
 
 

Design and Implementation of Google Cloud Framework for Monitoring 

Water Distribution Networks 
 

by 

Bhavana Hodasalu Sadananda 

 

 

A thesis  

presented to the University of Waterloo 

 in fulfillment of the  

thesis requirement for the degree of  

Master of Applied Science 

 in 

Mechanical and Mechatronics Engineering 

 

 

 

 

Waterloo, Ontario, Canada, 2019 

  

© Bhavana Hodasalu Sadananda 2019 

  



 

ii 
 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

 

Abstract 

 

With urbanization and growing human population, water demand is constantly on the rise. Due to 

limited water resources, providing access to fresh potable water to the rising needs is challenging. 

Water distribution systems are the main arteries that supply fresh water to all the house-holds, offices 

and industries. Various factors such as excessive water pressure, aging or environmental 

disturbances, e.g., from road traffic, can all contribute to damage of water distribution pipelines and 

can result in leaks in water distribution networks (WDN). This could in turn result in financial loss 

and could pose additional challenges in providing potable water to the entire community, sometimes 

even leading to contaminant intrusion. Traditional leak detection methods such as visual inspections 

can detect leaks; however, this method is reactive in nature and can result in potentially losing large 

amounts of water before intervention strategies can be employed. On the other hand, hardware-based 

inspection techniques can accurately detect leaks, but are labor intensive, time consuming, expensive 

and effective only for short distances. Some existing software techniques are less expensive; 

however, their effectiveness depends on the accuracy of data collected and operating conditions. 

Modern existing leak detection techniques based on Internet of Things (IoT)—consisting of data 

collection sensor sub system, internet connectivity and a decision making sub system—alleviate 

many issues associated with hardware and software methods, however they are considered to scale 

poorly and face security issues, fault tolerance issues, interoperability issues, insufficient storage and 

processing abilities to store and process large quantities of real time data captured by the sensor sub 

systems. As a potential solution to these issues, this thesis deals with the application of a cloud-based 
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leak detection system within the overarching concept of IoT. A detailed design and implementation 

of Google Cloud Platform (GCP) which can provide scalable, secure data processing system to 

analyze both real-time and batch data collected from IoT devices monitoring a WDN is presented. 

To circumvent the issue of access to a live WDN, the proposed system uses emulators, python Hyper 

Text Transport Protocol (HTTP) client running on a computer and a python HTTP client running on 

an IoT device (Raspberry Pi 3) to simulate live streams of acoustic pressure data from hydrophone 

sensors. Since the data itself was collected from a live WDN, the decision-making subsystem mimics 

results expected from live WDN data. The data ingestion layer on GCP incorporates two types of 

authentication: OAuth2.0 authentication and Application Program Interface (API) key authentication 

along with other GCP components using service account features to ensure end-to-end secure data 

processing. Decision support sub-system includes simple, yet powerful algorithm, namely the one 

class support vector machine (OCSVM) with non-linear radial basis function (RBF) kernel. It is 

shown in this thesis that GCP provides a scalable and fault tolerant infrastructure at every stage of 

data life cycle such as data ingestion, storage, processing and results visualization. The 

implementation in this thesis demonstrates the applicability of the leak detection IoT framework and 

the concept of a cloud based IoT solution for leak detection in WDN, which is the first demonstration 

of its kind to the author’s knowledge. 
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Chapter 1  1 Introduction 

1.1 Background 

 

Water is an integral part of human life. Only 3% of water on earth is fresh water and is not readily 

available for human use as most of it is trapped in glaciers and polar ice caps or under-ground and 

only a small portion of it is available above the ground or in the air (Wu, Z.Y. et al., 2011). 

Consequently, water needs to be accessed from underground or surface water sources and pumped 

to treatment plants, treated, stored and distributed based on demand. Due to rapid increase in human 

population and urbanization, water demand has increased tremendously, placing a lot of pressure on 

reducing or eliminating water wastage. Water distribution networks (WDNs) are the main arteries 

used to transport treated water from water sources to treatment plants, and from treatment plants to 

homes, industries and offices.  In most WDNs, a large amount of water is lost in transit from 

treatment plant to the consumers; the amount of water lost is estimated to be 20-30 percent between 

treatment and delivery and in older WDNs this may be as much as 50 percent (Hunaidi, O. et al., 

2000).  

 

Water loss can be due to pipe flushing, metering errors, leakage or theft. Leakage is one of the major 

causes of water loss (Hunaidi, O. et al., 2000). Leakage can occur in different parts of the distribution 

system such as service connection pipes, joints, valves, transmission pipes, distribution pipes and 

fire hydrants. Several factors including wear and tear due to aging of pipeline infrastructure, 

excessive loads and vibration from road traffic, natural disasters, vandalism, excessive water 
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pressure, material defects, corrosion, faulty installation and ground movement due to extreme 

weather condition can all contribute to leaks in WDNs. Leaks not only result in wastage and non-

revenue water but could also pose health risks as proximal sewage water could intrude into water 

mains under vacuum conditions resulting from large main breaks. Small leaks could lead to damage 

in the pipe network, e.g. erosion of pipe bedding, leading to bursts, pipe breaks and eventually 

damage to the foundations of roads and buildings (e.g., Figure 1.1). All of these negative 

consequences are forcing municipalities and infrastructure owners to reconsider conventional leak 

detection methods, which are mainly visual in nature, and implement robust technology-driven 

leakage monitoring and control technologies. 

 

Figure 1.1 Water burst resulting in damage to a road [1] 
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1.2 Long-term monitoring for leaks using an IoT framework 

Traditional leak detection methods are manual, visual, reactive, and allow failures in pipes to occur 

before intervention, which is not an optimal maintenance strategy. Furthermore, manual inspection 

of the entire WDN for signs of leak(s) is labour intensive. As well, many leaks do not surface at all, 

which results in a low detection rate. Hence, there is a pressing need for a monitoring system which 

can continuously monitor WDNs to detect leaks as soon as they occur so that intervention strategies 

can be put in place. Leaks can be detected by monitoring various parameters such as water pressure, 

acoustic pressure, soil properties of surrounding soil along pipelines, temperature of surrounding soil 

and amount of water that flows across a given point along the pipeline. In most cases, sensors need 

to be deployed within the pipeline which provide a direct means to monitor a WDN system in order 

to gain insights regarding their condition. Traditionally, deploying dense sensor networks have been 

associated with large sensor hardware costs and software complexity. However, with the recent 

advances in micromachinery and semiconductors, sensors, microcontrollers and single board 

computers have matured in terms of power consumption, storage capacity and processing ability, 

while becoming cheaper at the same time. This has opened up the possibility to deploy relatively 

inexpensive dense sensor networks within reach of many cities and municipalities. Such dense 

networks form the basis for what is commonly known as Internet of Things (IoT).  

Although modern microcontrollers/single board computers have advanced significantly in terms of 

their capabilities, the high data acquisition rates from sensors (pressure sensors and hydrophones) 

deployed for leak detection introduce several challenges in terms of power management, storage, 

processing and transmission of large amounts of data. Some of the existing leak detection techniques 

use data in its raw form (Whittle, A. J. et al., 2013). Processing data in its raw form is not efficient 
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and scales poorly. Some leak detection techniques (Karray, F. et al., 2016) run leak detection 

algorithm on sensor/edge nodes, however running complex algorithms on edge devices is not power 

efficient. To overcome this, lossy compression techniques (Feng, N. 2019) such as extracting features 

from raw data, (while retaining key leak related information), can be employed at the sensor nodes 

to transmit only the results to remote servers with large storage and processing capacities, while 

discarding raw data. This is in general the preferred alternative to transmitting all the raw data and 

storing and processing at a remote centralized location. 

As cities grow, WDNs need to expand and so do sensor networks. Traditional sensor networks often 

have one or two central processing computer systems which process the data collected from all the 

nodes (Adedeji, K. et al., 2016). Such an architecture is not scalable and does not possess sufficient 

redundancy. To overcome these issues, distributed systems are needed which provide good fault 

tolerance with abundant processing and storage capabilities. More recently, commercial vendors, 

called cloud service providers, have started to provision and maintain multiple computers and 

software resources to provide data processing and storage services, which are subscription based. 

Such cloud services also provide ready access to user friendly data analyzing tools such as signal 

processing or machine learning tools, without the need to build such applications from scratch. Some 

studies have investigated cloud based leak detection solutions (Arangoa, I. M. et al, 2014), however, 

they lack the description of key design and implementation aspects and hence outside the reach of 

current academic community interested in this application. 
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1.3 Objective 

The overarching objective of this thesis is to demonstrate the design and implementation of an auto-

scalable cloud based system that can achieve reliable leak detection in WDNs in both real time and 

in batch. This thesis aims to demonstrate this technology using actual acoustic data captured from a 

live WDN in Southern Ontario and state-of-the-art classification tools available in a leading cloud 

services platform. 

1.4 Organization 
 

This thesis is organized as follows. 

Chapter 2 reviews existing leak detection methods, their advantages, drawbacks, and provides basic 

information about the system proposed in this thesis which can overcome some of the main 

drawbacks identified in existing solutions. 

Chapter 3 provides the details of the software architecture which is used in this thesis. It also 

introduces the basic concepts of the cloud platform which is used to develop the leak detection 

framework for WDNs.  

Chapter 4 describes the details of data collection, feature extraction, data analysis and results of a 

powerful classification algorithm which is employed in this thesis to detect leaks. The 

implementation details of emulators and cloud platform components used in the architecture are 

provided in Appendix A. 

Chapter 5 concludes the thesis by summarizing major findings in this research and proposes ideas 

for future research. 
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Chapter 2  2 Background and Literature Review 
 

In this chapter, traditional leak detection techniques in the literature are reviewed and their 

advantages and limitations are discussed within the context of the overarching objective of this thesis. 

State of the art tools based on IoT, their advantages, disadvantages, existing cloud-based solutions 

and their limitations are also discussed. This chapter will then set the stage for the motivation and 

the stated contributions of this thesis. 

 

2.1 Traditional leak detection methods and limitations 

Pipelines are the most economical way of transporting water from one place to another. Older 

distribution pipelines are typically made of asbestos cement or cast-iron material. More recently, 

they have been made of poly vinyl chloride (PVC), polyethylene or ductile iron material. Regardless 

of the material used, these pipelines are designed and constructed to last for several decades with 

many well past their intended service life. Additionally, many factors such as material defects, 

corrosion, excessive water pressure, ground movement due to freezing or drought, excessive 

vibration caused by traffic loads can all result in pre-mature failure of these pipes. Though pipelines 

made of ductile material (such as copper pipes) resist cracking, pinhole-sized leaks (shown in Figure 

2.1) can occur in them which grow slowly over time. In pipes made of less ductile materials such as 

cast iron and asbestos cement, crack-like (cracks are shown in Figure 2.2) leaks occur in episodes 

with each episode separated by days, months or even years. Both pinhole leaks and cracking leaks 

over a period of time may progress to complete failure of the pipeline structure and could eventually 

lead to bursts. In order to detect leaks before they progress into larger bursts, numerous techniques 

have been developed and discussed in the literature [cive700, 2018]. A formal classification method 
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is not available; hence they are discussed from the standpoint of the core technology used in these 

methods, which is summarized next. 

 

Figure 2.1 Example of a pinhole leak [2]. 

 

 

Figure 2.2 Example of a cracks in the pipes which can result in large leaks [3]. 
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2.1.1 Reactive and proactive methods 

At a very basic level of classification, leak detection techniques can be reactive or proactive. As the 

name implies, in the reactive approach leaks are detected either through eye-witness notifications or 

customer complaints. This is not a formal leak management strategy and can easily lead to water loss 

of up to 40% (Puust, R. et al., 2010, Ramos, H. et al., 2001) and it presents inevitable problems for 

customers. Proactive approach is meant to be preventive in nature and it involves frequent monitoring 

of pipelines for anomalies, which are indicative of leaks. Detecting anomalies and repairing small 

leaks early prevent progressive catastrophic damage. The literature review in this chapter focuses on 

proactive techniques and are grouped according to the core technology being utilized for detecting 

leaks and anomalies in each case. 

 

2.1.2 Hardware and software methods 

Leak detection methods can be hardware based or software based. Hardware based methods employ 

appropriate equipment such as listening rods, leak correlators and leak noise loggers to detect leaks. 

Some sub categories of hardware based techniques are acoustic leak detection (Kim, M. et al., 2009), 

fibre optic sensors (Tapanes, E., 2001), pigging (Furness, RA. et al., 2009), vapor or liquid sensing 

tubes (Geiger, G. et al., 2006), liquid sensing cables (Geiger, G. et al., 2006) and soil monitoring 

(Lowry, W.E. et al., 2000). Hardware based techniques have shown to exhibit good sensitivity to 

leaks and are quite accurate in finding leak locations. However, they are expensive and their 

installation can be very complex and time consuming. Leak detection using such techniques is 

limited to relatively short distances. Hence, they are used more for inspections as required (when a 

leak is known to have occurred or discovered during leak surveys) rather than for long-term 
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monitoring when the presence or absence of leaks are unknown to begin with. Software based 

techniques involve monitoring internal pipeline parameters such as pressure, flow and temperature 

with or without the aid of sensors. Various sub-categories of software based techniques to detect 

leaks are: digital signal processing (US Department of Transportation, 2007), real time transient 

modelling (Hauge, E. et al., 2007, Carbó-Bech, A. et al., 2017), statistical approaches (Zhang, J. et 

al., 1998), negative pressure waves (Mpesha, W. et al., 2001), mass-volume balancing (Liu, J. et al., 

2008), to name a few. Based on a multitude of implementations used in the literature using the above 

subcategories of software based techniques, it is safe to conclude that software techniques are less 

expensive compared to their hardware counterparts. However, their effectiveness depends on the 

accuracy of collected data, operating conditions and system characteristics (Golmohamadi, M., 2015, 

Gamboa-Medina, M.M. et al., 2014). Despite an enormous activity in this area, there has not been a 

consensus regarding the best method or class of methods to be used for leak monitoring or detection. 

 

2.1.3 Visual, hydraulic and acoustic methods 

Yet another way to categorize leak detection techniques is, for example, based on whether they rely 

on visual, hydraulic or acoustic characterization of the WDNs. 

