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Abstract

Field-theoretic simulations (FTS) offer a versatile method of dealing with complicated block

copolymer systems, but unfortunately they struggle to cope with the level of fluctuations typical

of experiments. Although the main obstacle, an ultraviolet (UV) divergence, can be removed by

renormalizing the Flory-Huggins χ parameter, this only works for unrealistically large invariant

polymerization indexes, N̄ . Here, we circumvent the problem by applying the Morse calibration,

where a nonlinear relationship between the bare χb used in FTS and the effective χ corresponding to

the standard Gaussian-chain model (GCM) is obtained by matching the disordered-state structure

function, S(k), of symmetric diblock copolymers to renormalized one-loop (ROL) predictions. This

calibration brings the order-disorder transition (ODT) obtained from FTS into agreement with the

universal results of particle-based simulations for values of N̄ characteristic of experiment. In the

limit of weak interactions, the calibration reduces to a linear approximation, χ ≈ z∞χb, consistent

with the previous renormalization of χ for large N̄ .
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I. INTRODUCTION

The standard Gaussian-chain model (GCM)1 underpins most calculations for block

copolymer melts, including the self-consistent field theory (SCFT) of Helfand,2 the random-

phase approximation (RPA) of Leibler3, the strong-stretching theory (SST) of Semenov,4 and

the fluctuation theory of Fredrickson and Helfand.5 The GCM treats block copolymer melts

as an incompressible system of thin elastic threads interacting by simple contact forces. It is

a minimal model that contains only the essential features of the system, and as such involves

the least number of parameters possible. In the mean-field approximation, the equilibrium

behavior of monodisperse AB diblock copolymers is controlled by just three quantities: the

composition of the diblock, f , the ratio of segment lengths, aA/aB, and the product, χN ,

where χ is the Flory-Huggins interaction parameter and N is the total number of segments.6

Fluctuation corrections to the mean-field behavior are then controlled by one additional pa-

rameter, the invariant polymerization index N̄ = a6ρ20N , where a = [fa2A + (1− f)a2B]1/2 is

the average segment length and ρ0 is the segment density.5 Note that we follow the standard

practice of defining all segments to have a common volume of ρ−10 .

It is believed that all models as well as experimental systems reduce to the standard

GCM at large N .7 How large N needs to be will depend on the particular system. The

universality implies that the parameters of any particle-based model can be mapped onto

those of the GCM. The mapping of molecular compositions (e.g., f) is trivial given their

straightforward definition in terms of volume fraction. The segment lengths are also clearly

defined by the requirement that the average end-to-end length or radius of gyration of a

linear homopolymer in a neat melt reduces to R0 = aN1/2 or Rg = a(N/6)1/2, respectively,

for large N .

The only nontrivial part of the mapping is the relationship between the χ parameter

of the GCM and some corresponding parameter of the particle-based model, α, specifying

the strength of its A-B interactions in units of kBT . One important constraint is that the

behavior of the particle-based model must approach SCFT in the N →∞ limit. Müller and

Binder8 proposed a linear relationship, χ = z(N)α, that satisfies this requirement, where

z(N) measures the number of intermolecular contacts between molecules of polymerization

N in the athermal limit (i.e., α = 0). This, however, results in a χ parameter that not only

depends on molecular weight but also on molecular architecture. Such dependences would

2

http://dx.doi.org/10.1063/1.5089217


severely limit the predictive power of block copolymer theory. Working on the assumption

that such dependences are not necessary, Morse and coworkers9 proposed that χ be defined as

a nonlinear function of α, which reduces to χ ≈ z∞α for small α, where z∞ ≡ limN→∞ z(N).

