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Abstract 

 As the world confronts the serious challenge posed by anthropogenic climate change, electric 

vehicles have emerged as a serious candidate to displace gasoline-burning vehicles. In spite of the 

environmental and operational advantages of electric vehicles, however, and in spite of billions in 

investment, electric vehicles have not attained meaningful market share in the main national 

vehicle markets. This is a serious problem not only for climate change mitigation but also for air 

pollution mitigation, given the substantial air pollution generated by vehicles. The inability of 

electric vehicles to attain market share may be due to the inadequacies of the lithium-ion batteries 

which power electric vehicles, and which are heavy and expensive. 

 In this work an electric vehicle with a novel powertrain is designed, optimized and modelled. 

The novel powertrain uses a lithium-ion battery as the primary energy storage system and a lighter 

and cheaper zinc-air battery as a range extender. The first objective of this work is to compare this 

novel powertrain to a conventional electric vehicle powertrain and quantify the benefits. The 

optimized two-battery electric vehicle achieves 400 km of range, over 12 years of zinc-air battery 

life and an MSRP of $26,300 – over $5000 lower than that of the conventional electric vehicle. As 

part of this work, it is necessary to create a zinc-air cell model based on academic literature, since 

there are no commercially available rechargeable zinc-air cells that are suitable for use in vehicles. 

The cell model achieved 10% greater specific energy to the lithium-ion cell at a much lower price. 

An improved cell model achieved even greater specific energy – 65% greater than the lithium-ion 

cell. 

 The second objective of this work is to analyze the air pollution impacts of electric vehicles in 

a local context. Specifically, the air pollution impact of increasing levels of electric vehicles on 

Highway 401 is simulated. Using Ontario Ministry of Transportation data for traffic flows on 

Highway 401, pollution modelling software and Transport Canada guidance it is estimated that 

pollution from Highway 401 costs $18.5M per year, and that replacing all the light passenger 

vehicles with electric vehicles could reduce these costs by 45.6%. The modelling demonstrates 

that NOx and PM2.5 are the costliest pollutants, and that PM2.5 experiences the least relative 

reduction in emissions with increased electric vehicle penetration.  
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1. Introduction 

 Anthropogenic climate change is a major threat to humanity and to life on earth, according to 

a recent Intergovernmental Panel on Climate Change (IPCC) report (IPCC, 2018). The impacts of 

climate change include, with varying degrees of confidence, increases in mean temperature in most 

regions, increases in extreme high temperatures, increases in heavy precipitation in some regions, 

increases in the probability of drought in some regions and increases in sea level. The indirect risks 

to humans from climate change include negative impact to human health, livelihoods, food 

security, water supply, human security and economic growth. The impact of these climactic 

changes on species at risk and ecosystems around the world is to reduce their climatically 

determined geographic range by over half in some cases and to negatively impact their viability 

(IPCC, 2018). Anthropogenic climate change is caused by ever increasing greenhouse gas 

emissions such as carbon dioxide (CO2). In order to reduce the degree of climate change, CO2 

emissions have to be drastically reduced and, in some sectors, eliminated.  

 One large and growing source of carbon dioxide emissions is the transportation sector, 

responsible for 14% of global CO2 emissions (IPCC, 2014). The transportation sector is dominated 

by vehicles which use internal combustion engines (ICEs) to capture heat energy from the 

combustion of oil products and propel themselves. Not only does this combustion process release 

large amounts of carbon dioxide, it also results in the emission of other gases which are hazardous 

to human health, including carbon monoxide, nitrous oxides, sulphur dioxide and volatile organic 

compounds. Vehicles can also emit particulate matter, which are not gases but small solid particles 

that can penetrate deep into the lungs and cause health problems. Exposure to air pollutants from 

vehicles increases the risk of asthma, diabetes, dementia and premature death, among other health 

problems (Requia, Mohamed, Higgins, Arain, & Ferguson, 2018). 

 One promising solution to transportation-sector emissions is electric vehicle (EV) technology. 

An EV is powered by electricity instead of oil, and uses a motor instead of an engine to turn that 

electricity into motion. Most EVs today use lithium-ion batteries to store their electricity, although 

fuel cells or other battery chemistries are also possible. EVs have much lower health and 

environmental impacts compared to ICE-powered vehicles (ICEVs) because they do not emit 

pollutants directly, and because electricity production is on average much cleaner than oil 
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consumption. This is particularly true in areas where nuclear and renewable energy play a large 

role in electricity generation (Nealer, Reichmuth, & Anair, 2015). 

 In spite of the benefits of EVs they face some major barriers to widespread adoption. The high 

upfront cost of EVs, which are generally several thousand dollars more expensive than comparable 

ICEVs, is a major deterrent. The limited range of all but the most expensive EVs is another major 

barrier (Haustein & Jensen, 2018). Both the high cost and limited range of the vehicle derive from 

the lithium-ion batteries which power the vehicles. Lithium-ion batteries are expensive, and EV 

batteries can comprise a large portion of the cost of the vehicle (Bullard, 2019). Although they are 

more energy dense than lead-acid or nickel-metal hydride batteries, lithium-ion batteries are still 

much less energy dense than gasoline. Improvements to lithium-ion batteries, or the development 

of an alternate battery chemistry, are therefore critical to the promotion of EVs. EVs face other 

barriers as well, such as the lack of fast-charging infrastructure, but the battery technology is a 

more central challenge (Berkeley, Jarvis, & Jones, 2018). 

 Because the shortcomings of lithium-ion batteries are the main barriers to EV adoption, 

researchers have investigated other energy storage technologies to supplant lithium-ion batteries 

as the EV energy source. One highly touted alternative is zinc-air batteries, which are actually a 

hybrid between a battery and a fuel cell. The anode is composed of solid zinc, as in a battery, but 

the cathode is an inert mesh where oxygen reacts as in a fuel cell. Zinc-air batteries are lighter, 

cheaper and more energy dense than lithium-ion batteries but are not yet ready for commercial 

use. Their main disadvantages are their low cycle life which limits their longevity, and their low 

power density which has made them impractical for use in vehicles (Fu, Cano, et al., 2017). 

 In this thesis a vehicle with a novel powertrain, incorporating a lithium-ion battery as the 

primary energy storage system (ESS) and a zinc-air battery as the range extender, is modelled. The 

powertrain is optimized so as to maximize the value of each battery and minimize their individual 

disadvantages. A similar vehicle with a more traditional EV powertrain is also modelled. This 

vehicle has no zinc-air battery, only one large lithium-ion battery. The two vehicle models are 

compared in order to demonstrate the advantages of the novel powertrain. Most of the vehicle 

components – including the motor, the vehicle body and the lithium-ion batteries – are based on 

data from commercial components; the exception is the zinc-air battery model. Zinc-air batteries 

are not yet commercialized, so the model was instead created by combining the results from several 
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published papers. The resulting model is subject to a sensitivity analysis in order to show which 

aspects of the model are most important in driving cell performance. The benefits of EVs are 

further explored by examining their potential effect on pollution levels in the vicinity of North 

America’s busiest highway, Highway 401 in Toronto. Toronto’s worst air pollution is concentrated 

along the 401 (Toronto Public Health, 2014) due to the emissions from the nearly hundreds of 

thousands of vehicles that use the 401 every day. The pollution along the 401 will be modelled 

and the effect of increasing levels of zero emission vehicles (ZEVs) will be explored.  

 The rest of this work is organized as follows. Section 2 provides background information on 

the areas of study relevant to this work: vehicle powertrains, lithium-ion batteries, zinc-air batteries 

and air pollution. This includes for each topic an overview of the important aspects and a review 

of the relevant literature. Section 3 describes in detail the models and methodology used in this 

work, including an overview of the relevant software, model specifications and data sources, and 

a description of some analysis done externally to the main models. In section 4 the results are 

presented with more analysis and discussion. This includes results from the vehicle model and the 

air pollution model. Section 5 concludes this work, highlighting the main results and offering 

recommendations for future work. 
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2. Background 

2.1. Powertrain review 

 The Canadian automotive sector is a $86B/year industry, with annual sales of passenger cars, 

minivans, sport utility vehicles, light and heavy trucks, vans and buses totalling 2 million per year 

(Statistics Canada, 2018a); the number of cars and light trucks in operation in Canada is estimated 

to be 23.1 million (Statistics Canada, 2018b). The emissions from passenger cars and passenger 

light trucks was 85.1 Mt in 2017, equivalent to 12% of Canada’s total emissions that year 

(Environment and Climate Change Canada, 2019). Health Canada estimates that in 2015 gasoline 

emissions (Charman et al., 2017) and diesel emissions (Brewer et al., 2016) were respectively 

responsible for 940 and 710 premature deaths, with a societal economic cost of $7.3B and $5.1B 

($7.9B and $5.5B respectively, in 2019 CAD). 

 Over the course of the 20th century the public became aware of several negative societal 

consequences of substantial oil consumption. Scientific research found significant health impacts 

from the uncontrolled tailpipe exhaust and lead to tailpipe emissions standards, the elimination of 

leaded gasoline as a fuel and a reduction in carbon monoxide and sulphur emissions from vehicles 

(EPA, n.d.-b). Also, the oil crisis of the 1970s revealed the degree to which oil-dependent 

economies depended on Middle East oil production and the consequent national security concerns. 

More recently, growing awareness of anthropogenic climate change and its consequences has 

focused public attention on the negative impacts of carbon dioxide emissions from vehicles. 

Together these issues created a public appetite for an alternative to oil-powered vehicles. 

 The first major innovation in response to these concerns was the introduction of hybrid 

powertrains. Vehicles with hybrid powertrains are powered by internal combustion engines as in 

conventional vehicles but also have small batteries – typically nickel-metal hydride batteries – to 

assist with vehicle propulsion and auxiliary power usage. The battery powers the vehicle when 

pulling off from a stop or driving at low speeds, which is when the engine is least efficient. The 

battery is charged by the engine, but because the engine has to do less work at its least efficient 

operating region there is a net reduction in fuel consumption (Husain, 2011). The battery can also 

be charged via regenerative braking – instead of using only the brake pads to stop the car, the 



5 
 

motor is allowed to run in reverse. This slows the car and also generates electricity, which is stored 

in the battery. 

 Hybrid vehicles (HEVs) were commercially successful but had a limited impact on the overall 

vehicle market. HEVs comprised 2-3% of the new vehicle market in the United States, the world’s 

second-largest vehicle market, from 2007 to 2017, with a peak market share of 3.8% in 2010 (EPA, 

2019). The only market in which they had a sizable impact was the Japanese market, where hybrids 

reached 19% of all passenger vehicles in service (Jiji, 2018). The limited popularity of HEVs can 

be attributed to their higher upfront cost and their limited benefit. HEVs are ultimately powered 

by gasoline the same as conventional vehicles; they just use somewhat less. Because of this HEVs 

do not substantially mitigate the social problems posed by gasoline consumption. 

 As Toyota was pioneering the Prius HEV, General Motors was experimenting with their own 

response to public concerns about gasoline consumption. Starting in 1996 GM produced the EV1, 

an electric car propelled with a large lead-acid battery (Edwards, 2006). The vehicle was soon 

cancelled due to a lack of demand, but a few years later automakers began production of electric 

cars with large lithium-ion batteries, a more advanced battery compared to lead-acid batteries. 

Battery electric vehicles (BEVs) don’t have internal combustion engines; instead they have large 

batteries, usually lithium-ion batteries, which powers a motor. 

 BEVs have significant health and environmental advantages over ICEVs and HEVs. BEVs 

have no tailpipe emissions, so they emit no greenhouse gas emissions and almost no air pollutants 

directly (vehicles also cause particulate emissions by kicking up road dust, so direct air pollution 

is not entirely eliminated). EVs may still cause pollution indirectly if their electricity is made from 

burning fossil fuels in a power plant, but the overall environmental and health impact of EVs is 

usually still positive (Nealer et al., 2015). This is because EVs are dramatically more efficient than 

conventional vehicles, so unless the power plant is very inefficient there will be a net reduction of 

greenhouse gas emissions. Also, because the power plant emissions are generally located some 

distance away from major population centres, the impact of their air pollution in cities is less 

compared to the same pollution emitted from city streets (Ji et al., 2015). Indirect EV emissions 

may be eliminated entirely if the vehicles are charged with renewable energy or nuclear power, 

which emit no greenhouse gas emissions and no air pollutants. 
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 Although BEVs have major potential environmental and health benefits, they have not yet had 

a major impact on the vehicle market. One major barrier is the range anxiety many potential BEV 

owners experience. Lithium-ion batteries, though more efficient than engines, contain far less 

energy per unit weight and volume than oil. Consequentially BEVs usually drive significantly 

shorter distances on a single charge than a comparable gasoline car. Furthermore, fast-charging 

stations are currently far less common than gas stations, which are ubiquitous. Together this makes 

prospective BEV owners concerned they will find themselves stranded on the side of the road 

(Haustein & Jensen, 2018). Another major barrier is the cost of BEVs. Lithium-ion batteries are 

expensive and make up a significant portion of the cost of a vehicle. Prices are coming down as 

manufacturing techniques improve and economies of scale are achieved, but presently the cost of 

batteries creates a significant price gap between BEVs and comparable gasoline-powered vehicles 

(Bullard, 2019). These and other challenges must be overcome if lithium-ion battery-powered 

BEVs are to gain significant market share, and some challenges – such as the fire risk posed by 

lithium-ion batteries as well as battery charging speed – are likely to remain a barrier far into the 

future unless new EV technology is developed. 

 In order to overcome the challenges of cost and range, a new hybrid vehicle architecture was 

introduced. A plug-in hybrid electric vehicle (PHEV) has a battery and an engine, as in an HEV, 

but with a very different powertrain design and operation. A PHEV has a small-to-medium sized 

lithium-ion battery which powers a motor which propels the car. There is also an engine, and in 

the most common PHEV configuration (a series configuration) the engine powers a generator 

which charges the battery (Husain, 2011). The series configuration of the PHEV differs from the 

typical HEV powertrain configuration, which is series-parallel split. Unlike in HEVs, a PHEV 

battery is large enough and powerful enough to power the vehicle independently of the engine for 

short-to-medium distances at high speeds. Also unlike in HEVs, the PHEV battery can be charged 

externally (i.e. directly from the electrical grid) and so can run off a fuel apart from oil. When the 

vehicle runs low on charge, the engine turns on and powers the vehicle through the battery, 

effectively charging the battery as the battery powers the vehicle (Husain, 2011). Because most 

people don’t drive very far each day, a moderately-sized battery is still sufficiently large to power 

the vehicle most of the time, and while the battery is running off electricity from the grid the same 

environmental benefit can be derived as from a BEV. But since the batteries are much smaller 
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PHEVs are much cheaper than BEVs; additionally, since PHEVs have an engine and a gas tank, 

drivers do not need to fear running out of charge.  

 There are several hybrid powertrain configurations, but the main variations are series, parallel 

and series-parallel split. In a series powertrain the engine is not connected mechanically to the 

wheels at all; instead it powers a generator, which charges the battery, which in turn powers a 

motor which turns the wheels (Figure 1). The power delivered to the wheels is determined entirely 

by the battery and motor, not the engine – though the engine can recharge the battery as the battery 

powers the wheels. Series powertrains are common in PHEVs since the battery is easily operated 

independently of the engine, resulting in the greatest reduction in gasoline consumption. The 

engine can be smaller and more efficient than in a comparable ICE vehicle since it has lower power 

requirements, and can generally be operated more efficiently since its power output does not have 

to closely match demand (Husain, 2011). 

 

Figure 1: Schematic depiction of a series powertrain (Husain, 2011). 

 

 HEVs rarely utilize a series configuration since the battery has to be large enough and powerful 

enough to power the vehicle independently of the engine. HEVs more commonly employ a parallel 

hybrid powertrain, in which an engine and an electric motor are each connected mechanically to 

the wheels and simultaneously provide power to the wheels (Figure 2). In this configuration the 

battery and engine can power the vehicle independently or together – although in HEVs the 

batteries only do this in low-power situations – and the battery can be recharged via regenerative 

braking or via the engine (Husain, 2011). Because the engine is usually responsible for powering 

the car in high-energy situations it has to be almost as large and powerful as in a comparable ICE 
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vehicle, but having the battery increases the operating efficiency of the engine. This powertrain is 

more complicated to control than a series powertrain, but eliminates the need for a separate 

generator to charge the battery. In addition, because the engine is connected directly to the wheels 

there is improved efficiency at highway speeds because the energy from the engine does not have 

to be transformed from mechanical energy to electrical energy and then back to mechanical energy 

(Union of Concerned Scientists, n.d.-b) 

 

Figure 2: Schematic depiction of a parallel hybrid powertrain (Husain, 2011). 

 

 Another common HEV powertrain configuration is the series-parallel split powertrain. In a 

series-parallel split powertrain the motor and engine are both connected to the wheels as in a 

parallel powertrain, but the engine is also connected to the battery through a generator (Figure 3). 

A vehicle with a series-parallel powertrain can have a smaller and more efficient engine as in a 

series powertrain and operate it efficiently as in a series powertrain but also have it power the 

wheels directly as in a parallel powertrain (Union of Concerned Scientists, n.d.-b). However, the 

powertrain is the most complicated both in design and to operate, and requires a separate generator 

as in a series powertrain (Husain, 2011). A summary of the advantages and disadvantages of each 

powertrain can be found in Table 1.  
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Figure 3: Schematic depiction of a series-parallel split hybrid powertrain (Husain, 2011). 

 

Table 1: Hybrid powertrain comparison. 