Visual Inspection 

Some of the visual inspection methods available are laser scans, satellite based methods, ground 

penetrating radar (Eyuboglu, S. et al., 2003, Ayala–Cabrera, A. et al. 2013, Abouhamad, M. et al., 

2016) and infrared thermal camera based methods. The effectiveness of visual inspection methods is 

relatively less established compared to hydraulic and acoustic methods and hence is not discussed in 
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detail here. Infrared thermal camera-based inspection can detect and locate leaks in pipelines buried 

as deep as 30 meters below ground surface (Weil, G.J. 1993, Jackson, C.N., et al. 1998). Modern 

satellite-based methods use images taken from satellites to perform complex analysis for possible 

signs of leaks. Such techniques are convenient, cost and time effective. However, the limitation of 

this method is spatial resolution; high image resolution is necessary to identify the leaks as leaks 

generally occur in small regions along the pipe (Hadjimitsis, D.G. et al., 2010; A. Agapiou et al., 

2014). Ground penetrating radars locate leaks in water pipes by detecting underground voids created 

around the pipes near the leak locations by leaking water. These voids are easily formed in sandy 

soils whereas in the soft clay soil such voids are not easily formed and is difficult to detect using 

radar (Hunaidi, O. et al., 2000). In laser technology, fibre-optic cables are installed along the length 

of the pipeline. When a leak occurs, water comes in contact with the fibre-optic cable changing its 

temperature and thus changing the optical response of the laser beam pulse passing through the cable, 

indicating a leak (Geiger, G. et al., 2003, Großwig, S. et al., 2001). This technique works only if the 

water is at a temperature different from that of fibre-optic cable, not otherwise.  

Hydraulic approach 

In the hydraulic approach, pressure, flow, and transient pressure are used to detect leaks as leak 

information is known to manifest in these parameters which can be measured relatively easily within 

the WDN, either locally at the pipe level or globally at the network level. Subcategories of this type 

are district metered areas (DMAs), pressure and flow based burst detection, and transient pressure 

based techniques.  

(a) DMAs: DMAs are discrete areas of WDN which are created by closing boundary valves 

which can be opened if more water needs to supplied to the area and hence remain flexible for 
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changing demands. DMAs can also be created by permanently disconnecting two areas within 

the WDN. In DMAs, water flowing in and out of DMAs are monitored by using meters 

(Lambert, A., 1994, MacDonald, G. 2005). Due to the incompressible nature of water, flow 

meter reading at the DMA level can indicate loss of water and is effective in detecting the rate 

of rise of leakage. Limitation of this method is that there can be flow meter error which is usually 

around +/-5%, so only those flows larger than this error can be detected using this technology. 

(b) Burst detection: A sudden, high volume outflow of water from a single point in the network 

is called a burst which can be detected directly through pressure and flow monitoring, both of 

which are hydraulic parameters. Such events however, are usually reported by the public. Zan, 

T. et al., 2014 demonstrated that large leaks are associated with pressure transients and can be 

detected using pressure sensors. Wu, Y. et al., 2017, Mounce, S.R. et al., 2011 and Kim, Y. et 

al., 2016 discussed techniques to detect bursts using a data driven framework. Since bursts result 

in heavy loss of water, its immediate detection and shut off of water can be highly valuable 

(Lambert, A., 1994).  

(c) Transient based leak detection: In transient based leak detection approach, small but sudden 

changes in the pipeline pressure caused due to changes in the pipe wall such as a crack or a hole 

is captured by monitoring pressure (Pudar, R.S. et al., 1992, Kapelan, Z.S. et al., 2003, Kapelan, 

Z.S. et al., 2002, Colombo, A.F. et al., 2009). There are pressure (hydraulic) transients and 

acoustic transients, both of which could be caused by cracking events, but tend to be small and 

difficult to detect. So, sophisticated signal processing and artificial intelligence (AI) techniques 

may be needed to detect them (Vitkovsky, J., et al., 2000). Since small leaks cause negligible 
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transients, detection of pinhole leaks is difficult using conventional transient detection 

techniques. 

(d)  Induced transient reflection: Unlike passive transients monitored due to sudden changes 

in the pipe conditions, induced transient reflection requires creation of pressure transient, e.g., 

by a sudden closure of a valve (or, using a solenoid valve). This is an active method, where 

reflections of the active transient waves captured by sensors are used to identify the presence of 

a leak (Wang, X.J. et al., 2002, Karney, B. et al., 2009, Pothof, I. et al., 2012, Feng, N. 2019). 

Any change in the physical structure of the pipe such as a crack or a hole causes wave reflection, 

thus altering system’s flow and pressure response. The transient signal from a leaking pipeline 

exhibits a distinct singularity not present in intact pipes. The transient signal in the leaking 

system decays (Nixon, W. et al., 2006) more rapidly compared to that in the intact system. The 

properties of reflected signal and the measure of decay of transient signal at a measuring location 

are used to identify the presence of leak in the pipelines (Colombo, A.F. et al., 2009). Transients 

can introduce disturbances into the pipelines and cause the pipelines to rupture. So, measures 

need to be taken to ensure that the transients generated are safe transient and do not by 

themselves result in compromising the pipe structure integrity. Some devices that provide 

protection from water surges are surge tank (open), surge vessel (air chamber, closed surge tank, 

bladder tank and hybrid tank), feed tank, surge anticipation valve, pressure relief valve, air 

release/vacuum valve and pump bypass line. The general principle behind the functioning of 

such devices is to store water or otherwise delay the change in flow rate or to discharge water 

from the pipeline (Boulos, P. F. et al., 2005). Though induced transient reflection method helps 

to identify leaks, it is not very popular as it requires active generation of transients. 
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Acoustic approaches 

Acoustic approaches are by far the most prevalent leak detection methods in use today. The 

subcategories of this method are: inline acoustics, ground sounding, sounding at fittings and 

correlation methods. 

(a) Inline acoustics: In the inline acoustic method, acoustic sensors such as hydrophones or 

encased accelerometers are inserted into pipes.  In Chang, Y.C. et al., 2009 (PipeProbe project), 

the authors proposed a tiny capsule of a waterproof mobile sensor system consisting of EcoMote 

with a built-in accelerometer and a pressure sensor (MS5541C from Intersema). This capsule is 

dropped into the pipeline at one end, which then traverses the length of the pipe and stores 

pressure measurements on an on-board flash memory, which is then subsequently retrieved 

manually and analysed in the laboratory. This method is intrusive and needs a lot of supervision. 

SmartBall, a commercially available system (Pure technologies) consists of a range of acoustic 

sensors, accelerometer, magnetometer, ultrasonic transmitter and temperature sensor. It travels 

along the pipe when the water flows, collects acoustic data, detects and locates the leak. 

Similarly, Seto, L. et al., 2013 proposed the idea of a small ball embedded with an acoustic 

sensor, temperature, and a pressure sensor inserted into a pipe and the data is collected and 

analyzed for any anomalies inside the pipe. While this technique is promising for inspections 

where a leak is known to occur, it can be quite intrusive and expensive to deploy on a large scale 

when the approximate leak location is unknown.  

(b)  Sounding at fittings: Depending on the size and type of the pipe, leak sound/vibrations are 

transmitted either through the pipe wall or through the water column over long distances. This 

is especially true for the case of metal pipes and not as much for plastics. Such mechanical 
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vibrations produced by water leaking from pressurized pipes can be detected by the sensors and 

acoustic devices at various convenient-to-access locations in the network. Sounding at fittings 

involves placing sensors at fittings such as service connections, fire hydrants or isolation valves 

and listening for leaks (Hunaidi, O. et al., 2004, Pal et al., 2010). Loggers equipped with remote 

communication capabilities then record and transmit the sound file or features extracted from 

such sound files to monitoring centres for processing. This method is popular as it generally 

utilizes existing access points in the distribution network for monitoring and does not require 

major construction or modification to the existing pipe network. 

(c)  Ground sounding: This method involves placing a ground microphone at the suspected leak 

location. Initially, the presence of leak is identified, by listening to leak sounds from fire 

hydrants/valves. It is then localized, by listening directly above the pipe, on the ground surface, 

at close intervals of about 1 meter. This process is time consuming and useful only to localize 

the leak, if the leak is already detected (Hunaidi, O. et al., 2004). 

(d)  Leak correlators: In the correlation method, acoustic sensors are placed at fittings separated 

by a fixed and known distance. Time synchronized signals (from two hydrophones or 

accelerometers) are transmitted from the sensors to a central device. The signals are then cross-

correlated and the leak is localized using the known acoustic speed in a pipe and the lag 

corresponding to the peak in the cross-correlation.  Correlation methods have been found to 

perform well and are more accurate compared to listening devices (Choi, J. et al., 2017, Zhang, 

L. et al., 2013, Hunaidi, O. et al., 2004, M. Pal et al., 2010). Compared to accelerometers, 

hydrophones have been shown to be less susceptible to environmental noise and better tuned to 

low frequency sounds compared to accelerometers. However, in the correlation-based methods, 
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isolating leak induced noise, which tends to be small compared to other environmental noise 

factors such as pumps, still remains a major challenge. 

 

2.1.4 Non-acoustic methods 

Other non acoustic leak detection methods are also available, which do not fit into the general 

classifications described previously. They are: tracer gas (Lowry, W.E. et al., 2000), electromagnetic 

methods (Liu, Z. et al., 2013) to name a few. Their use is limited and their effectiveness is relatively 

less established compared to acoustic methods and hence are not discussed in detail here.  

 

2.1.5 SCADA approaches  

Traditional SCADA (supervisory control and data acquisition) systems have also been considered to 

mine for leak related data at a system level. In this schema, permanent flow meters from various 

points in the WDN telemetrically send data to the SCADA system for analysis, e.g., flow rate data, 

which can then be analysed for anomalies by mining this SCADA information (Mounce, S.R. et al., 

2007). Although such an approach can provide near real time monitoring information, most SCADA 

systems in use today generally collect information from pumping stations, water tanks or reservoirs, 

which do not allow for local monitoring and can only be used for large bursts and are associated with 

large initial deployment cost (Cheung, P. et al., 2014). Interoperability is another issue within this 

method; devices manufactured from different vendors, or different versions of devices from same 

vendor often present challenges in being able to work together. Scalability is another issue; due to 

its traditional architecture, SCADA performance degrades with an increase in the number of users. 

Furthermore, SCADA systems are designed mainly to run the day-to-day operations and so it can 
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ingest and store only a finite amount of data. SCADA systems tie together decentralized subsystems 

which makes security a major threat (Gao, J. et al., 2013).  

With the introduction of IoT technology, many of the issues described previously are addressed by 

augmenting SCADA systems with IoT. SCADA can still act as one of the data sources (Romano, M. 

et al., 2013), while IoT focuses on analyzing the granular machine data. Details about IoT technology 

and other IoT based leak detection systems present in literature are discussed next. 

 

2.2 State-of-the-art monitoring technologies 

With the exception of very few, a majority of the technologies discussed previously can be regarded 

as inspection methods and cannot be easily scaled to monitor large WDNs. With the advent of IoT 

and the back-end cloud technology, recent trends have demonstrated the use of such tools for leak 

detection in long-term monitoring situations. This section discusses some modern leak monitoring 

systems in WDNs, their advantages and their limitations and then concludes with a summary of 

major gaps and a road map to address key limitations in current technology.  

 

2.2.1 IoT 

IoT, which is a hardware and software based pro-active technique, has been explored as a framework 

in modern leak detection systems to a limited extent. In simple terms, IoT can be viewed as a network 

of physical devices or “things” embedded with sensors, software and connectivity which enable those 

things to connect, collect, and exchange data (Anzelmo, E. et al., 2011, Barnaghi, P. et al., 2012). 

IoT extends internet connectivity beyond standard devices such as laptops, desktops, smartphones 
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and tablets to everyday objects which were traditionally considered “dumb”. IoT enables things or 

systems to be observed and understood using measured data. As these things are embedded with 

sensors, they can collect data and by analyzing such data an organization or an individual can make 

informed decisions and benefit from timely decisions or interventions. This concept also supports 

the overarching theme of Smart Infrastructure, where IoT devices and decision support systems can 

help manage deteriorating infrastructure such as WDNs. The basic IoT concept is described in Figure 

2.3 and consists of three components: sensor and data acquisition system, network connectivity and 

data processing and decision making layer. WDN when integrated with these three components can 

be envisioned as a smart water distribution system, or an IoT system.  

 

Figure 2.3 Three components comprising the IoT 

 

More details about the three components namely, sensor and data acquisition system, network 

connectivity and data processing and decision making layer are discussed in the following sub-

sections. The discussion is limited to IoT applications involving water pipes and distribution systems 

in order to keep the literature review both pertinent to this thesis and manageable.  
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Sensor nodes 

A network of sensor nodes is at the heart of any IoT based leak detection solution. A sensor node 

typically consists of sensor(s), a microcontroller/microcomputer and a power source. There is no 

accepted standard for the type of sensors to be used in leak detection application and a variety of 

sensors and micro-controllers have been employed for this purpose. For example, Christodoulou, S. 

et al. 2010 used sensor nodes comprising of a Mica 433MHz mote data acquisition system placed in 

a waterproof package and a Decagon Ech2o dielectric sensor for soil volumetric water content (soil 

moisture) measurements. Water flow was measured using KENT V100 meters and Zonescan-800 

leak noise logger was used for leak noise detection. Mohamed, N. et al., 2011 proposed acoustic 

wireless sensor nodes with an acoustic transceiver, a processor, a battery, a memory, and small 

storage at each sensor node. AL-Kadi, T. et al., 2013 used two layers of sensors: a hub layer and an 

in-soil layer sensor. The hub layer was deployed inside the pipeline and consisted of pressure sensors 

and acoustic sensors. The soil layer was deployed outside the pipeline and consisted of sensors that 

could measure soil properties such as moisture and temperature. These measurements were sent to a 

head cluster located at the pump station where the data was processed and sent to a remote 

administration centre. Whittle et al. 2013 used a wireless sensor node with hydrophone and pressure 

sensors, a 72MHz ARM Cortex M3 CPU with 64KB of RAM, a 2GB SD card for storage, a GPS 

with pulse-per-second functionality for time synchronization and a 33Ah 12 V battery. Adedeji, K. 

et al., 2016 employed a pressure sensor, an Arduino microcontroller, a battery and a flash memory 

in the sensor node. Kartakis, S. et al., 2016 used four nodes with an Intel Galileo board and an 

ethernet module, two nodes with an Intel Edison board with WiFi connectivity. Along with these, a 

smart water sensor board consisting of a flow meter, a pressure sensor and a motorized valve were 
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used. Karray, F. et al., 2016, proposed a wireless IoT solution (EARNPIPE), where each sensor node 

consists of an ARM processor, a Kalman filter accelerator, a sensor interface, ADC, memory, a radio 

transceiver and a power management unit. Stoianov, I. et al., 2007 used a sensor node consisting of 

an Intel Mote with ARM7 core, 64kB RAM, 512kB flash and a Bluetooth enabled communication 

connected to a pressure sensor and an ultrasonic sensor. The sensor node in Sadeghioon, A.M. et al., 

2018 consists of a relative pressure sensor, temperature sensor, one attached to the pipeline wall and 

the other connected to soil in close proximity to the pipe. Abdelhafidh, M. et al. 2017 used a TelosB 

sensor node with a flow sensor and a pressure sensor. The above examples show the heterogeneity 

in the sensor selection used in the literature and the fact that there is no consensus on the sensor 

nodes to be used for monitoring WDN. 

