i (t), i ≥ 0) and X

(N)
i (t) denotes

the fraction of servers with at least i progressing jobs at time t. Assume that a job arrives

to the system when the state of X(N)(t) is b = (b0, · · · , bC) indicating that the fraction of

servers with at least i progressing jobs is equal to bi for 0 ≤ i ≤ C. As servers are sampled

with replacement uniformly at random, the probability that a sampled server has i jobs is

equal to bi− bi+1. Since the dispatcher samples d servers with replacement to dispatch the

arrival, the destination server of the job will have occupancy n with probability bdn − bdn+1.

Then the probability that a tagged server with n jobs is selected as the destination server

31



is equal to 1
N

bdn−bdn+1

bn−bn+1
. As a result, the arriving job joins a particular server with a certain

probability that depends on the occupancy of that server and the empirical measure b.

Hence, the time evolution of each server depends on its state and the state of the empirical

measure. Therefore each server influences X(N)(t) and an arrival event to each server is

influenced by the server’s state and the state of X(N)(t). Hence, the model is a weakly

interacting particle system.

We now present results on the mean-field analysis of the model from [10]. The under-

lying space is

U = {(bi, 0 ≤ i ≤ C) : b0 = 1 ≥ b1 ≥ b2 ≥ · · · ≥ bC ≥ bC+1 = 0}. (1.17)

The space U is equipped with the euclidean metric.

Theorem 1.2. For u ∈ U, if X(N)(0) ⇒ u as N → ∞, then (X(N)(t), t ≥ 0) ⇒
(x(t,u), t ≥ 0) as N → ∞ where (x(t,u), t ≥ 0) = (xn(t,u), t ≥ 0, 0 ≤ n ≤ C) is

the unique solution to the following equations:

for h(x(t,u)) = (hn(x(t,u)), 0 ≤ n ≤ C),

x(0,u) = u,
dxn(t,u)

dt
= hn(x(t,u)), (1.18)

where

h0(x(t,u)) = 0, (1.19)

and for n ≥ 1,

hn(x(t,u)) = λ(xdn−1(t,u)− xdn(t,u))− n(xn(t,u)− xn+1(t,u)), (1.20)

with x0(t,u) = 1 and xC+1(t,u) = 0. The deterministic process (x(t,u), t ≥ 0) is referred

to as the mean-field limit and the equations (1.18)-(1.20) are referred to as the mean-field

equations with the initial point u.

The mean-field (x(t,u), t ≥ 0) has a unique GAS fixed-point π = (πn, 0 ≤ n ≤ C)

with π0 = 1. The proof that the fixed-point is GAS mainly uses the property that the

mean-field is quasi-monotonic.

Definition 1.3. Quasi-Monotonicity: Let r(t,u) be a deterministic process defined on Rn,

n ≥ 1, that is a solution to a set of ODEs, for f(·) = (fi(·), i ≥ 1),

r(t,u)

dt
= f(r(t,u)), r(0,u) = u.

Then the process is said to satisfy quasi-monotonicity if u ≤ v element-wise, then r(t,u) ≤
r(t,v) element-wise.
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It can be shown that the following exchange of limits holds

lim
N→∞

lim
t→∞

X(N)(t) = lim
t→∞

lim
N→∞

X(N)(t).

Using Theorem1.1, under the assumption of the exchangeability of initial servers’ states,

we can show the independence of any finite set of servers as N → ∞. Also, for a server,

x(t,u) denotes the distribution at time t and π denotes the stationary distribution, as

N →∞. As a result, πC denotes the stationary probability that a server is fully occupied

when N → ∞. Since the dispatcher samples d servers when a job arrives, the stationary

average blocking probability of a job as N →∞ is equal to πdC , where we use the fact that

a sampled server will have C jobs with probability πC .

We now focus on finding the fixed-point π. For loss models, a closed form for π is not

known while it is known for the case of the FCFS models [7,12]. We can find π numerically

as explained below. The fixed-point π is the unique solution to the following equations

λ(πdn−1 − πdn) = n(πn − πn+1) (1.21)

for n ≥ 1 and πC+1 = 0. Then from (1.21), we can also write

λ
(πdn−1 − πdn)

(πn−1 − πn)
(πn−1 − πn) = n(πn − πn+1) (1.22)

for n ≥ 1 and πC+1 = 0. Let us define λ̂n = σ
(πdn−πdn+1)

(πn−πn+1)
. Then from (1.22), π is the

stationary distribution of the single server loss model with a Poisson arrival process of

jobs having rate λ̂n when there are n progressing jobs, and πn is the probability that

the server has at least n progressing jobs. Let M1({0, 1, · · · , C}) be the set of proba-

bility measures on {0, 1, · · · , C}. Then from [10], the fixed-point π can be computed

using the formula for the stationary distribution of a single server loss system with state-

dependent arrival rates. We first define two mappings, Θ : M1({0, 1, · · · , C}) 7→ RC+1
+ and

Ξ̂ : RC+1
+ 7→ M1({0, 1, · · · , C}) that are used in computing π. For every (p0, · · · , pC) ∈

M1({0, 1, · · · , C}), there exists (r0, · · · , rC) ∈ RC+1
+ such that

Θ((p0, · · · , pC)) = (r0, · · · , rC),

where

rn = λ
((
∑C

j=n pj)
d − (

∑C
i=n+1 pi)

d)

((
∑C

j=n pj)− (
∑C

i=n+1 pi))
.

Similarly, for every (b0, · · · , bC) ∈ RC+1
+ , there exists (a0, · · · , aC) ∈M1({0, 1, · · · , C}) such

that

Ξ̂((b0, · · · , bC)) = (a0, · · · , aC),
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where

an =

(
n∏
i=1

{
bi−1

i

})
a0

for n ≥ 1 and
∑C

i=0 ai = 1.

Lemma 1.1. Since the mean-field is GAS, the mapping Ξ̂(Θ) has a unique fixed-point

denoted by θ = (θn, 0 ≤ n ≤ C). Furthermore, the unique fixed-point π of the mean-field

is given by, n ≥ 1,

πn =
C∑
j=n

θj.

Analysis of the PS System

In this section, we consider the mean-field analysis of the PS model with exponential JLDs

from [7,9,11]. In [7], the FCFS model with exponential JLDs was studied. Heterogeneous

PS model in which servers are categorized into different classes based on their capacities

was studied in [9,11]. We provide a summary of the analysis given in [9,11] for our model.

We first define the underlying spaces

U′ = {(bi, i ≥ 0) : b0 = 1, bi ≥ bi+1,∀ i ∈ Z+} (1.23)

U = {(bi, i ≥ 0) : b0 = 1, bi ≥ bi+1,∀ i ∈ Z+,
∑
i≥0

bi <∞}. (1.24)

We equip the space U′ with the metric ω(·, ·) defined as

ω(u,v) = sup
i≥1

|ui − vi|
i+ 1

, (1.25)

for all u = (ui, i ≥ 0), v = (vi, i ≥ 0) in U. The space U′ equipped with the metric ω is

compact, complete, and separable.

A mean-field limit exists in this case also similar to the loss model but now the mean-

field lies in a countable infinite dimensional space.

Theorem 1.3. For u ∈ U′, if X(N)(0) ⇒ u as N → ∞, then (X(N)(t), t ≥ 0) ⇒
(x(t,u), t ≥ 0) as N → ∞ where (x(t,u), t ≥ 0) = (xn(t,u), t ≥ 0, n ≥ 0) is the unique

solution to the following equations:

for h(x(t,u)) = (hn(x(t,u)), n ≥ 0),

x(0,u) = u,
dxn(t,u)

dt
= hn(x(t,u)), (1.26)
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where

h0(x(t,u)) = 0, (1.27)

and for n ≥ 1,

hn(x(t,u)) = λ(xdn−1(t,u)− xdn(t,u))− (xn(t,u)− xn+1(t,u)), (1.28)

with x0(t,u) = 1. The deterministic process (x(t,u), t ≥ 0) is referred to as the mean-field

limit and the equations (1.26)-(1.28) are referred to as the mean-field equations with the

initial point u.

It was then shown that there exists a unique fixed-point of the mean-field π = (πi, i ≥ 0)

that belongs to the set U. Furthermore, the quasi-monotonicty of the mean-field was used

to show limt→∞ x(t,u) = π for all u ∈ U. After that the stochastic system was shown to

be stable for λ < 1 and let π(N) be the unique stationary distribution of the stochastic

process X(N). Since the space U′ is compact, from Prohorov’s theorem [57], {π(N)}N≥1

is tight. Therefore, it is sufficient to show that every limit point of {π(N)}N≥1 coincides

with δπ. Let ζ be the limit point of a converging subsequence {π(Nk)}k≥1, then it was

shown that Eζ [
∑

i≥1 Vi] < ∞ where (Vi, i ≥ 0) is random quantity with distribution ζ.

As a consequence, we have ζ(U) = 1. Since ζ is an invariant distribution of the mean-

field and limt→∞ x(t,u) = π for all u ∈ U, it implies ζ = δπ. Having π(N) ⇒ δπ implies

that any finite set of servers are asymptotically independent in the stationary regime and

furthermore, each server’s distribution coincides with the fixed-point π of the mean-field.

More importantly, the fixed-point is given by πi = λ
di−1
d−1 , i ≥ 1.

1.4 Outline

The rest of the dissertation is organized as follows. In Chapter 2, we provide the mean-

field analysis of the first problem discussed in Section 1.1.1. We then study the second

problem stated in Section 1.1.2 in Chapter 3. The analysis of the FCLT for the loss

model introduced in Section 1.1.3 is given in Chapter 4. We conclude in Chapter 5 with a

discussion on future work. We provide additional background material in the Appendix.
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Chapter 2

Insensitivity of the Mean-field Limit

of Loss Systems Under SQ(d) Load

Balancing

In this chapter, we study a large multi-server loss model under a randomized dynamic

load balancing scheme when the service time distributions are general with finite mean. In

particular, we consider the SQ(d) load balancing scheme according to which an incoming

job is dispatched to the server with the least number of progressing jobs among d randomly

chosen servers. Previous works have addressed the exponential service time case when the

number of servers goes to infinity, giving rise to a mean-field model. The fixed-point of

the mean-field equations (MFEs) was seen to be insensitive to the service time distribution

in simulations, but no proof was available. While insensitivity is well known for loss

systems models even with state-dependent inputs such models belong to the class of linear

Markov models. In the context of the SQ(d) load balancing, the resulting model belongs

to the class of nonlinear Markov processes (processes whose generator itself depends on the

distribution) for which traditional arguments do not directly apply. Showing insensitivity

to the general service time distributions has thus remained an open problem. In this

case, obtaining the MFEs poses a challenge due to the resulting Markov description of the

system being in positive orthant as opposed to a finite chain in the exponential case. In

this chapter, we first obtain the MFEs and then show that the MFEs have a unique fixed-

point that corresponds to a distribution of occupancy coinciding with the fixed-point in

the exponential case, thus establishing insensitivity. The approach is via a measure-valued

Markov process representation and the martingale problem to establish the mean-field
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limit.

Organization of the Chapter: The rest of the chapter is organized as follows: Sec-

tion 2.1 describes the system model. In Section 2.2, we introduce the notation used in the

rest of the chapter. In Section 2.3, we derive a measure-valued representation for the state

of the system. The main results of the chapter are given in Section 2.4. We then establish

the mean-field limit in Section 2.5. In Section 2.6, we prove the result on the uniqueness

of the fixed-point of the MFEs and show that the fixed-point is insensitive to the distribu-

tion, i.e., it depends only on the mean service time. In Section 2.7, we provide numerical

results that suggest the global asymptotic stability of the fixed-point of the MFEs and

hence, the relation (1.1) indeed holds. In Section 2.8, we give proofs of the main results

stated in Section 2.4. Finally, Section 2.9 concludes the chapter with some remarks and

generalizations.

2.1 System Model

We consider a system consisting of a large number N of parallel servers. Jobs arrive

according to a Poisson process with rate Nλ, and the job lengths are assumed to be

i.i.d. from a general distribution G(·) defined on R+. Furthermore, we assume that the

distribution G(·) has a continuous density function g(·). A central job dispatcher routes

an incoming job to a server according to the SQ(d) policy described below. We assume

that each server has capacity to process up to a number C of jobs simultaneously, and

each accepted job is processed at a unit rate. At any time t, if a server is currently serving

i jobs, then we say that this server has occupancy i and vacancy C − i at time t. If an

incoming job is routed to a server with occupancy C, then the routed job is blocked from

service, and it is discarded from the system immediately. Otherwise, the processing of the

job begins immediately, and it is processed at a unit rate.

Definition 2.1.1. SQ(d) or Power-of-d load balancing policy: An incoming job is routed

to the server with the minimum occupancy among d servers that are selected randomly with

replacement. Ties among servers are broken by choosing a server uniformly at random.

The randomly chosen d servers are referred to as the potential destination servers and the

server to which a job is routed called the destination server.

Remark 2.1. In Definition 2.1.1, we assume sampling with replacement because of nota-

tional convenience, and it can be shown that the asymptotic results that are of interest in
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this chapter are not affected whether we sample with or without replacement [32, 47].

We assume that the service times have finite mean 1
µ
. We make an assumption that G(·)

is supported on [0,∞) where G(·) denotes the complementary distribution. Otherwise, if

M denotes the finite support of G(·), then our analysis easily extends to this case by using

the fact that the ages of jobs are at most M . The hazard rate function of G(·) is defined

as

β(x) =
g(x)

G(x)
=

g(x)

1−G(x)
(2.1)

for x ∈ [0,∞). The hazard rate function β indicates the instantaneous rate at which the

service of a job ends. More precisely, a job with age y (where y denotes the time since its

arrival) at time t exits the server in the interval [t, t+ dt) with probability β(y)dt+ o(dt).

Assumption 2.1.1. The hazard rate function β satisfies β ∈ Cb(R+).

Remark 2.2. The Assumption 2.1.1 is true for several classes of distributions such as

Phase-Type distributions, Gamma distributions, Log-Normal distributions, and any Pareto

distribution with finite mean.

2.2 Additional Notation and Terminology

In this section, we introduce the required additional notation and terminology that is

specific to this chapter.

In this chapter, we define the term ‘age’ for a progressing job as the amount of time

elapsed since its arrival. To model the dynamics of an Erlang loss system with capacity C

for each server by a Markov process, we define the state of each server as (n, a1, a2, · · · , an)

where n denotes the number of jobs that are in progress at the server and ai denotes the

age of the ith progressing job. We now define a space U that was used in earlier works

to study queueing models with general service time distributions by using the classical

supplemental variable method [67, 68] such that it contains all the possible servers’ states

as its elements. The space U is defined as

U = ∪Cn=0Un,

where U0 = {0} and an element in Un for n ≥ 1 is of the form (n, a1, . . . , an) where

1 ≤ n ≤ C and ai ∈ R+. The state of a server that has n jobs belongs to the space
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Un. Here, one might omit the variable n and consider just (a1, · · · , an) to denote a server’s

state, but such a representation does not account for idle servers while (0) is the state of idle

servers in our representation. Furthermore, the variable n, directly gives us information

about the number of progressing jobs at a server which changes upon every arrival and

departure. Hence, it is convenient to work with the state representation that has a variable

to denote the number of progressing jobs at a server.

It is also possible to define an element in Un by (n, a1, · · · , an, 0, · · · , 0) of size C + 1.

This allows us to have constant size of C + 1 for an element in U. Note that the zeros in

the state (n, a1, · · · , an, 0, · · · , 0) act as dummy variables as there are only n jobs. Hence,

to make it simple, we consider that an element in Un is of the form (n, a1, · · · , an) with size

n+1. Without loss of generality, we refer to an element in the set U by u and an element in

the set Un by un. Note that we have u0 = 0. For yn = (n, y1, . . . , yn), zm = (m, z1, . . . , zm),

we define the metric dU(yn, zm) as

dU(yn, zm) =


∑n

i=1 |yi − zi| if n = m,

|m− n| otherwise.

For n ≥ 1, Un is a complete, separable, and Polish space. Furthermore, U is a Polish space

as it is a union of a set of disjoint Polish spaces. Also, U is separable and complete.

For (n, u1, . . . , un) ∈ Un and y ≥ 0, we use the following notation

un = (n, u1, · · · , un),

u−jn = (n− 1, u1, · · · , uj−1, uj+1, · · · , un),

(ujn; y) = (n+ 1, u1, · · · , uj−1, y, uj, · · · , un),

(u−jn ; y) = (n, u1, · · · , uj−1, y, uj+1, · · · , un).

A function f : U 7→ R is said to be differentiable if for every n ≥ 1, the function ∂f(un)
∂ui

exists for all 1 ≤ i ≤ n at every un ∈ Un. As a result, from (1.6), the function I{Un}, n ≥ 1,

is differentiable. For a differentiable function f : U 7→ R, we define

‖f ′‖ = max
n≥1

(
sup

un∈Un

(
max
1≤i≤n

∣∣∣∣∂f(un)

∂ui

∣∣∣∣)) .
Further, for a differentiable function f : U 7→ R, let the function ∇1f be defined as

∇1f(n, u1, · · · , un) = ∇f · 1 =
n∑
i=1

∂f(un)

∂ui
.
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A measure ν ∈ MF (U) when it is restricted to U0 is a Dirac measure at {0} satisfying

ν(U0) = ν({0}). We say that a measure ν is absolutely continuous with respect to the

Lebesgue measure if ν({xn}) = 0 at every xn ∈ Un for all n ≥ 1. For any Borel measurable

function f that is defined on U, we define

〈ν, f〉 = f(0)ν({0}) +
C∑
n=1

∫
Un
f(zn)ν(dzn).

We now define a function ξ : U 7→ R as follows:

ξ(xn) =


∑n

i=1 xi if n ≥ 1,

0 otherwise.

For b ≥ 0, let τ+
b : U 7→ U be the transition operator defined as

τ+
b (xn) =

(n, x1 + b, · · · , xn + b) n ≥ 1,

0 otherwise.

Similarly, for any b ≥ 0 and f ∈ Kb(U), let the mapping τb : Kb(U) 7→ Kb(U) be defined as

τyf(u) = f(τ+
y u).

Also, for b ≥ 0, let τbν ∈ MF (U) be the measure defined such that for any Borel set

B ∈ B(U), we have

τbν(B) = ν(τ+
b (B)).

For ν ∈MF (U), the measure τbν ∈MF (U) satisfies

〈τbν, f〉 = 〈ν, τbf〉 (2.2)

for all f ∈ Kb(U) and the existence of the unique measure τbν follows from the Riesz-

Markov-Kakutani theorem [69, Theorem 2.14] stated in Theorem A.4. By using (2.2), we

map a change in the system state in a given small time interval to an equivalent change

in the function f . By working with the class of functions of the type η
(N)
t 7→ 〈η(N)

t , φ〉 for

φ ∈ C1
b(U), we obtain the generator of the Markov process (η

(N)
t , t ≥ 0).

2.3 System Dynamics

In this section, we first define a system state descriptor. Using this, we then describe the

time evolution of the system.
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We index a sequence of systems by N that denotes the total numbers of servers. In-

coming jobs arrive according to a Poisson process with rate Nλ, and the job lengths are

i.i.d. from a common distribution G(·) defined on R+. The state of a server is written

as an = (n, a1, · · · , an) ∈ U when there are n progressing jobs and the ith job has age

ai for 1 ≤ i ≤ n. A server with a state an can be viewed as a particle with the given

state. Therefore the system evolution can be considered as the evolution of a system with

N particles where the interactions between particles take place while routing an arrival

according to the SQ(d) load balancing policy.

The age of a progressing job indicating the time elapsed since its arrival increases

linearly with time at a unit rate until its service is completed. We next describe the

possible state of a server at time t+h (h > 0) given that it has state an at time t. When h

is small enough, in the interval [t, t+h), the probability of having multiple events of arrivals

or departures is negligible. In the interval [t, t + h), if there is no arrival or departure at

the given server, then the server’s state will be equal to τ+
h (an) at time t+h. On the other

hand, if the ith job expires in the interval [t, t + h), then the server’s state will be equal

to τ+
h (a−in ) at time t+ h. Considering arrivals, suppose there is an arrival that is accepted

at the given server at time t + r (0 ≤ r < h), then the arriving job chooses its position

uniformly at random out of n + 1 possible positions. If the arrived job chooses the jth

position, then the server’s state will be equal to ((τ+
h (an))j;h− r) at time t+ h.

Let S
(N)
i (t) ∈ U be the random variable that indicates the state of the server i at time

t. Although one can think of considering (S
(N)
1 , · · · ,S(N)

N (t)) to denote the system state

at time t which is a Markovian representation of the system, the dimension of this state

space increases with N as N → ∞ which is inconvenient to work with since our focus of

interest is to study the asymptotic behavior of the system as N →∞. Hence, we consider

an alternative simple system state representation that can be used to describe the system

evolution as the evolution of a Markov process. Note that the system is symmetric to the

servers as they have the same parameters, and the servers’ identities do not play any role

in the time evolution of the system. Therefore, to model the system evolution by a Markov

process, we will show that it is enough to keep track of the number of servers that lie in each

state u ∈ U in order to establish the mean-field limit. Measure-valued Markov processes

have also been used to study other interacting particle systems as in [70–72] where the

state of each particle lies in the space Rn, n > 1. Following these works, we consider the

following system state descriptor.

Definition 2.3.1. System state descriptor: At time t, the state descriptor of the system
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with index N is a random measure given by

η
(N)
t =

N∑
i=1

δ
S
(N)
i (t)

. (2.3)

The interpretation of η
(N)
t is that for any measurable function f defined on U, we have

〈η(N)
t , f〉 =

N∑
i=1

f(S
(N)
i (t)).

At time t, conditioned on servers’ states say S
(N)
i (t) = si(t), i ≥ 1, the state of the

system can be represented by a measure ν defined as

ν =
N∑
i=1

δsi(t). (2.4)

For η
(N)
t = ν, an element y ∈ U is an atom of ν if there exists at least one server with

the state y at time t. The mass of an atom of ν is equal to the number of servers lying at

that atom at time t. As a result, since the number of interacting particles in the system

is equal to N , the measure ν defined on U contains a finite number of atoms which is

bounded by N . If all the servers lie in different states, then the number of atoms is equal

to N . Otherwise, the number of atoms is less than N . For ν, let V (t) be the number of

atoms at time t and let the ith atom be denoted by v(i)(t). Further, let the mass of the

atom v(i)(t) be denoted by a(i)(t). Here, a(i)(t) denotes the number of servers that lie in

the state v(i)(t) at time t where a(i)(t) ≥ 1. For given time t, from (2.4), we can also write

ν as

ν =

V (t)∑
i=1

a(i)(t)δv(i)(t). (2.5)

For any Borel setB ∈ B(U), the number of servers with ages lying in the setB is equal to

η
(N)
t (B) = ν(B) = 〈ν, I{B}〉. We now define the measure of an element yn = (n, y1, · · · , yn)

as below. Let Bε(yn) = {(n, r1, · · · , rn) : yi ≤ ri < yi + ε, 1 ≤ i ≤ n}. Then as in [27], we

define

ν({yn}) = lim
ε→0

ν(Bε(yn)). (2.6)

Essentially, ν({yn}) indicates the number of servers with state yn at time t and can be

viewed as an occupation count. The notation dν(yn) denotes the number of servers with

state lying in the interval [yn,yn + dyn), where dyn = (dy1, · · · , dyn) and yn + dyn is the
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vector addition of yn and dyn. If there is no server lying in the state yn at time t, then

ν({yn}) = 0, otherwise yn is an atom with mass ν({yn}). Note that the number of servers

that have n progressing jobs at time t is given by ν(Un) = 〈ν, I{Un}〉.

We now obtain the probability that the destination server of an arrival lies in a partic-

ular state.

Lemma 2.1. At time t, given that the system state is ν, i.e., ηNt = ν, under the SQ(d)

load balancing policy, the probability that the destination server of an arrival at time t lies

in the state zn = (n, z1, · · · , zn) where zn is an atom of ν is given by

pr(ν : zn) =

{
ν({zn})
N

} {(Rn( ν
N

))d − (Rn+1( ν
N

))d}
{Rn( ν

N
)−Rn+1( ν

N
)}

, (2.7)

where

Rn

( ν
N

)
=

C∑
j:j=n

ν(Uj)

N
(2.8)

denotes the fraction of the servers with at least n jobs.

Proof. When a potential destination server is chosen uniformly at random from N servers,

it will have state (n, z1, . . . , zn) with probability ν({(n,z1,··· ,zn)})
N

. Suppose out of the d po-

tential destination servers, say j servers have occupancy n and the remaining d− j servers

have occupancy at least n + 1. Further, out of the j (j ≥ 1) potential destination servers

with occupancy n, assume r (r ≥ 1) servers lie in the state zn. Then the probability that

the destination server is a server with state zn is given by

(
d

j

)(
j

r

)(
r

j

)(
ν({zn})
N

)r (
ν({Un})− ν({zn})

N

)j−r( C∑
i: i=n+1

ν(Ui)

N

)d−j

.

Finally, by summing over all the possible values of j (j ≥ 1) and r (r ≥ 1), we have

d∑
j=1

j∑
r=1

(
d

j

)(
j

r

)(
r

j

)(
ν({zn})
N

)r (
ν({Un})− ν({zn})

N

)j−r( C∑
i:i=n+1

ν(Ui)

N

)d−j

=
d∑
j=1

(
d

j

)
1

j

(
C∑

i: i=n+1

ν(Ui)

N

)d−j (
ν({Un})

N

)j

×

[
j∑
r=1

r

(
j

r

)( ν({zn})
N

ν({Un})
N

)r( ν({Un})
N
− ν({zn})

N
ν({Un})

N

)j−r ]
.
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The term inside the square bracket in the above equation is the average of a binomial

random variable and hence, it is equal to j

{
( ν({zn})N )
( ν({Un})N )

}
. As a result, the above expression

simplifies to

pr(ν : zn) =


(
ν({zn})
N

)
(
ν({Un})

N

)


d∑
j=1

(
d

j

)( C∑
i: i=n+1

ν(Ui)

N

)d−j (
ν({Un})

N

)j
.

We can further write

pr(ν : zn) =


(
ν({zn})
N

)
(
ν({Un})

N

)

[ d∑

j=0

(
d

j

)( C∑
i: i=n+1

ν(Ui)

N

)d−j (
ν({Un})

N

)j−( C∑
i:i=n+1

ν(Ui)

N

)d ]
.

After simplifications, we get (2.7).

Remark 2.3. We can also interpret the expression of pr(ν : zn) as follows: The probability

that all the potential destination servers have occupancy at least n and there exists at least

one potential destination server with occupancy n, is equal to (Rn( ν
N

))d − (Rn+1( ν
N

))d.

From the SQ(d) policy, the probability that the destination server has occupancy n is equal

to (Rn( ν
N

))d − (Rn+1( ν
N

))d. From the list of the servers with occupancy n, the fraction of

the servers with the state zn is equal to

{
( ν({zn})N )
( ν({Un})N )

}
. Therefore, the probability that the

destination server lies in the state zn is equal to

{
( ν({zn})N )
( ν({Un})N )

}
((Rn( ν

N
))d − (Rn+1( ν

N
))d).

For the case of exponential JLDs, Un = {n} and zn = n. Hence, pr(ν : zn) =

(Rn( ν
N

))d − (Rn+1( ν
N

))d coinciding with the analysis for the exponential case in [10, 12].

As it is clear from (2.7), the routing decision depends only on the number of servers

lying in each possible server state. Hence, we get the evolution of the process (η
(N)
t , t ≥ 0)

by tracking arrival events, routing decisions, and departure events.

2.4 Summary of Main Results

In this section, we present the main results of this chapter.

Our aim is to study the limit as N → ∞ of the empirical probability measures of

the states of the servers, i.e., the limit of the sequence of processes {(η
(N)
t

N
, t ≥ 0)}N≥1 as

N → ∞. A system with index N has N servers that serve the incoming jobs arriving
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according to a Poisson process with rate Nλ, and all other system parameters remain the

same for all N as given in Section 2.1. For given N , the process (η
(N)
t , t ≥ 0) defined in

(2.3) describes the dynamics of the system with index N . The goal is to characterize the

limit of the normalized process (η
(N)
t , t ≥ 0) as N →∞ where

η
(N)
t =

η
(N)
t

N
. (2.9)

For a Borel set B ∈ B(U), η
(N)
t (B) is equal to fraction of the servers with state lying in

the set B at time t.

2.4.1 An Overview of the Analysis

We now give a brief overview of the analysis of this chapter.

The mean-field limit corresponds to limN→∞(η
(N)
t , t ≥ 0) = (ηt, t ≥ 0) that lies in

CM1(U)([0,∞)) and it is a deterministic measure-valued process satisfying a set of evolution

equations referred to as the MFEs. We then obtain an alternative form of the evolu-

tion equations satisfied by the process (〈ηt, ψ〉, t ≥ 0) for ψ ∈ Cb(U). This is stated in

Lemma 2.2. Using these equations, we show in Theorem 2.1 that there exists a unique

solution to the MFEs for a given initial point.

We then show that the sequence of processes {(η(N)
t , t ≥ 0)}N≥1 is tight. For this,

we first study the Feller property of the Markov process (η
(N)
t , t ≥ 0) and construct a

martingale process in Theorem 2.2 by using the generator of the Markov process (η
(N)
t , t ≥

0) by employing the Dynkin’s formula [56, Proposition 1.7, p.162].

We prove the tightness of the sequence of processes {(η(N)
t , t ≥ 0)}N≥1 using the result

that the normalized version of the martingale process converges to the null process as

N → ∞. Furthermore, we show that any limit point of the sequence {(η(N)
t , t ≥ 0)}N≥1

coincides almost surely with the unique solution to the MFEs referred to as the mean-field

limit. This is stated in Theorem 2.3.

Finally, we obtain a set of partial differential equations satisfied by the mean-field

limit. We then prove the uniqueness of the fixed-point and its insensitivity in Theorem 2.5.

The proofs of Theorems 2.3 and 2.5 are given in Sections 2.5 and 2.6, respectively. The

remaining proofs are given in Section 2.8.
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2.4.2 Transient Regime

In this section, we state the results that are related to the transient regime. We first

study the proposed MFEs. For the given system parameters λ, C, d, and the probability

density function g(·) of the JLDs, we state the MFEs in Proposition 2.1. The dynamics of

a mean-field solution (ηt, t ≥ 0) are described by using a set of evolution equations of the

real valued processes (〈ηt, φ〉, t ≥ 0) for all φ ∈ C1
b(U), referred to as the MFEs.

Proposition 2.1. Mean-field equations:

For given system parameters (λ,C, d, g(·)), the process (ηt, t ≥ 0) satisfies:

1. The mapping t 7→ ηt is a continuous.

2. For φ ∈ C1
b(U), the process (ηt, t ≥ 0) satisfies

〈ηt, φ〉 = 〈η0, φ〉+

∫ t

s=0

〈ηs,∇1φ〉 ds

−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dηs(xn)

)
ds

+

∫ t

s=0

(
ηs({0})λΦ0(ηs) (φ(1, 0)− φ(0)) +

C−1∑
n=1

n+1∑
i=1

∫
· · ·
∫
Un

{
1

n+ 1

}
× λΦn(ηs)(φ(xin; 0)− φ(xn)) dηs(xn)

)
ds, (2.10)

where the index j is used to denote the position of the departing job when there are n

progressing jobs and the index i denotes the position of the arriving job when there are

already n progressing jobs at the server. Further, Φn(ηs) =
{(Rn(ηs))

d−(Rn+1(ηs))
d}

{Rn(ηs)−Rn+1(ηs)} where

Rj(ηs) =
∑C

n: n=j ηs(Un).

In (2.10), the second term on the right-hand side is due to the increase of the ages of

the progressing jobs linearly with time at unit rate. The third and fourth terms on the

right-hand side of (2.10) are due to departure and arrival of a job, respectively.

Remark 2.4. The t-continuity of the mapping ηt is equivalent to the continuity of the

mapping t 7→ 〈ηt, φ〉 for all φ ∈ C1
b(U) since C1

b(U) is a separating class of M1(U) [56, p.

111].
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Although the MFEs (2.10) are defined for the class of functions φ ∈ C1
b(U), it is

more useful to obtain an approximation of the process (〈η(N)
t , I{B}〉, t ≥ 0) for an open

set B ∈ B(U). Therefore, we need to obtain the evolution equations of the real valued

process (〈ηt, I{B}〉, t ≥ 0). In this direction, we first obtain the evolution equations of

the real valued process (〈ηt, ψ〉, t ≥ 0) where ψ ∈ Cb(U). We then proceed to obtain the

evolution equations of the process (〈ηt, I{B}〉, t ≥ 0) where B is an open set with the help

of the monotone convergence theorem [69, Theorem 1.26] since there exists a sequence of

functions in Cb(U) that increase point wise to I{B}.

Lemma 2.2. A process (νt ∈M1(U), t ≥ 0) with continuity of the mapping t 7→ νt satisfies

the MFEs (2.10) iff it satisfies the following equation for all φ ∈ Cb(U),

〈νt, φ〉 = 〈ν0, τtφ〉+

∫ t

r=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr(xn)

+

[
νr({0})λΦ0(νr) (τt−rφ(1, 0)− τt−rφ(0))

+
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}
λΦn(νr)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr(xn)

])
dr. (2.11)

Proof. See Section 2.8.2.

Using (2.11), we now show that starting with an initial measure ν0, for t ≥ 0, there

exists a unique measure νt ∈M1(U) that satisfies (2.10).

Theorem 2.1. There exists a unique solution in CM1(U)([0,∞)) to the MFEs. In particular,

if (ν1
t , t ≥ 0) and (ν2

t , t ≥ 0) are two mean-field solutions starting at initial measures

ν1
0 ∈M1(U), ν2

0 ∈M1(U), respectively, then

‖ν1
t − ν2

t ‖ ≤ ‖ν1
0 − ν2

0‖ e(2C‖β‖+8d2λ)t. (2.12)

Proof. See Section 2.8.3.

We next focus on the proof of the convergence of the sequence of the processes {(η(N)
t , t ≥

0)}N≥1 as N →∞. We first give a result on the Feller property of (η
(N)
t , t ≥ 0). We con-

sider the filtration

F (N)
t = ∩ε>0(σ(η(N)

s : s ≤ t+ ε)). (2.13)

Let A(N)(·) be the generator of the Markov process (η
(N)
t , t ≥ 0). Using the Dynkin’s

formula [56], we have the following result.
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Theorem 2.2. The process (η
(N)
t , t ≥ 0) is a Feller-Dynkin process in DMF (U)([0,∞)). Let

φ ∈ C1
b(U), then the process (M

(N)
t (φ), t ≥ 0) defined as

M
(N)
t (φ) = 〈η(N)

t , φ〉 − 〈η(N)
0 , φ〉 −

∫ t

s=0

A(N)〈η(N)
s , φ〉 ds (2.14)

is a square integrable F (N)
t -martingale and it is an RCLL process.

Proof. See Section 2.8.1.

Our analysis requires the following assumptions.

Assumption 2.4.1. The sequence of the initial random measures {η(N)
0 }N≥1 satisfy

(η
(N)
0 , 〈η(N)

0 , ξ〉)⇒ (ϑ, 〈ϑ, ξ〉), (2.15)

where ϑ ∈ M1(U) is a probability measure that possesses a density (w.r.t. the Lebesgue

measure) and 〈ϑ, ξ〉 <∞.

Here, we can interpret the condition 〈ϑ, ξ〉 < ∞ as follows. If ϑ is the probability

measure of the state of a server, then the average sum of ages of jobs is finite.

We use Theorem 2.2 and the Assumption 2.4.1 to establish the following main result.

Theorem 2.3. Under the Assumptions 2.4.1 and 2.1.1, we show that (η
(N)
t , t ≥ 0) ⇒

(ηt, t ≥ 0) as N → ∞, where (ηt, t ≥ 0) is the unique solution to (2.10) with the initial

point ϑ. The process (ηt, t ≥ 0) is referred to as the mean-field limit.

Proof. See Section 2.5.

The existence of the mean-field limit allows us to show that any finite subset of servers

become independent of each other in the limiting system.

Theorem 2.4. If {S(N)
k (0), 1 ≤ k ≤ N} are exchangeable and under the Assumptions 2.1.1

and 2.4.1, the following result holds:

• For each fixed k and t ∈ [0,∞), L(S
(N)
k (t))⇒ ηt as N →∞.

• For any fixed positive integer l and for each t ∈ [0,∞), we have {S(N)
k (t), 1 ≤ k ≤

l} ⇒ {Sk(t), 1 ≤ k ≤ l} as N →∞, where Sk(t), 1 ≤ k ≤ l, are independent random

variables with L(Sk(t)) equal to ηt for all 1 ≤ k ≤ l.
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Proof. See Section 2.8.4.

Remark 2.5. For any time t, a consequence of Theorem 2.4 is that as N → ∞, due to

Poisson thinning, the arrival process to each server is a Poisson process with rate λΦn(ηt)

when there are n (n ≥ 0) progressing jobs.

Lemma 2.3. For any time t, the measure ηt has a density function w.r.t. the Lebesgue

measure for almost all un ∈ Un, n ≥ 1.

Proof. See Section 2.8.6.

For a given subset B ∈ B(U), once we show that (η
(N)
t , t ≥ 0)⇒ (ηt, t ≥ 0) as N →∞,

since ηt is absolutely continuous w.r.t. Lebesgue measure for every t ≥ 0, the continuous

mapping theorem [57, Theorem 2.7] implies that (〈η(N)
t , I{B}〉, t ≥ 0)⇒ (〈ηt, I{B}〉, t ≥ 0).

This shows that for large N , we can approximate 〈η(N)
t , I{B}〉 by 〈ηt, I{B}〉.

2.4.3 Stationary Regime

We now present the results related to the stationary behavior of the mean-field.

We first demonstrate an analogy between the MFEs of the considered multi-server

Erlang loss system under the SQ(d) load balancing policy and the dynamics of a single

server Erlang loss system with state-dependent arrival rates. We then exploit this analogy

to prove the uniqueness of the fixed-point of the mean-field and its insensitivity. We

first recall the dynamics of the probability measure of the server’s state of a single server

Erlang loss system with capacity C, where jobs arrive according to a Poisson process with

pre-specified state-dependent arrival rates.

Consider a single server system with capacity C where jobs arrive according to a Poisson

process at rate αn when there are n progressing jobs in the system. The service times are

generally distributed as stated in the system model of Section 2.1. Let ν
(single)
t be the

probability measure of the server’s state at time t defined on U. For φ ∈ C1
b(U), it can be

verified that the Kolmogorov equations are given by,

〈ν(single)
t , φ〉 = 〈ν(single)

0 , φ〉+

∫ t

s=0

〈ν(single)
s ,∇1φ〉 ds

−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dν(single)

s (xn)
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+

[ (
α0ν

(single)
s ({0}) (φ(1, 0)− φ(0))

)
+

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}

× αn(φ(xjn; 0)− φ(xn)) dν(single)
s (xn)

])
ds. (2.16)

On comparing the MFEs (2.10) with the Kolomogorov equation of a single-server system

given by (2.16), it is clear that both the dynamics are similar except that αn in (2.16) is

replaced by λΦn(ηs) when the probability measure of the server’s state is ηs at time s.