The nonlinear dependence is determined by matching the behavior of the particle-based

model to some prediction of the GCM. It could, in principle, be any quantity for any block

copolymer system, but it is best to choose the most accurate prediction possible that permits

fits to relatively large values of α. Therefore, Morse and coworkers10 chose the renormalized

one-loop (ROL) prediction for the disordered-state structure function, S(k), of symmetric

diblock copolymer melts.11,12 The success of this calibration method has been remarkable,

at least, for diblock copolymer melts.13–16

Given the universality of block copolymer behavior, it is possible to obtain quantitative

predictions using very simple particle-based models.15 However, even with simple models,

it can be challenging to simulate blends and, in particular, complicated polymeric architec-

tures. Field-theoretic simulations (FTS)17,18,20 offer a way around this problem.21–23 They

simulate a field-based version of the standard GCM, obtained by applying the same transfor-

mations used in SCFT.24 For systems involving two chemical species, the interaction energy

is represented by the Hubbard-Stratonovich identity involving a composition field, W−(r),

and the delta function enforcing incompressibility is replaced by a Fourier representation

involving a pressure field, W+(r). This allows the polymer coordinates to be integrated out,

leaving a mathematically equivalent Hamiltonian, H[W−,W+], that depends only on the

two fields. Rather than solving the statistical mechanics of the field-based model using the

saddle-point approximation of SCFT, one simply performs a simulation.

FTS of diblock copolymer melts are particularly efficient at large N̄ , but they run into

problems for the experimentally relevant conditions of 102 <∼ N̄ <∼ 104. For instance,

complex-Langevin simulations (CL-FTS) encounter an instability associated with the in-

compressibility condition.25 Monte-Carlo simulations (MC-FTS) avoid it by applying the

saddle-point approximation for W+(r), but their results still diverge when the spacing, ∆,

of the grid used to represent the fields is reduced towards zero. Fortunately, this ultraviolet

(UV) divergence has the simple effect of disordering the melt, which can be compensated

for by expressing results in terms of a renormalized interaction parameter,26

χ =

(
1− 6α

π2
lΛ

)
χb , (1)
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where α = 1.2214 for cubic grids,27 l ≡ 1/ρ0a
2 is the packing length, Λ ≡ π/∆ is the

wavevector cutoff, and χb is the bare interaction parameter used in the MC-FTS. Although

this renormalization works well for large N̄ ,27 it fails just prior to the experimentally rel-

evant regime. Vorselaars and Matsen28 appeared to resolve the problem by modifying the

renormalization of χ. The modification removed the divergence for diblock copolymers of

N̄ = 103, but it later failed for binary homopolymer blends at values of N̄ where the renor-

malization in Eq. (1) worked just fine.29,30

Here, we take a different approach. Rather than trying to remove the divergence, we fix ∆

at a small finite value and apply the Morse calibration. The first step is the evaluation of z∞,

the relative number of intermolecular contacts in a neat melt of infinitely long homopolymers.

Next, we define an effective

χ =
z∞χb + c1χ

2
b

1 + c2χb
, (2)

where the fitting parameters, c1 and c2, are determined by matching the peak of S(k) for

symmetric diblock copolymers to ROL theory. To assess the calibration, we compare the

order-disorder transition (ODT) for diblock copolymers of N̄ <∼ 104 to

(χN)ODT = 10.495 + 41.0N̄−1/3 + 123.0N̄−0.56 . (3)

The first two terms are the standard Fredrickson-Helfand (F-H) approximation,5 and the

third term is an empirical correction obtained from particle-based simulations.13

II. FIELD-THEORETIC SIMULATIONS

The field-theoretic model for systems with two chemically-distinct segments, A and B,

involves a composition field, W−(r), that couples to the difference between the A and B

concentrations and a pressure field, W+(r), that enforces a uniform segment density of ρ0.

For a diblock copolymer melt of n molecules, the field-based Hamiltonian is given by18,20

H[W−,W+]

kBT
= −n lnQ+ ρ0

∫ (
W 2
−(r)

χb
−W+(r)

)
dr , (4)

where Q is the partition function for a single molecule subject to the two fields. It is given

by

Q[W−,W+] =

∫
q(r, N)dr , (5)
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where q(r, t) is a partial partition function for the first t segments of the molecule with the

t’th segment constrained at position r. This function satisfies a diffusion equation,

∂q

∂t
=
a2

6
∇2q − (W+ ±W−)q , (6)

with the initial condition q(r, 0)=1. The ‘+’ and ‘−’ signs are used when the t’th segment

is of type A and B, respectively. Equation (6) is solved numerically using a pseudo-spectral

algorithm with Richardson extrapolation31,32 and a step size of ∆t = 1 (i.e., N corresponds to

the number of integration steps along the polymer chain). We will later require an analogous

partial partition function, q†(r, t), for the last N − t segments. It is obtained by integrating

Eq. (6) with one side multiplied by −1 backwards in t, starting from q†(r, N) = 1.

