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Abstract

In this thesis we address two problems from the fields of operator algebras and opera-
tor theory. In our first problem, we seek to obtain a description of the unital subalgebras
A of Mn(C) with the property that EAE is an algebra for all idempotents E ∈ Mn(C).
Algebras with this property are said to be idempotent compressible. Likewise, we wish to
determine which unital subalgebras of Mn(C) satisfy the analogous property for projections
(i.e., self-adjoint idempotents). Such algebras are said to be projection compressible.

We begin by constructing various examples of idempotent compressible subalgebras of
Mn(C) for each integer n ≥ 3. Using a case-by-case analysis based on reduced block upper
triangular forms, we prove that our list includes all unital projection compressible subalge-
bras of M3(C) up to similarity and transposition. A similar examination indicates that the
same phenomenon occurs in the case of unital subalgebras of Mn(C), n ≥ 4. We therefore
demonstrate that the notions of projection compressibility and idempotent compressibility
coincide for unital subalgebras of Mn(C), and obtain a complete classification of the unital
algebras admitting these properties up to similarity and transposition.

In our second problem, we address the question of computing the distance from a non-
zero projection to the set of nilpotent operators acting on Cn. Building on MacDonald’s
results in the rank-one case, we prove that the distance from a rank n − 1 projection to

the set of nilpotents in Mn(C) is 1
2

sec
(

π
n
n−1

+2

)
. For each n ≥ 2, we construct examples of

pairs (Q, T ) where Q is a projection of rank n−1 and T ∈Mn(C) is a nilpotent of minimal
distance to Q. Moreover, it is shown that any two such pairs are unitarily equivalent.
We end by discussing possible extensions of these results in the case of projections of
intermediate ranks.
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Chapter 1

Introduction

The fields of operator algebras and operator theory concern the study of bounded linear
transformations (operators) acting on a Hilbert space. In this thesis we will present two
problems from these respective fields. Our focus will be the case in which the Hilbert space
in question is complex and finite-dimensional. That is, we will be concerned with operators
acting on Cn for some n ∈ N.

To introduce the first problem, suppose that A is an algebra of linear operators acting
on Cn. By fixing an orthonormal basis for Cn, we may identify A with a subalgebra of
Mn(C), the algebra of all complex n× n matrices. Given an idempotent E ∈Mn(C) (i.e.,
an operator satisfying the equation E2 = E), each A ∈ A can be expressed as a sum

A = EAE + EA(I − E) + (I − E)AE + (I − E)A(I − E).

Accordingly, we may identify each A with a block 2× 2 matrix

A =

[
A11 A12

A21 A22

]
written with respect to the algebraic direct sum decomposition Cn = ran(E) u ker(E).
Here, the notation u indicates that every vector in Cn may be expressed uniquely as a
sum of a vector from ran(E) and a vector in ker(E), though these summands need not be
orthogonal. Under this identification, the set EAE := {EAE : A ∈ A} corresponds to the
collection of all (1, 1)-blocks from elements of A.

It is clear that for any idempotent E ∈Mn(C), the set EAE is a linear space. Moreover,
dimension considerations imply that when n ≤ 2, EAE is in fact, an algebra. When n ≥ 3,
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however, this is often not the case, as EAE frequently fails to be multiplicatively closed.
We are therefore interested in determining which subalgebras A of Mn(C), n ≥ 3, have
the property that with respect to every direct sum decomposition Cn = ran(E)u ker(E),
the compression of A to the (1, 1)-corner is an algebra of linear maps acting on ran(E).
This condition will be known as the idempotent compression property. An algebra that
admits this property will be called idempotent compressible. We will focus mainly on
understanding this property for unital subalgebras of Mn(C).

An interesting variant on the above problem arises when considering only the orthogonal
direct sum decompositions of Cn. We remind the reader that an idempotent operator whose
range is orthogonal to its kernel is called a projection, and that the projections in Mn(C)
are exactly the idempotents that are self-adjoint. If A is a subalgebra of Mn(C) such that
PAP is an algebra for every projection P ∈ Mn(C), we shall say that A exhibits the
projection compression property or that A is projection compressible. As in the case of
idempotents, we will focus primarily on studying this property for unital algebras.

While it is immediate from the definitions that every idempotent compressible algebra
is also projection compressible, the converse is much less clear. As we will see, all of our
preliminary examples indicate either the presence of the idempotent compression property
or the absence of the projection compression property, thus providing evidence to the
affirmative. Despite this evidence, however, our attempts at obtaining an intrinsic proof
that these notions coincide have been unsuccessful. Instead, we use a systematic case-by-
case analysis to investigate whether or not such an equivalence exists.

We begin in Chapter 2 by introducing the notation and basic theory surrounding idem-
potent and projection compressibility. Here we also develop a list of examples of idempotent
compressible subalgebras of Mn(C) for every integer n ≥ 3. In many cases, these algebras
belong to a general family of idempotent compressible algebras with members in Mn(C)
for each n ≥ 3. We do, however, encounter three exceptional examples in M3(C) that do
not appear to admit analogues in higher dimensions. This chapter ends with an overview
of key results from [14] and [13] concerning the structure theory for matrix algebras. These
facts will be used extensively in Chapters 3 and 4.

Next, we turn our attention to assessing the completeness of our list of idempotent
compressible algebras from Chapter 2. Since certain pathological examples were observed
in M3(C), we devote Chapter 3 to the classification of unital idempotent compressible al-
gebras that exist in this setting. Using a case-by-case analysis based on block triangular
forms, we show that the examples from Chapter 2 account for all unital idempotent com-
pressible algebras in M3(C) up to transposition and similarity. A closer examination of
the unital algebras that lack the idempotent compression property reveals that in fact, no
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such algebra is projection compressible. From this it follows that the notions of projection
compressibility and idempotent compressibility coincide for unital subalgebras of M3(C).

In Chapter 4, we implement a similar analysis to classify the projection compressible
subalgebras of Mn(C) when n ≥ 4. There we present a key tool—Theorem 4.1.2—which
greatly restricts the possible block triangular forms of such an algebra. Through a three-
part examination of the remaining block triangular forms, we obtain a description of the
unital projection compressible algebras that exist in this setting up to transposition and
unitary equivalence. Furthermore, we observe that every such algebra is similar to one of
the unital idempotent compressible algebras presented in Chapter 2. We therefore prove
that for any n, a unital subalgebra of Mn(C) is projection compressible if and only if it is
idempotent compressible.

To introduce our second problem, letH be a complex Hilbert space of (possibly infinite)
dimension n. Let B(H) denote the algebra of all linear operators T : H → H that are
bounded with respect to the operator norm

‖T‖ := sup
‖x‖=1

‖Tx‖.

Consider the sets

P(H) = {P ∈ B(H) : P = P 2 = P ∗} \ {0}, and

N (H) = {N ∈ B(H) : N j = 0 for some j ∈ N}

consisting of all non-zero projections acting on H and all nilpotent operators acting on H,
respectively. We are interested in the problem of understanding the distance between these
two sets, measured in operator norm on B(H). This quantity will be denoted by δn:

δn := dist(P(H),N (H)) = inf {‖P −N‖ : P ∈ P(H), N ∈ N (H)} .

The problem of computing δn is by no means new to the world of operator theory. In
1972, Hedlund [9] proved that δ2 = 1/

√
2, and that 1/4 ≤ δn ≤ 1 for all n ≥ 3. This

lower bound was increased to 1/2 by Herrero [10] shortly thereafter. At this time Herrero
also showed that δn = 1/2 whenever n is infinite, thus reducing the problem to the case in
which H = Cn for some n ∈ N, n ≥ 3.

Various estimates on the values of δn were obtained in the early 1980’s. One such
estimate established by Salinas [19] states that

1

2
≤ δn ≤

1

2
+

1 +
√
n− 1

2n
for all n ∈ N.
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One may note that this upper bound approaches 1/2 as n tends to infinity, and hence
Salinas’ inequality leads to an alternative proof that δℵ0 = 1/2. Herrero [11] subsequently
improved upon this upper bound for large values of n by showing that

1

2
≤ δn ≤

1

2
+ sin

(
π

bn+1
2
c

)
for n ≥ 2,

where b·c denotes the greatest integer function.

For many years the bounds obtained by Salinas and Herrero remained the best known.
In 1995, however, MacDonald [16] established a new upper bound that would improve
upon these estimates for all values of n. In order to describe MacDonald’s approach, we
first make the following remarks.

(i) Any two projections in Mn(C) of equal rank are unitarily equivalent and thus of equal
distance to N (Cn). Thus, δn = min

1≤r≤n
νr,n, where

νr,n := inf {‖P −N‖ : P ∈ P(Cn), rank(P ) = r,N ∈ N (Cn)} .

(ii) Straightforward estimates show that when computing νr,n, one need only consider
nilpotents of norm at most 2. From here, one may use the compactness of the set of
projections of rank r in Mn(C) and the set of nilpotents in Mn(C) of norm at most
2 to show that νr,n is achieved by some projection-nilpotent pair. Consequently, so
too is δn.

(iii) If {ei}ni=1 denotes the standard basis for Cn, then

νr,n = min {‖P −N‖ : P ∈ P(Cn), rank(P ) = r,N ∈ Tn} ,

where Tn is the subalgebra of Mn(C) consisting of all operators that are strictly upper
triangular with respect to {ei}ni=1. This follows from Schur Triangularization.

The reduction from N (Cn) to Tn described in (iii) may seem innocuous at first glance.
This alternate formulation, however, allows one to make use of a theorem of Arveson [1]
that describes the distance from an operator in B(H) to a nest algebra. The version of
this result that we require was established by Power [18], and is presented below for the
algebra Tn. Note that for vectors x, y ∈ Cn, the notation x⊗ y∗ will be used to denote the
rank-one operator z 7→ 〈z, y〉x acting on Cn.
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Theorem 1.0.1 (Arveson Distance Formula). Let {ei}ni=1 denote the standard basis for
Cn. Define E0 := 0 and Ek :=

∑k
i=1 ei⊗e∗i for each k ∈ {1, 2, . . . , n}. For any A ∈Mn(C),

dist(A, Tn) = max
1≤i≤n

‖E⊥i−1AEi‖.

Using Arveson’s formula, MacDonald successfully determined the exact value of ν1,n, the
distance from a rank-one projection in Mn(C) to N (Cn).

Theorem 1.0.2. [16, Theorem 1] For every positive integer n, the distance from a rank-one
projection in Mn(C) to N (Cn) is

ν1,n =
1

2
sec

(
π

n+ 2

)
.

The expression for ν1,n described above provides an upper bound on δn that is sharper
than those previously obtained by Herrero and Salinas for all n ∈ N. In addition, MacDon-
ald proved that this bound is in fact optimal when n = 3 [16, Corollary 4]. These results
led to the formulation of the following conjecture.

Conjecture 1.0.3 (MacDonald, [16]). The closest non-zero projections to N (Cn) are of
rank 1. That is,

δn = ν1,n =
1

2
sec

(
π

n+ 2

)
for all n ∈ N.

Conjecture 1.0.3 has since been verified for n = 4 [17, Theorem 3.4], but remains open for
all n ≥ 5.

MacDonald’s success in computing ν1,n was largely due to the rigid structure of rank-
one projections in Mn(C). Specifically, the decomposition of such a projection as a simple
tensor P = e ⊗ e∗ for some unit vector e ∈ Cn made it feasible to obtain a closed-form
expression for ‖E⊥i−1PEi‖ in terms of the entries of P . With this in hand, it became
possible to show that the rank-one projections of minimal distance to Tn are such that
‖E⊥i−1PEi‖ = ν1,n for all i ∈ {1, 2, . . . , n}. An exact expression for ν1,n was then derived
through algebraic and combinatorial arguments.

Extending the above approach to accommodate projections of intermediate ranks ap-
pears to be a formidable task; when P is not expressible as a simple tensor e⊗e∗ it becomes
significantly more challenging to obtain an explicit formula for ‖E⊥i−1PEi‖. One may note,
however, that the rigidity that led to success in the rank-one case can also be observed
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in projections of rank n − 1. It is therefore our goal to extend MacDonald’s approach to
determine the exact value of νn−1,n. This will be the focus of Chapter 5.

We accomplish this goal in three stages. Motivated by the analogous result for projec-
tions of rank 1, we show in §5.1 that any projection Q of rank n − 1 that is of minimal
distance to Tn must be such that ‖E⊥i−1QEi‖ = νn−1,n for all i. In §5.2, we then apply
these equations to determine a list of candidates for νn−1,n via arguments adapted from
[16]. Finally, we prove that exactly one such candidate satisfies a certain necessary norm
inequality from [17], and therefore deduce that this value must be νn−1,n.

In §5.3, we describe a construction of the pairs (Q, T ) where Q ∈Mn(C) is a projection
of rank n− 1, T is an element of Tn, and ‖Q−T‖ = νn−1,n. We prove that for each n ∈ N,
any two such pairs are in fact, unitarily equivalent. Lastly, in §5.4 we propose a possible
formula for νr,n in the case of projections of arbitrary rank, which can be seen to closely
resemble numerical estimates for νr,n when n is small. We explain how this formula and
its consequences may be used to answer MacDonald’s conjecture in the affirmative.

6



Chapter 2

Compressibility Preliminaries

§2.1 Definitions and First Results

In this section we introduce some of the preliminary results concerning algebras that admit
the idempotent or projection compression properties. Our first task will be to establish
the notation and terminology that will be used throughout.

Since we will only be concerned with algebras of n × n matrices over C, we will write
Mn in place of Mn(C) from here on.

Definition 2.1.1. Let A be a subalgebra of Mn.

(i) We say that A is idempotent compressible, or that A admits the idempotent compres-
sion property, if EAE is an algebra for all idempotents E ∈Mn.

(ii) We say thatA is projection compressible, or thatA admits the projection compression
property, if PAP is an algebra for all projections P ∈Mn.

It is immediate from the definitions that every idempotent compressible algebra is also
projection compressible.

We begin by addressing the claim from Chapter 1 that every subalgebra of M2 is
idempotent compressible. Before stating this result formally, let us first recall the following
facts concerning matrices of rank one.

Proposition 2.1.2. If E ∈ Mn is an operator of rank 1, then the linear space CE is an
algebra, and EMnE is contained in CE.

7



Proof. Let E be as above. As a rank-one operator, E is either nilpotent or a scalar multiple
of an idempotent. Hence, CE is closed under multiplication. Writing E = x⊗ y∗ for some
vectors x, y ∈ Cn, we have that for any A ∈Mn,

EAE = (x⊗ y∗)A(x⊗ y∗) = 〈Ax, y〉(x⊗ y∗) = 〈Ax, y〉E ∈ CE.

Thus, EMnE ⊆ CE. �

Proposition 2.1.3. Let A be a subalgebra of Mn, and let E ∈Mn be idempotent.

(i) EAE is an algebra if and only if EAE is multiplicatively closed.

(ii) If rank(E) = 1, then EAE is an algebra.

(iii) If n ≤ 2, then A is idempotent compressible.

Proof. Since EAE is a linear space, statement (i) is immediate. For (ii), note that if
A,B ∈ A, then by Proposition 2.1.2, EBE = λE for some λ ∈ C. Thus,

(EAE)(EBE) = E(λA)E ∈ EAE.

It follows that EAE is closed under multiplication. By (i), EAE is an algebra. Statement
(iii) is now an immediate consequence of (ii). �

In light of Proposition 2.1.3, we will devote our attention to studying the compression
properties for subalgebras of Mn, n ≥ 3.

We now investigate some permanence results for algebras admitting the idempotent
or projection compression properties. These facts will be used extensively throughout
Chapters 2-4 without mention. The first result in this vein states that if A admits one of
the compression properties, then so too does PAP for every projection P .

Proposition 2.1.4. Let A be a subalgebra of Mn that admits the idempotent (resp. pro-
jection) compression property, and let P be a projection in Mn. When restricted to an
algebra of linear maps acting on ran(P ), the algebra PAP is idempotent (resp. projection)
compressible.

Proof. Assume that A is idempotent compressible. Given an idempotent E acting on
ran(P ), we have that PE = EP = E. Thus, E(PAP )E = EAE is an algebra, as A is
idempotent compressible.

An analogous argument may be used in the case that A is projection compressible. �
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Note that the set of idempotents in Mn is closed under transposition and similarity,
whereas the set of projections in Mn is closed under transposition and unitary equivalence.
This leads to our second permanence property for compressible algebras, Proposition 2.1.6.
In order to simplify the statement of this result, as well as much of the exposition in the
chapters to come, we first introduce the following definitions.

Definition 2.1.5. Let A and B be subsets of Mn. Define the transpose of A to be the set

AT :=
{
AT : A ∈ A

}
.

If A or AT is similar to B, we say that A and B are transpose similar. If A or AT is
unitarily equivalent to B, we say that A and B are transpose equivalent.

It is easy to verify that transpose similarity and transpose equivalence are equivalence
relations that generalize the notions of similarity and unitary equivalence, respectively.

The proof of the following result follows immediately from the comments preceding
Definition 2.1.5.

Proposition 2.1.6. Let A and B be subalgebras of Mn.

(i) If A and B are transpose similar, then A is idempotent compressible if and only if B
is idempotent compressible.

(ii) If A and B are transpose equivalent, then A is projection compressible if and only if
B is projection compressible.

Definition 2.1.7. Given A ∈Mn, define the anti-transpose of A to be the matrix

AaT := JATJ,

where J = J∗ is the unitary matrix whose (i, j)-entry is δj,n−i+1. If A is a subset of Mn,
then we will define the anti-transpose of A to be the set

AaT := JATJ =
{
AaT : A ∈ A

}
.

While transposition has the effect of reflecting a matrix about its main diagonal, anti-
transposition has the effect of reflecting a matrix about its anti-diagonal (i.e., the diagonal
from the (n, 1)-entry to the (1, n)-entry).

Since an algebraA and its anti-transpose AaT are easily seen to be transpose equivalent,
we obtain the following useful consequence of Proposition 2.1.6.
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Corollary 2.1.8. If A is a subalgebra of Mn, then A is idempotent (resp. projection)
compressible if and only if AaT is idempotent (resp. projection) compressible.

Next we will show that if an algebra A admits the idempotent (resp. projection)
compression property, then so too does its unitization A+CI. A counterexample following
the proof of Corollary 2.1.14 demonstrates that the converse is false.

Proposition 2.1.9. If A is an idempotent (resp. a projection) compressible subalgebra of
Mn, then its unitization

Ã := A+ CI

is idempotent (resp. projection) compressible.

Proof. Assume that A is idempotent (resp. projection) compressible, and let E be a
idempotent (resp. projection) in Mn. Let A,B ∈ A and α, β ∈ C, so that A + αI
and B + βI define elements of Ã. Since EAE · EBE belongs to EAE, we can write
EAE · EBE = ECE for some C ∈ A. As a result,

E(A+ αI)E · E(B + βI)E = EAE · EBE + βEAE + αEBE + αβE

= E((C + βA+ αB) + αβI)E

Since (C + βA+ αB) + αβI belongs to Ã, we conclude that EÃE is an algebra. �

The following proposition describes an obvious sufficient condition for an algebra to
exhibit the projection or idempotent compression property, and will be useful in building
our first class of examples.

Proposition 2.1.10. Let n be a positive integer, and let A be a subalgebra of Mn. If
AEB ∈ A for all A, B ∈ A, and all idempotents (resp. projections) E ∈ Mn, then A is
idempotent (resp. projection) compressible.

Proof. Let E be an idempotent (resp. a projection) in Mn. Given A,B ∈ A, we have that
AEB ∈ A, and hence

(EAE)(EBE) = E(AEB)E ∈ EAE.

Thus, EAE is an algebra by Proposition 2.1.3 (i). �
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The sufficient condition for idempotent compressibility from Proposition 2.1.10 strongly
resembles the multiplicative absorption property satisfied by ideals. In particular, this re-
sult implies that any (one- or two-sided) ideal of Mn exhibits the idempotent compression
property. It will be shown in Corollary 2.1.14 that this property also holds for the intersec-
tion of one-sided ideals, or equivalently, the intersection of a single left ideal with a single
right ideal. Thus, we make following definition.

Definition 2.1.11. If A is a subalgebra of Mn given by an intersection of a left ideal and
a right ideal in Mn, then A is said to be an LR-algebra.

It is straightforward to show that any algebra that is transpose similar to an LR-algebra
A is again an LR-algebra. Indeed, if A = L∩R for some left ideal L and right ideal R of
Mn, then RT is a left ideal, LT is a right ideal, and AT = RT ∩ LT . Hence, AT is also an
LR-algebra. If B is transpose similar to A, then by replacing A with AT if necessary, we
may assume that

B = S−1AS =
(
S−1LS

)
∩
(
S−1RS

)
for some invertible S ∈ Mn. Since S−1LS and S−1RS are left and right ideals of Mn,
respectively, B is again an LR-algebra.

It is well-known that the one-sided ideals in Mn can be described in terms of projections.
In particular, each left ideal of Mn has the form MnQ for some orthogonal projection Q,
while each right ideal has the form PMn for some orthogonal projection P . More generally,
we have the following classical ring-theoretic result concerning Mn-submodules of the n×p
and p×n matrices. A proof of this result is presented in the complex case for completeness,
though a more general argument applicable to matrix algebras over division rings may be
found in [13, Theorem 3.3].

Theorem 2.1.12. Let n and p be positive integers.

(i) If S ⊆ Mn×p is a left Mn-module, then there is a projection Q ∈ Mp such that
S = Mn×pQ.

(ii) If S ⊆ Mp×n is a right Mn-module, then there is a projection P ∈ Mp such that
S = PMp×n.

Proof. Observe that (ii) follows from (i), as S is a left Mn-module if and only if ST is a
right Mn-module. Thus, it suffices to prove (i).
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Let S be a left Mn-module, and consider the subspace

V =

(⋂
S∈S

ker(S)

)⊥
of Cp. Let Q denote the orthogonal projection of Cp onto V , and suppose that dimV = m.
It will be shown that S = Mn×pQ.

To see this, let {e1, e2, . . . , en} denote the standard basis for Cn. With respect to the
decomposition Cp = V ⊕ V⊥, every S ∈ S can be expressed as a matrix of the form

S =


s11 s12 · · · s1m 0 · · · 0
s21 s22 · · · s2m 0 · · · 0
...

...
. . .

...
...

. . .
...

sn1 sn2 · · · snm 0 · · · 0


for some sij in C. For each i and j in {1, 2, . . . , n}, let Eij denote the n × n matrix unit
ei ⊗ e∗j . Since S is a left Mn-module, the product

EiiS =



0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0
si1 si2 · · · sim 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... · · · ...
...

. . .
...

0 0 · · · 0 0 · · · 0


belongs to S for all i. Moreover, one may multiply by Eji on the left to move the ith row
of this matrix to the jth row. In particular, one may move any row to the first row and
vice-versa.

Consider the subspace

W =
{

(w1, w2, . . . , wm)T : (s11, s12, . . . , s1m) = (w1, w2, . . . , wm) for some S = (sij) in S
}

of V . From the above remarks, it follows that each row of each S ∈ S are of the form

(w1, w2, . . . , wm, 0, 0, . . . , 0)

for some (w1, w2, . . . , wm)T in W . This means that if W 6= V , then V contains a non-
zero vector x that is orthogonal to W , and hence Sx = 0 for all S ∈ S. This would then
contradict our choice of V , so it must be the case thatW = V . As a result, S = Mn×pQ. �
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Corollary 2.1.13. A subalgebra A of Mn is an LR-algebra if and only if there are pro-
jections P and Q in Mn such that A = PMnQ.

The description of LR-algebras presented in Corollary 2.1.13 allows one to quickly
deduce that these algebras admit the idempotent compression property.

Corollary 2.1.14. Every LR-algebra is idempotent compressible.

Proof. Let A be an LR-algebra, so A = PMnQ for some projections P and Q in Mn. If
E is an idempotent in Mn, then for any A,B ∈ A,

AEB = (PAQ)E(PBQ) = P (AQEPB)Q ∈ PMnQ = A.

Thus, A satisfies the assumptions of Proposition 2.1.10 in the case of idempotents. We
conclude that A is idempotent compressible. �

As the following Proposition demonstrates, the algebra generated by a rank-one oper-
ator is an LR-algebra. This result will be referenced at the end of Chapter 4.

Proposition 2.1.15. If R ∈ Mn is an operator of rank 1, then Alg(R)—the algebra
generated by R—is an LR-algebra. Consequently, Alg(R) is idempotent compressible.

Proof. In light of the remarks following Definition 2.1.11, it suffices to prove that Alg(R)
is similar to an LR-algebra.

Let {e1, e2, . . . , en} denote the standard basis for Cn. As a rank-one operator, R is
either nilpotent or a scalar multiple of an idempotent. If R is nilpotent, then R is unitarily
equivalent to e1 ⊗ e∗2. Consequently, Alg(R) is unitarily equivalent to Ce1 ⊗ e∗2. If instead
R is a multiple of an idempotent, then R is similar to αe1 ⊗ e∗1 for some non-zero α ∈ C.
Consequently, Alg(R) is similar to Ce1 ⊗ e∗1. In either case, Alg(R) is an LR-algebra. �

The fact that LR-algebras admit the idempotent compression property gives us a means
to disprove the converse to Proposition 2.1.9. We will exhibit a subalgebra of M3 that is
not projection compressible, but whose unitization is idempotent compressible.

Indeed, let {e1, e2, e3} denote the standard basis for C3 and for each i, let Qi denote the
orthogonal projection onto the span of {ei}. Consider the algebra A = C(Q1 +Q2). Note
that the unitization ofA is also the unitization of the LR-algebra B := CQ3 = Q3M3Q3. By
Corollary 2.1.14 and Proposition 2.1.9, Ã is idempotent compressible, a fortiori, projection
compressible.
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To see that A is not projection compressible, consider the matrix

P =

 2 −1 −1
−1 2 −1
−1 −1 2

 ,
and note that 1

3
P is a projection in M3. We claim that

(
1
3
P
)
A
(

1
3
P
)

is not an algebra.
Of course, since (1

3
P )A(1

3
P ) is an algebra if and only if PAP is an algebra, it suffices to

prove that PAP is not multiplicatively closed.

One may verify that every elementB = (bij) in PAP satisfies the equation b22+5b23 = 0.
With B = e1 ⊗ e∗1 + e2 ⊗ e∗2, however, we have that

(PBP )2 =

 42 −39 −3
−39 42 −3
−3 −3 6

 .
This matrix clearly does not satisfy the above equation, and hence (PBP )2 does not belong
to PAP . Thus, PAP is not an algebra, so A is not projection compressible.

Remark 2.1.16. When determining whether or not a corner EAE is an algebra, it is
often more computationally convenient to consider a multiple of the idempotent E rather
than E itself. This simplification will frequently be used without mention.

§2.2 Examples of Idempotent Compressible Algebras

While LR-algebras comprise a large collection of idempotent compressible algebras, they
are not the only examples. The purpose of §2.2 is to expand our library of matrix algebras
that admit the idempotent compression property.

In §2.2.1 we showcase three distinct families of idempotent compressible algebras that
arise as subalgebras of Mn for each n ≥ 3. In §2.2.2, we present three additional examples of
idempotent compressible algebras that occur uniquely in the setting of 3×3 matrices. The
algebras presented in these sections lay the groundwork for the classification of compressible
algebras in Chapters 3 and 4.
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§2.2.1 Subalgebras of Mn, n ≥ 3

This section is devoted to the exposition of three families of idempotent compressible
algebras that exist in Mn for each n ≥ 3. These families are described in Examples 2.2.1,
2.2.3, and 2.2.6, respectively.

Example 2.2.1. Let n ≥ 3 be an integer. If Q1, Q2, and Q3 are projections in Mn which
sum to I, then the algebra

A := CQ1 + (Q1 +Q2)Mn(Q2 +Q3)

=


αI M12 M13

0 M22 M23

0 0 0

 : α ∈ C,Mij ∈ QiMnQj


has the idempotent compression property. Consequently, its unitization

Ã = CQ1 + CQ3 + (Q1 +Q2)Mn(Q2 +Q3)

=


αI M12 M13

0 M22 M23

0 0 βI

 : α, β ∈ C,Mij ∈ QiMnQj


has the idempotent compression property as well.

Proof. Define A1 := CQ1 and A2 := (Q1 +Q2)Mn(Q2 +Q3), so that A = A1 uA2. Let E
be an idempotent in Mn. We will show that EAE contains the product EAiE ·EAjE for
each choice of i and j.

Since A2 is an LR-algebra, it is easy to see that (EA2E)2 is contained in EAE. What’s
more, the equation Q1 = (Q1 + Q2)Q1 shows that EA1E · EA2E is contained in EA2E,
and hence in EAE. To see that (EA1E)2 is contained in EAE, write

(EQ1E)2 = EQ1E − E(Q1 +Q2)Q1E · E(Q2 +Q3)E.

Finally, if T ∈Mn, then the equation

E(Q1 +Q2)T (Q2 +Q3)E · EQ1E = E(Q1 +Q2)T (Q2 +Q3)E

− E(Q1 +Q2)T (Q2 +Q3)E · E(Q2 +Q3)E,

proves that EA2E · EA1E is contained in EAE. �
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Remark 2.2.2. Let {e1, e2, e3} denote the standard basis for C3. For each i ∈ {1, 2, 3},
let Qi denote the orthogonal projection of C3 onto Cei. By Example 2.2.1, the algebra

A = CQ1 + CQ3 + (Q1 +Q2)Mn(Q2 +Q3) =


α x y

0 β z
0 0 γ

 : α, β, γ, x, y, z ∈ C


of all 3× 3 upper triangular matrices is idempotent compressible.

Example 2.2.3. Let n ≥ 3 be an integer. If Q1 and Q2 are mutually orthogonal rank-one
projections in Mn, and Q3 = I −Q1 −Q2, then the algebra

A := CQ1 + CQ2 + (Q1 +Q2)MnQ3

=


α 0 M13

0 β M23

0 0 0

 : α, β ∈ C,Mij ∈ QiMnQj


has the idempotent compression property. Consequently, its unitization

Ã = CQ1 + CQ2 + CQ3 + (Q1 +Q2)MnQ3

=


α 0 M13

0 β M23

0 0 γI

 : α, β, γ ∈ C,Mij ∈ QiMnQj


has the idempotent compression property as well.

Proof. DefineA1 := CQ1,A2 := CQ2, andA3 := (Q1+Q2)MnQ3, so thatA = A1uA2uA3.
Let E be an idempotent in Mn. As in the previous proof, we will show that EAE contains
the product EAiE · EAjE for all choices of i and j.

Note that A1, A2, and A3 are LR-algebras, so EAE contains (EAiE)2 for all i. More-
over, it is easy to see that EA1E ·EA3E and EA2E ·EA3E are contained in EAE. From
these inclusions it follows that EA1E · EA2E and EA2E · EA1E are contained in EAE,
as

EQ1E · EQ2E = EQ1E − EQ1E · EQ1E − E(Q1 +Q2)Q1E · EQ3E, and

EQ2E · EQ1E = EQ2E − EQ2E · EQ2E − E(Q1 +Q2)Q2E · EQ3E.
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The proof will be complete upon showing that EA3E · EA1E and EA3E · EA2E are
contained in EAE. To demonstrate that this is the case, observe that for any T ∈Mn,

E(Q1 +Q2)TQ3E · EQ1E = EQ1TQ3E · EQ1E − EQ2TQ3E · EQ2E

+EQ2T (I −Q3E)Q3E.

By Proposition 2.1.2, the first two summands on the right-hand side of this equation
belong to EA1E and EA2E, respectively. Moreover, the summand belongs to EA3E.
Consequently, EA3E ·EA1E is contained in EAE. The inclusion EA3E ·EA2E ⊆ EAE
can be deduced in a similar fashion. �

It was fairly routine to verify that the algebras presented in Examples 2.2.1 and 2.2.3
admit the idempotent compression property. Showing that this condition holds for the
algebra A in our next example is not so straightforward. We will first present two lemmas
that describe sufficient conditions for an arbitrary corner of this algebra to be an algebra
itself. It will then be shown in Example 2.2.6 that every such corner of A must satisfy one
of these conditions. This will prove that this algebra is indeed idempotent compressible.

Lemma 2.2.4. Let n ≥ 3 be an integer, let Q1, Q2 ∈Mn be mutually orthogonal rank-one
projections, and define Q3 := I −Q1 −Q2. Consider the subalgebra A of Mn given by

A := C(Q1 +Q2) +Q1MnQ2 + (Q1 +Q2)MnQ3

=


α x M13

0 α M23

0 0 0

 : α, x ∈ C,Mij ∈ QiMnQj

 .

If E is an idempotent in Mn and EAE contains EQ2E, then EAE is an algebra.

Proof. Let E be a fixed idempotent in Mn and suppose that EQ2E ∈ EAE. Define

A0 := CQ1 + CQ2 +Q1MnQ2 + (Q1 +Q2)MnQ3

= CQ1 + (Q1 +Q2)Mn(Q2 +Q3),

and note that A0 is idempotent compressible by Example 2.2.1. It then follow that

EAE = CE(Q1 +Q2)E + EQ1MnQ2E + E(Q1 +Q2)MnQ3E

= CEQ1E + CEQ2E + EQ1MnQ2E + E(Q1 +Q2)MnQ3E

= EA0E

is an algebra. �
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Lemma 2.2.5. Let n ≥ 3 be an integer, let Q1, Q2 ∈Mn be mutually orthogonal rank-one
projections, and define Q3 := I −Q1 −Q2. Let A denote the subalgebra of Mn given by

A := C(Q1 +Q2) +Q1MnQ2 + (Q1 +Q2)MnQ3

=


α x M13

0 α M23

0 0 0

 : α, x ∈ C,Mij ∈ QiMnQj

 .

If E is an idempotent in Mn such that EQ1 = Q1, then EAE is an algebra.

Proof. Let E be an idempotent in Mn such that EQ1 = Q1. Define A1 := C(Q1 + Q2),
A2 := Q1MnQ2, and A3 := (Q1 +Q2)MnQ3, so that A = A1uA2uA3. As in the previous
examples, we will show that EAE contains the product EAiE · EAjE for all i and j.