Equation (2.10) differs from (2.16) in that the arrival rates at time t depend on ηt. This is

an example of a non-linear Markov process which means that the generator of the Markov

process at time t depends on the current distribution ηt of the Markov process [73] while

the equation (2.16) for fixed (αi, 0 ≤ i ≤ C) denotes a Markov process whose generator

does not depend on the current distribution.

We now study the fixed-point of the mean-field. Let Pt(0) be equal to νt({0}) and

let pt(xn) be the probability density of νt w.r.t. Lebesgue measure at xn. We obtain the

differential equations satisfied by the process (Pt, t ≥ 0) with Pt = (Pt(u),u ∈ U) where

Pt(yn) =

∫ y1

x1=0

. . .

∫ yn

xn=0

pt(xn) dx1 · · · dxn. (2.17)

Here, from the Remark 2.5, since ηt is the distribution of a server’s state as N → ∞, it

implies that Pt(yn) is the probability that a server has n jobs and the ith job’s age is at

most yi for 1 ≤ i ≤ n as N → ∞. Also, since η
(N)
t (·) ⇒ η(·), for a large value of N , the

fraction of servers with n jobs and the ith job’s age is at most yi for 1 ≤ i ≤ n can be

approximated by Pt(yn).

Lemma 2.4. The process (Pt, t ≥ 0) satisfies

dPt(0)

dt
=

∫ ∞
y=0

β(y)

(
∂Pt(1, y)

∂y

)
dy − λΦ0(Pt)Pt(0), (2.18)

for 1 ≤ n ≤ C − 1,

dPt(yn)

dt
= −

n∑
i=1

∂Pt(yn)

∂yi
+

n+1∑
j=1

∫ ∞
xj=0

β(xj)

(
∂Pt(y

j
n;xj)

∂xj

)
dxj

−
n∑
j=1

∫ yj

xj=0

β(xj)

(
∂Pt(y

−j
n ;xj)

∂xj

)
dxj

+
n∑
j=1

λ
Φn−1(Pt)

n
Pt(y

−j
n )− λΦn(Pt)Pt(yn), (2.19)
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and for n = C,

dPt(yn)

dt
= −

n∑
i=1

∂Pt(yn)

∂yi
−

n∑
j=1

∫ yj

xj=0

β(xj)

(
∂Pt(y

−j
n ;xj)

∂xj

)
dxj

+
n∑
j=1

λ
Φn−1(Pt)

n
Pt(y

−j
n ), (2.20)

where Φn(Pt) = {(Rn(Pt))d−(Rn+1(Pt))d}
{Rn(Pt)−Rn+1(Pt)} and Rn(Pt) =

∑C
j: j=n limb→∞ Pt(j, b, · · · , b).

Proof. See Section 2.8.5.

Remark 2.6. Specializing the results to the exponential case with mean 1
µ

, β(x) = µ, and

denoting qn(t) = limb→∞ Pt(n, b, · · · , b), it can be verified that the process (q(t), t ≥ 0)

where q(t) = (qn(t), 0 ≤ n ≤ C) is the unique solution of the MFEs given in [10] for the

case of the exponential distributions with rate µ = 1.

We next state the the principal result on the insensitivity of the fixed-point of the

MFEs.

Theorem 2.5. The process (Pt, t ≥ 0) = (Pt(u),u ∈ U, t ≥ 0) has a unique fixed-point

given by π = (π(y),y ∈ U) where

π(yn) = π(exp)
n µn

n∏
i=1

∫ yi

xi=0

G(xi) dxi, (2.21)

and π(exp) = (π
(exp)
n , 0 ≤ n ≤ C) denotes the unique fixed-point of the mean-field when

the service times are exponentially distributed with the mean 1
µ

and π
(exp)
n is the stationary

probability that there are n jobs in the limiting system. Further, since
∫∞
x=0

G(x) dx = 1
µ

,

the fixed-point of the mean-field is insensitive, i.e.,

lim
b→∞

π(n, b, · · · , b) = π(exp)
n . (2.22)

Proof. See Section 2.6.

2.5 Proof of Theorem 2.3

From Theorem 2.2, we now show that the normalized process (η
(N)
t , t ≥ 0) converges to

the mean-field limit.

51



Let (F (N)

t , t ≥ 0) be the right continuous filtration associated with the process (η
(N)
t , t ≥

0). Note that we have (η
(N)
t , t ≥ 0) ∈ DM(N)

1 (U)
([0,∞)). We first show that the sequence

of processes (η
(N)
t , t ≥ 0) is relatively compact. We then prove that every limit point

(χt, t ≥ 0) almost surely has sample paths that are continuous in t and furthermore, they

coincide with the unique mean-field solution with the initial point ϑ. For every limit point

(χt, t ≥ 0), χ0 almost surely coincides with the measure ϑ from the Assumption 2.4.1.

Further, we have that the mean-field solution is unique for the given initial measure.

Hence, we conclude that for all the limit points, almost surely sample paths coincide with

the unique mean-field solution (ηt, t ≥ 0) with the initial point ϑ. The process (ηt, t ≥ 0)

is referred to as the mean-field limit. As a result, (η
(N)
t , t ≥ 0) converges in distribution to

the mean-field limit (ηt, t ≥ 0) .

For φ ∈ C1
b(U), from Proposition 2.3, the process (M

(N)

t (φ), t ≥ 0) defined as follows is

an RCLL square integrable F (N)

t -martingale

M
(N)

t (φ) = 〈η(N)
t , φ〉 − 〈η(N)

0 , φ〉 −
∫ t

s=0

〈η(N)
s ,∇1φ〉 ds−

∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

×
(
φ(x−jn )− φ(xn)

)
dη(N)

s (xn)

+

[
η(N)
s ({0})λΦ0(η(N)

s ) (φ(1, 0)− φ(0)) +
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}

× λΦn(η(N)
s )(φ(xjn; 0)− φ(xn)) dη(N)

s (xn)

])
ds. (2.23)

We further have

< M
(N)

· (φ) >t=
1

N

[∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)2
dη(N)

s (xn)

+

[
η(N)
s ({0})λΦ0(η(N)

s ) (φ(1, 0)− φ(0))2

+
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}
λΦn(η(N)

s )(φ(xjn; 0)− φ(xn))2 dη(N)
s (xn)

])
ds

]
. (2.24)

Since the space DM1(U)([0,∞)) endowed with the Skorohod topology is complete and

separable, by using the Prohorov’s theorem (Theorem A.2) [57], establishing the relative

compactness of the sequence of the processes {(η(N)
t , t ≥ 0)}N≥1 is equivalent to proving the

tightness of the processes {(η(N)
t , t ≥ 0)}N≥1. From Theorem 4.6 of [74], the Jakubowski’s
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criteria stated in Appendix A.3 can be used to establish the relative compactness of the

sequence of the processes {(η(N)
t , t ≥ 0)}N≥1. According to the Jakubowski’s criteria, we

need to show that the conditions J1 and J2 are true.

We next focus on the proof of the condition J2. For this, we prove the conditions C1 and

C2 that are sufficient to prove the relative compactness of the sequence {(〈η(N)
t , φ〉, t ≥

0)}N≥1 for φ ∈ C1
b(U) in DR([0,∞)). For any T > 0, t ∈ [0, T ], we have 〈η(N)

t , φ〉 ≤
‖φ‖1〈η(N)

t ,1〉 and since 〈η(N)
t ,1〉 = 1, the condition C1 is trivially satisfied with b = ‖φ‖1.

We next prove that the condition C2 holds. For ε > 0, by using (2.24) and the Doob’s

inequality (Theorem A.8) [56, page 63], we have

P
(

sup
t≤T

∣∣∣M(N)

t (φ)
∣∣∣ ≥ ε

)
≤ 4

ε2
E
[
< M

(N)

· (φ) >T

]
≤ 4T‖φ‖2 1

N
(‖β‖+ dλ),

and hence, P
(

supt≤T

∣∣∣M(N)

t (φ)
∣∣∣ ≥ ε

)
→ 0 as N →∞. Therefore, the sequence of processes

{(M(N)

t (φ), t ≥ 0)}N≥1 converges in distribution to the null process from the standard

convergence criterion in DR([0, T ]) [56, Theorem 1.4, p.339]. Furthermore, the sequence of

processes {(M(N)

t (φ), t ≥ 0)}N≥1 is tight in DR([0, T ]) and hence, there exists ρ′ > 0 and

N ′ > 0 such that for all N ≥ N ′, we have

P

(
sup

u,v≤T,|u−v|≤ρ′

∣∣∣M(N)

v (φ)−M
(N)

u (φ)
∣∣∣ ≥ γ

2

)
≤ ε

2
(2.25)

For any u < v ≤ T , from (2.23), we have∣∣〈η(N)
v , φ〉 − 〈η(N)

u , φ〉
∣∣ ≤ ∫ v

s=u

∣∣〈η(N)
s ,∇1φ〉

∣∣ ds+ 2‖β‖‖φ‖C |u− v|+ 2‖φ‖λ |u− v|

+
∣∣∣M(N)

v (φ)−M
(N)

u (φ)
∣∣∣ . (2.26)

Further, we can write∣∣〈η(N)
v , φ〉 − 〈η(N)

u , φ〉
∣∣ ≤ |v − u|C‖φ‖1(1 + 2‖β‖+ 2dλ) +

∣∣∣M(N)

v (φ)−M
(N)

u (φ)
∣∣∣ . (2.27)

Therefore, by using (2.25) and (2.27), there exists ρ > 0 and N1 > 0 such that for N ≥ N1,

we have P
(
supu,v≤T,|u−v|≤ρ

∣∣〈η(N)
v , φ〉 − 〈η(N)

u , φ〉
∣∣ ≥ γ

)
≤ ε. This proves the condition C2.

Since the conditions C1 and C2 hold, the condition J2 also holds.

We next prove the compact containment condition J1. Let (ni(t), xi1(t) . . . , xini(t)(t))

be the state of the ith server at time t where xij(t) denotes the age of the jth job at the ith

server. Clearly, we have 〈η(N)
t , ξ〉 = 1

N

∑N
i=1, ni(t)>0(xi1(t) + · · ·+ xini(t)(t)).
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We can classify the progressing jobs into two classes. The jobs that are in service from

the beginning (t = 0) form the first class and the second class of jobs are the ones that

entered the system in the interval (0, t]. At a server, the number of progressing jobs that

belong to a class is upper bounded by C. Let Yt be a random variable representing the

age of a job belonging to the second class that is in progress at time t, and Y be a random

variable with job length distribution G, then for any b ≥ 0, we have

P(Yt ≥ b) ≤ P(Y ≥ b). (2.28)

Therefore, using (2.28), since each server has capacity C, for any time t ≥ 0, we can write

P(〈η(N)
t , ξ〉 ≥ b) ≤ P

(
〈η(N)

0 , ξ〉+ Ct+
1

N

N∑
i=1

(Yi1 + · · ·+ YiC) ≥ b

)
, (2.29)

where (Yij, 1 ≤ i ≤ N, 1 ≤ j ≤ C) are i.i.d. random variables with distribution G.

Further, by the weak law of large numbers, we have 1
N

∑N
i=1(Yi1 + · · · + YiC) ⇒ C

µ
as

N →∞. Therefore, by choosing ZT = 2〈ϑ, ξ〉+ 2CT + 2C
µ

, we have

P

(
sup
t∈[0,T ]

〈η(N)
t , ξ〉 > ZT

)
→ 0 (2.30)

as N →∞. Let us define LT , {ζ ∈M1(U) : 〈ζ, ξ〉 ≤ ZT} . Since 〈ζ, ξ〉 ≤ ZT for ζ ∈ LT ,

let Br = U0 ∪ (∪n≥1{(n, y1, · · · , yn) : 0 ≤ yi ≤ r, 1 ≤ i ≤ n}) and Br be the complement

of Br, then we have ζ(Br) ≤ ZT
r
. Hence, limr→∞ supζ∈LT ζ(Br) = 0. Therefore, from

Lemma A7.5 of [75], LT is relatively compact in M1(U). Furthermore, from (2.30), we

have lim infN→∞ P(η
(N)
t ∈ LT ,∀t ∈ [0, T ]) > 1 − γ. Let KT be the closure of LT , then we

have a compact set KT such that lim infN→∞ P(η
(N)
t ∈ KT ,∀t ∈ [0, T ]) > 1 − γ for all

0 < γ < 1.

This establishes the condition J1 and hence, the proof of the tightness of the sequence

of processes {(η(N)
t , t ≥ 0)}N≥1 is completed.

Let (χt, t ≥ 0) be a limit point of a converging subsequence {(η(Nik )

t , t ≥ 0)}k≥1. From

the condition C2, χt is continuous in t, Pχ − a.s., where Pχ is the probability law of

(χt, t ≥ 0). Furthermore, from [74, Theorem 1.7] for f ∈ Cb(U), νt ∈ M1(U), it follows

that for any T > 0, we have (νt, 0 ≤ t ≤ T ) 7→ (〈νt, f〉, 0 ≤ t ≤ T ) is continuous in

the Skorokhod topology. Then since the sequence of martingales {(M(Nik )

t (φ), t ≥ 0)}k≥1

converges to the null process, by the continuous mapping theorem [57, Theorem 2.7], we

conclude

54



〈χt, φ〉 = 〈χ0, φ〉+

∫ t

s=0

〈χs,∇1φ〉 ds

−
∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dχs(xn)

+

[
(χs({0})λΦ0(χs) (φ(1, 0)− φ(0))) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}

× λΦn(χs)(φ(xjn; 0)− φ(xn)) dχs(xn)

])
ds. (2.31)

From the Assumption 2.4.1, χ0 = ϑ almost surely and hence, the sample paths coincide

almost surely with the unique mean-field solution with the initial point ϑ. This argument

holds for every limit point, and hence, the sample paths of every limit point are almost

surely the same as the deterministic mean-field solution with the initial point ϑ. This

completes the proof.

2.6 Proof of Theorem 2.5

We now show that π = (π(u),u ∈ U) is the unique fixed-point of the mean-field. From

[10], we first recall that under the assumption of exponential service time distributions,

there exists a unique probability measure of occupancy π(exp) = (π
(exp)
n , 0 ≤ n ≤ C) on

{0, 1, · · · , C} to the stationary MFEs given below,

λ(exp)
n (π(exp))π(exp)

n = (n+ 1)µπ
(exp)
n+1 , (2.32)

where

λ(exp)
n (π(exp)) = λ

{(
∑C

j=n π
(exp)
j )d − (

∑C
j=n+1 π

(exp)
j )d}

{(
∑C

j=n π
(exp)
j )− (

∑C
j=n+1 π

(exp)
j )}

. (2.33)

Let θ = (θ(u),u ∈ U) be a fixed-point of the MFEs of the process (Pt, t ≥ 0) under

general service time distributions. Using θ, let the corresponding probability measure of

occupancy be Γ = (Γn, 0 ≤ n ≤ C) defined such that Γn = limb→∞ θ(n, b, · · · , b)) and

Γ0 = θ(0). We now show that

θ(yn) =

{∏n
i=1

λ
(exp)
i−1 (Γ)

iµ

}
1 +

∑C
m=1

{∏m
i=1

λ
(exp)
i−1 (Γ)

iµ

}µn n∏
i=1

∫ yi

xi=0

G(xi) dxi (2.34)
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and

θ(0) =
1

1 +
∑C

m=1

{∏m
i=1

λ
(exp)
i−1 (Γ)

iµ

} . (2.35)

Then it implies that Γ also satisfies (2.32)-(2.33), and hence, Γ = π(exp) concluding the in-

sensitivity of the fixed-point. Furthermore, we have that θ(yn) = π
(exp)
n µn

∏n
i=1

∫ yi
xi=0

G(xi) dxi

concluding the uniqueness of the fixed-point of the mean-field under general service time

distributions.

To complete the proof, it remains to show the validity of equations (2.34)-(2.35). We

now recall the stationary distribution π(single) = (π(single)(u),u ∈ U) of a single server loss

system with state-dependent Poisson arrival process with rate αn (0 ≤ n ≤ C) when there

are n progressing jobs and the service time distributions are as in the system model of

Section 2.1. Then from [22], the stationary probability that the server has n progressing

jobs and the ith job has age at most yi (1 ≤ i ≤ n) is given by

π(single)(yn) =

{∏n
i=1

αi−1

iµ

}
1 +

∑C
m=1

{∏m
i=1

αi−1

iµ

}µn n∏
i=1

∫ yi

xi=0

G(xi) dxi (2.36)

and

π(single)(0) =
1

1 +
∑C

m=1

{∏m
i=1

αi−1

iµ

} . (2.37)

For the given fixed-point θ of the mean-field and its corresponding occupancy probability

measure Γ, consider a single server system under the assumption of a Poisson arrival process

with state-dependent rate λ
(exp)
n (Γ) (0 ≤ n ≤ C) when there are n progressing jobs. Then

the unique stationary distribution is given by (2.36)-(2.37) with αn replaced by λ
(exp)
n (Γ)

for all 0 ≤ n ≤ C. But, from (2.10), (2.16), and Lemma 2.4, since Rn(θ) =
∑C

j=n Γj,

we have that θ is also another stationary distribution for the single server system with

state dependent Poisson arrival process having rates λ
(exp)
n (Γ) for all 0 ≤ n ≤ C. Since the

stationary distribution must be unique, equations (2.34)-(2.35) must hold. This completes

the proof.

2.7 Numerical Results

In this section, we provide some numerical results to support that the mean-field is globally

asymptotically stable (GAS) under the assumption of mixed-Erlang JLDs.
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Showing that the fixed-point of the mean-field approximates the stationary distribution

of the system with large N , remains an open problem. If one can establish that the

equilibrium or fixed-point of the MFEs is GAS, then the conclusion of the interchange of

limits would follow from the Prohorov’s theorem (Theorem A.2) [57]. Proving that the

fixed-point of the MFEs is GAS is a challenging problem because the joint distribution of

the occupancy and ages does not possess any monotonicity properties unlike the case of

exponential service time distributions [10]. In this section, we present numerical results on

the validity of the GAS of the mean-field for the case in which the service time distributions

are mixed-Erlang. In this case, the state of a server is also multi-dimensional and the mean-

field is also non-monotonic unlike the exponential case. It is numerically easier to solve the

MFEs for the case of mixed-Erlang distributions as they are systems of ODEs unlike the

case of general service time distributions for which the MFEs are PDEs as we have shown.

One more reason for using mixed-Erlang distributions is that such distributions are dense

in the set of all distributions that have support on R+, see [76]. Our numerical results

show that the mean-field is GAS for the case of mixed-Erlang service time distributions.

We consider the system parameters as follows: The capacity of a server is assumed to be

C = 5. The average job length is assumed to be equal to one, i.e. µ = 1. The service times

have a Mixed-Erlang distribution given by sums of independent exponentially distributed

random variables (known as an Erlang distribution) where the number of exponential

phases is equal to i ∈ {1, 2, . . . ,M} with probability pi such that
∑M

i=1 pi = 1. Each

exponential phase is assumed to have rate µp. Therefore, we have,

1

µ
=

∑M
i=1 ipi
µp

.

We choose M = 3, p1 = 0.3, p2 = 0.3, and p3 = 0.4.

Under the mixed-Erlang service time distribution assumptions, let S be the set of all

possible server states defined as S = ∪Cn=0Sn where S0 = {(0)} and Sn = {(n, r1, . . . , rn) :

1 ≤ ri ≤ M, 1 ≤ i ≤ n}. We refer to an element in the set S by r and an element in

the set Sn by rn. The system dynamics can be modeled as a Markov process Y(N)(t) =

(Y
(N)
r (t), r ∈ S) where Y

(N)
r (t) denotes the fraction of servers with n jobs such that the

ith job has ri remaining phases at time t. Since the Markov process (Y(N)(t), t ≥ 0) is

defined on a finite-dimensional space, we can establish the mean-field limit by using the

same procedure as in the case of the exponential service times in [10]. Hence, we recall the

following result without proof from [33].
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Proposition 2.2. If {Y(N)(0)}N≥1 converges in distribution to a state u as N →∞, then

the sequence of processes {(Y(N)(t), t ≥ 0)}N≥1 converges in distribution to a deterministic

process x(·,u) as N →∞ called the mean-field. The process x(·,u) is the unique solution

to the following system of differential equations

x(0,u) = u, (2.38)

ẋrn(t,u) = hrn(x(t,u)), (2.39)

and h(·) = (hr(·), r ∈ S) with the mapping hrn(·) given by

hrn(y) =
n∑
b=1

{prb
n

}
y(r−jn )λ

(ME)
n−1 (y)− yrnλ

(ME)
n (y)I{n<C}

+
n+1∑
b=1

µpI{n<C}y(rbn;1) +
n∑
b=1

µpy(n, r1, ··· , rb−1, rb+1, rb+1, ··· , rn) − nµpyrn , (2.40)

where

λ(ME)
n (v) =

{
λ∑

rn
vrn

}( C∑
i=n

∑
bi

vbi

)d

−

(
C∑

i=n+1

∑
bi

vbi

)d
 . (2.41)

In Figure 2.1, we plot d2
E(x(t,u), π) as a function of t where dE is the euclidean distance

defined by

dE(u,v) =

√∑
l∈S

|ul − vl|2.

It is observed that for d = 2, λ = 1, and for four different initial points u1,u2,u3, and

u4, the mean-field x(t,u) for the mixed-Erlang service time distribution converges to its

unique fixed-point π. Note that the computed π depends on the chosen value of d. This

supports that π is globally stable.

We conclude with some numerical results for the blocking probability of the above

system showing closeness to the theoretical lower bound. Similar to the case of exponential

distributions as in [10], under the asymptotic independence, any finite set of servers are

independent, and the fixed-point of the mean-field implies that the fixed point is the

stationary distribution of the state of a server. The average blocking probability is then

given by Qd
C where QC =

∑
vC∈SC π(vC). Let us recall the lower bound on the average

blocking probability denoted by P avg
block for any load balancing scheme shown in [19]. From
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Figure 2.1: Convergence of the mean-field to the fixed-point

Little’s law [76, Theorem 4.1], the average number of jobs in the system is equal to (1 −
P avg
block)Nλ which is upper bounded by NC. Hence,

P avg
block ≥

(
1− C

λ

)
+

,

where (b)+ = max (b, 0). In Figure 2.2, we plot the lower bound
(
1− C

λ

)
+

and the average

blocking probability as a function of λ when the dispatcher uses the SQ(d) load balancing

and the state-independent random routing where a destination server is chosen uniformly

at random. It is clear that the resulting average blocking probability under the SQ(d)

policy is much lower than the resulting average blocking probability when pure random

routing is employed. Furthermore, the average blocking probability under the SQ(d) load

balancing approaches the lower bound as d increases.

2.8 Proofs of Main Results

In this section, we provide proofs of the results stated in Section 2.4.
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Figure 2.2: Comparison of the average blocking probability under SQ(d) with lower bound.

2.8.1 Proof Theorem 2.2

In this section, we first compute the semigroup of the Markov process (η
(N)
t , t ≥ 0) and then

we show that the Markov process (η
(N)
t , t ≥ 0) is a Feller process. Finally, we construct

a martingale using the generator of the Markov process (η
(N)
t , t ≥ 0) and the Dynkin’s

formula.

Conditioned on the initial state η
(N)
0 , let Ah and Dh be the number of arrivals and

departures in the interval [0, h], respectively. Note that a job with age x at time t departs

from the system in the interval [t, t + h] with the probability G(x+h)−G(x)

G(x)
. Further, from

the definition of the hazard rate, we have that limh→0
1
h
G(x+h)−G(x)

G(x)
= β(x) and hence,

G(x+ h)−G(x)

G(x)
= β(x)h+ o(h). (2.42)

Let T
(N)
h (·) be the operator defined as

T
(N)
h f(ν) = E

[
f(η

(N)
h )|η(N)

0 = ν
]
,

where f is a continuous bounded function f : MF (U) → R and the operator T
(N)
h (·)

is a semigroup operator when (η
(N)
t , t ≥ 0) is a Markov process. Before computing the
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expression for T
(N)
h f(ν), we first introduce the following notation. Suppose the measure

η
(N)
0 = ν has mass at m atoms and let the ith atom be v(i) = (ni, v

(i)
1 , · · · , v(i)

ni ) for 1 ≤ i ≤ m

and let the number of servers with the state v(i) be denoted by ν({v(i)}) = a(i). If a server

lies in the state bn = (n, b1, . . . , bn) at time t, let the probability that there is no departure

in the interval [t, t+ h] be denoted by pND(bn, h). We then have

pND(bn, h) =
n∏
i=1

{
G(bi + h)

G(bi)

}
. (2.43)

Note that using (2.42), we can write

pND(bn, h) =
n∏
j=1

(1− β(bj)h) + o(h). (2.44)

Lemma 2.5. Let f be a real valued continuous bounded function defined on MF (U). Then

the process (η
(N)
t , t ≥ 0) is a Feller weak-homogeneous MF (U)-valued Markov process with

semigroup operator T
(N)
h (·) given by

T
(N)
h f(ν) = (1−Nλh)

 m∏
j=1, nj>0

(pND(v(j), h))a
(j)

 f(τhν)

+ (1−Nλh)
m∑

j=1, nj>0

nj∑
r=1

a(j)

{
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

}

×

(
nj∏

w=1, w 6=r

{
G(v

(j)
w + h)

G(v
(j)
w )

})
(pND(v(j), h))(a(j)−1)

(
m∏

i=1, ni>0,i 6=j

(pND(v(i), h))a
(i)

)
× f(τhν + δ((τ+h v(j))−r) − δ(τ+h v(i)))

+ (Nλh)

∫ h

x=0

1

h

(
m∑
i=1

ni+1∑
j=1

1

ni + 1
pr(τxν : v(i))

×

[
I{ni<C}f

(
τhν + δ((τ+h v(i))j ;h−x) − δ(τ+h v(i))

) m∏
k=1, nk>0

(pND(v(k), h))a
(k)

G(h− x)

+I{ni=C}f

(
τhν

) m∏
k=1, nk>0

(pND(v(k), h))a
(k)

])
dx+ ε(ν, h), (2.45)

where ε(ν, h) is o(h) for all ν. Moreover, the process (η
(N)
t , t ≥ 0) is a Feller-Dynkin

process.

Proof. We can write
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T
(N)
h f(ν) = E

[
f(η

(N)
h )I{Ah=0,Dh=0}|η(N)

0 = ν

]
+ E

[
f(η

(N)
h )I{Ah=0,Dh=1}|η(N)

0 = ν

]

+ E

[
f(η

(N)
h )I{Ah=1,Dh=0}|η(N)

0 = ν

]
+

∑
i≥1, j≥1

E

[
f(η

(N)
h )I{Ah=i,Dh=j}|η(N)

0 = ν

]
. (2.46)

The proof mainly depends on the simplification of the four terms on the right side of (2.46).

We first simplify the first term on the right side of equation (2.46). In this case, since

there are no arrivals or departures, we have η
(N)
h = τhν. As a consequence, we have

E

[
f(η

(N)
h )I{Ah=0,Dh=0}|η(N)

0 = ν

]
= f(τhν)P

(
({Ah = 0, Dh = 0})|η(N)

0 = ν
)
. (2.47)

Further, we can write

P
(

({Ah = 0, Dh = 0})|η(N)
0 = ν

)
= P

(
{Ah = 0}|η(N)

0 = ν
)
P
(

({Dh = 0})|Ah = 0,η
(N)
0 = ν

)
.

Since the arrival process is a Poisson process with rate Nλ, it is independent of the state ν.

Therefore, we have P
(
{Ah = 0}|η(N)

0 = ν
)

= P({Ah = 0}) = e−(Nλh). On the other hand,

the number of departures Dh is influenced by the number of arrivals Ah. Hence, we need

to compute the expression for P
(

({Dh = j})|Ah = i,η
(N)
0 = ν

)
that gives the probability

that there are j departures in the interval [0, h] conditioned on the event that there are i

arrivals in the interval [0, h]. If the arrival process is a Poisson process, conditioned on the

number of arrivals Ah, the arrival instants are independent random variables with uniform

distribution in the interval [0, h] [77, p. 325]. It can be seen that

P
(

({Dh = 0})|Ah = 0,η
(N)
0 = ν

)
=

m∏
j=1, nj>0

(pND(v(j), h))a
(j)

.

We can write

E

[
f(η

(N)
h )I{Ah=0,Dh=0}|η(N)

0 = ν

]
= {1−Nλh}

 m∏
j=1, nj>0

(pND(v(j), h))a
(j)

 f(τhν)

+ ε1(ν, h),

where

ε1(ν, h) = {P({Ah = 0})− (1−Nλh)}
m∏

j=1, nj>0

(pND(v(j), h))a
(j)

f(τhν)

is o(h) for all ν.
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Similarly, we can write the second term of the right side of (2.46) as

E

[
f(η

(N)
h )I{Ah=0,Dh=1}|η(N)

0 = ν

]
= (1−Nλh)

m∑
j=1, nj>0

nj∑
r=1

a(j)

{
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

}

×

(
nj∏

w=1, w 6=r

{
G(v

(j)
w + h)

G(v
(j)
w )

})
(pND(v(j), h))(a(j)−1)

(
m∏

i=1,ni>0,i 6=j

(pND(v(i), h))a
(i)

)
× f(τhν + δ((τ+h v(j))−r) − δ(τ+h v(i))) + ε2(ν, h),

where we use r to denote the index of the departing job at a server with the state v(j) and

ε2(ν, h) is o(h) for all ν given by

ε2(ν, h) = {P({Ah = 0})− (1−Nλh)}
m∑

j=1, nj>0

nj∑
r=1

a(j)

×

{
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

}(
nj∏

w=1, w 6=r

{
G(v

(j)
w + h)

G(v
(j)
w )

})
(pND(v(j), h))(a(j)−1)

×

(
m∏

i=1, ni>0,i 6=j

(pND(v(i), h))a
(i)

)
f(τhν + δ((τ+h v(j))−r) − δ(τ+h v(i))).

We next compute the third term on the right side of (2.46). We can write

E

[
f(η

(N)
h )I{Ah=1,Dh=0}|η(N)

0 = ν

]
= {P({Ah = 1})}

×
∫ h

x=0

1

h

(
m∑
i=1

ni+1∑
j=1

{
1

ni + 1

}
pr(τxν : τ+

x v(i))

[
I{ni<C}f

(
τhν + δ((τ+h v(i))j ;h−x) − δ(τ+h v(i))

)

×
m∏

k=1,nk>0

(pND(v(k), h))a
(k)

G(h− x) + I{ni=C}f
(
τhν
) m∏
k=1, nk>0

(pND(v(k), h))a
(k)

])
dx,

where the arrival instant x is chosen uniformly in [0, h] given Ah = 1, i denotes the index

of the atom corresponding to the state of the destination server, and j is the position of

the routed job at the destination server chosen uniformly at random from ni + 1 positions.

Further, we write

E

[
f(η

(N)
h )I{Ah=1,Dh=0}|η(N)

0 = ν

]
= (Nλh)

∫ h

x=0

1

h

(
m∑
i=1

ni+1∑
j=1

{
1

ni + 1

}
pr(τxν : τ+

x v(i))

×

[
I{ni<C}f

(
τhν + δ((τ+h v(i))j ;h−x) − δ(τ+h v(i))

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

G(h− x)
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+I{ni=C}f(τhν)
m∏

k=1, nk>0

(pND(v(k), h))a
(k)

])
dx+ ε3(ν, h),

where

ε3(ν, h) = {P({Ah = 1})−Nλh}
∫ h

x=0

1

h

(
m∑
i=1

ni+1∑
j=1

{
1

ni + 1

}
pr(τxν : τ+

x v(i))[
I{ni<C}f

(
τhν + δ((τ+h v(i))j ;h−x) − δ(τ+h v(i))

) m∏
k=1,nk>0

(pND(v(k), h))a
(k)

G(h− x)

+I{ni=C}f(τhν)
m∏

k=1,nk>0

(pND(v(k), h))a
(k)

])
dx.

We now show that ε3(ν, h) is a o(h) term for all ν. For this, we apply the method of change

of variables by replacing x with hy. As a consequence, we have

ε3(ν, h) = {P({Ah = 1})−Nλh}h
∫ 1

y=0

1

h

(
m∑
i=1

ni+1∑
j=1

{
1

ni + 1

}
pr(τhyν : τ+

hyv
(i))[

I{ni<C}f

(
τhν + δ((τ+h v(i))j ;h−hy) − δ(τ+h v(i))

) m∏
k=1, nk>0

(pND(v(k), h))a
(k)

G(h− hy)

+I{ni=C}f(τhν)
m∏

k=1,nk>0

(pND(v(k), h))a
(k)

])
dy.

By using the dominated convergence theorem [69, Theorem 1.34], we have limh→0
ε3(ν,h)
h

= 0

for all ν.

Finally, by using the fact that f is a bounded function, we now prove that the fourth

term on the right side of (2.46) is a o(h) term denoted by ε4(ν, h). Since f ∈ Cb(MN
F (U)), it

is enough to prove that
∑

i≥1, j≥1 P({Ah = i, Dh = j}|η(N)
0 = ν) is a o(h) term. Due to the

result that {
∑

i≥2, j≥1 P({Ah = i, Dh = j}|η(N)
0 = ν)} ≤ P({Ah ≥ 2}) and P({Ah ≥ 2}) is

a o(h) term, we conclude that
∑

i≥2, j≥1 P({Ah = i, Dh = j}|η(N)
0 = ν) is a o(h) term for

all ν. We now show that {
∑

j≥1 P({Ah = 1, Dh = j}|η(N)
0 = ν)} is a o(h) term. We can

write(
P({Ah = 1, Dh ≥ 1}|η(N)

0 = ν)
)

=P({Ah = 1}|η(N)
0 = ν)− P({Ah = 1, Dh = 0}|η(N)

0 = ν)

=P({Ah = 1})(1− P({Dh = 0}|Ah = 1,η
(N)
0 = ν)).

Again, by using the method of change of variables and the dominated convergence theorem

as in the proof of the result that shows ε3(ν, h) is a o(h) term, we get that limh→0 P({Dh =
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0}|Ah = 1,η
(N)
0 = ν) = 1 for all ν. Since limh→0

P({Ah=1})
h

= Nλ, for all ν, we have that

P({Ah = 1, Dh ≥ 1}|η(N)
0 = ν) is o(h). Therefore, ε4(ν, h) is o(h) for all ν.

By combining the expressions for all the four terms on the right side of (2.46), and by

defining ε(ν, h) = ε1(ν, h) + ε2(ν, h) + ε3(ν, h) + ε4(ν, h), we get the expression for T
(N)
h f(ν)

as in (2.45). Finally, from [16, p.18], (η
(N)
t , t ≥ 0) is a weak homogeneous Markov process.

We next give the proof of the Feller-Dynkin property of (η
(N)
t , t ≥ 0). From Lemma 3.5.1

and Corollary 3.5.2 of [16], we need to prove the following conditions to show the Feller-

Dynkin property of (η
(N)
t , t ≥ 0). For f ∈ C1

s(U), ν ∈ MF (U), let Qf : MF (U) 7−→ R be

defined as Qf (ν) = e−〈ν,f〉, then we must have

1. For all f ∈ C1
s(U) and h > 0, the mapping ν 7−→ E

[
Qf (η

(N)
h )|η(N)

0 = ν
]

is continu-

ous.

2. For all h > 0, we have

E
[
Q1(η

(N)
h )|η(N)

0 = ν
]
→ 0 (2.48)

as ν(U)→∞.

3. For all ν ∈MF (U) and f ∈ C1
s(U), we have

E
[
Qf (η

(N)
h )|η(N)

0 = ν
]
→ Qf (ν) (2.49)

as h→ 0.

From (2.45), we obtain

E
[
Qf (η

(N)
h )|η(N)

0 = ν
]

= e−〈τhν,f〉

(
(1−Nλh)

 m∏
j=1, nj>0

(pND(v(j), h))a
(j)


+ (1−Nλh)

m∑
j=1, nj>0

nj∑
r=1

a(j)

{
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

}

×

(
nj∏

w=1, w 6=r

{
G(v

(j)
w + h)

G(v
(j)
w )

})
(pND(v(j), h))(a(j)−1)

(
m∏

i=1, ni>0,i 6=j

(pND(v(i), h))a
(i)

)
×Qf (δ((τ+h v(j))−r) − δ(τ+h v(i)))

+ (Nλh)

∫ h

x=0

1

h

(
m∑
i=1

ni+1∑
j=1

{
1

ni + 1

}
pr(τxν : v(i))
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×

[
I{ni<C}Qf

(
δ((τ+h v(i))j ;h−x) − δ(τ+h v(i))

) m∏
k=1, nk>0

(pND(v(k), h))a
(k)

G(h− x)

+I{ni=C}

m∏
k=1, nk>0

(pND(v(k), h))a
(k)

])
dx+ εf (ν, h)

)
(2.50)

where

εf (ν, h) = ε1f (ν, h) + ε2f (ν, h) + ε3f (ν, h) + ε4f (ν, h)

such that

ε1f (ν, h) = (P({Ah = 0})− (1−Nλh))

 m∏
j=1, nj>0

(pND(v(j), h))a
(j)

 ,

ε2f (ν, h) = (P({Ah = 0})− (1−Nλh))
m∑

j=1, nj>0

nj∑
r=1

a(j)

{
G(v

(j)
r + h)−G(v

(j)
r )

G(v
(j)
r )

}

×

(
nj∏

w=1, w 6=r

{
G(v

(j)
w + h)

G(v
(j)
w )

})
(pND(v(j), h))(a(j)−1)

(
m∏

i=1, ni>0,i 6=j

(pND(v(i), h))a
(i)

)
×Qf (δ((τ+h v(j))−r) − δ(τ+h v(i))),

ε3f (ν, h) = (P({Ah = 1})−Nλh)

∫ h

x=0

1

h

(
m∑
i=1

ni+1∑
j=1

{
1

ni + 1

}
pr(τxν : v(i))

×

[
I{ni<C}Qf

(
δ((τ+h v(i))j ;h−x) − δ(τ+h v(i))

) m∏
k=1, nk>0

(pND(v(k), h))a
(k)

G(h− x)

+I{ni=C}

m∏
k=1, nk>0

(pND(v(k), h))a
(k)

])
dx,

and

ε4f (ν, h) =
∑

i≥1, j≥1

E

[
Qf

(
i∑

r=1

(δ(S((Mr,Z1r,··· ,ZMrr),Lr,h,Tr)) −δ(Mr,Z1r+h−Tr,··· ,ZMrr+h−Tr))

+

j∑
l=1

(δ(Y ((nl, X1l,··· ,Xnll),Kl,h,Wl)) − δ(nl,X1l+h−Wl,··· ,Xnll+h−Wl)))

)

× I{Ah=i,Dh=j}|η(N)
0 = ν

]
, (2.51)
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where in equation (2.51), Tr is the arrival time of the rth arrival and this job is routed to

a server with state (Mr, Z1r, · · · , ZMrr) at time Tr and Lr is its position at the destina-

tion server. Further, S((Mr, Z1r, · · · , ZMrr), Lr, h, Tr) denotes the possible state of the rth

arrival’s destination at time t = h. Similarly, for the lth departure, Wl is the departure

time and this job departs from a server with state (nl, X1l, · · · , Xnll) at time Wl and its

position is Kl. Further, Y ((nl, X1l, · · · , Xnll), Kl, h,Wl) is the possible state of the server

where the lth departure occurs at time t = h. It can be checked that εf (ν, h) is also o(h)

and this follows from the same arguments as that of ε(ν, h) in (2.45).