FTS are complicated by the fact that W+(r) is an imaginary-valued function, which in

turn makes H[W−,W+] a complex-valued quantity. As a result, the Boltzmann weight,

exp(−H/kBT ), is no longer positive definite, and therefore standard simulation methods are

not applicable. Fredrickson and coworkers17–20 have dealt with this by performing complex

Langevin simulations (CL-FTS). Alternatively, this complication can be avoided by replacing

W+(r) with its saddle-point, w+(r), which approximates the incompressibility condition by

φ+(r) = 1, where

φ+(r) =
V

NQ

∫ N

0

q(r, t)q†(r, t)dt (7)

is the mean-field approximation for the total concentration. The integral over t is evaluated

using the Simpson quadrature and the saddle-point is located with Anderson-mixing itera-

tions, as described in Ref. 32. It turns out that w+(r) is a real-valued function, which then

allows for the usual methods of statistical mechanics such as ordinary Langevin simulations

(L-FTS)33,34 or Monte Carlo simulations (MC-FTS).35,36

Here, we perform MC-FTS for melts of n = ρ0V/N diblock copolymers in cubic simulation

boxes of volume V = L3 with periodic boundary conditions. The fields are represented on

a discrete grid with m points in each direction separated by a uniform spacing of ∆ (i.e.,

L = m∆). The grid resolution is set to ∆ = a and the segment density is set to ρ0 = 8/a3.

Each Monte Carlo step (MCS) involves making a small change to W−(r), followed by the

reevaluation of w+(r). The moves are accepted or rejected based on the standard Metropolis

criterion. We alternate between two kinds of moves:27 one in real space where W−(r) is

changed at each grid point by amounts selected from a uniform distribution, and another in

Fourier space where W−(k) is changed at each wavevector with a probability proportional to
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the RPA structure function, SRPA(k), for χN = 10. The amplitude of each move is adjusted

during the beginning of the equilibration period to achieve an acceptance rate of ∼ 40%.

We typically use 106 MCS to equilibrate the system, followed by 106 − 107 MCS for the

collection of statistics. Observables are generally sampled once every 10 MCS.

III. MORSE CALIBRATION

The first step of the calibration is to determine z∞ = limN→∞ z(N), the fraction of inter-

molecular contacts in a pure homopolymer melt of infinitely long chains. In particle-based

simulations, it is necessary to evaluate z(N) for finite polymers and then extrapolate to infin-

ity, but here we are able to calculate z∞ directly because of the saddle-point approximation

and the absence of fields. The fact that W−(r) vanishes in the χb → 0 limit is obvious from

the form of Eq. (4) or alternatively from the fact that the composition field cannot play any

role in the absence of A-B interactions. Given that W−(r) = 0, it immediately follows that

φ+(r) = 1 is satisfied by w+(r) = 0.

Therefore, it suffices to consider a single infinite non-interacting chain, with its contour

parameterized by s = −∞ to ∞ and the s = 0 monomer constrained at the origin. It

is important to remember that each coarse-grained segment of the GCM consists of an

arbitrarily large number of monomers strung together; we are just constraining one monomer

of negligible volume and not an entire segment. The segments will generally span multiple

grid points, and hence the total number of segments at the origin, ∆3ρ0, is not necessarily

an integer. In any case, all we need to know is what fraction of the ∆3ρ0 segments belong to

the same chain as the constrained monomer, and thus experience an intramolecular contact

with that monomer.