 
Advantages Disadvantages 

Series 

• Simple architecture and control 

• Smaller, more efficient engine 

• Simple power control 

• Efficient city driving due to high regen 

• Efficient engine operation 

• Needs powerful battery 

• Highway inefficiency due to 

multiple energy conversions 

• Needs extra generator 

Parallel 

• Can be powered by battery and/or engine 

• Better highway efficiency due to direct 

engine connection 

• No extra generator 

• Needs a powerful, less 

efficient engine 

• More complex to control 

Series-

Parallel 

Split 

• Smaller, more efficient engine 

• Efficient city driving due to high regen 

• Efficient highway driving due to 

mechanical engine connection 

• More efficient engine operation 

• Can be powered by battery and/or engine 

• Most complex to control 

• Most complex architecture 

• Needs extra generator 

(Husain, 2011; Union of Concerned Scientists, n.d.-b) 

 PHEVs were explicitly conceived to address the main problems with BEVs, and they have 

largely succeeded, but they still have not had a major impact on the vehicle market. One reason 

for this might be that PHEVs, though cheaper than BEVs, are still more expensive than comparable 

ICE-powered vehicles. Another might be that even though the PHEV offers substantial 

environmental benefit, the fact that they still sometimes use gasoline creates confusion for 

potential buyers or reduces their attractiveness as an environmental solution (Haustein & Jensen, 

2018).  
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 In recent years, researchers have examined the idea of modifying the PHEV concept to have 

an alternative battery or fuel cell as the secondary power source instead of an internal combustion 

engine. Some have sought to pair fuel cells with batteries purely to improve the power response of 

the system, rather than to enable significant battery-only range. For example, Ahmadi and 

coworkers designed a powertrain with a fuel cell, battery and ultracapacitor and implemented a 

fuzzy logic control technique to optimize power output (Ahmadi, Bathaee, & Hosseinpour, 2018). 

However, Fernandez and coworkers looked specifically at the advantages of pairing a sizable 

lithium-ion battery with a fuel cell for range extension. The vehicle they designed travelled 105 

km on a 16 kWh battery and an additional 525 km on a 32 kW fuel cell stack. In contrast, most 

long-range BEVs have batteries with 60 kWh of storage or greater, and most fuel cell vehicles 

(FCVs) have 80-100 kW fuel cell stacks (Fernández, Cilleruelo, & Martínez, 2016). The vehicle 

can be charged at home and refuelled in under ten minutes, although an improved hydrogen 

refuelling network would still be needed. Fernandez and coworkers did a basic power-sharing 

optimization in order to maximize range and reduce hydrogen consumption, but Martel and 

coworkers specifically focused on optimizing power-sharing for operating cost reduction and 

battery and fuel cell longevity (Martel, Dubé, Kelouwani, Jaguemont, & Agbossou, 2016). They 

managed to improve battery longevity by 18% versus the next best power control strategy or by 

41% versus the worst power control strategy. Economic gains through reduced operating costs 

improved by 3-6%. 

 Others have investigated the benefits of using a battery as a secondary power source. Bockstette 

and coworkers showed, using a Ragone plot, that while individual batteries have trade-offs 

between energy density and power density, a two-battery energy storage system can improve on 

each characteristic (Bockstette, Habermann, Ogrzewalla, Pischinger, & Seibert, 2013). Using a 

hand-built test system they demonstrated considerable improvement on conventional batteries, 

reducing weight by 22% and costs by 12%. They also note that each battery has different cycle life 

requirements, with the power battery needing to survive over 300,000 short cycles (i.e. covering a 

small capacity range) while the energy battery needs to survive fewer (less than 5000) deep 

discharge cycles. Although they do not specify, it is understood that Bockstette and coworkers use 

different lithium-ion battery chemistries for both their power pack and energy pack (Bockstette et 

al., 2013). In contrast, Riczu and coworkers used a lithium-ion chemistry for their primary power 

source and a lithium-silicon chemistry, with a 16% mass reduction compared to lithium-ion, for 
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their range extender (Riczu, Habibi, & Bauman, 2018). For a set vehicle range they optimized the 

size of the lithium-ion and lithium-silicon battery packs for vehicle efficiency and battery pack 

cost, under three different scenarios for lithium-silicon cell cost. Although they noted lithium-

silicon’s poor cycle life and poor power response as a reason why lithium-silicon cannot be a 

primary power source, they did not examine these limitations in detail. Yamauchi and coworkers 

did analyze battery life improvements in their combined battery system. They presented a two-

battery powertrain with the two batteries in parallel, rather than in series as in conventional PHEVs 

and with no current controller as in previously described studies (Yamauchi, Inoue, Chandra, 

Makino, & Komatsu, 2018). Both the energy and power packs are in operation at all times, with 

the power pack designed to respond to match rapid changes in power demand. Yamauchi and 

coworkers characterized the current distribution in the energy pack and power pack and then 

analyzed battery life improvements in the energy pack based on temperature changes in the pack 

and the resultant battery degradation. With a configuration in which the power pack is only 5% of 

the capacity of the energy pack they managed to reduce the temperature rise in the energy pack by 

4°C, resulting in a doubling in the life of the energy pack (Yamauchi et al., 2018). 

 A few researchers have demonstrated range extender concepts specifically with zinc-air 

batteries as the secondary power source. Eckl and coworkers designed and characterized a set of 

zinc-air cells based on commercial zinc-air cell components (Eckl, Burda, Foerg, Finke, & 

Lienkamp, 2013). They recharged the cells mechanically, but postulated that in the future range 

extending zinc-air batteries could be recharged mechanically or electrically. Based on a vehicle 

model featuring a 4-kWh zinc-air range extender, they managed to extend the vehicle range by 45-

77 km. Catton and coworkers modelled and compared a number of alternative powertrains, 

including a zinc-air extended range powertrain (Catton, Wang, Sherman, Fowler, & Fraser, 2017). 

Using a sophisticated vehicle model, they optimized each powertrain for certain performance 

metrics – range, cost, acceleration, etc. They used a decision matrix to demonstrate that the zinc-

air range extender vehicle was superior to the other vehicles, followed closely by the fuel cell 

vehicle. Sherman and coworkers did extensive analysis of a zinc-air extended range vehicle (S. B. 

Sherman, Cano, Fowler, & Chen, 2018). They created a zinc-air battery model based on results 

reported in the literature, modelled the battery within a vehicle model also containing a lithium-

ion battery, and optimized the powertrain for vehicle range, battery longevity and overall costs. 

By analyzing the daily driving patterns of typical American drivers, they were able to design the 
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powertrain to minimize use of the zinc-air battery and so extend its limited cycle life to over 15 

years (neglecting the impact of temperature) while keeping costs down and vehicle range high.  

2.2. Lithium-ion battery review 

 Since lithium-ion batteries were first put into production by Sony in 1991, they have exploded 

in popularity to become a $36B ($49B in 2019 CAD) global market (“Lithium Ion Battery Market 

To Reach USD 109.72 Billion By 2026,” 2019) with production of 109 GWh of production in 

2017 (Deign, 2019). They have become the dominant power source for consumer electronics and 

EVs. Their popularity is due to their longevity and high cycle life, relatively high specific energy 

and energy density and their declining costs. Modern lithium-ion batteries have graphite anodes, 

metal oxide or metal phosphate cathodes and organic salt electrolytes. When discharging, the 

lithium travels through the graphite structure and electrolyte to the cathode, where it reacts with 

the cathode material and is incorporated into the cathode structure. During charging, the lithium-

ions travel the other way and are absorbed into the graphite structure. Because the lithium is 

incorporated physically into the electrode structures without significantly altering that structure, 

lithium-ion batteries are referred to as intercalation batteries. 

 The cathode material of a lithium-ion battery is an important determinant of electrochemical 

performance and a key product differentiator relative to the anode and electrolyte, which are fairly 

similar across commercial products. Lithium-ion cathodes are mostly transition metal oxides or 

polyanion compounds and mostly have a layered, spinel or olivine crystal structure (Nitta, Wu, 

Lee, & Yushin, 2015). The lithium-ion batteries first produced by Sony used a layered lithium 

cobalt oxide (LCO) material, a material which is still commonly used today. LCO batteries were 

successful and are still successful today because of their high specific energy, high energy density 

and long cycle life (Du Pasquier, Plitz, Menocal, & Amatucci, 2003), but LCO has significant 

drawbacks as well. LCO’s poor thermal stability makes it a fire/explosion risk (Dahn, Fuller, 

Obrovac, & von Sacken, 1994), they lose significant capacity when discharged at high currents or 

to deep discharge levels (Reimers & Dahn, 1992), and are expensive due to the large amount of 

cobalt used. Other cathode materials were developed to address these shortcomings without 

compromising LCO’s good qualities or introducing new problems. 
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 Nickel cobalt aluminum (NCA) cathodes were developed to reduce the cost of the cathode and 

improve the thermal stability. Substituting nickel for cobalt maintains the cathode structure while 

reducing the material cost (Nitta et al., 2015), and adding a small amount of aluminum improves 

the thermal stability of the cathode and the capacity retention with deep discharging (Chen et al., 

2004). NCA manages to maintain a high specific capacity, a high cycle life and a high calendar 

life (Nitta et al., 2015), but still suffers from capacity fade at higher temperatures (Itou & Ukyo, 

2005). NCA cathodes have become one of the two main cathode chemistries for EV batteries, the 

other being nickel manganese cobalt (NMC). NMC retains the layered structure of LCO and its 

high specific capacity while reducing the material cost, improving the cycle life and achieving 

greater thermal stability (Nitta et al., 2015). 

 Other notable cathode materials include lithium manganese oxide (LMO) and lithium iron 

phosphate (LFP). LMO can have either a layered or spinel structure, and is of research interest 

primarily because manganese is much cheaper than cobalt or even nickel. However, LMO has 

significant cycling stability issues. Layered LMO tends to convert to spinel LMO with cycling, 

and both layered and spinel LMO suffer from manganese leaching into the electrolyte, side 

reactions, and other chemical stability issues (Nitta et al., 2015). LFP has an olivine structure and 

is notable for its high thermal stability (Doughty & Roth, 2012), cycle life and power density, and 

has attracted commercial interest for EV batteries. But LFP’s low average voltage results in a low 

specific energy relative to other cathodes, and its low electrical and ionic conductivity are problems 

as well (Nitta et al., 2015).  

 The anode and electrolyte of lithium-ion batteries are equally important to performance, but 

there is substantially less differentiation across the commercial market. 98% of the lithium-ion 

battery market in 2010 used graphite anodes, either modified natural graphite, artificial graphite 

or mesophase graphite. Modified natural graphite has become the most popular of these three 

forms of graphite due to its lower processing cost compared to artificial graphite (M. Li, Lu, Chen, 

& Amine, 2018). Electrolytes are organic solvents with lithium salts – most commonly ethylene 

carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate 

(EMC) or some combination thereof, with lithium hexafluorophosphate (LiPF6) salt (Schmuch, 

Wagner, Hörpel, Placke, & Winter, 2018). The right combination of solvents helps preserve the 

stability of the anode and facilitates higher voltages without risking a fire, while proprietary 
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additives provide further stability and longevity to the battery and prevent side reactions from 

taking place. The salt makes the electrolyte conductive and facilitates ion transfer. 

 Commercial lithium-ion batteries have experienced manufacturing improvements as well as 

chemical improvements over the past decades, and one manifestation of this is optimized cell 

formats. Lithium-ion batteries today are manufactured mainly in three formats: cylindrical, pouch 

and prismatic (see Figure 4). In cylindrical cells the anode, cathode, separator and current 

collectors are rolled to fit into a cylindrical metal canister. Historically the dominant format was 

the 18650 cell (for 18 mm in diameter, 65 mm tall) but the newer 2170 format (21 mm in diameter, 

70 mm tall) resulted in a 35% increase in energy density as well as a reduction in manufacturing 

costs (Jain, 2017). Cylindrical cells have the highest energy density of all cell formats (M. Li et 

al., 2018), but they are in some respects more difficult to manufacture than the other formats 

(Schröder, Aydemir, & Seliger, 2017), and their shape makes them less space efficient. 

Consequentially some of that energy density advantage is lost at the pack level. Pouch cells use 

flat, flexible packaging to enclose several layers of anode/separator/cathode. Pouch cells are less 

energy dense than cylindrical cells but much more space efficient, and easier to handle and 

assemble due to their flat nature. Their flexible packaging reduces the weight of the cell and 

simplifies some aspects of the manufacturing, but in other respects makes manufacturing more 

complex (Schröder et al., 2017). Prismatic cells are rectangular in format, but use a metal container 

like the cylindrical cells and unlike the pouch cells. Consequentially some aspects of 

manufacturing are easier than pouch cells, but packaging is more difficult (Schröder et al., 2017). 

Although all three formats have been used in EVs, prismatic cells are less common than cylindrical 

and pouch cells (M. Li et al., 2018).  
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Figure 4: The three main lithium-ion cell shapes (reproduced with permission from (Schröder 

et al., 2017)). 

 

 The manufacturing and chemical improvements in lithium-ion battery technology, as well as 

improving economies of scale, has led to substantial cost declines. Battery prices have declined 

14% annually between 2007 and 2014, according to Nykvist and Nilsson (2015). This implies a 

14% cost reduction per doubling of cumulative production, or 8% if the analysis is restricted to 

the market leaders. They estimate the 2014 price of lithium-ion batteries to be $300 kWh-1 ($399 

kWh-1 CAD). Nevertheless, lithium-ion batteries are expected to remain expensive for several 

years, making EVs uncompetitive with conventional vehicles for that time span.  

 Lithium-ion batteries represent a drastic improvement on older battery technologies, but their 

shortcomings may yet limit EV proliferation. Most importantly, their specific energy is still too 

low and their cost still too high to enable widespread EV use, although both are improving. The 

specific energy of a lithium-ion battery is only one fiftieth of that of gasoline, and the battery 

accounts for up to a third of the total cost of a vehicle (Bullard, 2019). Battery safety is also a 

significant concern. Lithium-ion batteries employ organic electrolytes such as ethylene carbonate, 

dimethyl carbonate and diethyl carbonate, because aqueous electrolytes would cause the lithium 

to react violently and destructively. However, these organic electrolytes are themselves flammable. 

EVs need advanced cooling systems to prevent their batteries from overheating, not only to ensure 
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optimal performance but to prevent damage to the battery and to the vehicle occupants. Finally, 

the practicalities of charging an EV leave much to be desired. Apart from the paucity of available 

fast-charging stations (which may improve over time) the actual rate of charging is much slower 

than the process of filling up a tank with gasoline. The limitation is due in part to the need to keep 

the battery temperature low so as to prevent overheating, which fast charging can easily cause. The 

capacity of the charging station and the stability of the electrical grid can also limit the charging 

speed. 

2.3. Zinc-air battery review 

 Metal-air batteries have attracted significant interest for EV applications due to their high 

energy density and specific energy and lower expected cost (Fu, Cano, et al., 2017). Of the 

available anode materials, lithium, aluminum and zinc have attracted the most interest. Lithium-

air batteries have the highest energy density of all the metal-air batteries but face significant 

hurdles to commercialization. They are inefficient, sensitive to moisture, have poor rate capability 

and experience irreversible side reactions, resulting in low cycle life and serious safety risk (C. 

Wang, Xie, & Zhou, 2019). Aluminum-air batteries have the highest energy density of all the 

metal-air batteries which have aqueous electrolytes, which are significantly safer than organic 

electrolytes (Fu, Cano, et al., 2017). The Israeli company Phinergy attempted to commercialize an 

aluminum-air battery for EVs and even attracted interest from global automaker Nissan (“Electric 

car with massive range in demo by Phinergy, Alcoa,” 2014). However, aluminum-air batteries are 

not electrically rechargeable – they must be recycled after each use (Mokhtar et al., 2015). 

Consequentially, a battery swapping scheme such as the one proposed by Nixon would be needed 

to support the proliferation of this technology (United States Patent No. US 5542488, 1994).  

 Zinc-air batteries are not as energy dense as lithium-air or aluminum-air batteries, but have in 

light of the shortcomings of those chemistries attracted significant commercial and research 

attention. Zinc-air batteries have a much higher theoretical specific energy and energy density 

compared to lithium-ion batteries. They are made from much less expensive raw materials than 

lithium-ion batteries, which require large amounts of lithium, nickel and cobalt. Primary zinc-air 

batteries are already used in hearing aids and some specialized commercial applications, but 

rechargeable zinc-air batteries have not yet achieved significant commercial success (Fu, Cano, et 

al., 2017). In research settings, zinc-air batteries have been shown to be electrically rechargeable 
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to a limited number of cycles, and their aqueous electrolytes make them much safer and much less 

prone to side reactions than lithium-air batteries. Together this suggests zinc-air batteries may be 

feasible for EV applications. 

 Zinc-air batteries consist of a zinc anode, an inert cathode where oxygen reduction and 

evolution take place, a separator and an electrolyte. During discharge, the zinc undergoes a two-

step reaction (equations 1a and 1b) to form zinc oxide as oxygen is reduced at the cathode (equation 

2); equation 3 shows the overall reaction. Hydrogen evolution also occurs as a parasitic reaction 

at the anode (equation 4) (Fu, Cano, et al., 2017): 

Negative electrode: 𝑍𝑛 + 4𝑂𝐻− → 𝑍𝑛(𝑂𝐻)4
2− + 2𝑒−  (1a) 

𝑍𝑛(𝑂𝐻)4
2− →  𝐻2𝑂 + 2𝑂𝐻− + 𝑍𝑛𝑂  (1b) 

Positive electrode: 1

2
𝑂2 + 𝐻2𝑂 + 2𝑒− → 2𝑂𝐻−  (2) 

Overall reaction: 2𝑍𝑛 + 𝑂2 → 2𝑍𝑛𝑂  (3) 

Parasitic reaction: 𝑍𝑛 + 2𝐻2𝑂 → 𝑍𝑛(𝑂𝐻)2 + 𝐻2  (4) 

 The biggest limitation of zinc-air batteries is their poor cycle life, for which the anode bears 

most of the responsibility. Zinc anodes suffer from shape change, dendrite formation and 

passivation with repeated cycling, and can experience hydrogen evolution during charging. 