Since A2 and A3 are LR-algebras, it is easy to see that EAE contains (EA2E)2 and
(EA3E)2. Moreover, it is clear that EA2E · EA3E is contained in EA3E, and hence
in EAE. Observe that since the algebra A0 := A1 u A3 was shown to be idempotent
compressible in Example 2.2.1, we have that EA1E ·EA3E, EA3E ·EA1E, and (EA1E)2

are contained in EA0E ⊆ EAE. Proving these inclusions directly is also straightforward.

The equation EQ1 = Q1 will now be used to obtain the remaining inclusions. We have
that for all S and T in Mn,

E(Q1 +Q2)SQ3E · EQ1TQ2E = 0,

E(Q1 +Q2)E · EQ1TQ2E = EQ1TQ2E, and

EQ1TQ2E · E(Q1 +Q2)E = EQ1(TQ2E)Q2E.

The right-hand side of each expression above is easily seen to belong to EAE. As a result,
EAE contains EA3E · EA2E, EA1E · EA2E, and EA2E · EA1E, as claimed. �

Example 2.2.6. Let n ≥ 3 be a positive integer, let Q1 and Q2 be mutually orthogonal
rank-one projections in Mn, and define Q3 := I − Q1 − Q2. If A is the subalgebra of Mn

given by
A := C(Q1 +Q2) +Q1MnQ2 + (Q1 +Q2)MnQ3

=


α x M13

0 α M23

0 0 0

 : α, x ∈ C,Mij ∈ QiMnQj

 ,
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then A is idempotent compressible. Consequently, its unitization

Ã = C(Q1 +Q2) +Q1MnQ2 + (Q1 +Q2)MnQ3 + CQ3

=


α x M13

0 α M23

0 0 βI

 : α, β, x ∈ C,Mij ∈ QiMnQj


is also idempotent compressible.

Proof. In light of Lemmas 2.2.4 and 2.2.5, it suffices to prove that if r ∈ {2, 3, . . . , n− 1}
and E is an idempotent in Mn of rank r, then either EQ2E ∈ EAE or EQ1 = Q1.

Fix such an integer r and idempotent E. Let B = {e1, e2, . . . , en} be an orthonormal
basis for Cn such that e1 ∈ ran(Q1) and e2 ∈ ran(Q2), and consider the projection

P :=
r∑
i=1

ei ⊗ e∗i .

Since rank(P ) = r, there is an invertible matrix S = (sij) in Mn such that E = SPS−1.

The product EQ2E belongs EAE if and only if there is an A ∈ A such that

PS−1(A−Q2)SP = 0.

In showing this equality it suffices to exhibit an A ∈ A such that (A−Q2)SP = 0. To this
end, observe that for any A ∈ A, the operator B := A − Q2 admits the following matrix
representation with respect to the basis B:

B =


α w2 w3 · · · wn
0 α− 1 v3 · · · vn
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

Since the last n− 2 rows of B and the last n− r columns of P are zero, the product BSP

is zero whenever (BS)ij = 0 for all i ∈ {1, 2} and j ∈ {1, 2, . . . , r}. That is, such a B
exists if there is a solution to the following non-homogeneous 2r×2(n−1) system of linear
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equations:
w2 w3 · · · wn α v3 · · · vn



s21 s31 · · · sn1 s11 0 · · · 0 0
s22 s32 · · · sn2 s12 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

s2r s3r · · · snr s1r 0 · · · 0 0
0 0 · · · 0 s21 s31 · · · sn1 s21

0 0 · · · 0 s22 s32 · · · sn2 s22
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 s2r s3r · · · snr s2r

.

If the rank of the above (non-augmented) matrix is 2r, then its columns span C2r and a
solution exists. In this case, EQ2E belongs to EAE, so EAE is an algebra by Lemma 2.2.4.

Suppose that this is not the case, so the above (non-augmented) matrix has rank < 2r.
It is then apparent that

S0 :=


s21 s31 · · · sn1

s22 s32 · · · sn2
...

...
. . .

...
s2r s3r · · · snr


has rank < r. From here we will demonstrate that EQ1 = Q1, or equivalently, that
PS−1Q1 = S−1Q1.

To see that this is the case, note that if S−1 = (tij), then ti1 = 0 for all i > r. Indeed,

ti1 =
C1i

det(S)

where Cij denotes the (i, j)-cofactor of S. When i > r, C1i is equal to (−1)i+1 det(M),
where M is an (n− 1)× (n− 1) matrix of the form

M =


s21 s22 · · · s2r ∗ · · · ∗
s31 s32 · · · s3r ∗ · · · ∗
...

...
. . .

...
...

. . .
...

sn1 sn2 · · · snr ∗ · · · ∗

 .
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Since the (n− 1)× r matrix obtained by keeping only the first r columns of M is exactly
ST0 and rank(S0) < r, one has

rank(M) < r + (n− 1− r) = n− 1.

Consequently, ti1 = 0 for all i > r. A straightforward computation now shows that
PS−1Q1 = S−1Q1. �

§2.2.2 Exceptional Subalgebras of M3

In §2.2.1 we introduced various examples of unital idempotent compressible subalgebras
of Mn for each integer n ≥ 3. It will be shown that when n ≥ 4, these examples are the
only unital idempotent compressible subalgebras of Mn up to similarity and transposition.
In fact, we will see that for n ≥ 4, our examples also represent all unital projection com-
pressible subalgebras of Mn up to similarity and transposition. Proving these results is the
focus of Chapter 4.

Unfortunately, the story for unital subalgebras of M3 is somewhat more complicated.
As we will see in this section, there exist several examples of unital idempotent compressible
subalgebras of M3 that are not accounted for in §2.2.1. One explanation as to why these
pathological examples arise is due to dimension. Just as M2 is simply “too small” to contain
the projections required to disprove the existence of the compression properties for any of
its subalgebras, certain subalgebras of M3 acquire the compression properties because M3

does not contain projections of large enough rank. Support for this explanation is given
by Theorem 4.1.2, which demonstrates that in the case of Mn, n ≥ 4, one can very often
prove that an algebra lacks the compression properties using projections of rank 3.

Example 2.2.7. Let Q1, Q2, and Q3 be rank-one projections in M3 that sum to I. If A
is the subalgebra of M3 defined by

A := CQ1 + CQ2 + (Q2 +Q3)M3Q3 =


α 0 0

0 β x
0 0 γ

 : α, β, γ, x ∈ C

 ,

then A is idempotent compressible.

Proof. Define A1 := CQ1, A2 := CQ2, and A3 := (Q2 + Q3)M3Q3, so A = A1 uA2 uA3.
Let E be an idempotent in M3. We will show that EAE contains the product EAiE ·EAjE
for all i and j.
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For each i ∈ {1, 2, 3}, Ai is an LR-algebra; hence (EAiE)2 ⊆ EAiE ⊆ EAE. More-
over, since EQ2M3Q3E is contained in EA3E, we have that EA2E · EA3E ⊆ EAE as
well. These inclusions, together with the identities

EQ1E · EQ2E = EQ1E − EQ1E · EQ1E − EQ3E

+ EQ2E · EQ3E + EQ3E · EQ3E

and
EQ2E · EQ1E = EQ2E − EQ2E · EQ2E − EQ2E · EQ3E,

demonstrate that EA1E ·EA2E and EA2E ·EA1E are contained in EAE. Furthermore,
if T is an arbitrary element of M3, then by writing

EQ1E · E(Q2 +Q3)TQ3E = E(Q2 +Q3)TQ3E

− E(Q2 +Q3)E · E(Q2 +Q3)TQ3E,

it becomes apparent that EQ1E ·E(Q2 +Q3)TQ3E ∈ EAE. Consequently, EA1E ·EA3E
is contained in EAE.

For the final inclusions, it will be helpful to first prove that EQ3E · EQ2E ∈ EAE.
Indeed, this is a consequence of the identity

EQ3E · EQ2E = EQ3E − EQ3E · EQ3E − EQ1E

+ EQ1E · EQ1E + EQ2E · EQ1E

and the inclusions established above. One may then apply Proposition 2.1.2 to the rank-
one operator Q3 to deduce that EQ3M3Q3E · EQ2E is contained in EAE. Thus, for
T ∈M3, we have that

E(Q2 +Q3)TQ3E · EQ2E = EQ2TQ3E · EQ2E + EQ3TQ3E · EQ2E

and

E(Q2 +Q3)TQ3E · EQ1E = E(Q2+Q3)TQ3E − E(Q2 +Q3)TQ3E · EQ3E

− EQ2TQ3E · EQ2E − EQ3TQ3E · EQ2E,

belong to EAE. We conclude that EAE contains EA3E ·EA2E and EA3E ·EA1E, and
therefore EAE is an algebra. �
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Proving the existence of the idempotent compression property for our next two examples
will be somewhat more challenging. In the same spirit of the proof of Example 2.2.6,
Examples 2.2.10 and 2.2.13 will each be preceded by two lemmas that highlight sufficient
conditions for a corner of the algebra to be an algebra itself. We will then prove that all
corners of these algebras must satisfy one of these two conditions.

Lemma 2.2.8. Let Q1, Q2, and Q3 be rank-one projections in M3 that sum to I. Let A
be the subalgebra of M3 defined by

A := C(Q1 +Q2) + CQ3 +Q1M3(Q2 +Q3) =


α x y

0 α 0
0 0 β

 : α, β, x, y ∈ C

 .

If E is an idempotent in M3 such that EQ2E ∈ EAE, then EAE is an algebra.

Proof. Suppose that E ∈M3 is an idempotent such that EQ2E ∈ EAE, and define

A0 := CQ1 + CQ2 + CQ3 +Q1M3(Q2 +Q3).

We have that

EAE = CE(Q1 +Q2)E + CEQ3E + EQ1M3(Q2 +Q3)E

= CEQ1E + CEQ2E + CEQ3E + EQ1M3(Q2 +Q3)E

= EA0E.

Since AaT0 is the unital algebra from Example 2.2.3, A0 is idempotent compressible. Thus,
EA0E = EAE is an algebra. �

Lemma 2.2.9. Let Q1, Q2, and Q3 be rank-one projections in M3 that sum to I. Let A
be the subalgebra of M3 defined by

A := C(Q1 +Q2) + CQ3 +Q1M3(Q2 +Q3) =


α x y

0 α 0
0 0 β

 : α, β, x, y ∈ C

 .

If E is an idempotent in M3 such that EQ1 = Q1, then EAE is an algebra.
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Proof. Let E be an idempotent such that EQ1 = Q1. Define A1 := C(Q1+Q2), A2 := CQ3,
and A3 := Q1M3(Q2 +Q3), so that A = A1 uA2 uA3. To show that EAE is an algebra,
we will verify that the product EAiE · EAjE is contained in EAE for all i and j.

Observe that A2 and A3 are LR-algebras. Thus, (EAiE)2 ⊆ EAiE ⊆ EAE for each
i ∈ {2, 3}. Moreover, since

E(Q1 +Q2)E · EQ3E = EQ3E − EQ3E · EQ3E,

EQ3E · E(Q1 +Q2)E = EQ3E − EQ3E · EQ3E, and

E(Q1 +Q2)E · E(Q1 +Q2)E = E − 2EQ3E + EQ3E · EQ3E,

it follows that EA1E · EA2E, EA2E · EA1E, and (EA1E)2 are all contained in EAE.

For the remaining inclusions, note that for any T ∈M3,

EQ1T (Q2 +Q3)E · E(Q1 +Q2)E = EQ1T (Q2 +Q3)E

− EQ1T (Q2 +Q3)E · EQ3(Q2 +Q3)E

and
EQ1T (Q2 +Q3)E · EQ3E = EQ1T (Q2 +Q3)E · EQ3(Q2 +Q3)E.

Consequently, EA3E ·EA1E and EA3E ·EA2E are contained in EA3E ⊆ EAE. Finally,
since EQ1 = Q1 by hypothesis, we have that

E(Q1 +Q2)E · EQ1T (Q2 +Q3)E = EQ1T (Q2 +Q3)E and

EQ3E · EQ1T (Q2 +Q3)E = 0.

This implies that EAE contains EA1E · EA3E and EA2E · EA3E. �

Example 2.2.10. Let Q1, Q2, and Q3 be rank-one projections in M3 that sum to I. If A
is the subalgebra of M3 defined by

A := C(Q1 +Q2) + CQ3 +Q1M3(Q2 +Q3) =


α x y

0 α 0
0 0 β

 : α, β, x, y ∈ C

 ,

then A is idempotent compressible.
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Proof. It is obvious that EAE is an algebra whenever E is an idempotent of rank 1 or 3.
In light of Lemmas 2.2.8 and 2.2.9, it suffices to show that for every rank-two idempotent
E in M3, either EQ2E belongs to EAE or EQ1 = Q1.

To this end, suppose that E is a rank-two idempotent in M3 such that EQ2E does
not belong to EAE, and consider the projection P := (Q1 +Q2). By rank considerations,
there is an invertible matrix S = (sij) with inverse S−1 = (tij) such that E = SPS−1.

Since EQ2E is not contained in EAE, there is no A ∈ A that satisfies the equation

SPS−1(A−Q2)SPS−1 = 0.

In particular, there is no A ∈ A such that (A − Q2)SP = 0. Since every A ∈ A can be
expressed as a matrix of the form

A =

α x y
0 α 0
0 0 β


with respect to the decomposition C3 = ran(Q1)⊕ ran(Q2)⊕ ran(Q3), it follows that there
do not exist constants α, β, x, y ∈ C that solve the following system of linear equations:

αs11 + xs21 + ys31 = 0
αs12 + xs22 + ys32 = 0
αs21 = s21

αs22 = s22

βs31 = 0
βs32 = 0

.

Note that if the determinant of S0 :=

[
s21 s31

s22 s32

]
were non-zero, then a solution to the

above system could be obtained by taking α = 1, β = 0, and x and y such that

x

[
s21

s22

]
+ y

[
s31

s32

]
=

[
−s11

−s12

]
.

It must therefore be the case that detS0 = 0.

We end the proof by showing that EQ1 = Q1, or equivalently, that PS−1Q1 = S−1Q1.
It is easy to see that this equation holds when t31 = 0. But if Cij denotes the (i, j)-cofactor
of S, then indeed,

t31 =
C13

det(S)
=

det(ST0 )

det(S)
= 0.

�
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Lemma 2.2.11. Let Q1, Q2, and Q3 be rank-one projections in M3 that sum to I. Let A
be the subalgebra of M3 defined by

A := Q1M3(Q2 +Q3) +Q2M3Q3 + CI =


α x y

0 α z
0 0 α

 : α, x, y, z ∈ C

 .

If E is an idempotent in M3 such that EQ1E ∈ EAE, then EAE is an algebra.

Proof. Suppose that E is an idempotent such that EQ1E ∈ EAE, and define

A0 := CQ1 + C(Q2 +Q3) +Q1M3(Q2 +Q3) +Q2M3Q3.

We have that

EAE = EQ1M3(Q2 +Q3)E + EQ2M3Q3E + CE

= EQ1M3(Q2 +Q3)E + EQ2M3Q3E + CEQ1E + CE(Q2 +Q3)E

= EA0E.

Since AaT0 is the unital algebra from Example 2.2.6, A0 is idempotent compressible. Thus,
EA0E = EAE is an algebra. �

Lemma 2.2.12. Let Q1, Q2, and Q3 be rank-one projections in M3 that sum to I. Let A
be the subalgebra of M3 defined by

A := Q1M3(Q2 +Q3) +Q2M3Q3 + CI =


α x y

0 α z
0 0 α

 : α, x, y, z ∈ C

 .

If E is an idempotent in M3 such that EQ1 = Q1, then EAE is an algebra.

Proof. Let E be an idempotent such that EQ1 = Q1. Define A1 := Q1M3(Q2 + Q3),
A2 := Q2M3Q3 and A3 := CI, so that A = A1 uA2 uA3. Yet again, to show that EAE
is an algebra, we will prove that the product EAiE · EAjE is contained in EAE for all i
and j.

Observe that EAiE ·EAjE is clearly contained in EAE when i = 3 or j = 3. Moreover,
it is easy to see that (EA1E)2 and (EA2E)2 are contained in EAE, as A1 and A2 are
LR-algebras.
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Given T, S ∈M3, we have

EQ1S(Q2 +Q3)E · EQ2TQ3E = EQ1S(Q2 +Q3)E · EQ2TQ3(Q2 +Q3)E,

so EA1E · EA2E is contained in EA1E, and hence in EAE. Finally, we may use the
fact that EQ1 = Q1 to deduce that EQ2SQ3E · EQ1T (Q2 + Q3)E = 0, and therefore
EA2E · EA1E = {0}. �

Example 2.2.13. Let Q1, Q2, and Q3 be rank-one projections in M3 that sum to I. If A
is the subalgebra of M3 defined by

A := Q1M3(Q2 +Q3) +Q2M3Q3 + CI =


α x y

0 α z
0 0 α

 : α, x, y, z ∈ C

 ,

then A is idempotent compressible.

Proof. It is obvious that EAE is an algebra whenever E is an idempotent of rank 1 or 3.
In light of Lemmas 2.2.11 and 2.2.12, it suffices to show that for every rank-two idempotent
E in M3, either EQ1E belongs to EAE, or EQ1 = Q1.

To this end, suppose that E is a rank-two idempotent in M3 such that EQ1E does not
belong to EAE. Define P := (Q1 + Q2), and let S = (sij) be an invertible matrix with
inverse S−1 = (tij) satisfying E = SPS−1.

Since EQ1E is not contained in EAE, then there is no A ∈ A satisfying the equation

SPS−1(A−Q1)SPS−1 = 0.

In particular, there is no A ∈ A such that (A − Q1)SP = 0. Since every A ∈ A can be
expressed as a matrix of the form

A =

α x y
0 α z
0 0 α


with respect to the decomposition C3 = ran(Q1)⊕ ran(Q2)⊕ ran(Q3), it follows that there
do not exist constants α, x, y, z ∈ C that solve the following system of equations :

αs11 + xs21 + ys31 = s11

αs12 + xs22 + ys32 = s12

αs21 + zs31 = 0
αs22 + zs32 = 0
αs31 = 0
αs32 = 0

.
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Observe, however, that if the determinant of S0 :=

[
s21 s31

s22 s32

]
were non-zero, then a solution

could be obtained by taking α = z = 0, and x and y such that

x

[
s21

s22

]
+ y

[
s31

s32

]
=

[
s11

s12

]
.

It must therefore be the case that detS0 = 0.

We are now prepared to show that EQ1 = Q1, or equivalently, that PS−1Q1 = S−1Q1.
This equality is easily verified in the case that t31 = 0. We have, however, that if Cij
denotes the (i, j) cofactor of S, then

t31 =
C13

det(S)
=

det(ST0 )

det(S)
= 0.

�

§2.3 Structure Theory for Matrix Algebras

In §2.2, we introduced several families of unital algebras admitting the idempotent com-
pression property. By Proposition 2.1.6, any algebra obtained by applying a transposition
or similarity to one of these algebras also enjoys the idempotent compression property. It
becomes interesting to ask whether or not this list is exhaustive. That is, is every unital
idempotent compressible subalgebra of Mn transpose similar to one of the idempotent com-
pressible algebras from §2.2? In order to decide whether or not additional examples exist,
it will be necessary to establish a systematic approach to listing the unital subalgebras
of Mn. Thus, this section will be devoted to recording a few key results concerning the
structure theory for matrix algebras over C. The primary reference for this section is [14].

Perhaps the most important result in this vein is the following theorem of Burnside [4],
a simple proof of which can be found in [15]. First, recall that a subalgebra A of Mn is
irreducible if the only subspaces of Cn that are invariant for all A ∈ A are {0} and Cn

itself.

Theorem 2.3.1 (Burnside’s Theorem). If A is an irreducible algebra of linear transfor-
mations on a finite-dimensional vector space V over an algebraically closed field, then A is
the algebra of all linear transformations on V.
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The notion of irreducibility for a collection linear transformations is strongly related to
that of transitivity. Recall that a set A of linear transformations from a vector space V to
a vector space W is transitive if for every non-zero x ∈ V and arbitrary y ∈ W , there is
an A ∈ A such that Ax = y. In the case that A is an algebra of linear transformations
mapping V into itself, the subspace {Ax : A ∈ A} for any x ∈ V is invariant for A. Thus,
when dimV ≥ 2, an algebra A of linear transformations on V is irreducible if and only if it
is transitive. The notion of transitivity for subspaces of Mn will be important in Chapter 4.

As a consequence of Burnside’s Theorem, every proper subalgebra A of Mn can be block
upper triangularized with respect to some orthonormal basis for Cn. Since the diagonal
blocks in this decomposition are themselves algebras, Burnside’s Theorem may be applied
to these blocks successively to obtain a maximal block upper triangularization of A.

Definition 2.3.2. [14, Definition 9] A subalgebra A of Mn is said to have a reduced block
upper triangular form with respect to a decomposition Cn = V1 u V2 u · · ·u Vm if

(i) when expressed as a matrix, each A in A has the form

A =


A11 A12 A13 · · · A1m

0 A22 A23 · · · A2m

0 0 A33 · · · A3m
...

...
...

. . .
...

0 0 0 · · · Amm


with respect to this decomposition, and

(ii) for each i, the algebra Aii := {Aii : A ∈ A} is irreducible. That is, either Aii = {0}
and dimVi = 1, or Aii = MdimVi .

If A is a reduced block upper triangular algebra and A ∈ A, define the block-diagonal
of A to be the matrix BD(A) obtained by replacing the block-‘off-diagonal’ entries of A
with zeros. In addition, define the block-diagonal of A to be the algebra

BD(A) = {BD(A) : A ∈ A} .

By definition, the non-zero diagonal blocks of a reduced block upper triangular matrix
algebraA are full matrix algebras. There may, however, exist dependencies among different
diagonal blocks. That is, while it may be the case that any matrix of suitable size can be
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realized as a diagonal block for some element of A, there is no guarantee that matrices
for different blocks can be chosen at will simultaneously. The following result states that
any dependencies that occur among the diagonal blocks of A can be described in terms of
dimension and similarity.

Theorem 2.3.3. [14, Corollary 14] If a subalgebra A of Mn has a reduced block upper
triangular form with respect to a decomposition Cn = V1 u V2 u · · · u Vm, then the set
{1, 2, . . . ,m} can be partitioned into disjoint sets Γ1,Γ2, . . . ,Γk such that

(i) If i ∈ Γs and Aii 6= {0}, then there exists G<i> ∈ A such that G<i>
jj = IVj for all

j ∈ Γs, and G<i>
jj = 0 for all j /∈ Γs.

(ii) If i and j belong to the same Γs, then dimVi = dimVj, and there is an invertible
linear map Sij : Vi → Vj such that

Aii = S−1
ij AjjSij for all A ∈ A.

(iii) If i and j do not belong to the same Γs, then

{(Aii, Ajj) : A ∈ A} = {Aii : A ∈ A} × {Ajj : A ∈ A} .

Definition 2.3.4. Let A be an algebra of the form described in Theorem 2.3.3. Indices
i and j are said to be linked if they belong to the same Γs, and are said to be unlinked
otherwise.

It should be noted that ifA is an algebra in reduced block upper triangular form and S is
an invertible matrix that is block upper triangular with respect to the same decomposition
as that of A, then S−1AS has a reduced block upper triangular form with respect to this
decomposition, and indices i and j are linked in S−1AS if and only if they are linked in A.

The following Jordan-Hölder-type result describes the extent to which the reduced block
upper triangular form of a subalgebra A of Mn is unique.

Theorem 2.3.5. [14, Theorem 23] Suppose that a subalgebra A of Mn has a reduced block
upper triangular form with respect to a decomposition Cn = V1 u V2 u · · ·u Vk, as well as
with respect to a decomposition Cn = W1 uW2 u · · · uWm. Then k = m and there is a
permutation π on {1, 2, . . . , k} such that

(i) i is linked to j in the V-decomposition if and only if π(i) is linked to π(j) in the
W-decomposition, and
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(ii) for each i there is an invertible linear map Si : Vi →Wπ(i) such that

A
∣∣
Vi

= S−1
i A

∣∣
Wπ(i)

Si for all A ∈ A.

The theorems presented above provide insight into the structure of the block-diagonal
of a reduced block upper triangular matrix algebra A. It will now be important to develop
an understanding of the blocks that are located above the block-diagonal. First, recall the
following definitions.

Definition 2.3.6. The nil radical of a ring R is the unique largest ideal of R consisting
entirely of nilpotent elements. It is denoted by Rad(R).

It is well-known that every ring R admits a unique largest ideal of nilpotent elements
[13, Lemma 10.25], and hence Rad(R) is well defined. Moreover, if R = A is a finite-
dimensional algebra over a field F, then Rad(A) coincides with the Jacobson radical of A
[13, Theorem 4.20]. In particular, this result holds for subalgebras A of Mn.

Definition 2.3.7. A subalgebra A of Mn is said to be semi-simple if Rad(A) = {0}.

As described in [14, Corollary 28], if A is a subalgebra of Mn, then there is a semi-simple
subalgebra S of A such that A decomposes as an algebraic direct sum A = SuRad(A). If
A is in reduced block upper triangular form, then S is block upper triangular and Rad(A)
consists of all strictly block upper triangular elements of A [14, Proposition 19]. Thus,
the blocks above the block-diagonal are, in general, comprised of blocks from S and blocks
from Rad(A). In the simplest scenario S is equal to BD(A).

Definition 2.3.8. Let A be a subalgebra of Mn that has a reduced block upper triangular
form with respect to some decomposition of Cn. The algebra A is said to be unhinged with
respect to this decomposition if

A = BD(A)uRad(A).

The following result indicates that if A is an algebra in reduced block upper triangular
form with respect to some decomposition of Cn, then A can be unhinged with respect to
this decomposition via conjugation by a block upper triangular similarity.

Theorem 2.3.9. [14, Corollary 30] If a subalgebra A of Mn has a reduced block upper
triangular form with respect to a decomposition of Cn, then after an application of a block
upper triangular similarity, A has an unhinged reduced block upper triangular form with
respect to this decomposition.
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It is useful to note that ifA is in reduced block upper triangular form and BD(A) = CI,
then Theorem 2.3.9 implies that A = CI + Rad(A). Thus, A is unhinged with respect to
any decomposition in which it admits a reduced block upper triangular form.

It will be shown in Chapter 4 that the blocks of a unital algebra A in reduced block
upper triangular form must exhibit a very particular structure in order for A to be pro-
jection compressible. Once this result is obtained, it will be important to understand the
structure of Rad(A) when A is an algebra of the correct form. We therefore conclude this
section with a technical lemma concerning the independence of the blocks in the radical of
such an algebra.

Lemma 2.3.10. Let n be a positive integer, and let A be a unital subalgebra of Mn in
reduced block upper triangular form with respect to a decomposition

⊕m
i=1 Vi of Cn. Suppose

that there is an index k, 1 < k < m, that is unlinked from all indices i 6= k. Let Q1, Q2,
and Q3 denote the orthogonal projections onto

⊕
i<k Vi, Vk, and

⊕
i>k Vi, respectively, and

assume that Q1Rad(A)Q1 = Q3Rad(A)Q3 = {0}.

(i) For every R ∈ Rad(A), there are elements R′ = Q1R
′ and R′′ = R′′Q3 in Rad(A)

such that R′Q2 = Q1RQ2 and Q2R
′′ = Q2RQ3.

(ii) If there exist projections Q′1 ≤ Q1 and Q′3 ≤ Q3 such that Q1Rad(A)Q2 = Q′1MnQ2,
Q2Rad(A)Q3 = Q2MnQ

′
3, and Q1Rad(A)Q3 = Q′1Rad(A)Q′3 then

Rad(A) = Q′1MnQ2 uQ
′
1MnQ

′
3 uQ2MnQ

′
3.

(iii) If A is unhinged with respect to this decomposition, then

Rad(A) = Q1Rad(A)Q2 uQ1Rad(A)Q3 uQ2Rad(A)Q3.

Proof. For (i), let R belong to Rad(A). Since Vk is unlinked from all other spaces Vi,
there is an element A ∈ A such that Q1AQ1 = Q3AQ3 = 0 and Q2AQ2 = Q2. Thus,
with respect to the decomposition Cn = ran(Q1) ⊕ ran(Q2) ⊕ ran(Q3), A and R may be
expressed as

A =

0 A12 A13

0 I A23

0 0 0

 and R =

0 R12 R13

0 0 R23

0 0 0


for some Aij and Rij. It is then easy to see that R′ := RA and R′′ := AR define elements
of Rad(A) that satisfy the requirements of (i).
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For (ii), letM1 andM2 denote arbitrary elements ofQ′1MnQ2 andQ2MnQ
′
3, respectively.

By (i), there are elements S1 and S2 in Q1MnQ3 such that M1 + S1 and M2 + S2 belong
to Rad(A). Moreover, since Q1Rad(A)Q3 = Q′1Rad(A)Q′3, we have that S1 and S2 are
contained in Q′1MnQ

′
3.

Observe that R := (M1 + S1)(M2 + S2) belongs to Rad(A). With respect to the
decomposition of Cn described above, this element can be expressed as

R =

0 M1 S1

0 0 0
0 0 0

0 0 S2

0 0 M2

0 0 0

 =

0 0 M1M2

0 0 0
0 0 0

 .
But since M1 and M2 were arbitrary, this implies that Q′1MnQ

′
3 ⊆ Rad(A). In particular,

Rad(A) contains S1 and S2. It then follows that M1 and M2 belong to Rad(A) as well.
We conclude that Rad(A) contains Q′1MnQ2 and Q2MnQ

′
3, as M1 and M2 were arbitrary.

Finally, let us prove (iii). Assume that A is unhinged with respect to
⊕m

i=1 Vi, and let
R be an element of Rad(A). Since Vk is unlinked from Vi for all i 6= k, the projection Q2

belongs to A. It follows that the operators RQ2 = Q1RQ2 and Q2R = Q2RQ3 belong to
Rad(A), and therefore so too does R−Q2R−RQ2 = Q1RQ3. We conclude that

Rad(A) = Q1Rad(A)Q2 uQ1Rad(A)Q3 uQ2Rad(A)Q3,

as claimed. �
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Chapter 3

Compressibility in M3

We now turn our attention to assessing the completeness of the list of idempotent compress-
ible algebras established in §2.2. That is, we wish to determine whether or not there exist
additional examples of unital idempotent compressible algebras up to transpose similarity.

Our findings in §2.2.2 suggest that there may exist pathological examples of such alge-
bras in M3. For this reason, we devote this chapter to classifying the unital subalgebras in
M3 that admit the idempotent compression property, and reserve the classification of such
subalgebras of Mn, n ≥ 4, for Chapter 4.

Using the structure theory established in §2.3, we will show in §3.1 that up to transpo-
sition and similarity, the only unital idempotent compressible subalgebras of M3 are those
constructed in §2.2. As a consequence of this analysis, we will observe that a unital sub-
algebra A of M3 that lacks the idempotent compression property is necessarily transpose
similar to one of the following algebras:

B :=


α x 0

0 α 0
0 0 β

 : α, β, x ∈ C

 ,

C :=


α x y

0 α x
0 0 α

 : α, x, y ∈ C

 , or

D :=


α 0 0

0 β 0
0 0 γ

 : α, β, γ ∈ C

 .
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This observation has interesting implications for projection compressibility M3. In
particular, it leads to an avenue for proving that in the case of unital subalgebras of M3,
the notions of projection compressibility and idempotent compressibility coincide. For if
there were a unital projection compressible subalgebra A of M3 that did not exhibit the
idempotent compression property, then A must be similar to B, C, or D. Thus, one could
establish the equivalence of these notions by proving that no algebra similar to B, C, or D
is projection compressible. This approach will be used in §3.2.

§3.1 Classification of Idempotent Compressibility

Here we begin the classification of unital idempotent compressible subalgebras of M3 up
to transposition and similarity. By the results outlined in §2.3, we may assume that our
algebras are expressed in reduced block upper triangular form with respect to an orthogonal
decomposition of C3 =

⊕m
i=1 Vi, and are unhinged with respect to this decomposition. That

is, we will assume that
A = BD(A)uRad(A),

where Rad(A) consists of all strictly block upper triangular elements of A. With this in
mind, the algebras in this list will be organized according to the configuration of their
block-diagonal and the dimension of their radical.

If A = M3, then A is clearly idempotent compressible. Furthermore, if some Vi has
dimension 2, then Theorem 2.1.12 implies that A is transpose equivalent to C⊕M2 or

a11 a12 a13

0 a22 a23

0 a32 a33

 : aij ∈ C

 .

In either case, A is the unitization of an LR-algebra, and hence is idempotent compressible.

Thus, we may assume from here on that all spaces Vi have dimension 1. For each i, let
ei be a unit vector in Vi, and let Qi denote the orthogonal projection onto Vi.

Case I: dimBD(A) = 3. If dimBD(A) = 3, then the spaces V1, V2, and V3 are mutually
unlinked. An application of Lemma 2.3.10 (iii) then shows that

Rad(A) = Q1Rad(A)Q2 uQ1Rad(A)Q3 uQ2Rad(A)Q3.
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(i) If Rad(A) = {0}, then A = D, one of the three algebras presented at the outset
of Chapter 3. It will be shown in Theorem 3.2.6 that no algebra similar to D is
projection compressible. In particular, A is not idempotent compressible.

(ii) If dimRad(A) = 1, then there is exactly one pair of indices (i, j) such that i < j and
QiRad(A)Qj is non-zero. In this case, A is unitarily equivalent to

CQ1 + CQ2 + (Q2 +Q3)M3Q3,

the algebra described in Example 2.2.7. Consequently, A is idempotent compressible.

(iii) If dimRad(A) = 2, then QiRad(A)Qj = {0} for exactly one pair of indices (i, j)
with i < j. By considering products of elements in Rad(A), one can show that
Q1Rad(A)Q3 is non-zero whenever both Q1Rad(A)Q2 and Q2Rad(A)Q3 are non-
zero. This means that either Q1Rad(A)Q2 = {0} or Q2Rad(A)Q3 = {0}; hence A is
transpose equivalent to

CQ1 + CQ2 + CQ3 + (Q1 +Q2)M3Q3.