The calculation requires a propagator for the constrained chain providing the probability

that the s = t monomer is located at r.37 This propagator, q0(r, t), satisfies the diffusion

equation, with the initial condition q0(0, 0) = 1 for the one grid point at the origin and

zero for all other grid points. It is essential that q0(r, t) be solved with the same numerical

algorithm used in the FTS. The resulting quantity q0(0, t), plotted in Fig. 1, then provides

the probability that the s = t monomer is also at the origin. Thus, the integral of q0(0, t)

gives the amount of chain, measured in segments, experiencing intramolecular contact with

the constrained monomer. Due to the symmetry, it is sufficient to just integrate over positive
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FIG. 1: Probability that a segment interacts with another segment t steps further along the same

polymer chain, calculated for an athermal melt (i.e., χb = 0). The dashed curve denotes an

analytical approximation for large t.

t and then double the result. From that, we immediately obtain the fraction of intermolecular

contacts,

z∞ = 1− 2

∆3ρ0

∫ ∞
0

q0(0, t)dt = 0.7084 . (8)

The numerical solution of q(r, t), used to evaluate the Hamiltonian, is a discrete function

of t, and so the integral in Eq. (8) should be evaluated accordingly. The issue is how the Q in

Eq. (5) samples the fields, when χb is infinitesimally small. The Richardson extrapolation

basically combines numerical solutions for full steps, ∆t = 1, and half steps, ∆t = 1/2,

weighted by −1/3 and 4/3, respectively.31,32 Given that the integer steps experience twice

the field intensity as half-integer steps, the field contribution at integer and half-integer

values of t is proportional to −2/3 + 4/3 = 2/3 and 4/3, respectively. At t = 0, it is

proportional to 1/3. These are the precise weightings used by the Simpson quadrature, and

so we evaluate Eq. (8) using the Simpson method with a step size of ∆t = 1/2. In practice,

however, we only need to integrate up to t = 10 using the Simpson method, and then the

rest of the integral can be performed analytically using q0(0, t) ≈ (3∆2/2πa2t)3/2.

For the next part of the calibration, we evaluate the disordered-state structure function

for three polymerizations, N = 16, 32, and 64. In FTS, the structure function is given
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FIG. 2: Structure function, S(k), for molecules of polymerization N = 32 calculated for different

interaction parameters, χb. Symbols denote FTS results, and the curves are fits used to extract

the peak height, S(k∗).

by24,27,33

S(k)

ρ0N
=

n

(V χb)2
〈|W−(k)|2〉 − 1

2χbN
. (9)

The size of the simulation box, L = m∆, is chosen such that the number of grid points

(m = 16 = 24, 24 = 23 × 3, and 32 = 25 used for N = 16, 32, and 64, respectively) only

contains factors of 2 and 3. This aids the numerical efficiency of the fast Fourier transforms

used in the pseudo-spectral algorithm.32 Due to the finite size of the simulation box, the

wavevector is only permitted to take on a discrete set of values: k = 2π(h, k, l)/L, where

h, k, and l are integers. Although the cubic box slightly breaks the isotropic symmetry, we

average S(k) over wavevectors of the same magnitude turning it into a function of k ≡ |k|.

Figure 2 plots S(k) at a series of χb values for diblock copolymers of N = 32. The peaks,

S(k∗), are extracted from fits to the RPA structure function,3 denoted by the solid curves

in Fig. 2.

8

http://dx.doi.org/10.1063/1.5089217


FIG. 3: Inverse peak height of the structure function, S−1(k∗), plotted in terms of the effective χ

parameter for different invariant polymerization indexes, N̄ = 64N . Symbols denote FTS results,

solid curves are ROL predictions, and the dashed line is the RPA prediction. The inset shows

the nonlinear dependence of χ on χb, Eq. (2), with a solid curve and the linear approximation,

χ ≈ z∞χb, with a dashed line.

The final step of the calibration is to adjust the coefficients in Eq (2), c1 and c2, so as to

match the peaks, S(k∗), from the FTS to the predictions of ROL theory.11,12 Figure 3 shows

our best fit, where the FTS results are plotted with symbols and the ROL predictions are

given by solid curves. The dashed line denotes the mean-field prediction from RPA.3 The

ROL predicts a slight deviation from RPA at small χN , which is well reproduced by particle-

based simulations7,13 but absent from our MC-FTS due to the saddle-point approximation.