Dendrites are sharp protrusions of zinc which form due to preferential zinc deposition in areas of 

high Zn(OH)4
2- concentration; these then break off, resulting in a loss of capacity, or else puncture 

the separator and cause a short circuit. Shape change also results from non-uniform zinc deposition 

and over time reduces anode capacity. Passivation occurs when ZnO precipitates on the anode due 

to high Zn(OH)4
2- concentrations and clogs anode pores (Fu, Cano, et al., 2017). Researchers have 

experimented with several strategies to prevent or reduce dendrite formation, shape change, 

passivation and hydrogen evolution and improve the cycle life of the anode. Several have trialed 

foam or sponge shaped anodes with some success. Yan and coworkers electroplated zinc onto a 

copper foam current collector and achieved 9000 cycles at 100 mA cm-2 and a 754 mAh g-1 specific 

capacity (Yan, Wang, Jiang, & Sun, 2015). However, the physical characteristics of the anode 

were such that its capacity density was extremely low, at 39 Ah L-1. Chamoun and coworkers 

attempted something similar with a nickel mesh and successfully cycled the anode 100 times at 

C/5 and 719 mAh g-1 specific capacity, but only to 40% depth of discharge (Chamoun et al., 2015). 

Parker and coworkers cast a zinc sponge anode with small quantities of indium and bismuth to 
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alleviate hydrogen evolution, and achieved a high specific energy (728 mAh g-1) and capacity 

density (928 Ah L-1) but only achieved 45 charge discharge cycles to 23% depth of discharge 

(Parker, Chervin, Nelson, Rolison, & Long, 2014). Apart from the practical shortcomings of the 

described anodes, their increased surface area increases the rate of hydrogen evolution (Parker and 

coworkers attempt to counter this with indium and bismuth additives). One way to reduce dendrite 

growth, shape change and passivation without increasing hydrogen evolution is to use calcium, as 

Wang and coworkers did, to prevent the movement of Zn(OH)4
2-. The calcium bonds to the 

Zn(OH)4
2-, causing it to precipitate out of solution; because its potential for migration is reduced 

the Zn(OH)4
2- does not move much and the zinc plates uniformly. Wang and coworkers achieved 

250 cycles at a 2C rate and 100% depth of discharge, but the specific capacity and capacity density 

of the anode suffered due to the large amount of calcium required (R. Wang, Yang, Yang, Fan, & 

Wang, 2014). Huang and coworkers used a novel zinc-aluminum layered double-oxide powder, 

which has a high surface area and allows for efficient OH- transfer into the solution (Huang et al., 

2015). The anode achieved 1000 charge-discharge cycles at a rate of 1C, and though the specific 

capacity suffered (469 mAh g-1) this is an improvement on Wang and coworkers. Li and coworkers 

(J. Li et al., 2017) have demonstrated an alternate solution in which zinc oxide microspheres are 

doped and coated with carbon. This makes them more conductive and inhibits passivation and 

shape change. The anode achieved 500 mAh g-1 and 200 charge-discharge cycles at 1C. The doped 

and coated carbon successfully supressed dendrite formation and reduced hydrogen generation (J. 

Li et al., 2017). 

 The air electrode presents its own set of limitations and challenges which manifest as short 

cycle life, low specific power and low roundtrip energy efficiency. Oxygen reduction is facilitated 

with a triple phase boundary, in which the electrode is in contact with both the gas phase and the 

electrolyte. The low specific power of zinc-air batteries is due to the difficulty in maintaining the 

triple phase boundary and consequent low current operation (Fu, Cano, et al., 2017). Within this 

triple phase boundary catalysts are used to enable oxygen reduction and evolution, and researchers 

have investigated many catalysts as alternatives to expensive precious-metal catalysts. Researchers 

have focused on bifunctional catalysts, as unifunctional catalysts would necessitate separate 

electrodes for charging and discharging and negate the energy density advantage of zinc-air 

batteries over lithium-ion batteries. D. Lee and coworkers used Co3O4 nanowires as their catalyst, 

which they grew directly onto the steel mesh that served as their gas diffusion layer (GDL). A 
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zinc-air cell using their cathode attained a discharge voltage of 0.9 V at 17.6 mA cm-2 (with a 

voltage polarization of 0.82 V) and had consistent performance through 1500 pulse cycles of five 

minutes each. However, the power density was quite low, at 40 mW cm-2 (Lee, Choi, Feng, Park, 

& Chen, 2014). B. Li and coworkers used Co3O4 nanoparticles along with carbon nanofibers on a 

stainless steel GDL. They achieved a much higher power density of 167 mW cm-2, with 0.72 V 

voltage polarization at 25 mA cm-2 (B. Li et al., 2015). Another group used sulphur-deficient cobalt 

oxysulphide on nitrogen-doped graphene nanomeshes (CoO0.87S0.13/GN) as their catalyst. A 

cathode using this catalyst maintained a discharge voltage of 1.1 V at 20 mA cm-2 and a charge-

discharge voltage gap of 0.77 V even after 320 cycles of one hour each (Fu, Hassan, et al., 2017).  

 Low cycle life and low power density are the main development challenges of zinc-air batteries, 

but there are others. Good air management is important to zinc-air battery longevity, both because 

the introduction of CO2 can change the pH of the electrolyte and affect electrolyte conductivity 

and because the cell can dry out or flood if the incoming air removes or deposits too much water 

(Fu, Cano, et al., 2017). This is manageable with a good air control system and a CO2 filter. 

Alternatively, some have elected to use neutral electrolytes that do not carbonize. Goh and 

coworkers demonstrated adequate performance of a zinc-air cell with a nearly neutral electrolyte, 

achieving 1000 hours and hundreds of charge-discharge cycles without forming carbonate 

(Thomas Goh et al., 2014). Eos Energy Storage uses a neutral electrolyte in their commercial zinc-

air flow battery (US20150244031A1, 2013). Mohamad tested a gel electrolyte to alleviate water 

loss and found that a 6M KOH gel electrolyte improved specific capacity compared to a 2.8 M 

KOH gel electrolyte (Mohamad, 2006). Another important issue for zinc-air batteries is zinc 

corrosion leading to hydrogen evolution in the cell. Researchers have attempted several strategies 

– alloying the zinc with other metals (especially bismuth and indium), coating the surface of the 

electrode with aluminum oxide or lithium boron oxide, and using chemical additives – to reduce 

zinc corrosion (Fu, Cano, et al., 2017). 

2.4. Air pollution from transportation review 

 In addition to greenhouse gas emission reduction, air pollution mitigation is a major societal 

impetus for the promotion of EVs. Health Canada estimates that anthropogenic North American 

pollution is responsible for 14,4000 deaths per year in Canada (2017). These mortalities are 

attributed entirely to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) – other 



20 
 

chemicals contribute to air pollution but their impact was not analyzed due to there being less 

available data in Canada regarding those pollutants. In another study, the economic cost of PM2.5 

and O3 is calculated to be $39 billion dollars ($42B in 2019 CAD) per year (Smith & McDougal, 

2017). Health costs born by individuals – illness and premature deaths caused by these air 

pollutants – make up most of these costs at $36 billion dollars per year, while the costs imposed 

on the health care system (i.e. hospitals, health care workers, etc.) amount to $2 billion per year 

and the cost of lost working hours amounts to $800 million per year ($39B, $2B and $861M 

respectively in 2019 CAD). Another study looking at the impact of transportation specifically 

found that transportation-related emissions of PM2.5, sulphur dioxide (SO2) nitrous oxides (NOx) 

and volatile organic compounds (VOCs) exacted a cost on the Canadian economy of $5.5 billion 

dollars in the year 2000 (Sawyer, Seton, & Welburn, 2007), which is equivalent to $7.9 billion in 

2019. Pollution from light passenger vehicles alone cost $1.4 billion ($2B in 2019 CAD), although 

this estimate excludes pollution from road dust, as the study was not able to determine how much 

each mode of transportation contributed to road dust pollution. The study found that NOx emissions 

accounted for 52% of overall emissions; that mortality from acute exposure accounted for 70% of 

the entire economic cost, while chronic exposure mortality accounted for another 26%; and that 

Toronto specifically had an air pollution cost of $614 million ($878B in 2019 CAD). A more recent 

study examined the impact of air pollution in Toronto specifically. The study found that air 

pollution led to 1,300 premature deaths and 3,550 hospitalizations annually in Toronto (Toronto 

Public Health, 2014). Over half of the city’s air pollution was emitted from within the city’s 

borders, and the largest portion of that comes from local traffic. Specifically, air pollution from 

Toronto traffic accounted for 280 deaths per year and 1090 hospitalizations per year, with larger 

implied instances of less severe health impacts such as acute bronchitis in children and acute 

respiratory symptom days. 

 The main direct air pollutants from ICEVs include NOx and SOx emissions, VOCs, carbon 

monoxide (CO) and particulate matter (PM2.5 and PM10). O3 is an important pollutant which is not 

emitted directly from vehicles; rather, it is formed when NOx and VOCs react in still air and 

sunlight (Union of Concerned Scientists, n.d.-a). EVs do not emit any of these pollutants at the 

street level, apart from the road dust (particulate matter) they kick up – as do all on-road vehicles. 

EVs therefore have significant potential to reduce air pollution, especially in major cities where 

traffic is a dominant contributor to air pollution. However, when accounting for the impact of EVs 
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on air pollution it is important to account for the emissions generated producing the electricity to 

charge the EVs. 

 The research shows that EVs can reduce certain types of air pollution but not others, and 

whether or not they do depends on the electricity generation profile (Requia et al., 2018). EVs have 

consistently been shown to reduce emissions of NOx, VOCs and CO, while the impacts on SO2, 

O3 and PM are less clear and may even be negative. For example, one study found that replacing 

100% of light-duty gasoline cars and trucks in Denver, Colorado with PHEVs would reduce NOx 

and VOC emissions by 14% and 24% respectively, including the impact of increased emissions 

from power plants (a mix of coal and gas fired power plants) (Brinkman, Denholm, Hannigan, & 

Milford, 2010). Another study (N. Li et al., 2016) found that replacing all light vehicles in Taiwan 

with EVs would decrease levels of most air pollutants. The study found that NOx, CO, VOCs and 

PM2.5 emissions would be reduced by 7-21%, 45-65%, 20-21% and 4-8%, respectively, with 

greater reductions in emissions occurring in urban areas than in rural areas. The study also found 

an increase in SO2 emissions (2-5%) when the electricity was generated from coal, and increased 

O3 concentrations in urban areas. A different study found markedly different results: EVs were 

found to decrease CO2 emissions but increase SO2 emissions in each of China, Russia, India, 

Brazil, Germany, France, the U.S. and Japan, while NOx emissions and PM10 emissions increased 

in all of those countries except France, where both decreased, and Brazil, where NOx emissions 

decreased (Wu & Zhang, 2017). In contrast to the Taiwan study, SO2 emissions increased 

substantially with increased EV penetration. 

 Particle matter emissions (PM2.5 and PM10) are an interesting case because some studies have 

found that EVs would not reduce these emissions even without accounting for increased emissions 

from power plants. PM emissions can be generated by internal combustion engines, but one study 

has estimated that 90% of PM10 emissions and 85% of PM2.5 emissions generated due to traffic are 

non-exhaust emissions (Timmers & Achten, 2016). Non-exhaust vehicle emissions are generated 

from tire wear, brake wear, road surface wear and resuspension of road dust by the wake of the 

vehicle, all of which are dependent on vehicle weight. Since EVs are 24% heavier than comparable 

ICE vehicles (Timmers & Achten, 2016) it stands to reason that there would be an increase in the 

amount of particulate emissions generated from these non-exhaust sources. Timmers and Achten 

(2016) find that accounting for this increase in emissions from road dust there is no net reduction 
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in PM10 emissions and only a 1-3% reduction in PM2.5 emissions, not accounting for any additional 

emissions from power plants to generate the necessary electricity. A Texas study (which did not 

account for increased road dust) showed that air pollution impacts (mainly from PM) increase by 

350% with EVs powered by coal replacing ICE vehicles, while air pollution impacts (mainly from 

PM) decreased by 50% and 70% when charged with electricity generated from natural gas or 

renewable energy, respectively (Tessum, Hill, & Marshall, 2014).  
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3. Models and Methodology 

3.1. Vehicle Model 

3.1.1. Modelling software and model overview 

 In order to evaluate the potential of zinc-air battery technology to serve as a range extender in 

electric vehicles, two vehicle models are created. The main model is a two-battery electric vehicle 

(2BEV), in which a small lithium-ion battery and a large zinc-air battery power the vehicle in 

tandem. The second model is of a traditional BEV with a large lithium-ion battery; this model acts 

as a point of comparison to the 2BEV, and hence is named the cBEV, for control BEV. The 

vehicles are shown schematically in Figures 5 and 6 below: 

 

Figure 5: Schematic depiction of the 2BEV model. 

 

 

Figure 6: Schematic depiction of the cBEV model. 

 

Range 

extender 

Primary 

ESS 

Wheel 

Transmission 

Wheel 

Power 
converter 

Motor 

D
if

fe
re

n
ti

al
 

Power 
converter 

Auxiliary 

electronics 

Primary 

ESS 

Wheel 

Transmission 

Wheel 

Motor 

D
if

fe
re

n
ti

al
 

Power 
converter 

Auxiliary 

electronics 



24 
 

 Both vehicle models were created in Simulink. Simulink is a graphical programming 

environment based on MATLAB, a programming language and numerical computing 

environment. MATLAB and Simulink are capable of handling large simulations and heavy 

numerical computation, making them well suited to vehicle modelling. By using the basic blocks 

available in Simulink as well as some special blocks available with the Simulink Powertrains 

Blockset, vehicle component models can be built, which in turn can be combined into a larger 

vehicle model. 

 Although the 2BEV model has been tailored to the work of this thesis, it was not built from 

scratch for this analysis. The original model was built by the University of Waterloo Alternative 

Fuels Team (UWAFT) for the EcoCAR 3 vehicle competition, in which they modified a 2016 

Camaro to be a plug-in hybrid vehicle. The original model was a Simulink model created in 

Autonomie – a vehicle modelling environment created by Argonne National Laboratory. 

Subsequently the model was modified in order to replace the engine and related components with 

a zinc-air battery (S. B. Sherman et al., 2018). Then the model was exported to Simulink (so that 

using Autonomie was no longer necessary) and modified to include Simscape components for the 

drivetrain (McInnis, 2017). The vehicle specifications remained unchanged, only how they were 

modelled. This model was then tailored to suit this work. It should be mentioned that the focus of 

the work is not to develop a high-fidelity model of a full vehicle, but to model a zinc-air battery 

and use an accurate vehicle model to evaluate that battery model. The model used by McInnis 

(2017) was deemed a good platform for the zinc-air battery model.  

 

Figure 7: The Simulink model of the 2BEV. 
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 The 2BEV model (Figure 7) is based on several sections, which in turn represent collections 

of individual components. These components themselves require their own models in order to 

represent their behaviour accurately. However, the overall vehicle model can be subdivided into 

three main sections: the powertrain, the drivetrain and the driver. The powertrain includes the 

batteries, motor, power converters and auxiliary power demand from the electronics. The 

drivetrain includes the transmission, differential, wheels, brakes and body. The drivetrain is mostly 

modelled using Simscape, which is like Simulink, except it treats the components as physical 

systems rather than a series of blocks to simulate sequentially. The driver controls the vehicle 

speed, and includes the drive cycle (i.e. the target speed, which changes continuously) and a 

controller which simulates the driver’s response to the target vehicle speed. 

 The vehicle drivetrain includes the differential, the gear ratio, the half shafts, the wheels, the 

brakes and the body. Most of these values were unchanged from the model used by McInnis, but 

the vehicle weight and air resistance were changed to reflect a different vehicle. This is because 

the 2016 Camaro – the vehicle the original model was based on – is a relatively large and heavy 

vehicle and the vehicle’s performance would have suffered relative to modern commercial EVs. 

Although a detailed comparison to commercial vehicles is inappropriate due to the inevitable 

discrepancies between simulated performance and real-world performance, the vehicle should 

achieve broadly similar performance to modern EVs accounting for differences in battery size and 

other technical details. Instead of the Camaro, the mass of a 2012 Nissan Leaf, less the mass of the 

battery and motor, was used. For consistency the air resistance coefficient and frontal area of the 

vehicle was also changed (D. Sherman, 2014). Some key parameters are shown in Table 2. 

Table 2: Key drivetrain parameters. 

Component Parameter Unit Value 

Body Vehicle weight* kg 1363 

Body Air resistance coefficient  0.32 

Body Frontal area m2 2.276 

Tires Rolling radius in 12.5 

Differential Gear ratio  3.78 

*including the weight of all components except the batteries 

 The vehicle powertrain includes the vehicle batteries, the motor, the power converters and the 

auxiliary electronics; also, although it is not a component per se, the decision logic as to when the 

zinc-air battery is or is not to be run is also housed in this subsection. Certain inputs to the brakes 
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are calculated here as well. The brake inputs, power converters and auxiliary electronics are 

unchanged from the model used by McInnis (2017); Table 3 shows some of the key parameters. 