Network connectivity 

Sensors in the context of IoT have to work collaboratively (rather, the information obtained from 

them) in order for it to be useful. For example, localization of leaks is only made possible by 

processing multiple time-synchronized data sets. Hence, it is important to study how individual 

sensors have been connected or networked. Sensor networks can be wired or wireless. Mohamed, N. 

et al., 2011 proposed multiple sensor node architectures for underwater pipelines, one of which is a 

wired sensor network. Needless to say, wired connections suffer from reliability issues resulting from 

damage to the wires in the network and installation cost issues. As a result, a vast majority of the IoT 

based leak detection systems are configured as wireless sensor networks (WSN). The following 

examples show that a variety of wireless technologies were used in literature.  

Whittle, A.J. et al., 2013 used a cellular modem with 3G connectivity to transmit data from sensor 

nodes to a remote server. Adedeji, K. et al., 2016 used ZigBee communication module to send data 
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from several Arduino micro-controllers to a central node. Data collected at the central node was then 

transferred to a remote computer using RS232 or LAN interface. Kartakis, S. et al., 2016 used six 

sensor nodes to collect data and four of them communicated data with a central server using an 

ethernet module and two of them communicated data with a central server using WiFi. Karray, F. et 

al., 2016, used a radio transceiver for data communication between sensor nodes and a central server. 

Stoianov, I. et al., 2007 used Bluetooth for communication between the data acquisition system and 

a single board computer, with GPRS for communication between a single board computer and a 

backend server. In Christodoulou, S. et al., 2010, data acquisition boards transmitted data to a 

Stargate gateway which in turn communicated data with a remote computer through GPRS link. 

Sadeghioon, A.M. et al., 2018 used a transmitter to send data from a sensor node to a laptop using 

radio frequency signals, following which a 3G cellular network was used to transmit this data to the 

cloud. Abdelhafidh, M. et al., 2017 used radio signals to send data from a group of sensor nodes 

called a cluster to a central location called the base station through a cluster head. AL-Kadi, T. et al., 

2013 proposed a magnetic induction-based communication between sensor nodes and a cluster head, 

which in turn communicated this data to a remote computer through electromagnetic waves. 

Data processing and decision making layer (DPDML) 

The downstream of measurement and communications in an IoT based leak detection system consists 

of processing and analyzing the collected data, detecting and localizing leaks, all of which constitute 

the data processing and decision making layer (DPDML). The data analysis methods in the DPDML 

can be classified as model-based approaches, signal processing methods, and knowledge based 

approaches. Model based approaches use concepts such as conservation of energy, conservation of 

mass or conservation of momentum to build a model to predict leaks. One such method that is widely 

used in many IoT based leak detection solutions is the Kalman filter. Karray, F. et al., 2016 used a 
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linear predictor Kalman filter to compress data for the identification of leaks. Signal processing based 

leak detection techniques involve signal analysis in time domain or frequency domain. Support 

vector machines, pattern recognition, expert systems are some of the examples that have been used 

based on signal processing techniques. Stoianov, I. et al., 2007 mainly used pattern recognition to 

detect leaks, where pressure data and flow sensor data were used to find large leaks, whereas to find 

small leaks acoustic data was used. A simple Haar wavelet transform was used to detect pressure 

pulses. Leaks were detected based on the wavelets associated with coefficients higher than 

predefined values and a cross-correlation algorithm was used to find leak locations. Romano, M. et 

al., 2013, employed several self-learning AI, statistical and geo-statistical algorithms for data 

analysis. These techniques included wavelets to de-noise pressure/flow signals captured from sensor 

nodes, artificial neural networks (ANNs) for short-term forecasting of the pressure/flow signal 

values, evolutionary algorithms to find the optimal ANN input structure, statistical process control 

techniques to study burst induced pressure/flow variations and geo-statistical techniques to find leak 

locations. Whittle, A.J. et al., 2013 employed wavelet decomposition method and time domain 

statistical analysis to detect transients that are the indicatives of leaks. Adedeji, K. et al., 2016 

employed improved negative pressure wave algorithm to detect leaks. Abdelhafidh, M. et al., 2017 

used real time transient and wave propagation methods to detect leaks, and a genetic algorithm 

optimization technique to find leak locations. Sadeghioon, A. M. et al., 2018 used a seasonal hybrid 

extreme studentized deviate (S-H-ESD) algorithm developed by Twitter to find leaks. Christodoulou, 

S. et al., 2010 used ANNs and fuzzy logic for detecting and localizing leaks. 
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2.2.2 Advantages of an IoT based solution 

One of the key advantages of employing IoT is the ability to scale sensors across large geographical 

areas and interoperability features in protocols such as HTTP, MQTT (Message Queuing Telemetry 

Transport), which is central to platforms being able to communicate across devices from different 

vendors. Most IoT devices in the market today support HTTP, MQTT and other common protocols 

such as WiFi, Bluetooth and ZigBee which have been shown to be scalable. IoT enables remote 

monitoring of the WDN along with near real time data processing capabilities, which is crucial to 

detecting leaks and proactively addressing the issues that could result in saving valuable resources 

and money. 

 

2.2.3 Challenges in existing IoT leak detection solutions 

The main challenges in WSNs is the issue of power management as sensor nodes are typically 

powered using batteries. This problem can be overcome by using low power sensors (Mois, G. et al., 

2016), low power data acquisition boards (Kartakis, S. et al., 2015), light weight operating systems 

(Christodoulou, S. et al., 2010, used Tiny OS), low power network modules (Adedeji, K. et al., 2016 

used ZigBee network module) to send and receive data, sending compressed data (Karray, F. et al. 

2016) or features extracted from raw data (Feng, N. 2019) from edge nodes to the central node and/or 

using alternative energy sources such as solar (Christodoulou, S. et al., 2010). Rather than 

continuously collecting and sending data, intermittent capturing and sending of data from the data 

acquisition board to a central module can help reduce power consumption (Whittle, A. J. et al., 2013).  

The main use with the deployment of real-world IoT leak detection systems is in their scalability, 

which means that the IoT leak detection solution can be scaled to work well with potentially hundreds 
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or thousands of sensor nodes. This means that the data collected by those sensor nodes grows very 

quickly over a very short amount of time. Though modern single board computers or micro-

controllers (which collect data from sensors) are equipped with relatively large storage and 

processing abilities, modern sensors capture data at very high rates, which can outgrow the storage 

and processing capabilities of even modern single computers and micro-controllers. The large 

deployment of sensor nodes combined with high data rates of the sensors can forfeit the benefit of 

the of IoT if proper measures are not taken to store and process the growing volume of data. Most of 

the existing IoT leak detection systems have not specifically addressed this issue of exponential 

growth of data within their architectures and have mainly focused either on the power management 

issue (Kartakis, S. et al., 2015, Sadeghioon, A.M. et al., 2014, Stoianov, I. et al., 2007, AL-Kadi et 

al., 2013) or on developing a good leak detection algorithm (Adedeji, K. et al. 2016, Sadeghioon, 

A.M. et al. 2018). Clearly, a holistic approach where power management, algorithms and scalability 

work together is necessary for a practical solution to leak detection in large scale. 

There are many applications or frameworks available that can handle large varying volumes of 

heterogeneous data. For example, real time data analysis can be done using Apache Storm or Apache 

Spark streaming. A list of such frameworks is given in the Figure 2.4, but such applications only 

provide the framework to process varying volume of data and they still need supporting infrastructure 

such as computing resources, hard disks, CPUs, operating systems, regular back ups of data, 

upgrading the hardware and software and providing fault tolerant infrastructure by providing a 

distributed computing system. Such infrastructure maintenance along with the required applications 

(listed in Figure 2.4) that can process the Big Data, are provided by a modern computing paradigm, 

called cloud computing. 
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Figure 2.4 List of tools available to handle Big Data (Shadroo, S. et al., 2018) 

 

Ahmed, K.E.U. et al., 2011 proposed the integration of WSN with cloud computing. This approach 

solves a major problem of WSN in general, namely storing and processing large amounts of data. 

This approach of using cloud computing in WSN was applied to the leak detection in WDN as well. 

However only a handful of IoT leak detection solutions in literature have applied cloud computing 

to address the Big Data problem. Koo, D. et al., 2015 presented a conceptual development of an IoT 

application for Big Data collection through a large number of water clients. However, this is only a 

conceptual design without implementation. Rohit, A. et al., 2018, used IoT system for forecasting 

and monitoring water consumption in WDN, where only the design of the system is presented and 

no details were presented with regards top system evaluation. Cheung et al. 2014 proposed a cloud 

computing solution called INFOSAN SaaS provided by Optimale LTDA [4] to address water loss in 

urban water distribution systems. Due to the proprietary nature of this solution, technical details 

regarding accuracy and an objective evaluation of the results are not publicly available. Mounce, 

S.R. et al., 2015 proposed a solution for water leak detection using a cloud-based portal, YouShare 
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[5], available to academics and research institutions. However, YouShare is not a self service cloud 

portal where users can access cloud services directly, rather access requests have to be first approved 

by the YouShare administrator.  Arangoa, I. M. et al., 2014 used a cloud-based system, Azure Cloud 

[6], for data analysis and decision making in WDNs. This platform provides scalability in terms of 

running applications, where users can provision virtual machines (VMs) as needed. However, the 

process of provisioning VMs is manual and user input is needed for which user should have the 

knowledge regarding the number of VMs needed for data processing and often such information is 

not available a priori.  

Though many WSN based solutions for leak detection have been proposed for monitoring leaks in 

WDNs, none of these studies present an end-to-end solution which can address all the issues such as 

ease of use, scalability, heterogeneity in sources, storage at scale, security, real time leak detection 

and visualization of results. To the knowledge of the author, this study is the first attempt towards 

providing a detailed design and implementation for a scalable, cost effective cloud based IoT online 

leak detection system. The Google Cloud Platform (GCP) is selected for demonstration purposes, as 

GCP can securely process and analyse varying volume of real time data as well as batch data while 

providing significant flexibility and range of available tools for analytics. The architecture, GCP 

concepts and GCP components used in the implementation of the cloud solution for leak detection 

in this thesis are discussed next in Chapter 3. 
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Chapter 3  3 Architecture 
 

3.1 Introduction 

This chapter provides an overview of the architecture used in this thesis to implement a leak detection 

solution for WDNs, followed by a detailed review of each component used in the architecture. As 

the architecture in this thesis mainly follows an IoT framework, this has a DAL (data acquisition 

layer), a NL (network layer) and DPDML (data processing and decision making layer). Broadly 

speaking, DAL is connected to the DPDML using the NL. DAL collects time series data from the 

WDN at regular intervals, preprocesses it, calculates features and sends them over the NL to the 

DPDML for further analysis. NL provides wireless connectivity between the DAL and DPDML to 

enable communications between these two components. DPDML validates the data sources, 

validates the data (ingestion), stores the data, analyses it, checks for the presence of leak(s) in the 

WDN, and finally displays the results. The overall IoT architecture discussed above is described in 

the Figure 3.1. Figure 3.1 displays the key DAL stages of acquiring, preprocessing data and feature 

extraction, along with other components, tools and devices used to accomplish those stages, e.g., 

MATLAB®, emulators, sensors and microprocessors. These details are described next. 
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Figure 3.1  IoT Architecture 

 

 

For the leak detection application, the DAL consists of a hydrophone sensor connected to a Teensy 

3.6 microcontroller. Because of limited access to a live WDN, the data collected from the DAL is 

stored on a computer, preprocessed and transferred to two types of emulators (Python client on a 

Windows 10 laptop and a combination of Python client on Raspberry Pi 3 and Hologram Cloud), 

where relevant features are calculated and then sent to the DPDML. The NL consists of WiFi, 

Internet and a Nova Hologram modem which provides 2G connectivity. DPDML solely consists of 

GCP.  
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3.2 Data acquisition layer 

3.2.1 Field hydrants, sensors and microcontrollers  

The data used in this thesis was collected from a live municipal WDN, which is the DMA11 in 

ClairFields, Guelph, Ontario (Figure 3.2), which is predominantly a residential district which uses a 

mix of 6-inch and 12-inch PVC water pipes. The hydrant locations where sensors were installed are 

clearly marked in red in Figure 3.2 and are numbered from 1 through 5. These addresses correspond 

to 70 clairfields, 105 clairfields, 30 Paulstown, 10 Murphy, and 38 Keys, respectively. 

 

Figure 3.2 Map of the test location and test hydrants in Guelph, Ontario 
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The data-acquisition hardware consisted of a microcontroller (Teensy 3.6) onboard a custom printed 

circuit board (PCB) with a 2G internet and GPS chip. Firmware on this microcontroller was written 

in C++ programming language with open source libraries such as digital signal processing (DSP) 

libraries, Adafruit FONA library and SD card libraries. DSP library was used for vector statistical 

calculations and feature calculations such as fast Fourier transformation (FFT), Adafruit FONA 

library was used for cellular GSM connection, and secure digital (SD) card library for storage using 

the SD card. This main circuit board was placed outside the hydrant above the ground level. A second 

board, called the sensor board, was located below the ground level located at the bottom of a modified 

fire hydrant stem, shown in the Figure 3.3 (a), (b) and (c). Communication between the two boards 

occurred using the serial peripheral interface (SPI) protocol. The sensor board consists of an on-

board 24-bit analog-to-digital converter (ADC) chip to digitize the hydrophone, a pressure 

transducer, and a temperature sensor inputs. It is important to note that only the hydrophone data is 

used in this thesis for analysis purposes. 
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Figure 3.3 (a) Retrofitted fire hydrant showing the placement of a metal case, (b) sensor board 

inside a metal case and (c) A metal case  

 

The main board and the sensor board along with the sensors are shown in the Figure 3.4 (a), (b) and 

(c) respectively. The sensors were mounted on a retrofitted fire hydrant, which is a Century® fire 

hydrant make.  
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Figure 3.4 (a) Sensor board, (b) Main circuit board and (c) sensors. 