This algebra was shown to admit the idempotent compression property in Exam-
ple 2.2.3. Therefore, A is idempotent compressible.

(iv) If dimRad(A) = 3, then A is equal to

CQ1 + CQ3 + (Q1 +Q2)M3(Q2 +Q3),

the unital algebra from Example 2.2.1. Consequently, A is idempotent compressible.

Case II: dimBD(A) = 2. If dimBD(A) = 2, then exactly two of the spaces Vi and Vj
are linked. By replacing A with AaT if necessary, we may assume that V1 is one of the
linked spaces.

(i) If Rad(A) = {0}, then A is unitarily equivalent to C(Q1 +Q2)+CQ3, the unitization
of the LR-algebra CQ3. Consequently, A is idempotent compressible.
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(ii) If dimRad(A) = 1, then Rad(A) = CR for some strictly upper triangular element

R =

0 r12 r13

0 0 r23

0 0 0

 .
Since R2 ∈ Rad(A), we have that R2 = αR for some α ∈ C. From this it follows
that at least one of r12 or r23 is equal to zero.

First consider the case in which V2 is not linked to V1. By Lemma 2.3.10 (iii),

Rad(A) = Q1Rad(A)Q2 uQ1Rad(A)Q3 uQ2Rad(A)Q3.

If r12 = r13 = 0 or r13 = r23 = 0, then A or AaT is equal to

A = Q2M3(Q2 +Q3) + CI.

In this case, A is idempotent compressible as it is the unitization of an LR-algebra.
If instead r12 = r23 = 0, then A is unitarily equivalent to B, one of the three algebras
described at the beginning of Chapter 3. It will be shown in Theorem 3.2.2 that no
algebra similar to B is projection compressible. In particular, A is not idempotent
compressible.

Now consider the case in which V1 is linked to V2. Since V3 is therefore unlinked from
V1 and V2, and one may argue as in the proof of Lemma 2.3.10 (iii) to show that

Rad(A) = Q1Rad(A)Q2 u (Q1 +Q2)Rad(A)Q3.

If r12 = 0, then A is unitarily equivalent to

(Q2 +Q3)M3Q3 + CI.

In this case, A is idempotent compressible as it is the unitization of an LR-algebra.
If instead r12 6= 0, then r13 = r23 = 0 and hence A is equal to B.

(iii) Suppose now that dimRad(A) = 2. If V2 is the unlinked space, then

Rad(A) = Q1Rad(A)Q2 uQ1Rad(A)Q3 uQ2Rad(A)Q3.
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It then follows that either Q1Rad(A)Q2 = {0} or Q2Rad(A)Q3 = {0}, so A is
transpose equivalent to

C(Q1 +Q2) + CQ3 +Q1M3(Q2 +Q3).

This algebra was shown to admit the idempotent compression property in Exam-
ple 2.2.10, and hence A is idempotent compressible.

Now consider the case in which V2 is linked to V1. Since V3 is therefore unlinked from
V1 and V2, we have that

Rad(A) = Q1Rad(A)Q2 u (Q1 +Q2)Rad(A)Q3.

If Q1Rad(A)Q2 = {0}, then
A = M3Q3 + CI.

Consequently, A is idempotent compressible as it is the unitization of an LR-algebra.
If insteadQ1Rad(A)Q2 = Q1M3Q2, then (Q1+Q2)Rad(A)Q3 is 1-dimensional. Thus,
there is a non-zero matrix R ∈ (Q1 +Q2)M3Q3 such that

Rad(A) = Q1M3Q2 u CR.

It is then easy to see that 〈Re3, e2〉 = 0. For if not, Rad(A) would contain an element
of the form e2 ⊗ e∗3 + te1 ⊗ e∗3 for some t ∈ C; hence

e1 ⊗ e∗3 = (e1 ⊗ e∗2) (e2 ⊗ e∗3 + te1 ⊗ e∗3) ∈ Rad(A)

This would then imply that Rad(A) is 3-dimensional—a contradiction.

Thus, 〈Re3, e2〉 = 0, so A is equal to

C(Q1 +Q2) + CQ3 +Q1M3(Q2 +Q3),

the idempotent compressible algebra from Example 2.2.10. In all cases, A is idem-
potent compressible.

(iv) Suppose that dimRad(A) = 3. If V2 is the unlinked space, then A is equal to

(Q1 +Q2)M3(Q2 +Q3) + CI.
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In this case A is the unitization of an LR-algebra, and hence is idempotent com-
pressible. If instead V2 is linked to V1, then A is equal to

C(Q1 +Q2) + CQ3 +Q1M3Q2 + (Q1 +Q2)M3Q3,

the unital algebra described in Example 2.2.6. Consequently, A is idempotent com-
pressible.

Case III: dimBD(A) = 1. Suppose now that dimBD(A) = 1, so that all spaces Vi are
mutually linked. That is, BD(A) = CI.

(i) If Rad(A) = {0}, then A = CI. Clearly A is idempotent compressible.

(ii) If dimRad(A) = 1, then Rad(A) = CR for some strictly upper triangular matrix

R =

0 r12 r13

0 0 r23

0 0 0

 .
As in part (ii) of the previous case, one can show that r12 = 0 or r23 = 0, so R
necessarily has rank 1. By replacing A with AaT if necessary, we may assume that
r12 = 0. But then A is unitarily equivalent to

Q2M3Q3 + CI,

the unitization of an LR-algebra. Thus, A is idempotent compressible.

(iii) Suppose that dimRad(A) = 2. If Q1Rad(A)Q2 = {0} or Q2Rad(A)Q3 = {0}, then
A or AaT is equal to

Q1M3(Q2 +Q3) + CI.

Thus, A is idempotent compressible as it is the unitization of an LR-algebra.

Now consider the case in which Rad(A) contains an element

R =

0 r12 r13

0 0 r23

0 0 0


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with r12 6= 0 and r23 6= 0. When this occurs, Rad(A) contains 1
r12r23

R2 = e1 ⊗ e∗3;
hence

Rad(A) = span {e1 ⊗ e∗2 + re2 ⊗ e∗3, e1 ⊗ e∗3}

where r := r23/r12. Consequently,

A =


α x y

0 α rx
0 0 α

 : α, x, y ∈ C

 ,

which is easily seen to be similar to the algebra C described at the outset of Chap-
ter 3. It will be shown in Theorem 3.2.4 that no algebra similar to C is projection
compressible. In particular, A is not idempotent compressible.

(iv) If dimRad(A) = 3, then A is equal to

Q1M3(Q2 +Q3) +Q2M3Q3 + CI,

the idempotent compressible algebra described in Example 2.2.13.

This concludes our classification of the unital idempotent compressible subalgebras of
M3. Our findings are summarized in the following theorem.

Theorem 3.1.1. Let A be a unital subalgebra of M3.

(i) A is idempotent compressible if and only if A is the unitization of an LR-algebra or
transpose similar to one of the following algebras:

α x y
0 β z
0 0 γ

 : α, β, γ, x, y, z ∈ C

 , (Example 2.2.1)


α 0 x

0 β y
0 0 γ

 : α, β, x, y ∈ C

 , (Example 2.2.3)


α x y

0 α z
0 0 β

 : α, β, γ, x, y, z ∈ C

 , (Example 2.2.6)
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
α 0 0

0 β x
0 0 γ

 : α, β, γ, x ∈ C

 , (Example 2.2.7)


α x y

0 α 0
0 0 β

 : α, β, x, y ∈ C

 , (Example 2.2.10)


α x y

0 α z
0 0 α

 : α, β, γ ∈ C

 ; (Example 2.2.13)

(ii) A does not admit the idempotent compression property if and only if A is transpose
similar to one of the algebras B, C, or D, presented at the outset of Chapter 3.

Although the algebras presented in Theorem 3.1.1(i) may appear to share little in com-
mon beyond the idempotent compression property, there do exist other interesting charac-
terizations of this collection. For instance, aside from the unitizations of LR-algebras, the
unital idempotent compressible algebras are exactly those that are not 3-dimensional.

Corollary 3.1.2. A unital subalgebra of A of M3 is idempotent compressible if and only
if A is the unitization of an LR-algebra, or A is not 3-dimensional.

In addition, one may observe that the unital algebras lacking the idempotent com-
pression property are exactly those that are generated by a matrix in which every Jordan
block corresponds to a distinct eigenvalue. Such matrices are said to be nonderogatory [12,
Definition 1.4.4].

Corollary 3.1.3. A unital subalgebra of M3 is idempotent compressible if and only if it is
not singly generated by an invertible nonderogatory matrix.

As we will see in the following section, the algebras described in Theorem 3.1.1(i)
also represent the complete list of unital projection compressible subalgebras of M3 up to
transpose similarity.

§3.2 Equivalence of Idempotent and Projection Com-

pressibility

Our final goal of this chapter is to show that no unital subalgebra of M3 can possess
the projection compression property without also possessing the idempotent compression
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property. If such an algebra did exist, it would necessarily be transpose similar to B, C,
or D by the analysis in §3.1. Thus, to show that the notions of projection compressibility
and idempotent compressibility agree for unital subalgebras of M3, it suffices to prove that
no algebra similar to B, C, or D is projection compressible. This goal will be accomplished
by first characterizing the algebras similar to B, C, or D up to unitary equivalence.

Lemma 3.2.1. Let A be a subalgebra of M3. If A is similar to

B =


α x 0

0 α 0
0 0 β

 : α, β, x ∈ C

 ,

then there are constants s, t ∈ C such that A is unitarily equivalent to

Bst :=


α s(α− β) x

0 β t(α− β)
0 0 α

 : α, β, x ∈ C

 .

Proof. If the matrices in B are expressed with respect to the standard basis {e1, e2, e3}
for C3, then B is spanned by {E11 + E22, E12, E33}, where Eij := ei ⊗ e∗j . Thus, if S is an
invertible matrix in M3 such that A = S−1BS, then A is spanned by {E ′11 + E ′22, E

′
12, E

′
33} ,

where E ′ij := S−1EijS.

Since E ′12 is a rank-one nilpotent, there is a unitary U ∈ M3 and a non-zero y0 ∈ C
such that

U∗E ′12U =

0 0 y0

0 0 0
0 0 0

 .
Let xij ∈ C be such that U∗(E ′11 + E ′22)U = (xij). Using the fact that

(E ′11 + E ′22)E ′12 = E ′12(E ′11 + E ′22) = E ′12,

one can show that x21 = x31 = x32 = 0 and x11 = x33 = 1. Moreover, since U∗(E ′11 +E ′22)U
is an idempotent of trace 2, it follows that x22 = 0 and x13 = −x12x23. Thus,

U∗(E ′11 + E ′22)U =

1 x12 −x12x23

0 0 x23

0 0 1

 .
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Finally, we have that

U∗E ′33U = I − U∗(E ′11 + E ′22)U =

0 −x12 x12x23

0 1 −x23

0 0 0

 .
As a result,

U∗AU = span


1 x12 −x12x23

0 0 x23

0 0 1

 ,
0 −x12 x12x23

0 1 −x23

0 0 0

 ,
0 0 y0

0 0 0
0 0 0

 = Bst,

where s := x12 and t := x23. �

Theorem 3.2.2. For any s, t ∈ C, the algebra Bst as in Lemma 3.2.1 is not projection
compressible. Consequently, no algebra similar to B is projection compressible.

Proof. Consider the elements A and B of Bst given by

A =

1 s 0
0 0 t
0 0 1

 and B =

0 0 1
0 0 0
0 0 0

 .
We will construct a matrix P that is a multiple of a projection in M3, and such that
(PAP )(PBP ) does not belong to PBstP . To accomplish this goal, let k be any element of
R \ {0, s, t}, and define

P :=

k2 + 1 −k −1
−k 2 −k
−1 −k k2 + 1

 .
Note that 1

k2+2
P is a projection in M3.

If (PAP )(PBP ) were an element of PBstP , there would exist a matrix

C =

α0 s(α0 − β0) x0

0 β0 t(α0 − β0)
0 0 α0

 ∈ Bst
such that PAPBP − PCP = (gij) is equal to 0. By examining the value of g31, one can
show that

x0 = k(α0 − β0 + 1)(2k − s− t) + 2(α0 + 1) + k2β0.
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From here, direct computations reveal that

(k − s)g11 − (k − t)g33 = k(k2 + 2)(k − s)(k − t).

Since g11 = g33 = 0, but the right-hand side of the above equation is non-zero by construc-
tion, we have reached a contradiction. Thus, there does not exist a C as above, so PBstP
is not an algebra. The final claim is now a consequence of Lemma 3.2.1. �

Lemma 3.2.3. Let A be a subalgebra of M3. If A is similar to

C :=


α x y

0 α x
0 0 α

 : α, x, y ∈ C

 ,

then there is a non-zero constant r ∈ C such that A is unitarily equivalent to

Cr :=


α x y

0 α rx
0 0 α

 : α, x, y ∈ C

 .

Proof. Observe that C is spanned by {I,N1, N2}, where

N1 =

0 0 1
0 0 0
0 0 0

 and N2 =

0 1 0
0 0 1
0 0 0

 .

Thus, if S ∈ M3 is an invertible matrix such that A = S−1CS, then A is spanned by
{I,N ′1, N ′2} , where N ′i = S−1NiS for i ∈ {1, 2}.

It is evident that N ′1 and N ′2 are nilpotent operators of rank 1 and 2, respectively, and
N ′1N

′
2 = N ′2N

′
1 = 0. In particular, since N ′1 and N ′2 commute, there is a unitary U ∈ M3

such that U∗N ′1U and U∗N ′2U are upper triangular. If aij and bij are such that

U∗N ′1U =

0 a12 a13

0 0 a23

0 0 0

 and U∗N ′2U =

0 b12 b13

0 0 b23

0 0 0

 ,
then rank considerations imply that neither b12 nor b23 is equal to 0. But

(U∗N ′1U)(U∗N ′2U) =

0 0 a12b23

0 0 0
0 0 0

 and (U∗N ′2U)(U∗N ′1U) =

0 0 a23b12

0 0 0
0 0 0

 ,
44



so it must be that a12 = a23 = 0. By setting r = b23/b12, it follows that

U∗AU = span

I,
0 0 1

0 0 0
0 0 0

 ,
0 1 b13/b12

0 0 r
0 0 0

 = Cr.

�

Theorem 3.2.4. For every non-zero r ∈ C, the algebra Cr as in Lemma 3.2.3 is not
projection compressible. Consequently, no algebra similar to C is projection compressible.

Proof. Consider the elements A,B ∈ Cr given by

A =

0 1 0
0 0 r
0 0 0

 and B =

0 0 1
0 0 0
0 0 0

 .
Furthermore, define the matrix

P :=

 2 −1 −1
−1 2 −1
−1 −1 2

 ,
so 1

3
P is a projection in M3.

We claim that (PAP )(PBP ) does not belong to PCrP . For if it did, there would exist
an element

C =

α0 x0 y0

0 α0 rx0

0 0 α0


in Cr such that PAPBP − PCP = (gij) is equal to 0. Direct computations show that

0 = g31 = 3α0 − (x0 + 1)(r + 1)− y0,

hence y0 = 3α0−(x0 +1)(r+1). From here, further calculations reveal that g21−rg32 = 3r.
Since g21 = g32 = 0 but r 6= 0, we have reached a contradiction. Thus, there does not exist
an element C ∈ Cr as described above. This shows that (PAP )(PBP ) /∈ PCrP , so Cr is
not projection compressible. The final claim is now immediate from Lemma 3.2.3. �
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Lemma 3.2.5. Let A be a subalgebra of M3. If A is similar to

D =


α 0 0

0 β 0
0 0 γ

 : α, β, γ ∈ C

 ,

then there are constants r, s, t ∈ C such that A is unitarily equivalent to

Drst :=


α r(α− β) s(α− γ)− rt(γ − β)

0 β t(γ − β)
0 0 γ

 : α, β, γ ∈ C

 .

Proof. If D is written with respect to the standard basis {e1, e2, e3} for C3, then D is
spanned by {E11, E22, E33} where Ejj = ej⊗ e∗j . Let S be an invertible element of M3 such
that A = S−1DS. Clearly A is spanned by {E ′11, E

′
22, E

′
33} where E ′jj = S−1EjjS.

Observe that the matrices E ′jj commute, so there is a unitary U ∈M3 such that U∗E ′jjU
is upper triangular for each j ∈ {1, 2, 3}. Furthermore, since each U∗E ′jjU is an idempotent
of rank 1, and

(U∗E ′iiU)(U∗E ′jjU) = δijU
∗E ′jjU

for all i and j, one may re-index the matrices E ′jj if necessary to write

U∗E ′11U =

1 x12 x13

0 0 0
0 0 0

 , U∗E ′22U =

0 y12 y12y23

0 1 y23

0 0 0

 , and U∗E ′33U =

0 0 z13

0 0 z23

0 0 1


for some xij, yij, and zij in C. The fact that these matrices add to I implies that

y12 = −x12, y23 = −z23, and z13 = −x13 − x12z23 .

As a result,

U∗AU = span


1 x12 x13

0 0 0
0 0 0

 ,
0 −x12 x12z23

0 1 −z23

0 0 0

 ,
0 0 −x13 − x12z23

0 0 z23

0 0 1

 = Drst,

where r := x12, s := x13, and t := z23. �

Theorem 3.2.6. For any r, s, t ∈ C, the algebra Drst as in Lemma 3.2.5 is not projection
compressible. Consequently, no algebra similar to D is projection compressible.
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Proof. Consider the elements A and B of Drst given by

A =

1 r s
0 0 0
0 0 0

 and B =

0 −r rt
0 1 −t
0 0 0

 .
We wish to construct a matrix P that is a multiple of a projection in M3, and such
that (PAP )(PBP ) does not belong to PDrstP . To accomplish this goal, choose elements
k,m ∈ R \ {0} subject to the following constraints:

tk 6= 1,
rm 6= 1,

sk + m 6= −r, and
k − (rt+ s)m 6= −t.

Of course, such k and m always exist. Using these values, define

P =

k2 + 1 −m −mk
−m k2 +m2 −k
−mk −k m2 + 1

 .
It is straightforward to check that 1

k2+m2+1
P is a projection in M3.

Suppose to the contrary that (PAP )(PBP ) were an element of PDrstP . In this case,
there is a matrix

C =

α0 r(α0 − β0) s(α0 − γ0)− rt(γ0 − β0)
0 β0 t(γ0 − β0)
0 0 γ0

 ∈ Drst
such that PAPBP − PCP = (gij) is equal to 0. We will obtain a contradiction by
examining specific entries gij.

Firstly, one may check that

0 = g31 − kg21 = km(k2 +m2 + 1)(tk − 1)(β0 − γ0).

By construction, the product on the right-hand side is zero if and only if β0 = γ0. But if
this is the case, then

0 = kg23 − g33 = β0(k2 +m2 + 1),
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and therefore β0 = γ0 = 0. Direct computations then show that

(r(k2 +m2)− sk −m)g21 − (k2 − skm− rm+ 1)g22

= km(k2 +m2 + 1)(rm− 1)(sk +m+ r)(k − (rt+ s)m+ t).

Since g21 = g22 = 0 while the right-hand side of this equation is non-zero by construction,
we obtain the required contradiction.

Thus, (PAP )(PBP ) does not belong to PDrstP , so Drst is not projection compressible.
The final claim now follows from Lemma 3.2.5. �

Combining Theorems 3.2.2, 3.2.4, and 3.2.6 with Theorem 3.1.1 and its subsequent
corollaries, we obtain the following classification of unital subalgebras of M3 that admit
one, and hence both of the compression properties.

Theorem 3.2.7. If A is a unital subalgebra of M3, then the following are equivalent:

(i) A is projection compressible;

(ii) A is idempotent compressible;

(iii) A is the unitization of an LR-algebra, or A is not 3-dimensional;

(iv) A is not singly generated by an invertible nonderogatory matrix;

(v) A is the unitization of an LR-algebra, or A is transpose similar to one of the algebras
from Theorem 3.1.1(i).
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Chapter 4

Compressibility in Mn, n ≥ 4

In Chapter 3 we obtained a complete description of the unital projection compressible
subalgebras of M3 up to transpose similarity. In doing so, we established the surprising re-
sult that the notions of projection compressibility and idempotent compressibility coincide
for unital algebras in this setting. We now consider the problem of classifying the unital
projection compressible subalgebras Mn when n ≥ 4.

In §4.1 we present a certain necessary condition for a unital subalgebra of Mn, n ≥ 4, to
admit the projection compression property. This condition imposes substantial restrictions
on the reduced block upper triangular form such an algebra can take. In particular, it
provides a systematic approach for classifying the unital projection compressible algebras
in this setting based on the block upper triangular forms that can arise. Using this strategy,
our analysis may be divided into three stages which are addressed in §4.2, §4.3, and §4.4,
respectively.

§4.1 A Strategy for Classification

Before initiating our classification, it will be helpful to record a list of the projection com-
pressible subalgebras of Mn, n ≥ 4, that we have studied up to now. First, we have the
class of LR-algebras which were shown to exhibit the idempotent compression property in
Corollary 2.1.14. Additionally, the following examples describe the three distinct families
of projection compressible algebras that were encountered in §2.1. It was shown in Exam-
ples 2.2.1, 2.2.3, and 2.2.6, respectively, that each of these algebras is in fact, idempotent
compressible.

49



Example 4.1.1. Let n ≥ 4 be an integer, and let Q1, Q2, and Q3 be projections in Mn

that sum to I. In what follows, all matrices are expressed with respect to the decomposition
Cn = ran(Q1)⊕ ran(Q2)⊕ ran(Q3).

(i) The algebra

A = CQ1 + CQ3 + (Q1 +Q2)Mn(Q2 +Q3)

=


αI M12 M13

0 M22 M23

0 0 βI

 : α, β ∈ C,Mij ∈ QiMnQj


is idempotent compressible.

(ii) If rank(Q1) = rank(Q2) = 1, then the algebra

A = CQ1 + CQ2 + CQ3 + (Q1 +Q2)MnQ3

=


α 0 M13

0 β M23

0 0 γI

 : α, β, γ ∈ C,Mij ∈ QiMnQj


is idempotent compressible.

(iii) If rank(Q1) = rank(Q2) = 1, then the algebra

A = C(Q1 +Q2) +Q1MnQ2 + (Q1 +Q2)MnQ3 + CQ3

=


α x M13

0 α M23

0 0 βI

 : α, β, γ, x ∈ C,Mij ∈ QiMnQj


is idempotent compressible.

Having reintroduced our library of examples from Chapter 2, we now present a simple
structural requirement for a unital subalgebra of Mn, n ≥ 4, to admit the projection
compression property. This result, together with the structure theory for matrix algebras
outlined in §2.3, will provide a strategy for classifying the unital projection compressible
algebras that exist in this setting.

Theorem 4.1.2. Let n ≥ 4 be an integer, and let A be a unital projection compressible
subalgebra of Mn. Suppose there exist mutually orthogonal projections P1 and P2 in Mn such
that P2AP1 = {0} and rank(Pi) ≥ 2 for i = 1, 2. Then P1AP1 = CP1 or P2AP2 = CP2.
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Proof. First assume that rank(P1) = rank(P2) = 2. By replacing A with the compression
(P1 + P2)A(P1 + P2) if necessary, we may also assume that P1 + P2 = I.

Arguing by contradiction, suppose that P1AP1 6= CP1 and P2AP2 6= CP2. It follows
that A admits an operator A such that PiAPi /∈ CPi for each i ∈ {1, 2}. Indeed, choose
operators A1, A2 ∈ A such that P1A1P1 /∈ CP1 and P2A2P2 /∈ CP2. If P2A1P2 /∈ CP2 or
P1A2P1 /∈ CP1, then A1 or A2 will satisfy the above requirements. Otherwise, A := A1 +A2

will suffice.

Thus, assume that A ∈ A has been chosen such that P1AP1 /∈ CP1 and P2AP2 /∈ CP2.

For each i ∈ {1, 2}, choose an orthonormal basis
{
e

(i)
1 , e

(i)
2

}
for ran(Pi) such that PiAPi is

not diagonal with respect to B =
{
e

(1)
1 , e

(1)
2 , e

(2)
1 , e

(2)
2

}
. By permuting the basis vectors if

necessary, we may assume that 〈Ae(i)
2 , e

(i)
1 〉 6= 0 for each i ∈ {1, 2}.

Consider the matrix

Q :=


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1


written with respect to B. It is straightforward to check that 1

2
Q is a projection in M4 and

every B ∈ QAQ satisfies 〈Be(1)
2 , e

(2)
1 〉 = 0. With A as above, however,

〈(QAQ)2e
(1)
2 , e

(2)
1 〉 = 8〈Ae(1)

2 , e
(1)
1 〉〈Ae

(2)
2 , e

(2)
1 〉 6= 0.

Thus, (QAQ)2 does not belong to QAQ, so QAQ is not an algebra. This contradicts the
assumption that A is projection compressible.

Now consider the general case in which each Pi has rank at least 2. One may deduce
from the above analysis that for some i ∈ {1, 2}, every rank-two subprojection P ≤ Pi is
such that PAP = CP . It then follows that PiAPi = CPi, as required. �

As we shall see in the coming analysis, this simple observation has significant implica-
tions for the classification of projection compressible algebras. Additionally, it highlights
a major difference between the classification in this setting and that of M3. Since M3

cannot contain projections P1 and P2 as described in Theorem 4.1.2, this result may help
to explain why there exist certain projection compressible subalgebras of M3 that do not
admit analogues in higher dimensions (see Examples 2.2.7, 2.2.10, and 2.2.13).
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The following corollaries to Theorem 4.1.2 provide a more explicit description of the
reduced block upper triangular forms that can exist for a unital projection compressible
algebra.

Corollary 4.1.3. Let n ≥ 4 be an integer, and let A be a unital subalgebra of Mn. Suppose
that there is an orthogonal decomposition

⊕m
i=1 Vi of Cn with respect to which

(i) A is reduced block upper triangular, and

(ii) there is an index k ∈ {1, 2, . . . ,m} such that if Q1, Q2, and Q3 denote the orthogonal
projections onto

⊕
i<k Vi, Vk, and

⊕
i>k Vi, respectively, then

(Q1 +Q2)A(Q1 +Q2) 6= C(Q1 +Q2) and (Q2 +Q3)A(Q2 +Q3) 6= C(Q2 +Q3).

If A is projection compressible, then k is unique. When this is the case, Q1AQ1 = CQ1

and Q3AQ3 = CQ3.

Proof. Assume that A is projection compressible. Suppose to the contrary that there were
a second index k′ together with corresponding projections Q′1, Q′2, and Q′3 such that

(Q′1 +Q′2)A(Q′1 +Q′2) 6= C(Q′1 +Q′2) and

(Q′2 +Q′3)A(Q′2 +Q′3) 6= C(Q′2 +Q′3).

Assume without loss of generality that k < k′. One may verify that P1 := Q1 + Q2

and P2 := Q′2 + Q′3 are projections satisfying the hypotheses of Theorem 4.1.2. Since
P1AP1 6= CP1 and P2AP2 6= CP2, this is a contradiction.

The final claim follows immediately from the uniqueness of k. Indeed, if Q1AQ1 6= CQ1,
then k − 1 would be another such index. If instead Q3AQ3 6= CQ3, then one could derive
a similar contradiction by considering the index k + 1. �

The following special case of Corollary 4.1.3 describes the situation for algebras whose
block-diagonal contains a block of size at least 2.

Corollary 4.1.4. Let n ≥ 4 be an integer, and let A be a unital subalgebra of Mn. Suppose
that there is a decomposition

⊕m
i=1 Vi of Cn with respect to which

(i) A is reduced block upper triangular, and
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(ii) there is an index k ∈ {1, 2, . . . ,m} such that dimVk ≥ 2.

If A is projection compressible, then k is unique. When this is the case, if Q1, Q2, and Q3

denote the orthogonal projections onto
⊕

i<k Vi, Vk, and
⊕

i>k Vi, respectively, then

Q1AQ1 = CQ1, Q2AQ2 = Q2MnQ2, and Q3AQ3 = CQ3.

Proof. Assume thatA is projection compressible. Since (Q1+Q2)A(Q1+Q2) 6= C(Q1+Q2)
and (Q2 +Q3)A(Q2 +Q3) 6= C(Q2 +Q3), the result is immediate from Corollary 4.1.3. �

The results presented above provide a strategy for classifying the unital subalgebras of
Mn that exhibit the projection compression property. Indeed, we may use Corollaries 4.1.3
and 4.1.4 to partition the unital subalgebras of Mn into the following three distinct types
determined by their reduced block upper triangular forms:

Type I: A has a reduced block upper triangular form with respect to an orthogonal decom-
position of Cn such that there does not exist an index k as in Corollary 4.1.3;

Type II: A has a reduced block upper triangular form with respect to an orthogonal de-
composition of Cn such that BD(A) contains a block of size at least 2 (i.e., there is an
integer k as in Corollary 4.1.4).

Type III: For each orthogonal decomposition of Cn with respect to which A is reduced
block upper triangular, every block in BD(A) is 1 × 1, and there is an integer k as in
Corollary 4.1.3.

The unital projection compressible algebras of type I, type II, and type III will be
classified up to transpose similarity in §4.2, §4.3, and §4.4, respectively.

§4.2 Algebras of Type I

In what follows, the term type I will be used to describe a unital subalgebraA of Mn, n ≥ 4,
that has a reduced block upper triangular form with respect to an orthogonal decomposition⊕m

i=1 Vi of Cn such that there does not exist an integer k as in Corollary 4.1.3. If A is such
an algebra, then it must be the case that dimVi = 1 for all i (i.e., m = n). For instance,
the algebra from Example 4.1.1(i) is of type I if and only if Q2 = 0; or rank(Q2) = 1 and
Qi = 0 for some i ∈ {1, 3}.
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The goal of this section is to determine which type I algebras possess the projection
compression property. As we shall see, the type I algebras satisfying this condition are
either unitizations of LR-algebras, or unitarily equivalent to the type I algebra from Ex-
ample 4.1.1(i). In order to demonstrate this systematically, it will be useful to keep a record
of the orthogonal decompositions of Cn with respect to which A satisfies the definition of
type I.

Definition 4.2.1. If A is an algebra of type I, let FI = FI(A) denote the set of pairs
Ω = (d,

⊕n
i=1 Vi), where

(i)
⊕n

i=1 Vi is an orthogonal decomposition of Cn with respect to which A is reduced
block upper triangular, and

(ii) d is an integer in {1, 2, . . . , n} such that if Q1Ω denotes the orthogonal projection
onto

⊕d
i=1 Vi, and Q2Ω denotes its complement I −Q1Ω, then

Q1ΩAQ1Ω = CQ1Ω and Q2ΩAQ2Ω = CQ2Ω.

As an example, let {e1, e2, e3, e4} denote the standard basis for C4 and consider the
algebra A = span{e1 ⊗ e∗4, I}. It is not difficult to see that A has a reduced block upper
triangular form with respect to the decomposition C4 =

⊕4
i=1 Vi, where Vi = span{ei}.

Moreover, with respect to this decomposition there does not exist an integer k as in Corol-
lary 4.1.3. Consequently, A is of type I. One may note that (d,

⊕4
i=1 Vi) belongs to FI(A)

for each d ∈ {1, 2, 3}.

Notation. If A is a type I algebra and Ω = (d,
⊕n

i=1 Vi) is a pair in FI(A), the notation
n1Ω = d and n2Ω = n− d will be used to refer to the ranks of Q1Ω and Q2Ω, respectively.

Suppose that A is a projection compressible algebra of type I and Ω is a pair in FI(A).
In the language of §2.3, each corner QiΩAQiΩ = CQiΩ is a diagonal algebra comprised
of mutually linked 1 × 1 blocks. Note that the blocks in Q1ΩAQ1Ω may or may not be
linked to those in Q2ΩAQ2Ω. If these blocks are linked, we will say that the projections
Q1Ω and Q2Ω are linked. Otherwise, we will say that Q1Ω and Q2Ω are unlinked. Note that
the projections Q1Ω and Q2Ω are linked for some pair in Ω ∈ FI(A) if and only if they are
linked for every pair in FI(A).

It will be important to distinguish between the type I algebras whose projections are
linked and those whose projections are unlinked. The projection compressible type I alge-
bras with unlinked projections will be classified in §4.2.1, while those with linked projections
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will be classified in §4.2.2. Before our analysis splits, however, let us examine one extreme
case that will be relevant to the classification in either setting.

Observe that if A is an algebra of type I and FI(A) contains a pair Ω = (d,
⊕n

i=1 Vi)
with d = n, then A = CI, and hence A is idempotent compressible. If instead d = 1 or
d = n− 1, then Proposition 4.2.2 indicates that A is the unitization of an LR-algebra.

Proposition 4.2.2. Let A be a type I subalgebra of Mn. If there is a pair Ω = (d,
⊕n

i=1 Vi)
in FI(A) with d = 1 or d = n− 1, then A is the unitization of an LR-algebra, and hence
A is idempotent compressible.

Proof. Assume that FI(A) contains a pair Ω = (n − 1,
⊕n

i=1 Vi). By Theorem 2.3.9,
there exists an invertible upper triangular matrix S such that A0 := S−1AS is unhinged
with respect to the decomposition Cn =

⊕n
i=1 Vi. Thus, since the class of LR-algebras is

invariant under similarity, it suffices to prove that A0 is the unitization of an LR-algebra.

Note that by Theorem 2.1.12, there is a subprojection Q′1 ≤ Q1Ω such that

Q1ΩA0Q2Ω = Q1ΩRad(A0)Q2Ω = Q′1MnQ2Ω.

Thus, either Vn is linked to the other Vi’s, in which case A0 = Q′1MnQ2Ω +CI; or Vn is not
linked to the other Vi’s, in which case A0 = (Q′1 + Q2Ω)MnQ2Ω + CI. In either scenario,
A0 is the unitization of an LR-algebra.