We now prove the first condition required to establish the Feller property. For this, we

write (2.50) as

E
[
Qf (η

(N)
h )|η(N)

0 = ν
]

= (e−〈τhν,f〉)V (ν, h).

The mapping e−〈τhν,f〉 is a continuous mapping of ν. To prove the first condition, we need

to show V (ν, h) is a continuous mapping of ν. Since ν is a point measure at finite N , the

continuity of V (ν, h) w.r.t. ν follows from the continuity of the routing probabilities and

the departure probabilities. The second condition follows due to the fact that τhν(U) =

ν(U) = N . Finally, the third condition follows from the relation 〈τhν, f〉 = 〈ν, τhf〉 and

the dominated convergence theorem.

We next compute the infinitesimal generator of the Markov process (η
(N)
t , t ≥ 0), and

then we construct a martingale (M
(N)
t (φ), t ≥ 0) ∈ DR([0,∞)) where φ ∈ C1

b(U) by

applying the Dynkin’s formula.

Since the set of linear combinations of Qf : MF (U) 7−→ R for f ∈ C1
s(U) defined by

Qf (ν) = e−〈ν,f〉 is dense in the set C(MF (U)) [78, proposition 7.10], by using A(N)Qf (ν), for

any continuous function F ∈ C(MF (U)) such that the infinitesimal generator A(N)F (ν) =

limh→0
E[F (η

(N)
h )|η(N)

0 =ν]−F (ν)

h
is well-defined for all ν, we have

ANF (ν) = lim
h→0

F (τhν)− F (ν)

h
−NλF (ν)− F (ν)

C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj) dν(xn)

+
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
F (ν + δ(x−jn ) − δ(xn)

)
dν(xn)

+Nλ

[({
ν({0})
N

}
Φ0

( ν
N

) (
F (ν + δ(1,0) − δ(0))

))
+
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

N(n+ 1)

}
Φn

( ν
N

)
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× F (ν + δ(xjn;0) − δ(xn)) dν(xn) +

∫
· · ·
∫
UC

1

N
ΦC

( ν
N

)
F (ν) dν(xC)

]
. (2.52)

For φ ∈ C1
b(U), it can be seen that the function ν ∈ MF (U) 7→ 〈ν, φ〉 ∈ R belongs to

the domain of A(N)(·)

Proposition 2.3. For all φ ∈ C1
b(U), the process (M

(N)
t (φ), t ≥ 0) given by

M
(N)
t (φ) = 〈η(N)

t , φ〉 − 〈η(N)
0 , φ〉 −

∫ t

s=0

A(N)〈ηNs , φ〉 ds (2.53)

is an RCLL square integrable FNt −martingale. For φ ∈ C1
b(U), the quadratic variation of

(M
(N)
t (φ), t ≥ 0) is given by

< M(N)
. (φ) >t=

∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)2
dη(N)

s (xn)

+Nλ

[({
η

(N)
s ({0})
N

}
Φ0

(
η

(N)
s

N

)
(φ(1, 0)− φ(0))2

)

+
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

N(n+ 1)

}
Φn

(
η

(N)
s

N

)
(φ(xjn; 0)− φ(xn))2 dη(N)

s (xn)

])
ds. (2.54)

Proof. From the Dynkin’s formula [56], the process (M
(N)
t (φ), t ≥ 0) defined by

M
(N)
t (φ) = 〈η(N)

t , φ〉 − 〈η(N)
0 , φ〉 −

∫ t

s=0

A(N)〈ηNs , φ〉ds (2.55)

is an RCLL FNt −local martingale. Therefore, by simplification we get

M
(N)
t (φ) = 〈η(N)

t , φ〉 − 〈η(N)
0 , φ〉 −

∫ t

s=0

〈η(N)
s ,∇1φ〉 ds−

∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

×
(
φ(x−jn )− φ(xn)

)
dη(N)

s (xn)

+Nλ

[(
η

(N)
s ({0})
N

Φ0

(
η

(N)
s

N

)
(φ(1, 0)− φ(0))

)

+
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

N(n+ 1)

}
Φn

(
η

(N)
s

N

)
(φ(xjn; 0)− φ(xn)) dη(N)

s (xn)

])
ds. (2.56)

By choosing Fφ(η
(N)
t ) = 〈η(N)

t , φ〉, from [79, Theorem 7.15], we have

< M(N)
· (φ) >t=

∫ t

s=0

(
A(N)F 2

φ(η(N)
s )− 2Fφ(η(N)

s )A(N)Fφ(η(N)
s )

)
ds. (2.57)

After simplifications, we get (2.54). Finally, since φ ∈ C1
b(U) and β ∈ Cb(R+), we have

E
[
< M

(N)
· (φ) >t

]
<∞ and hence, (M

(N)
t (φ), t ≥ 0) is a square integrable martingale.
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2.8.2 Proof of Lemma 2.2

We first show that any process (νt, t ≥ 0) that satisfies (2.10) also satisfies (2.11). By

using the fundamental theorem of calculus [69, p.144], for φ ∈ C1
b(U), a real valued pro-

cess (〈νt, φ〉, t ≥ 0) satisfying equation (2.10) is a solution to the following differential

equation (2.58) if the integrand in equation (2.10) is a continuous function of s,

d〈νt, φ〉
dt

= 〈νt,∇1φ〉+

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dνt(xn)

+

[
νt({0})λΦ0(νt) (φ(1, 0)− φ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}

× λΦn(νt)(φ(xjn; 0)− φ(xn)) dνt(xn)

])
. (2.58)

Therefore, we need to show that the two terms on the right side of (2.58) are continuous

functions of t. Since φ ∈ C1
b(U) and the mapping t 7→ νt is continuous, the first term

〈νt,∇1φ〉 is a continuous function of t. In the second term, the expression related to the

case of departures can be written as

C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
φ(x−jn )− φ(xn)

)
dνt(xn) = 〈νt, ψ1〉,

where the function ψ1 is defined as

ψ1(xn) =

0 if n = 0,∑n
j=1 β(xj)((φ(x−jn )− φ(xn)) otherwise.

Since φ ∈ C1
b(U) and β ∈ C1

b(R+), we have that ψ1 ∈ Cb(U). Therefore the mapping

t 7→ 〈νt, ψ1〉 is continuous. The expression that corresponds to the case of arrivals can be

written as

〈νt, ψ(νt)〉 = (νt({0})λΦ0(νt) (φ(1, 0)− φ(0)))

+
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}
λΦn(νt)(φ(xjn; 0)− φ(xn)) dνt(xn),

where ψ(νt) is defined as

ψ(νt)(xn) =

0 if n = C,{
λΦn(νt)
n+1

}∑n+1
j=1 (φ(xjn; 0)− φ(xn)) otherwise.

(2.59)
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For given νt, since φ ∈ Cb(U), we have that ψ(νt) ∈ Cb(U). Hence, for any constant a ≥ 0,

the mapping t 7→ 〈νt, ψ(νa)〉 is continuous.

We next prove that the mapping t 7→ 〈νt, ψ(νt)〉 is continuous, i.e., we need to prove

that 〈νt+b, ψ(νt+b)〉 → 〈νt, ψ(νt)〉 as b→ 0. We have∣∣〈νt+b, ψ(νt+b)〉 − 〈νt, ψ(νt)〉
∣∣ ≤ ∣∣〈νt+b, ψ(νt+b)〉 − 〈νt+b, ψ(νt)〉

∣∣+
∣∣〈νt+b, ψ(νt)〉 − 〈νt, ψ(νt)〉

∣∣ .
(2.60)

Since ψ(νt) ∈ Cb(U), we have that limb→0

∣∣〈νt+b, ψ(νt)〉 − 〈νt, ψ(νt)〉
∣∣ = 0. We next prove that

limb→0

∣∣〈νt+b, ψ(νt+b) − ψ(νt)〉
∣∣ = 0.

For L > 0, let

U (L) = {xn ∈ Un : n ≥ 1, xi > L for all 1 ≤ i ≤ n}.

For given ε > 0, since νt is tight, we can find some L > 0 such that 〈νt, I{U(L)}〉 < ε.

Furthermore, from the continuity of the mapping t 7→ νt, we can find some h1 > 0 such

that for all b ∈ [−min (t, h1), h1],

〈νt+b, I{U(L)}〉 < ε. (2.61)

By using the fact that the mapping t 7→ Rn(νt) = 〈νt, I{∪Cj=nUj}〉 is continuous, we

next show that the mapping t 7→ ψ(νt) is continuous. For this, we need to show that

‖ψ(νt+b) − ψ(νt)‖ → 0 as b→ 0. From (2.59), we have

‖ψ(νt+b) − ψ(νt)‖ ≤ 2λ‖φ‖max
n

(|Φn(νt+b)− Φn+1(νt)|)

≤ 4dλ‖φ‖max
n

(
∣∣Rn(νt+b)−Rn(νt)

∣∣). (2.62)

Since
∣∣Rn(νt+b)−Rn(νt)

∣∣ → 0 as b → 0 for all n, ‖ψ(νt+b) − ψ(νt)‖ → 0. This proves that

the mapping t 7→ ψ(νt) is continuous. As a consequence, we have that ψ(νt+b) is uniformly

continuous on the interval b ∈ [−min (t, h1), h1] and u ∈ U (L)
(the complement of U (L)).

As a result, there exists some h2 ∈ (0, h1) such that for b ∈ [−min(t, h2), h2], u ∈ U (L)
, we

have ∣∣ψ(νt+b)(u)− ψ(νt)(u)
∣∣ < ε. (2.63)

Using (2.61)-(2.63), for b ∈ [−min(t, h2), h2], we have∣∣〈νt+b, ψ(νt+b) − ψ(νt)〉
∣∣ ≤ ε〈νt+b, I{U(L)

}〉+ 4dλ‖φ‖ε ≤ ε+ 4dλ‖φ‖ε. (2.64)

By letting b → 0 and then ε → 0 in (2.60), we have the continuity of the mapping

t 7→ 〈νt, ψ(νt)〉.
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We next show that a solution to (2.58) is also a solution to an another differential

equation obtained by applying a method of change of variables. For r ≤ t, we have

d〈νr, τt−rφ〉
dr

= lim
h→0

{〈νr+h, τt−r−hφ〉 − 〈νr, τt−rφ〉}
h

= lim
h→0

{〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉}
h

+ lim
h→0

{〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉}
h

(2.65)

We now obtain the expression for the first term on the right side of (2.65). We can write

〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉 = 〈νr+h, ŵ〉,

where ŵ is defined such that ŵ(yn) = τt−r−hφ(yn) − τt−rφ(yn). We further simplify the

function ŵ by using the following definition, let

∂φ

∂si
(yn) = lim

h→0

φ(y−jn ; yi + h)− φ(yn)

h
.

We can write

ŵ(yn) = φ(τ+
t−r−h(yn))−φ((τ+

t−r−h(yn))−1; y1+t−r)+φ((τ+
t−r−h(yn))−1; y1+t−r)−φ(τ+

t−r(yn)).

Further, we have

φ(τ+
t−r−h(yn))− φ((τ+

t−r−h(yn))−1; y1 + t− r) = −
∫ y1+t−r

y1+t−r−h

∂φ

∂s1

((τ+
t−r−h(yn))−1; s1) ds1.

By replacing s1 with y1 + t− r − hv, we get

φ(τ+
t−r−h(yn))−φ((τ+

t−r−h(yn))−1; y1+t−r) = −h
∫ 1

v=0

∂φ

∂s1

((τ+
t−r−h(yn))−1; y1+t−r−hv) dv.

Similarly, we can write

φ(n, y1 + t− r, · · · , yi−1 + t− r, yi + t− r − h, yi+1 + t− r − h, · · · , yn + t− r − h)

− φ(n, y1 + t− r, · · · , yi + t− r, yi+1 + t− r − h, · · · , yn + t− r − h)

= −h
∫ 1

v=0

∂φ

∂si
(n, y1+t−r, · · · , yi−1+t−r, yi+t−r−hv, yi+1+t−r−h, · · · , yn+t−r−h) dv.

For 1 ≤ i ≤ n, let

w(i, t, r, h, v)(yn) =
∂φ

∂si
(n, y1+t−r, · · · , yi−1+t−r, yi+t−r−hv, yi+1+t−r−h, · · · , yn+t−r−h).
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As a consequence, after simplifications we have

ŵ(yn) = −h
∫ 1

v=0

n∑
i=1

(
w(i, t, r, h, v)(yn)

)
dv.

Let the function w∗(t, r, h, v) ∈ Cb(U) be defined as

w∗(t,r,h,v)(yn) =

0 if n = 0,∑n
i=1

(
w(i, t, r, h, v)(yn)

)
otherwise.

Now we can see that

lim
h→0

{〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉}
h

= − lim
h→0

∫ 1

v=0

〈νr+h, w∗(t,r,h,v)〉 dv.

Since h 7→ 〈νr+h, w∗(t,r,h,v)〉 is continuous, by the dominated convergence theorem, we have

lim
h→0

{〈νr+h, τt−r−hφ〉 − 〈νr+h, τt−rφ〉}
h

= −〈νr,∇1φ̃〉. (2.66)

We now focus on the second term on the right side of (2.65). We have

〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉 =

∫ r+h

u=r

∂

∂u
〈νu, τt−rφ〉 du.

By using (2.58), we have

〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉 =

∫ r+h

u=r

(
〈νu,∇1τt−rφ〉

+
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνu(xn)

+

[
νu({0})λΦ0(νu) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}

× λΦn(νu)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνu(xn)

])
du.

Again, by applying the method of change of variables, we have

〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉 = h

∫ 1

v=0

〈νr+hv,∇1τt−rφ〉

+

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr+hv(xn)
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+

[
νr+hv({0})λΦ0(νr+hv) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}

× λΦn(νr+hv)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr+hv(xn)

])
dv.

As a result, by using the dominated convergence theorem we have

lim
h→0

{〈νr+h, τt−rφ〉 − 〈νr, τt−rφ〉}
h

= 〈νr,∇1τt−rφ〉

+

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr(xn)

+

[
νr({0})λΦ0(νr) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}

× λΦn(νr)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr(xn)

])
. (2.67)

Finally, by using (2.66) and (2.67), we have

d〈νr, τt−rφ〉
dr

=
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−rφ(x−jn )− τt−rφ(xn)

)
dνr(xn)

+

[
νr({0})λΦ0(νr) (τt−rφ(1, 0)− τt−rφ(0)) +

C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}
× λΦn(νr)(τt−rφ(xjn; 0)− τt−rφ(xn)) dνr(xn)

]
.

By integrating d〈νr,τt−rφ〉
dr

with respect to r from 0 to t, we get (2.11) for φ ∈ C1
b(U).

Then the result can be extended to the simple functions by using the monotone convergence

theorem and then to the class of functions Cb(U) from the standard arguments by using

the Dynkin π-λ theorem [56, page 497] or from the fact that C1
b(U) is dense in Cb(U).

We next prove that for φ ∈ C1
b(U), the solution (〈ηt, φ〉, t ≥ 0) to (2.11) is also a

solution to (2.10). For this, it is enough to prove the differentiability of 〈ηt, φ〉 with respect

to t. Since φ ∈ C1
b(U), the existence of d〈η0,τtφ〉

dt
follows from the dominated convergence

theorem. By using the Leibniz integral rule, we now verify the existence of the derivative of

the second term on the right side of (2.11) with respect to t. According to this rule, the first

condition is that the integrand needs to be continuous with respect to both the variables

r and t. This follows from the same arguments used in the proof of the continuity of the
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integrand in equation (2.10). The second condition is that the derivative of the integrand

with respect to t must exist and the differential should be continuous with respect to

both r and t. The derivative of the integrand with respect to t exists from the dominated

convergence theorem since φ ∈ C1
b(U) and also, it is continuous with respect to r and t from

the same arguments that we have used to prove the continuity of the integrand in (2.10).

Therefore, any process (νt, t ≥ 0) ∈ CM1(U)([0,∞)) is a solution to (2.10) if and only if it

is a solution to (2.11). Further, note that φ need not be a differentiable function in (2.11).

2.8.3 Proof of Theorem 2.1

From equation (2.11), we first make it clear that for all φ ∈ Cb(U), the operator φ 7→ 〈νt, φ〉
is a linear operator with νt(U) = 1. Hence from the Riesz-Markov-Kakutani theorem

(Theorem A.4) [69, Theorem 2.14], for νt ∈ M1(U), the existence of the unique operator

φ 7→ 〈νt, φ〉 implies the existence of the unique probability measure νt. The uniqueness

of νt also follows from the fact that Cb(U) is a separating class of M1(U) [56, p.111]. If

η1, η2 ∈ M1(U) satisfies 〈νt, φ〉 = 〈η1, φ〉 and 〈νt, φ〉 = 〈η2, φ〉 for all φ ∈ Cb(U), then we

have η1 = η2.

Given an initial measure ν0, we next prove that there exists at most one mean-field

solution by showing that there exists at most one real valued process 〈νt, φ〉 corresponding

to the mean-field. Suppose (ν1
t , t ≥ 0), (ν2

t , t ≥ 0) are two solutions to the MFEs with

initial points ν1
0 , ν

2
0 , respectively. For φ ∈ Cb(U), we then have

〈ν1
t − ν2

t , φ〉 = 〈ν1
0 − ν2

0 , τtφ〉+

∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−sφ(x−jn )− τt−sφ(xn)

)
× d(ν1

s − ν2
s )(xn)

)
ds

+

∫ t

s=0

([
ν1
s ({0})λΦ0(ν1

s ) (τt−sφ(1, 0)− τt−sφ(0))

+
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}
λΦn(ν1

s )(τt−sφ(xjn; 0)− τt−sφ(xn)) dν1
s (xn)

]
−
[
ν2
s ({0})λΦ0(ν2

s ) (τt−sφ(1, 0)− τt−sφ(0))

−
C−1∑
n=1

n+1∑
j=1

∫
· · ·
∫
Un

{
1

n+ 1

}
λΦn(ν2

s )(τt−sφ(xjn; 0)− τt−sφ(xn)) dν2
s (xn)

])
ds. (2.68)
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The first term on the right side of (2.68) can be bounded as |〈ν1
0 − ν2

0 , τtφ〉| ≤ ‖ν1
0 − ν2

0‖‖φ‖.
To simplify the second term corresponding to departures, we define a function ht,s as fol-

lows:

ht,s(xn) =

0 if n = 0,∑n
k=1 β(xk)(τt−sφ(x−jn )− τt−sφ(xn)) otherwise.

Then since φ ∈ Cb(U) and β ∈ Cb(R+), we have ht,s ∈ Cb(U). Further, we have

‖ht,s‖ ≤ 2C‖β‖‖φ‖. Using the definition of ht,s, we can write

∫ t

s=0

(
C∑
n=1

n∑
j=1

∫
· · ·
∫
Un
β(xj)

(
τt−sφ(x−jn )− τt−sφ(xn)

)
d(ν1

s − ν2
s )(xn) ds

=

∫ t

s=0

〈ν1
s − ν2

s , ht,s〉 ds.

To simplify the third term that corresponds to arrivals, we define a function ft,s,ν as follows:

for 0 ≤ n ≤ C − 1,

ft,s,ν(xn) =

0 if n = C,∑n+1
j=1

{
1

n+1

}
Φn(ν)(τt−sφ(xjn; 0)− τt−sφ(xn)) otherwise.

Then the third term is equal to
∫ t
s=0

λ
(
〈ν1
s , ft,s,ν1s 〉 − 〈ν

2
s , ft,s,ν2s 〉

)
ds. Further, we can write∣∣〈ν1

s , ft,s,ν1s 〉 − 〈ν
2
s , ft,s,ν2s 〉

∣∣ ≤ ∣∣〈ν1
s − ν2

s , ft,s,ν1s 〉
∣∣+
∣∣〈ν2

s , ft,s,ν1s − ft,s,ν2s 〉
∣∣

≤ ‖ν1
s − ν2

s‖‖ft,s,ν1s‖+ ‖ν2
s‖‖ft,s,ν1s − ft,s,ν1s‖.

Since ν2
s is a probability measure, ‖ν2

s‖ = 1. Furthermore, ‖ft,s,ν1s‖ ≤ 2d‖φ‖ and∣∣ft,s,ν1s (xn)− ft,s,ν2s (xn)
∣∣ ≤ 2d2‖φ‖

(∣∣Rn(ν1
s )−Rn(ν2

s )
∣∣+
∣∣Rn+1(ν1

s )−Rn+1(ν2
s )
∣∣) .

We can write Rn(ν1
s ) = 〈ν1

s , f
∗〉 where f ∗ is a function defined as

f ∗(xm) =

1 if m ≥ n,

0 otherwise.

We then have
∣∣Rn(ν1

s )−Rn(ν2
s )
∣∣ ≤ ‖ν1

s − ν2
s‖‖f ∗‖ = ‖ν1

s − ν2
s‖.

Finally, by using bounds for all the terms, we get

∣∣〈ν1
t − ν2

t , φ〉
∣∣ ≤ (‖ν1

0 − ν2
0‖+

∫ t

s=0

2‖β‖C‖ν1
s − ν2

s‖ ds +

∫ t

s=0

8d2λ‖ν1
s − ν2

s‖ ds
)
‖φ‖.
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Therefore we have

‖ν1
t − ν2

t ‖ ≤ ‖ν1
0 − ν2

0‖+ (2C‖β‖+ 8d2λ)

∫ t

s=0

‖ν1
s − ν2

s‖ ds. (2.69)

From the Gronwall’s inequality (Theorem A.7) [56, Theorem 5.1, p.498], for some b, c > 0,

t ∈ [0, T ], if ‖ν1
t − ν2

t ‖ ≤ b + c
∫ t
s=0
‖ν1

s − ν2
s‖ds, then it follows that ‖ν1

t − ν2
t ‖ ≤ b ect.

Therefore, from (2.69), we have ‖ν1
t − ν2

t ‖ ≤ ‖ν1
0 − ν2

0‖ e(2C‖β‖+8d2λ)t. Hence, starting from

an initial measure ν0, there exists at most one solution for the MFEs.

We now prove that there exists a process (νt, t ≥ 0) ∈ CM1(U)([0,∞)) satisfying the

mean-field model equations. This follows from the relative compactness of the sequence

{η(N)
t , t ≥ 0} in DM1(U)([0,∞)) from the proof of Theorem 2.3. In particular, we have that

every limit point of the sequence {η(N)
t , t ≥ 0} satisfies (2.11). Further, each limiting point

is almost surely continuous. This concludes that there exists a solution to the MFEs.

2.8.4 Proof of Theorem 2.4

The first part of Theorem 2.4 is a special case of the second part. Hence, it is sufficient to

prove the second part.

For t ≥ 0, η
(N)
t is the empirical probability measure on U such that η

(N)
t ({u}) for u ∈ U

denotes the fraction of servers lying in state u ∈ U at time t. From the dynamics of the

system under the SQ(d) scheme and the exchangeability of {Sk(N)(0), 1 ≤ k ≤ N}, the

collection {S(N)
k (t), 1 ≤ k ≤ N} is also exchangeable for all t ∈ [0,∞). Further, from

Theorem 2.2, we have η
(N)
t ⇒ ηt for t ∈ [0,∞) as N →∞.

To prove the result, it is sufficient to show that the following holds:

E

[
l∏

k=1

φk(S
(N)
k (t))

]
→

l∏
k=1

〈ηt, φk〉, (2.70)

for all continuous bounded mappings φk : U→ R as N →∞.

We can write∣∣∣∣∣E
[

l∏
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φk

(
S

(N)
k (t)

)]
−

l∏
k=1

〈ηt, φk〉

∣∣∣∣∣
≤

∣∣∣∣∣E
[

l∏
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φk

(
S

(N)
k (t)

)]
− E

[
l∏

k=1

〈η(N)
t , φk〉

]∣∣∣∣∣+

∣∣∣∣∣E
[

l∏
k=1

〈η(N)
t , φk〉

]
−

l∏
k=1

〈ηt, φk〉

∣∣∣∣∣ .
(2.71)
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From Theorem 2.2, the second term on the right hand side of the above inequality vanishes

as N →∞. Let Q(r, n) be the set of all permutations of the numbers {1, 2, . . . , n} taken r

at a time. Now, due to exchangeability, the permutation of states between servers does not

affect the joint distribution. Then |Q(r, n)| = (n)r where (N)k = N(N −1) . . . (N −k+ 1).

Hence, we have

E

[
l∏

k=1

φk

(
S

(N)
k (t)

)]
=

1

(N)l
E

 ∑
σ∈Q(l,N)

l∏
k=1

φk

(
S

(N)
σ(k)(t)

) .
Also, by the definition of η

(N)
t , we have

E

[
l∏

k=1

〈η(N)
t , φk〉

]
= E

[(
l∏

k=1

1

N

N∑
j=1

φk

(
S

(N)
j (t)

))]
. (2.72)

Also, let D(r, n) be the set of all r-tuples that are formed by elements chosen from

{1, 2, · · · , n}. Then |D(r, n)| = nr. Let Q(r, n) be the set of elements that are present

in D(r, n) but not in Q(r, n). Then from (2.72), we can write

E

[
l∏

k=1

〈η(N)
t , φk〉

]
=

1

N l
E
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σ∈D(l,N)
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(N)
σ(k)(t)

)
=

1

N l
E

 ∑
σ∈Q(l,N)

l∏
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(
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(N)
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)+
1

N l
E
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σ∈Q(l,N)

l∏
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(N)
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) .
Let maxk ‖φk‖ = B, then we have the bound∣∣∣∣∣E
[

l∏
k=1

φk

(
S

(N)
k (t)

)]
− E

[
l∏

k=1

〈η(N)
t , φk〉

]∣∣∣∣∣ ≤
(

1

(N)l
− 1

N l

)
|Q(l, N)|Bl +

1

N l

∣∣∣Q(l, n)
∣∣∣Bl

≤ 2Bl

(
1− (N)l

(N)l

)
.

The result follows since
(

1− (N)l
(N)l

)
→ 0 as N →∞. This completes the proof.

2.8.5 Proof of Lemma 2.4

The mean-field (ηt, t ≥ 0) is a solution to (2.11). Let us consider the function φ̂ =

I{ln∈Un: 0≤li≤yi, ∀i}. For s ≥ 0, let ηs be an absolutely continuous measure which has no

atoms, we have 〈ηs, φ̂〉 = 〈ηs, ψ〉, where ψ = I{un∈Un: 0<li<yi, ∀i}. Since there exists a sequence

of functions {fn}n≥1 ∈ Cb(U) that increase point wise to I{B} where B is an open set in
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Un, n ≥ 1, by using the monotone convergence theorem [69, Theorem 1.26] and (2.11),

we have that (2.11) is true even for the function ψ. Furthermore, since the measure ηs

is absolutely continuous for all s ≥ 0, we have that equation (2.11) is true even for the

function φ̂. Therefore, using (2.11), we can obtain the evolution equations of the process

(Pt, t ≥ 0) where Pt = (Pt(u),u ∈ U) and Pt(yn) = 〈ηt, φ̂〉. We can further simplify the

expression of the process (Pt(u),u ∈ U, t ≥ 0) obtained from (2.11) using the fact that

〈ηs, τbI{xn∈Un: 0≤xi≤yi,∀i}〉 = 〈ηs, I{xn∈Un: 0≤xi+b≤yi,∀i}〉

= 〈ηs, I{xn∈Un: 0≤xi≤yi−b, ∀i}〉.

By differentiating Pt(yn) with respect to t and after simplifications, it is verified that the

process (Pt, t ≥ 0) satisfies equations (2.18)-(2.20).

2.8.6 Proof of Lemma 2.3

From Remark 2.5, we recall that the MFEs are the dynamics of the probability distribution

of a single server loss system with capacity C in which jobs arrive according to a Poisson

process with rate λΦn(ηt) (n ≥ 0) when there are n progressing jobs. We have that the

initial distribution ϑ has a density function and our objective is to show that for given t = r,

ηr has a density function w.r.t. the Lebesgue measure. For n ≥ 1, un = (n, u1, · · · , un), we

now prove that ηr has density at un. For γi > 0 and 1 ≤ i ≤ n, let

B , {(n, y1, · · · , yn) : ui ≤ yi < ui + γi, 1 ≤ i ≤ n}. (2.73)

At time t = r, the probability that there are n progressing jobs and the ith job has age yi

such that yi ∈ [ui, ui + γi), i ≥ 1, is equal to ηr(B). Out of the n progressing jobs that are

present at time t = r, let J1 be the set of indices of all the progressing jobs that entered

the system at a time t > 0 and J2 be the set of indices of all the progressing jobs which

are present in the system from time t = 0. Precisely,

J1 , {i : r > ui, 1 ≤ i ≤ n},

and

J2 , {i : r ≤ ui, 1 ≤ i ≤ n}.

Essentially, if i ∈ J1, it implies that the age of the ith job is less than r. As the ages of

progressing jobs increase linearly with time at a unit rate, the ith job must have entered
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the system at a time t > 0. Precisely, if the ith job’s age yi satisfies yi ∈ [ui, ui + γi) and

i ∈ J1 at time t = r, then it implies that the ith job must have entered the system in the

time interval (r − ui − γi, r − ui] and its service is not finished by the time t = r. On the

other hand, if j ∈ J2, then it means that the jth job is present in the system from time

t = 0. At time t = r, if the jth job’s age yj satisfies yj ∈ [uj, uj + γj) and j ∈ J2, then its

age should lie in the interval [uj − r, uj + γj − r) at time t = 0.

Using the sets J1 and J2, we now obtain an upper bound on ηr(B) from which we

conclude that there exists a density function. Let D1 = |J1| and D2 = |J2|.

We next obtain bounds on the probability that there exists D2 jobs at time t = r such

that their ages lie in the set J2. Let B1 be the event that there exists D2 jobs at time

t = r such that their ages lie in the set J2. Note that the total number of jobs say q that

are present at time t = 0 can be more than D2 but only D2 of them should not expire by

the time t = r. Let li be the ith smallest element of the set J2. Also, let ij be the index

of the job out of q jobs which will not expire by the time t = r and its age will lie in the

interval [ulj , ulj + γlj) at time t = r. For the event B1 to occur, the state of the server at

time t = 0 should belong to the set V where

V , {(q, x1, · · · , xq) : xm ∈ R+ for m /∈ {i1, · · · , iD2}

and xm ∈ [ula − r, ula − r + γla) for m = ia, 1 ≤ a ≤ D2, 1 ≤ m ≤ q, q ≥ D2}.

A job with age x at time t = 0 will stay in the system at time t = r with probability
G(x+r)

G(x)
. Then by using all the above arguments, we get the following bound where fϑ =

(fϑ(u),u ∈ U) is the pdf of ϑ,

P(B1) ≤
C∑

q:q=D2

 ∑
(i1,··· ,iD2

)∈{1,2,··· ,q}

∫
· · ·
∫
V
fϑ(q, x1, · · · , xq)

({
D2∏
m=1

G(xim + r)

G(xim)

})
dx1 · · · dxq

 .

(2.74)

We now focus on the jobs that belong to the set J1. Let B2 be the event that for each

j ∈ J1, there is an arrival in the time interval (r − uj − γj, r − uj] and furthermore, this

job is not expired by the time t = r. Since the arrival process is a Poisson process with

rate λΦn(ηt) when there are n jobs and λΦn(ηt) ≤ λd for all n ≥ 0, for any time interval

[t1, t2], we have

P(Z1) ≤ P(Z2),

where Z1 denotes the number of arrivals to the server in the interval [t1, t2] and Z2 denotes

the number of arrivals in the interval [t1, t2] when the arrival process is a Poisson process
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with rate λd. Let ki be the ith smallest element of the set J1. Then since the arrival instants

have uniform distribution conditioned on the number of arrivals over a time interval [77,

page 325], we get

P(B2) ≤ (λd)D1

D1!

(
D1∏
j=1

G
(
ukj
)
γkj

)
. (2.75)

Finally, from (2.74) and (2.75), we have

ηt(B) ≤

 C∑
q:q=D2

 ∑
(i1,··· ,iD2

)∈{1,2,··· ,q}

∫
· · ·
∫
V
fϑ(n, x1, · · · , xn)

×

(
D2∏
m=1

{
G(xim + r)

G(xim)

})
dx1 · · · dxq

))(
(λd)D1

D1!

(
D1∏
j=1

G
(
ukj
)
γkj

))
. (2.76)

Clearly, ηt has density at u since ηt(B)→ 0 as γj → 0 for 1 ≤ j ≤ n.

2.9 Conclusions

. In this chapter, we have provided a measure-valued process approach to establish the

mean-field behavior of loss systems with SQ(d) load balancing and general service time

requirements. The extension of these results to multi-class systems where servers are

classified into different classes based on their capacities and jobs are classified into different

classes based on their service requirements follows in a similar manner mutatis mutandis

from the approach used here. Establishing the global asymptotic stability of the unique

fixed-point remains an open problem.
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Chapter 3

On Occupancy Based Randomized

Load Balancing for Large Processor

Sharing Systems

In this chapter, we show that the mean-field analysis of the SQ(d) randomized load balanc-

ing schemes can be extended to randomized schemes that use the occupancy information of

a finite number of randomly sampled servers to dispatch an incoming arrival in a large-scale

system of parallel servers. Such policies besides the SQ(d) policy also contain threshold

based policies, and d-adaptive policies and generalizations of them. In this chapter, we

present a mean-field analysis of occupancy based routing schemes for a system with a large

number of processor sharing (PS) servers as an archetype of shared resource systems. The

PS case is interesting not only because of its use in server-farm applications but also be-

cause PS scheduling is also known to be ordinarily insensitive. The analysis of PS schemes

is harder than for loss models. As in the loss model case, the MFEs are PDEs. We show

that the probability measure of occupancy defined on the set of non-negative integers Z+

obtained from a fixed-point of the mean-field also satisfies the stationary mean-field equa-

tions when the job lengths are exponentially distributed with the same average length.

If the mean-field in the exponential case has a unique fixed-point, then the fixed point

is insensitive to the job length distribution. The approach is also via a measure-valued

Markov process approach. We also provide simulation results to justify our analysis.

Organization of the Chapter The rest of the chapter is organized as follows. In

Section 3.1, we first introduce the system model, and then we present a generic framework
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for occupancy based randomized routing policies. We give additional notation used in this

chapter in Section 3.2. After that, we provide a mathematical formulation to the time

evolution of the system in Section 3.3. We then present the main results of this chapter in

Section 3.4, where we also illustrate how to use our analysis to study four occupancy based

randomized load balancing policies. We study the SQ(d) policy and three threshold based

policies that are adaptive to variations in the system load. We give proofs of the main

results in Section 3.7. In Section 3.5, we provide numerical results to study the impact

of the routing policies on the average response time, implementation complexity, and the

insensitivity of the stationary distribution as the number of servers converges to ∞. In

Section 3.6, we provide numerical results which support that the mean-field is globally

asymptotically stable (GAS) for the SQ(d) policy and also, we give some insights into the

behavior of the system in the stationary regime. Finally, we conclude in Section 3.8.

3.1 System Model and Routing Policy

In this section, we introduce the system model along with a general framework for a

class of occupancy based randomized routing policies which use the information about the

occupancy of a finite number of randomly selected servers upon an arrival to dispatch the

arrival to a server.

3.1.1 System Model

Consider a large-scale system with N servers where each server has an infinite buffer and

jobs are served according to the PS service discipline. Jobs arrive according to a Poisson

process with rate Nλ to a central job dispatcher. Upon an arrival, the job dispatcher

collects information about the occupancy of a finite number of randomly chosen servers to

decide the destination server based on a predefined routing policy. We assume that the

dispatcher has no buffer and an arrival is assumed to join a server’s buffer immediately

although the routing decision incurs some delay overhead in practice.

We assume that every server has capacity to process jobs at a unit rate and hence,

from the assumption that the service discipline is PS, if a server has n jobs in its buffer,

then every job is served at a rate of 1
n
. Furthermore, a job that is routed to a server with

occupancy n joins at a position chosen uniformly at random from n + 1 positions. We
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assume that the job lengths are distributed according to a general distribution function

G(·) with density function g(·) having the mean 1
µ
. To ensure the stability of the system,

we assume that λ < µ. The hazard rate function of the job length distribution is denoted

by β(·) defined in (2.1). Furthermore, we assume that β satisfies Assumption 2.1.1.

3.1.2 Routing Policy

Before defining the routing policy precisely, we first introduce a general framework for

occupancy dependent randomized routing policies, according to which the number of ran-

domly selected servers also referred to as potential destination servers is not a fixed value

as in the SQ(d) policy, but it is a dynamic value that takes into account the system’s con-

gestion level. In this framework, we assume that there are at most M stages to decide the

destination server for an arrival. In each stage, the dispatcher first samples a finite number

of servers and then, it decides whether to route the arrival to one of the sampled servers

or not based on the occupancies of the sampled servers. In stage i of the routing policy,

the dispatcher selects di servers uniformly at random from all the N servers, and then, it

decides whether to select or not to select a server from the list of the potential destina-

tion servers as the destination server, based on the occupancy information of the potential

destination servers that are sampled up to stage i. In stage i, if the occupancies of the

potential destination servers satisfy certain criteria as described in the routing policy, then

the dispatcher selects a potential destination server as the destination server. Otherwise,

the routing policy enters stage i + 1 in which the dispatcher samples di+1 servers and the

same procedure as in stage i is repeated until stage M . The value of di+1 may depend on

the occupancies of the potential destination servers that are sampled in stages 1 to i to

take into account the congestion level of the system. We assume that d1 is a fixed-value

but di for i ≥ 2 may depend on the occupancies of the servers that are sampled up to

stage i − 1. The routing policy is stopped at stage M in which a potential destination

server is selected as the destination server.