The lithium-ion batteries are also unchanged, and the zinc-air battery decision logic is unchanged, 

although different setpoints are used to determine when the zinc-air battery activates and 

deactivates. The structure of the motor model is unchanged, but a different motor is used to avoid 

infringing on non-disclosure agreements made by UWAFT. The zinc-air battery model is 

completely novel. 

Table 3: Key powertrain parameters excluding the motor and batteries. 

Component Parameter Unit Value 

DC to DC Power Converter 1 Efficiency  0.92 

DC to DC Power Converter 2 Efficiency  0.95 

Auxiliary Electronics Power consumption W 200 

Brakes Pressure scaling  2250 

 

3.1.2.  The motor model 

 Although the motor is not a focus of this work, the characteristics of the motor significantly 

impact vehicle performance; therefore, descriptions of the motor model and the motor 

characteristics are included. The motor is an AF-130-5 GKN electric motor rated at 64 kW nominal 

output. The motor efficiency curves, continuous torque and peak torque are shown in Figure 8. 

 The peak torque is the maximum torque the motor can produce at a given speed; peak torque 

output can only be maintained for a short period of time – in the case of this particular motor, 20 

seconds. Continuous torque is the torque (at a given speed) the motor can maintain for long periods 

of time. The coloured curves show the efficiency of the motor at the specified speed and torque. 
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Figure 8: Torque and efficiency curves for the AF-130-5 GKN electric motor (GKN Land 

Systems, n.d.). 

 The motor model uses a formula to determine what the maximum torque (Tmax) is at any given 

time given recent motor operation and then uses the pedal demand signals to determine how much 

torque to actually deliver. First, the model determines the continuous torque (Tcont) and peak torque 

(Tpeak) at the given motor speed. Then a heat index (HI) is calculated, representing how hot the 

motor is. The hotter the motor is the lower the maximum torque. So, a HI value of 1 indicates that 

the maximum torque is equal to the continuous torque, while a HI value of 0 indicates that the 

maximum torque is equal to the peak torque. The HI is used to interpolate between the continuous 

torque and the peak torque to determine the maximum torque according to Equation 5: 

 𝑇𝑚𝑎𝑥 = 𝑇𝑐𝑜𝑛𝑡 × 𝐻𝐼 + 𝑇𝑝𝑒𝑎𝑘 × (1 − 𝐻𝐼) (5) 

Then the actual torque (T) supplied by the motor is calculated by multiplying the pedal position 

(represented by a number from -1 to 1 (cmd)) with the maximum torque as in Equation 6: 

 𝑇 = 𝑐𝑚𝑑 × 𝑇𝑚𝑎𝑥 (6) 

The HI is calculated according to the formula (Equation 7) developed by Argonne National 

Laboratory for their motor models (𝜏 is a time constant): 

 
𝐻𝐼 =  −0.3 + ∫

0.3

𝜏
× (

𝑇

𝑇𝑐𝑜𝑛𝑡
− 1) 𝑑𝑡 

(7) 
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Once the torque is calculated, the torque and speed are fed to a lookup table which determines the 

motor power output. The table is calculated factoring in the motor efficiency. The motor is capable 

of outputting negative power during regenerative braking. This negative power charges the 

lithium-ion battery.  

3.1.3.  Lithium-ion battery model 

 20 Ah prismatic cells manufactured by A123 serve as the basis for the lithium-ion cell 

characteristics. A123 cells have graphite anodes and LFP cathodes, making them a safer and lower-

cost chemistry compared to other lithium-ion cells (A123 Systems Inc., n.d.). However, the cells 

also have lower specific energy and energy density compared to competing cells. These cells were 

selected because their characteristics make them particularly suited to a two-battery powertrain. 

The primary power source for the vehicle is expected to be small relative to a conventional BEV, 

making it more likely to experience deep discharging; the battery will also require high power 

density to compensate for its small size. A123 cells not only have high power density, they have 

also demonstrated high cycle life at deep discharge. The top-line cell performance metrics are 

given in Table 4 (A123 Energy Solutions, 2014): 

Table 4: A123 lithium-ion cell characteristics. (A123 Energy Solutions, 2014) 

Parameter Unit Value 

Cell Weight g 496 

Cell Capacity Ah 19.5 

Nominal Voltage V 3.3 

Nominal Energy Wh 65 

Specific Energy Wh kg-1 131 

Energy Density Wh L-1 247 

Cycle Life (1C, 100% DOD)  7000 

 

 In order to model the cell’s real-time polarization curve, an equivalent circuit model was used. 

An equivalent circuit model represents the cell as an electrical circuit comprised of resistors and 

capacitors. This sort of model is less computationally intensive than electrochemical models, 

which attempt to model the true internal dynamics of the cell. The A123 cell is modelled using a 

modified Rint model (shown in Figure 9), treating the cell as a two-resistor circuit in which all the 

current passes through one resistor during discharge and all the current passes through the other 

resistor during charging. A123 provided UWAFT with detailed resistance values for both charging 
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and discharging, indexed by temperature and state of charge (SOC). Resistance increases with 

decreasing temperature and with decreasing SOC. The charge-discharge curves of the cell are 

shown in Figures 10 and 11. 

 

Figure 9: The modified Rint model. 

 

Figure 10: A123 20 Ah cell charge-discharge curves by C-rate (A123 Energy Solutions, 2014). 
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Figure 11: A123 20 Ah cell discharge curves at 1C by temperature (A123 Energy Solutions, 

2014). 

 For both the 2BEV model and the cBEV model, the lithium-ion battery pack is comprised of 

modules, each of which contain 15 cells connected in series. These modules are connected in series 

to form arrays, and several arrays are connected in parallel to form the battery pack. Increasing the 

number of modules in series increases the voltage of the pack, while increasing the number of 

arrays increases battery pack capacity. In the UWAFT EcoCAR 3 vehicle the lithium-ion battery 

pack, which is based on the same A123 cells in a similar configuration, the battery pack is 25% 

heavier than the combined weight of the individual cells due to additional components such as 

packaging, vehicle mounts, the pack cooling system, etc. This 25% weight factor is used in both 

vehicle models. The pack is set to cycle between 100% and 5% SOC – A123 cells can maintain 

deep discharge cycling and still achieve extremely good cycle life. Nykvist and Nilsson (2015) 

estimated in 2014 that market-leading lithium-ion battery packs cost $300 kWh-1 ($399 kWh-1 

CAD) and were declining in cost at 8% per year, which would put them at $200 kWh-1 ($266 kWh-

1 CAD) in 2019. The cost of the lithium-ion battery packs used in the modelled vehicles will be 

based on this price point. The effect of capacity fade on vehicle range is ignored for simplicity, but 

this effect should be incorporated into future work. The pack-level characteristics are shown in 

Table 5: 
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Table 5: Lithium-ion battery pack characteristics. 

Parameter Unit Value 

Cells per module1  15 

Modules per array2  7 

Nominal array2 voltage V 346.5 

Nominal array2 energy kWh 6.8 

Packaging factor  1.25 

Mass per array2 kg 65.1 

Cost CAD kWh-1 266 

Cost per array CAD 1807 
1Cells are connected in series within the module 
2An array is a set of modules connected in series 

3.1.4.  Zinc-air battery model 

 There are very few commercialized secondary zinc-air batteries in existence, all of them 

designed for stationary storage and relatively unproven compared to lithium-ion batteries. 

Furthermore, the electrochemical characteristics of these batteries are not public. Therefore, in 

order to incorporate this technology into the vehicle model, the zinc-air battery performance 

characteristics are generated using results from literature. This has the advantage of testing the 

cutting edge of zinc-air cell electrochemical performance; however, generating cell performance 

characteristics from papers describing the performance of individual components of a zinc-air cell, 

must be done carefully. The subcomponents must perform under similar conditions, and at 

conditions that are practical for a commercial cell. It would not be appropriate to use an anode 

tested in an alkaline environment but a cathode tested in a neutral environment, for example; 

neither would it make sense to use an anode that was extremely thin or highly porous or otherwise 

had low loading mass per unit area, as this would make the resulting cell insufficiently energy 

dense. 

 The anode was based on the work of Jing Li and coworkers (2017). They produced zinc oxide 

microspheres that were doped with and coated with carbon. Doping the zinc oxide particles with 

carbon improves the structure of the particles as well as internal conductivity, and coating the 

particles in carbon improves conductivity substantially. By coating and doping the zinc oxide 

particles with carbon dendrite formation was repressed and the anode achieved 200 charge-

discharge cycles at 1C with 94.7% capacity retention. The anode demonstrated a specific capacity 

of 502 mAh g-1 with a mass loading of 0.06 g cm-2. Although the anode was tested against a nickel 
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cathode rather than an air cathode, the anodic reaction is the same as in a zinc-air cell and zinc 

anodes tested against nickel cathodes are generally considered viable alongside an air cathode. The 

full specifications and properties of the anode are detailed in Table 6: 

Table 6: Zinc anode properties (J. Li et al., 2017). 

Parameter Unit Value 

Mass loading g cm-2 0.06 

Tap density g cm-3 3.03 

Thickness (calculated) cm 0.0198 

Area cm2 4.0 

Specific capacity @ 1C mAh g-1 502.2 

Volumetric capacity @ 1C mAh cm-3 1521.7 

Cycles @ 1C  200 

Capacity retention  94.7% 

 

 The cathode performance was based on the work of Jing Fu and coworkers (2017). They 

developed a new bifunctional catalyst: cobalt oxide with partial sulphur substitution on nitrogen-

doped graphene nanomeshes (CoO0.87S0.13/GN). The partial substitution of sulphur creates 

distorted structures which optimizes the oxygen reduction reaction (ORR) and oxygen evolution 

reaction (OER) performance while maintaining overall crystal stability. The graphene nanomeshes 

improves the electrical contact of the catalyst and improves transport of reactants and reaction 

intermediates. The catalyst demonstrated improved stability compared to platinum and iridium, 

and reduced voltage polarization compared to a control catalyst without sulphur doping. The 

cathode of the test cell demonstrated 320 cycles at 20 mA cm-2 at 1 h per cycle, and an energy 

efficiency of 60.6%. The cathode properties are listed in Table 7; Figure 12 shows the polarization 

curve of the cathode, which is based on an interelectrode distance of 100 μm.  
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Table 7: Air cathode properties (Fu, Hassan, et al., 2017). 

Parameter Unit Value 

Mass g 0.100 

Thickness cm 0.0250 

Area cm2 2 

Catalyst mass mg 2.0 

Discharge voltage @ 20 mA cm-2 V 1.17 

Charge voltage @ 20 mA cm-2 V 1.93 

Voltage efficiency @ 20 mA cm-2  60.6% 

Cycles (1h @ 20 mA cm-2)  320 

 

 

Figure 12: Cathode polarization curves (Fu, Hassan, et al., 2017). 

 

 The two electrodes were tested using different electrolytes – for the anode, a solution of 4 M 

KOH, 1.6 M K2BO3, 0.9 M KF and 0.1 M LiOH, saturated with ZnO; for the cathode, a 6 M KOH 

solution saturated with ZnO – but they are similar enough that comparable results can be expected 

with either electrolyte. They are both highly alkaline solutions with similar ionic conductivities. 

In this work the 6 M KOH electrolyte is used, being the more common of the two electrolytes in 

literature. The separator is the same as that used by Jing Fu and coworkers in characterizing the 

cathode – a binder-free cellulose membrane assembly (CMA), 100 μm thick and weighing 50 mg. 

200 mg of electrolyte was used. By combining the electrochemical performance and physical 

characteristics of the anode, cathode, electrolyte and separator a model of a zinc-air cell is created. 
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The cell takes on the polarization curve of the cathode; the other main characteristics of this model 

are shown in Table 8: 

Table 8: Zinc-air cell properties, based on (J. Li et al., 2017) and (Fu, Hassan, et al., 2017). 

Parameter Unit Value 

Area cm2 100 

Cell casing thickness cm 0.05 

Overall thickness cm 0.2138 

Volume cm3 21.38 

Mass g 55.6 

Capacity Ah 6.7 

Nominal Voltage V 1.2 

Nominal Energy Wh 8.0 

Specific Energy Wh kg-1 144 

Energy Density Wh L-1 375 

Cycles  200 

Voltage efficiency  

@ 20 mA cm-2 

 

60.6% 

 

 It is important to be clear about the structure of the zinc-air cell. The cell consists of a single 

anode with a cathode on either side, as shown in Figure 13. Both cathodes are bifunctional, and 

the anode is double the thickness reported by Jing Li and coworkers. The cell is effectively two 

layers of anode and cathode squashed together in a single envelope; this configuration reduces the 

amount of weight from the cell casing for the individual cell, and having cathodes on either side 

of the cell increases the area for air intake. This configuration is still somewhat limited compared 

to lithium-ion cells, which can have many layers of anode and cathode repeated within a single 

cell (Schröder et al., 2017). With more development accounting for the need for air intake to the 

cell, future zinc-air cells may employ this tactic to reduce cell weight and increase specific energy. 

The dimensions of the cell are shown in Table 9. 

 

Figure 13: Zinc-air battery cell configuration. 
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Table 9: Component-level description of a single zinc-air cell 

Component Total mass Area density Thickness Number of layers 

Units g g cm-2 mm  

Zinc anode 12.7 0.127 0.396 1 

Separator 5 0.025 0.1 2 

Electrolyte 20 0.100 N/a N/a 

Cathode 10 0.050 0.250 2 

Cell casing 7.9 0.035 0.500 2 

Total 55.6 0.556 2.096 1 

 

 An important consideration is which of the anode and cathode limits the cycle life of the 

battery. The anode demonstrated 200 cycles at 502 mAh g-1; at 0.06 g cm-2 anode loading (J. Li et 

al., 2017), this implies a lifetime capacity of 6024 mAh cm-2. The cathode achieved 320 cycles at 

20 mA cm-2 and 1 hour per cycle (Fu, Hassan, et al., 2017), implying a lifetime capacity of 6400 

mAh cm-2. Therefore, the anode is the limiting electrode in terms of cycle life.  

 There are currently few reliable estimates of what a commercial rechargeable zinc-air battery 

might cost. The materials cost is likely far lower due to the absence or near-absence of cobalt from 

zinc-air batteries, and due to zinc being much cheaper than lithium; however, manufacturing costs 

are difficult to predict. EOS Energy Storage has commercialized a zinc-air battery and is selling it 

for $160 kWh-1 while taking orders for $95 kWh-1 for orders fulfilled in 2022 ($212 kWh-1 and 

$126 kWh-1 respectively in 2019 CAD) (“Eos Energy Storage Now Taking Orders at $95/kWh for 

the Eos Aurora® DC Battery System,” 2017). Electric Fuels Ltd estimated the cost of their 

mechanically rechargeable zinc-air battery at $80 kWh-1 for a high-power pack (Goldstein, Brown, 

& Koretz, 1999), which is equivalent to $173 kWh-1 (CAD) accounting for inflation and the 

different nominal voltage (1.15 V in their paper, 1.2 V in this work). NantEnergy claims their zinc-

air battery will sell for $100 kWh-1 ($133 kWh-1 CAD) once they begin manufacturing at scale, 

but this claim is thus far unproven (Spector, 2018). Given the considerable uncertainty on what a 

non-flow electrically rechargeable zinc-air battery would cost, the middle price of $173 kWh-1 is 

taken. The zinc-air battery pack characteristics are shown in Table 10: 
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Table 10: Zinc-air battery pack characteristics. 

Parameter Unit Value 

Cells per module1  75 

Modules per array2  4 

Nominal array2 voltage V 360 

Nominal array2 energy kWh 2.4 

Packaging factor  1.25 

Mass per array2 kg 20.8 

Cost CAD kWh-1 173 

Cost per array $ 416 
1Cells are connected in series within the module 
2An array is a set of modules connected in series 

3.1.5.  Battery control system 

 Figure 14 illustrates the decision logic regarding battery operation for the 2BEV. When both 

batteries are fully charged the range extender is inactive; the vehicle is powered by the primary 

ESS. When the primary ESS reaches 15% SOC, the range extender activates and charges the 

primary ESS as the primary ESS continues powering the motor. If the primary ESS SOC increases 

to 25% the range extender is deactivated until the primary ESS SOC falls to 15% again. Once the 

range extender runs out of charge the primary ESS powers the vehicle independently until it 

reaches its minimum SOC of 5%, at which point the vehicle is completely out of charge. By only 

activating the range extender once the lithium-ion SOC gets below 15%, usage of the range 

extender is minimized while also ensuring there will be sufficient energy for a sudden increase in 

power demand. The zinc-air deactivation setpoint was set at 25% because there was sufficient 

separation between 15% and 25% lithium-ion SOC that the range extender would not switch on 

and off with great frequency. 
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Figure 14: 2BEV battery pack control logic. 

 

3.2. Analysis of Vehicle Model 

 The purpose of modelling the 2BEV and cBEV is to determine the relative advantage of the 

2BEV on key performance metrics. In particular, comparing the vehicles on range, cost and fuel 

efficiency is critical, as these parameters are among the most important metrics prospective EV 

buyers consider. Battery longevity is another important consideration, especially for the zinc-air 

battery with its short cycle life. In this section some important analysis considerations are detailed. 
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3.2.1. Drive cycles 

 In order to demonstrate vehicle performance under standard conditions, the US Environmental 

Protection Agency’s (EPA) drive cycles are used as inputs to the model. Drive cycles represents 

the driver’s target speed, and with modification can also incorporate elements such as road grade 

and wind speed. In this work, the two main EPA drive cycles are used. The Urban Dynamometer 

Driving Schedule (UDDS) represents typical city driving patterns, while the Highway Fuel 

Economy Test (HWFET) is used to represent highway driving (EPA, n.d.-c). In order to determine 

vehicle performance under city or highway driving conditions, the vehicle model is set to run the 

appropriate drive cycle on repeat until the vehicle runs out of charge. This is done so that 

performance over the entire range of the lithium-ion battery’s SOC and the zinc-air battery’s SOC 

is captured. Then the range and fuel economy for the two drive cycles are averaged, assuming that 

55% of all driving can be approximated with the UDDS and the remaining 45% of all driving can 

be approximated using the HWFET, in line with EPA compliance testing (EPA, n.d.-a). The drive 

cycles are shown in Figure 15. 