Suppose instead that FI(A) contains a pair whose first entry is 1. It follows that
FI(AaT ) contains a pair whose first entry is n − 1. The above analysis then shows that
AaT is the unitization of an LR-algebra, and thus so too is A. �

§4.2.1 Type I Algebras with Unlinked Projections

In this section we consider the type I algebras A for which the pairs Ω = (d,
⊕n

i=1 Vi)
in FI(A) are such that Q1Ω and Q2Ω are unlinked. In light of Proposition 4.2.2 and its
preceding remarks, we may assume that 1 < d < n − 1 for all pairs Ω. Thus, if Ω is any
such pair, then min(d, n − d) ≥ 2. That is, the corresponding projections Q1Ω and Q2Ω

have ranks n1Ω ≥ 2 and n2Ω ≥ 2, respectively.

It will be shown in Theorem 4.2.11 that every projection compressible type I algebra
satisfying the above assumptions is unitarily equivalent to the type I algebra from Ex-
ample 4.1.1(i). The majority of the work leading to this classification, however, occurs
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in Lemma 4.2.8. The proof of Lemma 4.2.8 itself relies on several intermediate results
concerning the structure of the radical of a projection compressible type I algebra.

It should be noted that while Lemmas 4.2.3, 4.2.4, and 4.2.5 are presented here in the
context of type I algebras with unlinked projections, these results are also applicable to
type I algebras whose projections are linked.

Lemma 4.2.3. Let A be a projection compressible type I subalgebra of Mn, and suppose
that Ω = (d,

⊕n
i=1 Vi) is a pair in FI(A) with 1 < d < n−1. Suppose further that there are

orthonormal bases
{
e

(1)
i

}n1Ω

i=1
for ran(Q1Ω) and

{
e

(2)
i

}n2Ω

i=1
for ran(Q2Ω), as well as indices

i0 and j0 such that
〈Re(2)

j0
, e

(1)
i0
〉 = 0 for all R ∈ Rad(A).

Then Q1Ω and Q2Ω are linked, and either 〈Re(2)
j0
, e

(1)
k 〉 = 0 for all k ∈ {1, 2, . . . , n1Ω}, or

〈Re(2)
k , e

(1)
i0
〉 = 0 for all k ∈ {1, 2, . . . , n2Ω} .

Proof. Suppose to the contrary that Q1Ω and Q2Ω are unlinked. By considering a suitable
principal compression of A to a subalgebra of M4, we may assume without loss of generality
that d = n1Ω = n2Ω = 2. Furthermore, we may reorder the bases if necessary to assume
that 〈Re(2)

1 , e
(1)
2 〉 = 0 for all R ∈ Rad(A).

Since A is similar to BD(A) u Rad(A) via an upper triangular similarity, there is a

fixed matrix M ∈ Q1ΩAQ2Ω such that with respect to the basis
{
e

(1)
1 , e

(1)
2 , e

(2)
1 , e

(2)
2

}
, every

A in A has the form

A =


α 0 0 0

α 0 0
β 0

β

+ (β − α)M +R

for some α, β ∈ C and R ∈ Rad(A).

For each i, j ∈ {1, 2} define mij = 〈Me
(2)
j , e

(1)
i 〉. Furthermore, for each k ∈ R let Pk

denote the matrix

Pk :=


k2 + 1 0 0 0

0 k2 0 −k
0 0 k2 + 1 0
0 −k 0 1

 ,
so that 1

k2+1
Pk is a projection in M4. By direct computation, one may verify that every

element B = (bij) in PkAPk satisfies the equation

(k2 + 1)b23 −m21k
2(b33 − b11) = 0.
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If, however, A is as above with α = 0, β = 1, and R = 0, then for (PkAPk)
2 = (cij), we

have
(k2 + 1)c23 −m21k

2(c33 − c11) = m21k
2(k2 + 1)3(1− km22).

The fact that A is projection compressible implies that (PkAPk)
2 belongs to PkAPk, and

hence the right-hand side of the above expression must be 0 for all k. We therefore deduce
that m21 = 〈Me

(2)
1 , e

(1)
2 〉 = 0.

It now follows that 〈Ae(2)
1 , e

(1)
2 〉 = 0 for all A ∈ A. So with respect to the basis{

e
(1)
1 , e

(2)
1 , e

(1)
2 , e

(2)
2

}
for C4, every A ∈ A may be expressed as

A =


α (β − α)m11 + r11 0 (β − α)m12 + r12

β 0 0
α (β − α)m22 + r22

β


for some α, β, and rij in C. Since α and β may be chosen arbitrarily, this contradicts
Theorem 4.1.2. Thus, Q1Ω and Q2Ω must be linked.

For the final claim, first note that BD(A) = CI as Q1Ω and Q2Ω are linked. By the
remarks following Theorem 2.3.9, we have that A = CI uRad(A), and hence

〈Ae(2)
j0
, e

(1)
i0
〉 = 0 for all A ∈ A.

Suppose for the sake of contradiction that there exist indices k1 ∈ {1, 2, . . . , n1Ω}\{i0} and

k2 ∈ {1, 2, . . . , n2Ω} \ {j0} such that for some operators A1, A2 ∈ A, 〈A1e
(2)
j0
, e

(1)
k1
〉 6= 0 and

〈A2e
(2)
k2
, e

(1)
i0
〉 6= 0. Let P1 and P2 denote the orthogonal projections onto span{e(1)

k1
, e

(2)
j0
}

and span{e(1)
i0
, e

(2)
k2
}, respectively. It is easy to see that P1AP1 6= CP1, P2AP2 6= CP2, and

P2AP1 = {0}. Thus, Theorem 4.1.2 indicates that A is not projection compressible—a
contradiction. �

Lemma 4.2.4. Let n ≥ 4 be an even integer, and let A be a projection compressible
subalgebra of Mn. Let Q1 be a projection in Mn of rank n/2 and define Q2 := I − Q1. If
E ∈Mn is a partial isometry satisfying E∗E = Q1 and EE∗ = Q2, then the linear space

A0 := {Q1AQ1 + E∗AQ1 +Q1AE + E∗AE : A ∈ A}

is an algebra.
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Proof. The assumptions on E imply that the operator P := 1
2
(I+E+E∗) is a projection in

Mn, and hence PAP is an algebra. One may verify that with respect to the decomposition
Cn = ran(Q1)⊕ ran(Q2), we have

PAP =

{[
X X
X X

]
: X ∈ A0

}
.

It follows that for any X and Y in A0,[
X X
X X

] [
Y Y
Y Y

]
= 2

[
XY XY
XY XY

]
∈ PAP,

and hence XY belongs to A0 as well. Thus, A0 is an algebra. �

Lemma 4.2.5. Let A be a type I subalgebra of M4. If Rad(A) is 3-dimensional and FI(A)
contains a pair Ω = (d,

⊕4
i=1 Vi) with d = 2, then A is not projection compressible.

Proof. Suppose that dimRad(A) = 3 and Ω is a pair in FI(A) as described above. Write
A = S uRad(A), where S is similar to BD(A) via a block upper triangular similarity. If
Q1Ω and Q2Ω are linked, then A = {αI : α ∈ C} u Rad(A). If instead Q1Ω and Q2Ω are
unlinked, there is a matrix M ∈ Q1ΩM4Q2Ω such that

A = {αQ1Ω + βQ2Ω + (β − α)M : α, β ∈ C}uRad(A).

Note that the only distinctions between the linked and unlinked settings are the presence
of the matrix M and the freedom to choose α and β independently. In the arguments that
follow, we treat the entries of M as arbitrary constants (possibly zero), and make no
attempt to choose independent values for α and β. Thus, these arguments are applicable
to both cases.

For each i ∈ {1, 2}, let
{
e

(i)
1 , e

(i)
2

}
be an orthonormal basis for ran(QiΩ). Since Rad(A)

is a 3-dimensional subspace of Q1ΩM4Q2Ω, there is a non-zero matrix Γ ∈ Q1ΩM4Q2Ω such
that Tr(Γ∗R) = 0 for all R in Rad(A). By reordering the bases for ran(Q1Ω) and ran(Q2Ω)

if necessary, we may assume that 〈Γe(2)
1 , e

(1)
1 〉 is non-zero. From this it follows that there

exist γ12, γ21, γ22 ∈ C such that

Rad(A) =




0 0 γ12r12 + γ21r21 + γ22r22 r12

0 0 r21 r22

0 0 0 0
0 0 0 0

 : r12, r21, r22 ∈ C


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with respect to the basis
{
e

(1)
1 , e

(1)
2 , e

(2)
1 , e

(2)
2

}
for C4.

To see that A is not projection compressible, consider the matrix

P :=


2 0 0 0
0 1 0 1
0 0 2 0
0 1 0 1

 ,
and note that 1

2
P is a projection in M4. One may verify that every operator B = (bij) in

PAP satisfies the equation

b13 − 4γ22b24 − 2γ21b23 − 2γ12b14 − (γ12m12 + γ21m21 − γ22(1−m22)−m11)b11

+ (γ12m12 + γ21m21 + γ22(1 +m22)−m11)b33 = 0,

where for each i, j ∈ {1, 2}, we define mij = 〈Me
(2)
j , e

(1)
i 〉. If, however, A is the element of

A obtained by setting α = β = r12 = r21 = 1 and r22 = 0, then B := (PAP )2 produces
a value of 8 on the left-hand side of the above equation. Consequently, (PAP )2 does not
belong to PAP , so PAP is not an algebra. �

The following classical theorem from linear algebra will be applied in the proof of
Lemma 4.2.8 and used extensively throughout §4.3. For reference, see [12, Theorem 2.6.3].

Theorem 4.2.6 (Singular Value Decomposition). Let n and p be positive integers, and let
A be a complex n× p matrix.

(i) If n ≤ p, then there are unitaries U ∈ Mn and V ∈ Mp, and a positive semi-definite
diagonal matrix D ∈Mn such that

U∗AV =
[
D 0

]
.

(ii) If n ≥ p, then there are unitaries U ∈ Mn and V ∈ Mp, and a positive semi-definite
diagonal matrix D ∈Mp such that

U∗AV =

[
D
0

]
.
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The principal application of Theorem 4.2.6 will be in simplifying the structure of the
semi-simple part of an algebra A in reduced block upper triangular form. Indeed, sup-
pose that A = S u Rad(A) is a type I subalgebra of Mn where S is semi-simple. Let
Ω = (d,

⊕n
i=1 Vi) be a pair in FI(A), and assume that the projections Q1Ω and Q2Ω are

linked. For each i ∈ {1, 2}, let
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
be an orthonormal basis for ran(QiΩ).

As a consequence of Theorem 2.3.9, there is a matrix M ∈ Q1ΩMnQ2Ω such that

S = {αQ1Ω + βQ2Ω + (β − α)M : α, β ∈ C} .

It then follows from Theorem 4.2.6 that there is a unitary U ∈Mn such that Q1ΩUQ2Ω = 0,
Q2ΩUQ1Ω = 0, and 〈U∗MUe

(2)
j , e

(1)
i 〉 = 0 whenever i 6= j.

Finally, the proof of Lemma 4.2.8 will require the following result of Azoff concerning
the minimum dimension of a transitive space of linear operators.

Theorem 4.2.7. [2, Proposition 4.7] If L is a transitive space of linear transformations
from Cn to Cm, then the dimension of L is at least m+ n− 1.

We are now prepared to state and prove Lemma 4.2.8. This result indicates that under
certain restrictive assumptions, a projection compressible type I algebra with unlinked
projections is unitarily equivalent to the type I algebra from Example 4.1.1(i). Loosening
these assumptions will require a refinement of Theorem 4.2.7 to specific classes of transitive
spaces of operators.

Lemma 4.2.8. Let n ≥ 4 be an even integer, and let A be a projection compressible type I
subalgebra of Mn. Suppose that FI(A) contains a pair Ω = (d,

⊕n
i=1 Vi) with d = n/2. If

the projections Q1Ω and Q2Ω are unlinked, then A is unitarily equivalent to

CQ1Ω + CQ2Ω +Q1ΩMnQ2Ω,

the type I algebra from Example 4.1.1(i). Consequently, A is idempotent compressible.

Proof. For each i ∈ {1, 2}, let
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
d

}
be an orthonormal basis for ran(QiΩ).

As a consequence of Theorem 2.3.9, there is a matrix M in Q1ΩMnQ2Ω such that

A = {αQ1Ω + βQ2Ω + (β − α)M : α, β ∈ C}uRad(A).

In fact, one may assume by Theorem 4.2.6 and its subsequent remarks that there are
constants mij ≥ 0 such that 〈Me

(2)
j , e

(1)
i 〉 = δijmij for all i and j.
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Let E ∈ Mn denote the partial isometry satisfying Ee
(1)
i = e

(2)
i and Ee

(2)
i = 0 for all

i ∈ {1, 2, . . . , d}. Since A is projection compressible, Lemma 4.2.4 implies that

A0 := {(α + β)Q1Ω + (β − α)ME +RE : α, β ∈ C, R ∈ Rad(A)}

is a subalgebra of Q1ΩMnQ1Ω. If this subalgebra were proper, then by Burnside’s the-
orem, we may change the orthonormal basis for ran(Q1Ω) if necessary to assume that

〈Ae(1)
1 , e

(1)
d 〉 = 0 for all A ∈ A0. In this case, one may change the orthonormal basis for

ran(Q2Ω) accordingly and assume that 〈Re(2)
1 , e

(1)
d 〉 = 0 for all R ∈ Rad(A). Since Q1Ω and

Q2Ω are unlinked, an application of Lemma 4.2.3 demonstrates that A lack the projection
compression property—a contradiction.

We may therefore assume that A0 is equal to Q1ΩMnQ1Ω. This means that Rad(A)E
can be enlarged to a d2-dimensional space by adding

{α(Q1Ω −ME) + β(Q1Ω +ME) : α, β ∈ C},

the linear span of two diagonal matrices in Q1ΩMnQ1Ω. It follows that

dimRad(A)E = dimRad(A) ≥ d2 − 2,

and any entries in Rad(A)E that depend linearly on other entries must be located on the
diagonal. Our goal is to show that dimRad(A) = d2, and hence Rad(A) = Q1ΩMnQ2Ω.

Let us begin by addressing the case in which n = 4, and hence d = 2. If dimRad(A)
is strictly less than d2 = 4, then Rad(A) is 2- or 3-dimensional by the analysis above. If
dimRad(A) = 2, then by Theorem 4.2.7, Rad(A) is not transitive as a space of linear
maps from ran(Q2Ω) to ran(Q1Ω). In this case there exist unit vectors v ∈ ran(Q1Ω)
and w ∈ ran(Q2Ω) such that Rw ∈ Cv for every R ∈ Rad(A). Choose unit vectors
v′ ∈ ran(Q1Ω) ∩ (Cv)⊥ and w′ ∈ ran(Q2Ω) ∩ (Cw)⊥, and replace the orthonormal bases
for ran(Q1Ω) and ran(Q2Ω) with {v, v′} and {w,w′}, respectively. Since

〈Rw, v′〉 = 〈λv, v′〉 = 0 for all R ∈ Rad(A),

A lacks the projection compression property by Lemma 4.2.3—a contradiction. Using
Lemma 4.2.5, one may also obtain a contradiction in the case that dimRad(A) = 3.

Assume now that n > 4. By the above analysis, there are at most two entries from
Rad(A)E which cannot be chosen arbitrarily, and these entries necessarily occur on the
diagonal. By reordering the bases for ran(Q1Ω) and ran(Q2Ω), we may relocate the linearly
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dependent entries to the (1, n − 1) and (2, n) positions of Rad(A), respectively. That is,
we may assume that with respect to the decomposition

Cn = ∨
{
e

(1)
1 , e

(1)
2 , . . . , e

(1)
d−1

}
⊕ ∨

{
e

(1)
d , e

(2)
1

}
⊕ ∨

{
e

(2)
2 , e

(2)
3 , . . . , e

(2)
d

}
,

each A ∈ A can be represented by a matrix of the form

A =



α 0 t11 t12 · · · t1,d−2 γ1 t1d
α 0 t21 t22 · · · t2,d−2 t2,d−1 γ2

α 0 t31 t32 · · · t3,d−2 t3,d−1 t3d
. . .

...
...

...
. . .

...
...

...
α 0 td−1,1 td−1,2 · · · td−1,d−2 td−1,d−1 td−1,d

α td1 td2 · · · td,d−2 td,d−1 tdd
β 0 · · · 0 0 0

β
. . .

β
β

β



,

where α, β, and tij can be chosen arbitrarily, and γ1 and γ2 may depend linearly on
these entries. We will demonstrate that, in fact, γ1 and γ2 can be chosen arbitrarily and
independently of the remaining terms.

Consider the matrix

P =



2
2

2
. . .

2
1 1
1 1

2
. . .

2
2

2


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written with respect to the decomposition above. Observe that 1
2
P is a projection in Mn.

Direct computations show that with A as above, PAP is given by

4α 2t11 2t11 4t12 · · · 4t1,d−2 4γ1 4t1d
4α 2t21 2t21 4t22 · · · 4t2,d−2 4t2,d−1 4γ2

4α 2t31 2t31 4t32 · · · 4t3,d−2 4t3,d−1 4t3d
. . .

...
...

...
. . .

...
...

...
4α 2td−1,1 2td−1,1 4td−1,2 · · · 4td−1,d−2 4td−1,d−1 4td−1,d

α + β + td1 α + β + td1 2td2 · · · 2td,d−2 2td,d−1 2tdd
α + β + td1 α + β + td1 2td2 · · · 2td,d−2 2td,d−1 2tdd

4β
. . .

4β
4β

4β



.

Hence, it suffices to prove that e
(1)
1 ⊗ e

(2)∗
d−1 and e

(1)
2 ⊗ e

(2)∗
d belong to PAP .

To see that this is the case, let A be as above with t11 = td,d−1 = 1 and α = β = tij = 0
for all other indices i and j. It is straightforward to verify that

(PAP )2 = 8e
(1)
1 ⊗ e

(2)∗

d−1.

Consequently, e
(1)
1 ⊗ e

(2)∗
d−1 belongs to PAP , so γ1 can indeed be chosen arbitrarily. By

reordering the basis to interchange the positions of γ1 and γ2, one may repeat this process
to show that γ2 may be chosen arbitrarily as well. �

Observe that the success of Lemma 4.2.8 relied heavily on the existence of the pair
Ω = (d,

⊕n
i=1 Vi) with d = n/2. Indeed, without such a pair, one would be unable to

directly apply Lemma 4.2.4 or Burnside’s Theorem to infer that dimRad(A) ≥ d2 − 2.

Our final goal of this section is to generalize Lemma 4.2.8 to type I algebras A that
may not admit a pair Ω as describe above. We will accomplish this goal by applying
Lemma 4.2.8 to study the structure of the radical of certain principal compressions of A.
It will then follow from [8, Theorem 1.2], an extension of Theorem 4.2.7, that A is unitarily
equivalent to the type I algebra from Example 4.1.1(i). In order to introduce this extension,
we first present the following definition.

Definition 4.2.9. Let L be a vector space of linear transformations from Cn to Cm,
and let k be a positive integer. We say that L is k-transitive if for every choice of k
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linearly independent vectors x1, x2, . . . , xk in Cn, and every choice of k arbitrary vectors
y1, y2, . . . , yk in Cm, there is an element A ∈ L such that Axi = yi for all i ∈ {1, 2, . . . , k}.

Theorem 4.2.10. [8, Theorem 1.2] If L is a k-transitive space of linear transformations
from Cn to Cm, then the dimension of L is at least k(m+ n− k).

Note that a space of linear operators is transitive if and only if it is 1-transitive, and
that the bounds from Theorems 4.2.7 and 4.2.10 coincide when k = 1.

We are now prepared to prove the classification in the general case of type I algebras
with unlinked projections.

Theorem 4.2.11. Let A be a projection compressible type I subalgebra of Mn, and let
Ω = (d,

⊕n
i=1 Vi) be a pair in FI(A) with 1 < d < n − 1. If Q1Ω and Q2Ω are unlinked,

then A is unitarily equivalent to

CQ1Ω + CQ2Ω +Q1ΩMnQ2Ω,

the type I algebra from Example 4.1.1(i). Consequently, A is idempotent compressible.

Proof. By replacing A with AaT if necessary, we may assume that d ≤ n − d. That is,
n1Ω ≤ n2Ω. We will demonstrate that Rad(A) has dimension d(n− d), and hence must be
equal to Q1ΩMnQ2Ω. Of course, it is clear that dimRad(A) ≤ d(n− d).

Note that Rad(A) is d-transitive as a space of linear maps from ran(Q2Ω) to ran(Q1Ω).
Indeed, let S be a linearly independent d-element subset of ran(Q2Ω), and let QS denote
the orthogonal projection onto the span of S. Since Q1Ω and QS are both of rank d,
Lemma 4.2.8 implies that the radical ofA0 := (Q1Ω+QS)A(Q1Ω+QS) is equal toQ1ΩMnQS.
As a result, the vectors in S can be mapped anywhere in ran(Q1Ω) by elements of Rad(A).
We conclude that Rad(A) is d-transitive.

The proof ends with an application of Theorem 4.2.10. Since Rad(A) is a d-transitive
subspace of Q1ΩMnQ2Ω, we have that dimRad(A) ≥ d(d+ (n− d)− d) = d(n− d). �

§4.2.2 Type I Algebras with Linked Projections

We now wish to describe the projection compressible type I algebras A for which the pairs
Ω = (d,

⊕n
i=1 Vi) in FI(A) are such that Q1Ω is linked to Q2Ω. An inductive argument

in Theorem 4.2.13 will demonstrate that every such algebra is the unitization of an LR-
algebra. The base case of this argument will require the following lemma.
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Lemma 4.2.12. Let A be a projection compressible type I subalgebra of M4, and suppose
that FI(A) contains a pair Ω = (d,

⊕4
i=1 Vi) with d = 2. If Q1Ω and Q2Ω are linked, then

there are projections Q′1 ≤ Q1Ω and Q′2 ≤ Q2Ω such that Rad(A) = Q′1M4Q
′
2. In this case

A is the unitization of an LR-algebra, so A is idempotent compressible.

Proof. Let Ω be a pair in FI(A) as above, and assume that Q1Ω and Q2Ω are linked. By
the observations following Theorem 2.3.9, A = CI uRad(A).

For each i ∈ {1, 2}, let
{
e

(i)
1 , e

(i)
2

}
be a fixed orthonormal basis for ran(QiΩ). Further-

more, let E ∈ Mn denote the partial isometry satisfying Ee
(1)
i = e

(2)
i and Ee

(2)
i = 0 for

each i ∈ {1, 2}. By Lemma 4.2.4,

A0 := CQ1Ω +Rad(A)E

is a subalgebra of Q1ΩM4Q1Ω. If this subalgebra A0 is proper, then by Burnside’s The-
orem, we may change the orthonormal basis for ran(Q1Ω) if required and assume that

〈Ae(1)
1 , e

(1)
2 〉 = 0 for all A ∈ A0. In this case we may adjust the orthonormal basis

for ran(Q2Ω) accordingly and assume that 〈Re(2)
1 , e

(1)
2 〉 = 0 for all R ∈ Rad(A). Thus,

by Lemma 4.2.3, either 〈Re(2)
1 , e

(1)
1 〉 = 0 for all R ∈ Rad(A), or 〈Re(2)

2 , e
(1)
2 〉 = 0 for

all R ∈ Rad(A). The fact that Rad(A) has the required form now follows from Theo-
rem 2.1.12.

Suppose instead that CQ1Ω+Rad(A)E is equal to Q1ΩM4Q1Ω. It follows that Rad(A) is
at least 3-dimensional. If dimRad(A) = 3, then A is of the form described in Lemma 4.2.5,
and hence A is not projection compressible. We therefore have that dimRad(A) = 4, so
Rad(A) = Q1ΩM4Q2Ω. �

Theorem 4.2.13. Let A be a projection compressible type I subalgebra of Mn, and let
Ω = (d,

⊕n
i=1 Vi) be a pair in FI(A). If Q1Ω and Q2Ω are linked, then there are projections

Q′1 ≤ Q1Ω and Q′2 ≤ Q2Ω such that Rad(A) = Q′1MnQ
′
2. Thus, A is the unitization of an

LR-algebra, so A is idempotent compressible.

Proof. We will proceed by induction on n. By definition of a type I algebra, our base case
occurs when n = 4. That said, let A be a projection compressible type I subalgebra of M4,
and suppose that Ω = (d,

⊕n
i=1 Vi) is a pair in FI(A) with Q1Ω linked to Q2Ω. If d = 1 or

d = 3, then Proposition 4.2.2 guarantees that Rad(A) admits the required form. If instead
d = 2, then A and Ω are as in Lemma 4.2.12. Once again Rad(A) is of the correct form.
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Now fix an integer N ≥ 5. Assume that for every positive integer n < N , if A is a
projection compressible type I subalgebra of Mn and Ω is a pair in FI(A) with Q1Ω linked
to Q2Ω, then Rad(A) = Q′1MnQ

′
2 for some subprojections Q′1 ≤ Q1Ω and Q′2 ≤ Q2Ω. We

claim that this is also the case for every such subalgebra A of MN and pair Ω ∈ FI(A).
Indeed, fix a subalgebra A of MN and pair Ω = (d,

⊕N
i=1 Vi) in FI(A) as in the statement

of the theorem. If d = 1 or d = N − 1, then Proposition 4.2.2 ensures that Rad(A) is of
the desired form. Thus, we will assume that 1 < d < N − 1. By replacing A with AaT if
necessary, we will also assume that d ≤ N − d.

First consider the possibility that N is even and d = N − d = N/2. Fix orthonormal

bases
{
e

(1)
1 , e

(1)
2 , . . . , e

(1)
d

}
and

{
e

(2)
1 , e

(2)
2 , . . . , e

(2)
d

}
for ran(Q1Ω) and ran(Q2Ω), respectively.

Let E ∈ Mn denote the partial isometry satisfying Ee
(1)
i = e

(2)
i and Ee

(2)
i = 0 for each

i ∈ {1, 2, . . . , d}. Arguing as in the proof of Lemma 4.2.8, either CQ1Ω +Rad(A)E is equal
to Q1ΩMNQ1Ω, or Burnside’s Theorem may be used to assume that

〈Re(2)
1 , e

(1)
d 〉 = 0 for all R ∈ Rad(A).

If the latter holds, then by Lemma 4.2.3, Rad(A) contains a permanent row or column
of zeros. Consider the algebra A0 obtained by deleting this row and its corresponding
column from A. We have that A0 is a projection compressible type I subalgebra of MN−1,
so Rad(A0) admits the the required form by the inductive hypothesis. Upon reintroducing
the removed row and column, one can see that Rad(A) is also of the required form. We
may therefore assume that CQ1Ω +Rad(A)E = Q1ΩMNQ1Ω.

Since Rad(A)E can be enlarged to a d2-dimensional space by adding CQ1Ω, it must
be that dimRad(A) ≥ d2 − 1. We claim that in fact, dimRad(A) = d2, and hence
Rad(A) = Q1ΩMnQ2Ω. To see this is the case, reorder the bases for ran(Q1Ω) and ran(Q2Ω)
if necessary to assume that with respect to the decomposition

CN = ∨
{
e

(1)
1 , e

(1)
2 , . . . , e

(1)
d−1

}
⊕ ∨

{
e

(1)
d , e

(2)
1

}
⊕ ∨

{
e

(2)
2 , e

(2)
3 , . . . , e

(2)
d

}
,
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each A ∈ A can be expressed as a matrix of the form

A =



α 0 t11 t12 · · · t1,d−2 γ t1d
α 0 t21 t22 · · · t2,d−2 t2,d−1 t2d

α 0 t31 t32 · · · t3,d−2 t3,d−1 t3d
. . .

...
...

...
. . .

...
...

...
α 0 td−1,1 td−1,2 · · · td−1,d−2 td−1,d−1 td−1,d

α td1 td2 · · · td,d−2 td,d−1 tdd
α 0 · · · 0 0 0

α
. . .

α
α

α



.

Here, α and tij are arbitrary values in C, and γ may depend linearly on these entries.

It will be shown that γ is in fact, independent of the other terms. Indeed, let P denote
the matrix from the proof of Lemma 4.2.8, so that 1

2
P is a projection in MN . Proceed now

as in the proof of that lemma by noting that with A as above, PAP is given by

4α 2t11 2t11 4t12 · · · 4t1,d−2 4γ 4t1d
4α 2t21 2t21 4t22 · · · 4t2,d−2 4t2,d−1 4t2d

4α 2t31 2t31 4t32 · · · 4t3,d−2 4t3,d−1 4t3d
. . .

...
...

...
. . .

...
...

...
4α 2td−1,1 2td−1,1 4td−1,2 · · · 4td−1,d−2 4td−1,d−1 4td−1,d

2α + td1 2α + td1 2td2 · · · 2td,d−2 2td,d−1 2tdd
2α + td1 2α + td1 2td2 · · · 2td,d−2 2td,d−1 2tdd

4α
. . .

4α
4α

4α



.

It now suffices to prove that e
(1)
1 ⊗ e

(2)∗
d−1 belongs to PAP . But if A denotes the particular

element of A obtained by taking t11 = td,d−1 = 1 and α = tij = 0 for all other indices i and
j, then

(PAP )2 = 8e
(1)
1 ⊗ e

(2)∗
d−1.
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Since A is projection compressible, this element belongs to PAP . We conclude that
Rad(A) = Q1ΩMNQ2Ω, and hence the proof of the d = N − d case is complete.

Let us now turn to the case in which d < N −d. As above, let
{
e

(1)
1 , e

(1)
2 , . . . , e

(1)
n1Ω

}
and{

e
(2)
1 , e

(2)
2 , . . . , e

(2)
n2Ω

}
be fixed orthonormal bases for ran(Q1Ω) and ran(Q2Ω), respectively.

For each linearly independent d-element subset S of ran(Q2Ω), let QS denote the orthogonal
projection onto the span of S, and define PS := Q1Ω +QS. Let AS denote the compression
PSAPS, which we regard as a subalgebra of CI uQ1ΩM2dQS.

If each compression AS is equal to CIuQ1ΩM2dQS, then Rad(A) is a d-transitive space
of linear maps from ran(Q2Ω) into ran(Q1Ω). In this case we may apply Theorem 4.2.10
to conclude that Rad(A) = Q1ΩMNQ2Ω, as desired. Instead, suppose that one of the sets
S is such that the radical of AS is properly contained in Q1ΩM2dQS. For such an S, the
inductive hypothesis gives rise to subprojections Q′1 ≤ Q1Ω and Q′S ≤ QS such that

Rad(AS) = Q′1M2dQ
′
S.

At least one of these subprojections must be proper.

If Q′S 6= QS or Q′1 = 0, then there is an orthonormal basis for C2d with respect to
which Rad(AS) has a permanent column of zeros. One may then extend this basis to an
orthonormal basis for CN with respect to which Rad(A) also admits a permanent column
of zeros. By deleting this column and its corresponding row from A, we obtain a projection
compressible type I subalgebra of MN−1. The inductive hypothesis then implies that the
radical of this compression is of the desired form. Upon reintroducing the column and row
deleted from A, it is easy to see that Rad(A) is of the desired form as well.

On the other hand, if QS = Q′S and Q′1 is a proper non-zero subprojection of Q1Ω,
then it must be the case that Rad(AS) has a permanent row of zeros, but not a permanent
column of zeros. Thus, Rad(A) has a permanent row of zeros by Lemma 4.2.3. By removing
this row and its corresponding column from A, we obtain a projection compressible type I
subalgebra of MN−1. The radical of this algebra is of the correct form by the inductive
hypothesis, and hence so too is Rad(A). �

§4.3 Algebras of Type II

The term type II will be used to describe a unital subalgebra A of Mn, n ≥ 4, that has a
reduced block upper triangular form with respect to an orthogonal decomposition

⊕m
i=1 Vi

68



of Cn such that dimVk ≥ 2 for some k. For example, the algebra from Example 4.1.1(i)
is of type II if and only if rank(Q2) ≥ 2. Importantly, it follows from this definition that
every type II algebra satisfies the assumptions of Corollary 4.1.4.

The purpose of this section is to classify the type II algebras that afford the projection
compression property. It will be shown that every projection compressible algebra of type II
is either the unitization of an LR-algebra, or is unitarily equivalent to the type II algebra
from Example 4.1.1(i).

As in the case of type I algebras, it will be helpful to keep a record of all orthogonal
decompositions of Cn that satisfy the conditions of Corollary 4.1.4 for a given type II
algebra A. Thus, we make the following definition.

Definition 4.3.1. If A is an algebra of type II, let FII = FII(A) denote the set of triples
Ω = (d, k,

⊕m
i=1 Vi) that satisfy the following conditions:

(i)
⊕m

i=1 Vi is an orthogonal decomposition of Cn with respect to which A is reduced
block upper triangular;

(ii) d and k are integers such that d ≥ 2, k ∈ {1, 2, . . . ,m}, and dimVk = d.

Notation. If A is an algebra of type II and Ω is a triple in FII(A), let Q1Ω, Q2Ω, and Q3Ω

denote the orthogonal projections onto
⊕

i<k Vi, Vk, and
⊕

i>k Vi, respectively. Further-
more, for each i ∈ {1, 2, 3}, let niΩ denote the rank of QiΩ.

Observe that if A is a projection compressible type II subalgebra of Mn and FII(A) con-
tains a triple Ω = (d,

⊕m
i=1 Vi), then Corollary 4.1.4 implies that Q2ΩAQ2Ω = Q2ΩMnQ2Ω

and QiΩAQiΩ = CQiΩ for each i ∈ {1, 3}. In this case, n1Ω = k − 1, n2Ω = d, and
n3Ω = n− d− k + 1.

We will begin by considering the extreme case in which a type II algebra A admits a
triple Ω = (d, k,

⊕m
i=1 Vi) with k = 1 or k = m. The projection compressible algebras of

this form can be easily identified using Theorem 2.1.12.

Proposition 4.3.2. Let A be a projection compressible type II subalgebra of Mn. If there
is a triple Ω = (d, k,

⊕m
i=1 Vi) in FII(A) with k = 1 or k = m, then A is the unitization of

an LR-algebra. Consequently, A is idempotent compressible.