Let n[i] = (n
[i]
1 , · · · , n

[i]
di

) be the vector of occupancies of servers that are randomly

selected in stage i, where n
[i]
j is the occupancy of the jth potential destination server

selected in stage i. Let S[i] be the set of occupancies of all the potential destination servers

selected up to the ith stage of the routing policy given by

S[i] = {(n[1], · · · ,n[i]) : occupancies of sampled servers in stage j is n[j], 1 ≤ j ≤ i}.
(3.1)
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We assume that the dispatcher can sample at most d(max) servers to decide the destina-

tion server for an arrival. Therefore, we have
∑M

i=1 di ≤ d(max). Without loss of generality,

from now onwards, for a vector of real numbers, we refer to the number of elements in the

given vector as its size. Let S[i,j] be the set of all occupancy vectors in S[i] with size j.

Then for 1 ≤ i ≤M ,

S[i] = ∪d(max)j=1 S[i,j]. (3.2)

In the ith stage, based on the occupancies of the potential destination servers, the

dispatcher may decide to route the arrival to one of the potential destination servers if the

occupancies meet certain criteria as stated in the predefined routing policy. We indicate

whether the dispatcher selects the destination server in stage i or not by a vector of non-

negative real numbers. If the number of sampled potential destination servers up to stage i

is k, then the outcome of stage i is represented by a vector of size k+1. If (n1, · · · , nk) is the

occupancy vector of potential destination servers where k is the total number of potential

destination servers selected up to stage i, then the outcome at the end of stage i according

to the routing policy is given by (m, p1, · · · , pk) where m is a non-negative integer value

and pi is a non-negative real number for 1 ≤ i ≤ k. If the dispatcher decides to route the

arrival to one of the sampled potential destination servers in stage i as per the routing

policy, then m = 0 and (p1, · · · , pk) indicates the routing probability vector satisfying∑k
j=1 pj = 1 where pi is the probability with which the ith potential destination server is

chosen as the destination server for the arrival. In this case, we say that the outcome of

stage i is a routing probability vector. On the other hand, if the dispatcher decides to enter

stage i + 1 according to the routing policy, then m = di+1 (m ≥ 1) which indicates the

number of servers to be sampled in stage i+ 1 and (p1, · · · , pk) is the null-vector satisfying∑k
j=1 pj = 0. In this case, we say that the outcome of stage i is the null-vector.

Let Y[i] be the set of all occupancy vectors in the set S[i] for which the outcome of ith

stage is a routing probability vector. Further, let Y[i,j] be the set of elements of size j in

Y[i]. Then for 1 ≤ i ≤M ,

Y[i] = ∪d(max)j=1 Y[i,j]. (3.3)

Let Y[i] be the complement of the set Y[i] in S[i]. In the ith stage, the routing policy is

a mapping Λ(i) that maps Y[i,j] as follows:

Λ(i) : Y[i,j] 7→ (0,M1({1, 2, · · · , j})), (3.4)

where M1({1, 2, · · · , j}) denotes the set of probability measures on the set {1, 2, · · · , j}.
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For 1 ≤ k ≤ d(max), if (r1, · · · , rk) ∈ Y[i], then

Λ(i)((r1, · · · , rk)) = (di+1, 0, · · · , 0), (3.5)

where di+1 is the number of servers to be sampled in stage i+1 and the null vector (0, · · · , 0)

has size k.

Note that in the M th stage, the outcome is always a routing probability vector since the

arrival is always routed to one of the potential destination servers. We now state precisely

the class of routing policies that we study in this chapter under a common framework.

Definition 3.1. Occupancy Based Randomized Routing Policy:

Upon an arrival, in stage i, the routing policy samples di servers uniformly at random

with replacement from N servers. The randomly selected or sampled servers are referred

to as the potential destination servers for the arrival. 1 Then the routing policy in stage i

is a mapping function for 1 ≤ i ≤M and 1 ≤ j ≤ d(max),

Λ(i) : Y[i,j] 7→ (0, p1, · · · , pj)) ∈ (0,M1({1, 2, · · · , j})), (3.6)

where pi denotes the probability with which the ith potential destination server is chosen as

the destination server. Also,

Λ(i) : Y[i] ∩ S[i,j] 7→ (di+1, 0, · · · , 0)) ∈ Rj+1
+ , (3.7)

where di+1 denotes the number of servers to be sampled in stage i + 1. In stage 1, the

dispatcher always samples a fixed number of d1 servers. If the routing policy enters the last

stage M , then one of the potential destination servers is chosen as the destination server

based on the mapping Λ(M).

3.2 Additional Notation and Terminology

In this section, we provide the required additional notation and terminology that is specific

to this chapter.

For any f ∈ C1
b(Rn

+), the function f 1∑ which will appear in the mean-field equation is

defined as

f 1∑(x1, · · · , xn) =
1

n

n∑
i=1

∂f(x1, · · · , xn)

∂xi

1 As N → ∞, sampling potential servers with or without replacement would yield same mean-field

limit and hence, we use sampling with replacement to simplify the notation.
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Since the rate at which a job is served depends on the number of progressing jobs of

the server that processes it, we keep track of the status of a progressing job by using its

age defined as the amount of service received since its arrival. We then use the notation

(n, a1, · · · , an) to keep track of the status of a server where n is the number of progressing

jobs and ai is the age of the ith progressing job. If a job arrives at time t, then its age a at

time t+ h is given by

a =

∫ t+h

s=t

1

r(s)
ds,

where r(s) denotes the instantaneous number of progressing jobs at the server at time s.

Let Un be the set of all possible states of a server when there are n progressing jobs, i.e.,

Un = {(n, a1, · · · , an) : ai ∈ R+, 1 ≤ i ≤ n}.

If a server is idle, then its state lies in the set

U0 = {0}.

Let U be the set defined as

U = ∪n≥0Un,

and hence, U is the set of all possible server states. Without loss of generality, we write an

element of the form (n, u1, · · · , un) as un to indicate that it belongs to the set Un for n ≥ 0

and also, we write (n, u1, · · · , un) as u to say that it is an element in U. We associate the

space U with the metric dU where for u = (n, u1, · · · , un) and v = (m, v1, · · · , vm), dU(u,v)

is defined as

dU(u,v) =


∑n

i=1 |ui − vi| if n = m

|m− n| otherwise.

For n ≥ 1, Un is a complete and separable, and Polish space. Furthermore, U is a Polish

space as it is the union of a countable set of disjoint Polish spaces. Also, U is separable

and complete.

The restriction of a measure ν ∈MF (U) to the space U0 is a Dirac measure with mass

at (0). Also, if ν({xn}) = 0 for xn ∈ Un, n ≥ 1, then we say that ν is absolutely continuous

at xn. If ν({yn}) = 0 for all yn ∈ Un, n ≥ 1, then we say that ν is absolutely continuous

with respect to Lebesgue measure. For every i ≥ 1 and (x1, · · · , xi) ∈ Ri
+, if ∂f(i,x1,··· ,xi)

∂xj

is defined for all 1 ≤ j ≤ i, then f is said to be differentiable. From this definition, our

analysis uses the fact that f = I{Un} is differentiable for n ≥ 1.
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Let Ξ : U 7→ R and ξ : U 7→ R be defined as for (n, x1, · · · , xn) ∈ Un,

Ξ(n, x1, · · · , xn) = n,

and

ξ(n, x1, · · · , xn) =

0 for n = 0,∑n
i=1 xi otherwise .

Note that if a server state has distribution ν, then 〈ν,Ξ〉 and 〈ν, ξ〉 indicate the average

number of progressing jobs and the average sum of ages of the progressing jobs, respectively.

The following transition operators on functions and measures play a crucial role in the

mathematical modeling of the time evolution of the system. For b > 0, let τ̃+
b : U 7→ U be

the transition operator defined as

τ̃+
b (n, u1, . . . , un) =

0 if n = 0,

(n, v1, · · · , vn) otherwise,

where vi = ui + b
n
, for 1 ≤ i ≤ n. Also, for any b > 0, f ∈ Kb(U), let τ̃b : Kb(U) → Kb(U)

be the transition operator defined as

τ̃bf(u) = f(τ̃+
b u),

for u ∈ U. Similarly, let τ̃bν ∈ MF (U) be the shifted measure of ν satisfying that for

B ∈ B(U)

τ̃bν(B) = ν(τ̃+
b (B)).

For ν ∈MF (U), the measure τ̃bν ∈MF (U) satisfies

〈τ̃bν, f〉 = 〈ν, τ̃bf〉 (3.8)

for all f ∈ Kb(U). The uniqueness of the measure τ̃bν in (3.8) follows from the Riesz-

Markov-Kakutani theorem given in Appendix A.4 [80]. We use (3.8) in computing the

generator of the measure-valued Markov process (η
(N)
t , t ≥ 0) to be defined in Section 3.4

which describes the time evolution of the system.

3.3 System Dynamics

In this section, we first define the state of a server using which we then define the system

state. The system state descriptor is defined such that the time evolution of the system
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can be described by the time evolution of a measure-valued Markov process. As stated

earlier, we keep track of the status of a progressing a job by using its age. We say that

a server lies in the state (n, a1, · · · , an) if it has n progressing jobs and the age of the ith

progressing job is equal to ai, 1 ≤ i ≤ n. If a server is idle, then its state is equal to (0).

Since the routing policy is symmetric to servers as server identities have no role to play, it

is sufficient to keep track of the total number of servers lying in each possible server state

instead of each individual server’s state to model the time evolution of the system by a

measure-valued Markov process. Hence, we use the following system state descriptor.

Definition 3.2. System State Descriptor:

Let S
(N)
i (t) be the state of the ith server at time t, then the state of the system at time t is

given by

η
(N)
t =

N∑
i=1

δ
S
(N)
i (t)

. (3.9)

Hence, the number of servers lying in a given state (m, z1, · · · , zm) at time t is equal to

η
(N)
t ({(m, z1, · · · , zm)}).

For given η
(N)
t and h > 0, the value of η

(N)
t+h depends on the events that occur in the

interval (t, t+h]. In the time interval (t, t+h], there can be no event (arrival or departure)

or some events (arrivals and departures) can occur in the system. By considering that

h is sufficiently small, the probability that multiple events occur in the interval (t, t + h]

can be neglected. The departure events can be modeled by using the hazard rate function

β(x) = g(x)

G(x)
which indicates the instantaneous rate of departure of a job conditioned on

its age is x. Precisely, if a job has age x at time t, then the probability that this job

departs the system when its age is less than x+y is equal to G(x+y)−G(x)

G(x)
= β(x)y+o(y). If

the number of progressing jobs at a server with state say (n, a1, · · · , an) at time t remains

constant in the interval (t, t+ h], then its state becomes τ̃+
h (n, a1, · · · , an) at time t+ h.

3.4 Main Results

In this section, we give the main results of this chapter.

Let us consider an occupancy based randomized routing policy which maps occupancies

of the potential destination servers up to stage k to an outcome using a mapping function

Λ(k). In stage k, for n = (n1, · · · , ni) ∈ Y[k,i], let q[k,i](n; j) be the probability with which
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the jth potential destination server is chosen as the destination server out of i potential

destination servers. We begin with the result on the probability with which the destination

server of an arrival lies in the given state (m,x1, · · · , xm).

Lemma 3.1. For η
(N)
t = ν, let Qn( ν

N
) = ν({Un})

N
be the fraction of servers with n jobs at

time t. Then, an arrival at time t is routed to a server with state (m,x1, · · · , xm) with

probability equal to

pr(ν;m,x1, · · · , xm) =
ν{(m,x1, · · · , xm)}

N
Φm

( ν
N

)
, (3.10)

where

Φm

( ν
N

)
=

M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

i∑
j=1

I{nj=m}q
[k,i](n; j)

i∏
r=1, r 6=j

Qnr

( ν
N

)
. (3.11)

Proof. See Section 3.7.1.

We consider the filtration

F (N)
t = ∩ε>0(σ(η(N)

s : s ≤ t+ ε)). (3.12)

Let A(N)(·) be the generator of the Markov process (η
(N)
t , t ≥ 0). Using the Dynkin’s

formula [56], we have the following result.

Theorem 3.1. The process (η
(N)
t , t ≥ 0) is a Feller-Dynkin process in DMF (U)([0,∞)). Let

φ ∈ C1
b(U), then the process (M

(N)
t (φ), t ≥ 0) defined as

M
(N)
t (φ) = 〈η(N)

t , φ〉 − 〈η(N)
0 , φ〉 −

∫ t

s=0

A(N)〈η(N)
s , φ〉 ds (3.13)

is a square integrable F (N)
t -martingale and it is an RCLL process.

Proof. See Section 3.7.3.

From the process (η
(N)
t , t ≥ 0), let us define the normalized process (η

(N)
t , t ≥ 0) where

η
(N)
t =

η
(N)
t

N
. (3.14)

The main objective of this chapter is to obtain the limiting process of the normalized

sequence of processes {(η(N)
t , t ≥ 0)}N≥1 when N → ∞. For our analysis, we make the

following assumption.
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Assumption 3.4.1. The sequence {η(N)
0 }N≥1 satisfies

(η
(N)
0 , 〈η(N)

0 ,Ξ〉, 〈η(N)
0 , ξ〉)⇒ (η0, 〈η0,Ξ〉, 〈η0, ξ〉), (3.15)

where η0 ∈M1(U) is an absolutely continuous measure with 〈η0,Ξ〉 <∞ and 〈η0, ξ〉 <∞.

We can interpret the conditions 〈η0,Ξ〉 < ∞ and 〈η0, ξ〉 < ∞ as follows. If η0 is the

probability measure of the state of a server, then both the average number of jobs 〈η0,Ξ〉
and the average sum of ages of jobs 〈η0, ξ〉, are finite.

On comparing Assumptions 3.4.1 and 2.4.1, we make an extra assumption to analyze

the PS model that the average occupancy 〈η0,Ξ〉 w.r.t. the limiting measure η0 is finite.

This condition is used to show that the sequence {(η(N)
t , t ≥ 0)}N≥1 is tight.

We now state the main result of the chapter on the convergence of sequence {(η(N)
t , t ≥

0)}N≥1 as N →∞ to the mean-field limit.

Theorem 3.2. Under Assumptions 2.1.1 and 3.4.1, we show that (η
(N)
t , t ≥ 0)⇒ (ηt, t ≥

0) where the process (ηt, t ≥ 0) is a unique solution to the following equation with the initial

point η0 ∈M1(U), for all φ ∈ Cb(U),

〈ηt, φ〉 = 〈η0, τ̃tφ〉+
∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
(τ̃t−sφ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)

−τ̃t−sφ(n, x1, · · · , xn)) dηs(n, x1, · · · , xn) + λ

[
(ηs({0})Φ0 (ηs) (τ̃t−sφ(1, 0)− τ̃t−sφ(0)))

+
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}
Φn (ηs) (τ̃t−sφ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)

− τ̃t−sφ(n, x1, · · · , xn)) dηs(n, x1, · · · , xn)

])
ds. (3.16)

We refer to equation (3.16) as the mean-field equation and its unique solution is referred

to as the mean-field limit.

Proof. See Section 3.7.4.

For any T > 0, under the assumption of exchangeability of random variables that repre-

sent servers’ states at time t = 0, any finite set of servers at time t = T are asymptotically

independent. This proof is similar to the proof of Theorem 2.4 and hence, we omit the

proof. Furthermore, ηt represents the distribution of a server’s state as N →∞ at time t.
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We now show that the mean-field limit is the unique solution of a set of partial differ-

ential equations. We next show that the measure ηt at time t is absolute continuous w.r.t.

the Lebesgue measure and hence, it has a density function.

Lemma 3.2. The measure ηt at time t has a density function w.r.t. the Lebesgue measure

for almost all un ∈ Un, n ≥ 1.

Proof. See Section 3.7.6.

Let pt(n, x1, · · · , xn) be the density of ηt at (n, x1, · · · , xn) for n ≥ 1 and let Pt(0) be

equal to ηt({0}). Then we construct a probability distribution function Pt = (Pt(u),u ∈ U)

defined as

Pt(n, y1, · · · , yn) =

∫ y1

x1=0

· · ·
∫ yn

xn=0

pt(n, x1, · · · , xn) dx1 · · · dxn, (3.17)

where Pt(n, y1, · · · , yn) denotes the probability that at time t, a server has n jobs and the

ith job (1 ≤ i ≤ n) has age at most yi when N → ∞. From the mean-field equation,

since there exists a sequence of bounded continuous functions that converge monotonically

to an indicator function of an open set, by using the monotone convergence theorem [69,

Theorem 1.26], we obtain the following differential equations. The proof follows mutatis

mutandis from the arguments of proof of Corollary 2.4 except that we replace τ with τ̃ .

Corollary 3.1. The probability distribution function Pt = (Pt(u),u ∈ U) satisfies the

PDEs
dPt(0)

dt
=

∫ ∞
y=0

β(y)

(
∂Pt(1, y)

∂y

)
dy − λΦ0(Pt)Pt(0) (3.18)

and for n ≥ 1,

dPt(n, y1, · · · , yn)

dt
= −

n∑
i=1

{
1

n

}
∂Pt(n, y1, · · · , yn)

∂yi

+
n+1∑
i=1

∫ ∞
xi=0

{
β(xi)

n+ 1

}(
∂Pt(n+ 1, y1, · · · , yi−1, xi, yi, · · · , yn)

∂xi

)
dxi

−
n∑
i=1

∫ yi

xi=0

{
β(xi)

n

}(
∂Pt(n, y1, · · · , yi−1, xi, yi+1, · · · , yn)

∂xi

)
dxi

+
n∑
i=1

λΦn−1(Pt)Pt(n− 1, y1, · · · , yi−1, yi+1, · · · , yn)− λΦn(Pt)Pt(n, y1, · · · , yn), (3.19)
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where Φn(Pt) is the same as in equation (3.11) except that we replace Qn( ν
N

) with

Qn(Pt) = limb→∞ Pt(n, b, · · · , b).

The above mean-field PDEs (3.18)-(3.19) correspond to the dynamics of a single server

PS system in which the job arrival process is a Poisson process with rate λΦn(Pt) when the

server has n jobs and the current distribution is Pt at time t. Hence, the MFEs represent

the dynamics of a non-linear Markov process whose generator is a function of the current

distribution of the Markov process.

The stationary behavior of the mean-field is discussed below. Let θ be a fixed-point of

the mean-field (Pt, t ≥ 0) and let Rn(θ) =
∑∞

j=n limb→∞ θ(j, b, · · · , b). Then we consider

the following class of fixed-points Y of the mean-field defined as

Y =

{
θ :
∑
n≥1

Rn(θ) <∞ and
∞∑
n=1

n∏
i=1

λΦi−1(θ)

µ
<∞

}
. (3.20)

If θ ∈ Y , since
∑

n≥1Rn(θ) < ∞, the average occupancy obtained from θ is finite. Fur-

thermore, as
∑∞

n=1

∏n
i=1

λΦi−1(θ)
µ

< ∞, we can obtain a distribution from θ as in (3.124)

and (3.125) with arrival rate λΦn(θ) when there are n jobs. We exploit this logic to obtain

the following result.

Theorem 3.3. Any fixed-point π = (π(u),u ∈ U) ∈ Y of the mean-field (Pt, t ≥ 0)

satisfies

π(n, y1, · · · , yn) = Γnµ
n

n∏
i=1

∫ yi

xi=0

G(xi) dxi. (3.21)

where Γ = (Γn, n ≥ 0) is a fixed-point of the mean-field when job lengths are exponentially

distributed with the same mean 1
µ

. Under the assumption of exponential JLDs, if the

mean-field of the occupancy process has a unique fixed-point, then the fixed-point is unique

when job lengths are generally distributed. Furthermore, the fixed-point is insensitive since∫∞
x=0

G(x) dx = 1
µ

which implies

lim
b→∞

π(n, b, · · · , b) = Γn. (3.22)

Proof. See Section 3.7.2.

The benefit of our mean-field analysis of occupancy based randomized routing schemes

is that, to obtain the mean-field limit for any routing policy, we just need to obtain the

rate function Φm(·) for m ≥ 0 given in (3.11) and the final mean-field equation is then

given by (3.19).
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We now conclude our analysis by applying our results to four policies. For a given

vector n = (n1, · · · , nk), let min(n) be the minimum value of the set {n1, · · · , nk} defined

as

min(n) = min
1≤j≤k

nj

and let

Bmin(n) = {j : nj = min(n), 1 ≤ j ≤ k}.

Suppose |Bmin(n)| be the size of the set Bmin(n).

Definition 3.3. Policy 1: This policy is the SQ(d) routing policy defined in Defini-

tion 2.1.1. For this policy, the number of stages is equal to one. For n = (n1, · · · , nd), we

have

q[1,d])(n; j) =

 1
|Bmin(n)| if nj = min(n),

0 otherwise.
(3.23)

As a consequence, upon simplification, we get that

λΦm(Pt) = λ
{(Rm(Pt))

d − (Rm+1(Pt))
d}

{Rm(Pt)−Rm+1(Pt)}
, (3.24)

where Rm(Pt) =
∑∞

j=m Pt(j,∞, · · · ,∞).

We presented the analysis of the SQ(d) policy for the case of general JLDs in [41].

Definition 3.4. Policy 2: In this policy, upon an arrival, d servers are chosen uniformly

at random. Out of these potential destination servers, a server is chosen as the destination

server uniformly at random from the list of the potential destination servers whose occu-

pancy is less than or equal to α if the list is not empty. Otherwise, the potential destination

server that has the least occupancy is chosen as the destination server with ties broken uni-

formly at random. In this policy, there is only one stage and the number of sampled servers

is equal to d. Then for n = (n1, · · · , nd) and let a =
∑d

i=1 I{ni≤α}, we have

q[1,d](n; j) =


1
a

if nj ≤ α,

1
|Bmin(n)| else if nj > α and nj = min(n),

0 otherwise.

(3.25)

As a result, upon simplification,
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λΦm(Pt) =


λ{1−(Rα+1(Pt))d}
{1−Rα+1(Pt)}

if m ≤ α,

λ{(Rm(Pt))d−(Rm+1(Pt))d}
{Rm(Pt)−Rm+1(Pt)}

otherwise.

(3.26)

Definition 3.5. Policy 3: In this policy, upon an arrival, the dispatcher selects a server

uniformly at random. If the chosen server has occupancy i, then dispatcher selects further

min(i, d − 1) servers uniformly at random, and the potential destination server with the

minimum occupancy among all the potential destination servers is chosen as the destination

server with ties broken uniformly at random. In this policy, there are two stages. In the

first stage, the dispatcher first selects a server uniformly at random, and this server is

chosen as the destination if it has no jobs. Otherwise, the policy enters the second stage

in which min(i, d− 1) servers are selected uniformly at random. The destination server in

the second stage is the server with the least occupancy among all the min(i+ 1, d) potential

destination servers. Therefore, we have

q[1,1](n1; 1) =

1 if n1 = 0,

0 otherwise,
(3.27)

and for n = (n1, · · · , nl),

q[2,l](n; j) =

 1
|Bmin(n)| if nj = min(n),

0 otherwise.
(3.28)

Then Φm(·) is given by

Φ0(Pt) = 1+
d−2∑
i=1

Qi(Pt)
{(R0(Pt))

i − (R1(Pt))
i}

{R0(Pt)−R1(Pt)}
+Rd−1(Pt)

{(R0(Pt))
d−1 − (R1(Pt))

d−1}
{R0(Pt)−R1(Pt)}

,

(3.29)

for m ≤ d− 1,

Φm(Pt) = (Rm(Pt))
m +

d−1∑
i=m+1

Qi(Pt)
{(Rm(Pt))

i − (Rm+1(Pt))
i}

{Rm(Pt)−Rm+1(Pt)}

+Rd(Pt)
{(Rm(Pt))

d−1 − (Rm+1(Pt))
d−1}

{Rm(Pt)−Rm+1(Pt)}
, (3.30)
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and for m ≥ d,

Φm(Pt) =
{(Rm(Pt))

d − (Rm+1(Pt))
d}

{Rm(Pt)−Rm+1(Pt)}
, (3.31)

where Qi(Pt) = Ri(Pt)−Ri+1(Pt).

Definition 3.6. Policy 4: In this policy, the dispatcher selects sequentially at most d

servers uniformly at random, and the routing decision is made after every selection. For

1 ≤ i ≤ d − 1, after the ith selection, the arrival is routed to the ith potential destination

server if its occupancy is less than or equal to α. Otherwise, the dispatcher selects a

server uniformly at random for the (i + 1)th time, and the same procedure is repeated as

in the case of the ith potential destination server. If the (d − 1)th potential destination

has occupancy greater than α, then another server is selected uniformly at random, and

the potential destination server with the minimum occupancy among all the d potential

destination servers is chosen as the destination server with ties broken uniformly at random.

In this case, the policy has d stages. In the ith (1 ≤ i ≤ d− 1) stage, the dispatcher selects

a server uniformly at random, and this server is selected as the destination if its occupancy

is less than or equal to α. In the dth stage, the server with the minimum occupancy is

chosen as the destination. For 1 ≤ i ≤ d− 1 and n = (n1, · · · , ni), we have

q[i,i](n; j) =


0 if i 6= j,

1 else if i = j, ni ≤ α,

0 else if i = j, ni > α,

(3.32)

and if i = d, then

q[d,d](n; j) =

 1
|Bmin(n)| if nj = min(n)

0 otherwise.
(3.33)

As a result, upon simplification, if m ≤ α, then

λΦm(Pt) = λ
1−Rd

α+1(Pt)

1−Rα+1(Pt)
. (3.34)

On the other hand, if m > α, then

λΦm(Pt) = λ
{(Rm(Pt))

d − (Rm+1(Pt))
d}

{Rm(Pt)−Rm+1(Pt)}
. (3.35)
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Remark 3.1. Since the arrival rate function Φm(·) is the same for both Policy 2 and

Policy 4, they result in the same mean-field equation. Hence, the fixed-point of the mean-

field coincides for these two policies. However, the number of servers that are randomly

selected to implement Policy 4 is adaptive to the system’s traffic level whereas Policy 2

always selects d servers to decide the destination server for an arrival. Hence, Policy 4 is

preferable over Policy 2 due to its lower complexity.

The main challenge in the mean-field analysis of a routing policy is to show that the

fixed-point of the mean-field is unique. Furthermore, we need to show that the stationary

distribution of a server state as N →∞ coincides with the unique fixed-point of the mean-

field. Under the assumption of exponential JLDs, for Policy 1, it was shown in [9] (as in

the FCFS case in [7]) that the stationary distribution of a server’s state coincides with the

unique fixed-point of the mean-field. In this chapter, we show that this result is true for the

routing policies 2 and 4 based on the result that the mean-field is quasi-monotonic in these

cases. For Policy 3, we could not show the uniqueness of a fixed-point of the mean-field.

Furthermore, the mean-field equation is a complex equation to prove its monotonicity. For

this policy, proving the uniqueness of a fixed-point of the mean-field and its global stability

are still open problems.

Theorem 3.4. Under the assumption of exponential JLDs, for Policy 2 and Policy 4,

the stationary distribution of a server state as N → ∞ coincides with the unique global

asymptotically stable fixed-point of the mean-field.

Proof. See Section 3.7.8.

Remark 3.2. For Policies 1, 2, and 4, from Theorem 3.3 and Theorem 3.4, since the

exponential case has a unique fixed-fixed point, there exists a unique fixed-point for the case

of general JLDs. Furthermore, the fixed-point is insensitive to the JLDs. We conjecture

that this also holds for Policy 3.

3.5 Numerical Results

In this section, we present numerical results to investigate the impact of the four routing

policies on the system performance in terms of the average response time for an arrival,

complexity in terms of the average number of sampled servers per arrival, and the insensi-

tivity of the stationary distribution of the stochastic system when N →∞. Our numerical
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results suggest that as N → ∞, the stationary distribution of occupancy of a server is

insensitive for all the four policies which we study in this chapter. We choose the following

parameters for our results: d = 3, µ = 1, N = 300, and α = 1.

System Performance Versus Complexity

We now study the trade-off between the system performance and complexity of a routing

policy. For this, we assume that job lengths are exponentially distributed with mean 1
µ
.

The unique fixed-point of the mean-field can be computed numerically by computing the

unique probability vector Γ = (Γn, n ≥ 0) that satisfies for n ≥ 0,

λΦn(Γ) = Γn+1µ, (3.36)

where Φn(Γ) is the same as in equation (3.11) except that we replace Qn( ν
N

) with Γn. Then

the average response time E(Ts) is given by

E(Ts) =
1

λ

{∑
i≥1

(∑
j≥i

Γj

)}
. (3.37)

In Figure 3.1, we plot the resulting average response time versus the system load λ for all

the four routing policies and the optimal JSQ policy.

We now present results on the average number of probed servers in deciding the desti-

nation server for an arrival in Table 3.1. From Figure 3.1 and Table 3.1, it is clear that a

Table 3.1: The average number of probed servers per arrival

λ Policy 1 Policy 2 Policy 3 Policy 4 JSQ

0.6 3 3 1.7875 1.3511 300

0.7 3 3 2.0003 1.5238 300

0.8 3 3 2.2535 1.7823 300

0.9 3 3 2.5769 2.2020 300

0.95 3 3 2.7690 2.5238 300

policy achieves better system performance if the dispatcher probes higher number of servers

and selects the server with the maximum number of available resources as the destination

server. Hence, the JSQ policy which chooses the server with the least occupancy out of

N servers as the destination for an arrival achieves the best system performance [5, 6].

We observe that Policy 1 that selects the server with the least occupancy from a set of d
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Figure 3.1: The average response time versus λ

randomly selected servers achieves good system performance but with a significant drop

in complexity over the JSQ policy. From Figure 3.1, it can be seen that Policies 2 and 4

achieve the same system performance as they result in the same arrival rate function Φn(·)
for n ≥ 0, but Policy 4 probes a significantly smaller number of servers to dispatch an

arrival when compared to Policy 2. On the other hand, Policy 3 probes higher number

of servers when compared to Policy 4 and hence, it achieves better system performance.

Both Policies 3 and 4 are robust to the variations in the system load as they probe lower

number of servers when the system load is low, and they probe higher number of servers

when the system load is high. Hence, all the Policies 1, 3, and 4 result in similar system

performance when the system load is high. It is clear that Policy 3 is desirable in practice

when there is a variation in the system load as it achieves the better trade-off between the

performance and the complexity.

Insensitivity of the System When N →∞

We now study numerically that for different classes of JLDs, when N →∞, the stationary

distribution of occupancy of a server coincides with the unique fixed-point of the mean-field
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of the case when job lengths are exponential with the same average job length.

Let Γ(N) = (Γ
(N)
i , i ≥ 0) be the stationary distribution of occupancy of a server in the

system with parameter N . Here, Γ
(N)
i denotes the stationary probability that there are i

jobs in progress at a server in the system with N servers in which arriving jobs are routed

according to a predefined routing policy. In simulation results, we assume that servers are

selected randomly without replacement, whereas in our analysis, we assume that servers

are selected with replacement. We use PASTA property to compute Γ(N) by simulating

the system up to 5 × 106 job arrivals. Let Γ(exp) = (Γ
(exp)
i , i ≥ 0) be the fixed point of

the mean-field limit of the occupancy process and we compute Γ(exp) numerically by the

stationary mean-field equation. We now compute the total variation distance between Γ(N)

and Γ(exp) defined as

ϑtv(Γ
(N),Γ(exp)) =

∑
i

∣∣∣Γ(N)
i − Γ

(exp)
i

∣∣∣ . (3.38)

We consider the following JLDs in our study: Exponential (Exp), Constant (Const),

Power-law (PL), and mixed-Erlang (ME) distributions. The Power-law distribution has

CDF

G(y) =

1− 1

3y
3
2

if y ≥ 1
3

0 otherwise.
(3.39)

In the mixed-Erlang case, with probability pi the distribution has i (1 ≤ i ≤ 2) expo-

nential phases and each exponential phase has intensity µp. We choose p1 = .4, p2 = 0.6,

and the value of µp is computed by using the formula of the average job length given by

2∑
i=1

ipi
µp

=
1

µ
.

From Tables 3.2 and 3.3, it is evident that the fixed-point of the mean-field in the expo-

nential case approximates Γ(N) for different classes of JLDs having the same average job

length.

3.6 On the Stationary Regime under the SQ(d) Policy

In this section, for the SQ(d) policy, we provide some numerical results to show that the

fixed-point of the mean-field is GAS. The results of this section were presented in [41]. We

consider the case of mixed-Erlang distributions that allow for efficient numerical evaluation
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Table 3.2: ϑtv(Γ
(N),Γ(exp)) for different JLDs for λ = 0.7 and N = 300.

Policy Exp Const PL ME

Policy 1 0.0020 0.0017 0.0018 0.0023

Policy 2 0.0017 0.0017 0.0026 0.0015

Policy 3 0.0029 0.0015 0.0016 0.0035

Policy 4 0.0016 0.0021 0.0020 0.0016

Table 3.3: ϑtv(Γ
(N),Γ(exp)) for different JLDs for λ = 0.8 and N = 300.

Policy Exp Const PL ME

Policy 1 0.0071 0.0044 0.0050 0.0061

Policy 2 0.0038 0.0036 0.0038 0.0031

Policy 3 0.0040 0.0041 0.0070 0.0066

Policy 4 0.0049 0.0051 0.0040 0.0039

of the MFEs. We also discuss the propagation of chaos in the stationary regime and some

existing related works. If one can prove the GAS of the mean-field, then we can exploit the

Prohorov’s theorem [56] to conclude that the stationary distribution of a server’s occupancy

as N → ∞ coincides with the fixed-point of the mean-field [9]. Proving the GAS of the

mean-field is extremely difficult since the mean-field does not possess any monotonicity

properties when job lengths are generally distributed unlike the exponential case studied

in [9, 37]. We also provide simulation results to support the convergence of the stationary

distribution of a server’s occupancy in a finite N system to the fixed-point of the mean-field

when N → ∞. Taken together these results provide evidence of the insensitivity of the

stationary distribution of the limiting system as N →∞.

The numerical evaluation of the MFEs when JLDs are mixed-Erlang using the Eu-

ler’s method was performed with a step size of 2 × 10−3. From the case of exponential

distributions, we know that the stationary probability that there are at least k jobs at

a server under the SQ(d) policy in the limiting system is given by (λ
µ
)
dk−1
d−1 [9] for given

values of λ
µ

(< 1). We assume that the servers have a finite buffer size of C chosen such

that (λ
µ
)
dC−1
d−1 is negligible. We consider the system parameters as follows. The job lengths

have Mixed-Erlang distributions under which a job length is sampled with probability pi

(i ∈ {1, 2, . . . , D}) from an Erlang distribution having i exponential phases with rate µp.

Let us define the state of a server with n progressing jobs having lj phases remaining
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for the jth progressing job by l = (n, l1, . . . , ln) with 1 ≤ lj ≤ D, 1 ≤ j ≤ n. For n ≥ 1,

let Sn = {(n, l1, . . . , ln) : 1 ≤ li ≤M, 1 ≤ i ≤ n} be the set of all possible states of a server

when there are n progressing jobs and S0 = {(0)} denotes the state of a server when there

are no progressing jobs. We then define S to be the set of all possible states of servers

given by

S = ∪Cn=0Sn. (3.40)

We can model the system evolution by using a Markov process XN(t) = (XN
l (t), l ∈ S)

where XN
l (t) denotes the fraction of servers lying in state l at time t. Since the underlying

space S is countable and finite-dimensional, the mean-field limit can be established by the

same procedure as that of the exponential case [9].

It can be shown that the mean-field equations are given by the following system of

ordinary differential equations,

x(0,u) = u, (3.41)

ẋl(t,u) = hl(x(t,u)), (3.42)

and h = (hl, l ∈ S) with the mapping hl given by

hl(x(t,u)) =
n∑
b=1

{plb
n

}
x(n−1,l1,l2,··· , lb−1,lb+1,··· , ln)(t,u)λ

(ME)
n−1 (x(t,u))−xl(t)λ

(ME)
n (x(t,u))I{n<C}

+
n+1∑
b=1

{
µp

n+ 1

}
I{n<C}x(n+1,l1,··· ,lb−1,1,lb,··· , ln)(t,u)

+
n∑
b=1

{µp
n

}
x(n,l1,··· ,lb−1,lb+1,lb+1,··· , ln)(t,u)− µpx(n,l1,··· ,ln)(t,u), (3.43)

where

λ(ME)
n (r) =

{
λ∑

l∈Sn rl

}( C∑
i=n

∑
l∈Si

rl

)d

−

 C∑
j=n+1

∑
l∈Sj

rl

d
 . (3.44)

We numerically solved the MFEs by choosing the following parameters: d = 2, µ = 1,

C = 7, D = 2, p1 = 0.4 and p2 = 0.6.

The unique fixed-point π = (πl, l ∈ S) is given by

π(n,l1,··· ,ln) = π(exp)(n)
n∏
i=1

{ ∑D
j=li

pj∑D
r=1 rpr

}
, (3.45)
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where π(exp) = (π(exp)(n), 0 ≤ n ≤ C) is the unique fixed-point of the mean-field in the

exponential case.

Furthermore, we define a process y(t,v) = (yn(t,v), 0 ≤ n ≤ C) referred to as the tail

mean-field that satisfies y(0,v) = v and yj(t,v) =
∑C

i=j

∑
l∈Si xl(t,u), and its fixed-point

is denoted by π∗. We now define following metrics,

dtv(a,b) =
∑
l∈S

|al − bl| , (3.46)

ϑtv(w, z) =
∑

0≤n≤C

|wn − zn| , (3.47)

ϑds(w, z) =
∑

0≤n≤C

(wn − zn). (3.48)

We observed that the mean-field is GAS. In particular, in Figure 3.2, we plot dtv(x(t,u), π)

as a function of t for three different initial points u1,u2 and u3. Similarly, in Figure 3.3,

we plot ϑtv(y(t,v), π∗) as a function of t for three different initial points v1,v2 and v3.

The mean-field x(t,u) and its tail mean-field y(t,v) converge to their fixed-points for three

different initial points. This provides evidence for the result that x(t,u) and y(t,v) are

globally stable. However, ϑtv(y(t,v), π∗) is not monotonically decreasing with t. Hence,

the total variation distance cannot be used for constructing a Lyapunov function to show

the global asymptotic stability of the mean-field x(t,u) and its tail mean-field y(t,v).

We also observed that the tail mean-field is not quasi-monotonic, i.e., if v1 ≥ v2 (by

component wise), then we do not always have y(t,v1) ≥ y(t,v2). We recall that when

the job lengths are exponential, the tail mean-field is quasi-monotonic. Figure 3.4 plots

ϑtv(y(t,v), π∗) and Figure 3.5 plots ϑds(y(t,v), π∗) as a function of t for different initial

points. In particular, we select v4 and v7 to be less than π∗ whereas v5, v6, v8, and v9 are

chosen to be greater than π∗. The violation of the quasi-monotonicity property is evident

for the case of λ = 0.9 with initial point v7. This is because since v7 < π∗, if we have

quasi-monotonicity, ϑds(y(t,v), π∗) must be always a negative value. This property does

not hold as we can see in Figure 3.5 and hence, the mean-field is not quasi-monotonic.