Therefore, our fit only includes the data points for χN > 7. The resulting coefficients are

c1 = 0.916 and c2 = 0.952 . (10)

The inset of Fig. 3 shows the nonlinear relationship between χ and χb with a solid curve,

while the dashed line denotes the linear approximation, χ ≈ z∞χb.
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IV. RESULTS

To test the calibration, we examine the order-disorder transition (ODT) of symmetric

diblock copolymer melts for experimentally relevant values of N̄ = 64N . Past FTS28,38 as

well as particle-based simulations39,40 have shown that two lamellar periods are sufficient

to obtain reasonable estimates of the ODT. From previous experience,27,28 the equilibrium

period of the lamellar phase is accurately estimated by D ≈ 2π/k∗, where k∗ is the peak

position of S(k). Indeed, this was confirmed in our simulations of S(k) by the period of the

lamellar phase that spontaneous formed once χb exceeded the ODT. Our initial intention was

to simulate polymers of N = 16, 32, and 64. Based on the estimated length of two periods,

the appropriate sizes of the simulation box are m = 12, 17, and 24, respectively. However,

the fast Fourier transform used by the pseudo-spectral algorithm would be particularly slow

for m = 17, on account of it being a prime number.27 Therefore, we choose to simulate

N = 28 polymers, for which the appropriate box size is m = 16.

To locate the ODT, we simulate multiple replicas of the system at a series of χb values

spanning the expected ODT, all initialized with disordered configurations. The replicas

are run in parallel, each following the usual MC algorithm. The phase at each χb value is

monitored by evaluating the order parameter 〈Ψ〉, which is an average of

Ψ =

(
N

V

)2

max
k
|W−(k)|2 , (11)

over the last 105 MCS. Past studies27,28 have demonstrated that 〈Ψ〉 jumps from a small

value in the disordered state to a large value in the lamellar phase.

During the simulation, highly metastable defects often nucleate impeding the formation

of a well-ordered morphology, particularly when χb is large. To help remedy this problem,

we implement parallel tempering,41 whereby swaps between replicas at neighboring χb values

are attempted every 103 MCS (see Ref. 27 for more details). In this way, defect structures

are shifted to lower segregation, which allows them to anneal out more easily. As expected,

all the ordered replicas exhibited two lamellar periods. Even with parallel tempering, the

metastability of the disordered phase may cause an overestimation of (χbN)ODT. Therefore,

we run a second set of parallel tempering simulations starting from ordered lamellar config-

urations. This will generally result in an underestimation of (χbN)ODT, thus allowing us to

bracket the true equilibrium ODT.
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FIG. 4: Order parameter, 〈Ψ〉, from parallel-tempering simulations for molecules of polymerization

N = 16, 28, and 64. Solid and open symbols denote simulations initialized with ordered and

disordered configurations, respectively.

Figure 4 shows the order parameter resulting from pairs of runs for N = 16, 28, and 64.

As it turns out, the runs from ordered and disordered configurations are nearly identical,

indicating that non-equilibrium effects are negligible. However, the transitions are somewhat

broadened due to the finite size of the simulation boxes, which makes it difficult to identify

the ODT, particularly for N = 16.

To locate the transition for N = 16 more accurately, Fig. 5 plots histograms of Ψ for a

series of χb values. Consistent with a first-order transition, there is a peak around Ψ ≈ 3 that

diminishes as χb increases, while a distinct peak near Ψ ≈ 20 emerges. Visual inspection of

configurations from the two peaks reveal disordered and lamellar configurations, respectively.

The equilibrium ODT corresponds to the point where the two peaks are of comparable size,

which in this case is (χbN)ODT ≈ 20.4. Similar histograms for N = 28 and 64 predict

(χbN)ODT ≈ 19.3 and 18.5, respectively. These values do, indeed, correspond well with the

sharp rises in 〈Ψ〉 observed in Fig. 4.

Figure 6 plots the above ODTs in terms of the effective χN and N̄ = 64N , and then

compares them with the universal curve from Eq. (3). The main source of inaccuracy in our

estimates of (χN)ODT is undoubtedly from finite-size effects, which we cannot judge without

performing simulations in larger simulation boxes. Nevertheless, the inaccuracy is probably
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FIG. 5: Histograms of Ψ generated at different values of χb for diblock copolymers of polymerization

N = 16.