Proof. Let Ω ∈ FII(A) be as in the statement above. By replacing A with AaT if necessary,
we may assume that k = m. Furthermore, since any algebra similar to an LR-algebra is
again an LR-algebra, we may assume that A is unhinged with respect to

⊕m
i=1 Vi.
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Since Rad(A) is a right Md-module, Theorem 2.1.12 indicates that Rad(A) = Q′1MnQ2

for some projection Q′1 ≤ Q1Ω. It follows that,

A = BD(A)uRad(A) = (Q′1 +Q2Ω)MnQ2Ω + CI,

and hence A is the unitization of an LR-algebra. �

In light of Proposition 4.3.2, it suffices to consider the type II algebras for which the
triples Ω = (d, k,

⊕m
i=1 Vi) in FII are such that 1 < k < m. For such an algebraA and triple

Ω, the projections Q1Ω, Q2Ω, and Q3Ω are all non-zero. In the language of Theorem 2.3.3
and the remarks that follow, the corners Q1ΩAQ1Ω and Q3ΩAQ3Ω are diagonal algebras,
each comprised of mutually linked 1 × 1 blocks. Note that the blocks in Q1ΩAQ1Ω may
be linked to those in Q3ΩAQ3Ω. If this is the case, we will say that Q1Ω and Q3Ω are
linked. Otherwise, we will say that Q1Ω and Q3Ω are unlinked. In either case, dimension
considerations imply that neither Q1Ω nor Q3Ω is linked to Q2Ω. As in our analysis of type I
algebras, it will be important to distinguish between these settings.

§4.3.1 Type II Algebras with Unlinked Projections

Let us first consider the type II algebras A for which the triples Ω = (d, k,
⊕m

i=1 Vi) in
FII(A) are such that Q1Ω and Q3Ω are unlinked. We aim to show that the only such
algebras with the projection compression property are those that are unitarily equivalent
to the type II algebra in Example 4.1.1(i). To accomplish this goal, we will first show in
Lemma 4.3.3 that the result holds in the M4 setting. An extension to larger type II algebras
will be made in Theorem 4.3.4 by applying Lemma 4.3.3 to their 4× 4 compressions.

As stated above, if A is a type II algebra and Ω is a triple in FII(A), then Q2Ω is
necessarily unlinked from Q1Ω and Q3Ω. Thus, type II algebras satisfy the assumptions of
Lemma 2.3.10. We will apply this fact in the proofs of Lemma 4.3.3 and Theorem 4.3.4.

Lemma 4.3.3. Let A be a projection compressible type II subalgebra of M4. Assume that
FII(A) contains a pair Ω = (d, k,

⊕3
i=1 Vi) such that d = k = 2. If Q1Ω and Q3Ω are

unlinked, then A is unitarily equivalent to

CQ1Ω + CQ3Ω + (Q1Ω +Q2Ω)M4(Q2Ω +Q3Ω),

the type II algebra from Example 4.1.1(i). Consequently, A is idempotent compressible.
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Proof. Suppose to the contrary that A is not unitarily equivalent to the algebra described
above. Lemma 2.3.10 (ii) then implies that

Q1ΩRad(A)Q2Ω 6= Q1ΩM4Q2Ω or

Q2ΩRad(A)Q3Ω 6= Q2ΩM4Q3Ω.

By replacing A with AaT if necessary, we may assume that Q1ΩRad(A)Q2Ω 6= Q1ΩM4Q2Ω.
Consequently, Q1ΩRad(A)Q2Ω = {0} by Theorem 2.1.12.

An application of Theorem 2.3.9 provides a precise description of Q1ΩAQ2Ω. Since A is
similar to BD(A)uRad(A) via a block upper triangular similarity, there is a fixed element
T ∈ Q1ΩM4Q2Ω such that

Q1ΩAQ2Ω = (Q1ΩAQ1Ω)T − T (Q2ΩAQ2Ω) for every A ∈ A.

For each i ∈ {1, 2, 3}, fix an orthonormal basis
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
for ran(QiΩ). To sim-

plify matters, we may use Theorem 4.2.6 and the remarks that follow to assume that

〈Te(2)
2 , e

(1)
1 〉 = 0. That is, with respect to the basis

{
e

(1)
1 , e

(2)
1 , e

(2)
2 , e

(3)
1

}
for C4, each A ∈ A

may be expressed as

A =


a11 a11t− ta22 −ta23 a14

a22 a23 a24

a32 a33 a34

a44

 ,
where aij ∈ C and t := 〈Te(2)

1 , e
(1)
1 〉. Here, the entries on the block-diagonal may be selected

arbitrarily.

To reach a contradiction, consider the matrices

P0 :=


2 0 0 0
0 1 0 1
0 0 2 0
0 1 0 1

 , P1 :=


1 0 0 −1
0 2 0 0
0 0 2 0
−1 0 0 1

 , and P2 :=


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1

 .
Observe that for each i, 1

2
Pi is a projection in M4. Through direct computation, one may

verify that
〈Be(2)

2 , e
(1)
1 〉+ 2t〈Be(2)

2 , e
(2)
1 〉 = 0 for all B ∈ P0AP0.

Yet with A as above and B0 := (P0AP0)2, we have

〈B0e
(2)
2 , e

(1)
1 〉+ 2t〈B0e

(2)
2 , e

(2)
1 〉 = 8a23 (a14 − t(a11 − a44 − a24)) .
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It follows that a23 = 0 for all A ∈ A or a14 = t(a11 − a44 − a24) for all A ∈ A. Indeed, it
is clear that every element of A must satisfying at least one of these equations. But if A
contained an operator A1 satisfying only the first equation and an operator A2 satisfying
only the second, then neither equation would hold for A1 +A2. Since a23 may be selected
arbitrarily, it must be that a14 = t(a11 − a44 − a24) for every A ∈ A.

One may now derive similar relations using P1 and P2. Indeed, it is straightforward to
check that for j ∈ {1, 2}, the equation

t〈PjAPje(2)
2 , e

(2)
1 〉+ 2〈PjAPje(2)

2 , e
(1)
1 〉 = 0

holds for every A ∈ A. Yet if A0 denotes any element of A of the above form satisfying
a11 = a23 = 1 and a44 = 0, then for Bj := (PjA0Pj)

2,(
t〈B1e

(2)
2 , e

(2)
1 〉+ 2〈B1e

(2)
2 , e

(1)
1 〉
)
−
(
t〈B2e

(2)
2 , e

(2)
1 〉+ 2〈B2e

(2)
2 , e

(1)
1 〉
)

= 16t2.

Since B1 and B2 belong to P1AP1 and P2AP2, respectively, we conclude that t = 0. That

is, Q1ΩAQ2Ω = {0}. It follows that with respect to the basis
{
e

(2)
1 , e

(2)
2 , e

(1)
1 , e

(3)
1

}
for C4,

each A ∈ A may be written as

A =


a22 a23 0 a24

a32 a33 0 a34

a11 0
a44


for some aij ∈ C. Theorem 4.1.2 now demonstrates that A is not projection compressible,
as the entries in BD(A) may be chosen arbitrarily. This is a contradiction. �

Theorem 4.3.4. Let A be a projection compressible type II subalgebra of Mn, and assume
that Ω = (d, k,

⊕m
i=1 Vi) is a triple in FII(A) with 1 < k < m. If Q1Ω and Q3Ω are unlinked,

then A is unitarily equivalent to

CQ1Ω + CQ3Ω + (Q1Ω +Q2Ω)Mn(Q2Ω +Q3Ω),

the type II algebra from Example 4.1.1(i). Consequently, A is idempotent compressible.
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Proof. Suppose to the contrary that A is not unitarily equivalent to the algebra described
above. As in the proof of the previous result, we may appeal to Lemma 2.3.10 (ii) and as-
sume without loss of generality that Q1ΩRad(A)Q2Ω 6= Q1ΩMnQ2Ω. Thus, Theorem 2.1.12
gives rise to a proper subprojection Q′1 of Q1Ω satisfying

Q1ΩRad(A)Q2Ω = Q′1MnQ2Ω.

Define Q′′1 := Q1Ω − Q′1, and let
{
e

(1)
1 , e

(1)
2 , . . . , e

(1)
n1Ω

}
be an orthonormal basis for

ran(Q1Ω) such that

ran(Q′′1) = ∨
{
e

(1)
1 , e

(1)
2 , . . . , e

(1)
`

}
for some integer 1 ≤ ` ≤ n1Ω. Since A is similar to BD(A)uRad(A) via a matrix that is
block upper triangular with respect to Cn = ran(Q1Ω)⊕ ran(Q2Ω)⊕ ran(Q3Ω), there is an
operator T ∈ Q′′1MnQ2Ω such that

Q′′1AQ2Ω = (Q′′1AQ
′′
1)T − T (Q2ΩAQ2Ω) for all A ∈ A.

By Theorem 4.2.6, one may choose a suitable orthonormal basis
{
e

(2)
1 , e

(2)
2 , . . . , e

(2)
n2Ω

}
for

ran(Q2Ω) and adjust the basis for ran(Q′′1) if necessary to impose additional structure on

T . Specifically, one may assume that 〈Te(2)
j , e

(1)
i 〉 = 0 whenever i 6= j.

Let e
(3)
1 be any non-zero vector in ran(Q3Ω), and define B =

{
e

(1)
1 , e

(2)
1 , e

(2)
2 , e

(3)
1

}
. Let

P denote the orthogonal projection onto the span of B, and consider the compression
A0 := PAP . It is easy to see that A0 is a projection compressible type II subalgebra of
M4. Moreover, if

W1 := Ce(1)
1 , W2 := ∨

{
e

(2)
1 , e

(2)
2

}
, and W3 := Ce(3)

1 ,

then the triple Ω′ = (2, 2,
⊕3

i=1Wi) belongs to FII(A0). Since Q1Ω′ and Q3Ω′ are unlinked,
A0 is among the class of algebras addressed in Lemma 4.3.3. With respect to the basis B
for ran(P ), however, every element of A0 may be expressed as a matrix of the form

A =


a11 a11t− ta22 −ta23 a14

a22 a23 a24

a32 a33 a34

a44

 ,
where t := 〈Te(2)

1 , e
(1)
1 〉. Since A0 is not of the form prescribed by Lemma 4.3.3, it follows

that A0 is not projection compressible—a contradiction. �
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§4.3.2 Type II Algebras with Linked Projections

Consider now the type II algebras A for which the triples Ω = (d, k,
⊕m

i=1 Vi) in FII(A) are
such that Q1Ω and Q3Ω are linked. It will be shown in Theorem 4.3.6 that all projection
compressible algebras of this form are unitizations of LR-algebras. The proof of this result
requires a careful analysis of the upper triangular blocks in the semi-simple part of the
algebra. The following lemma is the crux of this analysis.

Lemma 4.3.5. Let A be a projection compressible type II subalgebra of M4. Assume that
FII(A) contains a triple Ω = (d, k,

⊕3
i=1 Vi) with d = k = 2, and such that Q1Ω and Q3Ω

are linked.

(i) If there are a constant t ∈ C and for each i ∈ {1, 2, 3}, an orthonormal basis{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
for ran(QiΩ) such that

〈Ae(2)
1 , e

(1)
1 〉 = t

(
〈Ae(1)

1 , e
(1)
1 〉 − 〈Ae

(2)
1 , e

(2)
1 〉
)

and

〈Ae(2)
2 , e

(1)
1 〉 = −t〈Ae(2)

2 , e
(2)
1 〉

for all A ∈ A, then 〈Ae(3)
1 , e

(1)
1 〉 = −t〈Ae(3)

1 , e
(2)
1 〉 for all A ∈ A.

(ii) If there are a constant t ∈ C and for each i ∈ {1, 2, 3}, an orthonormal basis{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
for ran(QiΩ) such that

〈Ae(3)
1 , e

(2)
1 〉 = t

(
〈Ae(2)

1 , e
(2)
1 〉 − 〈Ae

(3)
1 , e

(3)
1 〉
)

and

〈Ae(3)
1 , e

(2)
2 〉 = t〈Ae(2)

1 , e
(2)
2 〉

for all A ∈ A, then 〈Ae(3)
1 , e

(1)
1 〉 = t〈Ae(2)

1 , e
(1)
1 〉 for all A ∈ A.

Proof. We will begin with the proof of (i). Suppose that there are a constant t ∈ C and

for each i ∈ {1, 2, 3}, an orthonormal basis
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
for ran(QiΩ) as described

above. Then with respect to the basis
{
e

(1)
1 , e

(2)
1 , e

(2)
2 , e

(3)
1

}
for C4, each A ∈ A can be

written as

A =


a11 t(a11 − a22) −ta23 a14

a22 a23 a24

a32 a33 a34

a11


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for some aij ∈ C. Since A is in reduced block upper triangular form, the entries on the
block-diagonal may be chosen arbitrarily.

Consider the matrix

P :=


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1

 ,
and note that 1

2
P is a projection in M4. One may verify that

t〈Be(2)
2 , e

(1)
2 〉+ 2〈Be(2)

2 , e
(1)
1 〉 = 0 for all B ∈ PAP.

But with A as above and B := (PAP )2, we see that

t〈Be(2)
2 , e

(2)
1 〉+ 2〈Be(2)

2 , e
(1)
1 〉 = −8ta23(a14 + ta24).

The projection compressibility of A implies that B belongs to PAP . Consequently,
ta23(a14 + ta24) = 0 for all A ∈ A.

If t 6= 0, then either a23 = 0 for all A ∈ A or a14 = −ta24 for all A ∈ A. Indeed, it
is clear that every operator in A must satisfy at least one of these equation. If, however,
A contained an operator A1 satisfying the first equation but not the second, as well as an
operator A2 satisfying the second but not the first, then neither equation would hold for
A1 + A2. Finally, since a23 can be selected arbitrarily, we conclude that either t = 0 or
a14 = −ta24 for all A.

If the latter holds, then every A ∈ A satisfies the equation 〈Ae(3)
1 , e

(1)
1 〉 = −t〈Ae(3)

1 , e
(2)
1 〉,

as required. If instead t = 0, then with respect to the basis
{
e

(2)
1 , e

(2)
2 , e

(1)
1 , e

(3)
1

}
for C4,

each A ∈ A may be expressed as a matrix of the form

A =


a22 a23 0 a24

a32 a33 0 a34

a11 a14

a11


for some aij ∈ C. It follows from Theorem 4.1.2 that a14 = 〈Ae(3)

1 , e
(1)
1 〉 = 0 for all A, and

hence the equation 〈Ae(3)
1 , e

(1)
1 〉 = −t〈Ae(3)

1 , e
(2)
1 〉 holds in this case as well.
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In the context of (ii), note that every A ∈ A may be expressed as a matrix of the form
a11 a12 a13 a14

a22 a23 t(a22 − a11)
a32 a33 ta32

a11


with respect to the basis

{
e

(1)
1 , e

(2)
1 , e

(2)
2 , e

(3)
1

}
for C4. Since this matrix is transpose equiv-

alent to 
a11 t(a22 − a11) ta32 a14

a22 a32 a12

a23 a33 a13

a11

 ,
we conclude from (i) that a14 = ta12. That is, 〈Ae(3)

1 , e
(1)
1 〉 = t〈Ae(2)

1 , e
(1)
1 〉 for all A ∈ A. �

Theorem 4.3.6. Let A be a projection compressible type II subalgebra of Mn, and let
Ω = (d, k,

⊕m
i=1 Vi) be a triple in FII(A). If Q1Ω and Q3Ω are linked, then A is the

unitization of an LR-algebra. Consequently, A is idempotent compressible.

Proof. Let Ω be as above, and assume that Q1Ω and Q3Ω are linked. Note that if k = 1
or k = m, then A is the unitization of an LR-algebra by Proposition 4.3.2. Thus, we
will assume that 1 < k < m. In this case, Theorem 2.1.12 gives rise to subprojections
Q′1 ≤ Q1Ω and Q′3 ≤ Q3Ω such that

Q1ΩRad(A)Q2Ω = Q′1MnQ2Ω and

Q2ΩRad(A)Q3Ω = Q2ΩMnQ
′
3.

Our goal is to show that A is similar to

A0 := (Q′1 +Q2Ω)Mn(Q2Ω +Q′3) + CI.

Since A0 is the unitization of an LR-algebra, this will demonstrate that so too is A. We
will accomplish this task by first determining the structure of Q1ΩAQ3Ω.

DefineQ′′1 := Q1Ω−Q′1 andQ′′3 := Q3Ω−Q′3. For each i ∈ {1, 2, 3}, let
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
be an orthonormal basis for ran(QiΩ) such that if Q′′i 6= 0, then

ran(Q′′i ) = ∨
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
`i

}
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for some `i ∈ {1, 2, . . . , niΩ}. Since A is similar to BD(A)u Rad(A) via a matrix that is
block upper triangular with respect to Cn = ran(Q1Ω) ⊕ ran(Q2Ω) ⊕ ran(Q3Ω), there are
operators T1 ∈ Q′′1MnQ2Ω and T2 ∈ Q2ΩMnQ

′′
3 such that every A ∈ A satisfies

Q′′1AQ2Ω = (Q′′1AQ
′′
1)T1 − T1(Q2ΩAQ2Ω) and

Q2ΩAQ
′′
3 = (Q2ΩAQ2Ω)T2 − T2(Q′′3AQ

′′
3).

We will begin by using Lemma 4.3.5 to identify the structure of Q′′1AQ3Ω. Of course,
there is little to be said whenQ′′1 = 0, so assume for now thatQ′′1 6= 0. By Theorem 4.2.6 and
its subsequent remarks, one may change the orthonormal bases for ran(Q′′1) and ran(Q2Ω)
if required and assume that

t
(1)
ij := 〈T1e

(2)
j , e

(1)
i 〉 = 0 for all i 6= j.

Let i and i′ be arbitrary indices from {1, 2, . . . , `1} and {1, 2, . . . , n3Ω}, respectively.
Define

j =

{
i if i ≤ n2Ω,
1 otherwise,

and fix an index j′ ∈ {1, 2, . . . , n2Ω} \ {j}. Let P denote the orthogonal projection onto

the span of B :=
{
e

(1)
i , e

(2)
j , e

(2)
j′ , e

(3)
i′

}
, and consider the algebra PAP . If i > n2Ω, then for

each A ∈ A, PAP may be expressed as a matrix of the form

PAP =


a11 0 0 a14

a22 a23 a24

a32 a33 a34

a11


with respect to B. In this case, PAP is an algebra of the form described in Lemma 4.3.5 (i)
with t = 0. Thus, this result implies that

a14 = 〈Ae(3)
i′ , e

(1)
i 〉 = 0 for all A ∈ A.

Suppose instead that i ≤ n2Ω. We then have that for each A ∈ A, PAP can be written as
a matrix of the form

PAP =


a11 a11t

(1)
ii − t

(1)
ii a22 −t(1)

ii a23 a14

a22 a23 a24

a32 a33 a34

a11


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with respect to B. It follows that PAP is of the form described in Lemma 4.3.5 (i) with

t = t
(1)
ii , and hence

a14 = 〈Ae(3)
i′ , e

(1)
i 〉 = −t(1)

ii 〈Ae
(3)
i′ , e

(2)
i 〉 for all A ∈ A.

Since our choice of indices was arbitrary, these conclusions hold for all i ∈ {1, 2, . . . , `1}
and all i′ ∈ {1, 2, . . . , n3Ω}. Consequently,

Q′′1AQ3Ω = −T1Q2ΩAQ3Ω for all A ∈ A.

We now wish to obtain information on the structure of Q1ΩAQ′′3. As in the analysis
above, it will be convenient to simplify the description of T2 by choosing suitable bases for
ran(Q2Ω) and ran(Q3Ω). Specifically, Theorem 4.2.6 gives rise to operators V ∈ Q2ΩMnQ2Ω,
W ∈ Q′′3MnQ

′′
3, and a unitary U ∈Mn such that

(Q1Ω +Q′3)U(Q1Ω +Q′3) = Q1Ω +Q′3,

(Q2Ω +Q′′3)U(Q2Ω +Q′′3) = V +W,

and
〈U∗T2Ue

(3)
j , e

(2)
i 〉 = 〈V ∗T2We

(3)
j , e

(2)
i 〉 = 0 for all i 6= j.

By considering the algebra U∗AU and arguing as above, one may deduce that

(Q1ΩAQ
′′
3) = (Q1ΩAQ2Ω)T2 for all A ∈ A.

Our findings thus far indicate that with respect to the decomposition

Cn = ran(Q′′1)⊕ ran(Q′1)⊕ ran(Q2Ω)⊕ ran(Q′′3)⊕ ran(Q′3),

each A ∈ A can be expressed as a matrix of the form

A =


a11I 0 a11T1 − T1M −T1(MT2 − a11T2) −T1J2

a11I J1 J1T2 A25

M MT2 − a11T2 J2

a11I 0
a11I


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for some a11 ∈ C and operators M ∈ Q2ΩMnQ2Ω, J1 ∈ Q′1Rad(A)Q2Ω, J2 ∈ Q2ΩRad(A)Q′3,
and A25 ∈ Q′1MnQ

′
3. With this description in hand we are prepared to show that A is

similar to A0, and hence is the unitization of an LR-algebra.

Consider the operator S := I−T1−T2. This S is invertible with S−1 = I+T1+T2+T1T2.
Moreover, for each A ∈ A as above, we have that

S−1AS =


a11I 0 0 0 0

a11I J1 0 A25

M 0 J2

a11I 0
a11I

 .

From here it is easy to see that S−1AS is a type II algebra that has a reduced block upper
triangular form with respect to the above decomposition. Moreover,

Q1ΩRad(S−1AS)Q2Ω = Q′1Rad(A)Q2Ω = Q′1MnQ2Ω and

Q2ΩRad(S−1AS)Q3Ω = Q2ΩRad(A)Q′3 = Q2ΩMnQ
′
3.

Thus, Lemma 2.3.10 (ii) implies that

S−1AS = (Q′1 +Q2Ω)Mn(Q2Ω +Q′3) + CI = A0,

as claimed. �

§4.4 Algebras of Type III

We now begin the final stage of our classification of unital projection compressible subal-
gebras of Mn when n ≥ 4. The term type III will be used to describe a unital subalgebra
A of Mn, n ≥ 4, such that for every orthogonal decomposition

⊕m
i=1 Vi of Cn with respect

to which A is reduced block upper triangular, dimVi = 1 for all i (i.e., m = n), and there
is an integer k as in Corollary 4.1.3. It is obvious that such a k must lie strictly between
1 and n.

As in the preceding sections, it will be important to maintain a record of the integers
k and decompositions of Cn that satisfy the assumptions of Corollary 4.1.3 for a given
type III algebra A.
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Definition 4.4.1. If A is an algebra of type III, let FIII = FIII(A) denote the set of pairs
Ω = (k,

⊕n
i=1 Vi) that satisfy the following conditions:

(i)
⊕n

i=1 Vi is an orthogonal decomposition of Cn with respect to which A is reduced
block upper triangular;

(ii) k is an integer in {2, . . . , n−1} such that if Q1Ω, Q2Ω, and Q3Ω denote the orthogonal
projections onto

⊕
i<k Vi, Vk, and

⊕
i>k Vi, respectively, then for each i ∈ {1, 3},

(QiΩ +Q2Ω)A(QiΩ +Q2Ω) 6= C(QiΩ +Q2Ω).

Notation. If A is an algebra of type III and Ω = (k,
⊕n

i=1 Vi) is a pair in FIII(A), let
n1Ω = k−1, n2Ω = 1, and n3Ω = n−k denote the ranks of Q1Ω, Q2Ω, and Q3Ω, respectively.
Note that since n2Ω = 1 and n ≥ 4, we necessarily have max{n1Ω, n3Ω} ≥ 2.

If A is a projection compressible algebra of type III with pair Ω ∈ FIII(A), then
QiΩAQiΩ = CQiΩ for each i ∈ {1, 2, 3}. Thus, each corner QiΩAQiΩ is a diagonal algebra
comprised of mutually linked 1× 1 blocks. Of course, the blocks in QiΩAQiΩ may or may
not be linked to those in QjΩAQjΩ. If there is linkage between these blocks, we will say
that the projections QiΩ and QjΩ are linked ; otherwise, we will say that they are unlinked.

Unlike in §4.3, it is now entirely possible that Q2Ω is linked to Q1Ω or Q3Ω. As the
following result demonstrates, however, there do not exist projection compressible algebras
of type III for which all projections QiΩ are mutually linked.

Proposition 4.4.2. Let A be a projection compressible algebra of type III, and let Ω be a
pair in FIII(A).

(i) If Q2Ω is linked to Q1Ω, then n1Ω = 1 and Q1ΩRad(A)Q2Ω = Q1ΩMnQ2Ω

(ii) If Q2Ω is linked to Q3Ω, then n3Ω = 1 and Q2ΩRad(A)Q3Ω = Q2ΩMnQ3Ω.

Consequently, Q2Ω cannot be linked to both Q1Ω and Q3Ω.

Proof. Clearly (ii) follows from (i) by replacing A with AaT . Thus, it suffices to prove (i).

Suppose to the contrary that n1Ω ≥ 2. For each i ∈ {1, 2, 3}, let
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
be

an orthonormal basis for ran(QiΩ). For each index j in {1, 2, . . . , n3Ω}, let Pj denote the
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orthogonal projection onto the span of Bj :=
{
e

(1)
1 , e

(1)
2 , e

(2)
1 , e

(3)
j

}
. Furthermore, define P ′j

to be the operator

P ′j =


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1

 ,
acting on ran(Pj) and written with respect to the basis Bj. It is clear that 1

2
P ′j is a

subprojection of Pj.

One may verify that every B ∈ P ′jAP ′j satisfies the equation 〈Be(2)
1 , e

(2)
1 〉 = 〈Be(1)

2 , e
(1)
2 〉.

But if A belongs to A and C := (P ′jAP
′
j)

2, then

〈Ce(2)
1 , e

(2)
1 〉 − 〈Ce

(1)
2 , e

(1)
2 〉 = 8〈Ae(2)

1 , e
(1)
1 〉〈Ae

(3)
j , e

(2)
1 〉.

Since C is an element of P ′jAP ′j , the right-hand side of this equation must be zero. To
obtain a contradiction, it therefore suffices to exhibit an element A in A such that for some
j ∈ {1, 2, . . . , n3Ω}, both 〈Ae(2)

1 , e
(1)
1 〉 and 〈Ae(3)

j , e
(2)
1 〉 are non-zero.

First suppose that the projections Q1Ω, Q2Ω, and Q3Ω are mutually linked. By definition
of Ω as a pair in FIII(A), there exist i ∈ {1, 2, . . . , n1Ω} and j ∈ {1, 2, . . . , n3Ω}, as

well as A1, A2 ∈ A, such that 〈A1e
(2)
1 , e

(1)
i 〉 6= 0 and 〈A2e

(3)
j , e

(2)
1 〉 6= 0. By reordering

the basis for ran(Q1Ω) if necessary, we may assume that i = 1. If 〈A2e
(2)
1 , e

(1)
1 〉 6= 0 or

〈A1e
(3)
j , e

(2)
1 〉 6= 0, then we obtain the required contradiction. Otherwise, A := A1 + A2 is

such that 〈Ae(2)
1 , e

(1)
1 〉 6= 0 and 〈Ae(3)

j , e
(2)
1 〉 6= 0, as desired.

Now suppose that Q3Ω is unlinked from Q1Ω and Q2Ω. By reordering the basis for
ran(Q1Ω) if necessary, we may obtain an element A1 ∈ A such that 〈A1e

(2)
1 , e

(1)
1 〉 6= 0. If

there is an element A2 ∈ A such that 〈A2e
(3)
j , e

(2)
1 〉 6= 0 for some j ∈ {1, 2, . . . , n3Ω}, then

arguments similar to those in the linked case above provide the required contradiction. Of
course, it is now entirely possible that no such A2 exists, as Q2Ω and Q3Ω are unlinked.
That is, it may be that Q2ΩAQ3Ω = {0}. Assume that this is the case.

Let B =
{
e

(1)
1 , e

(1)
2 , e

(3)
1 , e

(2)
1

}
, and define P to be the orthogonal projection onto the

span of B. Note that with respect to the basis B for ran(P ), each A ∈ PAP may be
written as

A =


α 0 a13 a14

α a23 a24

β 0
α


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for some α, β, and aij ∈ C. Consider the operator

P ′ =


2 0 −1 −1
0 3 0 0
−1 0 2 −1
−1 0 −1 2

 ,
acting on ran(P ) and written with respect to B. It is easy to see that 1

3
P ′ is a subprojection

of P . Moreover, one may verify that every element B = (bij) in P ′AP ′ satisfies the equation
b33 + 2b31 − b43 − 2b41 − b22 = 0. But if A is as above and we define (P ′AP ′)2 = (cij), then

c33 + 2c31 − c43 − 2c41 − c22 = 27a14(β − α).

Since α and β may be chosen arbitrarily, it must be that a14 = 〈Ae(2)
1 , e

(1)
1 〉 = 0 for all A.

This is a contradiction, as 〈A1e
(2)
1 , e

(1)
1 〉 6= 0. We therefore conclude that n1Ω = 1.

Since Q1Ω and Q2Ω are linked, yet (Q1Ω + Q2Ω)A(Q1Ω + Q2Ω) 6= C(Q1Ω + Q2Ω) by
definition of Ω as a pair in FIII(A), it follows that Q1ΩRad(A)Q2Ω 6= {0}. Consequently,
Q1ΩRad(A)Q2Ω = Q1ΩMnQ2Ω as n1Ω = n2Ω = 1.

The final claim now follows from the fact that max {n1Ω, n3Ω} ≥ 2. �

The above result indicates that if A is a projection compressible algebra of type III and
Ω is a pair in FIII(A), then there is a projection QiΩ that is unlinked from Q2Ω. In the
case that this QiΩ is also unlinked from the remaining projection QjΩ, one can say more
about the structure of A.

Proposition 4.4.3. Let A be a projection compressible type III subalgebra of Mn, and let
Ω be a pair in FIII(A).

(i) If Q3Ω is unlinked from Q1Ω and Q2Ω, then either Q2ΩRad(A)Q3Ω = Q2ΩMnQ3Ω; or
n3Ω = 1 and Q2ΩRad(A)Q3Ω = {0}.

(ii) If Q1Ω is unlinked from Q2Ω and Q3Ω, then either Q1ΩRad(A)Q2Ω = Q1ΩMnQ2Ω; or
n1Ω = 1 and Q1ΩRad(A)Q2Ω = {0}.

Proof. As in the previous proof it is easy that (ii) follows from (i) by replacing A with
AaT . Thus, it suffices to prove (i).

Assume that Q3Ω is unlinked from both Q1Ω and Q2Ω. Suppose for the sake of con-
tradiction that n3Ω ≥ 2 and Q2ΩRad(A)Q3Ω 6= Q2ΩMnQ3Ω. For each i ∈ {1, 2, 3}, let
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{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
be an orthonormal basis for ran(QiΩ), and assume that the basis for

ran(Q3Ω) is chosen so that 〈Re(3)
1 , e

(2)
1 〉 = 0 for all R ∈ Rad(A).

Define B =
{
e

(1)
1 , e

(2)
1 , e

(3)
1 , e

(3)
2

}
, let P denote the orthogonal projection onto the span

of B, and consider the compression A0 := PAP . As a consequence of Theorem 2.3.9, there
is a constant t ∈ C such that with respect to the basis B for ran(P ), each A in A0 admits
a matrix of the form

A =


α a12 a13 a14

β t(β − γ) a24

γ 0
γ


for some α, β, γ, and aij in C. Note that in the case that Q1Ω and Q2Ω are linked, α and
β must coincide for each A ∈ A0. In the case that they are unlinked, these values may be
chosen independently. With this in mind, the following arguments are applicable to either
setting.

Consider the matrices

P1 :=


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1

 and P2 :=


1 0 1 0
0 2 0 0
1 0 1 0
0 0 0 2

 ,

acting on ran(P ) and written with respect to the basis B. It is easy to see that 1
2
P1 and

1
2
P2 are subprojections of P . In addition, one may verify that every B ∈ P1A0P1 satisfies

the equation
〈Be(3)

1 , e
(2)
1 〉 − t〈Be

(2)
1 , e

(2)
1 〉+ t〈Be(3)

1 , e
(3)
1 〉 = 0.

Thus, if A belongs to A0 and C := (P1AP1)2, then

〈Ce(3)
1 , e

(2)
1 〉 − t〈Ce

(2)
1 , e

(2)
1 〉+ t〈Ce(3)

1 , e
(3)
1 〉 = 8〈Ae(3)

2 , e
(2)
1 〉
(
〈Ae(3)

1 , e
(1)
1 〉 − t〈Ae

(2)
1 , e

(1)
1 〉
)

must be zero. It follows that 〈Ae(3)
2 , e

(2)
1 〉 = 0 for all A ∈ A0, or 〈Ae(3)

1 , e
(1)
1 〉 = t〈Ae(2)

1 , e
(1)
1 〉

for all A ∈ A0. Indeed, it is clear that every member of A0 must satisfy at least one of these
equations. If, however, there were elements A1 and A2 in A0 such that 〈A1e

(3)
2 , e

(2)
1 〉 6= 0

and 〈A2e
(3)
1 , e

(1)
1 〉 6= t〈A2e

(2)
1 , e

(1)
1 〉, then neither equation would be satisfied by their sum.

If it were the case that 〈Ae(3)
2 , e

(2)
1 〉 = 0 for every A ∈ A0, then by viewing A0 as

an algebra of matrices with respect to the reordered basis
{
e

(1)
1 , e

(3)
2 , e

(2)
1 , e

(3)
1

}
for ran(P ),
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A0 would be seen to lack the projection compression property by Theorem 4.1.2. This is
clearly a contradiction, so it must be that

〈Ae(3)
1 , e

(1)
1 〉 = t〈Ae(2)

1 , e
(1)
1 〉 for all A.

From here one may verify that every B ∈ P2A0P2 satisfies the equation

2〈Be(3)
1 , e

(2)
1 〉 − t〈Be

(2)
1 , e

(2)
1 〉+ t〈Be(3)

2 , e
(3)
2 〉 = 0.