 

There are two settings under which the data was collected in the field: ambient (normal operating 

condition) and leak (simulated flows from the hydrant) condition. Ambient case does not necessarily 

mean that no leaks exist; it is merely meant to represent a baseline from which anomalies are 

detected. Simulated leaks were created from instrumented and un-instrumented hydrant locations by 

opening an external valve with an attached flow meter to measure outflow. The aforementioned leaks 

were simulated using two hydrants which were located in the same municipal WDN, DMA11 in 
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ClairFields, Guleph, where the data was collected. Figure 3.5 shows the leak locations and the fire 

hydrants where the sensors were installed to collect the hydrophone data. The leak locations are 

located in 54 Paulstown and 22 Keys, which correspond to leak location 1 and 2, respectively.  The 

leaks simulated on these hydrants correspond to various sizes, ranging from 200, 100, 50 or 25 

litres/minute and each leak data was captured for 10 minutes on October 13th and October 21st 2018 

on an SD card between 12:40 a.m. and 3 a.m. The ambient case data was captured on 13th, 19th, 20th 

and 21st of October, 2018, for 3 hours between 3 a.m. and 6 a.m.  The sensor locations in the Figure 

3.5 are the same fire hydrants with sensors shown in Figure 3.2. 

The data on the SD card consisted of saved .csv files. Small amounts of data collected from live 

WDN was sent directly to the Nova Hologram cloud, which was then communicated to GCP, mainly 

to test and demonstrate the communication functionality. However, a majority of the data used for 

analysis was collected offline in order to reduce cellular modem costs as the intention was to stay 

within the free data usage limit provided by Hologram. Hence, emulators are used in this thesis that 

partly act as the data acquisition layer. 
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Figure 3.5 Hydrant locations 1 through 6 and Leak locations 1 and 2 

 

After the data is acquired from the WDN by the sensors, the next step is to perform analysis, which 

includes: (i) data preprocessing, (ii) extraction of features and (iii) data analysis.   

Data preprocessing is performed on a desktop computer, feature extraction is performed on emulators 

and machine learning algorithms (data analysis) are executed on GCP. The details of the each of the 

three subtasks of data analysis are explained in the following sections. 
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3.2.2 Data preprocessing 

For this thesis, the sensor data are retrieved from the storage devices from hydrant locations and 

processed offline using a desktop computer. As described previously, this is mainly to reduce the 

cost of wireless transmission as a separate paid plan was not purchased for this research. However, 

it is important to note that this does not compromise the representativeness to actual field 

implementation as many of the intermediate steps are either emulated (only the end results are of 

concern) or simulated (results in intermediate steps are also of interest) in a software environment. 

Data pre-processing includes the following two key operations: 

1. Data conversion: Raw data which is obtained from the hydrophone is not in physical units 

and is in electrical units, milli-voltage (mV). This is converted to physical units of acoustic 

pressure Pascals (Pa), using the acoustic receiving sensitivity of the hydrophone and 

accounting for the pre-gain (25dB) of the in-line amplification circuit which lies between the 

hydrophone and the ADC module. 

2. Data cleansing and sorting: Ideally, streaming data is captured without missing entries and in 

sequence. However, due to the internal hardware and software architecture on board the ADC 

and the main processing modules, on occasion there are missing entries and some data are 

stored out of sequence. Hence, both data cleansing and sorting operations need to be 

conducted prior to feature calculations. 

Fully simulating both the processes is outside the scope of this work as this depends on the exact 

hardware and firmware configuration to be used in final deployment. Instead, an emulator (laptop 

computer) is used for data cleansing and sorting and all the programs were written and executed in 

MATLAB® environment prior to being sent for feature extraction. 
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3.2.3 Feature extraction  

The next step in the data pre-processing step is feature extraction. Raw acoustic time series data are 

typically acquired at a high acquisition rate. In this application, the data rate used was approximately 

4000 samples/sec (approximate because the clock and the actual hardware and software 

configuration determines the exact value at which data is acquired and typically there is a small 

variation from the prescribed target rate). Assuming 4 bytes of storage for a float this translates to 

16kB/sec and for typical data acquisition time of 10 minutes at one hydrant location this results in10 

mega-bytes of data per acquisition. This data size does not account for other parameters such as time 

and headers, which also have to be stored and transmitted in addition to the sensor data. Hence, it is 

easy to envision a scenario where the data transmission size could be of the order of hundreds of 

Mega bytes or even Giga bytes for a small city with several sensors simultaneously collecting data 

for 10 minutes. 

 Clearly, transmitting the entire raw time series data over a cellular wireless network is expensive. 

Considering that the final leak detection algorithms will employ statistical features and not the raw 

time series themselves (may be necessary for correlation-based techniques, but this is not pursued 

here), it is expedient to calculate such features at the sensor node. Such features are smaller in size 

and hence involve significantly reduced transmission overheads. Hence, those features which are 

non-redundant and statistically independent of one another, yet representative of data under 

consideration, need to be extracted from time series data and transmitted for processing. According 

to Cody, R. et al., 2018, although it is easy to detect large changes in the hydraulic conditions within 

pipes, it is challenging to detect events in the presence of background noise such as flow caused by 

water usage. To address this issue, the authors of the aforementioned study used spectral peak and 
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root mean square (RMS) features derived from time series data for leak detection. Consistent with 

their findings, the same features are calculated on emulators (laptop and Raspberry Pi 3) and then 

readied for transmission. The features are calculated using a Python program executed on Raspberry 

Pi 3 (a single board computer) and the calculated features are then sent using the Python Nova 

Hologram software development kit (SDK) to the Hologram Cloud using Hologram 2G GSM 

connectivity. The features from Hologram Cloud are then transmitted to GCP using a HTTP POST 

request over the internet. The features (RMS and spectral peak) are also calculated on a laptop 

computer running Windows 10 and are then sent to GCP using a Python script via HTTP request 

over a WiFi connection.  

The features are calculated on two types of emulators, Raspberry Pi and a computer laptop, to 

simulate the scenario where the sensor nodes are from two different platforms. Raspberry Pi runs on 

the OS Raspbien which is the Debien flavor of Linux OS, while the laptop computer runs windows 

10 OS. Proper authentication is required prior to Hologram or the laptop emulator communicating 

the calculated features to GCP. Upon successful authentication by GCP, the features are then 

transmitted for downstream processing by GCP. There are two types of authentication methods: API 

key and OAuth 2.0. Nova Hologram Cloud supports only the API key authentication type, whereas 

the Python emulator supports both types of authentication. For this thesis, while API key is deemed 

sufficient, OAuth 2.0 is also implemented to test the overall architecture capabilities. The two 

authentication methods are described next. 

(i) API key: API keys are simple encrypted strings such as 

'AIzaSyAxLhEDXnG3h8ES6He76aW8wkFyOm6jiqE' which is provided by GCP. For 

API keys authentication, the emulator must include the API key in each HTTP POST 
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request. Upon the receipt of this HTTP POST request, GCP checks for the correctness of 

API key and if it is correct, the HTTP request is processed further; otherwise an error is 

sent back to the emulator. 

(ii) OAuth 2.0: For this type of authentication, the process is more involved. The first request 

from the emulator to GCP obtains credentials such as client ID and client secret which 

are known to both GCP and the emulator, which are then used to request an access token 

from the authorization server (Google). Such requests depend on the type of application. 

Javascript applications could request an access token using a browser redirect to the 

Google server, while a Python application like the emulator that is being used in this 

thesis requires GCP user (owner/admin of the GCP pipeline for data processing) to grant 

permission to the application that is requesting the access token by logging on to the 

computer where the emulator is running. An HTTP server is run as a part of emulator, at 

a predefined port 9004, to listen to the Google authorization server. When the GCP user 

grants permission, Google server sends the authorization code to the port 9004. Emulator 

uses this authorization code, exchanges it for access token with Google authorization 

server and sends the access token in an authorization header which is a secure way of 

sending the token to the Cloud function, which is GCP ingestion component. In OAuth 

2.0 authentication process, only the first request goes through the authentication process 

and obtains the access token from GCP and the rest of the requests to GCP use the access 

token obtained by the first request.  If the GCP user denies permission, an error message 

is sent by Google authorization server to the HTTP server running at port 9004. This 

authorization process is shown in the Figure 3.6.  
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Figure 3.6 OAuth 2.0 process [7] 

The main advantage of the API key authentication is that it is simple to implement whereas OAuth 

is relatively more involved. API key authentication however provides a static key (i.e., the API key 

does not change once it is generated by GCP), whereas OAuth provides a dynamic access token (i.e., 

a new key is generated by GCP for a new authorization process) in response to an application request. 

In general, a dynamic key is more secure compared to static key, especially over time. However, 

OAuth requires GCP user’s (owner of the GCP resources that form a processing pipeline) presence 

to grant access to the requesting application (emulator) to access GCP. API key on the other hand, 

does not involve GCP user interaction with the requesting application. The static nature of API key 

can be changed by periodically changing the API key on GCP and distributing the newly generated 

key manually to authorized applications.  

3.2.4 Communication protocol 

GCP supports two communication protocols, HTTP and MQTT, to communicate with IoT devices 

(emulators in this case). A study conducted by Yokotani, T. et al., 2016 shows that MQTT is more 

advantageous over HTTP when used in the implementation of an IoT solution. HTTP however is 

simple to use and in this thesis, when the Python emulator on Raspberry Pi sends features to Nova 
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Hologram cloud, these are forwarded to GCP using HTTP only (Nova Hologram does not support 

MQTT at the time of writing this thesis). Hence, HTTP is used as the communication protocol 

between emulators and GCP in this thesis. The details of HTTP, MQTT and the study conducted by 

Yokotani, T. et al. 2016 are discussed below. 

HTTP is an application layer protocol in the internet protocol suite, also known as transport control 

protocol/internet protocol (TCP/IP) stack, which is a standard model provided for communication in 

internet and computer networks. HTTP is the foundation of data communication for the world wide 

web where resources such as documents, files, pictures and videos, can be easily accessed on a web 

browser or other HTTP clients such as the Python HTTP client. HTTP provides communication 

based on standard request response model (Fielding, R. T. et al. 1999). In the request response model, 

clients such as a web application or a program requests the server (for example, to access a resource 

on the server) and the server responds to such requests by providing the requested resource. HTTP 

provides various methods to carry out different operations on the aforementioned resources. Some 

of the popular methods are GET (request to retrieve a resource), POST (request to accept a resource 

provided), PUT (request to create or modify a resource) and DELETE (request to delete a resource). 

In the leak detection application, emulators provide data to be ingested by GCP. Typically, these are 

called POST requests. Like HTTP, MQTT is also an application layer protocol in the TCP/IP stack 

which provides communication based on the publish-subscribe model. In MQTT, the publisher of a 

message does not send the message directly to the receiver, instead categorizes messages into classes 

called topics without the knowledge of the subscriber, while storing such messages on shared 

messaging queues on the MQTT server or the MQTT broker. Similarly, subscribers express interest 
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in receiving messages of a particular class (topic) and they receive messages belonging to that topic 

from the MQTT server, or the MQTT broker.  

 Since HTTP operates over TCP/IP, such communications are deemed reliable. However, 

connections established between the client and the server for communication are not retained across 

subsequent requests. This causes overhead and consumption of network resources during 

communication (Yokotani, T. et al. 2016) as every HTTP request needs to establish connection 

between the client and the server and such connections include a client authentication process which 

consumes resources to carry out authentication. MQTT on the other hand requires a similar 

bandwidth as that of HTTP for establishing the initial connection between the MQTT broker and the 

MQTT client (either a subscriber or a publisher) as the communication requires authentication 

credentials to be sent from the MQTT client to the MQTT broker. Connection is retained across 

multiple requests and hence authentication credentials are not required to be sent in each request. 

This results in relatively less overhead and network bandwidth compared to HTTP. 

 Figure 3.7 shows the bandwidth used by HTTP requests and MQTT requests when 10 devices, 100 

devices and 1000 devices are used (Yokotani, T. et al. 2016) for different payload (data) sizes. This 

clearly shows that for a given payload size, for fewer devices (say 10), the bandwidth for both HTTP 

and MQTT protocols are comparable. However, as the number of devices increase (say to 100 or 

1000), MQTT uses far less bandwidth compared to HTTP. Since an IoT solution typically involves 

a large number of data sources, MQTT is a better choice for communication compared to HTTP. 
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Figure 3.7 Required bandwidth according to variable devices and payload sizes. (Source: Yokotani, 

T. et al. 2016) 

 

For the same aforementioned reason (that HTTP does not retain connection across requests), HTTP 

takes longer time for communication compared to MQTT. Table 3.1 shows the required duration for 

each protocol between the start and completion of communication. It is clear that the first MQTT 

request (#1) takes nearly the same duration as HTTP, while the second MQTT request takes 
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significantly less time compared to HTTP, both in terms of average and maximum times between 

the start and completion of the request. 

 MQTT 

#1 

MQTT 

#2 

HTTP 

No od Round Trips 4 1 5 

Required duration between 

start and completion 

MAX 800ms 200ms 1s 

AVE 400ms 100ms 500ms 

 

Table 3.1 Comparison between MQTT and HTTP with respect to communication duration (Source: 

Yokotani, T. et al. 2016) 

 

For the purposes of this thesis, the number of devices is small and the tests are conducted in controlled 

environments.  HTTP is widely supported by many applications including the Nova Hologram Cloud 

and GCP used in this thesis. Hence, for demonstration purposes HTTP is used, although in practical 

full-scale implementations of this technology involving a large number of devices MQTT would be 

the preferred protocol option. 

 

3.3 GCP 

GCP [8] is offered as “Software as a Service” (SaaS) which depends on internet to provide its service. 