 

Figure 15(a): City drive cycle UDDS (EPA, n.d.-c). 
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Figure 15(b): Highway drive cycle HWFET (EPA, n.d.-c). 

 

3.2.2. Zinc-air battery life cycle analysis 

 The longevity of the zinc-air battery pack is an important consideration. The zinc-air battery is 

assumed to have a cycle life of only 200 cycles in line with the demonstrated performance of the 

anode of Jing Li and coworkers (2017). In order to extend the battery life, the two-battery system 

should be configured so as to minimize use of the zinc-air battery, effectively stretching the 200 

charge-discharge cycles over a long period of time. In order to evaluate lifetime zinc-air battery 

usage data from the 2017 US National Household Transportation Survey is used to characterize 

the daily driven distance of US drivers. Figure 16 shows the frequency at which US drivers (in 

aggregate) travel a certain distance in a day; for example, the data shows that US drivers travel 

roughly 15 km throughout the day 8.77% of the year (corresponding to 32 days per year). The 

figure shows that US drivers usually travel only short or medium distances in a single day; 50% 

of the time drivers travel 35 or fewer kilometers in a single day, and only 12% of the time do 

drivers travel over 100 km in a day (“National Household Travel Survey,” n.d.). The methodology 

for creating Figure 16 is outlined in Appendix A. A well designed two-battery powertrain will 

have a lithium-ion battery large enough to independently power the vehicle most days of the year, 

reserving the zinc-air battery for the relatively few days of the year when drivers travel long 

distances. 
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Figure 16: US Daily Driven Distance (“National Household Travel Survey,” n.d.). 

 

3.2.3. Battery size optimization 

 In order to achieve the optimal combination of range, fuel economy, cost and battery life, the 

batteries of the 2BEV have to optimally sized. The batteries have to be large enough for the vehicle 

to achieve a respectable range, but having larger batteries makes the vehicle more expensive. 

Increasing zinc-air battery size at the expense of lithium-ion battery size may reduce costs, but 

having a smaller lithium-ion battery will result in more frequent use of the zinc-air battery and 

may reduce its longevity. The respective specific energies and efficiencies of the batteries will also 

impact the optimal battery configuration. In order to optimize the powertrain, the vehicle model is 

run at different battery sizes and the performance metrics are recorded. Based on the results the 

optimal lithium-ion and zinc-air battery sizes will be determined. 

 In optimizing the battery packs of the 2BEV it is helpful to establish targets for key metrics 

such as vehicle range, battery pack costs and zinc-air battery lifetime. The ARPA-E RANGE 

Program run by the US Department of Energy (DOE) has established vehicle-level targets which 

electric vehicles need to achieve in order to be viable. This includes a 240 mile (384 km) vehicle 

range target, a 10-year battery lifetime target and a $30,000 ($39,900 CAD) vehicle cost target – 

which assumes a 60 kWh battery pack with a $100 kWh-1 ($133 kWh-1 CAD) battery price (ARPA-

E, 2012). These targets are adapted for this work: a 400 km range target, a 10-year zinc-air battery 

lifetime target and a $8,000 CAD battery pack cost target. In this work the cost target is secondary 
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to the range and battery life targets. Although achieving these targets is the primary goal of the 

battery pack optimization process there is still benefit to surpassing these targets. For example, in 

the US the average age of cars on the road is over 11 years and with care cars can be made to last 

up to 15 years, so improved battery life beyond 10 years is valuable (Consumer Reports, 2018). In 

this work increased battery life is considered valuable up to 15 years, increased range is considered 

valuable up to 500 km, and lower battery cost is always valuable.  

 The power output of the zinc-air battery is an important consideration when optimizing the 

battery sizes. Ideally, the vehicle model would feature a controller which would match the zinc-

air battery power output with the average energy demand of the vehicle over the course of the drive 

cycle. This would enable more efficient operation of the zinc-air battery while maintaining 

sufficient lithium-ion battery capacity to handle power demand spikes. Unfortunately 

incorporating such a controller into the model proved impractical, creating algebraic loops and 

slowing down the model significantly. To approximate the impact of the controller the zinc-air 

battery’s power output is set to a constant power output, which maintains the lithium-ion battery 

SOC for the duration of the drive cycle. The constant power output is set individually for each 

battery configuration and for each drive cycle to slightly above the average power required of the 

vehicle for that battery configuration and drive cycle. Setting the power this way keeps the lithium-

ion battery SOC from falling significantly below the 15% setpoint but also minimizes the instances 

when the lithium-ion battery SOC reaches 25%, causing the zinc-air battery to shut off. This allows 

the zinc-air battery to minimize its power output and increases its operating efficiency. 

3.3.  Air pollution model 

 An important aspect of this work is to quantify the air pollution benefits of EVs. This could be 

achieved different ways. One way would be to take estimates for the amount of air pollution 

emitted per passenger vehicle and the costs per ton of the relevant pollutants, and multiply that by 

the number of passenger vehicles in the province, to estimate the societal benefits from reducing 

air pollution from vehicles. This method has the advantage of simplicity, but does not take into 

account pollutant distribution, traffic patterns or population characteristics. A better way would be 

to model an entire traffic network, taking into account traffic patterns, population characteristics 

and air flow patterns; this method would generate a detailed and systemic economic impact 

assessment. However, this would be a massive undertaking, requiring traffic data for all of the 
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city’s major roads and highways, detailed population data and weather data. In this work, an air 

pollution model is created which incorporates traffic data, but not population data or weather 

patterns. It does not cover the entire city of Toronto, only its busiest highway – Highway 401 – 

and its immediate vicinity. This method takes advantage of the data which is available to 

demonstrate the difference EVs could make in a highly polluted corridor, is not reliant on massive 

amounts of difficult-to-obtain data, and has a reasonable scope. However, it does rely on published 

cost per unit of pollutant values and does not take into account the characteristics of the population 

immediately proximate to the highway. 

3.3.1. Modelling software and model overview 

 The main modelling software is an air pollution modelling software, called the Transportation 

Air Quality System (TRAQS). TRAQS has been generously supplied for this project by Lakes 

Environmental, a Waterloo, Ontario based company which models air pollution for companies or 

governments involved in large projects which may affect air pollution. TRAQS itself is built on 

top of two publicly available air pollution modelling software: Motor Emissions Vehicle Simulator 

(MOVES) and American Meteorological Society/Environmental Protection Agency Regulatory 

Model (AERMOD). MOVES models traffic patterns and determines the emission rates, while 

AERMOD transforms those emissions rates into pollutant distributions using air dispersion 

modelling. TRAQS improves on MOVES and AERMOD by packaging both programs into one 

interface, improving user-friendliness and making it easier to run large simulations covering long 

time periods and varying conditions. Although AERMOD is incorporated into TRAQS, technical 

limitations prevented this component of TRAQS from being used for the full suite of pollutants 

analyzed. The TRAQS interface is shown in Figure 17: 
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Figure 17: TRAQS interface (Thé, Thé, Chamberlin, & Johnson, n.d.). 

 

 The TRAQS model defines the pollution source (Highway 401) as a series of connected roads 

(or “links”) defined so that each individual section approximates a section of the highway between 

main ramps. This is because traffic flows along stretches of highway between ramps should not 

change drastically, as vehicles are incapable of entering or exiting the highway for most of that 

section. There are a few instances where this is not true due to the large number of on or off ramps 

across a section of highway, for example near Allen Road, but most sections represent a constant 

traffic flow. For each section of highway, the traffic volume and average speed is specified for 

each season and for different times of the day – morning peak (6 A.M. to 9 A.M.), mid-day (9 

A.M. to 4 P.M.), afternoon peak (4 P.M. to 7 P.M.), and overnight (7 P.M. to 6 A.M.). The width 

of the highway is specified and average pollution release height is calculated. The entire project 

area is specified as the highway plus the 500 m on either side of the highway, from Kingston road 

in the east to Renforth drive in the west. Figure 18 shows the route in the TRAQS interface. The 

green line represents the highway’s segments, and the non-shaded area extends 500 m on either 

side of the green line. 
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Figure 18: TRAQS study area: Highway 401 from Kingston Road to Renforth Drive. 

 

 There are several more steps after defining the highway and the traffic flow patterns in the 

model. The vehicle-fuel combinations (e.g. gasoline-powered passenger car, diesel-powered truck, 

etc.), as well as the pollutants to be modelled have to be selected. Then, for each season and each 

portion of the day (morning peak, mid-day, afternoon peak and overnight), several additional 

traffic characteristics have to be specified: the vehicle age distribution, fuel supply and 

formulation, the climactic conditions, and the fraction of vehicles corresponding to particular 

vehicle-fuel combinations (e.g. 59% gasoline-powered passenger cars, 8% diesel-powered trucks). 

Note that here the climactic condition refers to the average temperature and humidity by time of 

day and year, not the detailed meteorological data required for air dispersion modelling. Once the 

model is fully specified, it can be run to generate an emissions report, which includes emissions 

estimate by tons/year. 

3.3.2. Data overview 

 TRAQS comes with built-in default values for several model inputs; for this model the vehicle 

age distribution, fuel supply and formulation and climactic conditions are all generated from 

TRAQS default values (which are really MOVES default values generated by the US EPA). The 

remaining data comes mainly from the Ontario Ministry of Transportation (MTO). MTO publishes 

annual average daily traffic (AADT) volumes on Ontario’s major highways, including Highway 
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401 (Ontario Ministry of Transportation, 2016). These traffic volumes are broken down by 

highway segment but not by season or by hour. To calculate the seasonal traffic volume from the 

annual traffic volume, MTO provided for this work data and a formula (Equation 8) to determine 

the average daily traffic during a given period of the year i (ADTi) from the AADT:  

 𝐴𝐴𝐷𝑇 = 𝑓𝑖 ∙ 𝐴𝐷𝑇𝑖  (8) 

 fi is a conversion factor which depends on the period i (which may refer, for example, to the 

second half of July) and on the highway subsection. Different sections of highway have different 

seasonal variation patterns and may have different values of fi even for the same time of year. 

Using the given formula and the values of fi provided by MTO, seasonal average daily traffic 

volumes were calculated. Additionally, MTO provided sample hourly traffic data along most of 

Highway 401 for the first week of March 2016. From this data an estimate of the hourly distribution 

was created. There was variation across the subsections of highway, but this error was not 

substantial (standard deviation less than 6%), so the same hourly distribution was used for all 

sections of the highway. Using the hourly distribution and the seasonal ADT values hourly traffic 

volumes were estimated for each of morning peak, mid-day, afternoon peak and overnight, for 

each season and for each section of highway. 

 Apart from the traffic volumes, the MTO also provided average hourly speed data for each 

hour of the day in for each section of highway. This data was used to characterize the average 

speeds on the highway in the model. The relative amount of each vehicle-fuel type combination 

was calculated using data from MTO and from the Bureau of Transportation Statistics (BTS). 

According to the BTS 95% of the US vehicle fleet is comprised of gasoline cars and light trucks – 

56% cars, 39% light trucks. Of the remaining 5% of the vehicle fleet, medium and heavy diesel 

trucks comprise 3% of the total; gasoline trucks and diesel cars each comprise 1% of the total fleet 

(Chambers & Schmitt, 2015). Due to their negligible portion of the vehicle fleet, gasoline trucks 

and diesel cars are excluded from the analysis. The MTO provided estimates for the percent of 

vehicles on each section of Highway 401 which were trucks. The share of traffic attributable to 

each vehicle-fuel type combination was therefore calculated for each section as follows: first, the 

percentage of traffic which was trucks (as specified by MTO) was split evenly between short-haul 

and long-haul single-unit trucks running on diesel; then, the remaining traffic was split 

proportionally between gasoline-powered cars and light trucks based on the BTS data.  
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3.3.3. Estimation of economic cost methodology 

 The best method to determine the economic cost due to pollution from Highway 401 would be 

to take the emissions output from TRAQS and use air dispersion modelling to generate a 

concentration profile in the immediate vicinity of the highway, and then determine the health costs 

based on that concentration profile and the characteristics of the population around the highway. 

Health costs can be related to concentration levels much more reliably than to generic emission 

rates. However, the part of TRAQS which performs air dispersion modelling only works with PM 

and not with other pollutants. Therefore, an alternate method is used based on guidance by 

Transport Canada (Transport Canada, 2008). Transport Canada has calculated costs per ton of 

pollutant which represent the economic impact of that pollutant including personal health impacts, 

the burden on the health care system and missed work due to illness. Based on these cost numbers 

(shown in Table 11) and the annual emissions calculated by TRAQS, the overall cost to the 

Canadian economy from pollution on Highway 401 is estimated. This calculation likely 

underestimates the true cost, since the published cost values represent an average across the 

Canadian economy and the pollution from the highway is both in high concentrations and in a high 

population density area.  

Table 11: Pollution cost values (Transport Canada, 2008). 

Pollutant Cost 

Units CAD tonne-1 

NOx $5,155 

PM2.5 $20,016 

SO2 $5,702 

VOCs $628 

 

 In order to quantify the potential air pollution reduction and the resulting economic benefits 

the traffic and resulting pollution coming from Highway 401 is modelled in TRAQS and the annual 

emissions of the relevant pollutants is determined. Using the per unit costs of these pollutants an 

annual cost to the Canadian economy is estimated. Then model variations are created in which a 

percentage of the light passenger vehicles are replaced with electric vehicles, from which new 

pollution and cost estimates are generated. The overall methodology is illustrated schematically in 

Figure 19: 
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Figure 19: Air pollution cost estimation methodology. 
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4. Results and Discussion 

4.1.  Battery pack optimization 

 Initially the 2BEV was tested with different combinations of lithium-ion battery size and zinc-

air battery size. The lithium-ion battery was tested with 1, 2, and 3 arrays while the zinc-air battery 

was tested with 12, 20 and 28 arrays. These combinations were tested on both the UDDS and 

HWFET drive cycles and the results averaged with a 55/45% weighting for UDDS/HWFET, 

respectively. Table 12 shows the results: 

Table 12: First optimization of 2BEV battery pack sizes. 

ID1 Li-ion 

energy2 

Zn-air 

energy2 

Total 

energy 
Range 

Battery 

cost 

Zn-air 

battery life 

Fuel 

economy3 

Battery 

weight 

Units kWh kWh kWh km CAD years kWh (100 km)-1 kg 

Li1-Zn12 6.5 28.8 35.3 239 $6,800 4.4 14.8 315 

Li2-Zn12 12.9 28.8 41.7 278 $8,600 8.9 15.0 380 

Li3-Zn12 19.4 28.8 48.2 315 $10,410 15.0 15.3 445 

Li1-Zn20 6.5 48.1 54.5 353 $10,120 6.6 15.4 482 

Li2-Zn20 12.9 48.1 61.0 388 $11,930 12.5 15.7 547 

Li3-Zn20 19.4 48.1 67.5 420 $13,740 20.3 16.0 612 

Li1-Zn28 6.5 67.3 73.7 451 $13,450 8.3 16.3 649 

Li2-Zn28 12.9 67.3 80.2 483 $15,260 15.0 16.6 714 

Li3-Zn28 19.4 67.3 86.7 512 $17,060 24.3 16.9 779 
1ID refers to the battery size combinations; for example, Li2-Zn28 refers to the battery pack combination 

with 2 lithium-ion battery arrays and 28 zinc-air battery arrays; 2Usable energy accounts for the SOC limits 

for each battery; 3Does not factor in charging inefficiency – this will be factored in later 

 The preliminary results show that several of the battery combinations are easily identified as 

being impractical; four of the combinations achieve a zinc-air battery life of less than 10 years, 

and five of the combinations achieve a range of less than 400 km. Increasing the size of the lithium-

ion battery and the zinc-air battery both increase the zinc-air battery life, though for different 

reasons. Increasing the lithium-ion battery size increases the distance the vehicle can travel on the 

lithium-ion battery alone, avoiding activation of the zinc-air battery. This effect is particularly 

pronounced because a disproportionate share of annual driving distance is accounted for by short- 

and medium-distance driving. Increasing the size of the zinc-air battery also improves zinc-air 

cycle life, though more moderately. This is because with a larger zinc-air battery each kilometer 

powered using the zinc-air battery uses a smaller fraction of zinc-air battery capacity, which means 

for the same driven distance fewer zinc-air battery cycles are required. Of course, having a larger 
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battery also improves the range of the vehicle at the expense of increased weight and cost. There 

is a clear fuel efficiency penalty with the larger battery pack sizes as well. 

 Excluding the low-range and low-battery life configurations leaves three viable battery 

configurations – four if the Li2-Zn20 configuration, which nearly meets the range target, is 

included. Across those five configurations the vehicle range falls between 388 km and 512 km, 

while the battery cost ranges from $11,930 to $17,060 and the zinc-air battery lasts a projected 

12.5-24.3 years. The minimum established range is 400 km, although increased range up to 500 

km is valuable, and the minimum established battery life is 10 years, though increased longevity 

up to 15 years is valuable. Low cost is another important consideration. To determine more exactly 

the best battery pack configuration, the 2BEV was retested with 2 and 3 lithium-ion arrays and 22, 

24 and 26 zinc-air arrays. Table 13 shows the key results: 

Table 13: Second optimization of 2BEV battery pack sizes. 