In particular, if A ∈ A0 is as above, then this equation must also hold for D := (P2AP2)2.
Since

2〈De(3)
1 , e

(2)
1 〉 − t〈De

(2)
1 , e

(2)
1 〉+ t〈De(3)

2 , e
(3)
2 〉 = 8t(β − γ)(α− γ)

and γ may be selected independently from α and β, we deduce that t = 0. It is now evident
that every A ∈ A0 can be expressed as a matrix of the form

A =


α 0 a12 a14

γ 0 0
β a24

γ


with respect to the basis

{
e

(1)
1 , e

(3)
1 , e

(2)
1 , e

(3)
2

}
for ran(P ). Thus, Theorem 4.1.2 provides

the required contradiction.

It must therefore be the case that Q2ΩRad(A)Q3Ω = Q2ΩMnQ3Ω or n3Ω = 1. Of course,
in the event that Q2ΩRad(A)Q3Ω 6= Q2ΩMnQ3Ω and hence n3Ω = 1, it follows immediately
that Q2ΩRad(A)Q3Ω = {0}. �

The preceding propositions will be key ingredients in our treatment of projection com-
pressible algebras of type III. Our analysis will proceed in the same spirit as those for
algebras of types I or II. We will begin in §4.4.1 by classifying the projection compress-
ible type III algebras for which the projections QiΩ are mutually unlinked. In §4.4.2, we
will classify the projection compressible type III algebras for which exactly two distinct
projections QiΩ and QjΩ are linked.

§4.4.1 Type III Algebras with Unlinked Projections

In this section we present a classification of the projection compressible type III algebras
for which the pairs Ω in FIII are such that no two distinct projections QiΩ and QjΩ are
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linked. Such algebras include the algebra from Example 4.1.1(i) when Q1 6= 0, Q3 6= 0 and
dimQ2 = 1; and the algebra from Example 4.1.1(ii). As the following theorem demon-
strates, every projection compressible type III algebra with mutually unlinked projections
is either transpose equivalent to the former, or transpose similar to the latter.

Theorem 4.4.4. Let A be a projection compressible type III subalgebra of Mn. If there is
a pair Ω in FIII(A) such that no two distinct projections QiΩ and QjΩ are linked, then A
is transpose equivalent to the type III algebra from Example 4.1.1(i), or transpose similar
to the algebra from Example 4.1.1(ii). Consequently, A is idempotent compressible.

Proof. Let Ω = (k,
⊕n

i=1 Vi) be a pair in FIII(A) as in the statement of the theorem. For

each i in {1, 2, 3}, fix an orthonormal basis
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
for ran(QiΩ).

Note that if Q1ΩRad(A)Q2Ω = Q1ΩMnQ2Ω and Q2ΩRad(A)Q3Ω = Q2ΩMnQ3Ω, then by
Lemma 2.3.10 (ii),

Rad(A) = Q1ΩMnQ2Ω uQ1ΩMnQ3Ω uQ2ΩMnQ3Ω.

In this case, A is the type III algebra from Example 4.1.1(i), so A is idempotent compress-
ible. It therefore suffices to consider the case in which Q1ΩRad(A)Q2Ω 6= Q1ΩMnQ2Ω or
Q2ΩRad(A)Q3Ω 6= Q2ΩMnQ3Ω.

By replacing A with AaT if necessary, we may assume without loss of generality that
Q2ΩRad(A)Q3Ω 6= Q2ΩMnQ3Ω. It then follows from Proposition 4.4.3 (i) that n3Ω = 1 and
Q2ΩRad(A)Q3Ω = {0}. Consequently, n1Ω ≥ 2 and hence Q1ΩRad(A)Q2Ω = Q1ΩMnQ2Ω

by Proposition 4.4.3 (ii).

The above observations imply that for every X ∈ Q1ΩMnQ2Ω, there exists an element
YX ∈ Q1ΩMnQ3Ω such that X + YX ∈ Rad(A). Additionally, as a consequence of Theo-
rem 2.3.9, there is a constant t ∈ C such that

〈Ae(3)
1 , e

(2)
1 〉 = t

(
〈Ae(2)

1 , e
(2)
1 〉 − 〈Ae

(3)
1 , e

(3)
1 〉
)

for all A ∈ A.

It therefore suffices to prove that Rad(A) = Q1ΩMn(Q2Ω +Q3Ω). Indeed, when this is the

case, consider the operator S := I − te(2)
1 ⊗ e

(3)∗
1 ∈Mn. One may verify that S is invertible

with S−1 = I + te
(2)
1 ⊗ e

(3)∗
1 , and S−1AS is the anti-transpose of the type III algebra from

Example 4.1.1(ii).

To this end, note that since Q1Ω, Q2Ω, and Q3Ω are mutually unlinked, there is an
element A1 ∈ A such that Q2ΩA1Q2Ω = Q2Ω and Q1ΩA1Q1Ω = Q3ΩA1Q3Ω = 0. With
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respect to the decomposition Cn = ran(Q1Ω)⊕ ran(Q2Ω)⊕ ran(Q3Ω), we may write

A1 =

 0 A12 A13

1 t
0


for some A12 ∈ Q1ΩMnQ2Ω and A13 ∈ Q1ΩMnQ3Ω. Thus, for any X ∈ Q1ΩAQ2Ω, there
exists YX ∈ Q1ΩAQ3Ω such that Rad(A) contains

(X + YX)A1 =

 0 X YX
0 0

0

 0 A12 A13

1 t
0

 =

 0 X tX
0 0

0

 .
We conclude that Rad(A) = R(1) uR(2) where

R(1) :=


 0 X tX

0 0
0

 : X ∈M(k−1)×1

 .

and R(2) := Rad(A) ∩Q1ΩMnQ3Ω.

We claim that R(2) must be equal to Q1ΩMnQ3Ω. Suppose to the contrary that this is
not the case. By changing the orthonormal basis for ran(Q1Ω) if necessary, we may assume
that

〈Y e(3)
1 , e

(1)
1 〉 = 0 for all Y ∈ R(2).

Consider the set B =
{
e

(1)
1 , e

(1)
2 , e

(2)
1 , e

(3)
1

}
and let P denote the orthogonal projection onto

the span of B. Define A0 to be the compression PAP , and accordingly, define

R(1)
0 := PR(1)P and R(2)

0 := PR(2)P.

Since A0 = S u Rad(A0) where S is similar to BD(A0) via a block upper triangular
similarity, there are constants u1, u2, v1, v2 ∈ C such that each A ∈ A0 can be written as

A =


α 0 v1(α− β) u1(α− γ)− tv1(β − γ)

α v2(α− β) u2(α− γ)− tv2(β − γ)
β t(β − γ)

γ

+


0 0 x1 tx1

0 x2 tx2

0 0
0

+


0 0 0 0

0 0 y
0 0

0

 .
where the above summands are expressed with respect to the basis B for ran(P ), and

belong to S, R(1)
0 , and R(2)

0 , respectively. We will obtain a contradiction by showing that
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a certain compression of A0 violates Theorem 4.1.2. To accomplish this goal, it will first
be necessary to prove that t = u1 = 0.

With this in mind, consider the matrices

P1 :=


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1

 , P2 :=


1 0 0 −1
0 2 0 0
0 0 2 0
−1 0 0 1

 , and P3 :=


1 0 1 0
0 2 0 0
1 0 1 0
0 0 0 2

 ,
acting on ran(P ) and written with respect to the basis B. It is clear that for each i, 1

2
Pi is

a subprojection of P . One may verify that if B1 = (b
(1)
ij ) and B2 = (b

(2)
ij ) belong to P1A0P1

and P2A0P2, respectively, then their entries satisfy the equations

4tb
(1)
14 + 2(tv1 − u1 + 1)b

(1)
34 − 2t2b

(1)
13 + t(tv1 − u1 − 1)b

(1)
22 − t(tv1 − u1 + 1)b

(1)
33 = 0, and

4tb
(2)
14 + 2(tv1 − u1 − 1)b

(2)
34 − 2t2b

(2)
13 + t(tv1 − u1 + 1)b

(2)
22 − t(tv1 − u1 − 1)b

(2)
33 = 0.

Let A0 denote the element of A0 obtained by setting α = β = x2 = y = 0 and γ = x1 = 1.
That is,

A0 =


0 0 1 tv1 − u1 + t

0 0 tv2 − u2

0 −t
1

 .
Since A is projection compressible, C1 := (P1A0P1)2 must satisfy the first equation above,

while C2 := (P2A0P2)2 must satisfy the second. But with C1 = (c
(1)
ij ) and C2 = (c

(2)
ij ), we

have

4tc
(1)
14 + 2(tv1 − u1 + 1)c

(1)
34 − 2t2c

(1)
13

+t(tv1 − u1 − 1)c
(1)
22 − t(tv1 − u1 + 1)c

(1)
33 = 8t2(tv1 − u1 − 1), and

4tc
(2)
14 + 2(tv1 − u1 − 1)c

(2)
34 − 2t2c

(2)
13

+t(tv1 − u1 + 1)c
(2)
22 − t(tv1 − u1 − 1)c

(2)
33 = −8t2(tv1 − u1 + 1).

Adding these equations, it becomes evident that t = 0. Consequently, Q1ΩR(1)
0 Q3Ω = {0}.
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We now prove that u1 = 0. Let A′0 denote the element of A0 obtained by setting
α = β = x1 = 1 and γ = x2 = y = 0. That is,

A′0 =


1 0 1 u1

1 0 u2

1 0
0

 .
Since any element B3 = (b

(3)
ij ) in P3A0P3 satisfies the equation 2b

(3)
14 − u1(b

(3)
22 − b

(3)
44 ) = 0,

it must be the case that the element C3 := (P3A
′
0P3)2 satisfies this equation as well. But

if C3 = (c
(3)
ij ), then 2c

(3)
14 − u1(c

(3)
22 − c

(3)
44 ) = 8u1. Therefore, u1 = 0.

We deduce that every element in A0 admits a matrix representation of the form
α u2(α− γ) + y 0 v2(α− β) + x2

γ 0 0
α v1(α− β) + x1

β


with respect to the reordered basis

{
e

(1)
2 , e

(3)
1 , e

(1)
1 , e

(2)
1

}
for ran(P ). Since the values of α,

β, and γ can be selected arbitrarily, an application of Theorem 4.1.2 shows that A0 is not
projection compressible—a contradiction.

The arguments above demonstrate that R(2) = Q1ΩMnQ3Ω. We therefore conclude that
Rad(A) = Q1ΩMn(Q2Ω +Q3Ω), and thus the proof is complete. �

§4.4.2 Type III Algebras with Linked Projections

Let us now consider the projection compressible type III algebras that admit pairs Ω ∈ FIII
with distinct mutually linked projections. By Proposition 4.4.2, it cannot be the case that
all three projections Q1Ω, Q2Ω, and Q3Ω are mutually linked.

We begin with the case in which there is a pair Ω ∈ FIII with Q2Ω linked to Q1Ω or Q3Ω.
One example of such an algebra is given by the type III algebra from Example 4.1.1(iii).
The following theorem demonstrates that this algebra is in fact, the only example up to
transpose equivalence.

Theorem 4.4.5. Let A be a projection compressible type III subalgebra of Mn. If there is
a pair Ω in FIII(A) such that Q2Ω is linked to Q1Ω or Q3Ω, then A is transpose equivalent
to the algebra from Example 4.1.1(iii). Consequently, A is idempotent compressible.
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Proof. Let Ω be as in the statement of the theorem. By replacing A with AaT if necessary,
we may assume without loss of generality thatQ1Ω is the projection that is linked to Q2Ω. In
this case, Proposition 4.4.2 (i) implies that n1Ω = 1 and Q1ΩRad(A)Q2Ω = Q1ΩMnQ2Ω. It
follows that n3Ω ≥ 2, and hence Q3Ω is unlinked from Q1Ω and Q2Ω by Proposition 4.4.2 (ii).
Finally, Proposition 4.4.3 implies that Q2ΩRad(A)Q3Ω = Q2ΩMnQ3Ω.

Fix operators T1 ∈ Q1ΩMnQ2Ω and T2 ∈ Q2ΩMnQ3Ω, the above observations imply that
there exist R1, R2 ∈ Rad(A) such that Q1ΩR1Q2Ω = T1 and Q2ΩR2Q3Ω = T2. With respect
to the decomposition Cn = ran(Q1Ω)⊕ ran(Q2Ω)⊕ ran(Q3Ω), we may write

R1 =

0 T1 R
(1)
13

0 0 R
(1)
23

0 0 0

 and R2 =

0 R
(2)
12 R

(2)
13

0 0 T2

0 0 0


for some operators R

(1)
ij and R

(2)
ij . From here it is easy to see that R1R2 = T1T2 ∈ Rad(A).

Since T1 and T2 were arbitrary, we conclude that Rad(A) contains Q1ΩMnQ3Ω.

It will now be shown that each block QiΩRad(A)QjΩ exists independently in Rad(A).
First, write A = S u Rad(A) where S is semi-simple. Since Q1Ω and Q2Ω are linked, S is
similar to C(Q1Ω + Q2Ω) + CQ3Ω via an upper triangular similarity. From this it follows
that Q1ΩSQ2Ω = {0}, and hence S contains an element A of the form

A =

0 0 A13

0 0 A23

0 0 I

 .
Using the fact that Q1ΩMnQ3Ω ⊆ Rad(A), we deduce that T2 = R2A − Q1ΩR2AQ3Ω

belongs to Rad(A). Since T2 was arbitrary, Rad(A) contains Q2ΩMnQ3Ω. Consequently,
T1 = R1 −Q1ΩR1Q3Ω −Q2ΩR1Q3Ω belongs to Rad(A). This proves that Rad(A) contains
Q1ΩMnQ2Ω, and therefore

Rad(A) = Q1ΩMnQ2Ω uQ1ΩMnQ3Ω uQ2ΩMnQ3Ω.

We conclude that A = C(Q1Ω + Q2Ω) + CQ3Ω u Rad(A) is the algebra from Exam-
ple 4.1.1(iii), as claimed. �

With the proof of Theorem 4.4.5 complete, we are left only to classify the projection
compressible type III algebras such that FIII contains a pair Ω in which Q1Ω and Q3Ω

linked, yet neither of these projections is linked to Q2Ω. It will be shown in Theorem 4.4.7
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that such an algebra is necessarily the unitization of an LR-algebra. Unsurprisingly, the
proof of this result shares many similarities with that of Theorem 4.3.6, the analogous result
for algebras of type II. One must modify the arguments in the type III case, however, to
reflect the absence of a block in BD(A) of size 2 or greater.

The first step in this direction is the following adaptation of Lemma 4.3.5 to the type III
setting.

Lemma 4.4.6. Let A be a projection compressible type III subalgebra of M4, and suppose
that FIII(A) contains a pair Ω = (k,

⊕4
i=1 Vi) with k = 3. Assume that Q1Ω and Q3Ω are

linked.

(i) If there exist a constant t ∈ C and for each i ∈ {1, 2, 3}, an orthonormal basis{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
for ran(QiΩ) such that

〈Ae(2)
1 , e

(1)
1 〉 = t

(
〈Ae(1)

1 , e
(1)
1 〉 − 〈Ae

(2)
1 , e

(2)
1 〉
)

for all A ∈ A,

then 〈Ae(3)
1 , e

(1)
1 〉 = −t〈Ae(3)

1 , e
(2)
1 〉 for every A ∈ A.

(ii) If there exist a constant t ∈ C and for each i ∈ {1, 2, 3}, an orthonormal basis{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
for ran(QiΩ) such that

〈Ae(3)
1 , e

(2)
1 〉 = t

(
〈Ae(2)

1 , e
(2)
1 〉 − 〈Ae

(3)
1 , e

(3)
1 〉
)

for all A ∈ A,

then 〈Ae(3)
1 , e

(1)
i 〉 = t〈Ae(2)

1 , e
(1)
i 〉 for every A ∈ A and each i ∈ {1, 2}.

Proof. First note that since Q1Ω and Q3Ω are linked, Proposition 4.4.2 implies that neither
of these projections is linked to Q2Ω.

We begin by considering the situation of (i). With respect to the basis B =
{
e

(1)
1 , e

(1)
2 , e

(2)
1 , e

(3)
1

}
for C4, each A in A can be expressed as a matrix of the form

A =


α 0 t(α− β) a14

α a23 a24

β a34

α


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for some α, β, and aij in C. Consider the matrix

P =


1 0 0 1
0 2 0 0
0 0 2 0
1 0 0 1

 .
It is straightforward to check that 1

2
P is a projection in M4 and every element B = (bij) in

PAP satisfies the equation 2b13− t(b22− b33) = 0. But if A ∈ A is as above, and C = (cij)
denotes the operator (PAP )2, then

2c13 − t(c22 − c33) = 8t(ta34 + a14)(α− β).

Since A is projection compressible, C belongs to PAP , and hence the right-hand side of
this equation must be 0 for all A. Since α and β may be chosen arbitrarily, it follows that
either t = 0 or a14 = −ta34 for all A in A.

If t = 0, then each A ∈ A can be expressed as a matrix of the form

A =


α a23 0 a24

β 0 a34

α a14

α


with respect to the reordered basis

{
e

(1)
2 , e

(2)
1 , e

(1)
1 , e

(3)
1

}
for C4. In this case, Theorem 4.1.2

demonstrates that a14 = 〈Ae(3)
1 , e

(1)
1 〉 = 0 for all A. Thus, the equation a14 = −ta34 holds

in either case. That is, 〈Ae(3)
1 , e

(1)
1 〉 = −t〈Ae(3)

1 , e
(2)
1 〉 for all A ∈ A.

We now turn our attention to the proof of (ii). In this setting, every A in A admits a
matrix representation of the form

A =


α 0 a13 a14

α a23 a24

β t(β − α)
α


with respect to the basis B =

{
e

(1)
1 , e

(1)
2 , e

(2)
1 , e

(3)
1

}
. With P as in (i), every element B = (bij)

in PAP satisfies the equation 2b34− t(b33− b22) = 0. It can be verified, however, that if A
is as above and C := (PAP )2 = (cij), then

2c34 − t(c33 − c22) = 8t(ta13 − a14)(α− β).
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Once again, it follows that either t = 0 or a14 = ta13 for all A ∈ A.

Suppose first that t = 0. Let P ′ denote the matrix

P ′ =


2 0 −1 −1
0 3 0 0
−1 0 2 −1
−1 0 −1 2

 ,
written with respect to the basis B, so 1

3
P ′ is a projection in M4. Direct computations

show that if B = (bij) belongs to P ′AP ′, then b33 + 2b31 − b43 − 2b41 − b22 = 0. But with
A as above and C := (P ′AP ′)2 = (cij), we have

c33 + 2c31 − c43 − 2c41 − c22 = 27a14(β − α).

Since α and β may be selected arbitrarily, it follows that a14 = 〈Ae(3)
1 , e

(1)
1 〉 = 0 for all A

in A. Thus, the equation a14 = ta13 holds in either case. That is,

〈Ae(3)
1 , e

(1)
1 〉 = t〈Ae(2)

1 , e
(1)
1 〉 for all A ∈ A.

Finally, by switching the order of the first two vectors in B and repeating the above
analysis with respect to this reordered basis, one may deduce that

〈Ae(3)
1 , e

(1)
2 〉 = t〈Ae(2)

1 , e
(1)
2 〉 for all A ∈ A.

Thus, the proof is complete. �

Theorem 4.4.7. Let A be a projection compressible type III subalgebra of Mn. If there
is a pair Ω in FIII(A) such that Q1Ω and Q3Ω are linked, then A is the unitization of an
LR-algebra. Consequently, A is idempotent compressible.

Proof. Let Ω be a pair in FIII(A) such that Q1Ω and Q3Ω are linked. By replacing A
with AaT if necessary, we will assume that n1Ω = max{n1Ω, n3Ω} ≥ 2. Note that by
Proposition 4.4.2, neither of these projections is linked to Q2Ω.

By Theorem 2.1.12, there are subprojections Q′1 ≤ Q1Ω and Q′3 ≤ Q3Ω such that

Q1ΩRad(A)Q2Ω = Q′1MnQ2Ω and

Q2ΩRad(A)Q3Ω = Q2ΩMnQ
′
3.
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As in the proof of Theorem 4.3.6, we will show that A is similar to

A0 := (Q′1 +Q2Ω)Mn(Q2Ω +Q′3) + CI,

and hence that A is the unitization of an LR-algebra. To show that this is the case, we
must first determine the structure of Q1ΩAQ3Ω.

Define projections Q′′1 := Q1Ω − Q′1 and Q′′3 := Q3Ω − Q′3. For each i ∈ {1, 3}, let{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
niΩ

}
be an orthonormal basis for ran(QiΩ) such that if Q′′i 6= 0, then

ran(Q′′i ) = ∨
{
e

(i)
1 , e

(i)
2 , . . . , e

(i)
`i

}
for some index `i ∈ {1, 2, . . . , niΩ}. Furthermore, let e

(2)
1 be a unit vector in ran(Q2Ω).

Since A is similar to BD(A)uRad(A) via an upper triangular similarity, there are matrices
T1 ∈ Q′′1MnQ2Ω and T2 ∈ Q2ΩMnQ

′′
3 such that for each A ∈ A,

Q′′1AQ2Ω = (Q′′1AQ
′′
1)T1 − T1(Q2ΩAQ2Ω) and

Q2ΩAQ
′′
3 = (Q2ΩAQ2Ω)T2 − T2(Q′′3AQ

′′
3).

We may obtain information on the structure of Q′′1AQ3Ω by appealing to Lemma 4.4.6.
Of course, there is little to be said when Q′′1 = 0. If instead Q′′1 6= 0, fix arbitrary
indices i ∈ {1, 2, . . . , `1}, i′ ∈ {1, 2, . . . , n1Ω} \ {i}, and j ∈ {1, 2, . . . , n3Ω}. Define

B =
{
e

(1)
i , e

(1)
i′ , e

(2)
1 , e

(3)
j

}
and let P denote the orthogonal projection onto the span of

B. With respect to the basis B for ran(P ), every member of PAP can be written as a
matrix of the form 

α 0 t
(1)
i (α− β) a14

α a23 a24

β a34

α

 ,
where t

(1)
i := 〈T1e

(2)
1 , e

(1)
i 〉. Thus, an application Lemma 4.4.6 (i) demonstrates that

〈Ae(3)
j , e

(1)
i 〉 = −t(1)

i 〈Ae
(3)
j , e

(2)
1 〉 for all A ∈ A.

Since the indices i, i′, and j were selected arbitrarily, it follows that

Q′′1AQ3Ω = −T1Q2ΩAQ3Ω for all A ∈ A.
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A similar argument can be used to determine the structure of Q1ΩAQ′′3. Indeed, there
is nothing to be said when Q′′3 = 0. If instead Q′′3 6= 0, choose distinct indices i and i′ in

{1, 2, . . . , n1Ω}, and let j ∈ {1, 2, . . . , `3} be arbitrary. Define C =
{
e

(1)
i , e

(1)
i′ , e

(2)
1 , e

(3)
j

}
, and

let P ′ denote the orthogonal projection onto the span of C. The compression P ′AP ′ is an
algebra of the form described in Lemma 4.4.6 (ii), and hence this result indicates that each
A ∈ A satisfies the equation

〈Ae(3)
j , e

(1)
i 〉 = t

(2)
j 〈Ae

(2)
1 , e

(1)
i 〉,

where t
(2)
j := 〈T2e

(3)
j , e

(2)
1 〉. Again, the fact that i, i′, and j were chosen arbitrarily implies

that Q1ΩAQ
′′
3 = Q1ΩAQ2ΩT2 for all A ∈ A.

Our findings thus far indicate that with respect to the decomposition

Cn = ran(Q′′1)⊕ ran(Q′1)⊕ ran(Q2Ω)⊕ ran(Q′′3)⊕ ran(Q′3),

each A in A can be expressed as a matrix of the form

A =


αI 0 (α− β)T1 A14 A15

αI J1 A24 A25

β (β − α)T2 J2

αI 0
αI

 ,
for some α, β ∈ C, J1 ∈ Q′1Rad(A)Q2Ω, J2 ∈ Q2ΩRad(A)Q′3, and operators Aij satisfying
the equations

[
A14 A15

]
= −T1

[
(β − α)T2 J2

]
and

[
A14

A24

]
=

[
(α− β)T1

J1

]
T2.

To see that A is similar to A0 = (Q′1 + Q2Ω)Mn(Q2Ω + Q′3) + CI, and hence is the
unitization of an LR-algebra, consider the operator S := I−T1−T2. This map is invertible
with S−1 = I + T1 + T2 + T1T2. In addition, we have that for A as above,

S−1AS =


αI 0 0 0 0

αI J1 0 A25

β 0 J2

αI 0
αI

 .
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It is now apparent that S−1AS is a type III algebra that admits a reduced block upper
triangular form with respect to the above decomposition. Since

Q1ΩRad(S−1AS)Q2Ω = Q′1Rad(A)Q2Ω = Q′1MnQ2Ω and

Q2ΩRad(S−1AS)Q3Ω = Q2ΩRad(A)Q′3 = Q2ΩMnQ
′
3,

it follows from Lemma 2.3.10 (ii) that S−1AS = (Q′1 +Q2Ω)Mn(Q2Ω +Q′3) +CI = A0. �

§4.5 Main Results and Applications

The analysis of unital projection compressible subalgebras of Mn, n ≥ 4, carried out in §4.1-
4.4 provides a complete description of these algebras up to transpose similarity. In addition,
it was observed that every unital projection compressible algebra in this setting also admits
the idempotent compression property. We therefore obtain the following theorem, the main
result of this chapter.

Theorem 4.5.1. Let A be a unital subalgebra of Mn for some integer n ≥ 4. The following
are equivalent.

(i) A is projection compressible;

(ii) A is idempotent compressible;

(iii) A is the unitization of an LR-algebra, or A is transpose similar to one of the algebras
from Example 4.1.1.

Combining Theorems 3.2.7 and 4.5.1, we conclude that the two notions of compress-
ibility coincide for all unital algebras.

Theorem 4.5.2. A unital subalgebra A of Mn, n ≥ 2, is projection compressible if and
only if it is idempotent compressible.

In light of Theorem 4.5.2, we make the following definition.

Definition 4.5.3. A unital subalgebra A of Mn is compressible if A is projection com-
pressible (equivalently, if A is idempotent compressible).
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It is worth noting that nearly all of the classification results from §4.1-4.4 describe
the various unital compressible subalgebras of Mn up to transpose equivalence, not just
transpose similarity. Indeed, the only instance in which a description up to transpose
equivalence was not achieved was in Theorem 4.4.4. There it was shown that a projection
compressible type III algebra is either transpose equivalent to the type III algebra from
Example 4.1.1(i), or transpose similar to the algebra from Example 4.1.1(ii).

The following proposition describes the similarity orbit of the algebra from Exam-
ple 4.1.1(ii) up to unitary equivalence, thereby providing a characterization of the (unital)
compressible subalgebras of Mn, n ≥ 4, up to transpose equivalence.

Proposition 4.5.4. Let n ≥ 3 be an integer, let Q1 and Q2 be mutually orthogonal rank-
one projections in Mn, and define Q3 := I−Q1−Q2. Let {e1, e2, . . . , en} be an orthonormal
basis for Cn such that e1 ∈ ran(Q1), e2 ∈ ran(Q2), and ei ∈ ran(Q3) for all i ≥ 3. If

A := CQ1 + CQ2 + CQ3 + (Q1 +Q2)MnQ3

=


α 0 M13

0 β M23

0 0 γI

 : α, β, γ ∈ C,Mij ∈ QiMnQj


denotes the compressible algebra from Example 4.1.1(ii), and B is an algebra that is similar
to A, then there is some t ∈ C such that B is unitarily equivalent to

At := {A+ t (〈Ae1, e1〉 − 〈Ae2, e2〉) e1 ⊗ e∗2 : A ∈ A}

=


α t(α− β) M13

0 β M23

0 0 γI

 : α, β, γ ∈ C,Mij ∈ QiMnQj

 .

Proof. Suppose that B = S−1AS for some invertible S ∈ Mn. For all indices i ∈ {1, 2}
and j ∈ {3, 4, . . . , n}, define Eij := ei ⊗ e∗j and E ′ij := S−1EijS. Furthermore, define
Q′i := S−1QiS for i ∈ {1, 2, 3}. Observe that

B = S−1AS = span
{
Q′1, Q

′
2, Q

′
3, E

′
ij : i ∈ {1, 2}, j ∈ {3, 4, . . . , n}

}
.

Let {f1, f2, . . . , fn} be an orthonormal basis for Cn such that f1 and f2 belong to
ker(Q′3). Let P1, P2, and P3 denote the orthogonal projections onto Cf1, Cf2, and
span {fi : i ≥ 3} = ker(Q′3)⊥, respectively. Since P3Q

′
3P3 = P3 and Q′3Q

′
1 = Q′3Q

′
2 = 0, we

have that Q′1 = (P1 + P2)Q′1 and Q′2 = (P1 + P2)Q′2.
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Note that since Q′1Q
′
2 = Q′2Q

′
1 = 0, we may adjust the first two basis vectors if neces-

sary to assume that Q′1 and Q′2 are upper triangular with respect to {f1, f2, . . . , fn}, and
〈Q′ifj, fj〉 = δij for i, j ∈ {1, 2}. Thus, there are matrices Xij, Yij, and Zij, and a constant
t ∈ C such that with respect to the decomposition Cn = ran(P1)⊕ ran(P2)⊕ ran(P3),

Q′1 =

 1 t X13

0 0 0
0 0 0

 , Q′2 =

 0 −t Y13

0 1 Y23

0 0 0

 , and Q′3 =

 0 0 Z13

0 0 Z23

0 0 I

 .
Finally, since E ′ij = (Q′1 +Q′2)E ′ijQ

′
3, we have that E ′ij = (P1 + P2)E ′ijP3 for all indices

i and j. Dimension considerations then imply that

span
{
E ′ij : i ∈ {1, 2}, j ∈ {3, 4, . . . , n}

}
= (P1 + P2)MnP3,

and therefore

B = {B + t (〈Bf1, f1〉 − 〈Bf2, f2〉) f1 ⊗ f ∗2 : B ∈ CP1 + CP2 + CP3 + (P1 + P2)MnP3} .

We conclude that At = U∗BU where U ∈Mn is the unitary satisfying Uei = fi. �

Corollary 4.5.5. Let n ≥ 4 be an integer, and let A be a unital subalgebra of Mn. The
following are equivalent.

(i) A is compressible;

(ii) A is the unitization of an LR-algebra, or A is transpose equivalent to the algebra
from Example 4.1.1(i), the algebra from Example 4.1.1(iii), or the algebra At from
Proposition 4.5.4.

Remark 4.5.6. The above result, together with Theorem 4.5.1, implies that if A is trans-
pose similar to an algebra from Theorem 4.5.1 (iii), then A is transpose equivalent to an
algebra from Corollary 4.5.5 (ii). Indeed, Proposition 4.5.4 makes this fact explicit for
the algebra in Example 4.1.1(ii), while in §2.1 it was shown that the class of LR-algebras
is invariant under transpose similarity. Arguments akin to those in the proof of Propo-
sition 4.5.4 can be used to show that any algebra transpose similar to the algebra from
Example 4.1.1(i) (resp. Example 4.1.1(iii)) is in fact, transpose equivalent to it.
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§4.5.1 Applications

Here we investigate some of the applications of the classification of unital compressible
algebras. It follows from Theorem 4.5.2 that the class of all such algebras is invariant under
similarity and transposition. Using this fact, it is relatively straightforward to determine
which unital semi-simple algebras admit the compression property.

Corollary 4.5.7. Let n ≥ 2 be an integer, and let A be a unital, semi-simple subalgebra
of Mn. The following are equivalent:

(i) A is compressible;

(ii) A = CI or A is similar to Mk ⊕ CIn−k for some positive integer k.

Proof. Since CI and Mk ⊕ CIn−k are unitizations of LR-algebras, it is obvious that (ii)
implies (i). Assume now that (i) holds, so A is a unital, semi-simple subalgebra of Mn

that admits the compression property. Assume as well that A is in reduced block upper
triangular form with respect to some orthogonal decomposition

⊕m
i=1 Vi of Cn. By Theo-

rem 2.3.9, A is similar to B := BD(A). It therefore suffices to prove that B is similar to
an algebra of the form prescribed in (ii).

If n = 2, then B is equal to CI, C ⊕ C, or M2, and hence B is of the desired form. If
instead n = 3, then either B is equal to CI or M3, or B is unitarily equivalent to C⊕ CI2

or M2 ⊕ C. Indeed, the only other block diagonal subalgebra of M3 is the algebra of all
3 × 3 diagonal matrices. This algebra was shown to lack the compression property in
Theorem 3.2.6, and hence cannot be similar to B. Again we see that (ii) holds.

Suppose now that n ≥ 4. By Theorem 4.1.2, there is at most one space Vi of dimension
2 or greater. If such a space exists, we may reindex the sum

⊕m
i=1 Vi if necessary and

assume that dim(V1) = k ≥ 2. Theorem 4.1.2 then implies that Vi is linked to Vj for all
i, j ≥ 2, so B = Mk ⊕ CIn−k. If instead dimVi = 1 for all i, then Theorem 4.1.2 indicates
that with at most one exception, all spaces Vi are mutually linked. Thus, B is equal to CI
or is unitarily equivalent to C⊕ CIn−1. �

Theorem 4.5.1 can also be used to quickly identify the operators T ∈ Mn such that
Alg(T, I)—the unital algebra generated by T—is compressible.

Corollary 4.5.8. Let n ≥ 2 be an integer, and let T ∈Mn. The following are equivalent:

(i) Alg(T, I) is compressible;
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(ii) Alg(T, I) is the unitization of an LR-algebra;

(iii) T ∈ span{I, R} for some R ∈Mn of rank 1.

Proof. It is clear that (ii) implies (i). To see that (i) implies (iii), assume that Alg(T, I)
is compressible. It follows that Alg(S−1TS, I) = S−1Alg(T, I)S is compressible for all
invertible S ∈ Mn; hence we may assume that T is in Jordan canonical form with respect
to the standard basis {e1, e2, . . . , en} for Cn.