The SQ(d) policy even for small values of d improves the system performance signifi-

cantly. We plot the average response time (E(Ts)) of a job under the SQ(d) policy and the

random routing scheme (d = 1) in Figure 3.6. The expression for E(Ts) under the SQ(d)

policy is given by

E(Ts) =
1

λ

∑
i≥1

(
λ

µ

) di−1
d−1

(3.49)
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Figure 3.2: dtv(x(t, u), π) versus t
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Figure 3.3: ϑtv(y(t, v), π∗) versus t

103



0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (t)

ϑ
tv

(y
(t

,v
),

 π
*)

 

 

λ=0.7, v=v
4

λ=0.7, v=v
5

λ=0.7, v=v
6

λ=0.9, v=v
7

λ=0.9, v=v
8

λ=0.9, v=v
9

Figure 3.4: ϑtv(y(t, v), π∗) versus t
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Figure 3.5: ϑds(y(t, v), π∗) versus t
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Figure 3.6: The average response time (E(Ts)) versus λ

and for the random routing, we have

E(Ts) =
1

λ

∑
i≥1

(
λ

µ

)i
. (3.50)

We also plot the simulation results in Figure 3.6 by considering a system with N = 100

and exponential JLDs. It is clear that the SQ(d) policy reduces the average response time

significantly over the random routing policy (d = 1).

3.6.1 On the Propagation of Chaos in the Stationary Regime

We now discuss the relationship between the propagation of chaos in the stationary regime,

the tightness of the stationary distributions {π(N)}N≥1 of the empirical process, and the

global asymptotic stability of the fixed-point of the mean-field. For simplicity, we assume

that the JLDs are mixed-Erlang and each server has finite buffer C and hence, there exists a

unique invariant distribution π(N) of the Markov process (X(N)(t), t ≥ 0) where X(N)(t) =

(X
(N)
l (t), l ∈ S). In this case, the mean-field equations are given by equations (3.41)-(3.43).

However, the system does not exhibit monotonicity properties unlike the simple exponential

case, and thus establishing the propagation of chaos is a challenging problem [40]. When
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the mean-field is GAS, by invoking the Prohorov’s theorem (Theorem A.2), we can establish

πN ⇒ δπ where π is the fixed-point of the mean-field [9]. This implies the validity of the

interchange of limits

lim
N→∞

lim
t→∞

X(N)(t) = lim
t→∞

lim
N→∞

X(N)(t).

Furthermore, this would then imply that the propagation of chaos holds in the stationary

regime [9, 61]. Thus it appears that the global stability of the mean-field, propagation of

chaos, and the coincidence of the stationary distribution as N →∞ with the fixed point of

the mean-field are all inter-related. We now discuss what happens when we cannot show

that the mean-field is GAS.

Since the space of probability measures on S denoted by M1(S) with metric induced

by total variation distance is compact, from the Prohorov’s theorem [57], the sequence

{π(N)}N≥1 is tight in M1(M1(S)) under the topology induced by the weak convergence.

Let {π(Nk)}k≥1 be a converging subsequence with limiting point Z ∈M1(M1(S)). Then we

say that for the sequence of systems with index {Nk}k≥1, the limiting system is said to have

the stationary distribution Z for the empirical random variable. Then from Theorem 1

of [61] and Section 1.3, Z is an invariant distribution of the mean-field x(t, ·) that means∫
M1(S)

f(x(t,u)) dZ(u) =

∫
M1(S)

f(u) dZ(u). (3.51)

Furthermore, from Theorem 3 of [62], the support of Z is a compact set included inside

the Birkhoff center of the mean-field that includes the existing limit cycles, fixed-points of

the mean-field.

Let S
(Nk)
i (∞) be the random variable that denotes the state of the ith server in the

stationary regime in a finite Nk system. Let V(Nk)(∞), V(∞) be random variables with

distributions π(Nk) and Z, respectively. Note that since the system behavior is symmetric

to servers as servers’ labels do not play any role, the set (S
(Nk)
i (∞), 1 ≤ i ≤ Nk) is

exchangeable irrespective of the initial conditions on (S
(Nk)
i (t), 1 ≤ i ≤ Nk) in the transient

regime. Let us consider continuous bounded mappings φi : S→ R+, 1 ≤ i ≤ l.

Theorem 3.5. If π(Nk) ⇒ Z as k →∞, then

E

[
l∏

i=1

φi(S
(Nk)
i (∞))

]
→ E

[
l∏

i=1

〈V(∞), φi〉

]
(3.52)

as k → ∞. Any finite set of servers (ni)1≤i≤l in the limiting system of the sequence

{π(Nk)}k≥1 are mutually independent if and only if Z is a Dirac measure. Furthermore, if
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Z = δη for some η ∈M1(S), then each server’s state is a random variable with distribution

η.

Proof. See Section 3.5.

Since Z is an invariant distribution of the mean-field x(t, ·), from equation (3.51)

E

[
l∏

i=1

φi(S
(Nk)
i (∞))

]
→
∫

u∈M1(S)

(
l∏

i=1

〈x(t,u), φi〉

)
dZ(u) (3.53)

as k → ∞. From (3.53), at any time t in the stationary regime , servers are coupled

through the position of the mean-field x(t, ·) which is a random element since its initial

point is random with distribution Z. Furthermore, in the limiting system, at any instant t

in the stationary regime, conditioned on the position of the mean-field, each servers’ state

is a random variable with distribution coinciding with the position of the mean-field, and

any finite set of servers are independent. However, if the position of the initial point of the

mean-field is random, then at any time t, the position of the mean-field is random thereby

any finite set of servers are coupled through the position of the mean-field. For example,

if the support of Z contains existing limit cycles or multiple fixed-points of the mean-field,

then at any instant in the stationary regime, the position of the mean-field is random, as

a consequence, any finite set of servers are coupled through the position of the mean-field.

Since the mean-field has a unique fixed-point π under the assumption of mixed-Erlang

JLDs, we must have Z = δπ to have the propagation of chaos in the stationary regime. If

we show that the fixed-point π is GAS, then we have Z = δπ.

Corollary 3.2. If π(Nk) ⇒ Z, from (3.53), by taking l = 1, we get that E [V(∞)] is

the stationary distribution of a server in the limiting system of the sequence of systems

{Nk}k≥1. That is, the average position of the mean-field with an invariant distribution Z

indicates the stationary distribution of a single particle when Z is not a Dirac measure.

Remark 3.3. In [61], an example with the Birkhoff center containing a limit cycle and

an unstable unique fixed-point was found. In this case, it was argued that the distributions

of any two particles’ states coincide and oscillate around the limit cycle. Hence, the two

particles are correlated. But a proof was not provided. More importantly, they did not give

any details about the distribution of a single particle when Z is not a Dirac measure.
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3.6.2 Discussion on a Related Work

In this section, we provide some insights by relating our work with an existing work for the

sake of clarity. In the literature, insensitivity of the stationary distribution of the limiting

system is claimed in [24] based on an ansatz that has not been shown to hold for PS models

to the best of our knowledge. Using Theorem 3.5, we demonstrate that the ansatz in [24]

implies the necessary and sufficient conditions required for the insensitivity of the limiting

system. Therefore, we need to show that the ansatz holds to conclude insensitivity.

Let Y(N)(t) = (r1,N(t), r2,N(t), · · · , rN,N(t)) be the joint queue-size process at time t

where ri,N(t) (notation qi,n(t) is used in [24]) denotes the number of jobs at server i at time

t. Let Υ(N) (Υ is replaced with π in [24]) be the stationary distribution of Y(N)(t). We

now recall exactly the ansatz stated in [24].

The Ansatz in [24]: Demonstrate Υ(N) ⇒ Υ as N →∞, where Υ is a stationary and

ergodic measure on Z∞+ . Show that the limit Υ is unique, depending only on the service

distribution, service discipline and load balancing rule. Let Υ(k) be the restriction of Υ to

its first k coordinates, with γ = Υ(1) being the one-dimensional marginal of Υ. Show that,

for every k,

Υ(k) = γ⊗k. (3.54)

Let W
(N)

(∞) = (W
(N)

i (∞), 0 ≤ i ≤ C) where W
(N)

i (∞) denotes the random variable

in the stationary regime indicating the faction of servers with i jobs. Then from Theo-

rem 3.5 (also Proposition 2.1 of [32]), W
(N)

(∞)⇒ γ where γ is a deterministic measure in

M1(S). Since the SQ(d) policy uses the queue-size information of a finite set of d randomly

sampled servers that are independent with identical distributions coinciding with γ, the

arrival process is a Poisson process to any particular server which is a necessary condition

to have insensitivity in PS systems [76]. Furthermore, the arrival process to each server is

a state-dependent Poisson process with rate λk = λ
{(
∑C
j=k γj)

d−(
∑C
j=k+1 γj)

d}
γk

when there are

k jobs at the server. Therefore, the set of arrival rates Λ = (λk, 0 ≤ k ≤ C) can be written

as a function of γ as

Λ = F̃1(γ). (3.55)

Further, for a given set of arrival rates Λ, the stationary distribution for a server occupancy

in the limiting system can be written through a mapping F̃2 as

γ = F̃2(Λ). (3.56)
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Therefore, γ must be a unique fixed-point of the mapping F̃2(F̃1) for the case of general

JLDs which was not shown in [24] except for the case of FCFS queues with service time

distributions having decreasing hazard rate functions. To have insensitivity, γ must be

the same for all the general JLDs having the same average job length. In [24], from

uniqueness of γ in ansatz, insensitivity is concluded from reversibility since the arrival

process to each server is a state-dependent Poisson process. Note that since the mappings

F̃2, F̃1 are the same for exponential and general distributions, the uniqueness of the fixed-

point of F̃2(F̃1) follows from the result that the mean-field is GAS in the exponential case.

Therefore, the fixed-point of the mapping F̃2(F̃1) is the same for both the exponential

and general job length distributions when they have the same average job lengths. Since

the ansatz implies the Poisson arrival process to servers and uniqueness of the stationary

distribution in the limiting system, insensitivity follows immediately. However, the proof

of the ansatz remains an open problem and has been shown only for the case of FCFS

queueing models with service time distributions having decreasing hazard rate functions,

and for more general systems with small arrival rates in [40]. It remains an open problem

for loss and PS models. For these systems, we do not have ordering relationships on servers’

states in U. For FCFS models, an element in U is two-dimensional of the form (n, x) where

n indicates the number of jobs at the queue and x is the age or residual service time of the

progressing job. Hence, we can define ordering relationships for elements in U for FCFS

models in that for two elements (n1, x1) and (n2, x2), we say (n1, x1) ≤ (n2, x2) if n1 ≤ n2

and x1 ≤ x2. We can not define such relationships for the loss and PS models. Even the

analysis for JLDs with decreasing hazard rate functions is also an open problem for loss

and PS models.

Unlike the approach of [24], which makes several assumptions on the stationary regime,

we first focus on establishing the mean-field limit by studying the transient regime. We

then show that the probability distribution of occupancy obtained from every fixed-point

of the mean-field is a fixed-point of the mapping F̃2(F̃1) which is the same mapping for the

exponential case. Since we know that the exponential case has a unique fixed-point, the

fixed-point is insensitive. If we can show that the mean-field is GAS, then the fixed-point

is also the stationary distribution of a server when N →∞.

3.7 Proofs of Main Results

In this section, we provide proofs of the results sated in Section 3.4.
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3.7.1 Proof of Lemma 3.1

Proof. An arrival can be routed in any one of the stages to a potential destination server.

Let k be the index of the stage in which the arrival is routed to a server. Furthermore,

let us assume that the dispatcher has sampled i potential destination servers by the end

of stage k and let the vector of occupancies of the potential destination servers be equal

to n = (n1, · · · , ni) ∈ Y[k,i]. Also, let the jth potential destination server be in the state

(m,x1, · · · , xm). Then since each server can be chosen as a potential destination server

with probability 1
N

, the probability that the potential destination servers’ occupancies form

the vector n = (n1, · · · , ni) and the jth server lies in the state (m,x1, · · · , xm) is equal to

{
ν({(m,x1, · · · , xm)})

N

} i∏
r=1, r 6=j

{
ν(Unr)

N

}
.

Then the jth potential destination server can be chosen as the destination server with prob-

ability q[k,i](n; j) and hence, the probability that the occupancy vector of potential destina-

tion servers is n and the destination server lies in the jth position with state (m,x1, · · · , xm)

is equal to

q[k,i](n; j)

{
ν({(m,x1, · · · , xm)})

N

} i∏
r=1, r 6=j

{
ν(Unr)

N

}
.

Finally, by summing over all possible values of k,n, i, and j, we get (3.10).

3.7.2 Proof of Theorem 3.3

Let θ = (θ(u),u ∈ U) be a fixed-point of the process (Pt, t ≥ 0) in the set Y . Let

vn =
∏n

i=1
λΦi−1(θ)

µ
. Since θ ∈ Y , we have

∑∞
m=1 vm <∞. We first show that

θ(n, y1, . . . , yn) =
vn

1 +
∑∞

m=1 vm
µn

n∏
j=1

∫ yj

xj=0

G(xj) dxj, (3.57)

and

θ(0) =
1

1 +
∑∞

m=1 vm
. (3.58)

We prove (3.57)-(3.58) as follows. Consider a system that has one PS server where

jobs arrive according to a Poisson process with rate λΦn(θ) when there are n jobs and the

job length distribution is G. Then from [22], there exists a unique stationary distribution
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π(single). Then π(single)(n, y1, · · · , yn) is equal to right side of (3.57). From the stationary

mean-field dynamics, we have that θ is also another stationary distribution of the system.

Due to the stability of the single server system, we must have that θ = π(single). This

implies that (3.57)-(3.58) are true.

Let Γ = (Γn, n ≥ 0) where Γn = limb→∞ θ(n, b, · · · , b)) and Γ0 = θ(0). Then from (3.57)-

(3.58), we have

Γn =
vn

1 +
∑∞

j=1 vj

and

Γ0 =
1

1 +
∑∞

j=1 vj
.

Further, we can write vn in terms of Γ as vn =
∏n

i=1
λΨi−1(Γ)

µ
where

Ψl (Γ) =
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

i∑
r=1

I{nr=l}q
[k, i](n; r)

i∏
j=1, j 6=r

Γnj .

It can be seen that for n ≥ 0, we have

λΨn(Γ)Γn = µΓn+1. (3.59)

Then from (3.18)-(3.19), for exponential JLDs with the same mean 1
µ
, a fixed-point w =

(wn, n ≥ 0) of the mean-field satisfies that for n ≥ 0,

λΨn(w)wn = µwn+1. (3.60)

Therefore, from (3.59) and (3.60), we have that Γ is a fixed-point of the mean-field under

the assumption of exponential JLDs with average job length 1
µ
. Furthermore, from (3.57)-

(3.58), we obtain (3.21).

3.7.3 Proof of Theorem 3.1

The proof is divided into three steps. In the first step, we obtain the semigroup operator of

the Markov process (η
(N)
t , t ≥ 0). The Feller property of the Markov process (η

(N)
t , t ≥ 0)

is established in the second step. We then compute the generator A(N)(·) and prove the

martingale property of the process defined in equation (3.69) by using the Dynkin’s lemma

[56, Proposition 1.7, p.162] in the third step.
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We now compute the semigroup operator T
(N)
h (·) which is defined as

T
(N)
h f(ν) = E

[
f(η

(N)
h )|η(N)

0 = ν
]
,

where the mapping f : MF (U) 7→ R is a bounded continuous mapping. For η
(N)
0 = ν, in

the interval [0, h], let Ah and Dh be the number of arrivals and departures, respectively.

Let us assume that measure ν contains mass at m distinct points denoted by u(l) =

(nl, u
(l)
1 , · · · , u

(l)
nl ), 1 ≤ l ≤ m. Then the number of servers with state u(l) is equal to

ν({u(l)}). If a server lies in the state b = (n, b1, · · · , bn) at time t, conditioned on the event

that there are no arrivals in the interval [0, h] at the server, let pND(b;h) be the probability

that there are no departures at the server in the interval [0, h]. Then

pND(b;h) =
n∏
i=1

{
G(bi + h

n
)

G(bi)

}
.

From the definition of the hazard rate function, we have

pND(b;h) =
n∏
i=1

{
1− β(bi)h

n

}
+ o(h). (3.61)

In the following result, B(u(j), i, y, h) denotes the state of a server at t = h given that

its state is u(j) at time t = 0 and the job at the ith position departs when its age is y.

Similarly, C(u(j), i, x, h) denotes the state of a server at time t = h given that its state is

u(j) at time t = 0 and a job arrives to this server at time t = x which joins the server at

the ith position.

Lemma 3.3. For f ∈ Cb(MF (U)), the semigroup operator T
(N)
h (·) is given by

T
(N)
h f(ν) = (1−Nλh)

m∏
j=1, nj>0

(pND(u(j);h))ν({u(j)})f(τ̃hη)

+ (1−Nλh)
m∑

j=1, nj>0

ν({u(j)})
nj∑
i=1

∫ u
(j)
i + h

nj

y=u
(j)
i

{
g(y)

G(u
(j)
i )

}

×
nj∏

k=1, k 6=i


G

(
u

(j)
k + (y − u(j)

i ) +
h−(y−u(j)i )nj

nj−1

)
G(u

(j)
k )


×
(

(pND(u(j);h))(ν({u(j)})−1)
)( m∏

r=1,r 6=j,nr>0

(pND(u(r);h))ν({u(r)})

)
× f

(
τ̃hν + δ(B(u(j), i, y, h)) − δ(nj ,u

(j)
1 + h

nj
,··· ,u(j)nj + h

nj
)

)
dy
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+Nλh

∫ h

x=0

1

h

(
m∑
j=1

nj+1∑
i=1

{
1

nj + 1

}
pr(τ̃xν : τ̃+

x u(j))

[
f

(
τ̃hν + δ{C(u(j), i, x, h)} − δ(τ̃+h u(j))

)

×

 nj∏
q=1

G
(
u

(j)
q + x

nj
+ h−x

nj+1

)
G(u

(j)
q )


G

(
h− x
nj + 1

)
(pND(u(j), h))ν({u(j)})−1

×
m∏

k=1, k 6=j, nk>0

(pND(u(k), h))ν({u(k)})

])
dx+ ε(ν, h), (3.62)

where

B(u(j), i, y, h) =

(
nj − 1, u

(j)
1 + (y − u(j)

i ) +
{h− nj(y − u(j)

i )}
nj − 1

, · · · ,

u
(j)
i−1 + (y − u(j)

i ) +
{h− nj(y − u(j)

i )}
nj − 1

, u
(j)
i+1 + (y − u(j)

i ) +
{h− nj(y − u(j)

i )}
nj − 1

, · · · ,

u(j)
nj

+ (y − u(j)
i ) +

{h− nj(y − u(j)
i )}

nj − 1

)
, (3.63)

C(u(j), i, x, h) =

(
nj + 1, u

(j)
1 +

x

nj
+
h− x
nj + 1

, · · · , u(j)
i−1 +

x

nj
+
h− x
nj + 1

,

h− x
nj + 1

, u
(j)
i +

x

nj
+
h− x
nj + 1

, · · · , u(j)
nj

+
x

nj
+
h− x
nj + 1

)
(3.64)

and ε(ν, h) is o(h).

Proof. We write T
(N)
h f(ν) as

T
(N)
h f(ν) = E

[
f(η

(N)
h )I{Ah=0}I{Dh=0}|η(N)

0 = ν
]

+ E
[
f(η

(N)
h )I{Ah=0}I{Dh=1}|η(N)

0 = ν
]

+ E
[
f(η

(N)
h )I{Ah=1}I{Dh=0}|η(N)

0 = ν
]

+
∑
i≥1

∑
j≥1

E
[
f(η

(N)
h )I{Ah=i}I{Dh=j}|η(N)

0 = ν
]
.

(3.65)

We first obtain the expression for E
[
f(η

(N)
h )I{Ah=0}I{Dh=0}|η(N)

0 = ν
]

which is associ-

ated with the case when there are no arrivals and no departures in the interval [0, h]. In

this situation, since the number of progressing jobs is constant, η
(N)
h = τ̃hν. Hence,

E
[
f(η

(N)
h )I{Ah=0}I{Dh=0}|η(N)

0 = ν
]

= P({Ah = 0,Dh = 0}|η(N)
0 = ν)f(τ̃hν).

As the arrival process is a Poisson process, we can write
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E
[
f(η

(N)
h )I{Ah=0}I{Dh=0}|η(N)

0 = ν
]

= P({Ah = 0})P({Dh = 0}|Ah = 0,η
(N)
0 = ν)f(τ̃hν).

Let us define

ε1(ν, h) = (P({Ah = 0})− (1−Nλh))P({Dh = 0}|Ah = 0,η
(N)
0 = ν)f(τ̃hν).

Then

E
[
f(η

(N)
h )I{Ah=0}I{Dh=0}|η(N)

0 = ν
]

= (1−Nλh)P({Dh = 0}|Ah = 0,η
(N)
0 = ν)f(τ̃hν) + ε1(ν, h).

In the time interval [0, h], conditioned on the event that there are no arrivals, the probability

that there are no departures is equal to

P({Dh = 0}|Ah = 0,η
(N)
0 = ν) =

m∏
i=1, ni>0

(pND(u(i);h))ν({u(i)}).

Since f ∈ Cb(MF (U)) and (P({Ah = 0}) − (1 − Nλh)) = o(h) as the arrival process is

Poisson with rate Nλ, we conclude ε1(ν, h) is o(h).

Next, consider the second case where there is no arrival and one job departs in the

interval [0, h]. Let us define

ε2(ν, h) = (P({Ah = 0})− (1−Nλh))E
[
f(η

(N)
h )I{Dh=1}|Ah = 0,η

(N)
0 = ν

]
.

Then ε2(ν, h) is o(h). We can write

E
[
f(η

(N)
h )I{Ah=0}I{Dh=1}|η(N)

0 = ν
]

= (1−Nλh)E
[
f(η

(N)
h )I{Dh=1}|Ah = 0,η

(N)
0 = ν

]
+ ε2(ν, h).

We next simplify the expression of E
[
f(η

(N)
h )I{Dh=1}|Ah = 0,η

(N)
0 = ν

]
. Suppose that a

job in the ith position with age x departs at a server whose state was (n, b1, · · · , bn) at time

t = 0. This implies that the departure has occurred at time (x−bi)n. In this case, at time h,

the server where a job departs will lie in the state
(
n−1, b1+(x−bi)+ {h−n(x−bi)}

n−1
, · · · , bi−1+

(x − bi) + {h−n(x−bi)}
n−1

, bi+1 + (x − bi) + {h−n(x−bi)}
n−1

, · · · , bn + (x − bi) + {h−n(x−bi)}
n−1

)
. Using

this, we can write the following equation by assuming that a job at the ith position with

age y departs from a server that had state u(j) = (nj, u
(j)
1 , · · · , u(j)

nj ) at time t = 0,
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E
[
f(η

(N)
h )I{Ah=0}I{Dh=1}|η(N)

0 = ν
]

= (1−Nλh)
m∑

j=1, nj>0

ν({u(j)})
nj∑
i=1

∫ u
(j)
i + h

nj

y=u
(j)
i

{
g(y)

G(u
(j)
i )

}

×
nj∏

k=1, k 6=i


G

(
u

(j)
k + (y − u(j)

i ) +
h−(y−u(j)i )nj

nj−1

)
G(u

(j)
k )


(

(pND(u(j);h))(ν({u(j)})−1)
)

×

(
m∏

l=1, l 6=j, nl>0

(pND(u(l);h))ν({u(l)})

)
f

(
τ̃hν + δ(B(u(j), i, y, h)) − δ

(
nj ,u

(j)
1 + h

nj
,··· ,u(j)nj + h

nj

)
)
dy

+ ε2(ν, h).

Let us now consider the third case that corresponds to the event that there is no

departure but an arrival occurs in the interval [0, h]. Let ε3(ν, h) be defined as

ε3(ν, h) = (P({Ah = 1})−Nλh)E
[
f(η

(N)
h )I{Dh=0}|Ah = 1,η

(N)
0 = ν

]
.

Since P({Ah = 1})−Nλh = o(h) and f ∈ Cb(MF (U)), ε3(ν, h) is o(h). We can write

E
[
f(η

(N)
h )I{Ah=1}I{Dh=0}|η(N)

0 = ν
]

= NλhE
[
f(η

(N)
h )I{Dh=0}|Ah = 1,η

(N)
0 = ν

]
+ ε3(ν, h), (3.66)

We next obtain the expression for E
[
f(η

(N)
h )I{Dh=0}|Ah = 1,η

(N)
0 = ν

]
. We recall that

since the arrival process is Poisson, conditioned on the event that there is one arrival in

[0, h], the time at which the job arrives is uniformly distributed in [0, h] [77]. Let x be the

time at which the job arrives and let i be its position at the destination server that had state

(n, b1, · · · , bn) at time t = 0. Then the state of the destination server of the arrival at time

h will be equal to (n+1, b1 + x
n

+ h−x
n+1

, · · · , bi−1 + x
n

+ h−x
n+1

, h−x
n+1

, bi+
x
n

+ h−x
n+1

, · · · , bn+ x
n

+ h−x
n+1

).

Note that the state of the system at time x is equal to τ̃xν and hence, the dispatcher uses

τ̃xν as the system state while implementing the routing policy. As a consequence, we get

the following equation where we use the notation that a job arrives at time x and it is

routed to a server that was lying in state u(j) at time t = 0, and the job joins at the ith

position. Then

E

[
f(η

(N)
h )I{Dh=0}|Ah = 1,η

(N)
0 = ν

]
=

∫ h

x=0

1

h

(
m∑
j=1

nj+1∑
i=1

{
1

nj + 1

}
pr(τ̃xν : τ̃+

x u(j))

×

f(τ̃hν + δ{C(u(j), i, x, h)} − δ(τ̃+h u(j))

) nj∏
q=1

G
(
u

(j)
q + x

nj
+ h−x

nj+1

)
G(u

(j)
q )


G

(
h− x
nj + 1

)
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(pND(u(j), h))ν({u(j)})−1

m∏
k=1, k 6=j, nk>0

(pND(u(k), h))ν({u(k)})

])
dx. (3.67)

We now consider the case when there are multiple events in the interval [0, h]. We show

that E

[
f(η

(N)
h )I{Ah≥1,Dh≥1}|η(N)

0 = ν

]
is o(h) denoted by ε4(ν, h). Since f is bounded,

it is sufficient to show that P(Ah ≥ 1, Dh ≥ 1|η(N)
0 = ν) is o(h). From the fact that

P(Ah ≥ 2) is o(h) due to the Poisson arrival process assumption, we get that P(Ah ≥
2, Dh ≥ 1|η(N)

0 = ν) is o(h). Also, we can write

P(Ah = 1, Dh ≥ 1|η(N)
0 = ν) = P(Ah = 1)(1− P(Dh = 0|Ah = 1,η

(N)
0 = ν))

We show limh→0 P(Dh = 0|Ah = 1,η
(N)
0 = ν)) = 1. From (3.67), we replace x with hz,

then

E

[
f(η

(N)
h )I{Dh=0}|Ah = 1,η

(N)
0 = ν

]
=

∫ 1

z=0

(
m∑
j=1

nj+1∑
i=1

{
1

nj + 1

}
pr(τ̃hzν : τ̃+

hzu
(j))f(τ̃hν + δ{C(u(j), i, hz, h)} − δ(τ̃+h u(j))

) nj∏
q=1

G
(
u

(j)
q + hz

nj
+ h−hz

nj+1

)
G(u

(j)
q )


G

(
h− hz
nj + 1

)

(pND(u(j), h))ν({u(j)})−1

m∏
k=1, k 6=j, nk>0

(pND(u(k), h))ν({u(k)})

])
dz. (3.68)

From (3.68), it can be seen that limh→0 P(Dh = 0|Ah = 1,η
(N)
0 = ν) = 1, and hence, we

get P(Ah = 1, Dh ≥ 1|η(N)
0 = ν) = o(h).

Finally, by defining

ε(ν, h) = ε1(ν, h) + ε2(ν, h) + ε3(ν, h) + ε4(ν, h),

we get (3.62).

By the same arguments as in the proof of Theorem 2.8.1, we can show that the process

(η
(N)
t , t ≥ 0) is a Feller-Dynkin process.

We now focus on establishing the third result. We first recall the definition of A(N)(·).
For any F ∈ C(MF (U)), the generator A(N)(·) is defined as

A(N)F (ν) = lim
h→0

E
[
F (η

(N)
h )|η(N)

0 = ν
]
− F (ν)

h
,

where F ∈ C(MF (U)) is chosen such that the limit is well defined.
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Lemma 3.4. For φ ∈ C1
b((U)), the process (M

(N)
t (φ), t ≥ 0) defined as

M
(N)
t (φ) = 〈η(N)

t , φ〉 − 〈η(N)
0 , φ〉 −

∫ t

s=0

A(N)〈η(N)
S , φ〉ds (3.69)

is a square integrable F (N)
t -martingale and it is an RCLL process. Furthermore, for φ ∈

C1
b(U), the quadratic variation of (M

(N)
t (φ), t ≥ 0) is given by

< M(N)(φ)· >t=

∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{β(xi)

n

}
× (φ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)− φ(n, x1, · · · , xn))2 dη(N)

s (n, x1, · · · , xn)

+Nλ

[{
η

(N)
s ({0})
N

}
Φ0

(
η

(N)
s

N

)
(φ(1, 0)− φ(0))2

+
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

N(n+ 1)

}
Φn

(
η

(N)
s

N

)
× (φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn))2

× dη(N)
s (n, x1, · · · , xn)

])
ds. (3.70)

.

Proof. We first obtain the expression for the generator A(N)(·). From (3.62) and since the

set of linear combinations of Qf for f ∈ C1
s(U) where Qf (ν) = e−〈ν,f〉 is dense in the set

C(MF (U)) [78, proposition 7.10], from the expression of A(N)Qf (ν), we get

A(N)F (ν) = lim
h→0

(
F (τ̃hν)− F (ν)

h

)
−NλF (ν)

−
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
F (ν) dν(n, x1, · · · , xn) +

∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
×
(
F (ν + δ(n−1,x1,··· ,xi−1,xi+1,··· ,xn) − δ(n,x1,··· ,xn))

)
dν(n, x1, · · · , xn)

+Nλ

[{
ν({0})
N

}
Φ0

( ν
N

)
F (ν + δ(1,0) − δ(0)) +

∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

N(n+ 1)

}
Φn

( ν
N

)
× F (ν + δ(n+1,x1,··· ,xi−1,0,xi,··· ,xn) − δ(n,x1,··· ,xn)) dν(n, x1, · · · , xn)

]
.

For φ ∈ C1
b(U), ν ∈MF (U), then A(N)〈ν, φ〉 is well defined. From the Dynkin’s formula

[56, Proposition 1.7, p.162], (M
(N)
t (φ), t ≥ 0) defined as

M
(N)
t (φ) = 〈η(N)

t , φ〉 − 〈η(N)
0 , φ〉 −

∫ t

s=0

A(N)〈η(N)
s , φ〉 ds (3.71)
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is an RCLL F (N)
t -local martingale. It can be checked that after simplifications, we get

M
(N)
t (φ) = 〈η(N)

t , φ〉− 〈η(N)
0 , φ〉−

∫ t

s=0

〈η(N)
s , φ′∑〉 ds−

∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
× (φ(n− 1, x1, · · · , xi−1, xi+1, . . . , xn)− φ(n, x1, · · · , xn)) dη(N)

s (n, x1, · · · , xn)

+Nλ

[({
η

(N)
s ({0})
N

}
Φ0

(
η

(N)
s

N

)
(φ(1, 0)− φ(0))

)

+
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

N(n+ 1)

}
Φn

(
η

(N)
s

N

)

× (φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn)) dη(N)
s (n, x1, · · · , xn)

])
ds,

(3.72)

where

〈η(N)
s , φ′∑〉 =

∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

1

n

∂φ(n, x1, . . . , xn)

∂xi
dη(N)

s (n, x1, · · · , xn). (3.73)

By choosing Fφ(η
(N)
t ) = 〈η(N)

t , φ〉, from [79, Theorem 7.15], we have

< M(N)
· (φ) >t=

∫ t

s=0

(
A(N)F 2

φ(η(N)
s )− 2Fφ(η(N)

s )A(N)Fφ(η(N)
s )

)
ds. (3.74)

We get (3.70) after simplifications. In the next section, we show in (3.78) that supm Φm(·) <
∞. Using this result, and from the fact that φ ∈ C1

b(U) and β ∈ Cb(R+), we have

E
[
< M

(N)
· (φ) >t

]
<∞. Hence, (M

(N)
t (φ), t ≥ 0) is a square integrable martingale.

3.7.4 Proof of Theorem 3.2

We first show that there exists a unique mean-field solution. This step is required to prove

the convergence of (
η
(N)
t

N
, t ≥ 0) as N →∞. We then prove the convergence of (

η
(N)
t

N
, t ≥ 0)

as N →∞ to the unique mean-field solution.

Existence and Uniqueness of a Mean-field Solution

From (3.16), for φ ∈ Cb(U), the operator φ 7→ 〈ηt, φ〉 is a linear operator and ηt(U) = 1. As

a consequence, from the Riesz-Markov-Kakutani theorem [69,80] given in Theorem A.4, for
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ηt ∈ M1(U), the uniqueness of the probability measure ηt is equivalent to the uniqueness

of the operator φ 7→ 〈ηt, φ〉. Also, since Cb(U) is a separating class of M1(U) [56, p. 111],

if two measures ν1, ν2 ∈ M1(U) satisfies 〈ν1, φ〉 = 〈ν2, φ〉 for all φ ∈ Cb(U), then ν1 = ν2.

Therefore it is enough to show the uniqueness of the operator φ 7→ 〈ηt, φ〉.

For given η0, we now show that there exists at most one real valued process 〈(ηt, φ〉, t ≥
0) that satisfies the MFEs. Let (η1

t , t ≥ 0), (η2
t , t ≥ 0) be the two mean-field solutions with

initial points η1
0, η

2
0, respectively. Then for φ ∈ Cb(U), we get

〈η1
t − η2

t , φ〉 = 〈η1
0 − η2

0, τ̃tφ〉+

∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
× (τ̃t−sφ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)− τ̃t−sφ(n, x1, · · · , xn))

× d(η1
s − η2

s)(n, x1, · · · , xn)

)
ds

+

∫ t

s=0

(
λ

[ (
η1
s({0})Φ0(η1

s) (τ̃t−sφ(1, 0)− τ̃t−sφ(0))
)

+
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

1

(n+ 1)
Φn(η1

s)(τ̃t−sφ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)

− τ̃t−sφ(n, x1, · · · , xn)) dη1
s(n, x1, · · · , xn)

]
− λ
[ (
η2
s({0})Φ0(η2

s) (τ̃t−sφ(1, 0)− τ̃t−sφ(0))
)

−
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

(n+ 1)

}
Φn(η2

s)(τ̃t−sφ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)

− τ̃t−sφ(n, x1, · · · , xn)) dη2
s(n, x1, · · · , xn)

])
ds. (3.75)

Our objective is to obtain a result of the form

‖η1
t − η2

t‖ ≤ b+ c

∫ t

s=0

‖η1
s − η2

s‖ ds (3.76)

for some b, c > 0, t ∈ [0, T ]. Then from Gronwall’s inequality stated in Theorem A.7 [56],

we would get

‖η1
t − η2

t‖ ≤ b ect (3.77)

for t ∈ [0, T ]. In this direction, by using the first term on the right side of equation (3.75),

we can write ∣∣〈η1
0 − η2

0, τ̃tφ〉
∣∣ ≤ ‖η1

0 − η2
0‖‖φ‖.
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We now simplify the second term on the right side of equation (3.75). For this, we define

a function wt,s as follows:

for n > 0,

wt,s(n, x1, · · · , xn)

=
n∑
i=1

{
β(xi)

n

}
(τ̃t−sφ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)− τ̃t−sφ(n, x1, · · · , xn)

and for n = 0,

wt,s(0) = 0.

Then wt,s ∈ Cb(U) since φ ∈ Cb(U) and β ∈ Cb(R+). Furthermore, we have

‖wt,s‖ ≤ 2‖β‖‖φ‖.

It can be seen that the second term can be written as
∫ t
s=0
〈η1
s − η2

s, wt,s〉 ds. This implies

that we can write ∣∣∣∣∫ t

s=0

〈η1
s − η2

s, wt,s〉 ds
∣∣∣∣ ≤ ∫ t

s=0

2‖β‖‖φ‖‖η1
s − η2

s‖ ds.

Let us now consider the third term on the right side of (3.75) that corresponds to the

case of arrivals. Let ht,s,ν be the function defined as

ht,s,ν(n, x1, · · · , xn) =
n+1∑
i=1

{
1

n+ 1

}
Φn(ν)

× (τ̃t−sφ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− τ̃t−sφ(n, x1, · · · , xn))

for all (n, x1, · · · , xn). Then the third term is equal to
∫ t
s=0

λ
(
〈η1
s, ht,s,η1s〉 − 〈η

2
s, ht,s,η2s〉

)
ds.

We can bound this term using the fact that∣∣〈η1
s, ht,s,η1s〉 − 〈η

2
s, ht,s,η2s〉

∣∣ ≤ ∣∣〈η1
s − η2

s, ht,s,η1s〉
∣∣+
∣∣〈η2

s, ht,s,η1s − ht,s,η2s〉
∣∣ .

Also, we can write∣∣〈η1
s, ht,s,η1s〉 − 〈η

2
s, ht,s,η2s〉

∣∣ ≤ ‖η1
s − η2

s‖‖ht,s,η1s‖+ ‖η2
s‖‖ht,s,η1s − ht,s,η2s‖.

We have that ‖η2
s‖ = 1 as η2

s is a probability measure.

We now obtain an upper bound on ‖ht,s,η1s‖. It can be seen that we have

‖ht,s,η1s‖ ≤ 2‖φ‖ sup
n≥0
|Φn(ν)| .
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We now show that supn≥0 |Φn(ν)| is bounded by a finite value. For ν ∈M1(U),

Φm (ν) =
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

i∑
j=1

I{nj=m}q
[k,i](n; j)

i∏
r=1, r 6=j

Qnr (ν) .

Let Y[k,i]
m be defined as

Y[k,i]
m = {n ∈ Y[k,i] : ∃ j such that nj = m}.

Then we can write

Φm(ν) =
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

m

i∑
j=1

I{nj=m}q
[k,i](n; j)

i∏
r=1, r 6=j

Qnr (ν) .

We can bound the above term as

Φm(ν) ≤
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

m

i∑
j=1

I{nj=m}

i∏
r=1, r 6=j

Qnr (ν) .

Out of i sampled servers upto stage k, let b be the number of servers with m jobs. Then

we can write

Φm(ν) ≤
M∑
k=1

d(max)∑
i=1

i∑
b=1

b

(
i

b

)
(Qm(ν))b−1(1−Qm(ν))i−b,

≤
M∑
k=1

d(max)∑
i=1

i∑
b=1

b

(
i

b

)
,

≤M(d(max))2

d(max)∑
b=1

(
d(max)

b

)
.