This means GCP provides its users access to its infrastructure such as hardware resources including 

storage hard disks, servers, networking, computing and software resources such as operating 

systems, software applications and databases via the internet. Google locates its infrastructure at 
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various physical locations called data centres around the world and manages those resources, which 

includes all the physical connectivity of the computers, upgrading the computers, backups, upgrading 

the operating systems and resolving networking issues. Users can rent services offered by GCP and 

pay only for the resources used and for the duration those resources are used.  As well, GCP provides 

easy to use APIs which can interface with all the infrastructure offered and provides the above 

mentioned infrastructure at a scale required for IoT implementation, including data collection, 

processing and analysis of large amounts of data. The overall process pipeline and various 

components of GCP used in this thesis are illustrated in Figure 3.8. To provide readers with a 

complete picture of the overall architecture used other components namely DAL and NL are also 

shown in the Figure. The four different stages namely, ingestion, storage, analysis and visualization 

of results are discussed next. 
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Figure 3.8 The process pipeline used in this thesis with various GCP sub-components. 

  

3.3.1 Ingestion 

Cloud Functions 

Data from the source, i.e., from the Python client or from the Hologram Cloud (using HTTP POST 

requests as described previously), is first verified by the GCP to ascertain the legitimacy of the 

source, for the validity of the data type, and for the validity of the request. These checks are carried 

out at the ingestion stage using the Cloud Function subsystem of the GCP. Cloud Function is central 
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to ingestion tasks in the process pipeline and acts as an event listener which responds to events such 

as HTTP trigger, an incoming message on Cloud Pub/Sub for a given topic, a file upload on Cloud 

Storage or a log change in Google Analytics API. Since HTTP is used as a trigger from the data 

source in this thesis, Cloud Function responds to such HTTP requests and carries out the following 

tasks: 

1. Respond to the HTTP event. 

a. Check for HTTP POST requests. 

b. Check for authentication of the data source. 

c. Perform data validation. 

d. Form an output JSON data consisting of the data provided by the emulators and 

encode it into a byte string format. 

2. Invoke other services. 

a. Send the encoded output data to a temporary storage component or an API of GCP 

such as Cloud Pub/Sub using HTTP POST request. 

3. Write back to the event generator. 

a. Send a response to data source (emulator) that triggered Cloud Function. 

The above tasks are illustrated in Figure 3.9 as well. 

 

Figure 3.9  Pipeline showing ingestion of data by Cloud Function 
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Since Cloud Function is managed by GCP, it can scale from a few invocations to millions of 

invocations without the need for users to manage the underlying infrastructure. Instead, users write 

a simple event handler function on Cloud Function API using a programming language such as 

Python to respond to an event such as the HTTP trigger from an emulator. In this thesis, Python 3.7.1 

is used on Flask web framework to write an event handler which performs all the ingestion tasks 

mentioned earlier. Flask is a small and powerful web framework which is provided as a default 

framework by GCP and is used with Python to build web applications quickly.   

 

3.3.2 Storage 

Once the data source and the data are validated, the data is stored for further analysis. There are two 

types of storage used, temporary and permanent, depending on the type of processing which is carried 

out on the data. Both the types of storage are discussed below. 

Temporary storage: Temporary storage components used for this thesis are Cloud Pub/Sub and 

Cloud Storage. Temporary storage is utilized when programs (e.g., data processing code on Cloud 

Dataflow) need a location to stage the binary executable files during execution. Temporary storage 

used for this application is the Cloud Storage. When the data is streamed, which is the kind of data 

generated continuously by the data sources, such data is incrementally processed using stream 

processing techniques without the need to access all the data at any given time. In the current 

application, emulators transmit this incrementally, one set of features at a time at a pre-determined 

frequency, say every second. Temporary storage used in this case is Cloud Pub/Sub, which 

temporarily stores the streaming data and forwards it to the data processing unit Cloud Dataflow. 
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Note that Cloud Storage is also used as permanent storage and hence this is discussed in the 

permanent storage section. Cloud Pub/Sub details are provided next. 

Cloud Pub/Sub 

Cloud pub/sub acts as a temporary storage while providing real-time messaging service which allows 

applications to send and receive messages. Cloud pub/sub is an auto-scalable GCP-managed event 

ingestion and delivery system, which is suitable for stream analytics pipelines. It provides many-to-

many asynchronous messaging, i.e., many senders can send messages to many receivers without 

senders and receivers being present at the same time. This provides a decoupled system which is 

flexible for both senders and receivers to post and receive messages at their convenience. Cloud 

Pub/Sub servers are distributed at various Google’s data centers around the world. Different 

instances of a cluster which is a logical grouping of machines that share the same local network and 

power are located in data centers. Cloud pub/sub is a global service that is divided into mainly two 

parts: data plane and control plane. Data plane servers are responsible for moving messages from the 

Publisher to the Subscriber. Control plane servers are responsible for assigning Publishers and 

Subscribers to a data plane. Publishers and Subscribers are unaware of the physical locations of the 

Pub/Sub servers and they can publish and subscribe messages across large geographical distances. 

Cloud Pub/Sub follows the following rules to deliver messages: 

1. Publisher or a sender of a message can send messages to Cloud Pub/Sub only using a named 

resource called “topic”. For example, an HTTP client can send telemetry to Cloud Pub/Sub 

using a topic called “sensor”.  

2. The receiver of a message or a Subscriber can receive messages from Cloud Pub/Sub topic 

only if a subscription is created by that subscriber to that topic. Subscription is a named entity 
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that subscriber creates for a topic that associates Subscriber to that topic. Only those messages 

that are published after the subscription to a given topic is created are available to the 

Subscriber of that topic.  

3. Topics can have multiple Subscribers as well as multiple Publishers. However, subscription 

belongs to a single topic. Cloud Pub/Sub delivers every message to every subscription at least 

once.  

4. Each message is by default kept for the maximum of 7 days. If there is no subscription 

available before the expiration time, that message will no longer be accessible. The message 

retention time can be configured between 10 minutes to 7 days. If there is no subscription 

available to a topic and if Publishers publish messages to that topic, then those messages will 

not be delivered even after a new Subscriber creates a subscription to that topic. Subscriptions 

by default expire after 31 days of inactivity. The deletion clock is reset every time there is 

Subscriber activity. The expiration time can be configured and subscriptions can be made 

persistent regardless of activity.  

5. When the Cloud Pub/Sub is waiting for an acknowledgement from a Subscriber for a sent 

message before the deadline, the message is called an “outstanding message”. Once the 

message is sent to a Subscriber, that Subscriber sends an acknowledgement back to Cloud 

Pub/Sub within a limited time, called acknowledgement deadline which is defined by each 

Subscriber. Once the deadline passes, Cloud Pub/Sub resends the message to that Subscriber 

to ensure at least one-time delivery. Pub/Sub delivers messages in the order in which they 

were published. However, sometimes the messages may be delivered out of order or delivered 

more than once. So, Subscribers should make sure that such messages are handled properly.   
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When the Publisher publishes a message to Cloud Pub/Sub, this is written to storage. Subscribers 

can retrieve messages either by a Pull or a Push mechanism. This type can be configured by the 

Subscriber anytime. In a Pull subscription, the Subscriber initiates the request to obtain messages 

from the Pub/Sub server. The sequence of operations that occur in a Pull request is described in 

Figure 3.10. The Subscriber initiates a request to the Pub/Sub server for messages for which Pub/Sub 

responds with a message or error and an acknowledgement ID. The Subscriber then acknowledges 

the delivery to Pub/Sub using this acknowledgement ID. 

 

Figure 3.10 Pub/Sub pull subscription 

 

In a Push subscription, Pub/Sub initiates an HTTP request to send messages to the Subscriber 

application, which then sends acknowledgement back to Pub/Sub for both success and failure. This 

is shown in the Figure 3.11. In the case of failure, Pub/Sub resends the message.  

 

Figure 3.11 Pub/sub push subscription 
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In this work only the Pull subscription is used by Cloud Dataflow and the topic used is called 

“hydrophone”. Default settings are used for subscription inactivity duration and message retention 

time. The publisher is the Cloud Function and the Subscriber is Cloud Dataflow (described later). 

Permanent storage: Permanent storage is used to permanently store large amounts of data. The data 

stored in permanent storage can also be used for batch processing, which involves waiting for the 

entire data to arrive completely before the actual processing of the data begins.  The type of 

permanent storage used depends on the specific application and two scenarios are possible within 

permanent storage, as follows: 

1. Cloud Storage is used to store a large amount of data in the file format. For example, in this 

thesis, training data sets and the training model are stored on Cloud Storage permanently for 

further use by the Cloud Machine Learning engine (Cloud ML engine) for downstream 

analysis and decision making. 

2. BigQuery is used to store a large amount of data in the in a table format. Such storage   

facilitates SQL-like queries to work with that data. This type of permanent storage is used to 

store the processed data and the results of processing (in case of stream processing) and data 

to be processed (in case of batch processing). 

Cloud Storage is explained in this section whereas BigQuery is explained under visualization of 

results, as this is used in that stage as well.   
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Cloud Storage  

Cloud Storage could be both temporary or permanent in nature and provides storage and retrieval of 

any amount of data at any time for a range of scenarios such as temporary storage for program 

execution, serving website, storing data for archival and disaster recovery. All the data on Cloud 

Storage belongs to a project. Buckets are the basic storage containers that hold data. When a Bucket 

is created in the Storage Class, three properties need to be specified: unique global name, a location 

where the Bucket and its contents are stored and a Storage Class. There are four Storage Classes 

available: multi-regional, regional, nearline and coldline storage.  

(i) Multi-regional storage: In multi-regional storage, data is stored in multiple geographical 

locations. This is suitable for storing data that is accessed frequently such as those serving 

website content.  

(ii) Regional storage:  The data is stored only in a specific region instead of having 

redundancy. Since the data is stored only in a specific region, this storage cost is low.  

(iii) Nearline storage:  This storage is highly durable, low cost and suitable for storing 

infrequently accessed data. It requires minimum of 30-day storage. This is suitable for 

data back-up and disaster recovery storage.  

(iv) Coldline storage: It is similar to nearline storage except that this data is available within 

seconds not hours or days. Again, this is suitable for data back-ups and disaster recovery.   

By default, if the Storage Class is not specified, multi-regional storage class is used to create a 

Bucket. Data stored in the Cloud Storage is redundant and the data is stored in at least two geographic 

locations to ensure redundancy. Data inside each resource in the Cloud Storage is opaque to Cloud 

Storage. Each object stored in Cloud Storage is immutable which means that it cannot change 
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between its creation and deletion. This means that once a file is created, users or applications cannot 

undertake “append” or “truncate” operations. The object can only be overwritten, i.e., a new version 

of the same object can be created. 

Data is encrypted prior to it being stored on Cloud Storage. There are two types of encryptions, 

client-side encryption (while the user uploads data) and server-side encryption (encrypted before the 

data written to a persistent disk). No additional configuration is required and when read by an 

authorized user such data is transparently and automatically decrypted. In this thesis, Cloud Storage 

is used as a temporary location for holding intermediate files and directories for Cloud Dataflow. It 

is also used by Cloud ML engine to store machine learning models and input data.  Regional storage 

class was specified when a storage Bucket was created. 

Cloud SDK 

GCP services can be accessed in three different ways: (i) using programming languages such as 

Python and Java; (ii) using GCP website console.cloud.google.com; and (iii) using Cloud SDK. 

Cloud SDK provides a set of command line tools which include gcloud, gsutil, and bq and core 

libraries. These commands and their use are given below. 

gcloud: This manages interaction with GCP APIs and authentication. 

bq: This is used for working with data in BigQuery. 

gsutil: This is used for working with Cloud Storage. 

Core: Libraries used internally by Cloud SDK. 
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In this work gsutil is used to upload data files and machine learning models from the local machine 

to Cloud Storage. 

3.3.3 Data processing and analysis 

GCP enables data to be processed in batch as well as in streaming mode. In batch processing, 

processing of data is performed upon the arrival of all data, whereas in stream processing or real time 

processing, data is processed as and when the data arrives. Figure 3.12 illustrates the sequence of 

GCP subcomponents invoked during data processing in stream (the black arrows) and in batch 

processing (red arrows) modes. 

 

 

Figure 3.12 The sequence of GCP sub-components invoked for stream and batch processing. 

 

In the context of the current leak detection application, acoustic data stored in Cloud Pub/Sub in the 

case of stream processing and the data stored in BigQuery in the case of batch processing are 

processed to detect patterns and anomalies in the data. Cloud Dataflow is used for stream and batch 

processing and the AI Platform Notebook is used for fetching data from BigQuery and calling Cloud 

ML for batch prediction and visualization of result (from both batch and stream processing). For both 

batch and stream processing, training of data, creating the training model, and model prediction are 
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performed using the Cloud ML engine, which is a component provided by GCP. The same GCP 

components are used in both stream and batch processing.  In stream processing, Cloud ML is 

invoked by Cloud Dataflow whereas in batch processing, Cloud ML is invoked by AI Platform 

Notebook. Cloud Dataflow and Cloud ML engine are explained next and the AI Platform Notebook 

is explained in the visualization of results section. 

Cloud Dataflow 

Cloud Dataflow is a managed data processing pipeline which works on the Apache Beam framework. 

Apache Beam is a unified open source programming model which enables developers to develop 

both batch and streaming pipelines, with relatively minor modifications to the settings of the pipeline 

definition. The default mode of processing is batch and Apache Beam allows parallel processing of 

data as well and supports Java and Python software development kit (SDK). Cloud Dataflow 

manages all the low-level tasks of distributed processing such as sharding (partitioning) data sets on 

the disks and coordinating individual worker computers which perform data processing tasks, while 

providing useful abstractions in the form of Apache Beam which insulates all such details from users. 

The abstractions provided by Apache Beam to work on a large-scale distributed data processing are 

described as follows. 

(i) Pipeline: The tasks of reading the input data from the source, transforming the data and 

writing the output to a sink are all encapsulated in a programming object called, Pipeline. 

Dataflow programming begins with creating this Pipeline object, which is then used for 

creating data sets called PCollection.  

(ii) PCollection: This represents datasets in Dataflow and can hold datasets of a fixed size 

or varying size.  



 

55 
 

(iii) Transforms: The input data is processed in Dataflow and the processing operation is 

called Transformation. Transformation takes one or more PCollection as inputs and 

performs operations specified by the user on each element in that collection and produces 

one or more PCollection as outputs. There are various Transforms which can be applied 

on data and those used in this thesis are discussed towards the end of this section. 