If T has a Jordan block of size at least 3, then Alg(T, I) admits a principal compression
of the form 

x y z
0 x y
0 0 x

 : x, y, z ∈ C

 .

Since this algebra was shown to lack the compression property in Theorem 3.2.4, it must
be the case that each Jordan block of T has size at most 2. Note as well that if two
or more Jordan blocks of size 2 were present, then Alg(T, I) would lack the compression
property by Theorem 4.1.2. Consequently, T has at most one Jordan block of size 2, and
the remaining blocks have size 1.

If a Jordan block of size 2 occurs, then T cannot have two or more distinct eigenvalues.
Indeed, if T had at least two distinct eigenvalues, then Alg(T, I) would admit a principal
compression that is unitarily equivalent to

x y 0
0 x 0
0 0 z

 : x, y, z ∈ C

 .

By Theorem 3.2.2, this algebra is not compressible—a contradiction. Thus, T must be
unitarily equivalent to e1 ⊗ e∗2 + αI for some α ∈ C. We conclude that T = αI + R for
some R in Mn of rank 1.

Suppose now that every Jordan block of T is 1 × 1, so T is diagonal. If T had at
least three distinct eigenvalues, then the algebra D of all 3× 3 diagonal matrices could be
obtained as a principal compression of Alg(T, I). Since no algebra similar to D is projection
compressible by Theorem 3.2.6, this is not possible. Therefore, T has at most two distinct
eigenvalues. By Theorem 4.1.2, one of the eigenvalues must have multiplicity 1. We deduce
that either T has exactly one eigenvalue, and hence is a multiple of the identity; or T has
exactly two eigenvalues, and hence is a rank-one perturbation of a multiple of the identity.
Thus, (iii) holds in this case as well.
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Finally, we will show that (iii) implies (ii). Suppose that T ∈ span{I, R} for some
rank-one operator R ∈ Mn. That is, T = αI + βR for some α, β ∈ C. If β = 0, then
Alg(T, I) = CI. Otherwise, βR has rank 1, and hence Alg(T, I) = Alg(βR) + CI is the
unitization of an LR-algebra by Proposition 2.1.15. �

It is interesting to note that in the 3-dimensional case, the matrices of the form αI+βR
for some α, β ∈ C and R ∈ M3 of rank one are exactly those with two or more Jordan
blocks corresponding to a common eigenvalue. Such matrices are said to be derogatory [12,
Definition 1.4.4]. One may therefore view Corollary 4.5.8 as a higher-dimensional analogue
of Corollary 3.1.3.

§4.6 Future Directions and Open Questions

Throughout this exposition we have devoted our attention almost exclusively to unital
subalgebras of Mn. Of course, it is reasonable to ask which non-unital algebras admit the
projection or idempotent compression properties. In particular, it would be interesting to
know whether or not the equivalence of these notions established in this manuscript in the
unital case extends to non-unital algebras as well.

Question 1. For each integer n ≥ 3, which non-unital subalgebras of Mn admit the pro-
jection compression property? Is it true that the notions of projection compressibility and
idempotent compressibility coincide for non-unital subalgebras of Mn?

By Proposition 2.1.9, if a subalgebra A of Mn admits the projection (resp. idempotent)
compression property, then so too does its unitization. Theorems 3.2.7 and 4.5.1 therefore
offer considerable insight into which non-unital projection (resp. idempotent) compressible
algebras can exist in Mn. For instance, Theorem 4.5.1 indicates that if A is a projection
compressible subalgebra of Mn, n ≥ 4, then Ã is the unitization of an LR-algebra or
transpose similar to one of the algebras from Example 4.1.1.

The approach to studying the compression properties of a non-unital algebra by exam-
ining these properties for its unitization is used in the proof of the following proposition.
This result is a non-unital analogue of Corollary 4.5.8.

Proposition 4.6.1. Let n ≥ 3 be an integer, and let T ∈Mn. The following are equivalent:

(i) Alg(T ) is projection compressible;
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(ii) Alg(T ) is idempotent compressible;

(iii) Alg(T ) is an LR-algebra, or the unitization thereof;

(iv) T ∈ span{I, R} for some R ∈ Mn of rank 1, and 0 does not occur as an eigenvalue
of T with algebraic multiplicity 1.

Proof. It is clear that (iii) implies (ii), and (ii) implies (i).

To see that (i) implies (iv), note that if Alg(T ) is projection compressible, then so
too is Alg(T, I). By Corollary 4.5.8, there is a rank-one operator R ∈ Mn such that
T ∈ span{I, R}. For the final claim, write T = αI + βR for some α, β ∈ C, and suppose
to the contrary that λ = 0 is an eigenvalue of T with algebraic multiplicity 1. Since
rank(R) = 1, there is an orthonormal basis {e1, e2, . . . , en} for Cn with respect to which

βR = γ1e1 ⊗ e∗1 + γ2e1 ⊗ e∗2

for some constants γ1, γ2 ∈ C. Thus, when expressed as a matrix with respect to this
basis, T is upper triangular with diagonal entries α + γ1 with multiplicity 1, and α with
multiplicity n− 1. It must therefore be the case that α + γ1 = 0 and α 6= 0.

Let P denote the orthogonal projection onto span {e1, e2, e3} and define T ′ := PTP .
With respect to the ordered basis B = {e1, e2, e3} for ran(P ),

T ′ =

0 γ2 0
0 α 0
0 0 α

 .
Thus, since Alg(T ) = CT is projection compressible, P ′Alg(T )P ′ = CP ′T ′P ′ is an algebra
for all projections P ′ ≤ P . Consider the matrix

P ′ =

1 0 1
0 2 0
1 0 1

 ,
written with respect to the basis B. It is easy to see that 1

2
P ′ is a subprojection of P .

Moreover, it is straightforward to show that 〈Be2, e2〉 = 4〈Be1, e1〉 for all B ∈ P ′Alg(T )P ′.
One may verify, however, that

〈(P ′TP ′)2e2, e2〉 − 4〈(P ′TP ′)2e1, e1〉 = 8α2 6= 0,

and thus (P ′TP ′)2 /∈ P ′Alg(T )P ′. This is clearly a contradiction.
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It remains to show that (iv) implies (iii). To this end, let T and R be as in (iv), and
write T = αI + βR for some α, β ∈ C. Let {e1, e2, . . . , en} be an orthonormal basis for Cn

with respect to which
βR = γ1e1 ⊗ e∗1 + γ2e1 ⊗ e∗2

for some γ1, γ2 ∈ C.

First suppose that α = 0, so Alg(T ) = Alg(βR). If β = 0 then this algebra is trivial.
Otherwise, Alg(T ) is an LR-algebra by Proposition 2.1.15. If instead α 6= 0, then our
assumptions on T imply that α + γ1 6= 0. Consequently,

I =

(
1

α
+

1

α + γ1

)
T − 1

α(α + γ1)
T 2 ∈ Alg(T ).

It follows that Alg(T ) = Alg(T, I), so Alg(T ) is the unitization of an LR-algebra by
Corollary 4.5.8. �

The following result may be a useful tool in the classification of non-unital projection
compressible subalgebras of Mn. It outlines a simple necessary condition that may prevent
several non-unital algebras from admitting the projection compression property.

Proposition 4.6.2. Let B = {e1, e2, e3} denote the standard basis for C3. Let A be a
subalgebra of M3 consisting of matrices that are upper triangular with respect to {e1, e2, e3},
and such that 〈Ae2, e2〉 = 0 for all A ∈ A. If there exists an element A ∈ A such that
〈Ae1, e1〉 6= 〈Ae2, e1〉 and 〈Ae3, e3〉 6= 〈Ae3, e2〉, then A is not projection compressible.

Proof. Let A be as in the statement above. Consider the matrix

P =

 2 −1 −1
−1 2 −1
−1 −1 2


written with respect to B, and note that 1

3
P is a projection in M3. It is routine to

verify that any B = (bij) in PAP satisfies the equation b21 − b31 − b22 + b32 = 0. But if
C := (PAP )2 = (cij), then

c21 − c31 − c22 + c32 = 27 (〈Ae1, e1〉 − 〈Ae2, e1〉) (〈Ae3, e3〉 − 〈Ae3, e2〉) 6= 0

Consequently, C does not belong to PAP , so A is not projection compressible. �
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As an immediate consequence of the above result, the subalgebra of M3 consisting of
all matrices that are strictly upper triangular with respect to the standard basis is not
projection compressible.

The notions of projection compressibility and idempotent compressibility can be nat-
urally extended to algebras of bounded linear operators acting on a Hilbert space H of
arbitrary dimension. It would therefore be interesting to determine whether or not ana-
logues of our results can be established in this setting.

Question 2. Let H be complex infinite-dimensional Hilbert space, and let B(H) denote the
algebra of all bounded linear operators acting on H. Which subalgebras of B(H) admit the
projection compression property? Is it true that every projection compressible algebra is in
fact, idempotent compressible?

Certain elementary results on compressible subalgebras of Mn are easily seen to general-
ize to subalgebras of B(H). For instance, it is clear that both the projection and idempotent
compression properties pass to unitizations and are enjoyed by (not necessarily closed) one-
or two-sided ideals of B(H). We note, however, that much of our analysis from Chapters 3
and 4 will not immediately carry over to the infinite-dimensional setting, as there does not
exist a direct analogue of Burnside’s Theorem for general operator algebras.

One approach to understanding the structure of a projection (resp. idempotent) com-
pressible operator algebra A would be to apply Theorems 3.2.7 and 4.5.1 to the unital
compressions PÃP , where P is a projection (resp. idempotent) of finite rank. This tech-
nique may have its limits, however, as there could exist operator algebras A that lack
the projection compression property, yet such that PAP is an algebra for all finite-rank
projections P .

With this in mind, the most viable avenue for understanding the compression properties
in this setting may be to first obtain an explanation as to why these notions coincide for
unital subalgebras of Mn. Despite a considerable amount of effort, we have been unable to
provide a direct proof of this fact that does not involve characterizing each class of algebras.
Such a proof might help to explain why these algebras have the particular structures seen
throughout Chapters 3 and 4.
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Chapter 5

The Distance from a Rank n− 1
Projection to the Nilpotents

In this chapter we address the problem of computing νn−1,n, the distance from a projection
of rank n− 1 to the set of nilpotent operators acting on Cn. We begin by establishing the
notation that will be used throughout.

Fix a positive integer n ≥ 3. As in previous chapters, let Mn = Mn(C) denote the
algebra of all complex n × n matrices. Let {e1, e2, . . . , en} denote the standard basis for
Cn, and define Tn to be the subalgebra of Mn consisting of all matrices that are strictly
upper triangular with respect to {ei}ni=1. Finally, let E0 = 0, and define

Ek :=
k∑
i=1

ei ⊗ e∗i for k ∈ {1, 2, . . . , n}.

In Chapter 1 it was observed that the distance νn−1,n is always achieved by some
projection-nilpotent pair. Thus, since one may assume without loss of generality that a
given nilpotent is upper triangular with respect to {ei}ni=1, we have that

νn−1,n = min {‖Q−N‖ : Q ∈ P(Cn), rank(Q) = n− 1, N ∈ Tn} .

With this in mind, fix a projection Q = (qij) of rank n− 1 that is of distance νn−1,n to Tn.
In addition, let P = (pij) denote the rank-one projection I −Q.

As was the case in MacDonald’s computation of ν1,n, the Arveson Distance Formula
will play a key role in our determination of νn−1,n. This result was introduced in Chapter 1,
though we restate it below for convenience.
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Theorem 5.0.3 (Arveson Distance Formula). The distance from an operator A ∈ Mn to
Tn is

dist(A, Tn) = max
1≤i≤n

‖E⊥i−1AEi‖.

The key application of the Arveson Distance Formula occurs in §5.1. There we derive
closed-form expressions for the norms ‖E⊥i−1QEi‖ in terms of the entries of Q. Next, we
use the minimality of dist(Q, Tn), together with the expressions for ‖E⊥i−1QEi‖, to prove
that all such norms necessarily share a common value. In particular, this will imply that
‖E⊥i−1QEi‖ = νn−1,n for all i.

In §5.2, we use the equations ‖E⊥i−1QEi‖ = νn−1,n, together with some basic algebraic
properties of Q, to derive a finite list of candidates for νn−1,n. A closer examination of these
candidates reveals that exactly one of them satisfies a certain necessary norm inequality
from [17], and hence this value must be νn−1,n.

In §5.3, we present a construction of all closest projection-nilpotent pairs. Additionally,
we prove that any two such pairs are unitarily equivalent.

Finally, in §5.4, we discuss possible extensions of these results to projections of inter-
mediate ranks. In particular, we conjecture a general formula for νr,n which appears to
closely resemble estimates for νr,n for small values of n.

§5.1 Equality in the Arveson Distance Formula

The goal of this section is to derive a sequence of equations relating the entries of Q to the
distance νn−1,n. Our strategy will be to use the algebraic relations satisfied by the entries
of Q to derive closed-form expressions for the norms ‖E⊥i−1QEi‖. Next, we will relate these
expression to νn−1,n through the Arveson Distance Formula.

We begin with a few important observations regarding the structure of the projections
P and Q. Note that since P has rank one, any 2× 2 principal compression of P must be
singular. It follows that the determinant of[

pii pij
pij pjj

]
is zero for any choice of distinct indices i and j, and thus there are complex numbers zij
of modulus 1 such that

pij = zij
√
piipjj.
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As a result, the entries of Q satisfy

qij = −zij
√

(1− qii)(1− qjj) for all i 6= j.

It would be cumbersome to keep track of the complex numbers zij throughout the
coming analysis. Fortunately, however, the following result indicates that one may assume
without loss of generality that each zij is equal to 1.

Lemma 5.1.1. If R ∈ Mn is a rank-one projection, then there is a diagonal unitary
U ∈Mn such that the entries of S := U∗RU are non-negative real numbers. Furthermore,
‖E⊥i−1SEi‖ = ‖E⊥i−1REi‖ for all i.

Proof. Suppose that R = (rij) with respect to the standard basis, and choose an index k
so that rkk 6= 0. Clearly such a k exists as Tr(R) > 0. Let U = diag(u1, u2, . . . , un) denote
the diagonal unitary in Mn obtained by setting uk = 1 and

uj =

{
|rkj|/rkj if rkj 6= 0
1 if rkj = 0

for j ≥ 2.

If S := U∗RU = (sij), then sij = uiujrij. In particular, sjj = rjj and skj = |rkj| for all j.
Note that since S has rank 1 and skk = rkk 6= 0, every row of S is a multiple of the kth row.
But S has a non-negative diagonal and non-negative kth row, so every row of S must be a
non-negative multiple of the kth row. Finally, it is evident that ‖E⊥i−1SEi‖ = ‖E⊥i−1REi‖
for all i, as each projection Ei commutes with U . �

By Lemma 5.1.1, one may assume that the rank n−1 projection Q of minimal distance
to Tn is such that every entry of P = I −Q is a non-negative real number. It then follows
that the entries pij and qij satisfy the relations

pij =
√
piipjj and qij = −

√
(1− qii)(1− qjj) for all i 6= j. (5.1)

These equations quickly lead to the useful identities

pijpik = piipjk and qijqik = −qjk(1− qii) for all i, j, k distinct. (5.2)

In the case of rank-one projections, MacDonald derived the distance formula of The-
orem 1.0.2 by analysing a certain sequence {ai}ni=0 associated to such a projection. For
P = (pij), this sequence is defined by setting a0 = 0 and

ak =
k∑
i=1

pii = k −
k∑
i=1

qii, k ∈ {1, 2, . . . , n}. (5.3)
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When the entries of P are non-negative, P and Q are entirely determined by this sequence.
Indeed,

P = e⊗ e∗ and Q = I − e⊗ e∗

where e =
[√

a1 − a0

√
a2 − a1 · · ·

√
an − an−1

]T
. In particular, the diagonal entries

of P and Q are given by

pkk = ak − ak−1 and qkk = 1− (ak − ak−1), k ∈ {1, 2, . . . , n}. (5.4)

Note that {ai}ni=0 increases monotonically from a0 = 0 to an = Tr(P ) = 1. Moreover,
by considering the projection P = e ⊗ e∗ with e as above, it follows that any sequence
increasing monotonically from 0 to 1 can be obtained in this way. We record this fact
below for future reference.

Lemma 5.1.2. If {ai}ni=0 is a sequence that increases monotonically from a0 = 0 to an = 1,
then there is a rank-one projection R = (rij) in Mn such that rij ≥ 0 for all i and j, and

ak =
∑k

i=1 rii for each k ∈ {1, 2, . . . , n}.

In [16], MacDonald computed the values of ‖E⊥i−1PEi‖ in terms of the sequence {ai}ni=0

and subsequently proved that all such norms must be equal when P is of minimal distance
to Tn. Our goal is to translate MacDonald’s arguments to the case in which Q is of minimal
distance to Tn. Namely, we wish to obtain a formula for ‖E⊥i−1QEi‖ in terms of {ai}ni=0

and demonstrate that when Q is of minimal distance to Tn, these norms share a common
value.

The first step in this direction occurs in Lemma 5.1.5 wherein we analyse the singular
values of E⊥k−1QEk. The proof of this result requires the following classical theorem of
Cauchy (see [12, Theorem 4.3.17]).

Theorem 5.1.3 (Cauchy’s Interlacing Theorem). Let B be a self-adjoint matrix in Mn.

Fix an integer k ∈ {1, 2, . . . , n}, and let B̂ ∈ Mn−1 be the self-adjoint matrix obtained by
deleting the kth row and kth column from B. If λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of
B, and µ1 ≤ µ2 ≤ · · · ≤ µn−1 are the eigenvalues of B̂, then

λj ≤ µj ≤ λj+1

for all j ∈ {1, 2, . . . , n− 1}.
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The following corollary to Theorem 5.1.3 highlights an important fact concerning self-
adjoint operators with repeated eigenvalues. This fact will be a key tool in the proof of
Lemma 5.1.5.

Corollary 5.1.4. Let B be a self-adjoint matrix in Mn. Fix an integer k ∈ {1, 2, . . . , n},
and let B̂ ∈Mn−1 be the self-adjoint matrix obtained by deleting the kth row and kth column
from B.

(i) If λ is an eigenvalue of B with multiplicity m ≥ 2, then λ is an eigenvalue of B̂ with
multiplicity at least m− 1.

(ii) If λ is an eigenvalue of B̂ with multiplicity m ≥ 2, then λ is an eigenvalue of B with
multiplicity at least m− 1.

We are now prepared to give a description of the singular values of E⊥k−1QEk, and
therefore a description of ‖E⊥k−1QEk‖, k ∈ {1, 2, . . . , n}.

Lemma 5.1.5. Let Q = (qij) be a projection in Mn of rank n−1, and let {ai}ni=0 denote the
non-decreasing sequence from equation (5.3). For k ∈ {1, 2, . . . , n}, define Qk := E⊥k−1QEk,
and let Bk denote the restriction of Q∗kQk to the range of Ek.

(i) If qij ≤ 0 for all i 6= j, then the entries of Bk = (bij) are given by

bij =


qkk − ak−1(1− qkk) if i = j = k,

(1− ak−1)(1− qii) if i = j 6= k,

−(1− ak−1)qij if i, j, k are distinct,

ak−1qij otherwise.

(ii) If λ1 ≤ λ2 ≤ . . . ≤ λk are the eigenvalues of Bk, then

λi =


Tr(Bk)+

√
2Tr(B2

k)−Tr(Bk)2

2
if i = k,

Tr(Bk)−
√

2Tr(B2
k)−Tr(Bk)2

2
if i = k − 1,

0 otherwise.

In particular,

‖Qk‖2 =
Tr(Bk) +

√
2Tr(B2

k)− Tr(Bk)2

2
.
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Proof. First, suppose that qij ≤ 0 for all i 6= j. Since Q is idempotent, its entries qij satisfy
the equation

qij =
n∑
`=1

qi`q`j.

This equation, together with the identities from (5.2), allows one to compute the entries
of Bk directly. Indeed,

bkk = q2
kk + q2

k+1,k + · · ·+ q2
nk

= qkk − q2
1k − q2

2k − · · · − q2
k−1,k

= qkk −
k−1∑
`=1

(1− q``)(1− qkk) = qkk − ak−1(1− qkk),

and if i 6= k, then

bii = q2
ki + q2

k+1,i + · · ·+ q2
ni

= qii − q2
1i − q2

2i − · · · − q2
k−1,i

= qii − q2
ii −

k−1∑
`=1,`6=i

(1− q``)(1− qii)

= (1− qii)

(
(k − 2)−

k−1∑
`=1

q``

)
= (1− ak−1)(1− qii).

If i, j, and k are all distinct, then

bij = qkiqkj + qk+1,iqk+1,j + · · ·+ qniqnj

= qij − q1iq1j − q2iq2j − · · · − qk−1,iqk−1,j

= qij − qiiqij − qjiqjj +
k−1∑

`=1,`6=i,j

qij(1− q``)

= qij

(
(k − 2)−

k−1∑
`=1

q``

)
= −(1− ak−1)qij.

Lastly, either i < j = k or j < i = k. Since Bk = B∗k, it suffices to establish the formula
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for bij in the case that i < j = k. We have

bik = qkiqkk + qk+1,iqk+1,k + · · ·+ qniqnk

= qik − q1iq1k − q2iq2k − · · · − qk−1,iqk−1,k

= qik − qiiqik +
k−1∑

`=1,` 6=i

qik(1− q``)

= qik

(
(k − 1)−

k−1∑
`=1

q``

)
= ak−1qik.

We now turn our attention to the proof of (ii). By Lemma 5.1.1, one may conjugate
Q by a diagonal unitary if necessary to assume that qij ≤ 0 for all i 6= j. Since the
eigenvalues of Bk are invariant under such a transformation, this assumption imposes no
loss of generality.

From the description of the entries bij in (i), it is apparent that if B̂k ∈ Mk−1 denotes
the matrix obtained by deleting the final row and column of Bk, then

B̂k = (1− ak−1)(I − Q̂),

where Q̂ ∈ Mk−1 denotes the (k − 1)th leading principal submatrix of Q. Since Q is a

projection of rank n − 1, Corollary 5.1.4 (i) ensures that λ = 1 is an eigenvalue of Q̂ of

multiplicity at least k− 2. Thus, λ = 0 is an eigenvalue of B̂k of multiplicity at least k− 2.
It follows that the remaining eigenvalue of B̂k is given by

Tr(B̂k) = (1− ak−1)
k−1∑
i=1

(1− qii) = ak−1(1− ak−1).

This information can now be used to analyse the eigenvalues ofBk. By Corollary 5.1.4 (ii),
λ = 0 is an eigenvalue of Bk with multiplicity no less than k − 3. Furthermore, Theo-
rem 5.1.3 indicates that the remaining eigenvalues λ1, λk−1, and λk are such that

λ1 ≤ 0 ≤ λk−1 ≤ ak−1(1− ak−1) ≤ λk.

Since Bk ≥ 0, we have that λ1 = 0. The final two eigenvalues can be recovered by
examining the traces of Bk and B2

k. In particular, one may solve the system of equations{
λk−1 + λk = Tr(Bk)

λ2
k−1 + λ2

k = Tr(B2
k)

,

to obtain the values in (ii). This completes the proof. �
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Theorem 5.1.6. Let Q = (qij) be a projection in Mn of rank n− 1, and let {ai}ni=0 denote
the non-decreasing sequence from equation (5.3). If f : [0, 1] × [0, 1] → R denotes the
function

f(x, y) =

√
x2y2 − 4x2y + 2xy2 + 4x2 − 2xy + y2 − 2y + 1− xy − y + 2x+ 1

2
,

then for each k ∈ {1, 2, . . . , n}, ‖E⊥k−1QEk‖2 = f(ak−1, ak).

Proof. By Lemma 5.1.1 we may assume without loss of generality that qij ≤ 0 for all i 6= j.
Fix an integer k ∈ {1, 2, . . . , n}, define Qk := E⊥k−1QEk, and let Bk = (bij) denote the
restriction of Q∗kQk to the range of Ek. By Lemma 5.1.5 (ii), we have that

‖Qk‖2 =
Tr(Bk) +

√
2Tr(B2

k)− Tr(Bk)2

2
.

If B̂k ∈ Mk−1 denotes the matrix obtained by deleting the final row and column of Bk

as in the proof of Lemma 5.1.5, then

Tr(Bk) = Tr(B̂k) + bkk

= ak−1(1− ak−1) + qkk − ak−1(1− qkk)
= qkk + ak−1(qkk − ak−1)

= qkk + ak−1(1− ak).

Moreover, if B2
k = (cij), then

ckk = b2
kk +

k−1∑
`=1

b2
k`

= (qkk − ak−1(1− qkk))2 +
k−1∑
`=1

a2
k−1q

2
k`

= (qkk − ak−1(1− qkk))2 +
k−1∑
`=1

a2
k−1(1− qkk)(1− q``)

= (qkk − ak−1(1− qkk))2 + a3
k−1(1− qkk),
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and for i ≤ k − 1,

cii = b2
ii + b2

ik +
k−1∑

`=1,` 6=i

b2
i`

= (1− ak−1)2(1− qii)2 + a2
k−1q

2
ik +

k−1∑
`=1,`6=i

(1− ak−1)2q2
i`

= (1− ak−1)2(1− qii)2 + a2
k−1(1− qii)(1− qkk) +

k−1∑
`=1,`6=i

(1− ak−1)2(1− qii)(1− q``)

= ak−1(1− qii)
(
(1− ak−1)2 + ak−1(1− qkk)

)
.

Thus,

Tr(B2
k) = ckk +

k−1∑
`=1

ak−1(1− q``)
(
(1− ak−1)2 + ak−1(1− qkk)

)
= (qkk − ak−1(1− qkk))2 + a3

k−1(1− qkk) + a2
k−1

(
(1− ak−1)2 + ak−1(1− qkk)

)
.

These descriptions of Tr(Bk) and Tr(B2
k) allow one to express ‖Qk‖2 as a function of

ak−1, ak, and qkk. The desired formula for ‖Qk‖2 may now be obtained by writing
qkk = 1− (ak − ak−1) as in equation (5.4). �

Our first goal of this section is now complete: we have derived a closed-form expression
for each norm ‖E⊥k−1QEk‖. In order to show that every such norm is equal to νn−1,n, we
must first investigate the properties of the function f from Theorem 5.1.6.

Lemma 5.1.7. If f : [0, 1]× [0, 1]→ R denotes the function

f(x, y) =

√
x2y2 − 4x2y + 2xy2 + 4x2 − 2xy + y2 − 2y + 1− xy − y + 2x+ 1

2
,

then f is increasing in x and decreasing in y. Moreover, 0 ≤ f(x, y) ≤ 1 whenever
0 ≤ x ≤ y ≤ 1.

Proof. Define g : [0, 1]× [0, 1]→ R by

g(x, y) = x2y2 − 4x2y + 2xy2 + 4x2 − 2xy + y2 − 2y + 1,
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so f(x, y) = 1
2
(
√
g(x, y)−xy−y+2x+1). We begin by proving that g(x, y) is non-negative

on its domain and zero only at (0, 1). We will therefore verify that f is well-defined on
[0, 1]× [0, 1], and that the partial derivatives of f exist at all points (x, y) 6= (0, 1).

Observe that for each fixed y ∈ [0, 1], the map

x 7→ g(x, y) = (2− y)2x2 − 2y(1− y)x+ (1− y)2

defines a convex quadratic on [0, 1] with vertex at x0 = y(1−y)/(2−y)2. If y ∈ [0, 1), then

g(x0, y) = g

(
y(1− y)

(2− y)2
, y

)
=

4(1− y)3

(2− y)2
> 0.

Consequently, g(x, y) > 0 for all (x, y) ∈ [0, 1] × [0, 1). Note as well that at y = 1 we
have g(x, 1) = x2. It follows that g(0, 1) = 0 and g(x, y) > 0 for all other values of
(x, y) ∈ [0, 1]× [0, 1]. Thus, f is well-defined, and the partial derivatives

fx(x, y) =
gx(x, y)

4
√
g(x, y)

+
2− y

2
, fxx(x, y) =

2(1− y)3

(g(x, y))3/2
,

fy(x, y) =
gy(x, y)

4
√
g(x, y)

− x+ 1

2
, fyy(x, y) =

2x3

(g(x, y))3/2

exist for all (x, y) 6= (0, 1).

Our next task is to prove that f(x, y) is increasing in x. First observe that f(x, 1) = x
is clearly increasing. Furthermore, for every fixed y ∈ [0, 1), fxx(x, y) is well-defined and
strictly positive for all x. Hence,

fx(x, y) =
xy2 − 4xy + y2 + 4x− y

2
√
g(x, y)

+
2− y

2

is an increasing function of x. We conclude that fx(x, y) ≥ fx(0, y) = 1− y > 0 for every
x ∈ [0, 1]. Thus, f is an increasing function of x on [0, 1].

We now use a similar argument to show that f is a decreasing function of y. For x = 0,
we have that f(0, y) = 1− y is clearly decreasing. Now given a fixed x ∈ (0, 1], it is clear
from above that fyy(x, y) is well-defined and strictly positive for all y. It follows that the
partial derivative

fy(x, y) =
x2y − 2x2 + 2xy − x+ y − 1

2
√
g(x, y)

− x+ 1

2
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is an increasing function of y on [0, 1]. Hence fy(x, y) ≤ fy(x, 1) = −x < 0 for every
y ∈ [0, 1]. This proves that f is a decreasing function of y on [0, 1], as desired.

For the final claim suppose that 0 ≤ x ≤ y ≤ 1, and consider the sequence {ak}3
k=0

defined by a0 = 0, a1 = x, a2 = y, and a3 = 1. By Lemma 5.1.2, there is a rank-two
projection Q = (qij) in M3 that is defined by {ak}3

k=0 in the sense of equation (5.3).
Turning to Theorem 5.1.6, we have that

f(x, y) = f(a1, a2) = ‖E⊥1 QE2‖2,

and hence 0 ≤ f(x, y) ≤ 1. �

Theorem 5.1.8. If Q ∈ Mn is a projection of rank n − 1 that is of minimal distance to
Tn, then ‖E⊥i−1QEi‖ = ‖E⊥j−1QEj‖ for all i and j.

Proof. By Lemma 5.1.1, we may assume without loss of generality that Q = (qij) is such
that qij ≤ 0 whenever i 6= j. Let {ai}ni=0 denote the non-decreasing sequence from equa-
tion (5.3), and for each i ∈ {1, 2, . . . , n}, define Qi := E⊥i−1QEi. Suppose to the contrary
that not all values of ‖Qi‖ are equal. Define

µ := max
1≤i≤n

‖Qi‖,

and let j denote the largest index in {1, 2, . . . , n} such that ‖Qj‖ = µ.

First consider the case in which j = n. Let k denote the largest index in {1, 2, . . . , n−1}
such that ‖Qk‖ < µ. With f as in Theorem 5.1.6, we have that

f(ak−1, ak) = ‖Qk‖2 < ‖Qk+1‖2 = f(ak, ak+1).

Thus, if g : [ak−1, ak]→ R is given by

g(x) = f(ak−1, x)− f(x, ak+1),

then g(ak) = f(ak−1, ak) − f(ak, ak+1) < 0, while g(ak−1) = 1 − f(ak−1, ak+1) ≥ 0 by
Lemma 5.1.7. Since g is continuous on its domain, the Intermediate Value Theorem gives
rise to some a′k ∈ [ak−1, ak] such that g(a′k) = 0. By replacing ak with a′k in the sequence
{ai}ni=0, one may equate ‖Qk‖ and ‖Qk+1‖ while leaving the remaining norms ‖Qi‖ un-
changed. Most importantly, since a′k ≤ ak, Lemma 5.1.7 implies that the new common
value of ‖Qk‖ and ‖Qk+1‖ is strictly less than µ.
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This argument may now be repeated to successively reduce the norms ‖Qi‖ for i > k
to values strictly less than µ. At the end of this process, either the new largest index j at
which the maximum norm occurs is strictly less than n, or the maximum µ decreases. Of
course, the latter cannot happen as Q was assumed to be of minimal distance to Tn.

Thus, we may assume that the largest index j at which µ occurs is strictly less than n.
In this case we have that

f(aj, aj+1) = ‖Qj+1‖2 < ‖Qj‖2 = f(aj−1, aj).

As above, we may invoke the Intermediate Value Theorem to obtain a root a′j of the
continuous function

h(x) := f(aj−1, x)− f(x, aj+1)

on the interval [aj, aj+1]. By replacing aj with a′j in the sequence {ai}ni=0, one may equate
‖Qj‖ and ‖Qj+1‖ while preserving all other norms ‖Qi‖. Since a′j ≥ aj, Lemma 5.1.7
demonstrates that the new common value of ‖Qj‖ and ‖Qj+1‖ is strictly less than µ. Thus,
this process either decreases the largest index j at which the maximum norm occurs, or
reduces the value of µ. Since this argument may be repeated for smaller and smaller values
of j, eventually µ must decrease—a contradiction. �

§5.2 Computing the Distance

We will now utilize the results of §5.1 to determine the precise value of νn−1,n. The first
step in this direction is the following proposition, which applies Theorem 5.1.8 to obtain a
recursive description of the sequence {ai}ni=0.

Proposition 5.2.1. Let Q ∈Mn be a projection of rank n− 1 that is of minimal distance
to Tn. If {ai}ni=0 denotes the non-decreasing sequence from equation (5.3), then

ak =
−ν4

n−1,n + 2ν2
n−1,nak−1 + ν2

n−1,n − ak−1

ν2
n−1,nak−1 + ν2

n−1,n − ak−1

for each k ∈ {1, 2, . . . , n}.

Proof. Since the distance from Q to Tn is minimal, Theorems 5.0.3 and 5.1.8 imply that
‖E⊥k−1QEk‖ = νn−1,n for all k ∈ {1, 2, . . . , n}. Thus, with f as in Theorem 5.1.6, we have
that

f(ak−1, ak) = ‖E⊥k−1QEk‖2 = ν2
n−1,n.
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The desired formula can now be obtained by solving this equation for ak. �

The recursive formula for ak described in Proposition 5.2.1 will be the key to comput-
ing νn−1,n. Our goal will be to use this formula and some basic properties of the sequence
{ai}ni=0 to determine a list of candidates for ν2

n−1,n. A careful analysis of these candidates
will reveal that exactly one of them satisfies a certain necessary norm inequality from [17].
This value must therefore be ν2

n−1,n.