≤M(d(max))3(d(max)!). (3.78)

Therefore, we have

‖ht,s,η1s‖ ≤ 2M‖φ‖(d(max))3(d(max)!).

Similarly, we can write

‖ht,s,η1s − ht,s,η2s‖ ≤ 2‖φ‖ sup
m≥0

∣∣Φm(η1
s)− Φm(η2

s)
∣∣ .

We have

∣∣Φm(η1
s)− Φm(η2

s)
∣∣
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=

∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

m

i∑
j=1

I{nj=m}q
[k,i](n; j)

(
i∏

r=1, r 6=j

Qnr

(
η1
s

)
−

i∏
r=1, r 6=j

Qnr

(
η2
s

))∣∣∣∣∣∣ .
We can write∣∣Φm(η1

s)− Φm(η2
s)
∣∣

≤

∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

m

i∑
j=1

I{nj=m}q
[k,i](n; j)

(
i∏

r=1, r 6=j

Qnr

(
η1
s

)
−Qn1

(
η2
s

) i∏
r=2, r 6=j

Qnr

(
η1
s

))∣∣∣∣∣∣
+

∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

m

i∑
j=1

I{nj=m}q
[k,i](n; j)

(
Qn1

(
η2
s

) i∏
r=2, r 6=j

Qnr

(
η1
s

)
−

i∏
r=1, r 6=j

Qnr

(
η2
s

))∣∣∣∣∣∣ .
(3.79)

We next bound the first term on the right side of (3.79). For each j, we have∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

m

I{nj=m}q
[k,i](n; j)

(
i∏

r=1, r 6=j

Qnr

(
η1
s

)
−Qn1

(
η2
s

) i∏
r=2, r 6=j

Qnr

(
η1
s

))∣∣∣∣∣∣
≤Md(max)

∑
m≥0

∣∣Qm

(
η1
s

)
−Qm

(
η2
s

)∣∣ . (3.80)

Let us define a function r(η1s,η
2
s)
∈ Cb(U) such that for u ∈ Un,

r(η1s,η
2
s)

(u) =

1 if Qn (η1
s) ≥ Qn (η2

s)

−1 otherwise.

Then
∑

m≥0 |Qm (η1
s)−Qm (η2

s)| = 〈η1
s − η2

s, r(η1s,η
2
s)
〉. Hence,∑

m≥0

∣∣Qm

(
η1
s

)
−Qm

(
η2
s

)∣∣ ≤ ‖η1
s − η2

s‖.

Therefore∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

m

i∑
j=1

I{nj=m}q
[k,i](n; j)

(
i∏

r=1, r 6=j

Qnr

(
η1
s

)
−Qn1

(
η2
s

) i∏
r=2, r 6=j

Qnr

(
η1
s

))∣∣∣∣∣∣
≤M(d(max))2‖η1

s − η2
s‖.

By similar arguments, the second term on the right side of (3.79) is bounded byM(d(max))2(d(max)−
1)‖η1

s − η2
s‖. Hence, ∣∣Φm(η1

s)− Φm(η2
s)
∣∣ ≤M(d(max))3‖η1

s − η2
s‖.
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Therefore we obtain that

‖ht,s,η1s − ht,s,η2s‖ ≤ 2M‖φ‖(d(max))3‖η1
s − η2

s‖.

Finally, by using the above bounds, we get

∣∣〈η1
t − η2

t , φ〉
∣∣ ≤ (‖η1

0 − η2
0‖+

∫ t

s=0

2‖β‖‖η1
s − η2

s‖ ds

+4M(d(max))3(d(max)!)

∫ t

s=0

λ‖η1
s − η2

s‖ ds
)
‖φ‖.

Hence

‖η1
t − η2

t‖ ≤ ‖η1
0 − η2

0‖+ (2‖β‖+ 4M(d(max))3(d(max)!)λ)

∫ t

s=0

‖η1
s − η2

s‖ ds.

From equation (3.76), we get

‖η1
t − η2

t‖ ≤ ‖η1
0 − η2

0‖ e(2‖β‖+4M(d(max))3(d(max)!)λ)t.

This implies that for given initial measure η0, there exists at most one mean-field solution.

The existence of a mean-field solution follows from the proof of the relative compactness

of the sequence {η(N)
t , t ≥ 0} in DM1(U)([0,∞)). We show that every limit point of the

sequence {η(N)
t , t ≥ 0} has sample paths that are a.s. solutions of equation (3.16). This

implies that there exists a solution to the MFEs.

Convergence of (η
(N)
t , t ≥ 0)

We now study the convergence of (η
(N)
t , t ≥ 0) in DM1(U)([0,∞) as N →∞. Let (F (N)

t , t ≥
0) be the right continuous filtration associated with the process (η

(N)
t , t ≥ 0). The main

logic behind the proof is that we first show the relative compactness of the sequence

{(η(N)
t , t ≥ 0)}N≥1 and then we show every limit point (χt, t ≥ 0) has sample paths evolving

almost surely according to the MFEs with the initial point η0. From the uniqueness of the

mean-field solution for a given initial measure, all the limiting points have almost surely

identical sample paths coinciding with the unique mean-field solution with the initial point

η0. This implies that the sequence {(η(N)
t , t ≥ 0)}N≥1 converges in distribution to the

unique mean-field solution with the initial point η0, and this mean-field solution is referred

to as the mean-field limit denoted by (ηt, t ≥ 0).
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Let A
(N)

(·) be the generator of the Markov process (η
(N)
t , t ≥ 0). Then the following

process (M
(N)

t (φ), t ≥ 0) for φ ∈ C1
b(U) is an RCLL square integrable F (N)

t -martingale,

M
(N)

t (φ) = 〈η(N)
t , φ〉 − 〈η(N)

0 , φ〉 −
∫ t

s=0

A
(N)〈η(N)

s , φ〉 ds. (3.81)

By using the expression of A
(N)

(·), we get

M
(N)

t (φ) = 〈η(N)
t , φ〉−〈η(N)

0 , φ〉−
∫ t

s=0

〈η(N)
s , φ′∑〉 ds−

∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
× (φ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)− φ(n, x1, · · · , xn)) dη(N)

s (n, x1, . . . , xn)

+ λ

[ (
η(N)
s ({0})Φ0(η(N)

s ) (φ(1, 0)− φ(0))
)

+
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}
Φn(η(N)

s )

× (φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn))

× dη(N)
s (n, x1, · · · , xn)

])
ds. (3.82)

For φ ∈ C1
b(U), we get

< M
(N)

· (φ) >t=
1

N

[∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
× (φ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)− φ(n, x1, · · · , xn))2 dη(N)

s (n, x1, · · · , xn)

+ λ

[(
η(N)
s ({0})Φ0(η(N)

s ) (φ(1, 0)− φ(0))2 +
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}
Φn(η(N)

s )

× (φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn))2 dη(N)
s (n, x1, · · · , xn)

])
ds

]
.

(3.83)

From the Prohorov’s theorem [57], since the space DM1(U)([0,∞)) is complete and sep-

arable, proving the relative compactness of {(η(N)
t , t ≥ 0)}N≥1 is equivalent to showing the

tightness of this sequence. To show the tightness, we now recall the Jakubowski’s crite-

ria (From Theorem 4.6 of [74]) in Appendix A.3, which give the necessary and sufficient

conditions J1 and J2. We first show that the condition J2 is satisfied. For this, we prove

that the two sufficient conditions C1 and C2 stated in Appendix A.3 are satisfied. For any

T > 0, t ∈ [0, T ], we have

〈η(N)
t , φ〉 ≤ ‖φ‖1〈η(N)

t ,1〉,
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and since 〈η(N)
t ,1〉 = 1, with b = ‖φ‖1, the condition C1 is satisfied.

We now focus on the proof of the condition C2. From (3.83) and Doob’s inequality

given in Theorem A.8, for ε > 0, we get

P
(

sup
t≤T

∣∣∣M(N)

t (φ)
∣∣∣ ≥ ε

)
≤ 4

ε2
E
[
< M

(N)

· (φ) >T

]
≤ 4T

ε2
‖φ‖2 1

N
(‖β‖+ d(max)2(d(max)!)λ)→ 0

as N → ∞. Therefore the sequence {(M(N)

t (φ), t ≥ 0)}N≥1 converges in distribution to

the null process from the convergence criterion in DR([0, T ]) [56, Theorem 1.4, p.339].

Furthermore, since the sequence {(M(N)

t (φ), t ≥ 0)}N≥1 is tight in DR([0, T ]), there exists

ρ1 > 0 and N1 > 0 such that for N ≥ N1, we have

P

(
sup

u,v≤T,|u−v|≤ρ1

∣∣∣M(N)

v (φ)−M
(N)

u (φ)
∣∣∣ ≥ γ

2

)
≤ ε

2
. (3.84)

Also, for any u and v with u < v ≤ T , from (3.82), we get

∣∣〈η(N)
v , φ〉 − 〈η(N)

u , φ〉
∣∣ ≤ ∫ v

s=u

∣∣〈η(N)
s , φ′∑〉∣∣ ds+ 2‖β‖‖φ‖ |u− v|

+ 2M‖φ‖λ(d(max))3(d(max)!) |u− v|+
∣∣∣M(N)

v (φ)−M
(N)

u (φ)
∣∣∣ .

The above equation can be simplified as

∣∣〈η(N)
v , φ〉 − 〈η(N)

u , φ〉
∣∣ ≤ |v − u| ‖φ‖1(1 + 2M‖β‖+ 2(d(max))3(d(max)!)λ)

+
∣∣∣M(N)

v (φ)−M
(N)

u (φ)
∣∣∣ . (3.85)

By using (3.84) and (3.85), we can find ρ2 > 0 and N2 > 0 such that for N ≥ N2, we have

P

(
sup

u,v≤T,|u−v|≤ρ2

∣∣〈η(N)
v , φ〉 − 〈η(N)

u , φ〉
∣∣ ≥ γ

)
≤ ε.

This completes the proof of the condition J2.

We now focus on the proof of the condition J1. Let (ni(t),Vi1(t), · · · ,Vini(t)(t)) be the

state of the ith server where Vij(t) is the age of the jth progressing job. Then

〈η(N)
t , ξ〉 =

1

N

N∑
i=1,ni(t)>0

(Vi1(t) + · · ·+ Vini(t)(t)).
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Let us consider a random variable Ht to denote the age of a progressing job at time

t. Further, let X be a random variable with the same distribution as the job length

distribution G. Then for any b ≥ 0, we have

P(Ht ≥ b) ≤ P(X ≥ b).

Also, we have

〈η(N)
t ,Ξ〉 =

∞∑
n=0

∫
x1

· · ·
∫
xn

n dη
(N)
t (n, x1, · · · , xn).

At any time t, we can classify the progressing jobs into two classes. The first class of jobs

are the ones which are in service starting from the time t = 0, and the number of such

jobs is upper bounded by its initial value say W. If a job belonging to this class has age

a at time t = 0, then its age is at most a + t′ at time t = t′. The second class of jobs are

the ones which entered the system after the time t = 0, and the number of such jobs is

bounded by the total number of arrivals up to time t denoted by E(N)(t). Hence, we can

write

P((〈η(N)
t ,Ξ〉+ 〈η(N)

t , ξ〉) ≥ b)

≤ P

([
〈η(N)

0 ,Ξ〉+
E(N)(t)

N
+ 〈η(N)

0 , ξ〉+ t〈η(N)
0 ,Ξ〉+

∑E(N)(t)
j=1 Xj

N

]
≥ b

)
where (Xj, 1 ≤ j ≤ E(N)(t)) are i.i.d. random variables with the distribution G. We now

consider the convergence of
∑E(N)(t)
j=1 Xj

N
in distribution sense. Since the job arrival process

is a Poisson process with rate Nλ, it is the same as the sum of N independent Poisson

processes with rate λ. Hence,

E(N)(t) =
N∑
i=1

E(i)(t),

where E(i)(t) (1 ≤ i ≤ N) is the number of arrivals from the ith Poisson process whose rate

is λ. Therefore ∑E(N)(t)
j=1 Xj

N
=

1

N

N∑
i=1

E(i)(t)∑
k=1

Xik

 ,

where {Xik}i≥1,k≥1 are i.i.d. random variables with distribution G. From the law of large

numbers, we get ∑E(N)(t)
j=1 Xj

N
⇒ λt

µ
,

and
E(N)(t)

N
⇒ λt.
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From Assumption 3.4.1, we get

〈η(N)
0 , ξ〉+ (t+ 1)〈η(N)

0 ,Ξ〉+
∑E(N)(t)

j=1 Xj

N
+

E(N)(t)

N
⇒ 〈η0, ξ〉+ (t+ 1)〈η0,Ξ〉+λt+

λt

µ
.

Also, using Assumption 3.4.1, we can find some constant M0 such that

lim inf
N→∞

P(max(〈η(N)
0 ,Ξ〉, 〈η(N)

0 , ξ〉) < M0) > 1− γ.

Let MT = M0(2 + T ) + 2λT + 2λT
µ

, then

lim inf
N→∞

P( sup
t∈[0,T ]

(〈η(N)
t ,Ξ〉+ 〈η(N)

t , ξ〉) < MT ) > 1− γ. (3.86)

For given 0 < γ < 1, let

WT,γ , {ζ ∈M1(U) : (〈ζ,Ξ〉+ 〈ζ, ξ〉) < MT} .

For an integer n, let

C(n)
k = {(k, y1, · · · , yk) : yi ∈ R+ and yi ≤ n for all 1 ≤ i ≤ k},

and let C(n) = {(0)} ∪ (∪nk=1C
(n)
k ) and let C(n) be the complement of C(n), then

ζ(C(n)) ≤ 2MT

n
,

and hence,

lim
n→∞

sup
ζ∈WT,γ

ζ(C(n)) = 0.

From Lemma A7.5 of [75], we have that WT,γ is relatively compact in M1(U). Further,

from equation (3.86), we have

lim inf
N→∞

P(η
(N)
t ∈WT,γ, ∀ t ∈ [0, T ]) > 1− γ.

Let KT,γ be the closure of WT,γ, then KT,γ is a compact set with

lim inf
N→∞

P(η
(N)
t ∈ KT,γ,∀ t ∈ [0, T ]) ≥ 1− γ.

This proves the condition J1. Hence, we have proved that the sequence of processes

{(η(N)
t , t ≥ 0)}N≥1 is is relatively compact.

Let (χt, t ≥ 0) be the limiting point of a converging subsequence of {(η(N)
t , t ≥ 0)}N≥1.

Then χ0 almost surely coincides with η0 from Assumption 3.4.1. The continuous mapping

theorem implies that
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〈χt, φ〉 = 〈χ0, φ〉+

∫ t

s=0

〈χs, φ′∑〉 ds−
∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
× (φ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)− φ(n, x1, · · · , xn)) dχs(n, x1, · · · , xn)

+ λ

[
(χs({0})Φ0(χs) (φ(1, 0)− φ(0))) +

∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}
Φn(χs)

× (φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn)) dχs(n, x1, · · · , xn)

])
ds. (3.87)

Finally, we prove that the sample paths of (χt, t ≥ 0) coincide almost surely with the

unique mean-field solution with the initial point η0. Since C1
b(U) is a separating class of

M1(U), we have that (χt, t ≥ 0) ∈ CM1(U)([0,∞)). We then prove that for ν0, any process

(νt, t ≥ 0) ∈ CM1(U)([0,∞)) is a solution to equation (3.87) iff it is a solution to the mean-

field equation (3.16). We give a proof of this in Section 3.7.5. Since there exists a unique

solution to the mean-field equation for the given initial point η0, from Assumption 3.4.1,

all the limiting points have almost surely identical sample paths coinciding with the unique

mean-field solution. Therefore, {(η(N)
t , t ≥ 0)}N≥1 converges in distribution to the unique

mean-field solution denoted by (ηt, t ≥ 0).

3.7.5 Evolution of (〈νt, φ〉, t ≥ 0) for φ ∈ Cb(U)

In this section, we prove that (νt, t ≥ 0) is a solution to equation (3.87) if and only if it is

a solution to equation (3.16).

We first show that any process (νt, t ≥ 0) that satisfies (3.87) also satisfies (3.16). For

φ ∈ C1
b(U), if the integrand in equation (3.87) is a continuous function of s, any real valued

process (〈νt, φ〉, t ≥ 0) that satisfies (3.87) also satisfies the following differential equation

d〈νt, φ〉
dt

= 〈νt, φ′∑〉+

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
(φ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)− φ(n, x1, · · · , xn)) dνt(n, x1, · · · , xn)

+ λ

[
(νt({0})Φ0(νt) (φ(1, 0)− φ(0))) +

∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}
Φn(νt)

× (φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn)) dνt(n, x1, · · · , xn)

])
. (3.88)
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Hence, we need to prove that the two terms on the right side of (3.88) are continuous in

t. Since φ ∈ C1
b(U), the first term 〈νt, φ′∑〉 is a continuous function of t. Let ψ̃ be the

function defined as

ψ̃(0) = 0

and for n ≥ 1

ψ̃(n, x1, · · · , xn) =
n∑
i=1

{
β(xi)

n

}
((φ(n−1, x1, . . . , xi−1, xi+1, . . . , xn)−φ(n, x1, . . . , xn)).

Then the second term on the right side of (3.88) that corresponds to departures can be

written as

〈ηt, ψ̃〉 =
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
× (φ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn) −φ(n, x1, · · · , xn)) dνt(n, x1, · · · , xn).

It can be seen that ψ̃ ∈ Cb(U) and hence, 〈ηt, ψ̃〉 is a continuous function of t.

The term related to arrivals can be written as below. Let ψ(νt) be the function defined

as

ψ(νt)(n, x1, · · · , xn)

=

{
λ

n+ 1

}
Φn(νt)

n+1∑
i=1

(φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn)).

Then

〈νt, ψ(νt)〉 = λ

[
(νt({0})Φ0(νt) (φ(1, 0)− φ(0))) +

∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}
Φn(νt)

× (φ(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ(n, x1, · · · , xn)) dνt(n, x1, · · · , xn).

Since ψ(νt) ∈ Cb(U), t 7→ 〈νt, ψ(νb)〉 is continuous when b is a fixed-value. The mapping

t 7→ 〈νt, ψ(νt)〉 is continuous if 〈νt+b, ψ(νt+b)〉 → 〈νt, ψ(νt)〉 as b→ 0. We can write

∣∣〈νt+b, ψ(νt+b)〉 − 〈νt, ψ(νt)〉
∣∣ ≤ ∣∣〈νt+b, ψ(νt+b)〉 − 〈νt+b, ψ(νt)〉

∣∣+ ∣∣〈νt+b, ψ(νt)〉 − 〈νt, ψ(νt)〉
∣∣ .

(3.89)

Since ψ(νt) ∈ Cb(U), we get

lim
b→0

∣∣〈νt+b, ψ(νt)〉 − 〈νt, ψ(νt)〉
∣∣ = 0. (3.90)
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To prove the continuity of the mapping t 7→ 〈νt, ψ(νt)〉, it remains to be shown that

lim
b→0

∣∣〈νt+b, ψ(νt+b) − ψ(νt)〉
∣∣ = 0.

For an integer L > 0, let

V (L) = {(n, x1, . . . , xn) ∈ Un : n ≥ 1, xi ≤ L for all 1 ≤ i ≤ n where 1 ≤ n ≤ L}.

Let V
(L)

be the complement of V (L). Then for given ε > 0, there exists L > 0 such that

〈νt, I{V (L)
}〉 < ε. (3.91)

Since the mapping t 7→ νt is continuous, we can find some r1 > 0 such that for all b ∈
[−min (t, r1), r1],

〈νt+b, I{V (L)
}〉 < ε. (3.92)

We now show that there exists r2 ∈ (0, r1) such that for b ∈ [−min(t, r2), r2] and u ∈ V (L),

the following result holds∣∣ψ(νt+b)(u)− ψ(νt)(u)
∣∣ < 6λM(d(max))3‖φ‖ε. (3.93)

For u ∈ V (L), ∣∣ψ(νt+b)(u)− ψ(νt)(u)
∣∣ < 2λ‖φ‖ max

0≤m≤L
|Φm(νt+b)− Φm(νt)| .

Let us now obtain bounds on max0≤m≤L |Φm(νt+b)− Φm(νt)|. We have

|Φm(νt+b)− Φm(νt)| =

∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

i∑
j=1

I{nj=m}q
[k,i](n; j)

i∏
r=1, r 6=j

(Qnr (νt+b)−Qnr (νt))

∣∣∣∣∣∣ .
For each j, we can write∣∣∣∣∣∣

M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

I{nj=m}q
[k,i](n; j)

i∏
r=1, r 6=j

(Qnr (νt+b)−Qnr (νt))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

I{nj=m}q
[k,i](n; j)(Qn1(νt+b)−Qn1(νt))

i∏
r=2, r 6=j

Qnr (νt+b)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

I{nj=m}q
[k,i](n; j)Qn1(νt)

(
i∏

r=2, r 6=j

(Qnr (νt+b)−Qnr (νt))

)∣∣∣∣∣∣ . (3.94)
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We can bound the first term on the right side of (3.94) as∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

I{nj=m}q
[k,i](n; j)(Qn1(νt+b)−Qn1(νt))

i∏
r=2, r 6=j

Qnr (νt+b)

∣∣∣∣∣∣
≤Md(max)

∑
i≥0

|Qi(νt+b)−Qi(νt)| .

By similar arguments, we obtain∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

I{nj=m}q
[k,i](n; j)Qn1(νt)

(
i∏

r=2, r 6=j

(Qnr (νt+b)−Qnr (νt))

)∣∣∣∣∣∣
≤Md(max)(d(max) − 1)

∑
i≥0

|Qi(νt+b)−Qi(νt)| .

Hence, for each j, we have∣∣∣∣∣∣
M∑
k=1

d(max)∑
i=1

∑
n∈Y[k,i]

I{nj=m}q
[k,i](n; j)

i∏
r=1, r 6=j

(Qnr (νt+b)−Qnr (νt))

∣∣∣∣∣∣
≤M(d(max))2

∑
i≥0

|Qi(νt+b)−Qi(νt)| .

As a result, we have

|Φm(νt)− Φm(νt+b)| ≤M(d(max))3
∑
i≥0

|Qi(νt+b)−Qi(νt)| .

We now show

lim
b→0

∑
i≥0

|Qi(νt+b)−Qi(νt)| = 0.

We can write∑
i≥0

|Qi(νt+b)−Qi(νt)| ≤
∑

0≤i≤L−1

|Qi(νt+b)−Qi(νt)|+
∑
i≥L

|Qi(νt+b)−Qi(νt)|

≤
∑

0≤i≤L−1

|Qi(νt+b)−Qi(νt)|+
∑
i≥L

|Qi(νt+b)|+
∑
i≥L

|Qi(νt)| .

From (3.91)-(3.92), for b ∈ [−min(t, r1), r1], we have∑
i≥0

|Qi(νt+b)−Qi(νt)| ≤
∑

0≤i≤L−1

|Qi(νt+b)−Qi(νt)|+ ε+ ε.
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Again, as limb→0 |Qi(νt+b)−Qi(νt)| = 0 for 0 ≤ i ≤ L − 1, there exists r2 ∈ (0, r1) such

that for b ∈ [−min(t, r2), r2], ∑
0≤i≤L−1

|Qi(νt+b)−Qi(νt)| ≤ ε.

Hence, we have ∑
i≥0

|Qi(νt+b)−Qi(νt)| ≤ 3ε

for b ∈ [−min(t, r2), r2]. Therefore,

max
0≤m≤L−1

|Φm(νt)− Φm(νt+b)| ≤ 3M(d(max))3ε.

From (3.91)-(3.93) and for b ∈ [−min(t, r2), r2], since ψ(νt+b) ∈ Cb(U), we can write∣∣〈νt+b, ψ(νt+b) − ψ(νt)〉
∣∣ ≤ 6λM(d(max))3‖φ‖ε〈νt+b, I{V (L)}〉+ 2(d(max))3(d(max)!)λ‖φ‖ε

≤ 8λM(d(max))3(d(max)!)‖φ‖ε.

By taking b → 0 and then ε → 0 in equation (3.89), the mapping t 7→ 〈νt, ψ(νt)〉 is

continuous.

We now show that any solution to (3.88) also satisfies an alternative equation. For this,

we apply the method of change of variables. For φ ∈ C1
b(U) and r ≤ t, let φ̃ be defined as

φ̃(n, x1, . . . , xn) =

φ(0) if n = 0,

τ̃t−rφ(n, x1, · · · , xn) otherwise.
(3.95)

Let us consider the change in 〈νr, φ̃〉 due to change in ‘r’. We can write

d〈νr, φ̃〉
dr

= lim
h→0

{〈νr+h, τ̃t−rφ〉 − 〈νr, τ̃t−rφ〉}
h

+lim
h→0

{〈νr+h, τ̃t−r−hφ〉 − 〈νr+h, τ̃t−rφ〉}
h

. (3.96)

In the above equation, the first term on the right side can be computed by using (3.88)

and the second term is equal to −〈νt, φ̃′∑〉. Hence, we obtain

d〈νr, φ̃〉
dr

=

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
×
(
φ̃(n− 1, x1, . . . , xi−1, xi+1, . . . , xn)− φ̃(n, x1, . . . , xn)

)
dνr(n, x1, · · · , xn)

+ λ

[(
νr({0})Φ0(νr)

(
φ̃(1, 0)− φ̃(0)

))
+
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}
Φn(νr)
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× (φ̃(n+ 1, x1, · · · , xi−1, 0, xi, · · · , xn)− φ̃(n, x1, · · · , xn)) dνr(n, x1, · · · , xn)

])
. (3.97)

By integrating d〈νr,φ̃〉
dr

with respect to r from 0 to t, we obtain (3.16).

For φ ∈ C1
b(U), we now show that any solution (〈νt, φ〉, t ≥ 0) to (3.16) also satis-

fies (3.87). For this, it is enough to show that the derivative of 〈νt, φ〉 with respect to t

exists. Since φ ∈ C1
b(U), the dominated convergence theorem [69, Theorem 1.34] implies

that d〈ν0,τ̃tφ〉
dt

is well defined. We can apply the Leibniz integral rule to prove that the

derivative of the second term on the right side of equation (3.16) with respect to t exists.

According to this rule, the integrand should be continuous with respect to both the vari-

ables r and t. This proof is similar to the proof of the integrand in equation (3.87). We

then need to show that the derivative of the integrand with respect to t exists, and further,

the differential should be continuous with respect to both the variables r and t. Since

φ ∈ C1
b(U), the dominated convergence theorem implies that the integrand is differentiable

and further, it is continuous with respect to r and t. This proof is similar to that of the

continuity of the integrand in (3.87). Hence, any solution (νt, t ≥ 0) ∈ CM1(U)([0,∞)) is a

solution to (3.87) if and only if it is a solution to (3.16). In equation (3.16), φ need not be

differentiable.

3.7.6 Proof of Lemma 3.2

We prove this result based on induction arguments. Let S(k, n) be the set of all k ordered

numbers chosen from {1, 2, · · · , n}. For yi ∈ R+, i ≥ 1, b = (b1, · · · , bk) ∈ S(k, n) and

υ = (υ1, · · · , υk), let

B[k,υ,n,b](y1, · · · , yk)

= {(n, x1, · · · , xn) : xi ∈ R+ for i /∈ {b1, · · · , bk} and yj ≤ xbj ≤ yj+υj, 1 ≤ j ≤ k}.

Further, we define

ηt(B
[k,υ,n]) = max

b∈S(k,n)
sup

(y1,··· ,yk)∈Rk+

ηt(B
[k,υ,n,b](y1, · · · , yk)). (3.98)

We now show that for each k, 1 ≤ j ≤ k,

lim
υj→0

∑
n≥k

ηt(B
[k,υ,n]) = 0. (3.99)
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From (3.99), we obtain that the measure ηt is absolute continuous w.r.t. the Lebesgue

measure and hence, it has a density function. Here,
∑

n≥k ηt(B
[k,υ,n]) is well-defined since

ηt(B
[k,υ,n]) ≤ ηt(Un) and

∑
n≥k ηt(Un) ≤ 1.

Since there existence sequence of bounded continuous functions that decrease pointwise

to indicators of closed sets, by using monotone convergence theorem, we can write from

(3.16) as

ηt(B
[k,υ,n,b](y1, · · · , yk)) = 〈η0, τ̃tI{B[k,υ,n,b](y1,··· ,yk)}〉

−
∫ t

s=0

( n∑
i=1

∫
x1

· · ·
∫
xn

β(xi)

n
τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xn) dηs(n, x1, · · · , xn)

+
n+1∑
j=1

∫
x1

· · ·
∫
xn+1

β(xj)

n+ 1

× τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xj−1, xj+1, · · · , xn+1) dηs(n+ 1, x1, · · · , xn+1)

−
∫
x1

· · ·
∫
xn

λΦn(ηs)τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xn) dηs(n, x1, · · · , xn)

+
n∑
i=1

∫
x1

· · ·
∫
xi−1

∫
xi+1

· · ·
∫
xn

λΦn−1(ηs)

n

× τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xi−1, 0, xi+1, · · · , xn)

× dηs(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)

)
ds. (3.100)

We now obtain bounds on every term of the right side of (3.100). By using the fact that

τ̃tI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xn) = I{B[k,υ,n,b](y1,··· ,yk)}

(
n, x1 +

t

n
, · · · , xn +

t

n

)
,

(3.101)

we obtain the following bounds

〈η0, τ̃tI{B[k,υ,n,b](y1,··· ,yk)}〉 ≤ η0(Bk,υ,n), (3.102)

{ n∑
i=1

∫
x1

· · ·
∫
xn

β(xi)

n
τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xn) dηs(n, x1, · · · , xn)

}
≤ ‖β‖ηs(Bk,υ,n), (3.103)

{ n+1∑
j=1

∫
x1

· · ·
∫
xn+1

β(xj)

n+ 1
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× τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xj−1, xj+1, · · · , xn+1) dηs(n+ 1, x1, · · · , xn+1)

}
≤ ‖β‖ηs(Bk,υ,n+1), (3.104)

and from (3.78) we obtain∫
x1

· · ·
∫
xn

λΦn(ηs)τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xn) dηs(n, x1, · · · , xn)

≤ λM(d(max))3(d(max)!)ηs(B
k,υ,n). (3.105)

We now obtain bounds on the last term. We have

τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xi−1, 0, xi+1, · · · , xn)

= I{B[k,υ,n,b](y1,··· ,yk)}

(
n, x1 +

t− s
n

, · · · , xi−1 +
t− s
n

,
t− s
n

, xi+1 +
t− s
n

, · · · , xn +
t− s
n

)
.

(3.106)

We now investigate the range of values of xi, i ≥ 1, for which we get

τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xi−1, 0, xi+1, · · · , xn) = 1.

There are two possibilities: either i ∈ {b1, · · · , bk} or i /∈ {b1, · · · , bk}. We begin with the

first case. Let us assume that i = br for some 1 ≤ r ≤ k. Then we have

yr ≤
t− s
n
≤ yr + υr

As a result, we conclude t − (nyr + nυr) ≤ s ≤ t − nyr. Also, for j = bm with j 6= br,

we obtain that xj satisfies ym ≤ xbm + t−s
n
≤ ym + υm. For j /∈ {b1, · · · , bk}, we have

xj + t−s
n
∈ R+.

In the second case when i /∈ {b1, · · · , bk}, we have t−s
n
∈ R+ implying that s ≤ t. Also,

for j = bm with 1 ≤ m ≤ k, we obtain that xj satisfies ym ≤ xbm + t−s
n
≤ ym + υm and for

j /∈ {b1, · · · , bk}, we have xj + t−s
n
∈ R+.

From the above discussion, we can show that{∫ t

s=0

n∑
i=1

(∫
x1

· · ·
∫
xi−1

∫
xi+1

· · ·
∫
xn

λΦn−1(ηs)

n

× τ̃t−sI{B[k,υ,n,b](y1,··· ,yk)}(n, x1, · · · , xi−1, 0, xi+1, · · · , xn)

× dηs(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)

)
ds

}
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≤ λM(d(max))3(d(max)!)

( k∑
l=1

∫ t

s=0

1

n
I{[t−n(yl+υl), t−nyl]}(s)ηs

(
B[k−1,υ−l,n−1]

)
ds

+
n− k
n

∫ t

s=0

ηs
(
B[k,υ,n−1]

)
ds

)
, (3.107)

where υ−l = (υ1, · · · , υl−1, υl+1, · · · , υk). We next show the following result by using

(3.102)-(3.107) for the case k = 1 and υ = (υ1),

lim
υj→0

∑
n≥1

ηt(B
[1,υ,n]) = 0. (3.108)

From (3.102)-(3.107), we obtain

ηt(B
[1,υ,n,b](y1)) ≤ η0(B[1,υ,n]) + ‖β‖

∫ t

s=0

ηs(B
[1,υ,n]) ds+ ‖β‖

∫ t

s=0

ηs(B
[1,υ,n+1]) ds

+ λM(d(max))3(d(max)!)

∫ t

s=0

ηs(B
[1,υ,n]) ds

+ λM(d(max))3(d(max)!)

( 1∑
l=1

∫ t

s=0

1

n
I{[t−n(yl+υl), t−nyl]}(s)ηs (Un−1) ds

+
n− 1

n

∫ t

s=0

ηs
(
B[1,υ,n−1]

)
ds

)
. (3.109)

We can also write∫ t

s=0

1

n
I{[t−n(yl+υl), t−nyl]}(s)ηs (Un−1) ds ≤

∫ t

s=0

1

n
I{[t−(yl+υl), t−yl]}(s)ηs (Un−1) ds. (3.110)

From (3.109)-(3.110), we get

ηt(B
[1,υ,n]) ≤ η0(B[1,υ,n]) + ‖β‖

∫ t

s=0

(ηs(B
[1,υ,n]) + ηs(B

[1,υ,n+1])) ds

+ λM(d(max))3(d(max)!)

(∫ t

s=0

ηs(B
[1,υ,n]) ds

+

(
sup
y1

1∑
l=1

∫ t

s=0

I{[t−(yl+υl), t−yl]}(s)ηs (Un−1) ds+

∫ t

s=0

ηs
(
B[1,υ,n−1]

)
ds

))
. (3.111)

From (3.111), by summing over n ≥ 1, we obtain(∑
n≥1

ηt(B
[1,υ,n])

)
≤

(∑
n≥1

η0(B[1,υ,n])

)
+ 2‖β‖

∫ t

s=0

(∑
n≥1

ηs(B
[1,υ,n])

)
ds

+ 2λM(d(max))3(d(max)!)

(∫ t

s=0

(∑
n≥1

ηs(B
[1,υ,n])

)
ds+ υ1

)
. (3.112)
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By using Gronwall’s inequality, we have(∑
n≥1

ηt(B
[1,υ,n])

)
≤

((∑
n≥1

η0(B[1,υ,n])

)
+ 2λM(d(max))3(d(max)!)υ1

)
e(2‖β‖+2λM(d(max))3(d(max)!))t.

(3.113)

Since the measure η0 has a density function, we have

lim
υ1→0

(∑
n≥1

ηt(B
[1,υ,n])

)
= 0. (3.114)

We now use induction arguments. Suppose, for υ = [υ1, · · · , υm], we have

lim
υr→0

(∑
n≥m

ηt(B
[m,υ,n])

)
= 0 and

(∑
n≥m

ηt(B
[m,υ,n])

)
≤ ẑme

v̂mt, (3.115)

for all 1 ≤ r ≤ m and ẑm, v̂m ≥ 0. Then we will show that for all 1 ≤ r ≤ m + 1, there

exists ẑm+1, v̂m+1 ≥ 0 such that

lim
υr→0

( ∑
n≥m+1

ηt(B
[m+1,υ,n])

)
= 0 and

( ∑
n≥m+1

ηt(B
[m+1,υ,n])

)
≤ ẑm+1e

v̂m+1t. (3.116)

From (3.102)-(3.107), we obtain

{
∑

n≥m+1

ηt(B
[m+1,υ,n])} ≤ {

∑
n≥m+1

η0(B[m+1,υ,n])}+ 2‖β‖
∫ t

s=0

{
∑

n≥m+1

ηs(B
[m+1,υ,n])} ds

+ 2λM(d(max))3(d(max)!)

∫ t

s=0

{
∑

n≥m+1

ηs(B
[m+1,υ,n])} ds

+λM(d(max))3(d(max)!) sup
y1,··· ,ym+1

(m+1∑
l=1

∫ t

s=0

I{[t−(yl+υl), t−yl]}(s)

{ ∑
n≥m+1

ηs

(
B[m,υ−l,n−1]

)}
ds

)
.

(3.117)

We can also write

{
∑

n≥m+1

ηt(B
[m+1,υ,n])} ≤ {

∑
n≥m+1

η0(B[m+1,υ,n])}+ 2‖β‖
∫ t

s=0

{
∑

n≥m+1

ηs(B
[m+1,υ,n])} ds

+ 2λM(d(max))3(d(max)!)

∫ t

s=0

{
∑

n≥m+1

ηs(B
[m+1,υ,n])} ds

+ λM(d(max))3(d(max)!)

(m+1∑
l=1

{
sup

0≤s≤t

∑
n≥m+1

ηs

(
B[m,υ−l,n−1]

)}
υl

)
. (3.118)
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Now by using Gronwall’s inequality, we have{ ∑
n≥m+1

ηt(B
[m+1,υ,n])

}

≤

{( ∑
n≥m+1

η0(B[m+1,υ,n])

)
+ 2λM(d(max))3(d(max)!)

×
(m+1∑

l=1

{
sup

0≤s≤t

∑
n≥m+1

ηs

(
B[m,υ−l,n−1]

)}
υl

)}
e(2‖β‖+2λM(d(max))3(d(max)!))t. (3.119)

From (3.115), we conclude that for 1 ≤ r ≤ m+ 1,

lim
υr→0

( ∑
n≥m+1

ηt(B
[m+1,υ,n])

)
= 0. (3.120)

This concludes the proof.

3.7.7 Single Server System with State-dependent Arrival Rates

Let us consider a system that has a single PS server in which jobs arrive according to a

Poisson process with rate αn when there are n progressing jobs. The job length distribution

is G(·) which is the same as in the system model of our multi-server system. Let ν
(single)
t be

the probability measure of the server state at time t, then we have the following Kolmogorov

equations, for φ ∈ C1
b(U),

〈ν(single)
t , φ〉 = 〈ν(single)

0 , φ〉+

∫ t

s=0

〈ν(single)
s , φ′∑〉 ds

−
∫ t

s=0

(
∞∑
n=1

n∑
i=1

∫
x1

· · ·
∫
xn

{
β(xi)

n

}
(φ(n− 1, x1, · · · , xi−1, xi+1, · · · , xn)

−φ(n, x1, · · · , xn)) dν(single)
s (n, x1, · · · , xn)

+

[ (
α0ν

(single)
s ({0}) (φ(1, 0)− φ(0))

)
+
∞∑
n=1

n+1∑
i=1

∫
x1

· · ·
∫
xn

{
1

n+ 1

}

×αn(φ(n+1, x1, · · · , xi−1, 0, xi, · · · , xn)−φ(n, x1, · · · , xn)) dν(single)
s (n, x1, · · · , xn)

])
ds.