FIG. 6: Estimates of the ODT plotted in terms of the effective χ and the invariant polymerization

index, N̄ . The solid curve denotes the universal prediction in Eq. (3),13 and the dashed curve is

the Fredrickson-Helfand prediction.5

at least as large as the symbols in Fig. 6, and thus our ODTs agree well with Eq. (3).
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V. DISCUSSION

The UV divergence has been circumvented by treating the grid spacing, ∆, as a parameter

in a discrete version of the GCM, and then mapping that model back onto the standard GCM

using the Morse calibration. Because of the discrete grid, simulation results will depend

somewhat on the numerical algorithm used to solve the diffusion equation, and therefore

the algorithm is considered as part of the model. In our case, Eq. (6) is solved using the

pseudo-spectral algorithm supplemented by Richard extrapolation,31,32 with a contour step

of ∆t = 1. Furthermore, the Simpson quadrature used to evaluate the integral in Eq. (7) is

also regarded as part of the model.

In particle-based simulations, the segment length, a, requires calibration as well. This

is generally done by evaluating R0/N
1/2 or Rg/(6N)1/2 for neat homopolymer melts of

polymerization N , and then extrapolating to the N → ∞ limit.9 The fact that MC-FTS

reduce to mean-field theory for χb = 0 implies that the a in Eq. (6) of the MC-FTS is, in

fact, already the correct segment length. Hence, we conveniently avoid the need to calibrate

the segment length.

Our particular calibration was performed for a grid spacing of ∆ = a and a segment

density of ρ0 = 8/a3, which gave z∞ = 0.7048, c1 = 0.916, and c2 = 0.952 for the coefficients

in Eq. (2). Naturally, a different choice of ∆/a and a3ρ0 would have resulted in different

coefficients. In the case of z∞, the dependence on these quantities is given by

z∞ = 1− p(∆/a)

a3ρ0
, (12)

where the function

p(δ) =
2

δ3

∫ ∞
0

q0(0, t)dt (13)

is evaluated by solving the diffusion equation for q0(r, t) with a grid spacing of ∆ = δa, which

in fact can be done analytically as shown in the Appendix. As before, the integration is per-

formed using the Simpson quadrature with a step size of ∆t = 1/2. The resulting function,

p(δ), is plotted in Fig. 7. Likewise, the other coefficients, c1 and c2, will depend on the same

two quantities, but the determination of those dependencies would require computationally

expensive simulations of S(k). Therefore, we leave this for future consideration.

As shown in the Appendix and illustrated by the dashed line in Fig. 7, p(δ) → 6α/πδ

as δ → ∞, which implies that the linear approximation χ ≈ z∞χb is equivalent to the
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FIG. 7: The function controlling the ∆-dependence of z∞ in Eq. (12). The dashed line denotes the

asymptotic limit derived in the Appendix, which coincides with the renormalization in Eq. (1).

renormalization in Eq. (1), provided the FTS is performed on grids of ∆ >∼ a. In other words,

the Morse calibration reduces to Eq. (1) for small χb, which implies that the two approaches

for dealing with the UV divergence become equivalent at large N̄ . Similarly, the alternative

renormalization proposed by Vorselaars and Matsen28 is equivalent to χ = z(N)χb, where

z(N) = 1− 1

∆3ρ0N

∫ N

0

∫ N

0

q0(0, |t− t′|)dt′dt (14)

is the fraction of intermolecular contacts among linear homopolymers of finite N . This is

the same effective χ proposed by Müller and Binder,8 and thus it has the same undesirable

dependence on molecular weight and polymeric architecture.

The reason for the deviation between χ ≈ z∞χb and Eq. (1) at large δ, as implied by Fig.

7, is simple. If we neglect the Richardson extrapolation, the operator-splitting used by the

pseudo-spectral algorithm42 treats the polymers as a series of point-like beads connected by

harmonic springs of unperturbed length a. Each of the beads experiences the field values

corresponding to the spatial cell that they occupy. When a � ∆, bonded beads are able

to locate in distant cells thereby jumping past the intermediate cells, which violates the

behavior of a continuous chain. On the other hand, a choice of a � ∆ forces the polymer

to have multiple beads in each of the cells that it visits, thus sampling the fields more than

necessary. According to Fig. 7, our choice of ∆ = a is somewhat conservative but not
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excessively.