To simplify notation, let t = ν2
n−1,n and define the function ht : [0, 1]→ R by

ht(x) :=
−t2 + 2tx+ t− x

tx+ t− x
. (5.5)

Proposition 5.2.1 states that for each k ∈ {1, 2, . . . , n},

ak =
−t2 + 2tak−1 + t− ak−1

tak−1 + t− ak−1

= ht(ak−1).

Since ht(0) = (t − t2)/t = 1 − t = a1, this formula may be expressed as ak = h
(k)
t (0) for

all k ∈ {1, 2, . . . , n}. Upon taking into account the condition an = 1, we are interested in

identifying the values of t ∈
[

1
4
, 1
]

that satisfy the equation h
(n)
t (0) = 1.

Notice that each expression h
(k)
t (0) is a rational function of t. For each k ≥ 1, let pk−1(t)

and qk−1(t) denote polynomials in t such that

h
(k)
t (0) =

pk−1(t)

qk−1(t)
.

It then follows that

pk(t)

qk(t)
= ht

(
h

(k)
t (0)

)
= ht

(
pk−1(t)

qk−1(t)

)
=
−t2qk−1(t) + 2tpk−1(t) + tqk−1(t)− pk−1(t)

tpk−1(t) + tqk−1(t)− pk−1(t)
,

and hence we obtain the relations

pk(t) = t(1− t)qk−1(t) + (2t− 1)pk−1(t), (5.6)

qk(t) = tqk−1(t)− (1− t)pk−1(t). (5.7)
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We may replace pk−1(t) in (5.7) using equation (5.6), thereby leading to a recurrence
expressed only in the qk(t)’s. Specifically, we have that

qk(t) = tqk−1(t)− (1− t)pk−1(t)

= tqk−1(t)− (1− t) [t(1− t)qk−2(t) + (2t− 1)pk−2(t)]

= tqk−1(t)− t(1− t)2qk−2(t)− (2t− 1) [tqk−2(t)− qk−1(t)]

= (3t− 1)qk−1(t)− t3qk−2(t)

for all k ≥ 2. We may extend this recurrence relation to include k = 1 by choosing a
suitable expression for q−1(t). Indeed, note that

p0(t)

q0(t)
= ht(0) = 1− t and

p1(t)

q1(t)
= ht(ht(0)) =

−3t2 + 4t− 1

−t2 + 3t− 1
,

so q0(t) = 1, and q1(t) = −t2 + 3t− 1. Thus, we may write q1(t) = (3t− 1)q0(t)− t3q−1(t)
by defining q−1(t) := t−1.

The requirement that h
(n)
t (0) = 1 is equivalent to asking that pn−1(t) = qn−1(t). Using

the relations above, this equation can be restated as tqn−2(t) = pn−2(t), or equivalently
qn−1(t) = t2qn−2(t) by (5.7). Thus, we wish to determine the values of t ∈

[
1
4
, 1
]

that
satisfy

qn−1(t) = t2qn−2(t),

where

q−1(t) = t−1, q0(t) = 1, and qk(t) = (3t− 1)qk−1(t)− t3qk−2(t) for k ≥ 1.

A solution to this problem will require closed-form expressions for the polynomials
qn−1(t) and qn−2(t). In order to obtain such expressions, we will first rewrite the recurrence
relation defining these polynomials in terms of matrix multiplication:[

qk(t)
qk−1(t)

]
=

[
3t− 1 −t3

1 0

] [
qk−1(t)
qk−2(t)

]
=

[
3t− 1 −t3

1 0

]k [
q0(t)
q−1(t)

]
.

One may therefore obtain a description of qn−1(t) and qn−2(t) by diagonalizing the matrix

A :=

[
3t− 1 −t3

1 0

]
.
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Routine computations show that the eigenvalues of A are given by

λ1 =
3t− 1 + (1− t)

√
1− 4t

2
=

3t− 1 + (1− t)iy
2

and

λ2 =
3t− 1− (1− t)

√
1− 4t

2
=

3t− 1− (1− t)iy
2

,

where y :=
√

4t− 1. Furthermore, the columns of the matrix P :=

[
λ1 λ2

1 1

]
form a basis

of eigenvectors corresponding to λ1 and λ2, respectively. By computing

P−1 =
1

(1− t)iy

[
1 −λ2

−1 λ1

]

and setting D := diag(λ1, λ2), we have that A = PDP−1. Consequently,[
qn−1(t)

qn−2(t)

]
= PDn−1P−1

[
q0(t)

q−1(t)

]
=

1

t(1− t)iy

[
t (λn1 − λn2 )− λ2λ

n
1 + λ1λ

n
2

t
(
λn−1

1 − λn−1
2

)
− λ2λ

n−1
1 + λ1λ

n−1
2

]
.

The expressions for qn−1(t) and qn−2(t) derived above can now be used to identify the
desired values of t. Indeed, when qn−1(t) = t2qn−2(t), we have that

t (λn1 − λn2 )− λ2λ
n
1 + λ1λ

n
2 = t2

(
t
(
λn−1

1 − λn−1
2

)
− λ2λ

n−1
1 + λ1λ

n−1
2

)
⇒ λn1 (t− λ2)− λn2 (t− λ1) = t2

(
λn−1

1 (t− λ2)− λn−1
2 (t− λ1)

)
⇒ λn−1

2 (t2 − λ2)(t− λ1) = λn−1
1 (t2 − λ1)(t− λ2),

and therefore (
λ2

λ1

)n−1(
t2 − λ2

t2 − λ1

)(
t− λ1

t− λ2

)
= 1. (5.8)

This equation may be simplified using the following identities that relate the values of t,
λ1, and λ2.

Lemma 5.2.2. If y =
√

4t− 1, λ1 = (3t−1+(1− t)iy)/2, and λ2 = (3t−1− (1− t)iy)/2,
then
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(i) t− λ1 = (1− t)
(

1− iy
2

)
and t− λ2 = (1− t)

(
1 + iy

2

)
.

(ii) t2 − λ1 = (1− t)
(

1− 2t− iy
2

)
and t2 − λ2 = (1− t)

(
1− 2t+ iy

2

)
.

(iii)
1 + iy

1− iy
=

1− 2t+ iy

2t
and

1− iy
1 + iy

=
1− 2t− iy

2t
.

(iv)
λ2

λ1

=

(
1 + iy

1− iy

)3

.

Proof. Verification of statements (i)-(iii) is straightforward, and thus their proofs are left
to the reader. For (iv), an application of the Binomial Theorem demonstrates that

(1 + iy)3 = 1 + 3iy − 3y2 − iy3

= (1− 3y2) + iy(3− y2)

= 4(1− 3t) + 4(1− t)iy = −8λ2.

From this we deduce that (1 − iy)3 = (1 + iy)3 = −8λ2 = −8λ1, and thus the result
holds. �

One may apply the identities above to simplify equation (5.8) as follows:

1 =

(
λ2

λ1

)n−1(
t2 − λ2

t2 − λ1

)(
t− λ1

t− λ2

)
=

(
1 + iy

1− iy

)3(n−1)(
1− 2t+ iy

1− 2t− iy

)(
1− iy
1 + iy

)
=

(
1 + iy

1− iy

)3n−3(
1 + iy

1− iy

)2(
1− iy
1 + iy

)
=

(
1 + iy

1− iy

)3n−2

.

We therefore conclude that
1 + iy

1− iy
= ρkm,
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where m := 3n− 2, ρm := e2πi/m, and k is an integer.

We are now in a position to determine the possible values of t. By solving for y in the
equation above, we obtain

y =
1

i

ρkm − 1

ρkm + 1
=

1

i

ρ
k/2
m

(
ρ
k/2
m − ρ−k/2m

)
ρ
k/2
m

(
ρ
k/2
m + ρ

−k/2
m

)
=

ρ
k/2
m − ρ−k/2m

2i

2

ρ
k/2
m + ρ

−k/2
m

=
sin (kπ/m)

cos (kπ/m)
= tan

(
kπ

m

)
.

Since y =
√

4t− 1, we have

t =
1

4

(
tan2

(
kπ

m

)
+ 1

)
=

1

4
sec2

(
kπ

3n− 2

)
for some k ∈ Z.

That is, the distance νn−1,n from Q to Tn must belong to the set{
1

2
sec

(
kπ

3n− 2

)
: k ∈ Z

}
.

It remains to determine which element of this set represents νn−1,n. We will accomplish
this task by appealing to the following result of MacDonald concerning a lower bound on
the distance from a projection to a nilpotent.

Proposition 5.2.3. [17, Lemma 3.3] If P ∈ Mn is a projection of rank r and N ∈ Mn is
nilpotent, then

‖P −N‖ ≥
√

r

2n

(
1 +

r

n

)
.

In the analysis that follows, we will demonstrate that the only value in{
1

2
sec

(
kπ

3n− 2

)
: k ∈ Z

}
that respects the lower bound of Proposition 5.2.3 for projections of rank r = n− 1 occurs
when k = n−1. We begin with the following lemma, which proves that MacDonald’s lower
bound is indeed satisfied for this choice of k.
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Lemma 5.2.4. For every integer n ≥ 3,

n− 1

2n

(
1 +

n− 1

n

)
≤ 1

4
sec2

(
(n− 1)π

3n− 2

)
≤ 1

Proof. Define αn := (3n−2)/(n−1). By considering reciprocals, this problem is equivalent
to that of establishing the inequalities

1

4
≤ cos2

(
π

αn

)
≤ n2

2(n− 1)(2n− 1)

for all n ≥ 3. In the computations that follow, it will be helpful to view n as a continuous
variable on [3,∞).

To establish the inequality 1/4 ≤ cos2 (π/αn) , simply note that π/αn is an increasing
function of n tending to π/3, cos(x) is decreasing on [0, π/3], and cos(π/3) = 1/2. The
second inequality will require a bit more work. Since (2n− 3

2
)2 ≥ 2(n− 1)(2n− 1) for all

n, it suffices to prove that

cos2

(
π

αn

)
≤ n2(

2n− 3
2

)2 .

This inequality can be reduced further by taking square roots. Indeed, the above holds if
and only if

f(n) :=
2n

4n− 3
− cos

(
π

αn

)
≥ 0 for n ∈ [3,∞).

We will prove that f ′(n) < 0 for all n ∈ [3,∞), so that f is monotonically decreasing
on this interval. Since

lim
n→∞

f(n) = 0 and f(3) =
2

3
− cos

(
2π

7

)
≈ 0.043 > 0,

this will demonstrate that f(n) ≥ 0 for all n ≥ 3. To this end, we compute

f ′(n) =
16π sin

(
π
αn

)
n2 − 24π sin

(
π
αn

)
n+ 9π sin

(
π
αn

)
− 54n2 + 72n− 24

(4n− 3)2(3n− 2)2
.

Of course (4n− 3)2(3n− 2)2 ≥ 0, so the sign of f ′(n) depends only on the sign of

g(n) := 16π sin

(
π

αn

)
n2 − 24π sin

(
π

αn

)
n+ 9π sin

(
π

αn

)
− 54n2 + 72n− 24.
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But since π/αn ∈ [π/4, π/3] for n ≥ 3, we have that sin (π/αn) ∈ [
√

2/2,
√

3/2] for all such
n, and hence

g(n) ≤ 16π

(√
3

2

)
n2 − 24π

(√
2

2

)
n+ 9π

(√
3

2

)
− 54n2 + 72n− 24

=
(

8
√

3π − 54
)
n2 −

(
12
√

2− 72
)
n+

(
9
√

3

2
− 24

)
.

This upper bound for g is a concave quadratic whose larger root occurs at n ≈ 1.8105. It
follows that g is negative on [3,∞), and therefore so too is f ′. �

Lemma 5.2.5. For any integer n ≥ 3, the set{
1

4
sec2

(
kπ

3n− 2

)
: k ∈ Z

}

contains exactly one value in

[
n− 1

2n

(
1 +

n− 1

n

)
, 1

]
, and it occurs when k = n− 1.

Proof. Fix an integer n ≥ 3. We wish to prove that

A :=

{
cos2

(
kπ

3n− 2

)
: k ∈ Z

}
contains exactly one value in the interval

I :=

[
1

4
,

n2

2(n− 1)(2n− 1)

]
.

Since Lemma 5.2.4 demonstrates that this is the case when k = n − 1, it suffices to show
that no other values in A are within distance

β(n) :=
n2

2(n− 1)(2n− 1)
− 1

4

of cos2((n− 1)π/(3n− 2)).
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Note, however, that not all values of k ∈ Z need to be considered. In particular, since
the function k 7→ cos2(kπ/(3n − 2)) is periodic, it suffices to check only its values at the
integers k ∈ {0, 1, . . . , 3n− 2}. Additionally, since

cos2

(
((3n− 2)− k)π

3n− 2

)
= cos2

(
kπ

3n− 2

)
for all k,

we may restrict our attention to k ∈ {0, 1, 2, . . . , b(3n− 2/2)c}.
Although we are solely concerned with the integer values of k described above, it will

be useful to view k as a continuous real variable. With this in mind, define the function
fn : [0, (3n− 2)/2]→ R by

fn(k) := sin

(
(n− k − 1)π

3n− 2

)
sin

(
(n+ k − 1)π

3n− 2

)
.

It follows from the identity cos2(x)− cos2(y) = − sin(x− y) sin(x+ y) that∣∣∣∣cos2

(
kπ

3n− 2

)
− cos2

(
(n− 1)π

3n− 2

)∣∣∣∣ < β(n) ⇐⇒ |fn(k)| < β(n).

Notice, however, that

f ′n(k) =

(
−π

3n− 2

)
sin

(
2kπ

3n− 2

)
,

so f ′n(k) < 0 on [0, (3n−2)/2], and hence fn is decreasing on its domain. Since fn(n−1) = 0,
it therefore suffices to prove that

fn(n− 2) > β(n) and −fn(n) > β(n).

We will demonstrate that these inequalities hold via application of Taylor’s Theorem.

Consider the approximation of sin(x) by x− x3/6, its third degree MacLauren polyno-
mial. On [0, π/6], the error in this approximation is at most

E(x) =
sin(π/6)

4!
|x|4 =

x4

48
.

Thus, since 1/n ≤ π/(3n− 2) ≤ π/6, we have

sin

(
π

3n− 2

)
≥ sin

(
1

n

)
≥
(

1

n
− 1

6n3
− E

(
1

n

))
≥
(

1

n
− 1

6n
− 1

48n

)
=

13

16n
.
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It is routine to verify that sin ((2x− 1)π/(3x− 2)) is an increasing function of x on [3,∞).
Consequently, this function is bounded below by sin (5π/7), its value at x = 3. We deduce
that

−fn(n) = sin

(
π

3n− 2

)
sin

(
(2n− 1)π

3n− 2

)
≥ 13

16n
sin

(
5π

7

)
≥ 13

16n
· 3

4
=

39

64n
.

Lastly, one may show directly that

39

64n
> β(n) whenever n >

101 +
√

5521

60
≈ 2.9217,

and hence −fn(n) > β(n) for our fixed integer n ≥ 3.

A similar analysis may now be used to prove that fn(n − 2) > β(n). Indeed, it is
straightforward to verify that sin ((2n− 3)π/(3n− 2)) is bounded below by sin (2π/3),
and therefore

fn(n− 2) = sin

(
π

3n− 2

)
sin

(
(2n− 3)π

3n− 2

)
≥ 13

16n
sin

(
2π

3

)
=

13

16n
·
√

3

2
≥ 13

16n
· 3

4
=

39

64n
.

It now follows from the arguments of the previous case that fn(n− 2) > β(n). �

With the above analysis complete, we may now present the main result of this chapter:
the distance from a projection in Mn of rank n− 1 to the set N (Cn) is

νn−1,n =
1

2
sec

(
(n− 1)π

3n− 2

)
.

Interestingly, this expression can be rewritten to bear an even stronger resemblance to
MacDonald’s formula in the rank-one case.

Theorem 5.2.6. For every integer n ≥ 2, the distance from the set of projections in Mn

of rank n− 1 to N (Cn) is

νn−1,n =
1

2
sec

(
π

n
n−1

+ 2

)
.
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§5.3 Closest Projection-Nilpotent Pairs

Given a projection Q in Mn of rank n − 1 that is of distance νn−1,n to Tn, the following
theorem provides a means for determining an element T ∈ Tn that is closest to Q. As we
will see in Theorem 5.3.2, this element of Tn is unique to Q.

Theorem 5.3.1. [3, 17] Fix γ ∈ [0,∞). An operator A ∈ Mn satisfies ‖E⊥i−1AEi‖ = γ
for all i ∈ {1, 2, . . . , n} if and only if there exist T ∈ Tn and a unitary U ∈ Mn such that
A− T = γU .

Furthermore, if ‖E⊥i−1AEi‖ = γ and ‖E⊥i AEi‖ < γ for all i ∈ {1, 2, . . . , n − 1}, then the
operators T and U are unique.

With this result in hand, we are now able to describe all closest pairs (Q,N) where Q
is a projection of rank n− 1 and N ∈ N (Cn).

Theorem 5.3.2. Fix a positive integer n ≥ 2. Let {ai}ni=0 be the sequence given by a0 = 0
and

ak =
−ν4

n−1,n + 2ν2
n−1,nak−1 + ν2

n−1,n − ak−1

ν2
n−1,nak−1 + ν2

n−1,n − ak−1

for k ≥ 1.

Let {zi}ni=1 be a sequence of complex numbers of modulus 1, define

e =
[
z1

√
a1 − a0 z2

√
a2 − a1 · · · zn

√
an − an−1

]T
,

and let Q = I − e⊗ e∗.

(i) Q is a projection of rank n − 1 such that dist(Q, Tn) = νn−1,n. Moreover, every
projection of rank n− 1 that is of minimal distance to Tn is of this form.

(ii) There is a unique operator T ∈ Tn of minimal distance to Q, and this T is such that
Q− T = νn−1,nU for some unitary U ∈Mn. Thus, if qk = Qek and tk = Tek denote
the columns of Q and T , respectively, then one can iteratively determine columns tk
by solving the system of linear equations

〈q1 − t1, qk − tk〉 = 0
〈q2 − t2, qk − tk〉 = 0

...
...

〈qk−1 − tk−1, qk − tk〉 = 0

for k ∈ {2, 3, . . . , n}.
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Proof. Statement (i) follows immediately from the results of §5.1 and §5.2. For statement
(ii), the existence of T and U is guaranteed by Theorems 5.1.8 and 5.3.1. All that remains
to show is the uniqueness of these operators.

To accomplish this task, note that it suffices to prove uniqueness in the case that zi = 1
for all i (i.e., when qij ≤ 0 for all i 6= j). For k ∈ {1, 2, . . . , n}, let Qk denote the restriction
of E⊥k−1QEk to the range of Ek, and define Bk := Q∗kQk. Let Q′k = E⊥k Qk, so that

Qk =

[
v∗k

Q′k

]
,

where vk :=
[
qk1 qk2 . . . qkk

]T
.

We will demonstrate that ‖Q′k‖ < ‖Qk‖ for all k ∈ {1, 2, . . . , n − 1}, and therefore
obtain the uniqueness of T and U via Theorem 5.3.1. Observe that this inequality holds
when k = 1, as

‖Q1‖2 − ‖Q′1‖2 = q2
11 = νn−1,n > 0.

Suppose now that k ∈ {2, 3, . . . , n− 1} is fixed, and define B′k := Q′k
∗Q′k = Bk − vkv∗k. One

may determine the entries of B′k = (b′ij) using the formulas for the entries of Bk = (bij)
from Lemma 5.1.5 (i). Indeed,

b′kk = bkk − q2
kk

= qkk − ak−1(1− qkk)− q2
kk

= (qkk − ak−1)(1− qkk) = (1− ak)(1− qkk),

and for if i < k,

b′ii = bii − q2
ki

= (1− ak−1)(1− qii)− (1− qkk)(1− qii)
= (qkk − ak−1)(1− qii) = (1− ak)(1− qii).

If i, j, and k are all distinct, then

b′ij = bij − qkiqkj
= −(1− ak−1)qij + qij(1− qkk)
= −(qkk − ak−1)qij = −(1− ak)qij.
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Finally, either i < j = k or j < i = k. In the case of former, we have

b′ik = bik − qkiqkk
= ak−1qik − qikqkk
= −(qkk − ak−1)qik = −(1− ak)qik.

The fact that B′k is self-adjoint implies that b′kj = −(1− ak)qkj for all j < k as well.

The above expressions for the entries b′ij reveal that B′k = (1−ak)(I−Q̂), where Q̂ ∈Mk

denotes the kth leading principal submatrix of Q. Since Q has rank n−1, Corollary 5.1.4 (i)

implies that λ = 1 occurs as an eigenvalue of Q̂ with multiplicity at least k− 1, and hence
0 occurs as an eigenvalue of B′k with multiplicity at least k − 1. It follows that

‖B′k‖ = Tr(B′k) =
k∑
`=1

(1− ak)(1− q``) = ak(1− ak).

Now let f : [0, 1] × [0, 1] → R denote the function from Theorem 5.1.6, so that
‖Qk‖2 = f(ak−1, ak). Suppose for the sake of contradiction that ‖Bk‖ = ‖B′k‖, and hence
f(ak−1, ak) = ak(1 − ak). One may verify that for this equation to hold, we necessarily
have

(1− ak)3(ak − ak−1) = 0.

Thus, either ak = 1 or ak = ak−1.

If the former is true, then aj = 1 for all j ≥ k. In particular, an−1 = an. It then
follows that qnn = 1 − (an − an−1) = 1 by equation (5.4), and hence ‖Qn‖ ≥ 1. This
contradicts the minimality of dist(Q, Tn). If instead ak = ak−1, then qkk = 1, and hence
‖Qk‖ ≥ 1. Again we reach a contradiction. We therefore conclude that ‖B′k‖ < ‖Bk‖, and
thus ‖Q′k‖ < ‖Qk‖. �

To save the reader from lengthy computations, we have included a few examples of pairs
(Q, T ) where Q ∈Mn is a projection of rank n−1, T belongs to Tn, and ‖Q−T‖ = νn−1,n.
Theorem 5.3.2 implies that if (Q′, T ′) is any other projection-nilpotent pair such that
rank(Q′) = n − 1 and ‖Q′ − T ′‖ = νn−1,n, then there is a unitary V ∈ Mn such that
Q′ = V ∗QV and T ′ = V ∗TV .
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n = 3

Q =

 0.64310 −0.31960 −0.35689
−0.31960 0.71379 −0.31960
−0.35689 −0.31960 0.64310

 ,
T =

0 −0.49697 −0.80194
0 0 −0.49697
0 0 0

 ;

n = 4

Q =


0.72361 −0.24860 −0.24860 −0.27639
−0.24860 0.77639 −0.22361 −0.24860
−0.24860 −0.22361 0.77639 −0.24860
−0.27639 −0.24860 −0.24860 0.72361

 ,

T =


0 −0.34356 −0.46094 −0.65836
0 0 −0.34164 −0.46094
0 0 0 −0.34356
0 0 0 0

 ;

n = 5

Q =


0.77471 −0.20512 −0.19907 −0.20512 −0.22528
−0.20512 0.81324 −0.18126 −0.18676 −0.20512
−0.19907 −0.18126 0.82409 −0.18126 −0.19907
−0.20512 −0.18676 −0.18126 0.81324 −0.20512
−0.22528 −0.20512 −0.19907 −0.20512 0.77472

 ,

T =


0 −0.26477 −0.32678 −0.41846 −0.55566
0 0 −0.26373 −0.32453 −0.41846
0 0 0 −0.26373 −0.32678
0 0 0 0 −0.26477
0 0 0 0 0

 .

It is interesting to note that each projection above is symmetric about its anti-diagonal.
This symmetry is in fact, always present in the optimal projection Q = (qij) from Theo-
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rem 5.3.2 obtained by taking zi = 1 for all i. To see this, first observe that the function ht
from equation (5.5) satisfies the identity

ht(x) + h−1
t (1− x) = 1, x ∈ [0, 1].

From here we have that a1 + an−1 = ht(0) + h−1
t (1) = 1, and by induction,

ak + an−k = ht(ak−1) + h−1
t (an−k+1) = ht(ak−1) + h−1

t (1− ak−1) = 1

for all k ∈ {1, 2, . . . , n}. Consequently,

qkk = 1− (ak − ak−1)

= an−k + ak−1

= an−k + (1− an−k+1)

= 1− (an−k+1 − an−k) = qn−k+1,n−k+1

for all k. We now turn to the identity qij = −
√

(1− qii)(1− qjj) to conclude that that
qij = qn−j+1,n−i+1 for all i and j, which is exactly the statement that Q is symmetric about
its anti-diagonal. An analogous argument using the formulas from [16] demonstrates a
similar phenomenon for optimal projections of rank 1.

§5.4 Future Directions and Open Questions

The distance νr,n from the set of projections in Mn of rank r to the set of nilpotent
operators on Cn, as well as the corresponding closest projection-nilpotent pairs, are now
well understood when r = 1 or r = n − 1. Of course, it is natural to wonder about the
value of νr,n for r strictly between 1 and n− 1.

The difficulty in extending the above arguments to projections P of intermediate ranks
lies in deriving closed-form expressions for ‖E⊥i−1PEi‖. Computing these norms for projec-
tions of rank r = 1 or r = n− 1 was made possible by the rigid structure afforded by such
projections. In particular, we made frequent use of equations (5.1) and (5.2) throughout the
proofs of Lemma 5.1.5 and Theorem 5.1.6. These equations—which describe the algebraic
relations satisfied by the entries of a projection of rank 1 or n − 1—become considerably
more complex for projections of intermediate ranks.
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For small values of r and n, the mathematical programming software Maple was used
to construct examples of rank r projections Pr,n in Mn which we believe are of minimal
distance to Tn. To ease the computations, the program was tasked with minimizing the
maximum norm ‖E⊥i−1PEi‖ over all projections P of rank r with real entries and symmetry
about the anti-diagonal. While it may not always be possible for such conditions to be
met by an optimal projection of rank r, the computations that follow may still shed light
on a potential formula for νr,n.

The smallest value of n for which P(Cn) contains projections of intermediate ranks is
n = 4. In this case, the intermediate-rank projections are those of rank 2. We found that

P2,4 =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2


is an optimal projection of rank 2 satisfying the conditions above. It is easy to see that

‖E⊥i−1P2,4Ei‖ = 1/
√

2 = ν1,2 for all i,

and hence P2,4 is a direct sum of optimal rank-one projections in M2.

In M5, the intermediate-rank projections are those of rank r = 2 or r = 3. For such r,
we obtained

P2,5 =


0.42602 −0.07632 0.22568 0.42334 −0.09248
−0.07632 0.42127 0.23481 −0.06022 0.42334

0.22568 0.23481 0.30541 0.23481 0.22568
0.42334 −0.06022 0.23481 0.42127 −0.07632
−0.09248 0.42334 0.22568 −0.07632 0.42602

 and

P3,5 =


0.58296 −0.29271 −0.10684 0.12213 0.36209
−0.29271 0.62479 −0.33169 −0.15433 0.12213
−0.10684 −0.33169 0.58448 −0.33169 −0.10684

0.12213 −0.15433 −0.33169 0.62479 −0.29271
0.36209 0.12213 −0.10684 −0.29271 0.58296

 .
Again, the norms ‖E⊥i−1Pr,nEi‖ share a common value, with

‖E⊥i−1P2,5Ei‖ = 0.65270 ≈ 1

2
sec

(
π

5
2

+ 2

)
for all i, and

‖E⊥i−1P3,5Ei‖ = 0.76352 ≈ 1

2
sec

(
π

5
3

+ 2

)
for all i.
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In light of these findings, as well as the distance formulas that exist for projections of
rank 1 or n − 1, we propose the following generalized distance formula for projections of
arbitrary rank.

Conjecture 5.4.1. For every n ∈ N and each r ∈ {1, 2, . . . , n}, the distance from the set
of projections in Mn of rank r to N (Cn) is

νr,n =
1

2
sec

(
π

n
r

+ 2

)
.

Using a random walk process implemented by the computer algebra system PARI/GP,
we estimated the values of νr,n for all r ≤ n ≤ 10 without the additional assumptions
described above. We observed only minute differences between these estimates and the
expression from Conjecture 5.4.1. In many cases, these quantities differed by no more than
1× 10−3.

The proposed formula from Conjecture 5.4.1 merits several interesting consequences.
Firstly, this formula suggests that νr,n = νkr,kn for every positive integer k, meaning that a
closest projection of rank kr to Tkn could be obtained as a direct sum of k closest projections
of rank r to Tn. Notice as well that if the equation νr,n = νkr,kn were true, it would follow
that

ν1,n = νr,rn ≤ νr,n

for each n and r. Thus, a proof of Conjecture 5.4.1—or of the formula νr,n = νkr,kn—would
validate Conjecture 1.0.3.

Conjecture 5.4.2. If n and r are positive integers with r ≤ n, then

νr,n = νkr,kn for all k ∈ N.

Despite considerable effort, little headway has been made in proving Conjecture 5.4.1.
As discussed above, obtaining expressions for the norms ‖E⊥i−1PEi‖ appears to be a
formidable task when P is a projection of rank r 6= 1, n − 1. Thus, rather than focussing
on deriving explicit formulas for these norms, we have sought to determine whether or not
they necessarily share a common value when P is of minimal distance to Tn. This fact
alone may be useful in verifying Conjecture 5.4.1 for small values of n.

Question 1. If P ∈ Mn is a projection of rank r that is of distance νr,n to Tn, is it
necessarily true that ‖E⊥i−1PEi‖ = ‖E⊥j−1PEj‖ for all i, j?
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As discussed in §5.3, Question 1 has an affirmative answer when r = 1 [16, Lemma 3],
as well as when r = n−1 (Theorem 5.1.8). Moreover, the Maple estimates described above
suggest a similar phenomenon for intermediate-rank projections in M4 and M5.

Adapting the arguments from [16, Lemma 3] and Theorem 5.1.8 may be a viable ap-
proach to answering Question 1. In the proofs of these results, one first assumes for the
sake of contradiction that there is a projection P of minimal distance to Tn such that not all
norms ‖E⊥j−1PEj‖ are equal. Next, by adjusting individual terms of the sequence {ai}ni=0,
one shifts the weight between the norms of adjacent corners E⊥j−1PEj and E⊥j PEj+1 until
the largest such norm has decreased. These adjustments are implemented via unitary con-
jugation by operators that act as the identity on span{ej, ej+1}⊥. Eventually this process
yields an equivalent projection P ′ that is closer to Tn than P , thereby giving the required
contradiction.

Motivated by the success of the above arguments, one may hope that a similar result
could be obtained for projections Q of arbitrary rank using unitary conjugations of this
form. We believe that this will indeed be the case. It is straightforward to prove that if U
is a unitary such that U

∣∣
span{ej ,ej+1}⊥

= I, then

‖E⊥i−1U
∗QUEi‖ = ‖E⊥i−1QEi‖ for all i 6= j, j + 1.

Without a closed-form expression for ‖E⊥i−1QEi‖, however, it becomes difficult to deter-
mine whether or not there is a transformation of this form that decreases the maximum
of ‖E⊥j−1QEj‖ and ‖E⊥j QEj+1‖. Thus, this approach may have its limitations until the
monotonicity properties the norms ‖E⊥i−1QEi‖ under such a transformation are better un-
derstood.

Another interesting open problem concerns the converse to Question 1.

Question 2. If P ∈ Mn is a projection of rank r and ‖E⊥i−1PEi‖ = ‖E⊥j−1PEj‖ for all i
and j, is P of distance νr,n to Tn?

An affirmative answer to Question 2 would imply that if P1 and P2 are unitarily equiv-
alent projections with the property that for each i, ‖E⊥i−1PkEi‖ = γk for some constants
γ1, γ2 ≥ 0, then γ1 = γ2. Furthermore, it is easy to see that affirmation of both Questions 1
and 2 would validate Conjecture 5.4.2. Indeed, a positive answer to Question 1 would im-
ply that every projection P of rank r closest to Tn is such that ‖E⊥i−1PEi‖ = νr,n for all i.
As a result, the k-fold direct sum Q = P ⊕ P ⊕ · · · ⊕ P would define a projection in Mkn

of rank kr with the property that ‖E⊥i−1QEi‖ = νr,n for all i. From here, a positive answer
to Question 2 would imply that νr,n = νkr,kn.
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Although Question 2 remains open, a natural analogue of this problem is known to
fail for unitary orbits of self-adjoint matrices. Specifically, there are examples of unitarily
equivalent self-adjoint matrices A and B, as well as positive constants γ1 < γ2, such that
‖E⊥i−1AEi‖ = γ1 and ‖E⊥i−1BEi‖ = γ2 for all i. Thus, while the norms ‖E⊥i−1BEi‖ share a
common value, there exist matrices in the unitary orbit of B that are strictly closer to Tn.

For one such example, consider the operators

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 and B =


0 −1/2 0 3/2

−1/2 0 1/2 0
0 1/2 0 1/2

3/2 0 1/2 0

 .
It is straightforward to check that B = U∗AU , where

U :=
1√
2


1 0 −1 0
0 −1 0 1
1 0 1 0
0 1 0 1

 .
Moreover, we have that ‖E⊥i−1AEi‖ = 1, while ‖E⊥i−1BEi‖ =

√
10
2

for each i ∈ {1, 2, 3, 4}.

Note that the eigenvalues of A and B are ±1
2
±
√

5
2

. Thus, while this example shows
that the common norm condition is not sufficient for a self-adjoint operator to be closest to
Tn among the operators in its unitary orbit, it does not indicate that such a phenomenon
can occur for positive operators. It would therefore be interesting to determine whether or
not the analogue of Question 5.4 fails for positive operators as well. Of course, since the
norms ‖E⊥i−1AEi‖ behave poorly under translation of A by λI, one cannot hope to obtain
a counterexample by simply adding a multiple of the identity to the operators above.
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