(iv) Runners: Runners execute the software Pipeline objects. The two Runners available are 

DirectRunner and DataFlowRunner. DirectRunner executes the pipeline code on a 

user’s local machine (often used for testing the Dataflow code before it is deployed on 

cloud) whereas DataFlowRunner executes the pipeline code on the cloud.  By default, 

Virtual Machines (VMs) that are allotted for running Dataflow jobs are automatically 

deleted when the job is completed. This means that any persistent disks attached to a 

particular VM are deleted automatically when the job is completed and the files stored on 

those disks are deleted as well. So, in order to avoid data loss, users need to provide (in 

the command prompt while executing the Dataflow job) --staging_location and/or -

-temp_location which specify the Cloud Storage paths where the intermediate files 

from pipeline execution should be stored. 

Cloud Dataflow subscriber on its own requests Cloud Pub/Sub for any new messages and processes 

such messages if there is any new message. This asynchronous Pull provides higher throughput as 

the application does not have to block a new message. Synchronous Pull is also available, where new 

messages are blocked until the Subscriber finishes processing the old message. Unless specified, 

asynchronous Pull is used and this setting is not changed in this thesis. Also, in this thesis, the data 

source used is Cloud Pub/Sub and the sink used is BigQuery. Apache Beam with Python SDK is 
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used with a streaming pipeline for the data, with DataFlowRunner. For stream processing, the 

following data Transformations are applied: 

 Read the data from Cloud Pub/Sub. 

 Decode the data from input format (byte string format) to the format readable by Cloud 

Dataflow (utf-8). 

 Extract data values from JSON data embedded in utf-8 string. 

 Predict the class of data using one-class support vector machine (OCSVM). 

 Create a record containing the results as well as the input data in the format (JSON encoded 

in utf-8 string) which is compatible with BigQuery. 

 Write the record to BigQuery. 

For batch processing, the data is streamed through Cloud Dataflow, stored in BigQuery, followed by 

the execution of the one-class support vector machine (OCSVM) algorithm (written in Python 

programming language) on the entire data set using AI Platform Notebook and Cloud ML engine. 

Cloud ML engine 

This is a GCP managed service which provides training and prediction tools for developers to build 

and run machine learning models. Cloud ML engine supports the Python programming language 

used on popular frameworks such as Tensorflow, Scikit-learn and XGBoost to perform machine 

learning on data. The Cloud ML work-flow is shown in Figure 3.13, where the filled boxes 

correspond to GCP managed services. 
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Figure 3.13 Cloud ML work-flow, where the filled boxes represent GCP managed services. 

The steps involved in developing a production ready machine learning model which can be used for 

prediction on stream as well as batch data are:  

1) Collect and prepare data. 

2) Develop a user model, train it, evaluate it and tune the hyper-parameters. 

3) Deploy the above trained model on Cloud ML engine. 

4) Send prediction requests to this trained model; this can be either batch or online (for 

streaming data) requests. 

5) Monitor the predictions. 

6) Manage the model and model versions. 

As discussed previously, in this thesis, both batch and online predictions are used. Cloud Dataflow 

sends a stream (online) prediction request to Cloud ML whereas, the user defined Python code on AI 

Platform Notebook sends a batch prediction request on the data stored in BigQuery. For prediction 

OCSVM with Gaussian radial basis functions (RBF) kernel is used by Cloud ML.  
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3.3.4 Visualization of results 

Once the data processing stage is completed, the results of processing are visualized using AI 

Platform Notebook, which in turn uses BigQuery. The details of BigQuery and AI Platform Notebook 

are provided next. 

BigQuery 

BigQuery belongs to both storage and visualization stages of DPDML in the overall architecture. 

Storing and querying a large amount of data produced by a large number of IoT devices can be quite 

challenging, time consuming, and expensive without the right hardware and infrastructure. To 

address this, GCP provides BigQuery which is a Petabyte scale low cost data warehouse that is fully 

managed by GCP. BigQuery provides super-fast SQL style querying interface to define and 

manipulate data records. This API can be accessed using multiple tools such as GCP web UI, 

command line tool or through REST API calls using client libraries provided in various languages 

such as Java, .net, or Python. BigQuery manages storing the data, including compression, encryption, 

replication, performance tuning and scaling. It supports several input formats, comma separated 

values (CSV), JSON, AVRO source format, amongst others. Once imported, data is converted to 

internal columnar format. Every column in addition to its value, stores two numbers, definition and 

repetition level which helps in keeping track of the nested structure. Data can be loaded on to 

BigQuery either through the batch load or through the stream load. 

In batch load, the data is loaded from files. The default source format for batch loading is CSV and 

these files can be loaded from Cloud Storage or from other Google services. BigQuery supports both 

UTF-8 and ISO-8859-1 data formats. By default, UTF-8 encoding is enabled. In the case of stream 

load, data is added to BigQuery one record at a time. Client libraries of supported languages such as 
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Java, Go, Python, php, C#, Ruby can be used to stream data into BigQuery. In this thesis, Dataflow 

creates tables and stream loads the data along with the results of inference using the Python client 

library. The data is sent as JSON in utf-8 format. BigQuery is also used by AI-Platform Notebook to 

query the batch data, perform batch prediction on the queried data, query the stream processing data 

and to display the stream processing ML results. 

AI Platform Notebook 

AI Platform Notebook is used for both data analysis as well as for result visualization activities and 

enables users to use VM instances equipped with latest data science and machine learning libraries 

such as the suite of Python and Deep Learning packages, Tensorflow and Pytorch. It provides 

Jupyterlab instances through a protected, publicly available notebook instance URL. Jupyterlab is an 

open-source web application that allows users to create, edit, execute code. In this thesis, AI Platform 

Notebook is used for both batch processing of the data and visualization of the results from both 

batch and stream processing. For batch processing, AI Platform Notebook uses Cloud ML engine 

which in turn uses Scikit-learn Python libraries which are equipped with the OCSVM module to 

enable prediction. The results of prediction and data analysis are described in the next chapter. 

 

3.4 Data flow diagram 

The overall data flow between the various components of IoT architecture used in this thesis for leak 

detection (as discussed in previous sections in this chapter), is shown in the Figure 3.14. 
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Figure 3.14  Data flow diagram between various IoT components used in this thesis. 

 

The raw hydrophone data was acquired using a Teensey 3.6 microcontroller and transferred to a 

laptop. Following this, a custom MATLAB code was used to extract the time series. Then, using 

emulators, features were extracted and sent to GCP over the network layer. On GCP, the features 

were ingested by Cloud Function after verifying the data source and forwarded to Cloud Pub/Sub 

for temporary storage and then sent to Cloud Dataflow. In stream processing, each feature set was 

sent to Cloud ML for prediction. OCSVM model was stored on Cloud Storage and linked to Cloud 

ML. Cloud ML used the trained model from Cloud Storage to perform prediction. Dataflow also used 

Cloud Storage to store the executable code for running the Apache Beam framework. For stream 

processing, the results of prediction along with the original data from Cloud Pub/Sub are stored in 

BigQuery, following which the results are displayed on AI Platform Notebook. In batch processing, 

the data received by Cloud Dataflow is forwarded to BigQuery and processed by Cloud ML and the 

results were displayed on AI Platform Notebook. In batch processing too, CloudML used the model 

stored on Cloud Storage. 
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Chapter 4  4 GCP Implementation and Leak Detection 

Results 
 

 

  4.1 Introduction 

This chapter provides the implementation details of data acquisition, data pre-processing and feature 

extraction along with data analysis and the results of ML engine prediction (leak detection). The 

implementation details of the remaining IoT components in the pipeline discussed in Chapter 3 such 

as emulators (Raspberry Pi3, Nova Hologram cloud and laptop emulator) and GCP (Cloud Function, 

Cloud Pub/Sub, Cloud Dataflow, BigQuery, Cloud ML, AI Platform NoteBook, Cloud Storage) are 

provided in Appendix A.  

 

4.2 Data acquisition layer 

Seven hydrants were used for the data acquisition activity, where five instrumented hydrants (one 

through five from Figure 4.1) were used for collecting acoustic pressure data and two hydrants were 

used to simulate leaks. Data collected from the instrumented hydrants were categorized into ambient 

and leak cases, where “ambient” represents the baseline condition prior to simulating leaks by 

opening a valve on a hydrant and “leak” corresponds to the case where a valve was opened to 

atmospheric pressure. Leak sizes achieved during this study corresponded to: 200 (size A), 100 (size 

B), 50 (size C) and 25 (size D) litres/minute. These flow amounts were verified by attaching an 

external flow measurement device to the hydrant used for simulation. Ambient data collected on the 
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13th, 19th, 20th and 21st of October 2018, Leak 1 (location 54 Paulstown) data collected on the 13th 

and 21st and Leak 2 (location 22 Keys) data collected on the 21st of October are used for further 

analysis in this thesis.  

 

4.3 Data pre-processing 

The data collected from the WDN was converted to CSV format, which was then transferred to a 

personal computer (laptop, 64 bit, windows 10 operating system and Intel Core, 2.8GHz, 8GB RAM) 

for pre-processing. After pre-processing, the file containing the hydrophone data—converted to 

physical units of pressure (in Pascals)—is sorted in an ascending order and stored (using a portable 

storage device) in ASCII format and readied for ingestion by the emulators. This manual offline 

process could be easily automated either by transmitting the raw data wirelessly or by using a 

conventional computer at the sensor location. Both options were deemed too expensive for pilot 

demonstration purposes, while the latter is associated with an additional problem of securing the 

computer on site and providing remote power. In practical scaled implementation, this process needs 

to be automated and warrants additional investigation; however, this is not a serious impediment in 

the context of the central objectives in this thesis.  

Typical pre-processed time series for ambient, size A, size B, size C and size D leak1 (Figure 4.1) 

data collected from the hydrant3 (Figure 4.1), are shown in the Figure 4.2.  
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Figure 4.1  Hydrant locations 1 through 6 and Leak locations 1 and 2 

 

From Figure 4.2, it is clear that larger leaks (size A) are associated with higher amplitude compared 

to smaller leaks (size B, size C and size D) and ambient data and in general the amplitudes are in the 

descending order starting with the largest leak size. It is important to note here that the amplitudes 

are not stationary over time and hence traditional techniques such as control charts in tandem with 

thresholds cannot be used in this application. In other words, the range of operational variability 

typically masks variations due to leaks if the correct baselines are not employed. Hence, more 
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sophisticated anomaly detection techniques have to be employed for leak predictions. Furthermore, 

since transmitting raw time series is associated with significant bandwidth requirements, instead, 

only the features extracted from the time series data are sent over the network to GCP. 

 

 

Figure 4.2  Typical time series for ambient and simulated leaks of size A, size B, size C and size D 

leak1 data collected from Hydrant 3. 

 

4.4 Feature extraction 

One of the main pre-processing steps is the extraction of features and the associated calculations 

(algorithmic steps to calculate the features). Such feature calculations could be undertaken either on 

the micro-controller board (Teensy 3.6) or on an external computer by ingesting the hydrophone data 

from the microcontroller unit. Direct implementation on the micro-controller was not undertaken for 
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this thesis and the feature calculations were emulated on a computer laptop and on a Raspberry Pi 3 

as though they could be processed after ingesting the data from a storage device on-board the data 

acquisition system. 

Two features, RMS and spectral peak are deemed the most useful for anomaly detection, as reported 

in a previous study (Cody, R. et al. 2017). The programming language used in this thesis for feature 

calculations was Python. RMS provides a measure of the energy contained within a fixed time 

segment of time series data and is calculated using the equation:  

                                                  (1) 

where, xi represents the time series data value and n represents the length of the samples used to 

calculate the RMS, which is 4000 (sampling frequency is 4 kHz, which corresponds to a 1 sec RMS). 

While RMS provides a notion of the time-averaged energy content, spectral peak is the maximum 

value in the array of elements obtained by carrying out discrete Fourier transform (DFT) on the time 

series data.  DFT is the discrete version of the FT which transforms a time signal (or a discrete 

sequence) from the time domain representation to its frequency domain representation. This 

transformation (discrete case) is mathematically defined by (Cooley, J. W. et al., 1965):  

                                  (2) 

where, N is the number of elements in the sequence, xn represents the time domain values 

(hydrophone data), is a primitive Nth root of unity. DFT converts equally spaced samples 

from the time domain to the frequency domain, where the number of transformed points in the 
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frequency domain remains the same as in the time domain. Time complexity of DFT calculation of 

n data points by using the definition given in the mathematical equation (2) is O(n2). This means that 

for large transforms (n is large), time taken by DFT is very large (quadratic time). To reduce the 

computing time of large transforms, more complex but less time-consuming algorithm, the fast 

Fourier transform (FFT) is used. FFT is an efficient algorithm which computes DFT (Cooley, J. W. 

et al., 1965 and Press, W.  et al., 2007) on a pre-specified number of fixed frequency points (2N, 

where N is an integer) and the time complexity of FFT is O(n log n) (quasilinear time) which is far 

less than O(n2) for n>1. Since FFT is faster and efficient, this is used as a feature in this thesis.  

RMS and spectral peak features are calculated on the data collected for every second. For example, 

for a time series containing 160,000 rows of hydrophone data, the number of feature rows is 40 for 

each feature (40 x 2 matrix). The features calculated on the time series data were sent at an interval 

of 1 second from the emulator to GCP using HTTP POST request. The implementation (coding) 

details of emulators and GCP cloud components are discussed in Appendix A.  

 

4.5 Sensitivity analysis 

Sensitivity analysis was performed on various acoustic time-series data sets. The first data set 

consisted of training (ambient only) and testing data (ambient and leak data) collected on the 13th of 

October 2018. The second data set consisted of training (ambient only) and testing data (ambient and 

leak data) collected on the 21st of October 2018. The third data set contains training data (only 

ambient) from the 19th, 20th and 21st of October and testing data (both ambient and leak) from the 

21st of October 2018. The main motivation for this analysis is to investigate the sensor locations 

which were sensitive to Leak 1 and locations which were sensitive to Leak 2. The details of the 
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number of features used for this sensitivity analysis towards Leak 1 are provided in the Table 4.1 

and those corresponding to Leak2 are provided in Table 4.2.  

 

From the results in Table 4.1 and Table 4.2, it is clear that significant compression of data is achieved 

by calculating the features rather than using the raw time series on their own. For example, the total 

number of feature sets from Table 4.1 and Table 4.2 taken together is nearly 85,000, which is a 

significant reduction from the original 340x106 discrete time values in the original data. This 

reduction results in a reasonably small number of data values which need to be processed for the 

ensuing sensitivity analysis. 