(3.121)

Let p
(single)
t (u) be the density of the measure ν

(single)
t at u ∈ U. Then we obtain

the differential equations satisfied by the density function p
(single)
t = (p

(single)
t (u),u ∈ U)
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by using the same procedure as in [35, 67, 68, 81]. Let us define a process P
(single)
t =

(P
(single)
t (u),u ∈ U) where P

(single)
t (0) is equal to ν

(single)
t ({0}) and

P
(single)
t (n, y1, · · · , yn) =

∫ y1

x1=0

· · ·
∫ yn

xn=0

p
(single)
t (n, x1, · · · , xn) dx1 · · · dxn.

Then we get the following differential equations

dP
(single)
t (0)

dt
=

∫ ∞
y=0

β(y)

(
∂P

(single)
t (1, y)

∂y

)
dy − α0P

(single)
t (0), (3.122)

for n ≥ 1,

dP
(single)
t (n, y1, · · · , yn)

dt
= −

n∑
i=1

1

n

∂P
(single)
t (n, y1, . . . , yn)

∂yi

+
n+1∑
i=1

∫ ∞
xi=0

β(xi)

n+ 1

(
∂P

(single)
t (n+ 1, y1, · · · , yi−1, xi, yi, · · · , yn)

∂xi

)
dxi

−
n∑
i=1

∫ yi

xi=0

β(xi)

n

(
∂P

(single)
t (n, y1, · · · , yi−1, xi, yi+1, · · · , yn)

∂xi

)
dxi

+
n∑
i=1

(αn−1

n

)
P

(single)
t (n− 1, y1, · · · , yi−1, yi+1, · · · , yn)

− αnP (single)
t (n, y1, · · · , yn). (3.123)

From [22], the single server PS system with state-dependent arrival rate αi when there

are i jobs in progress and job lengths are generally distributed with finite mean 1
µ
, has a

unique stationary distribution π(single) = (π(single)(u),u ∈ U) given by,

π(single)(n, y1, · · · , yn) =

(∏n
i=1

αi−1

µ

)
1 +

∑∞
m=1

(∏m
i=1

αi−1

µ

)µn n∏
i=1

∫ yi

xi=0

G(xi) dxi, (3.124)

and

π(single)(0) =
1

1 +
∑∞

m=1

(∏m
i=1

αi−1

µ

) . (3.125)

3.7.8 Proof of Theorem 3.4

To prove this result, we work with the mean-field of the tail occupancy process. The

proof uses the result that the mean-field is quasi-monotonic for Policies 2 and 4. We show

that the mean-field is GAS and we skip the rest of the details as they follow by similar
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arguments of [11, Section 2.6]. We use the spaces U′ and U defined in (1.23) and (1.24),

respectively. We equip the space U′ with the metric ω(·, ·) defined in (1.25). The space

U′ equipped with the metric ω is compact, complete, and separable. For the stochastic

system with parameter N , let (X
(N)
i (t), i ≥ 0, t ≥ 0) be the empirical process where X

(N)
i (t)

denotes the fraction of servers with at least i progressing jobs. Then if X(N)(0)⇒ u, then

(X(N)(t), t ≥ 0)⇒ (x(t,u), t ≥ 0) which is the unique solution to the following equations,

x(0,u) = u (3.126)

dxi(t,u)

dt
= Fi(x(t, (u))) (3.127)

= (xi−1(t,u)− xi(t,u))λΦi−1(x(t,u))− µxi(t,u) + µxi+1(t,u), (3.128)

where Φi(x(t,u)) is the arrival rate function given in (3.11) with Qj(
ν
N

) replaced by

xj(t,u) − xj+1(t,u). Let F(x(t,u)) = (Fi(x(t,u), i ≥ 1). Then any fixed-point γ =

(γi, i ≥ 0) of the mean-field satisfies F(γ) = 0.

We show that limt→∞ x(t,u) = π for all u ∈ U. The following result is the key step to

conclude that the asymptotic stationary distribution of a server coincides with the unique

fixed-point of the mean-field.

Proposition 3.1. For Policies 2 and 4, the mean-field is quasi-monotonic. Furthermore,

limt→∞ x(t,u) = π for all u ∈ U.

Proof. For Policy 2 and Policy 4, the mean-field equations are

dxi(t,u)

dt
= Fi(x(t,u)), (3.129)

where we have for 1 ≤ i ≤ α + 1,

Fi(x(t,u)) = λ
(1− xdα+1(t,u))

(1− xα+1(t,u))
(xi−1(t,u)− xi(t,u))− µxi(t,u) + µxi+1(t,u), (3.130)

and for i ≥ α + 1,

Fi(x(t,u)) = λ(xdi−1(t,u)− xdi (t,u))− µxi(t,u) + µxi+1(t,u). (3.131)

Since Fi(·) is non-decreasing in xj(t,u) for i 6= j, the mean-field is quasi-monotone from [82,

p. 70-74]. Hence if u ≤ v by element wise, then x(t,u) ≤ x(t,v) by element wise. As

a result, we have x(t,min(u, π)) ≤ x(t,u) ≤ x(t,max(u, π)). Therefore, to show that

limt→∞ x(t,u) = π for all u ∈ U, it is sufficient to show limt→∞ x(t,u) = π for all u ≥ π

and for all u ≤ π.
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Let us now define zn(t,u) =
∑

k≥n xk(t,u) and zn(u) =
∑

k≥n uk. If u ∈ U, then

x(t,u) ∈ U and further, we have for 1 ≤ n ≤ α + 1,

dzn(t,u)

dt
= λ

(1− xdα+1(t,u))

(1− xα+1(t,u))
(xn−1(t,u)− xα+1(t,u)) + λxdα+1(t,u)− µxn(t,u), (3.132)

and for n ≥ α + 2,
dzn(t,u)

dt
= λxdn−1(t,u)− µxn(t,u). (3.133)

The fixed-point π satisfies the following equations, for 1 ≤ n ≤ α + 1,

λ
(1− πdα+1)

(1− πα+1)
(πn−1 − πα+1) + λπdα+1 − µπn = 0, (3.134)

and for n ≥ α + 2, we have

λπdn−1 − µπn = 0. (3.135)

We first show that zn(t,u) is bounded uniformly in t for n ≥ 1. Note that

dz1(t,u)

dt
= λ− µx1(t,u).

If u ≤ π, then x(t,u) ≤ x(t, π) and hence, z1(t,u) ≤ z1(π). Since zn(t,u) ≥ zn+1(t,u),

we have that zn(t,u) is uniformly bounded in t. On the other hand, if u ≥ π, then

x(t,u) ≥ x(t, π) and hence,
dz1(t,u)

dt
≤ λ− µπ1 = 0.

This implies z1(t,u) ≤ z1(u) and hence, zn(t,u) for n ≥ 1 is uniformly bounded in t. When

u ≥ π, since the derivative of xn(t,u) is bounded for all n ≥ 1, then limt→∞ x(t,u) = π

follows if we show for all n ≥ 1,∫ ∞
t=0

(xn(t,u)− πn) dt <∞.

Similarly, for the case of u ≤ π, it is sufficient to show∫ ∞
t=0

(πn − xn(t,u)) dt <∞

for all n ≥ 1. We only give a proof for the case when u ≥ π and the proof for the other

case is similar.

We first begin with the proof of∫ ∞
t=0

(x1(t,u)− π1) dt <∞.
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From (3.134) and (3.132), we have

dz1(t,u)

dt
= −µ(x1(t,u)− π1).

Then we have ∫ T

t=0

µ(x1(t,u)− π1) dt = −
∫ T

t=0

dz1(t,u)

dt
dt.

This implies ∫ T

t=0

µ(x1(t,u)− π1) dt = z1(u)− z1(T,u).

Since z1(t,u) is uniformly bounded in t, we get∫ ∞
t=0

(x1(t,u)− π1) dt <∞

as T →∞.

We now focus on the proof of∫ ∞
t=0

(xn(t,u)− πn) dt <∞

for 2 ≤ n ≤ α + 1. We prove this by using the induction method. For 2 ≤ K ≤ α + 1, let∫ ∞
t=0

(xi(t,u)− πi) dt <∞

is true for 1 ≤ i ≤ K − 1, then we prove that∫ ∞
t=0

(xK(t,u)− πK) dt <∞.

From (3.132), we have

dz1(t,u)

dt
− dzK(t,u)

dt
= λ

(1− xdα+1(t,u))

(1− xα+1(t,u))
(1 − xK−1(t,u)) − µx1(t,u) + µxK(t,u).

Then from (3.134), we have

dz1(t,u)

dt
− dzK(t,u)

dt
= λ

(1− xdα+1(t,u))

(1− xα+1(t,u))
(1− xK−1(t,u))− λ

(1− πdα+1)

(1− πα+1)
(1− πK−1)

− µx1(t,u) + µπ1 + µxK(t,u)− µπK .

Therefore, we obtain∫ T

t=0

(µxK(t,u)−µπK) dt =

∫ T

t=0

(dz1(t,u)

dt
−dzK(t,u)

dt
−λ

(1− xdα+1(t,u))

(1− xα+1(t,u))
(1−xK−1(t,u))
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+ λ
(1− πdα+1)

(1− πα+1)
(1− πK−1) + µx1(t,u)− µπ1

)
dt.

Since xα+1(t,u) ≥ πα+1, we have∫ T

t=0

(µxK(t,u)−µπK) dt =

∫ T

t=0

(dz1(t,u)

dt
−dzK(t,u)

dt
−λ

(1− xdα+1(t,u))

(1− xα+1(t,u))
(1−xK−1(t,u))

+ λ
(1− xdα+1(t,u))

(1− xα+1(t,u))
(1− πK−1) + µx1(t,u)− µπ1

)
dt.

Further, as
(1−xdα+1(t,u))

(1−xα+1(t,u))
≤ d, we get

∫ T

t=0

(µxK(t,u)− µπK) dt ≤
∫ T

t=0

(dz1(t,u)

dt
− dzK(t,u)

dt

+ dλ(xK−1(t,u)− πK−1) + µx1(t,u)− µπ1

)
dt.

From the induction hypothesis and since zn(t,u) is bounded uniformly in t for n ≥ 1, we

get ∫ ∞
t=0

(xK(t,u)− πK) dt <∞

as T →∞.

Finally, we show ∫ ∞
t=0

(xn(t,u)− πn) dt <∞

for n ≥ α + 2. We prove this by using the induction method. For K ≥ α + 2, let∫ ∞
t=0

(xi(t,u)− πi) dt <∞

is true for 1 ≤ i ≤ K − 1, then we prove that∫ ∞
t=0

(xK(t,u)− πK) dt <∞.

From (3.133), we have∫ T

t=0

µ(xK(t,u)− πK) dt =

∫ T

t=0

(
− dzK(t,u)

dt
+ λ(xdK−1(t,u)− πdK−1)

)
dt.

From the induction hypothesis and since zK(t,u) is bounded uniformly in t, we get∫∞
t=0

µ(xK(t,u)− πK) dt <∞ as T →∞. This completes the proof.
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3.7.9 Proof of Theorem 3.5

The proof mainly uses the logic that in the stationary regime, the servers’ states are

exchangeable random variables. We can write∣∣∣∣∣E
[

l∏
i=1

φi

(
S

(Nk)
i (∞)

)]
− E

[
l∏

i=1

〈V(∞), φi〉

]∣∣∣∣∣
≤

∣∣∣∣∣E
[

l∏
i=1

φi

(
S

(Nk)
i (∞)

)]
− E

[
l∏

i=1

〈V(Nk)(∞), φi〉

]∣∣∣∣∣
+

∣∣∣∣∣E
[

l∏
i=1

〈V(Nk)(∞), φi〉

]
− E

[
l∏

i=1

〈V(∞), φi〉

]∣∣∣∣∣ . (3.136)

Note that since V(Nk)(∞) ⇒ V(∞), the second term on the right hand side of the above

inequality vanishes as Nk → ∞. Now, due to exchangeability, the permutation of states

between servers does not affect the joint distribution. Hence, we have

E

[
l∏

i=1

φi

(
S

(Nk)
i (∞)

)]
=

1

(Nk)l
E

 ∑
σ∈Q(l,Nk)

l∏
i=1

φi

(
S

(Nk)
σ(i) (∞)

) ,
where (N)j = N(N − 1) . . . (N − j + 1), and Q(r, n) denotes the set of all permutations of

the numbers {1, 2, . . . , n} taken r at a time. Also, by the definition of V(Nk)(∞), we have

E

[
l∏

i=1

〈V(Nk)(∞), φi〉

]
= E

[(
l∏

i=1

1

Nk

Nk∑
j=1

φi

(
S

(Nk)
j (∞)

))]
.

Hence, the first term on the right hand side of (3.136) can be bounded as follows

∣∣∣∣∣E
[

l∏
i=1

φi

(
S

(Nk)
i (∞)

)]
− E

[
l∏

i=1

〈V(Nk)(∞), φi〉

]∣∣∣∣∣ ≤ 2Bl

(
1− (Nk)l

(Nk)l

)
,

where maxi ‖φi‖ = B. The result follows since
(

1− (Nk)l
(Nk)l

)
→ 0 as Nk →∞.

Finally, from (3.52), any finite set of servers are independent of each other iff Z is

a Dirac measure. Otherwise they are coupled through the sample value of the random

variable V(∞). If Z = δη, then it implies that in the limiting system, the stationary

empirical random variable V(∞) is a deterministic value coinciding with η. Then the

following equation concludes that each server has distribution η

E

[
l∏

i=1

φi(S
(Nk)
i (∞))

]
→

l∏
i=1

〈η, φi〉

as Nk →∞. This completes the proof.
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3.8 Conclusions

In this chapter, we studied occupancy dependent policies that subsume threshold based

policies and policies that are adaptive to variations in the system load using mean-field

techniques. Our results conclude that the fixed-point of the mean-field is insensitive for

any occupancy based policy as long as the mean-field when job lengths are exponentially

distributed has a unique fixed-point. For general JLDs, when the fixed-point of the mean-

field is unique, it is of great interest to show that the stationary distribution of a server as

N → ∞ coincides with the unique fixed-point of the mean-field. This result seems to be

true as it is observed in our simulation results for the policies studied in this chapter.
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Chapter 4

A Functional Central Limit Theorem

for Multi-Server Erlang Loss Systems

Under SQ(d) Load Balancing Policy

In this chapter, we return to the multi-server Erlang loss system that has N servers,

each server can serve only a finite number of C jobs simultaneously. We assume that the

dispatcher employs the SQ(d) load balancing policy, according to which the destination

server for an incoming job is the server with the least occupancy among d randomly sampled

servers. The job arrival process is a Poisson process with rate Nλ(N), where λ(N) ∈ R+.

The main contribution of this chapter is to derive a functional central limit theorem

(FCLT) by considering the asymptotic regime, N → ∞. The FCLT that we establish in

this chapter is useful to obtain an approximation to the blocking probability for a job in the

system with N servers when N is large. In earlier works [8,10], they obtained the blocking

probability for a job when N → ∞ with the help of mean-field techniques. Without loss

of generality, we call the blocking probability obtained when N → ∞ as the asymptotic

blocking probability. Quantifying the error between the actual blocking probability for the

system with N servers and the asymptotic blocking probability is of great interest. We use

the FCLT which we establish in this chapter to quantify the resulting error between the

actual blocking probabilities and the asymptotic blocking probabilities, as a function of N .

We assume that λ(N) = σ− α̃/
√
N for α̃ ∈ R and σ ∈ R+. Such an assumption includes the

Halfin-Whitt regime [45] as a special case which corresponds to the case when σ = C and

α̃ 6= 0. The Halfin-Whitt regime is so-called an efficiency driven heavy traffic regime that
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allows us to study how the effects of increasing load affects performance.

Organization of the Chapter

The rest of the chapter is organized as follows: We introduce the system model in Sec-

tion 4.1. We then present the required notation and some preliminary results in Section 4.2.

In Section 4.3, we state the main results of the chapter. In this section, we begin first with

some preliminary results on the transient regime and then we state the functional central

limit theorem for the transient regime in Theorem 4.3. After that we present some pre-

liminary results for the stationary regime and then we give the functional central limit

theorem for the stationary regime in Theorem 4.6. We conclude Section 4.3 with the result

on approximations to the average blocking probability of the system with N servers. We

give proofs of the main results in Section 4.4. Finally, we conclude in Section 4.5

4.1 System Model

In this section, we give a detailed description of the system model. We study a large-scale

multi-server Erlang loss system with a central job dispatcher which routes an incoming job

request to one of the servers according to the SQ(d) policy. The number of servers in the

system is equal to N , a large value in the order of 10,000. Each server can serve at most C

jobs simultaneously. As a result, the system’s capacity indicating the maximum number of

jobs that can be processed simultaneously in the system is equal toNC. When a job arrives,

the dispatcher routes the arrived job to one of the servers, and the destination server of the

arrival accepts the job if its occupancy is less than C. Otherwise, the destination server of

the arrival blocks the job from service. The system immediately discards a blocked job. If a

server accepts a job, it will serve or process the job at a constant unit rate until the service

of the job is completed. We assume that the service time distributions are exponential

with unit mean. The incoming jobs arrive according to a Poisson process with rate Nλ(N),

where λ(N) ∈ R+ and it is defined precisely later in this section.

Remark 4.1. For our model, it does not matter whether the dispatcher samples d servers

without replacement or with replacement to dispatch an arrival as they lead to the same

asymptotic results. The proof follows by the same arguments as in [47, pages 11-12].

Therefore for simplicity, we assume that the dispatcher samples d servers with replacement

upon an arrival.
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We next introduce the parameter λ(N). For σ ∈ R+ and α̃ ∈ R, the parameter λ(N) is

defined as

λ(N) = σ − α̃√
N
. (4.1)

We are interested in obtaining an FCLT for our model. The particular form of λ(N) in

(4.1) allows us to study the following two regimes as special cases:

1. For α̃ = 0 : The considered case corresponds to the case when the job arrival process

is a Poisson process with rate Nσ. The previous works [8, 10] focused on obtaining

a functional law of large numbers result referred to as the mean-field limit. They

derived the blocking probabilities for a job when N →∞ as a function of the unique

fixed-point of the mean-field. The FCLT that we establish in this chapter allows

us to show that the error between the actual blocking probability for a job in the

system with N servers and the asymptotic blocking probability obtained in terms of

the fixed-point of the mean-field is o(N−
1
2 ).

2. For α̃ 6= 0 and σ = C : In this case, the system is in a heavy-traffic regime when N is

large. In fact, the resulting model corresponds to the Halfin-Whitt regime since the

traffic intensity ρ(N) = λ(N)

C
= 1− α̃

C
√
N

approaches one as N →∞. Then the arrival

rate of jobs Nλ(N) and the system capacity NC are related as NC = Nλ(N) + α̃
√
N ,

and they converge to ∞ as N → ∞. In the Halfin-Whitt regime, we obtain an

approximation to the blocking probability for a job by exploiting the FCLT that we

establish in this chapter.

4.2 Additional Notation and Preliminary Results

In this section, we introduce the required notation and provide some preliminary results.

4.2.1 Additional Notation

We now introduce the required additional notation.

Due to the fact that the SQ(d) policy uses only the occupancy information of servers

but not their identities, we use the Markov process (X(N)(t), t ≥ 0) to describe the system
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evolution, where X(N)(t) = (X
(N)
i (t), 0 ≤ i ≤ C) and X

(N)
i (t) denotes the fraction of the

servers with at least i progressing jobs at time t. Let us define a space U as

U , {(u0, u1, · · · , uC) : u0 = 1 ≥ u1 ≥ · · · ≥ uC ≥ 0}. (4.2)

It is evident that X(N)(t) lies in the space U. Without loss of generality, we write an

element of the form (u0, · · · , uC) as u. The space U is equipped with the metric generated

by the euclidean norm ‖·‖2 defined as

‖u‖2 =

√√√√ C∑
i=0

|ui|2, (4.3)

where u = (u0, · · · , uC). It can be verified that the space U is a Polish space.

4.2.2 Preliminary Results

We next provide a mathematical framework for the main problem and present some pre-

liminary results.

We first present a mathematical formulation to the time evolution of the process

(X(N)(t), t ≥ 0). Upon an arrival, if the system state is b = (b0, · · · , bC) implying that the

fraction of servers with at least i progressing jobs is equal to bi for 0 ≤ i ≤ C, then the

destination server of the job will have occupancy n with probability bdn − bdn+1. Since the

rate of the arrival process is Nλ(N), the total instantaneous rate of arrivals to servers having

n jobs is Nλ(N)((X
(N)
n−1(t))d − (X

(N)
n (t))d). Furthermore, as job lengths have exponential

distributions with unit rate, the total instantaneous rate of departures from servers having

n jobs is nN(X
(N)
n (t) −X

(N)
n+1(t)). Then we can write the system dynamics using random

time change of a set of mutually independent unit rate Poisson processes as described

in [83, Section 2.1].

Let {(Ni(t), t ≥ 0)}i≥1 be the set of mutually independent unit rate Poisson processes.

We use (Ni(t), t ≥ 0) to model the arrival process to servers that have i−1 progressing jobs.

Similarly, let {(Di(t), t ≥ 0)}i≥1 be the collection of a set of mutually independent unit

rate Poisson processes. Furthermore, the set of processes {(Di(t), t ≥ 0)}i≥1 is independent

of the set of processes {(Ni(t), t ≥ 0)}i≥1. Also, {(Ni(t), t ≥ 0)}i≥1 and {(Di(t), t ≥ 0)}i≥1

are independent of X(N)(0). We use (Di(t), t ≥ 0) to model the departure process from

servers that have i progressing jobs. Since the arrival process of jobs to the system is a
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Poisson process with rate Nλ(N) and the service time distributions are exponential with

unit mean, as in [83], we can write

X
(N)
0 (t) = 1, (4.4)

and for n ≥ 1,

X(N)
n (t) = X(N)

n (0) +
1

N
Nn
(
Nλ(N)

∫ t

s=0

((X
(N)
n−1(s))d − (X(N)

n (s))d) ds
)

− 1

N
Dn
(
Nn

∫ t

s=0

((X(N)
n (s))− (X

(N)
n+1(s))) ds

)
. (4.5)

We choose the filtration (F (N)(t), t ≥ 0) where

F (N)(t) = σ

(
X(N)(0),Nn

(
Nλ(N)

∫ r

s=0

((X
(N)
n−1(s))d − (X(N)

n (s))d) ds
)
,

Dn
(
Nn

∫ r

s=0

((X(N)
n (s))− (X

(N)
n+1(s))) ds

)
, n ≥ 1, 0 ≤ r ≤ t

)
, (4.6)

augmented by all null sets.

We now present results on the mean-field analysis of the model without proofs as they

directly follow from the case λ(N) = b for b ∈ R+, studied in [10]. The mean-field equations

(MFEs) in our case are the same as the λ(N) = λ case except that σ replaces λ in the

MFEs given in 1.3.2. We recall the MFEs in this chapter as we use them frequently.

Theorem 4.1. For u ∈ U, if X(N)(0) ⇒ u as N → ∞, then (X(N)(t), t ≥ 0) ⇒
(x(t,u), t ≥ 0) as N → ∞ where (x(t,u), t ≥ 0) = (xn(t,u), t ≥ 0, 0 ≤ n ≤ C) is

the unique solution to the following equations:

for h(x(t,u)) = (hn(x(t,u)), 0 ≤ n ≤ C),

x(0,u) = u,
dxn(t,u)

dt
= hn(x(t,u)), (4.7)

where

h0(x(t,u)) = 0, (4.8)

and for n ≥ 1,

hn(x(t,u)) = σ(xdn−1(t,u)− xdn(t,u))− n(xn(t,u)− xn+1(t,u)), (4.9)

with x0(t,u) = 1 and xC+1(t,u) = 0. The deterministic process (x(t,u), t ≥ 0) is referred to

as the mean-field limit and equations (4.7)-(4.9) are referred to as the mean-field equations

with initial point u.
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Without loss of generality, we say that a process (y(t), t ≥ 0) is a solution to the

differential equations (4.7)-(4.9), it means that it is the unique generic solution with initial

point y(0).

The mean-field (x(t,u), t ≥ 0) has a unique global asymptotically stable fixed-point

π = (πn, 0 ≤ n ≤ C) with π0 = 1. Also, the following exchange of limits holds

lim
N→∞

lim
t→∞

X(N)(t) = lim
t→∞

lim
N→∞

X(N)(t). (4.10)

Using (4.10), under the assumption of the exchangeability of initial servers’ states, we can

show the independence of any finite set of servers as N → ∞. Also, for a server, x(t,u)

denotes the distribution at time t and π denotes the stationary distribution, as N → ∞.

As a result, πC denotes the stationary probability that a server is fully occupied when

N →∞. Since the dispatcher samples d servers when a job arrives, the stationary average

blocking probability of a job as N → ∞ is equal to πdC , where we use the fact that the

chosen d servers are independent of each other. Our objective is to find the gap between

the actual blocking probability of the system with N servers and πdC as a function of α̃, π,

σ, N , and C.

We can find π numerically as explained below. The fixed-point π is the unique solution

to the following equations

σ(πdn−1 − πdn) = n(πn − πn+1) (4.11)

for n ≥ 1 and πC+1 = 0. Then from (4.11), we can also write

σ
(πdn−1 − πdn)

(πn−1 − πn)
(πn−1 − πn) = n(πn − πn+1) (4.12)

for n ≥ 1 and πC+1 = 0. Let us define λ̂n = σ
(πdn−πdn+1)

(πn−πn+1)
. Then from (4.12), π is the

stationary distribution of the single server loss model with a Poisson arrival process of

jobs having rate λ̂n when there are n progressing jobs, and πn is the probability that

the server has at least n progressing jobs. Let M1({0, 1, · · · , C}) be the set of proba-

bility measures on {0, 1, · · · , C}. Then from [10], the fixed-point π can be computed

using the formula for the stationary distribution of a single server loss system with state-

dependent arrival rates. We first define two mappings, Θ : M1({0, 1, · · · , C}) 7→ RC+1
+ and

Ξ̂ : RC+1
+ 7→ M1({0, 1, · · · , C}) that are used in computing π. For every (p0, · · · , pC) ∈

M1({0, 1, · · · , C}), there exists (r0, · · · , rC) ∈ RC+1
+ such that

Θ((p0, · · · , pC)) = (r0, · · · , rC), (4.13)
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where

rn = σ
((
∑C

j=n pj)
d − (

∑C
i=n+1 pi)

d)

((
∑C

j=n pj)− (
∑C

i=n+1 pi))
. (4.14)

Similarly, for every (b0, · · · , bC) ∈ RC+1
+ , there exists (a0, · · · , aC) ∈M1({0, 1, · · · , C}) such

that

Ξ̂((b0, · · · , bC)) = (a0, · · · , aC), (4.15)

where

an =

(
n∏
i=1

(bi−1

i

))
a0 (4.16)

for n ≥ 1 and
∑C

i=0 ai = 1. Then π can be computed from the fixed-point of the mapping

Ξ̂(Θ) as in Lemma 1.1 except that we replace λ by σ.

We first study the fluctuation process (Z(N)(t), t ≥ 0) as N →∞ where

Z(N)(t) =
√
N(X(N)(t)− x(t,u)). (4.17)

It can be checked that Z(N)(t) lies in the space V defined as

V , {(r0, · · · , rC) : r0 = 0 and ri ∈ R, 1 ≤ i ≤ C}. (4.18)

We equip the space V with the topology induced by the euclidean norm (4.3). For a linear

operator K : V 7→ V, let the operator norm ‖K‖2 be defined as

‖K‖2 = sup
v∈V

‖Kv‖2

‖v‖2

. (4.19)

We next obtain the time evolution of the process (Z(N)(t), t ≥ 0) by using (4.5), (4.7),

and (4.17). For this, we first define the following three useful operators W1,W2,W3 : U 7→ V
as follows: for b ∈ U,

(W1(b))0 = 0, (W2(b))0 = 0, (W3(b))0 = 0, (4.20)

and for n ≥ 1,

(W1(b))n = σ(bdn−1 − bdn), (W2(b))n = n(bn − bn+1), (W3(b))n = α̃(bdn−1 − bdn). (4.21)

From (4.9) and (4.21), we have

hn(b) = (W1(b))n − (W2(b))n. (4.22)
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Furthermore, let W : U 7→ V be the operator defined as

W = W1 −W2. (4.23)

The operator W is Lipschitz continuous satisfying the following inequality for all a,b ∈ U,

‖W (a)−W (b)‖2 ≤ BW‖a− b‖2, (4.24)

where BW = 2d
√
σ2 + C2.

We now define a set of independent square-integrable martingales (M(N)(t), t ≥ 0) =

{(M(N)
i (t), t ≥ 0)}(i∈0,1,··· ,C) adapted to the filtration (F (N)(t), t ≥ 0) such that (M(N)(t), t ≥

0) is independent of Z(N)(0) and for i ≥ 1,

< M
(N)
i >t=

∫ t

s=0

(
(W1(X(N)(s)))i + (W2(X(N)(s)))i −

1√
N

(W3(X(N)(s)))i

)
ds. (4.25)

Then from (4.5)-(4.9), and (4.17), we get

Z(N)(t) = Z(N)(0)+

∫ t

s=0

√
N(W (X(N)(s))−W (x(s,u))) ds−

∫ t

s=0

W3(X(N)(s)) ds+M(N)(t).

(4.26)

The following result concludes the stochastic boundedness of the process (Z(N)(t), t ≥ 0)

as N → ∞ and the stochastic boundedness is useful for proving the tightness of the

sequence {(Z(N)(t), t ≥ 0)}N≥1.

Lemma 4.1. For any T > 0, if lim supN→∞ E
[
‖Z(N)(0)‖2

2

]
<∞, then

lim sup
N→∞

E
[

sup
0≤t≤T

‖Z(N)(t)‖2
2

]
<∞. (4.27)

Proof. See Section 4.4.2.

4.3 Summary of Main Results

In this section, we give the main results and provide proofs in Section 4.4. We present the

results related to the transient regime and the stationary regime in Sections 4.3.1 and 4.3.2,

respectively.

153



4.3.1 Transient Regime

In this section, for the transient regime case, we show that the process (Z(N)(t), t ≥ 0)

converges to an Ornstein-Uhlenbeck (OU) process as N →∞.

As we show later in this section, the limit of the sequence {(Z(N)(t), t ≥ 0)}N≥1 depends

on the linearization of (4.7)-(4.9) around a solution (r(t), t ≥ 0) to (4.7)-(4.9) with an initial

point r(0) given by
ds(t)

dt
= H(r(t))s(t), (4.28)

where for a ∈ U and b ∈ V, the linear operator H(a) : V 7→ V is defined as

(H(a)b)n = σdad−1
n−1bn−1 − (σdad−1

n + n)bn + nbn+1, (4.29)

n ≥ 1. The limit of the sequence {(Z(N)(t), t ≥ 0)}N≥1 depends on the process (s(t), t ≥ 0)

when (r(t), t ≥ 0) in (4.28) is replaced with the mean-field (x(t,u), t ≥ 0). Note that

any solution (s(t), t ≥ 0) to (4.28) satisfies s(t) = w(t) − r(t), where (w(t), t ≥ 0) is a

solution to the equations (4.7)-(4.9). The operator H(a) is a matrix in the canonical basis

(0, 1, 0, · · · , 0), (0, 0, 1, 0, · · · , 0), . . . , (0, 0, · · · , 0, 1), where the dimension of each vector is

C + 1. We can write H(a) as the following matrix of size C × C:

H(a) =



−ν1 1 0 0 · · · 0 0

γ1 −ν2 2 0 · · · 0 0

0 γ2 −ν3 3 · · · 0 0
...

...
...

. . . . . . . . .
...

0 0 · · · 0 γC−2 −νC−1 C − 1

0 0 · · · 0 0 γC−1 −νC


,

where γi = σdad−1
i and νi = γi + i, 1 ≤ i ≤ C.

Let (M(t), t ≥ 0) = {(Mi(t), t ≥ 0)}i∈{0,1,··· ,C} be a collection of mutually independent

real valued continuous and centered Gaussian martingales, determined in law by their

deterministic quadratic variation process

< Mn >t=

∫ t

s=0

((W1(x(s,u))n + (W2(x(s,u))n) ds, (4.30)

n ≥ 0. Note that both M(t) and (< Mi >t, 0 ≤ i ≤ C) lie in V. From (4.30), the

martingale (M(t), t ≥ 0) is square integrable since ((W1(b))n + (W2(b))n) for b ∈ U is

uniformly bounded in n and b as 0 ≤ bi ≤ 1.
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We now introduce the stochastic differential equation (SDE) satisfied by the limit of

the process (Z(N)(t), t ≥ 0) as N →∞ in the transient regime.

Definition 4.1. Stochastic Differential Equation (SDE) for the Transient Regime: Let

(Z(t), t ≥ 0) be a solution to the following SDE

Z(t) = Z(0) +

∫ t

s=0

H(x(s,u))Z(s) ds−
∫ t

s=0

W3(x(s,u)) ds+ M(t). (4.31)

A solution to (4.31) is an OU process. We next study the SDE (4.31) below.

Theorem 4.2. We show

1. For a ∈ U, the linear operator H(a) satisfies ‖H(a)‖2 < BH , where BH =
√

32(σ2d2 + C2).

2. If E [‖Z(0)‖2
2] < ∞, then there exists a unique strong solution to (4.31) denoted by

(Z(t), t ≥ 0) that satisfies E
[
supt≤T ‖Z(t)‖2

2

]
<∞.

Proof. See Section 4.4.1.

We now present the main result of this chapter for the transient regime.

Theorem 4.3. If Z(N)(0)⇒ Z(0), then (Z(N)(t), t ≥ 0)⇒ (Z(t), t ≥ 0) where (Z(t), t ≥ 0)

is the unique solution to (4.31) with initial point Z(0).

Proof. See Section 4.4.3.

Remark 4.2. For a constant r ∈ R+, if λ(N) is independent of N fixed at λ(N) = r, then

σ = r and α̃ = 0. As a result, for n ≥ 1,

(W1(b))n = r(bdn−1 − bdn), (W2(b))n = n(bn − bn+1), (W3(b))n = 0.

We recover the SDE obtained in [55] for λ(N) = r case from the SDE (4.31) given by

Z(t) = Z(0) +

∫ t

s=0

H(x(s,u))Z(s) ds+ M(t).
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4.3.2 Stationary Regime

In this section, we present results pertaining to the stationary regime. In the stationary

regime, the mean-field is located at π, and hence we assume u = π. We recall that π

satisfies

W (π) = W1(π)−W2(π) = 0. (4.32)

Our objective is to obtain the limit of the process (Z(N)(t), t ≥ 0) defined in (4.17) as

N →∞ in the stationary regime. For this, by studying the process (Q(N)(t), t ≥ 0) where

Q(N)(t) =
√
N(X(N)(t)− π), (4.33)

we conclude that the sequence {Z(N)(t)}N≥1 is tight in the stationary regime. We introduce

an SDE (4.38) and show that there exists a unique solution to this SDE with a unique

invariant law. We then use this result to prove that the limit of the process (Z(N)(t), t ≥ 0)

as N → ∞ in the stationary regime is a stationary OU process with the same invariant

law as that of the solution to the proposed SDE (4.38).

We next state the exponential stability of the mean-field. We use the following result

in the proof of the subsequent result stated in Lemma 4.3.

Lemma 4.2. There exists δ1 > 0 and D3 < ∞ such that for all u ∈ U, the mean-field

(x(t,u), t ≥ 0) satisfies

‖x(t,u)− π‖2 ≤ e−δ1tD3‖u− π‖2. (4.34)

Proof. See Section 4.4.7.

The following result shows the tightness of {Z(N)(t)}N≥1 in the stationary regime.

Lemma 4.3. If lim supN→∞ E
[
‖Q(N)(0)‖2

2

]
<∞, then

lim sup
N→∞

sup
t≥0

E
[
‖Q(N)(t)‖2

2

]
<∞. (4.35)

Consequently, in the stationary regime, we have

lim sup
N→∞

E
[
‖Z(N)(∞)‖2

2

]
<∞. (4.36)

Proof. See Section 4.4.4.
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We next state the SDE that is used to obtain the limit of the sequence {(Z(N)(t), t ≥
0)}N≥1 in the stationary regime. For this, we first claim that by linearizing (4.9) around

π, we get
ds(t)

dt
= H(π)s(t). (4.37)

Let B(t) = (Bi(t), 0 ≤ i ≤ C) with B0(t) = 0 where {(Bi(t), t ≥ 0)}0≤i≤C are inde-

pendent centered Brownian motions and E [B2
i (1)] = Vi = var(Bi(1)) = 2n(πi − πi+1),

i ≥ 1. The infinitesimal covariance matrix of (B(t), t ≥ 0) is diagonal diag(V), where

V = (Vn, 0 ≤ n ≤ C). From (4.30), the martingales (M(t), t ≥ 0) with x(0,π) = π has

the same law as (B(t), t ≥ 0). We now define the following SDE which is used to study

the process (Z(t), t ≥ 0) in the stationary regime.

Definition 4.2. An SDE for the Stationary Regime: The process (Q(t), t ≥ 0) is a solution

to the following SDE,

Q(t) = Q(0) +

∫ t

s=0

H(π)Q(s) ds−
∫ t

s=0

W3(π) ds+ B(t). (4.38)

Any solution to (4.38) is an OU process.

For an arbitrary Q(0) in (4.38), we have the following result and the proof follows by

the same arguments as in the proof of Theorem 4.2. Hence, we omit the proof.

Theorem 4.4. We show

1. ‖H(π)‖2 is bounded.

2. If E [‖Q(0)‖2
2] <∞, then (Q(t), t ≥ 0) given by

Q(t) = eH(π)tQ(0)−
∫ t

s=0

eH(π)(t−s)W3(π) ds+

∫ t

s=0

eH(π)(t−s) dB(s), (4.39)

is the unique strong solution to (4.38). Furthermore,

E
[
sup
t≤T
‖Q(t)‖2

2

]
<∞. (4.40)

We point out that the transpose H(π)∗ of H(π) is the generator of a finite state birth-

death process and the birth, death, and killing rates in state i (1 ≤ i ≤ C) are γi, i−1, and

1, respectively. Let I be the identity matrix of dimension C × C. Then since H(π)∗ + I
is the generator of a birth-death process with zero killing rates, all the eigenvalues of

H(π)∗ + I are negative [84]. Hence, all the eigenvalues of H(π) are less than −1. As

a consequence, we have the following result due to the fact that all the eigenvalues are

negative.
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Lemma 4.4. The unique solution to (4.37) is given by (s(t), t ≥ 0) where s(t) = eH(π)ts(0).