We intentionally chose a3ρ0 = 8 so that the polymerizations in our MC-FTS (i.e., N = 16

to 64) would correspond to experimentally relevant values of the invariant polymerization

index (i.e, N̄ ≈ 1000 to 4000). Given this choice, it would be impossible to consider sig-

nificantly smaller values of N̄ , because the polymeric behavior would be lost if the number

of segments, N , was too small. Although we could, in principle, simulate arbitrarily large

N̄ by increasing N , this would be computationally wasteful. The best way to access other

intervals of N̄ is to recalibrate χ for different values of a3ρ0.

The fixed grid spacing, ∆, generally prevents the lamellar phase from acquiring its ideal

period. Although past studies28,39,40 have shown that this has a relatively small effect on

the predicted ODT, the period could perhaps be equilibrated by including the ‘box’ move

from Ref. 28. This MC move involves a volume-conserving distortion of the simulation box,

whereby the grid spacings in the x, y and z directions are changed to ∆x = λ∆, ∆y = λ−1/2∆

and ∆z = λ−1/2∆, respectively, while holding the number of grid points constant. Provided

λ remains close to one, the renormalization in Eq. (1) is relatively unaffected. This will

also be true of z∞, given its equivalence to Eq. (1). If the same is true of S(k), then the

box move could be included without disrupting the Morse calibration. Nevertheless, this

assumption needs to be tested before including the move.

Ideally, we would have simulated larger system sizes in order to assess the finite-size effects

on the ODT. However, when we attempted simulations for three lamellar periods, the parallel

tempering runs produced large metastability intervals preventing an accurate determination

of the ODT. We also tried to locate the ODT using thermodynamic integration,43 but this

too resulted in large uncertainties due to statistical inaccuracies. The underlying problem

is that the amplitudes of our MC moves decrease when applied to larger simulation boxes.

This could very well be remedied by devising better MC moves. Another option is to

perform standard Langevin simulations (L-FTS), with the same saddle-point approximation

for W+(r).33,34 We are currently exploring these possibilities, now that the issue of the UV

divergence has been dealt with.

Naturally, the saddle-point approximation for W+(r) will result in some degree of inac-

curacy. Although past studies34,35 have shown the approximation to be accurate, this will

become less so as N̄ is reduced. The clearest evidence for this is the inability of MC-FTS

to capture the departure of S(k∗) from the RPA prediction at small χN , as seen in Fig. 3.
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Nevertheless, this issue remains relatively minor for the level of fluctuations considered in

this study.

CL-FTS avoid the saddle-point approximation, but they have their own challenges. In

addition to the UV divergence, CL-FTS of the standard GCM experience an instability

that prevents simulations at realistic values of N̄ .25 However, the instability can be tamed

by introducing compressibility. Delaney and Fredrickson38 go further and smear all their

interactions, so as to also remove the UV divergence. Naturally, a calibration is then required

in order to map the resulting model back onto the standard (or canonical) GCM. In lieu

of a methodology for the Morse calibration, they resorted to an ad hoc calibration of χ to

match their ODT to Eq. (3).

The application of the Morse calibration to CL-FTS would be complicated by the fact

that the athermal limit does not reduce to mean-field theory. Consequently, the evaluation of

z∞ would require simulations. Furthermore, the segment length would need to be calibrated,

much in the same way it requires renormalization in ROL calculations.11 Perhaps if N̄ is

not too small, it might be sufficient to use Eq. (8) for z∞ and to ignore changes from the

bare segment length. It would then just be a matter of repeating the fit in Fig. 3, using the

S(k∗) obtained from CL-FTS. It is not clear, however, whether CL-FTS would be able to,

for example, capture the deviations of S(k∗) from the RPA in Fig. 3. If too much smearing

of the interactions is required, then the CL-FTS might not exhibit the universal behavior

that we are ultimately interested in, until N̄ is beyond the experimental regime.