 

 

1st 

dataset  number of features sets 

Hydrant 

ambient 

training 

(13th of 

October, 

2018)  

ambient 

testing 

(13th of 

October, 

2018) size A size B size C size D 

1 4762 180 179 179 179 179 

2 4762 180 180 180 180 180 

4 1596 180 181 181 182 181 

5 1596 180 180 180 180 180 

 

Table 4.1 The number of features sets used for sensitivity analysis for Leak 1. 
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 2nd and 

3rd 

datasets Number of feature sets 

Hydrant 

ambient training 

(19th and 20th and 

21st of October, 

2018)  

ambient 

training 

(21st of 

October, 

2018) 

ambient 

testing data 

(21st of 

October, 

2018) 

size A 

(21st of 

October, 

2018) 

size B 

(21st of 

October, 

2018) 

size C 

(21st of 

October, 

2018) 

size D 

(21st of 

October, 

2018) 

1 11505 547 180 180 60 60 180 

2 12208 547 180 179 178 60 180 

4 12120 502 180 193 194 194 193 

5 12258 502 180 180 178 180 180 

6 12661 1540 180 179 179 180 179 

 

Table 4.2 The number of features sets used for sensitivity analysis for Leak 2. 

 

To test the sensitivity of the instrumented hydrant locations to Leak1, the first data set was considered 

which consisted of October 13th ambient data and Leak 1 data for all sizes. The feature graphs for 

sizes A, B, C and D for all the hydrants for which the data was available are shown in Figures 4.3, 

4.4, 4.5 and 4.6. From a simple observation of the feature clusters, it readily apparent that the 

instrumented Hydrant 3 is senstive (the ambient and leak classes are separable) to Leak 1 for sizes 

A, B and C. The instrumented Hydrant 4 is also sensitive to Leak 1, but only for large leak sizes such 

as A and B. Hydrant 3 is sensitive to Leak 1 (sizes A, B and C) because Hydrant 3 is the closest 

hydrant to Leak 1 (at a distance of 109.1m) on the  map (Figure 4.1). The next hydrant that is closer 

to Leak 1 is Hydrant 4 (at a distance 110.7m from Leak1 (figure 4.1)). So Hydrant 4 is also sensitive 

to Leak 1(but only for sizes A and B). So it can be concluded that the data collected at an instrumented 

hydrant that is the closest to a leak shows the highest sensitivity towards that leak and sensitivity 

towards a leak  is directly proportional to distance of the hydrant location where the data is collected. 



 

69 
 

 

Figure 4.3 Feature graphs of ambient and leak (size A) data from October 13th, for various 

hydrants. 

 

Figure 4.4  Feature graphs of ambient and leak (size B) data from October 13th, for various 

hydrants. 
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Figure 4.5 Feature graphs of ambient and leak (size C) data from October 13th, for various hydrants. 

 

Figure 4.6 Feature graphs of ambient and leak (size D) data from October 13th, for various hydrants. 
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The sensitivity analysis was carried out on Leak 2 as well to confirm that the distances of the 

instrumented hydrants from a leak play a major role in determining whether the features extracted 

(from the data collected) from those hydrants show sensitivity towards that leak. 

Figures  4.7, 4.8, 4.9 and 4.10 show the two-dimentional feature plots of ambient data and Leak 2 

data conducted on the October 21st 2018, for sizes A, B, C and D at various instrumented hydrant 

locations. It can be seen from the feature maps that the instrumented Hydrant 5 is senstive to leak 2 

(as the ambient and leak cases are clearly seperable into two distinct classes), sizes A, B and C. 

However, none of the instrumented hydrants are sensitive to size D Leak 2. From the above 

discussion, it is clear that the features RMS and spectral peak can be used to observe the sensitivity 

of instrumented hydrants towards various leaks and that the data collected from instrumented 

hydrants that are closer (upto a distance of around 120 meters) to the leaks show more sensitivity 

towards that leak. 

 

Given that the instrumented Hydrant 3 is more sensitive to Leak 1 and the instrumented Hydrant 5 

is more sensitive to Leak 2 compared to other hydrants, the results of prediction using OCSVM 

algorithm (using Sklearn Python code library) are presented for the instrumented Hydrants 3 and 5 

in Table 4.3 and Table 4.4, respectively. These results are discussed later in this Chapter after 

evaluating the prediction model. The process of training the OCSVM algorithm, evaluating the 

performance of each model (through grid search) and obtaining the prediction results are provided 

next.  
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Figure 4.7 Feature graphs of ambient and leak (size A) data from October 21st, for various 

hydrants 
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Figure 4.8 Feature graphs of ambient and leak (size B) data from October 21st, for various hydrants 
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Figure 4.9  Feature graphs of ambient and leak (size C) data from October 21st, for various 

hydrants. 
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Figure 4.10 Feature graphs of ambient and leak (size D) data from October 21st, for various 

hydrants. 
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4.6 Training OCSVM and prediction 

The model used in this thesis is based on OCSVM which is based on Scikit-learn Python library. 

Though there are many leak detection methods such as artificial neural network (ANNs) (Mounce, S. R. et 

al., 2010, Aksela, K. et al., 2009, Romano, M. et al., 2011, Yang, J. et al., 2010) available, they need a 

significant amount of historical data for training. Previous studies employing leak detection performed on the 

same data sets showed that the semi-supervised OCSVM method provided good anomaly detection results 

(Cody, R. et al., 2018). OCSVM is a well-established anomaly detection algorithm (Scholkopf et al., 2001) 

which only requires training data from the baseline state of the system in order to determine if the new data 

belongs to the known baseline data class or if it is unknown. There are a number of kernels available to use 

with this algorithm such as linear, polynomial, sigmoidal and Gaussian radial basis functions (RBF). The 

linear kernel can classify very large leaks (from Figures 4.3 and 4.7) as the classes are clearly separable. 

However, to classify smaller leaks (of sizes B and C, where the classes show some overlapping as in Figures 

4.4, 4.5 and 4.9), RBF is more suitable as it can classify datasets which are non-linearly separable. Since RBF 

can classify more cases (sizes A, B, and C) compared to linear kernel (size A), RBF is selected as the kernel 

for OCSVM training. 

 

The algorithmic details of OCSVM are provided in Appendix B. The OCSVM algorithm is trained 

with only the ambient data on the test day. For example, to test the performance of OCSVM on the 

October 13th, ambient data from the October 13th is treated as the baseline data and used to train the 

OCSVM algorithm for various values of hyper parameters (the parameters for tuning the 

performance of the algorithm), gamma and nu. For the current OCSVM implementation, the 

parameter gamma takes 8 values on an equally spaced logarithmic scale ranging between -6 and 1 

(1e-06 to 10 on a linear scale). The parameter nu takes 10 values on an equally spaced linear scale 
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ranging between 0.01 and 0.99. Hence, for 80 combinations of gamma and nu, the OCSVM is trained 

(grid search) and for each model or for each combination of gamma and nu, the test set consisting of 

50% ambient case and 50% leak case of size A (in this case Oct 13th test data) is presented and the 

labels (+1 for ambient and -1 for Leak case) are predicted. These predicted labels along with the true 

labels (the expected labels of the test data) are used to check the performance of the trained model.  

 

Along with prediction accuracy (true positive), other metrics are used to demonstrate the 

performance of the OCSVM model. In order to take false negatives and false positives also into 

account along with true positives, the metrics Precision, Recall and F1 scores are calculated. The 

definitions for the aforementioned three scores, precision, recall and F1, are given next.  

 

Precision: This score is defined as the ratio of number of true positive labels to the sum of the number 

of true positives and false positive labels in the prediction result (given in the mathematical 

expression 3). This is calculated using the below mathematical expression 

Precision = tp / (tp +fp)                                                                                           

                                                                                                                                                  (3) 

With respect to leak, tp here is number of leak cases that are predicted correctly and fp is the number 

of ambient cases that are predicted as leak cases. The precision score is a floating-point number 

which can take values between 0 and 1, 0 being the worst and 1 being the best. Intuitively, precision 

score is an indicator of the ability of the trained model (the classifier) not to label as positive, a 

sample that is negative. For example, if the precision score is high for the case of a leak, then the 

model is most likely to predict the case as leak.  
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Recall: This score is defined as the ratio of true positives to the total number of true positives and 

false negatives (given in the mathematical expression 4). With respect to a leak, this is the number 

of leak cases predicted correctly to the sum of number of leak cases predicted correctly and number 

of leak cases that are predicted as ambient cases. Intuitively, the recall score indicates the ability of 

the trained model to find all the positive samples (or the sample of interest, leak in this case). Recall 

score is a floating-point number which can take values between 0 and 1, 0 being the worst and 1 

being the best. 

 

Recall = tp / (tp +fn) 

                                                                                                                                                   (4) 

F1: This is the weighted average score of Precision and Recall, which is a floating point number 

which can take values between 0 and 1, 0 being the worst and 1 being the best. The relative 

contribution of precision and recall to F1 score is equal and is given by the mathematical expression 

5. 

 

F1 = 2 * (precision * recall) / (precision + recall) (5) 

Though the F1 score is often adequate to evaluate the performance of the trained model, Precision 

and Recall scores are also used to provide better insight into the model. These scores are calculated 

for both ambient and leak cases separately.                                                                                                                                                   

 

In the process of finding the best generic model which can correctly classify leak and ambient cases, 

the model which results in the best F1 score for size A leak is selected after the Precision score, 

Recall score and F1 scores are calculated for each combination of the hyper parameters (gamma and 
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nu). The model with the highest F1 score is then tested for sizes B, C and D leaks. From the results 

in Tables 4.3 and 4.4, it can be seen that sizes A, B and C leaks (for both Leak 1 and 2) are predicted 

with high F1 scores as their features were clearly separable from the features associated with the 

ambient data (in Figure 4.3 through 4.5 and 4.7 through 4.9), whereas for size D leak case, the F1 

scores are relatively low as their features are not clearly separable in the feature space (in Figures 

4.6 and 4.10). The prediction results for Leak1 for the instrumented Hydrant 3 corresponding to the 

October 13th, 2018 test date shown in the Table 4.3 was obtained by training the OCSVM algorithm 

only with the ambient data corresponding to the October 13th for the instrumented Hydrant 3.  For 

the leak sizes A, B and C, the Recall scores are high, however the Precision scores are lower 

compared to the Recall scores. This means that most of the leak cases were identified as leaks (and 

a small number of leak cases were identified as ambient), and many ambient cases were identified 

as leaks.  

 The prediction results for Leak 1, for the October 21st test data, are shown in the Table 4.4. These 

results were obtained by training the OCSVM algorithm with the ambient data from the October 

13th, 19th, 20th test dates and a small portion of the ambient data from October 21st. It can be seen 

from the results in Tables 4.3 and 4.4 that the F1 scores for sizes A, B and C are better compared to 

the results from the October 13th. Similarly, Table 4.5 shows that the prediction results can be 

improved when training data from previous days are also included to train the prediction model for 

the Leak2 case. These observations show that as more training data is made available, the prediction 

model becomes more generic and provides good prediction capability and so, the model needs to be 

updated frequently for achieving good prediction performance. However, the fine-tuning of the 

model and a detailed investigation into the factors governing leak detection performance is 
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considered beyond the scope of this thesis and these results are provided only for the sake of 

completeness of the IoT implementation, the latter being the main focus of this thesis.   

For 13th ambient train data, 13thambient test and leak test data 

  gamma =0.000001, nu =0.2278 

size of the leak precision score recall score F1 score overall accuracy 

A 0.79 1 0.88 0.87 

B 0.79 0.99 0.88 0.86 

C 0.78 0.96 0.86 0.85 

D 0.36 0.15 0.21 0.44 

 

Table 4.3 Accuracies of prediction using OCSVM for various leak sizes for Leak 1, Hydrant 3 for 

October 13th training and testing data. 

 

For 13th, 19th, 20th, 21st ambient train data, 21st ambient test and leak test data 

  gamma = 0.001, nu = 0.1189 

size of the leak precision score recall score F1 score overall accuracy 

A 0.98 1 0.99 0.99 

B 0.98 1 0.99 0.99 

C 0.98 1 0.99 0.99 

D 0.95 0.27 0.42 0.62 

 

Table 4.4 Accuracies of prediction using OCSVM for various leak sizes for Leak 1, Hydrant 3 for 

October 13th, 19th, 20th and 21st training data and October 21st testing data. 

 

19th, 20th, 21st ambient training, 21st ambient test and leak test 

  gamma = 0.000001, nu = 0.1189 

  precision score recall score F1 score overall accuracy 

A 0.9 1 0.95 0.95 

B 0.9 1 0.95 0.95 

C 0.9 1 0.95 0.94 

D 0.53 0.11 0.18 0.51 

 

Table 4.5 Accuracies of prediction using OCSVM for various leak sizes for Leak 2, Hydrant 5 for 

October 19th and 20th training and 21st October testing data 
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From the results in Tables 4.3, 4.4 and 4.5, the overall accuracies (which is a combination of 

ambient and leak test case accuracies) match the corresponding F1-scores. Hence, overall accuracy 

can also be used to evaluate the performance of OCSVM. F1-score, precision score and recall score 

provide additional insight into the performance of the algorithm. 

 

4.7 Summary 

The following observations can be made based on the results of development and testing of the leak 

detection IoT framework using GCP. The cloud technology was successfully deployed in solving the 

challenge of storing and processing a large amount of data collected from the IoT edge devices 

(emulators). The cloud processing pipeline was able to perform prediction on both live data 

(simulated) and batch data. The protocol such as HTTP was necessary for the communication 

between different systems (data sources (emulators) and data processing system (GCP)) and to 

ensure interoperability. Reducing the raw data to features was necessary to reduce the processing 

and transmission cost. The selected features RMS and spectral peak when used together successfully 

identified very large (200 litres/minute outflow), large (100 litres/minute outflow) and medium (50 

litres/minute outflow) leaks. OCSVM algorithm with RBF kernel performed very well in identifying 

large and medium sized leaks. Recall and Precision scores provided valuable insight into the 

performance of prediction algorithm OCSVM and the sensitivity analysis showed that the distance 

of an instrumented hydrant from a leak plays an important in determining whether features extracted 

from the data collected from that hydrant show sensitivity towards leak. The closer the hydrants are 

to a leak, the better the sensitivity (towards that leak) exhibited by the features extracted from the 

hydrants’ data.  
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Chapter 5  5 Conclusions and Recommendations 

 

  5.1 Conclusions 

 
This thesis focuses on an IoT implementation using Google Cloud Platform (GCP) and provides a 

detailed design and implementation of the cloud framework that is scalable, secure and able to 

analyze both real time as well as batch data collected from IoT devices attached to water distribution 

network for leaks. The processing capabilities of the framework shows that the concept of cloud 

based IoT solution for leak detection in WDN is viable and can provide a powerful means for utilities 

to carry out intervention strategies in continuous monitoring settings. The main conclusions of this 

study along with the conclusions resulting from the implementation are described next. 