ID1 Li-ion 

energy2 

Zn-air 

energy2 

Total 

energy 
Range 

Battery 

cost 

Zn-air 

battery life 

Fuel 

economy3 

Battery 

weight 

Units kWh kWh kWh km CAD years kWh (100 km)-1 kg 

Li2-Zn22 12.9 52.9 65.8 413 $12,760 13.2 15.9 589 

Li3-Zn22 19.4 52.9 72.2 443 $14,570 21.3 16.3 654 

Li2-Zn24 12.9 57.7 70.6 438 $13,590 13.8 16.1 631 

Li3-Zn24 19.4 57.7 77.0 466 $15,400 22.2 16.5 696 

Li2-Zn26 12.9 62.5 75.4 463 $14,420 14.5 16.3 672 

Li3-Zn26 19.4 62.5 81.8 489 $16,230 23.3 16.7 737 
1ID refers to the battery size combinations; for example, Li2-Zn26 refers to the battery pack combination 

with 2 lithium-ion battery arrays and 26 zinc-air battery arrays; 2Usable energy accounts for the SOC limits 

for each battery; 3Does not factor in charging inefficiency – this will be factored in later 

 Considering the results shown in Tables 12 and 13, several battery pack configurations 

demonstrate good performance. In particular, a configuration with two lithium-ion battery arrays 

makes the most sense. Adding a third lithium-ion battery array increases the zinc-air battery life 

significantly but to little benefit, given the target battery life of up to 15 years. Vehicle range is 

also increased but only marginally, and at great cost. Ultimately the Li2-Zn22 battery pack 

configuration was selected for the 2BEV because it is the cheapest configuration that meets the 

minimum range target of 400 km and is comfortably in excess of the minimum battery life target 

of 10 years. For this configuration the zinc-air battery was set to provide, when activated, a 

constant 6.5 kW of power during the UDDS cycle and a constant 12 kW of power during the 

HWFET cycle. This results in a zinc-air battery current density of 3.94 mA cm-2 during the UDDS 
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cycle and 7.59 mA cm-2 during the HWFET cycle, well below the current density demonstrated in 

the literature by the anode (J. Li et al., 2017) and cathode (Fu, Hassan, et al., 2017). 

 To illustrate the discharge patterns of both battery packs Figure 20 below shows the energy of 

both the lithium-ion battery pack and zinc-air battery pack as the vehicle experiences repeated 

UDDS cycles. The lithium-ion battery pack energy decreases steadily until it reaches 2.04 kWh 

(15% SOC,) at which point the zinc-air battery pack activates. Then the zinc-air battery pack 

energy decreases steadily, but the lithium-ion battery pack energy rises unsteadily because it is 

matching the power demand from the driver. This continues until the lithium-ion battery pack 

energy reaches 3.4 kWh (25% SOC), at which point the zinc-air battery pack switches off. The 

zinc-air battery pack energy level remains constant until the lithium-ion battery pack energy 

reaches 2.04 kWh (15% SOC) again, at which point the zinc-air battery pack reactivates. This 

pattern continues until the zinc-air battery pack runs out of energy, at which point the lithium-ion 

battery pack energy decreases to 0.68 kWh (5% SOC).  

 

Figure 20: Battery energy and vehicle speed of the 2BEV during repeated UDDS cycling. 

 

 An important facet of 2BEV operation which affects fuel economy and zinc-air battery 

longevity is the utilization factor (UF) of the zinc-air battery. Figure 21 shows the total annual 

distance travelled by the 2BEV in categories based on the daily driven distance. For example, the 

first bar on the chart shows that the 2BEV travels 101 km per year counting only the days in which 

it travels 5 km or less. The chart also shows the distance travelled before the zinc-air battery is 
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activated. Overall 70% of the annual distance travelled by the 2BEV is powered by the lithium-

ion battery with no assistance from the zinc-air battery. Based on this the true fuel economy of the 

vehicle can be calculated according to equation 9 to be 21.0 kWh (100 km)-1. 

 

Figure 21: Annual driven distance sorted by daily driven distance. 

 
𝐹𝐸𝑓𝑖𝑛𝑎𝑙 = 𝐹𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × (

1 − 𝑈𝐹

0.85
+

𝑈𝐹

0.606
) (9) 

 FEinitial and FEfinal are the vehicle fuel economies respectively not including and including 

charging efficiency, and UF is the utilization factor; The zinc-air battery has a charging efficiency 

of 60.6%, while the lithium-ion battery has a charging efficiency of 85%. 

 Figure 22 shows the number of zinc-air cycles required for ten years of operation based on the 

battery configuration. The figure shows a drastic drop in the required zinc-air battery cycles with 

an increase in the size of the lithium-ion battery, while increasing the size of the zinc-air battery 

results in modest lifetime gains. Going from one lithium-ion battery array (6.5 kWh) to two arrays 

(12.9 kWh) reduces the number of battery cycles per year by 45-50%, and going from two arrays 

to three arrays (19.4 kWh) reduces the number of battery cycles by 38-41%. The figure also shows 

that if the zinc-air battery cycle life increased from 200 cycles to 300 a smaller lithium-ion battery 

would suffice to extend the zinc-air battery life over ten years; a configuration such as the Li1-

Zn28 configuration, which costs $980 more than the Li2-Zn22 configuration but which travels 38 

km further, may become a preferable battery pack configuration. 
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Figure 22: Zinc-air battery cycles required to last 10 years. 

 

4.2. Accounting for CO2 filter in zinc-air feed clean-up 

 

Figure 23: Schematic depiction of the 2BEV model, including a CO2 filter. 

 A CO2 filter for the air intake is necessary to prevent degradation of the zinc-air cells, and 

accounting for the mass of the filter may marginally affect vehicle performance. The filter was 

sized using equation 10, and the amount of water necessary for humidification determined using 

equation 11. Table 14 details the values of the parameters. Humidification is necessary because 

the absorbent, LiOH-Ca(OH)2, performs significantly better with high humidification (Drillet, 

Holzer, Kallis, Muller, & Schmidt, 2001). The value of K100 is an average of the results of Table 

2 of Drillet and coworkers (2001). Based on an estimated 15.2 cycles per year and a 30% buffer, 

the filter needs 3.4 kg of absorbent and 45.5 kg of water. Accounting for this additional weight 

reduces the vehicle range to 405 km, increases energy consumption to 21.4 kWh per 100 km and 
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reduces zinc-air battery life to 12.6 years. However, in practice the vehicle would not use a 45 L 

tank – firstly because such a tank would be too large to be practical, and secondly because the 

water usage is calculated assuming the incoming air is completely dry, whereas in practice the air 

is usually partially humidified already. 

 
𝑚𝑎𝑑𝑠 = [(

𝑚𝑍𝑛 × (𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛)

𝑚𝑚𝑍𝑛

×
𝑛𝑂2

𝑛𝑧𝑛

×
𝑛𝑎𝑖𝑟

𝑛𝑂2

× 𝐶𝐶𝑂2
× 𝑚𝑚𝐶𝑂2

) ÷ 𝐾100] × 𝑁 × (1 + 𝐵) (10) 

 

 
𝑚𝐻2𝑂 = (

𝑚𝑍𝑛 × (𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛)

𝑚𝑚𝑍𝑛

×
𝑛𝑂2

𝑛𝑧𝑛

×
𝑃𝑣𝑎𝑝

0.21𝑃𝑎𝑡𝑚

× 𝑚𝑚𝐻2𝑂) × 𝑁 × (1 + 𝐵) (11) 

Table 14: Parameters for calculating size of CO2 filter and humidification tank. 

Parameter Symbol Unit Value 

Mass of absorbent mads kg 3.4 

Mass of water mH2O kg 45.5 

Mass of zinc in battery pack mZn kg 83.8 

Maximum SOC of zinc-air battery SOCmax  1 

Minimum SOC of zinc-air battery SOCmin  0 

Molar mass of zinc mmZn kg kmol-1 65.4 

Ratio of reacting oxygen to reacting zinc (nO2/nzn)  0.5 

Ratio of moles of air to moles of oxygen in the air (nair/nO2)  4.76 

Concentration of CO2 in the air CCO2 ppm 400 

Vapour pressure of water (@ 30°C) Pvap kPa 4.25 

Atmospheric pressure Patm kPa 101.325 

Molar mass of CO2 mmCO2 kg kmol-1 44 

Molar mass of water mmH2O kg kmol-1 18 

Adsorption capacity of absorbent K100 kgCO2 kgads
-1 0.3135 

Number of zinc-air cycles per year N  15.2 

Buffer B  30% 

 

4.3. Performance comparison between 2BEV and cBEV 

 The cBEV had no zinc-air battery, only a large lithium-ion battery of 10 arrays and a nominal 

energy of 68 kWh. This is similar to the combined energy of the 2BEV with the Li2-Zn22 

configuration (67 kWh). Table 15 compares the battery packs for each vehicle, and Table 16 

compares the two vehicles on certain performance metrics. The most interesting result of this 

comparison is how similar the vehicles are. The 2BEV is slightly less fuel efficient, has slightly 

better range, has slightly better acceleration and weighs slightly less, but the differences are 
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negligible. The only significant difference is the battery pack cost – the 2BEV battery pack is over 

$5300 cheaper than the cBEV battery pack, a difference of 28%. 

Table 15: Comparison of battery packs between cBEV and 2BEV. 

Parameter Units 

2BEV 

lithium-ion 

pack 

2BEV 

zinc-air 

pack 

cBEV 

lithium-ion 

pack 

Cells per module  15 4 15 

Modules in series  7 75 7 

Arrays in parallel  2 22 10 

Total cell weight kg 104 367 521 

Packaging factor  1.25 1.25 1.25 

Pack weight kg 130 459 651 

Nominal pack voltage V 347 360 347 

Pack capacity Ah 39 147 196 

Pack energy kWh 13.6 52.9 67.9 

Maximum SOC  1 1 1 

Minimum SOC  0.05 0 0.05 

Pack cost CAD $3,610 $9,150 $18,070 

 

Table 16: Performance comparison between cBEV and 2BEV. 

Parameter Units 2BEV2 cBEV 

Vehicle weight kg 2005 2014 

City range km 383 375 

Highway range km 432 437 

Combined average range km 405 403 

City fuel economy1 kWh (100 km)-1 21.7 20.2 

Highway fuel economy1 kWh (100 km)-1 20.1 17.4 

Combined average fuel economy1 kWh (100 km)-1 21.4 18.8 

Battery pack cost CAD $12,760 $18,070 

Time from 0 to 100 km h-1 s 15.06 15.23 
1Includes charging efficiency 

2for 2BEV includes weight of filter and water 

4.4. Zinc-air battery sensitivity analysis 

4.4.1. Analysis of zinc-air specific energy 

 The fact that, cost aside, the 2BEV and cBEV achieve similar range and fuel efficiency for 

similarly-sized combined battery packs is curious given that one of the supposed advantages of 

zinc-air batteries is their superior energy density and specific energy. The performance similarity 
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can be explained by noting that given the specifics of the zinc-air cell model, the zinc-air cell is 

actually not that much more energy dense than the lithium-ion cell. The zinc-air cell achieves a 

specific energy of 144 Wh kg-1, while the lithium-ion cell has a specific energy of 131 Wh kg-1, a 

mere 10% improvement. Given that 8% of the energy from the zinc-air battery pack is lost to the 

power converter, this difference shrinks to almost nothing. This begs the question: why is the zinc-

air cell specific energy so low?  

 As shown in Figure 13 and described in Table 9, the zinc-air cell consists of a single zinc anode 

sandwiched between two air cathodes, with two separators and cell casing on the edge. The key to 

understanding the zinc-air cell’s low specific energy is to note that the anode comprises only 23% 

of the cell by mass and 19% by thickness. This can be partially explained by the need for a cell 

casing. If the weight of the cell casing can be reduced by 50% using a lighter material, the 

proportion of the cell weight and thickness accounted for by the anode would rise to 25%, and the 

cell specific energy would increase to 156 Wh kg-1. This could also be achieved by stacking 

multiple anode/cathode layers inside a single cell, thus reducing the cell casing weight as a 

proportion of the overall cell weight. 

 Increasing the anode thickness is another way for zinc-air cells to improve their energy density, 

but increasing anode thickness also increases the internal resistance of the anode. The anode is not 

as thick as some of the anodes described by Jing Fu and coworkers (2017), so perhaps increasing 

the thickness is viable, but detailed studies of the effect of zinc anode thickness on internal 

resistance will need to be conducted before this solution can be implemented. Anode porosity must 

also be maintained, or else the total amount of active material in the cell will remain unchanged. 

A 50% increase in anode thickness would increase the weight and thickness of the anode to 37% 

and 32% of the total cell, respectively, and the specific energy would rise to 194 Wh kg-1. 

 Finally, the single largest contributor to the mass of the cell is the electrolyte, at 36% of the 

total mass. Because of the immature nature of zinc-air battery technology there has been little to 

no study on the necessary amount of electrolyte for good electrochemical and cycling performance, 

but reducing the weight of the electrolyte is another potential avenue for reducing the weight of 

the cell. Cutting the weight of the electrolyte by half would increase the weight of the anode to 

account for 28% of the total mass of the cell and increase the specific energy of the cell to 176 Wh 

kg-1. These findings are summarized in Table 17. The values in Table 17 are calculated as follows: 



56 
 

begin with the modelled cell described in Table 9, apply the specified modification and account 

for the differences in mass and energy content due to those modifications. 

Table 17: Zinc-air cell performance with different modifications to cell. 

 

Anode 

mass % 

Anode 

thickness % 

Specific 

energy 

Energy 

density 

Units   Wh kg-1 Wh L-1 

Zinc-air cell model (base case) 23% 19% 144 375 

Reduce cell casing weight 50% 25% 25% 156 497 

Increase anode thickness by 50% 31% 26% 194 514 

Reduce electrolyte weight by 50% 28% 19% 176 375 

 

 Beyond finding ways to increase the ratio of active material to non-active material in the cell, 

the true potential improvement in specific energy from a lithium-ion cell to a zinc-air cell merits 

further scrutiny. An LFP cathode such as that used in the A123 cell has a practical specific capacity 

of 165 mAh g-1 and a 3.2 V nominal voltage (Nitta et al., 2015), implying a specific energy of 528 

Wh kg-1. The zinc anode used in this work has a specific capacity of 500 mAh g-1 and a nominal 

voltage of 1.2, implying a specific energy of 600 Wh kg-1. So, looking exclusively at the specific 

energy of the limiting electrode, zinc-air offers an improvement of only 13.6%. Of course, part of 

the appeal of a zinc-air battery is that the cathode should be light given the reactant is oxygen and 

only an inert cathode is needed, but in the modelled zinc-air cell the cathode is almost as heavy as 

the anode. Therefore, further work – either lightening the cathode or adding to the anode – is 

necessary to achieve the hoped-for specific energy gains. 

 One final reason why the modelled zinc-air battery is not significantly more energy dense than 

the modelled lithium-ion battery may have to do with reasons not related to the cell itself. The 

packaging factor for the lithium-ion battery represents the battery pack weight additional to the 

cells itself, and which was determined by UWAFT to be 1.25 for the vehicle they designed. Absent 

a comparable zinc-air battery pack, the same packaging factor was used for the modelled zinc-air 

battery. However, there is reason to believe that the packaging factor for a zinc-air battery could 

be less than that of a lithium-ion battery pack, for several reasons. First, zinc-air batteries are 

inherently safer than lithium-ion batteries, lacking reactive lithium and explosive electrolytes; thus, 

a robust battery cooling system might not be necessary. Furthermore, the battery requires 

significant air intake in order to facilitate the reaction; in a practical zinc-air battery pack, the air 
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flow might be made to cool the battery as well as fuel it. Finally, because of the way the zinc-air 

battery is used in the 2BEV all power spikes due to sudden accelerations are dealt with by the 

lithium-ion battery – the zinc-air battery need only maintain a power output equal to the average 

power demands of the vehicle (with suitable margin) and never the peak demand. The absence of 

high current densities which would be caused by high power demand may reduce the risk of the 

zinc-air battery overheating in the first place. Bockstette and coworkers (2013) propose a 

packaging factor of 1.10 for their “energy pack” – a high energy density, low power density 

lithium-ion battery which is utilized in a similar fashion to the zinc-air battery pack in this work. 

Reducing the packaging factor from 1.25 to 1.10 would reduce the weight of the zinc-air battery 

pack by 12%.  

4.4.2. 2BEV analysis using an improved zinc-air cell 

 To demonstrate the potential performance of the improved zinc-air cell the 2BEV is retested 

with a new zinc-air cell model. The new cell model has a 50% thicker anode and 80% thinner cell 

casing thickness. This improved cell is then substituted into the 2BEV model, so that the range 

extender uses the same number and configuration of cells but with the improved cell instead of the 

original cell. The component breakdown of the new cell is shown in Table 18 and the properties 

of the new cell are shown in Table 19. The polarization curves remain unchanged. Some of he 

values in Table 19 such as efficiency are taken directly from literature, while other parameters 

such as capacity use literature values as well as the cell construction specifics outlined in Table 

18. 

Table 18: Component-level description of improved zinc-air cell. 

Component Total mass Area density Thickness Number of layers 

Units g g cm-2 mm  

Zinc anode 19.1 0.191 0.594 1 

Separator 5 0.025 0.100 2 

Electrolyte 20 0.100 N/a N/a 

Cathode 10 0.050 0.250 2 

Cell casing 1.5 0.015 0.100 2 

Total 55.6 0.556 1.494 1 
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Table 19: Properties of improved zinc-air cell. 