VI. SUMMARY

Field-theoretic simulations (FTS) for the standard Gaussian-chain model (GCM) have

been extended to experimentally relevant molecular weights. This was achieved using a new

strategy for the UV divergence. Rather than trying to remove the divergence by renormal-

izing the interaction parameter, χ, according to Eq. (1), we simply fix the grid spacing, ∆,

and the segment density, ρ0, relative to the segment length, a. Due to the finite grid spacing,

simulation results are sensitive to the choice of numerical methods and so they are treated as

part of the model. In our case, this includes the pseudo-spectral algorithm with Richardson

extrapolation used to solve the diffusion equation in Eq. (6) and the Simpson quadrature

used to evaluate the integral in Eq. (7). Both algorithms use a step-size of ∆t = 1, which
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equates N with the total number of steps along the polymer contour. The Morse calibration

is then used to map our discrete version of the GCM back onto the continuous one.

The calibration relates the effective χ for the standard GCM to the bare χb used in the

FTS by the functional form in Eq. (2), which involves three coefficients. The first coefficient,

z∞, represents the fraction of intermolecular contacts among infinitely long polymers in an

athermal melt (i.e., χb = 0) and is obtained by solving the diffusion equation for zero

field. The remaining two coefficients, c1 and c2, are determined by fitting the peak of the

structure function, S(k∗), for disordered melts of symmetric diblock copolymer to predictions

from renormalized one-loop (ROL) theory.11,12 Our particular calibration was performed

for ∆/a = 1, which provides a good balance between the spatial and contour steps of

the diffusion equation, and a3ρ0 = 8, which is ideal for simulating diblock copolymers of

103 <∼ N̄ <∼ 104. The resulting coefficients of the calibration are z∞ = 0.7048, c1 = 0.916,

and c2 = 0.952.

To facilitate standard Monte Carlo simulations (MC-FTS), the incompressibility con-

dition was only satisfied in the mean-field approximation. This has the added benefit of

simplifying the calculation of z∞ and foregoes the need to calibrate the segment length.

However, it did result in some inaccuracy. In particular, it prevented us from matching

S(k∗) to ROL theory at small χN (see Fig. 3). For the range of N̄ considered in this study,

the resulting inaccuracy appears to be small.

Indeed, Fig. 6 shows that the calibration brings the order-disorder transition (ODT)

from MC-FTS into agreement with the universal prediction, Eq. (3), from particle-based

simulations.13 Although the calibration was performed for symmetric diblock copolymers,

the resulting χ is applicable to all architectures. Thus, MC-FTS can now be readily applied

to any AB-type block copolymer system. For those researchers already implementing SCFT

using the pseudo-spectral algorithm, the switch to MC-FTS will be particularly straightfor-

ward.
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Appendix

Here, we derive the analytical approximation for, p(δ), at large δ, plotted in Fig. 7 with a

dashed line. In the absence of fields, the pseudo-spectral algorithm becomes a true spectral

algorithm, and therefore it follows that

q0(r, t) =
1

m3

∑
k

eik·r−a
2k2t/6 . (15)

Evaluating this at the origin, we obtain

q0(0, t) =

[
1

m

∑
kx

e−a
2k2xt/6

]3
, (16)

where we have used the fact that the sums over ky and kz are equivalent to the one over kx.

The remaining sum is over the wavenumbers kx = 2πn/m∆, where n takes on integer values

from −m/2 to m/2. In the thermodynamic limit, m approaches infinity, which allows the

sum to be converted to an integral giving

q0(0, t) =

[
1

2ξ

∫ ξ

−ξ
e−u

2

du

]3
=

[√
π

2ξ
erf(ξ)

]3
, (17)

where the integration variable is u = akx
√
t/6 and

ξ =
π

δ

√
t

6
. (18)

As explained previously, the integral of q0(0, t) in Eq. (13) for p(δ) should, in principle,

be performed using the Simpson quadrature with ∆t = 1/2. However, if δ is large, then

q0(0, t) becomes a slowly varying function over the entire range of t, and thus the Simpson

method is well approximated by the analytical calculation of the integral. Transforming the

integration variable from t to ξ then leads immediately to

p(δ) ≈ 3

δ
√
π

∫ ∞
0

erf3(ξ)

ξ2
dξ =

2.332654

δ
. (19)

Equating this to 6α/πδ gives α = 1.221375, which is the same value calculated previously

in Ref. 27, albeit with a couple more significant digits.
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