Furthermore, (s(t), t ≥ 0) satisfies that for some δ2 > 0 and D4 <∞,

‖s(t)‖2 ≤ e−δ2tD4‖s(0)‖2. (4.41)

From Lemma 4.4 and the unique solution given in Theorem 4.4, the following result

follows immediately. Hence, we omit the proof.

Theorem 4.5. The unique solution to (4.38) as t → ∞ has the invariant law coinciding

with the law of a stationary Gaussian process with mean
∫∞

0
eH(π)sW3(π) ds and covariance

matrix
∫∞

0
eH(π)sdiag(V)eH(π)∗s ds.

We are now ready to state the main result on the FCLT for the stationary regime.

Theorem 4.6. Under the assumption that the system with index N is in the stationary

regime, from Theorem 4.5, we prove that the sequence {(Z(N)(t), t ≥ 0)}N≥1 as N → ∞
converges in law to the unique stationary OU process which solves (4.38). Furthermore,

the limit of the sequence {(Z(N)(0))}N≥1 in the stationary regime has the same law as the

invariant law of the solution to (4.38).

Proof. See Section 4.4.5.

We now use Theorem 4.6 to provide an approximation to the average blocking proba-

bility in the system with N servers.

Theorem 4.7. Let P
(N)
block be the average blocking probability in the system with N servers,

then

P
(N)
block = πdC −

1

σ
√
N

(
C∑
i=0

i(κi − κi+1)

)
− α̃

σ
√
N

(1− πdC) + o(N−
1
2 ), (4.42)

where the vector κ = (κi, 0 ≤ i ≤ C) =
∫∞

0
eH(π)sW3(π) ds is the mean of the unique

solution to (4.38) in the stationary regime.

Proof. See Section 4.4.6.

Remark 4.3. From Theorem 4.7, we have

1. If σ = C, the result (4.42) corresponds to the Halfin-Whitt regime. In this case, we

have

lim
N→∞

√
N(P

(N)
block − π

d
C) = − 1

σ

(
C∑
i=0

i(κi − κi+1)

)
− α̃

σ
(1− πdC).
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2. If α̃ = 0, then W3(π) = 0. As a result,

lim
N→∞

√
N(P

(N)
block − π

d
C) = 0.

We presented the results for the case α̃ = 0 in [55]. For this case, we can also apply

the results of [51] to conclude that P
(N)
block − πdC = O( 1

N
). In [51], an FCLT result was not

studied..

The significance of Theorem 4.7 is that although the exact blocking formula for P
(N)
block

is not known, and also it is difficult to characterize due to complex interactions between

servers, but as N becomes large we can compute approximations to the blocking probability

as a function of π, α̃, N , σ, and C.

4.4 Proofs of Main Results

4.4.1 Proof of Theorem 4.2

For y ∈ V, we have

‖H(a)y‖2
2 =

C∑
n=0

∣∣σdad−1
n−1yn−1 − (σdad−1

n + n)yn + nyn+1

∣∣2 .
Then it can be checked that ‖H(a)y‖2

2 ≤ 32(σ2d2 + C2)‖y‖2
2 as 0 ≤ ai ≤ 1. This implies

‖H(a)‖2
2 ≤ B2

H = 32(σ2d2 + C2) and hence, ‖H(a)‖2 ≤ BH .

We next show the uniqueness of a solution to (4.31). For two solutions (Z1(t), t ≥ 0)

and (Z2(t), t ≥ 0) with initial points Z1(0) and Z2(0), we obtain

Z1(t)− Z2(t) = Z1(0)− Z2(0) +

∫ t

s=0

H(x(s,u))(Z1(s)− Z2(s)) ds.

Then

‖Z1(t)− Z2(t)‖2 ≤ ‖Z1(0)− Z2(0)‖2 +BH

∫ t

s=0

‖Z1(s)− Z2(s)‖2 ds.

By using the Gronwall’s Lemma (Theorem A.7) [56, Page 498], we get

‖Z1(t)− Z2(t)‖2 ≤ eBH t‖Z1(0)− Z2(0)‖2.

Hence,

E
[
‖Z1(t)− Z2(t)‖2

2

]
≤ e2BH tE

[
‖Z1(0)− Z2(0)‖2

2

]
.
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If Z1(0) = Z2(0), then we obtain Z1(t) = Z2(t) a.s. for all rational t. Finally, since

(Z1(t), t ≥ 0) and (Z2(t), t ≥ 0) have continuous sample paths, we conclude that Z1(t) =

Z2(t) a.s., for all t ≥ 0.

We next use the Gronwall’s lemma and the Doob’s inequality (Theorem A.8) [56, p. 63]

to show that E
[
supt≤T ‖Z(t)‖2

2

]
<∞. From (4.31), we have

‖Z(t)‖2 ≤ ‖Z(0)‖2 +BH

∫ t

s=0

‖Z(s)‖2 ds+

∫ t

s=0

‖W3(x(s,u))‖2 + ‖M(t)‖2.

However, for a ∈ U, we have ‖W3(a)‖2 ≤ 2 |α̃|
√
C. Therefore, we get

‖Z(t)‖2
2 ≤ 4

(
‖Z(0)‖2

2 +B2
H

(∫ t

s=0

‖Z(s)‖2 ds

)2

+ 4t2α̃2C + ‖M(t)‖2
2

)
.

We can apply the Holder’s inequality to
(∫ t

s=0
‖Z(s)‖2 ds

)2

to obtain the following inequal-

ity

‖Z(t)‖2
2 ≤ 4

(
‖Z(0)‖2

2 +B2
Ht

∫ t

s=0

‖Z(s)‖2
2 ds+ 4t2α̃2C + ‖M(t)‖2

2

)
.

By using the Gronwall’s Lemma, we obtain

‖Z(t)‖2
2 ≤ 4

(
‖Z(0)‖2

2 + 4t2α̃2C + ‖M(t)‖2
2

)
e4B2

H t
2

.

Therefore for any T > 0, we get

sup
0≤t≤T

‖Z(t)‖2
2 ≤ 4

(
‖Z(0)‖2

2 + 4T 2α̃2C + sup
0≤t≤T

‖M(t)‖2
2

)
e4B2

HT
2

.

Hence,

E
[

sup
0≤t≤T

‖Z(t)‖2
2

]
≤ 4e4B2

HT
2

(
E
[
‖Z(0)‖2

2

]
+ 4T 2α̃2C + E

[
sup

0≤t≤T
‖M(t)‖2

2

])
.

The Doob’s inequality implies

E
[

sup
0≤t≤T

‖Z(t)‖2
2

]
≤ 4e4B2

HT
2

(
E
[
‖Z(0)‖2

2

]
+ 4T 2α̃2C + 4E

[
‖M(T )‖2

2

])
.

Therefore

E
[

sup
0≤t≤T

‖z(t)‖2
2

]
≤ 4e4B2

HT
2

(
E
[
‖z(0)‖2

2

]
+ 4T 2α̃2C + 4E

[
C∑
i=1

< Mi >T

])
.

For every T and i, < Mi >T is bounded. Hence, E
[
sup0≤t≤T ‖Z(t)‖2

2

]
<∞.
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The fact that there exists a solution to the SDE (4.31) follows from [85, page 354]. Let

(F̃ (t), t ≥ 0) be the unique solution of the following equation

dY (t)

dt
= H(x(t,u))Y (t), Y (0) = I,

where I is the identity matrix. Then the unique solution to the SDE (4.31) is given by

Z(t) = F̃ (t)

[
Z(0)−

∫ t

s=0

(F̃ (s))−1W3(x(s,u)) ds+

∫ t

s=0

(F̃ (s))−1 dM(s)

]
. (4.43)

4.4.2 Proof of Lemma 4.1

We are given

Z(N)(t) = Z(N)(0)+

∫ t

s=0

√
N(W (X(N)(s))−W (x(s,u))) ds−

∫ t

s=0

W3(X(N)(s)) ds+M(N)(t),

(4.44)

and for n ≥ 1,

< M(N)
n >t=

∫ t

s=0

((W1(X(N)(s)))n + (W2(X(N)(s)))n −
1√
N

(W3(X(N)(s)))n) ds.

From (4.44), we obtain

‖Z(N)(t)‖2 ≤ ‖Z(N)(0)‖2 +BW

∫ t

s=0

‖Z(N)(s)‖2 ds+ 2Cα̃t+ ‖M(N)(t)‖2.

By using the Gronwall’s Lemma,

‖Z(N)(t)‖2 ≤ (‖Z(N)(0)‖2 + 2Cα̃t+ ‖M(N)(t)‖2)eBW t.

As a result, we get

‖Z(N)(t)‖2
2 ≤ 3(‖Z(N)(0)‖2

2 + 4C2α̃2t2 + ‖M(N)(t)‖2
2)e2BW t.

For T > 0, we have

sup
0≤t≤T

‖Z(N)(t)‖2
2 ≤ 3(‖Z(N)(0)‖2

2 + 4C2α̃2T 2 + sup
0≤t≤T

‖M(N)(t)‖2
2)e2BWT .

Finally, the Doob’s inequality implies the following inequality

E
[

sup
0≤t≤T

‖Z(N)(t)‖2
2

]
≤ 3e2BWT

(
E
[
‖Z(N)(0)‖2

2

]
+ 4C2α̃2T 2 + 4E

[
C∑
i=1

< M
(N)
i >T

])
.

Since supN≥1 E
[∑C

i=1 < M
(N)
i >T

]
<∞, we conclude that

lim sup
N→∞

E
[

sup
0≤t≤T

‖Z(N)(t)‖2
2

]
<∞.
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4.4.3 Proof of Theorem 4.3

We recall that since the space V is Polish, the space of càdlàg functions under the Skhorohod

topology is a Polish space [56, Theorem 5.6, p.121]. Hence from the Prohorov’s theorem

(Theorem A.2) [56], tightness is equivalent to relative compactness. Therefore we first need

to show the tightness and then we need to show that every limiting point has the same

law as the unique OU process with the initial point Z(0).

To show the tightness of (Z(N)(t), t ≥ 0), we need to show that Theorem 4.1 of [56, page

354] holds. For this, we first establish several useful results.

Since Z(N)(0) ⇒ Z(0), it implies that the sequence Z(N)(0) is tight. Let B̃(r) be the

closed ball with radius r centered at 0. For every ε > 0, there exists rε < ∞ such that

P(Z(N)(0) ∈ B̃(rε)) > 1− ε for all N ≥ 1. We now define a random variable X(N,ε)(0) such

that it coincides with X(N)(0) on {Z(N)(0) ∈ B̃(rε)} and Z(N,ε)(0) is uniformly bounded in

N on {Z(N)(0) /∈ B̃(rε)}. Then by using coupling arguments, the processes (Z(N,ε)(t), t ≥ 0)

and (Z(N)(t), t ≥ 0) coincide on {Z(N)(0) ∈ B̃(rε)}. Hence, without loss of generality, we

assume that Z(N)(0) is uniformly bounded in N . As a consequence, the result stated in

Lemma 4.1 can be used in the rest of the proof.

We next recall the following useful result from [47, Lemma 3.3]. For a and h in R, let

B̂(a, h) = (a+ h)d − ad − dad−1h.

Then if both a and a+ h lie in [0, 1], we have

0 ≤ B̂(a, h) ≤ hd + (2d − d− 2)ah2. (4.45)

We now define a mapping Ĝ : U× V 7→ V as follows: for r ∈ U and y ∈ V,

(Ĝ(r,y))n = σB̂(rn−1, yn−1)− σB̂(rn, yn). (4.46)

Then if r + y ∈ U, we have

W (r + y)−W (r) = H(r)y + Ĝ(r,y). (4.47)

Note that since Z(N)(t) =
√
N(X(N)(t)− x(t,u)), we have

X(N)(t) = x(t,u) +
Z(N)(t)√

N
. (4.48)
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Here, X(N)(t), x(t,u) ∈ U and Z(N)(t)√
N
∈ V. Hence, from (4.47), we have

W (X(N)(t)−W (x(t,u)) = H(x(t,u))
Z(N)(t)√

N
+ Ĝ

(
x(t,u),

Z(N)(t)√
N

)
. (4.49)

We now show that the conditions of [56, Theorem 4.1, page 354] are satisfied. Let us

write Bn(t) and Ai,j
n (t) of [56, Theorem 4.1, page 354] as D(N)(t) and Ai,j

(N)(t), respectively.

Then from (4.26)

D(N)(t) =

∫ t

s=0

√
N(W (X(N)(s))−W (x(s,u))) ds−

∫ t

s=0

W3(X(N)(s)) ds. (4.50)

From (4.49), we can write

D(N)(t)

=

∫ t

s=0

H(x(s,u))Z(N)(s) ds+

∫ t

s=0

√
NĜ

(
x(s,u),

Z(N)(s)√
N

)
ds−

∫ t

s=0

W3(X(N)(s)) ds.

(4.51)

Also, from (4.25)

Ai,i
(N)(t) =

∫ t

s=0

(
(W1(X(N)(s)))i + (W2(X(N)(s)))i −

1√
N

(W3(X(N)(s)))i

)
ds, (4.52)

and Ai,j
(N)(t) = 0 for i 6= j. Let us define

D(t) =

∫ t

s=0

H(x(s,u))Z(s) ds−
∫ t

s=0

W3(x(s,u)) ds, (4.53)

and

Ai,i(t) =

∫ t

s=0

((W1(x(s,u)))i + (W2(x(s,u)))i) ds, (4.54)

with Ai,j(t) = 0 for i 6= j.

Since (Z
(N)
i (t), t ≥ 0) has jumps of size 1√

N
and from the continuity of D(N)(t) and

Ai,j
(N)(t) in t, the conditions (4.3)-(4.5) of [56, Theorem 4.1, p. 354] are valid. From the

condition (4.6) of [56, Theorem 4.1, p. 354], we need to show that for T > 0, V(N)(t)→ 0

in probability where V(N)(t) = D(N)(t)−D(t) given by

V(N)(t)

=

(∫ t

s=0

H(x(t,u))Z(N)(t) ds+

∫ t

s=0

√
NĜ

(
x(t,u),

Z(N)(t)√
N

)
ds−

∫ t

s=0

W3(X(N)(s)) ds

)
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−
(∫ t

s=0

H(x(s,u))Z(N)(s) ds−
∫ t

s=0

W3(x(s,u)) ds

)
. (4.55)

From (4.27) and (4.45), we have
∫ T
s=0

√
NĜ

(
x(s,u), Z(N)(s)√

N

)
ds → 0 in probability.

From the existence of the mean-field limit,
∫ T
s=0

W3(X(N)(s)) ds−
∫ T
s=0

W3(x(s,u)) ds→ 0

in probability. We conclude that the condition (4.6) of [56, Theorem 4.1, p. 354] is also

true. The condition (4.7) of [56, Theorem 4.1, p. 354] follows as Ai,i
(N)(T )−Ai,i(T )→ 0 in

probability from the existence of the mean-field limit. From the fact that the SDE (4.31)

has a unique solution, the sequence (Z(N)(t), t ≥ 0)}N≥1 converges to the unique solution

of the SDE (4.31) as N →∞.

4.4.4 Proof of Lemma 4.3

The proof is based on Lemma 4.2. Although our main motivation is to establish the

convergence of {Z(N)(t)}N≥1 as N →∞ in the stationary regime, we prove the tightness of

the stationary sequence {Z(N)(∞)}N≥1 by studying an alternative process (Q(N)(t), t ≥ 0)

with the help of Lemma 4.2, where

Q(N)(t) =
√
N(X(N)(t)− π).

Let us write the solution to the mean-field equation (4.9) at time h with the initial point

v as y(h,v). We have

y(h,v) = v +

∫ h

s=0

W (y(s,v)) ds. (4.56)

Also, the process (X(N)(t), t ≥ 0) satisfies

X(N)(t) = X(N)(0) +

∫ t

s=0

W (X(N)(s)) ds−
∫ t

s=0

1√
N
W3(X(N)(s)) ds+

M(N)(t)√
N

. (4.57)

For t0 ≥ 0, we obtain

Q(N)(t0 + h) =
√
N(X(N)(t0 + h)− y(h,X(N)(t0))) +

√
N(y(h,X(N)(t0))− π).

By defining Z(N)(t0, h) =
√
N(X(N)(t0 + h)− y(h,X(N)(t0))), we obtain

Q(N)(t0 + h) = Z(N)(t0, h) +
√
N(y(h,X(N)(t0))− π). (4.58)

Also, from (4.56),

Z(N)(t0, h) =
√
N(X(N)(t0 + h)−X(N)(t0))−

√
N

∫ t

s=0

W (y(s,X(N)(t0))) ds. (4.59)
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From (4.57), we have

X(N)(t0 + h)−X(N)(t0) =

∫ t0+h

s=t0

W (X(N)(s)) ds+
M(N)(t0 + h)−M(N)(t0)√

N

− 1√
N

∫ t0+h

s=t0

W3(X(N)(s)) ds. (4.60)

Then by using (4.59) and (4.60), we get

Z(N)(t0, h) =
√
N

∫ h

s=0

W (X(N)(t0 + s)) ds−
√
N

∫ h

s=0

W (y(s,x(N)(t0))) ds

+ (M(N)(t0 + h)−M(N)(t0))−
∫ t0+h

s=t0

W3(X(N)(s)) ds.

After simplifications, we get

‖Z(N)(t0, h)‖2 =
√
N

∫ h

s=0

‖W (X(N)(t0 + s))−W (y(s,X(N)(t0)))‖2 ds

+ ‖M(N)(t0 + h)−M(N)(t0))‖2 + |α̃| d
√
Ch.

Hence, we obtain

‖Z(N)(t0, h)‖2 ≤ BW

∫ h

s=0

‖Z(N)(t0, s)‖2 ds+ |α̃| d
√
Ch+ ‖M(N)(t0 + h)−M(N)(t0))‖2.

For any T ≥ 0, the Gronwall’s inequality implies that there exists a constant ST such that

sup
0≤h≤T

‖Z(N)(t0, h)‖2 ≤ ST (ST + sup
0≤h≤T

‖M(N)(t0 + h)−M(N)(t0))‖2). (4.61)

By using Lemma 4.2, from (4.58), we get

‖Q(N)(t0 + h)‖2 ≤ ‖Z(N)(t0, h)‖2 + e−δ1hD3‖Q(N)(t0)‖2. (4.62)

From (4.61) and (4.62), we obtain

‖Q(N)(t0 + h)‖2 ≤ ST (ST + sup
0≤h≤T

‖M(N)(t0 + h)−M(N)(t0))‖2) + e−δ1hD3‖Q(N)(t0)‖2.

As a result, we can find some constant LT as a function of T such that for 0 ≤ h ≤ T ,

we have

E
[
‖Q(N)(t0 + h)‖2

2

]
≤ LT + 3e−2δ1hD2

3E
[
‖Q(N)(t0)‖2

2

]
. (4.63)

We now select a large value of T such that 3e−2δ1TD2
3 ≤ ε < 1. Then for all N ≥ 1 and

an integer m, we get

E
[
‖Q(N)((m+ 1)T )‖2

2

]
≤ LT + εE

[
‖Q(N)(mT )‖2

2

]
.
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By using the induction method, we obtain

E
[
‖Q(N)(mT )‖2

2

]
≤ LT (

m∑
j=1

εj−1) + εmE
[
‖Q(N)(0)‖2

2

]
≤ LT

1− ε
+ E

[
‖Q(N)(0)‖2

2

]
. (4.64)

However, from (4.63),

sup
0≤h≤T

E
[
‖Q(N)(mT + h)‖2

2

]
≤ LT + 3D2

3E
[
‖Q(N)(mT )‖2

2

]
.

As a consequence, (4.64) implies

sup
0≤h≤T

E
[
‖Q(N)(mT + h)‖2

2

]
≤ LT + 3D2

3

(
LT

1− ε
+ E

[
‖Q(N)(0)‖2

2

])
.

Since m is arbitrary, we conclude

sup
t≥0

E
[
‖Q(N)(t)‖2

2

]
≤ LT + 3D2

3

(
LT

1− ε
+ E

[
‖Q(N)(0)‖2

2

])
.

From ergodicity and the fatou’s Lemma [56, p. 492], the stationary random variable

Z(N)(∞) satisfies

E
[
‖Z(N)(∞)‖2

2

]
≤ lim inf

t≥0
E
[
‖Q(N)(t)‖2

2

]
≤ sup

t≥0
E
[
‖Q(N)(t)‖2

2

]
.

Finally, to show that lim supN→∞ E
[
‖Z(N)(∞)‖2

2

]
< ∞, we need to find an X(N)(0) such

that lim supN→∞ E
[
‖Q(N)(0)‖2

2

]
< ∞. For n ≥ 1, if we select X

(N)
n (0) = j

N
so that

−1
2N
≤ πn − j

N
≤ 1

2N
, then E

[
‖Q(N)(0)‖2

2

]
< C

4N
. Hence, lim supN→∞ E

[
‖Q(N)(0)‖2

2

]
= 0.

This completes the proof.

4.4.5 Proof of Theorem 4.6

From Lemma 4.3 and the Markov inequality, the sequence {Z(N)(0)}N≥1 is tight. As a

result, from the Prohorov theorem [56, Page 104], the sequence {Z(N)(0)}N≥1 is relatively

compact. Consider a converging subsequence and let Z(∞)(0) be its limiting point, which

is square integrable. Then from Theorem 4.3, the considered converging subsequence

converges in law to the unique OU process (Z(∞)(t), t ≥ 0) satisfying the SDE (4.38)

with initial point Z(∞)(0). But, we know from [56, Lemma 7.7 and Theorem 7.8, page
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131] that the limit of a sequence of stationary processes is stationary. Hence the law of

(Z(∞)(t), t ≥ 0) should be the unique law of the stationary OU process solving the SDE

(4.38). This argument applies for every converging subsequence. Hence, the sequence

{(Z(N)(t), t ≥ 0)}N≥1 in the stationary regime converges to the unique stationary OU

process solving the SDE (4.38). This completes the proof.

4.4.6 Proof of Theorem 4.7

The proof is based on Little’s law [76, Theorem 4.1], Theorem 4.5, and Theorem 4.6. Let

us consider a random variable S̃(N)(∞) which denotes the number of progressing jobs in

the system in stationary. From Little’s law, we obtain

(Nλ(N))(1− P (N)
block) = E

[
S̃(N)(∞)

]
.

We now consider a random variable X(N)(∞) = (X
(N)
n (∞), 0 ≤ n ≤ C), where X

(N)
n (∞) is

the fraction of servers with at least n progressing jobs in stationary. Then we can write

S̃(N)(∞) =
C∑
n=0

Nn(X(N)
n (∞)−X

(N)
n+1(∞)).

Hence, we have

(Nλ(N))(1− P (N)
block) = E

[
C∑
n=0

Nn(X(N)
n (∞)−X

(N)
n+1(∞))

]
.

Therefore, we obtain

λ(N)(1− P (N)
block) =

C∑
n=0

nE
[
X(N)
n (∞)−X

(N)
n+1(∞)

]
. (4.65)

Also, from Theorem 4.5, Lemma 4.3, and Theorem 4.6, since the diffusion limit in stationar-

ity regime has the mean vector κ =
∫∞

0
eH(π)sW3(π) ds and lim supN→∞ E

[
‖Z(N)(∞)‖2

]
<

∞, we have

lim
N→∞

√
N
(
E
[
X(N)(∞)

]
− π

)
= κ.

Therefore

E
[
X(N)(∞)

]
− π =

κ√
N

+ o(N−
1
2 ). (4.66)

Then from (4.65) and (4.66),

λ(N)(1− P (N)
block) =

C∑
n=0

n(πn − πn+1) +
1√
N

C∑
n=0

n(κn − κn+1) + o(N−
1
2 ). (4.67)
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But, from the stationary mean-field equations, the fixed-point satisfies

π0 = 1 and
C∑
n=0

n(πn − πn+1) = σ(1− πdC). (4.68)

Then from (4.67) and (4.68),

1− P (N)
block =

1

λ(N)

[
σ(1− πdC) +

1√
N

C∑
n=0

n(κn − κn+1)

]
+ o(N−

1
2 ).

However, by using λ(N) = σ − α̃√
N

and the fact that α̃
σ
√
N
< 1, we obtain

1− P (N)
block =

1

σ

(
1 +

α̃

σ
√
N

+ o(N−
1
2 )

)[
σ(1− πdC) +

1√
N

C∑
n=0

n(κn − κn+1)

]
+ o(N−

1
2 ).

After simple calculations, we obtain

P
(N)
block = πdC −

1

σ
√
N

(
C∑
n=0

n(κn − κn+1)

)
− α̃

σ
√
N

(1− πdC) + o(N−
1
2 ).

This completes the proof.

4.4.7 Proof of Lemma 4.2

The proof relies on the quasi-monotonicity of the mean-field. Let us write the unique solu-

tion to the MFEs with the initial point v as (y(t,v), t ≥ 0). From the quasi-monotonicity

of the mean-field, we have

y(t,min(v,π)) ≤ y(t,v) ≤ y(t,max(v,π)). (4.69)

For a,b ∈ U, let

‖a− b‖1 =
C∑
i=0

|ai − bi| .

From Lemma 4 of [8], since min(v,π) ≤ π and max(v,π) ≥ π, we have

‖y(t,min(v,π))− π‖1 ≤ e−t‖min(v,π)− π‖1,

‖y(t,max(v,π))− π‖1 ≤ e−t‖max(v,π)− π‖1. (4.70)

For t ≥ 0, let us define two sets V+(t) and V−(t) as

V+(t) = {i : yi(t,v) ≥ πi},
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V−(t) = {i : yi(t,v) < πi}.

Then we can write

‖y(t,v)− π‖1 =
∑

i∈V+(t)

(yi(t,v)− πi) +
∑

j∈V−(t)

(πj − yj(t,v)).

From (4.69) and (4.70), we write

‖y(t,v)− π‖1 ≤
∑

i∈V+(t)

(yi(t,max(v,π))− πi) +
∑

j∈V−(t)

(πj − yj(t,min(v,π))),

≤ ‖y(t,max(v,π))− π‖1 + ‖y(t,min(v,π))− π‖1,

≤ e−t‖max(v,π)− π‖1 + e−t‖min(v,π)− π‖1,

= e−t‖v − π‖1.

Finally, the result follows from the fact that the norms ‖·‖1 and ‖·‖2 are equivalent.

4.5 Conclusions

In this chapter, we studied a FCLT that characterizes the fluctuations of the stochastic

empirical process for both the transient and stationary regimes. Our analysis covers the

Halfin-Whitt regime as a special case. We then used this result to quantify the error

between actual blocking probabilities and asymptotic blocking probabilities.
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Chapter 5

Summary and Future Research

In this dissertation, we studied the robustness and accuracy of a mean-field approach in

analyzing the performance of two important classes of models arising in applications.

We mainly focused on two themes. In the first theme, we addressed the case of general

JLDs for the loss and PS models. For these systems, we showed that there exists a mean-

field limit that is a unique solution of a set of PDEs. Furthermore, we characterized

the fixed-points of the mean-field. We have shown that the robustness measured through

insensitivity extends to any occupancy based randomized load balancing policy for which

the mean-field possesses a globally stable fixed-point. In the second theme, we studied

the accuracy of the mean-field approximations of the loss model with exponential JLDs

under the assumption that the dispatcher uses the SQ(d) load balancing policy. We studied

the fluctuation of the stochastic empirical process around the mean-field limit. We then

used this analysis to quantify the error between the actual blocking probability and the

asymptotic blocking probability obtained as a function of the fixed-point of the mean-field.

In Chapter 2, we investigated the impact of the SQ(d) policy for the loss model that can

be used to model Infrastructure-as-a-Service (IaaS) clouds. Under certain assumptions on

the initial empirical random measures, we showed that there exists a mean-field. We then

exploited the existence of the mean-field limit to show the asymptotic independence of any

finite set of servers as N → ∞ when the initial states of servers are exchangeable. After

that, we proved the uniqueness of the fixed-point of the mean-field. The proof uses two

existing results, the form of the stationary distribution of a single server system and the

uniqueness of the fixed-point in the exponential case. From the stationary distribution of

a single-server loss system with a Poisson arrival process having constant state-dependent

170



arrival rates, the distribution of occupancy obtained from any fixed-point of the mean-field

satisfies the corresponding fixed-point equations in the exponential job length distributions

(JLDs) case having the same average job length. Since the exponential case has a unique

fixed-point, the occupancy distribution obtained from any fixed-point must coincide with

the fixed-point in the exponential case implying insensitivity. Again from the form of the

stationary distribution of state-dependent loss models, the fixed-point of the mean-field

corresponds to a joint distribution of occupancy and ages that satisfies a product form.

We also studied the mean-field equations (MFEs) numerically for mixed-Erlang JLDs, and

we observed the GAS of the fixed-point. The numerical evidence for the GAS of the fixed-

point supports the hypothesis that the fixed-point approximates the stationary distribution

of the state of a server.

In Chapter 3, we assumed that the servers are PS servers. For this model, we stud-

ied occupancy based randomized load balancing policies under a common framework as

various parameters that include complexity and variations in the traffic level influence the

choice of the routing policy in practice. We showed that all occupancy based randomized

load balancing policies could be studied in the transient regime under a common frame-

work by using mean-field techniques. We proved the existence of a mean-field limit and

the corresponding MFEs correspond to the dynamics of the distribution of a single server

system with a Poisson job arrival process having a rate that depends both on the instanta-

neous occupancy as well as the instantaneous distribution. Every occupancy based policy

affects only the job arrival rate function. Furthermore, we showed that every fixed-point

corresponds to a distribution on Z+, which is a fixed-point in the exponential case having

the same average job length. If the exponential case has a unique fixed-point, then the

fixed-point in the general case is unique and insensitive. Although one can study occu-

pancy based policies under a common framework, the stationary analysis depends strongly

on the chosen routing policy. Hence, for a routing policy that falls into our framework,

one can directly obtain the mean-field equations from our analysis, and then the existence,

uniqueness, and stability of the fixed-point should be studied separately. We applied our

results to four policies and observed that all of them exhibit insensitivity.

Finally, we investigated the stationary behavior of the mean-field for the SQ(d) policy

by using numerical methods for the case of mixed-Erlang JLDs. We observed that the

mean-field is not quasi-monotonic, but still, the fixed-point is GAS. We also showed a

generic result that if a sequence of the stationary distributions of the empirical measures

converges to a distribution, then any finite set of servers in the corresponding limit system
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will be independent of each other if and only if the limiting measure is Dirac measure. Oth-

erwise, servers are coupled through the position of the mean-field whose position is random.

Conditioned on the position of the mean-field, any finite set of servers are independent of

each other, and their distributions coincide with the position of the mean-field.

In Chapter 4, we established an FCLT to characterize the fluctuation of the empirical

process around the mean-field. We showed that in the transient regime, the limiting

diffusion process is an OU process whose drift and diffusion coefficients depend on the

mean-field. In the stationary regime, the limiting diffusion is a stationary OU process

whose drift and diffusion coefficients depend on the fixed-point of the mean-field. For the

analysis of the stationary regime, we used the exponential stability of the fixed-point of the

mean-field. We then used the FCLT and Little’s law to show that N→∞
√
N(P

(N)
block−πdC) 6= 0

in the Halfin-Whitt regime and limN→∞
√
N(P

(N)
block − πdC) = 0 if α̃ = 0. This implies

limN→∞
√
NP

(N)
block = ∞ whereas for the complete resource pooling case and for the JSQ

policy, we have limN→∞
√
NP

(N)
block <∞.

5.1 Future Research

A significant open problem in Chapters 2 and 3 is, showing the GAS of the fixed-point of

the mean-field. It is easier to investigate this problem for the simple case of mixed-Erlang

distributions. Showing this result will help us to better understand the general case due

to the fact that mixed-Erlang distributions are dense in the class of general JLDs.

Our numerical and simulation results provide evidence that the fixed-point of the mean-

field is GAS and the limiting stationary distribution coincides with the fixed-point of the

mean-field. Since the fixed-point corresponds to the stationary distribution of a reversible

Markov process, our investigations support the hypothesis that the non-reversible Markov

process which models the dynamics with a finite number of servers is converging to a

reversible Markov process as N →∞. Showing this result will lend credence to the results

in [63] where it was shown that for any reversible Markov process that corresponds to a

mean-field model, any limit point of the stationary distribution is concentrated at fixed-

points of the mean-field.

In Chapter 4, we studied the gap between P
(N)
block and πdC as a function of N . Future

work should also address the Halfin-Whitt regime for the PS model. For this case, in the

limiting system as N → ∞, each server is critically loaded. Hence, the average response
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time of a job approaches ∞ as N → ∞. But for each N , the average response time is

finite. Hence, it is of interest to find the rate of convergence of the average response times

to ∞ as a function of N when N → ∞. It is of interest to see whether the randomized

schemes provide a slower increase over pure random routing or not.
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In this Appendix, we collect some background material related to results that are

frequently used in the dissertation. Consider a metric space (U, dU). Let B(U) be the

Borel σ-algebra of U and M1(U) is the space of Borel probability measures on U.

A.1 Weak Convergence and Prohorov’s Theorem

We first define the concept of weak convergence of probability measures.

Definition A.1. ( [56], p.107): For a metric space (U, dU), a sequence of probability

measure in {Pn}n≥1 in M1(U) is said to be weakly convergent to a probability measure

P ∈M1(U) if

lim
n→∞

∫
u∈U

f(u) dPn(u) =

∫
u∈U

f(u) dP (u), (A.1)

for all f ∈ Cb(U).

If (U, dU) is separable, then the weak convergence of a sequence of probability measures

is equivalent to the convergence w.r.t. a metric known as Prohorov metric. We next define

the Prohorov metric.

Definition A.2. ( [56], p.96): For P , Q ∈ M1(U), the Prohorov metric ρp(·, ·) is defined

as

ρp(P,Q) = inf{ε > 0 : P (A) ≤ Q(Aε) + ε,∀A ∈ C}, (A.2)

where C is the collection of all closed subsets of U and

Aε = {u ∈ U : inf
y∈A

dU(y, u) < ε}. (A.3)

The next result shows that if (U, dU) is separable and complete, then (M1(U), ρp) is

also separable and complete.

Theorem A.1. ( [56], Theorem 1.7, p.101): If (U, dU) is separable, then (M1(U), ρp) is

separable. In addition, if (U, dU) is complete, then (M1(U), ρp) is complete.

We now define the concept of tightness of a set of probability measures that relates to

the compactness of the set of measures.

Definition A.3. ( [56], p.103): A probability measure P ∈ M1(U) is said to be tight if

for every ε > 0, there exists a compact set A ⊂ U such that P (A) ≥ 1 − ε. A family of

probability measures M ⊂ M1(U) is tight, if for every ε > 0, there exists a compact set A

in U such that infQ∈MQ(A) ≥ 1− ε.
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We next see conditions on (U, dU) that guarantee the tightness of a set of probability

measures.

Lemma A.1. ( [56], Lemma 2.1, p.104) If (U, dU) is complete and separable, then every

P ∈M1(U) is tight.

We now state an important theorem known as Prohorov’s theorem from [56, Theo-

rem 2.2, p.104]. For a given topological space X, a set B ⊂ X is said to be relatively

compact if the closure of B is compact.

Theorem A.2. Prohorov’s Theorem: Let (U, dU) be complete and separable. If M ⊂
M1(U), then M is tight if and only if M is relatively compact.

Finally, we state the result on the equivalence of the weak convergence of a sequence

of probability measures and their convergence w.r.t. Prohorov metric.

Theorem A.3. ( [56], Theorem 3.1, p.108): If (U, dU) is separable, then for a sequence

of probability measures {Pn}n≥1 in M1(U) and P ∈M1(U), we have Pn ⇒ P if and only if

limn→∞ ρp(Pn, P ) = 0.

A.2 Riesz Markov Kakutani Theorem

Theorem A.4. ( [69], Theorem 2.14): Let X be a locally compact Hausdroff space and let

λ be a positive linear functional on Cs(X), then there exists a unique regular measure ν on

X such that

Λf =

∫
x∈X

f(x) dν(x). (A.4)

A.3 Jakubowski’s Criteria

Theorem A.5. ( [74],Theorem 4.6): Let (U, dU) be a completely regular topological space.

Then a sequence of stochastic processes {XN}N≥1 of DM1(U)([0,∞))-valued random ele-

ments defined on (Ω,F,P) is tight if and only if the following two conditions are satisfied:

J1: For each T > 0 and γ > 0, there exists a compact set KT,γ ⊂M1(U) such that

lim inf
N→∞

P(XN
t ∈ KT,γ,∀ t ∈ [0, T ]) > 1− γ. (A.5)

This condition is called the compact-containment condition.
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J2: There exists a family Q of real valued continuous functions F defined on M1(U) that

separates points in M1(U) and is closed under addition such that for every F ∈ Q,

the sequence {(F (XN
t ), t ≥ 0)}N≥1 is tight in DR([0,∞)).

To prove the condition J2, we define a class of functions Q as follows:

Q , {F : ∃ f ∈ C1
b(U) such that F (ν) = 〈ν, f〉, ∀ ν ∈M1(U)}. (A.6)

It can be seen that every function F ∈ Q is continuous w.r.t. the weak topology on M1(U)

and furthermore, the class of functions Q separates points in M1(U) and is also closed under

addition. We next recall the following result (From Theorem C.9, [78]) that is sufficient to

prove the condition J2.

Theorem A.6. Tightness in DR([0, T ]): Let {Pn}n≥1 be a sequence of probability distri-

butions on DR([0, T ]), then {Pn}n≥1 is tight if for any ε > 0,

C1: There exists b > 0 such that

Pn(|X(0)| > b) ≤ ε (A.7)

for all n ∈ Z+.

C2: For any γ > 0, there exists ρ > 0 such that

Pn(wX(ρ) > γ) ≤ ε (A.8)

for n sufficiently large, where

wX(ρ) = sup{|X(t)−X(s)| : s, t ≤ T, |s− t| ≤ ρ} (A.9)

and any limiting point P satisfies P(CR([0, T ])) = 1.

A.4 Gronwall’s Inequality

Theorem A.7. ( [56], Theorem 5.1, p.498): Let f be a function on [0,∞) that is bounded

on bounded intervals. For ε ≥ 0 and K > 0, if

0 ≤ f(t) ≤ ε+K

∫ t

s=0

f(s) ds, (A.10)

then

f(t) ≤ εeKt. (A.11)
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A.5 Doob’s Inequality

Theorem A.8. ( [56], Corollary 2.17, p.64): Let (X(t), t ≥ 0) be a right continuous

martingale. Then for α > 1 and T > 0,

E
[
sup
t≤T
|X(t)|α

]
≤
(

α

α− 1

)α
E [|X(T )|α] . (A.12)
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