Parameter Units Value 

Area cm2 100 

Cell casing thickness cm 0.01 

Overall thickness cm 0.149 

Volume cm3 15 

Mass g 55.6 

Capacity Ah 10.0 

Nominal Voltage V 1.2 

Nominal Energy Wh 12.0 

Specific Energy Wh kg-1 216 

Energy Density Wh L-1 801 

Cycles*  141 

Voltage efficiency  

@ 20 mA cm-2 

 

60.6% 

*Cathode-limited 

 In the previous model the battery pack packaging weight was represented by a packaging factor 

applied to the weight of the cells. However, just because the weight of the cells has changed does 

not mean the packaging weight should change proportionally. The weight of the components 

external to the cells in the zinc-air battery pack model was 91.7 kg (based on the 1.25 packaging 

factor), so in the new simulation that weight is fixed at 91.7 kg rather than calculated from a 

packaging factor. Similarly, the cost of the battery pack is fixed at $12,760, as the addition of zinc 

and the reduction of the cell casing weight should not drastically affect the overall pack cost. 

 Finally, it should be noted that since the cell capacity of zinc-air cells has increased the cycle 

life of the cell is now limited by the cathode rather than the anode. The air cathode tested by J. Fu 

and coworkers (2017) demonstrated 320 cycles at 20 mA cm-2 and 1 h/cycle, which corresponds 

to a lifetime capacity of 6400 mAh cm-2; at the new anode mass loading of 0.09 g cm-2 and anode 

capacity of 500 mAh g-1 this corresponds to a cell cycle life of 141 cycles. In other words, even 

though the new thicker anode can still achieve 200 cycles the cathode has only demonstrated 

enough durability to last 141 cycles in the new cell with the thicker anode. 

 The 2BEV model was run with the new zinc-air cell model; the results are shown in Tables 20 

and 21: 
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Table 20: Comparison of battery packs between cBEV and 2BEV with new zinc-air cell model. 

Parameter Units 
2BEV 

lithium-ion pack 

2BEV 

zinc-air pack 

cBEV 

lithium-ion pack 

Cells per module  15 4 15 

Modules in series  7 75 7 

Arrays in parallel  2 22 10 

Total cell weight kg 104 367 521 

Packaging factor  1.25 N/a 1.25 

Pack weight kg 130 458 651 

Nominal pack voltage V 347 360 347 

Pack capacity Ah 39 220 196 

Pack energy kWh 13.6 79.3 67.9 

Maximum SOC  1 1 1 

Minimum SOC  0.05 0 0.05 

Pack cost CAD $3,610 $9,150 $18,070 

 

Table 21: Performance comparison between cBEV and 2BEV with new zinc-air cell model. 

Parameter Units 2BEV cBEV 

Vehicle weight kg 1957 2014 

City range km 530 375 

Highway range km 593 437 

Combined average range km 558 403 

City fuel economy1 kWh (100 km)-1 22.3 20.2 

Highway fuel economy1 kWh (100 km)-1 20.0 17.4 

Combined average fuel economy1 kWh (100 km)-1 21.2 18.8 

Battery pack cost CAD $12,760 $18,070 

Zinc-air battery pack lifetime years 13.2 N/a 

Time from 0 to 100 km h-1 s 15.06 15.23 
1Includes charging efficiency, with new UF 0.22 for the 2BEV 

 These results show how sensitive vehicle performance can be to small changes in cell 

construction. The 2BEV range is significantly improved with the new zinc-air cell compared to 

the 2BEV with the original zinc-air cell, so that a clear difference between the 2BEV and cBEV 

now exists. Other performance parameters remain nearly unchanged, but the 2BEV already had a 

cost advantage on the cBEV. Further benefits are undoubtedly obtainable with improvements at 

the pack level. 
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4.5. Economic and environmental analysis 

 In order to analyze the economics and the environmental impact of the cBEV and 2BEV, these 

vehicles are compared to a commercial ICEV. This comparison is imperfect due to the inevitable 

discrepancies between the simulated vehicle performance of the EVs and the real-world 

performance of the ICEV, but the simulated EV performance was broadly in line with real-world 

EV performance. The commercial vehicle used for comparison is the 2019 Honda Civic, which is 

similar in size to the Nissan Leaf body upon which the model vehicles are based. Table 22 shows 

the measures on which the vehicles were compared: 

Table 22: Economic and Environmental comparison between the cBEV, 2BEV and ICEV. 

 
Units 2BEV cBEV ICEV 

Estimated MSRP CAD $26,321 $31,625 $17,8901 

Harmonized Sales Tax (13%) CAD $3,422 $4,111 $2,326 

Fuel costs CAD yr-1 $416 $373 $1,6862 

Maintenance costs CAD yr-1 $584 $584 $720 

Combined Costs CAD $36,680 $42,380 $36,930 

CO2 emissions scenario 1 kg yr-1 75 56 3354 

CO2 emissions scenario 2 kg yr-1 2283 2044 3354 
1(Honda Canada, n.d.); 2Based on 7.1 L (100 km)-1 (Honda Canada, n.d.) 

 The manufacturer’s suggested retail price (MSRP) is calculated by adding the cost of the 

battery packs and the electric powertrain components to the Civic MSRP and subtracting the costs 

of the Civic powertrain components (Fries et al., 2017). Maintenance costs for the Civic are based 

on the CAA estimate (CAA, 2013), and the electric vehicle maintenance costs are set to be 19% 

cheaper (Propfe, Redelbach, Santini, & Friedrich, 2012). Fuel costs are based on gasoline prices 

of $1.20 L-1 and electricity prices of $0.10 kWh-1, and do not factor in a federal price on carbon. 

The combined costs combine the upfront price, fuel costs and maintenance costs are calculated 

using equation 12 with an interest rate of 7.25% (CAA, 2013) to transform the fuel costs and 

maintenance costs of the vehicles into a 2019 single-year equivalent value. A ten-year vehicle 

lifespan is assumed for all vehicles. The annual CO2 emissions per vehicle are estimated under two 

scenarios for electricity generation. In the first scenario, the electricity is assumed to come from 

the Ontario electricity grid, which has an emissions intensity of 0.0296 kgCO2 kWh-1 (National 

Energy Board, n.d.-b). In the second scenario, the electricity is assumed to come from the Alberta 
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electricity grid, which has an emissions intensity of 0.5485 kgCO2 kWh-1 (National Energy Board, 

n.d.-a). 

 
𝐶𝐶 = 𝑀𝑆𝑅𝑃 + 𝐻𝑆𝑇 + (𝐹𝐶 + 𝑀𝐶) ∑ 1.0725−𝑛

10

𝑛=1

 (12) 

 In equation 12 CC is the combined costs, MSRP is the manufacturer’s suggested retail price, 

HST is the harmonized sales tax, FC is the fuel costs and MC is the maintenance costs. 

 There are several notable findings from this analysis. That the 2BEV has higher fuel costs and 

higher emissions than the cBEV is due to the low efficiency of the zinc-air battery. This is 

somewhat but not entirely mitigated by the fact that the lithium-ion battery in the 2BEV is 

responsible for powering the vehicle most of the time. However, this higher fuel cost is not enough 

to mitigate the 2BEV’s advantage on the combined costs of the up-front vehicle price and fuel and 

maintenance costs. Comparing the three vehicles, the cBEV is 14.8% more expensive than the 

Civic and the 2BEV is 0.68% less expensive, a difference attributable to the low cost of the zinc-

air battery. 

 The emissions scenarios are interesting as well. Ontario’s electricity is generated mostly from 

renewable energy and nuclear power, with only a small amount generated from natural gas. The 

environmental benefits of electric vehicles in Ontario are clear and dramatic – direct emissions are 

reduced by 98% compared to the Civic, a relatively fuel-efficient small car. In Alberta the benefits 

are still large but less substantial than in Ontario. Alberta relies heavily on coal-fired and natural 

gas power plants to generate electricity, with only a small amount of zero-emissions electricity 

generation. Nevertheless, using electric vehicles can reduce emissions by 32-39% on a per-vehicle 

basis. 

4.6. Air pollution results 

 Highway 401 was modelled in TRAQS based on the average speed and traffic flow data 

provided by MTO, and based on the vehicle distribution information from the BTS and MTO. 

Table 23 shows the annual emissions from the highway of relevant pollutants, and their associated 

economic costs due to impacts on human health, missed time at work, etc.: 
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Table 23: Baseline (0% EVs) emissions and costs of pollution from Highway 401 over one year. 

Pollutant tons year-1 CAD tonne-1 CAD year-1 

NOx 2366 $5,155 $13,436,000 

PM2.5 198 $20,016 $4,356,000 

SO2 9.4 $5,702 $59,000 

VOCs 959 $628 $663,000 

Total 
  

$18,514,000 

 

 Then the model was modified so that the passenger gasoline vehicles were partially replaced 

with electric vehicles. The annual pollution and economic costs at different levels of EV 

penetration are shown in Figures 24 and 25: 

 

Figure 24: Annual emissions from Highway 401 at different BEV penetrations. 
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Figure 25: Cost of emissions from Highway 401 at different BEV penetrations. 

 

 Overall emissions costs dropped by 45% at full EV penetration, indicating that a substantial 

portion of overall pollution costs can be traced back to trucks, not passenger cars. NOx emissions 

dominate both by volume and by cost, as indicated by Sawyer and coworkers (2007), while SO2 

emissions were negligible and barely impacted the total cost, in line with work by N. Li and 

coworkers (2016). VOCs were a large portion of the emissions by mass, but due to their relatively 

low impact comprised a low share of the overall cost. PM2.5 emissions comprised the second largest 

portion of the total economic costs and saw the least impact from increasing EV penetration. While 

NOx emissions decreased by 10% for every additional 20% EV penetration, and SO2 and VOC 

emissions decreased by roughly 16% for every additional 20% EV penetration, PM2.5 emissions 

decreased by only 5% for every additional 20% EV penetration. Contrary to some of the research 

which suggested most of the PM2.5 emissions from vehicles is attributable to road dust, brakewear 

and tirewear (Timmers & Achten, 2016), TRAQS ascribes most of the PM2.5 emissions to engine 

exhaust. Futhermore, the simulation results show that brakewear and tirewear decrease at a faster 

rate than the exhaust emissions, perhaps due to the reduction in brake usage in electric vehicles 

due to regenerative braking. The PM2.5 emissions at different EV penetrations and from different 

sources are shown in Figure 26: 
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Figure 26: PM2.5 emissions from Highway 401. 

 An interesting finding from this analysis is the extent to which trucks are responsible for air 

pollution in spite of their small traffic volume (8-10% on Highway 401, according to the MTO 

data). At 100% EV penetration of passenger vehicles the overall cost of pollution from Highway 

401 was reduced by less than 50%, and almost all the remaining pollution is attributable to the 

presence of trucks – all of the NOx, SO2 and VOC pollution, and all of the PM2.5 pollution except 

the brakewear and tirewear PM2.5 pollution, which amounts to only $49,000 per year.  
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5. Conclusions 

 This work had several aims with the overarching goals of improving upon existing EV 

technology and quantifying the benefits of EVs. A new EV powertrain was proposed which would 

incorporate a zinc-air battery range extender alongside a lithium-ion battery as the primary ESS, 

with a simple control strategy for maximizing range extender life. In order to accomplish this, 

appropriate zinc-air cell articles were selected from the literature to form the basis of the zinc-air 

cell model. Once this model was fully specified it was incorporated into an existing vehicle model 

based on the work of UWAFT and which was modified to suit this work by changing the vehicle 

weight, air resistance and vehicle motor. A second version of the model which had a large primary 

ESS but no range extender was created to serve as a control. The configuration of the range 

extender and the primary ESS in the 2BEV was optimized and the performance of the vehicle was 

characterized. The battery pack of the cBEV was sized to match that of the 2BEV and the vehicle 

performance was characterized. Based on these results, the vehicles were characterized 

economically and environmentally. Additionally, the 2BEV was retested with a modified zinc-air 

cell model with improved performance in order to demonstrate the potential of an improved zinc-

air cell. Finally, in order to characterize the broader benefits of EVs, the traffic flow and pollution 

from Highway 401 in Toronto was modelled based on data provided by the MTO, and the 

economic cost of the pollution was quantified. Then the model was rerun at different EV 

penetration levels in order to quantify the benefits of EVs. 

There were several key findings that resulted from this work, including: 

• The optimized 2BEV achieved a range of 405 km and a fuel economy of 21.4 kWh per 100 

km, with a battery pack cost of $12,760. The cBEV achieved a similar range and a slightly 

better fuel economy but cost over $5,000 more.  

• In spite of the range extender’s low cycle life, it was quite feasible to size the battery packs of 

the 2BEV so that the range extender lasted over ten years. Several configurations achieved this 

target, and in the chosen configuration the range extender lasted 12.6 years. This was achieved 

by sizing the batteries so that the primary ESS powered the vehicle independently for 70% of 

the vehicle’s annual driven distance. 

• The range extender had a specific energy only 10% greater than the primary ESS. This is 

primarily due to the high proportion of mass in the zinc-air cell which is not anode and which 
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therefore does not contribute directly to specific energy. Reducing cell casing weight and 

increasing anode thickness increases the specific energy of the cell by 50% – from 144 mAh  

g-1 to 216 mAh g-1 – and the range of the 2BEV improves to 558 km. 

• Comparing the 2BEV and cBEV to a commercial ICEV – the 2019 Honda Civic – on certain 

economic and environmental metrics demonstrated the benefits of EV technology and of the 

two-battery powertrain in particular. The cBEV was 15% more expensive than the ICEV when 

considering fuel costs, maintenance costs and upfront cost, but the 2BEV was slightly cheaper 

than the ICEV. Both vehicles were shown to result in significantly less greenhouse gas 

emissions, even in a highly carbon intensive electricity grid such as Alberta’s electricity grid. 

When charged with electricity from Ontario’s grid, emissions were reduced by over 97%. 

• The pollution resulting from the traffic on Highway 401 was found to be substantial - $18.5M 

per year. Consequently, increasing the percentage of passenger vehicles which are electric has 

substantial benefits – but even at 100% EV penetration, the costs from the air pollution are 

only reduced by 45.6%. This demonstrates the substantial contribution of trucks to air 

pollution, and the necessity of reducing pollution from trucks to realize the maximum air 

pollution reduction benefits. 

• NOx was the costliest air pollutant at $13.4M per year, but also saw substantial reductions with 

increased EV penetration. PM2.5 was the next most costly air pollutant at $4.4M per year and 

the least affected by increased EV penetration. 
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6. Recommendations 

 This work demonstrated the potential of the zinc-air battery in an electric vehicle and 

expounded on the benefits of electric vehicles generally. However, there are several aspects of this 

work which would be improved with more analysis; there are also several avenues of investigation 

not directly addressed in this work. 

 This work demonstrated the limitations of current zinc-air battery technology but also revealed 

possible avenues for improvement. The zinc-air cell model had a specific energy only 10% greater 

than that of the lithium-ion cell, and this difference was reduced further after accounting for the 

additional powertrain losses for power from the zinc-air battery. This in spite of the fact that the 

zinc-air cell was based on among the most recent and high-performing zinc-air anode and cathode 

in the literature. Several possibilities for improving the specific energy of future zinc-air cells were 

suggested in this work, including increasing anode thickness, decreasing electrolyte weight and 

reducing cell container weight. These and other investigations must be done rigorously so that the 

potential downsides of these modifications, such as increased internal resistance or poorer 

electrochemical performance, are addressed. 

 In addition to suggesting avenues for future research into zinc-air battery technology, greater 

certainty of zinc-air cell performance would be highly beneficial to future work attempting to 

model zinc-air battery performance. For example, testing experimental anodes and cathodes 

together would provide greater certainty that the electrodes can work as described in a practical 

cell. The temperature dependence of zinc-air cell performance is another important subject for 

future research. The wide span of temperatures vehicles face makes all-weather performance 

important for all vehicle batteries, but zinc-air cells have not yet been tested at a wide range of 

temperatures. This work demonstrated the importance of the lower expected cost of zinc-air cells; 

estimating the cost of mass-produced zinc-air cells using a manufacturing model is a worthy 

exercise onto itself and would clarify the true potential of this technology. 

 This work adds to a body of existing work which attempts to quantify the air pollution benefits 

of electric vehicles. The air pollution modelling in this work provides a good estimate of local 

pollution from a particular source, but there are improvements that could make the work more 

impactful. In particular, complementing the existing work with air dispersion modelling would 
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generate a more detailed estimate of local pollution effects. This work is of particular importance 

for convincing policy makers to invest in EV infrastructure. 

 Finally, one EV barrier which was not analyzed in detail in this work is the extent of the 

charging network and how having EVs such as the 2BEV changes how the charging infrastructure 

is planned compared to having regular BEVs. Most BEVs today have smaller battery packs and 

lower ranges than the vehicles modelled in this work, which means there may be a greater need 

for charging stations compared to the longer-range 2BEV. On the other hand, the zinc-air battery 

of the 2BEV cannot be charged as quickly as regular BEVs, which may increase charging times 

and wait times. Charging infrastructure is crucial to supporting EVs, so exploring how BEVs with 

zinc-air batteries affects charging infrastructure planning and use is an important area of study.  
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Appendix A – Procedure for creating Figure 16 from NHTS data 

 In order to create Figure 16 from the NHTS data available online, the raw data has to be 

manipulated. Of the files available online, the trippub and vehpub documents contain the required 

data. The trippub document contains the detailed trip data of every person surveyed including start 

time, end time, trip distance, which vehicle was driven and whether the person surveyed was the 

driver of the vehicle for the trip; the data was organized by household. The vehpub document 

contains the list of vehicles by household. The data from these documents was imported into 

MATLAB and the following script was run: 

for i = 1:256115 

    hID = HOUSEID1(i); 

    vID = VEHID1(i); 

    vTy = VEHTYPE(i); 

     

    if (vTy == 1 || vTy == 3) && vID > 0 && vID < 13 

        hIndex = find(HOUSEID == hID); 

        vIndex = hIndex.*(VEHID(hIndex)==vID); 

        vIndex(vIndex==0) = []; 

        dIndex = vIndex.*(DRVR_FLG(vIndex)==1); 

        dIndex(dIndex==0) = []; 

         

        if isempty(dIndex) 

            DDD(i) = 0; 

        elseif sum(TRVLCMIN(dIndex) < 0) > 0 || ... 

    sum(TRPMILES(dIndex)./TRVLCMIN(dIndex) > 100/60) > 0 

            DDD(i) = -1; 

        elseif prod(sum(STRTTIME(dIndex)==STRTTIME(dIndex)')) ~= 1 && ... 

                prod(sum(ENDTIME(dIndex)==ENDTIME(dIndex)')) ~= 1 

            DDD(i) = -2; 

        else 

            DDD(i) = sum(TRPMILES(dIndex)); 

        end 

    end 

end 

clear ans dIndex hID hIndex i vID vIndex vTy vWt 

 

 The script matches the trip data in trippub to the vehicle data in vehpub. For each vehicle in 

vehpub (denoted by a combination of household ID and vehicle ID) the script first checks that the 

vehicle is a car or SUV. If it is, the script then finds within the trippub data all instances in which 

the trip has the matching household ID and vehicle ID and in which the person surveyed was the 

driver of the trip (this is done to ensure trips are not double counted by the driver and passengers). 

The script then checks for certain errors – such as negative travel times, or trips where either the 

recorded distance or recorded time did not make sense based on the average speed implied. Finally, 
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if there are no errors the distances from all the trips recorded by the vehicle that day are summed 

to obtain the total distance travelled by that vehicle that day. After the execution of the script all 

the vehicles in vehpub which are cars or SUVs and which do not have misrecorded data have an 

associated distance travelled that day. This data is contained in the variable DDD. 

 

 Following the execution of the above script the daily driven distances are sorted into bins 

corresponding to a distance range; for example, if the daily driven distance is 8 km that corresponds 

to the 5-10 km bin (which is the 2nd bin, after the 0-5 km bin). Each data entry in vehpub which 

has a daily driven distance associated with it is assigned a bin number (DDDbins) based on the 

DDD value. Then a new script is executed in order to calculate the weights for each bin. The 

weights are necessary for accurate representation of the population from the NHTS sample data. 

weights = zeros(100,1); 

weightSum = 0; 

  

for i = 1:256115 

    if DDD(i) > 0.01/1.60934 && DDD(i) <= 500/1.60934 

        n = DDDbins(i); 

        weights(n) = weights(n) + WTHHFIN(i); 

        weightSum = weightSum + WTHHFIN(i); 

    elseif DDD(i) > 500/1.60934 

        weightSum = weightSum + WTHHFIN(i); 

    end 

end 

 

 The script loops through each vehicle entry in vehpub, checks that it has a valid daily driven 

distance associated with it and reads the vehicle weighting. That weight is then added to the weight 

total for the associated daily driven distance bin and to the overall weight total. Following the 

execution of this script, the NHTS graph is created by dividing the summed bin weights by the 

total weight sum, giving the frequency of each bin. 
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Appendix B: Tabulated data for select figures 

Table B1: Data for Figure 16 

Daily 

Driven 

Distance 

(km) 

Frequency 

Daily 

Driven 

Distance 

(km) 

Frequency 

Daily 

Driven 

Distance 

(km) 

Frequency 

5 5.52% 185 0.21% 365 0.04% 

10 8.76% 190 0.23% 370 0.05% 

15 8.77% 195 0.20% 375 0.02% 

20 8.12% 200 0.19% 380 0.04% 

25 7.33% 205 0.13% 385 0.02% 

30 6.33% 210 0.16% 390 0.04% 

35 5.67% 215 0.13% 395 0.03% 

40 5.11% 220 0.11% 400 0.04% 

45 4.72% 225 0.09% 405 0.02% 

50 4.03% 230 0.10% 410 0.03% 

55 3.46% 235 0.12% 415 0.03% 

60 3.41% 240 0.10% 420 0.02% 

65 3.10% 245 0.07% 425 0.01% 

70 2.44% 250 0.04% 430 0.02% 

75 2.41% 255 0.08% 435 0.01% 

80 1.93% 260 0.06% 440 0.03% 

85 1.72% 265 0.08% 445 0.02% 

90 1.75% 270 0.08% 450 0.01% 

95 1.40% 275 0.09% 455 0.01% 

100 1.36% 280 0.07% 460 0.02% 

105 1.01% 285 0.05% 465 0.01% 

110 0.84% 290 0.05% 470 0.02% 

115 0.87% 295 0.04% 475 0.02% 

120 0.77% 300 0.06% 480 0.01% 

125 0.72% 305 0.07% 485 0.02% 

130 0.66% 310 0.05% 490 0.02% 

135 0.57% 315 0.05% 495 0.01% 

140 0.48% 320 0.08% 500 0.01% 

145 0.45% 325 0.05%   

150 0.42% 330 0.03%   

155 0.32% 335 0.08%   

160 0.33% 340 0.04%   

165 0.31% 345 0.02%   

170 0.29% 350 0.02%   

175 0.27% 355 0.04%   

180 0.18% 360 0.04%   
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Table B2: Data for Figure 21 

Daily 

Driven 

Distance 

(km) 

Total Annual 

Driven 

Distance 

(km) 

Annual Distance 

without zinc-air 

battery 

(km) 

5 100.7 0.0 

10 319.7 0.0 

15 480.2 0.0 

20 592.8 0.0 

25 668.9 0.0 

30 693.1 0.0 

35 724.3 0.0 

40 746.1 0.0 

45 775.3 0.0 

50 735.5 0.0 

55 694.6 0.0 

60 746.8 0.0 

65 735.5 0.0 

70 623.4 0.0 

75 659.7 17.6 

80 563.6 49.3 

85 533.6 75.3 

90 574.9 108.6 

95 485.5 112.4 

100 496.4 134.0 

105 387.1 118.0 

110 337.3 113.4 

115 365.2 133.4 

120 337.3 132.1 

125 328.5 136.7 

130 313.2 137.3 

135 280.9 129.0 

140 245.3 117.4 

145 238.2 118.3 

150 230.0 118.0 

155 181.0 95.8 

160 192.7 104.8 

165 186.7 104.1 

170 179.9 102.7 

175 172.5 100.5 

180 118.3 70.3 

185 141.8 85.8 

190 159.5 98.2 
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195 142.4 89.1 

200 138.7 88.1 

205 97.3 62.6 

210 122.6 80.0 

215 102.0 67.4 

220 88.3 59.0 

225 73.9 49.9 

230 84.0 57.3 

235 102.9 71.0 

240 87.6 61.0 

245 62.6 43.9 

250 36.5 25.8 

255 74.5 53.1 

260 56.9 41.0 

265 77.4 56.1 

270 78.8 57.5 

275 90.3 66.4 

280 71.5 52.9 

285 52.0 38.7 

290 52.9 39.6 

295 43.1 32.4 

300 65.7 49.7 

305 77.9 59.3 

310 56.6 43.3 

315 57.5 44.2 

320 93.4 72.1 

325 59.3 46.0 

330 36.1 28.1 

335 97.8 76.5 

340 49.6 39.0 

345 25.2 19.9 

350 25.6 20.2 

355 51.8 41.2 

360 52.6 41.9 

365 53.3 42.6 

370 67.5 54.2 

375 27.4 22.0 

380 55.5 44.8 

385 28.1 22.8 

390 56.9 46.3 

395 43.3 35.3 

400 58.4 47.7 

405 29.6 24.2 

410 44.9 36.9 
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415 45.4 37.4 

420 30.7 25.3 

425 15.5 12.8 

430 31.4 26.1 

435 15.9 13.2 

440 48.2 40.2 

445 32.5 27.2 

450 16.4 13.8 

455 16.6 13.9 

460 33.6 28.3 

465 17.0 14.3 

470 34.3 29.0 

475 34.7 29.3 

480 17.5 14.9 

485 35.4 30.1 

490 35.8 30.4 

495 18.1 15.4 

500 18.3 15.6 

 

Table B3: Data for Figure 24 (tonnes year-1) 

EV% NOx PM2.5 SO2 VOCs 

0% 2366 198 9 959 

20% 2129 188 8 800 

40% 1891 178 6 641 

60% 1652 168 5 482 

80% 1414 158 3 323 

100% 1175 148 2 165 

 

Table B4: Data for Figure 25 (CAD year-1) 

EV% NOx PM2.5 SO2 VOCs Total 

0% $13,436,270 $4,356,103 $59,112 $662,953 $18,514,438 

20% $12,088,444 $4,138,956 $49,766 $553,143 $16,830,309 

40% $10,737,222 $3,921,831 $40,432 $443,329 $15,142,814 

60% $9,382,598 $3,704,376 $31,079 $333,492 $13,451,545 

80% $8,027,975 $3,486,920 $21,727 $223,655 $11,760,277 

100% $6,673,352 $3,269,464 $12,374 $113,818 $10,069,008 
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Table B5: Data for Figure 26 (tonnes year-1) 

EV% 
Running 

Exhaust 
Brakewear Tirewear 

Crankcase 

Running 

Exhaust 

Total 

0% 146 8.4 4.5 44 198 

20% 137 7.2 3.7 44 188 

40% 128 6.0 3.0 43 178 

60% 120 4.7 2.2 43 168 

80% 111 3.5 1.5 43 158 

100% 103 2.2 0.7 43 148 
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Appendix C – Code for the zinc-air cell model 

%% VPA - ESS2 

% Model - polarization curve lookup 

% Technology - Zinc-air                                                                  

  

% Pack level 

ess2.plant.init.element_per_module      = 75; 

ess2.plant.init.num_module              = 4;      % the number of series connected 

modules; 

ess2.plant.init.num_module_parallel     = 22; 

ess2.plant.init.num_cell_series         = 

ess2.plant.init.num_module*ess2.plant.init.element_per_module; 

ess2.plant.init.num_cell                = 

ess2.plant.init.num_module*ess2.plant.init.element_per_module*ess2.plant.init.num_modu

le_parallel; 

  

ess2.plant.init.packaging_factor        = 1.25;  % >=1 

ess2.plant.init.mass.cell               = 0.0562; 

ess2.plant.init.mass.module             = 

ess2.plant.init.mass.cell*ess2.plant.init.element_per_module;                              

ess2.plant.init.mass.pack               = round(ess2.plant.init.mass.cell * 

ess2.plant.init.num_cell);% calculate the mass of the pack 

ess2.plant.init.mass.packaging          = (ess2.plant.init.packaging_factor - 

1).*ess2.plant.init.mass.pack;% calculate the mass of the pack 

ess2.plant.init.mass.total              = ess2.plant.init.mass.pack + 

ess2.plant.init.mass.packaging; 

  

ess2.plant.init.pwr_constant             = 12500; 

  

% Cell level 

ess2.plant.init.soc_init                = 1;       

ess2.plant.init.soc_min                 = 0; 

ess2.plant.init.soc_max                 = 1; 

  

ess2.plant.init.volt_nom                = 1.20; 

ess2.plant.init.volt_min                = 0.1; 

ess2.plant.init.volt_max                = 2.00; 

  

ess2.plant.init.surface_area            = 100;      %cm^2 

ess2.plant.init.surface_area_ref        = 2;        %cm^2 

ess2.plant.init.surface_area_ratio      = 

ess2.plant.init.surface_area/ess2.plant.init.surface_area_ref; 

  

% LOSS AND EFFICIENCY parameters    

ess2.plant.init.soc_index               = [0:.1:1];         % SOC RANGE over which 

data is defined 

ess2.plant.init.temp_index              = [20 25 30];       % Temperature range over 

which data is defined(C) 

ess2.plant.init.current_index           = ... 

    [0.06192 2.60049 5.13905 7.67762 10.18523 12.7238 15.23141 17.73902 20.27759 ... 

    22.7852 25.29281 27.83138 30.33899 32.87756 35.41613 37.92374 40.46231 42.96992 

... 

    45.50849 48.0161 50.55467 53.06228 55.60085 58.10846 60.64703 63.15464 65.69321 

... 

    68.20082 70.73939 73.247 75.78557 78.29318 80.83175 83.37032 85.87793 88.4165 ... 

    90.92411 93.46268 95.97029 98.4779 101.01647 103.55504 106.06265 108.60122 

111.10883 ... 

    113.6474 116.18597 118.69358 121.20119 123.73976 126.24737 128.78594 131.29355 ... 

    133.83212 136.37068 138.8783 141.38591 143.92448 146.46304 148.97065 151.47827 ... 

    154.01683 156.5554 159.06301 161.60158 164.10919 166.64776 169.15537 171.69394 ... 

    174.20155 176.74012 179.27869 181.7863 184.32487 186.83248 189.37105 191.87866 ... 
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    194.41723 196.92484 199.46341 202.00198 204.50959 207.04816 209.55577 212.09434 

... 

    214.60195 217.10956 219.64813 222.1867 224.69431 227.23288 229.74049 232.27906 ... 

    234.81763 237.32524 239.83285 242.37142 244.90999 247.4176 249.92521]' ... 

    * ess2.plant.init.surface_area/1000; 

  

%= [0:1:200]*ess2.plant.init.surface_area/1000; % Current range (A) 

  

ess2.plant.init.cap_max.idx1_temp       = ess2.plant.init.temp_index;  

ess2.plant.init.cap_max.map             = [6.68 6.68 6.68];         % (A*h), at C/5, 

indexed by ess2.plant.init.temp_index 

  

ess2.plant.init.eff_coulomb.idx1_temp   = ess2.plant.init.temp_index; 

ess2.plant.init.eff_coulomb.map         = [1 1 1];                  % not supplied 

data. Average coulombic (a.k.a. amp-hour) efficiency below, indexed by 

ess2.plant.init.temp_index 

  

% cell's open-circuit (a.k.a. no-load) voltage, indexed by ess2.plant.init.soc_index 

ess2.plant.init.voc.idx1_temp   = ess2.plant.init.temp_index; 

ess2.plant.init.voc.idx2_soc    = ess2.plant.init.soc_index; 

ess2.plant.init.voc.map         = [... 

    1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4; 

    1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4; 

    1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4]; 

  

% cell's R1, indexed by ess2.plant.init.soc_index 

ess2.plant.init.r1.idx1_temp    = ess2.plant.init.temp_index; 

ess2.plant.init.r1.idx2_soc     = ess2.plant.init.soc_index; 

ess2.plant.init.r1.map          = [... 

    1.6  1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6; 

    1.6  1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6; 

    1.6  1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   

1.6]/ess2.plant.init.surface_area_ratio; % (ohm)  

ess2.plant.init.voltage.idx1_current = ess2.plant.init.current_index; 

ess2.plant.init.voltage.map = [1.38367  1.34288 1.29626 1.25056 1.22388 1.20854 ... 

    1.19628 1.18523 1.17481 1.16468 1.15518 1.14567 1.13647 1.12757 1.11868 1.1107  

... 

    1.10488 1.0969  1.08862 1.08065 1.07237 1.0647  1.05672 1.04875 1.04078 1.03311 

... 

    1.02513 1.01747 1.0098  1.00182 0.99416 0.98649 0.97882 0.97115 0.96379 0.95551 

... 

    0.94815 0.94048 0.93281 0.92515 0.91748 0.91012 0.90245 0.89478 0.88712 0.87975 

... 

    0.87209 0.86442 0.85675 0.84939 0.84172 0.83406 0.82639 0.81903 0.81136 0.80369 

... 

    0.79602 0.78836 0.781   0.77333 0.76566 0.75799 0.75032 0.74266 0.73499 0.72732 

... 

    0.71965 0.71199 0.70432 0.69634 0.68868 0.68101 0.67334 0.66567 0.6577  0.64972 

... 

    0.64175 0.63378 0.62611 0.61783 0.60985 0.60157 0.5936  0.58532 0.57704 0.56845 

... 

    0.55986 0.55127 0.54268 0.53379 0.5249  0.51569 0.50649 0.49698 0.48748 0.47766 

... 

    0.46754 0.45681 0.44607 0.43442]'; 

 

% Battery density 

ess2.plant.init.pwr_dis_nom        = max((ess2.plant.init.volt_nom-

ess2.plant.init.volt_min).*ess2.plant.init.volt_min./ess2.plant.init.r1.map);%per cell 

ess2.plant.init.pwr_density        = 

ess2.plant.init.pwr_dis_nom/ess2.plant.init.mass.cell; 

ess2.plant.init.energy_density     = 

(ess2.plant.init.volt_nom*ess2.plant.init.cap_max.map)/ess2.plant.init.mass.cell; 

ess2.plant.init.energy = max(ess2.plant.init.cap_max.map).*ess2.plant.init.volt_nom; 
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Appendix D – Some sections of the 2BEV Simulink model 

 

Figure D1: 2BEV powertrain (motor not depicted) 

 

Figure D2: Zinc-air battery model (highest subsystem) 
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Figure D3: Zinc-air cell model 

 

Figure D4: Zinc-air cell calculation of voltage 

 