 

5.1.1 Overall framework performance 

In terms of the overall performance of the IoT based leak detection framework presented, the 

following main conclusions can be drawn: 

 

 The framework was able to process data from two different emulators running two different 

platforms (Hologram Cloud and a custom Python program running on windows OS), which 

shows that this framework supports data from multiple sources through HTTP protocol.  

 Feature extraction at the sensor node level allows for lower data transmission overhead and 

processing costs by reducing raw time-series data to only the pertinent information required 

for the machine learning algorithm. This could have significant implications for real-world 

implementation employing hundreds and possibly thousands of IoT sensors at a city scale.  
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 Security is ensured at each stage on GCP. For example, the data ingestion layer on GCP 

embeds two types of authentication such as API key authentication and OAuth2.0 

authentication. Similarly, on Cloud Storage, client-side encryption and server-side 

encryption ensures data security. In Cloud Dataflow pipeline communication with GCP 

sources and sinks are encrypted and the communication is carried over HTTPS while all inter-

worker communication is carried over a private network. 

 Though the framework used emulators to emulate live stream of acoustic pressure data 

coming from hydrophones attached to hydrants, the thesis did not employ synthetic data and 

the decision making sub-system of the framework was tuned using actual data. Also, the 

classification algorithm used in this thesis does not require all possible cases to set a baseline. 

Hence the framework can be confidently used to classify the data in a live WDN when 

emulators are replaced by the actual data collection sub system, without making any changes 

to the overall framework. 

 Since GCP is integrated with easy to use and powerful machine learning API (since it is 

integrated with Sci-kit learn and Tensorflow Python libraries), the task of data analysis was 

relatively straight-forward. 

 Auto-scaling infrastructure on GCP provided scalability at every stage of data life cycle (such 

as data ingestion, storage, processing and result visualization) without user intervention. 

 Since the GCP is based on distributed computing, it is fault tolerant and so are the data 

analysis and decision-making layers in the leak detection framework. 

 Decision support sub-system used a simple, yet powerful decision-making algorithm, 

OCSVM with Gaussian RBF kernel. The model used in this thesis was able to detect very 

large, large, and medium-sized leaks and ambient cases. However, a model which can classify 
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very small leaks remains to be developed. OCSVM was able to detect a majority of the leak 

types and ambient cases with minimal training (only with ambient labeled data). This is ideal 

for use in live WDNs, where it is extremely difficult to obtain labeled data for the leak cases 

whereas obtaining ambient data is relatively simple. 

 

5.2 Recommendations for future work 
 

This thesis presented an effective, scalable, and secure framework which can be deployed at scale to 

detect leaks in WDNs. This work is by no means exhaustive and there is still room for improvement 

in many areas. The following list summarizes some of the key areas for improvement. 

 While leak detection was demonstrated and the instrumented hydrant (from where the data 

was collected) that is close to the leak was identified, leak localization (the exact leak 

location) was not implemented, which could be a future task. 

 Live testing (in a live WDN) was not undertaken in this thesis, mainly due to the difficulty 

in finding industry partners. This framework could be deployed in an actual WDN and its 

performance could be evaluated in the future. 

 The framework can currently support data sources which rely on the HTTP protocol. The 

framework can be broadened to support other communication protocols such as MQTT and 

to support greater interoperability. 
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Appendix A 
 

Details of Implementation 
 

 

Introduction 

The details of implementation of emulators (Python client on Raspberry Pi, Hologram cloud, Python 

client on a laptop computer), Cloud Functions, Cloud Dataflow, Cloud ML, Cloud SDK, BigQuery 

and AI Platform Notebook are provided in Appendix A. 

 

Data acquisition layer 

The initial phase of data collection from WDN, data pre-processing and feature extraction were 

discussed in chapter 4. So only the implementation details of the rest of the IoT components are 

given here. 

Emulators 

Python client on Raspberry Pi 

Common IoT device, the Raspberry PI was also used in the implementation pipeline. Python 3.7 

along with the Hologram Python SDK was installed to enable communication between the Raspberry 

Pi and a USB cellular modem, Hologram Nova. The features calculated from the hydrophone data 

were sent in the JavaScript Object Notation (JSON) format using hologram.sendMessage function 

syntax of the Hologram SDK as follows: 
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hologram.sendMessage("{“rms”: ”10.11”, ”spectral_peak”:”33.23”, ”label”:”-1”, 

“hydrant”:”h3”}")  

JSON is a language independent data format that is human readable and consists of data in key value 

pairs. In the above JSON message example, label 1 is associated with ambient data and -1 for leak 

data. Data is identified by its location, hydrant value, for example “h3” is the data captured 

from the field hydrant h3, which is located at the address, 30 Paulstown in Guelph, as described in 

Chapter 3. 

Hologram Cloud 

Hologram Cloud was configured to automatically transmit the data received from Raspberry Pi to 

the GCP Cloud Function by configuring a set of parameters for a webhook (an HTTP POST request 

provided in the form of web UI). The configuration included providing the right destination URL, 

I.e. GCP Cloud Function URL along with a device identification number of the Hologram modem, 

timestamp of receiving JSON data and the API key provided by GCP. They were separated by the 

symbol “&”. In the header section, x-auth-token was provided, which consisted of a base-64 encoded 

username and password for the Hologram cloud. The following sample explains the route 

configuration. 

Fields Subfields Values 

URL  https://us-central1-uw-cive-700-

1.cloudfunctions.net/Login?device=<<device_id>>&timestamp=<<received>> 

PAYLOAD  <<decdata>> 

HEADERS content-

type 

application/json 

 

https://us-central1-uw-cive-700-1.cloudfunctions.net/Login?device=%3c%3cdevice_id%3e%3e&timestamp=%3c%3creceived
https://us-central1-uw-cive-700-1.cloudfunctions.net/Login?device=%3c%3cdevice_id%3e%3e&timestamp=%3c%3creceived
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x-auth-

token 

dGVzdC50ZXN0QHRlc3QuY29tOnRlczEyMzoi 

Apikey MIzaMyCugA9sAgpUhGVH0KtXbACPyHP8OPrpNLX 

Table 1 Route configuration for the webhook on hologram cloud 

The features received by Hologram from Raspberry Pi 3 is transmitted by HTTP POST request to 

GCP, which is explained in the next section. 

Python client on laptop 

The laptop used as a Python client runs Python 3.7 on a 64-bit, Windows 10 OS, which sends the 

data using HTTP POST requests to Cloud Functions. Emulators first send the authentication 

information to GCP and upon passing this authentication stage the features are transmitted to the 

GCP. The implementation of two types of authentication are discussed next. 

(i) API key authentication: A typical HTTP POST request with API key authentication looks 

like: 

res=requests.post(“https://us-central1-uw-cive-700-

1.cloudfunctions.net/Api_Key_Demo_ML?key=AIzaSyAvLhEDXnG2h8ES6He76eW8wkFyOm6jiq

E&device=156790&timestamp=31-07-2019T12:12:12”, json={"rms": "10.11", 

"spectral_peak": "33.23", "label": "-1", "hydrant" : "h3"}, headers={'X-Auth-

Token': base64.b64encode(bytes(combined_string, encoding='utf8'))}) 

The requests.post is a python function syntax to send an HTTP POST request consisting of a 

website address as the first argument which represents GCP Cloud Function, which is an ingestion 

component of the GCP. The URL also consists of an API key, device identification number, and 

timestamp corresponding to the time of request to the GCP. The second argument in the 
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requests.post is the data represented in JSON. The third argument of requests.post function 

syntax is the header which consists of the base64 encoded username and password.  

Base-64 is a binary-to-text encoding scheme where each digit represents 6-bits of data. If an ASCII 

(subset of UTF-8) string is represented by three 8-bit bytes total 24 bits), then the Base64 converted 

string contains four 6-bit data (total 24 bits). A simple example is shown in Table 2, where the string 

“Cat” is converted to “Q2F0” in Base64 encoding.  

Table 2 UTF-8 and base64 character encoding. 

(Note: UTF-8 is a type of encoding defined by Unicode which defines standards to maintain consistency in representing text in the 

computing industry around the world.) 

(ii) OAuth2.0 authentication: requests.post function syntax for OAuth2.0 authentication is 

of the format similar to that of API_Key request.post, except for the header section and a 

couple of other arguments such as Device Id and API_KEY as the requests.post is sent 

from emulator after the authentication process is completed. A typical requests.post for 

Oauth2.0 is as follows: 

 res=requests.post(“https://us-central1-uw-cive-700-

1.cloudfunctions.net/OAuth_Demo_ML?timestamp=31-07-2019T12:12:12”, json={"rms": 

"10.11", "spectral_peak": "33.23", "label": "-1", "hydrant" : "h3"}, headers={}) 

 

ASCII 

or 

UTF-8 

chara

cter 

C A T 

8-bit 67 (0x43) 97 (0x61) 116 (0x74) 

Bits 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0 

Base64 6-bit 16 54 5 52 

Chara

cter 

Q 2 F 0 

 81(0x10) 50 (0x36) 70 (0x05) 48 (0x34) 
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Data analysis and decision-making layer 

To use the GCP subcomponents, the first step is to enable them on the GCP website. The coding 

details on various GCP components were based on the documentation provided by Google on 

GCP[8].  

Ingestion 

Cloud Function 

Cloud Function acts as the ingestion component for GCP, which is a web application written in Flask 

framework running Python code. Cloud Function in this thesis is customized to handle HTTP POST 

requests using the trigger type HTTP. To run the Python code, the library dependencies or the 

additional code needed were added in requirements.txt on Cloud Functions user interface(UI), as 

shown below: 

# Function dependencies, for example: 

# package>=version 

google-cloud 

google-cloud-pubsub 

 

requirements.txt file is a file containing a list of items to be installed by pip install (which is a package 

manager for Python) before the Python code is actually run on VM. The above code snippet shows 

that Google Cloud and Cloud Pub/Sub packages need to be installed on the virtual machine (VM) 

where the code is run on the cloud. So before the code is run the above mentioned packages are 

installed on the VM when the Cloud Function code is run on VM. 

For the API key case, environmental variables API_KEY, DEVICE_ID, X_AUTH_TOKEN were 

specified. API_KEY was used to check whether the POST request sent contained the correct key. 
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The DEVICE_ID was used to check whether the device identification numbers sent by the emulators 

are correct. For OAuth2.0 request, API key check and device identification check are not made, as 

the authentication check is made by the Google server only once and only if the client passes the 

authentication the HTTP request reaches Cloud Function. 

Once the HTTP client was authenticated, the JSON data was verified by checking whether all the 

key values such as rms, spectral_peak, label, hydrant were present along with checking for 

the presence of time stamp that is a part of the URL in the HTTP request. If all the checks passed, 

then an ‘200: okay’ response was sent back to the calling function, either the Python client (in case 

of laptop emulator) or to a Hologram application (in case of Raspberry Pi 3 emulator). If the checks 

failed, then corresponding error messages were sent back to the calling function. If all the checks 

were passed, before sending ‘200:ok’ response back to calling function, Cloud Function created a 

new JSON and converted it into a byte string (as Cloud Pub/Sub could take the data only in byte 

string format as shown below) for Cloud Pub/Sub to ingest the data. This new JSON consisted of all 

the key value pairs from the emulators along with the timestamp that was a part of the URL in the 

HTTP post request sent by emulators.  

b'{"rms":"10.11","spectral_peak":"33.23","label":"-

1","hydrant":"h3","date_time":"2019-06-30T00:21:28"}' 

The JSON that was forwarded to Cloud Pub/Sub or any error message sent back to calling function 

could all be seen in Cloud Function log files. 
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Storage 

Cloud Pub/Sub 

On Cloud Pub/Sub UI, a topic “hydrophone” was created prior to the first request from the 

Python/Hologram client. When the messages arrive at Pub/Sub, it can be viewed on Pub/Sub page 

on GCP website. When the Cloud DataFlow job (which is a subscriber to the topic “hydrophone”) 

was created, it appeared on the list of subscribers on Cloud Pub/Sub subscriber list.  

Cloud storage 

As mentioned previously, Cloud Storage serves as both permanent and temporary storage functions 

in the GCP. On the GCP web UI, a bucket was created to act as a container for both folders and files 

by specifying a project ID as the name. Subsection Cloud ML describes how the ambient and leak 

data cases were uploaded along with a model file, stored and then used to train the Cloud ML for 

predictions on stream and batch data. Similarly, a temporary folder was created on Cloud Storage 

and used to store the files generated during Cloud DataFlow execution. To create temporary storage, 

the storage location is provided as a command line parameter (as “--temp_location gs://uw-

cive-700-1/tmp/”) during the executing of Cloud DataFlow code. These files and folders are 

accessed by the programs by specifying the fully qualified name of that file or folder, as given by: 

gs://<bucket-name>/foldername1/foldername2/../filename. 

Data analysis 

Cloud Dataflow 

Cloud Dataflow constitutes the data analysis component in the overall GCP architecture. Two types 

of Cloud Dataflow pull subscribers are used in this thesis: 
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(i) Case 1: First pull subscriber calculates prediction on each data element of the stream and 

outputs the prediction to a BigQuery table.  

(ii) Case 2: The second subscriber maps the incoming JSON to an output table from which a 

Python script running on AI Platform Notebook selects a set of rows between time stamps 

specified and performs batch prediction on the selected data. 

Case 1: This Cloud Dataflow code was developed and tested initially on a local machine prior to its 

deployment on GCP. Since it was a user defined code, a service account was created so that the code 

could access other Google APIs such as Cloud Pub/Sub, BigQuery, Cloud Storage and Cloud ML. 

Service account is the identity that applications use for authentication with Google API, without 

embedding any keys or user credentials in the application code. The service account key file 

<service-account-filename.JSON> was obtained by creating a service account and providing the 

details such as the name of the service account, the level of permission. The environment variable 

GOOGLE_APPLICATION_CREDENTIALS was set to use the service account information in the code, by 

running the following command on the local command prompt:  

set GOOGLE_APPLICATION_CREDENTIALS="<path to keyfile.JSON>”.  

Apache-beam framework required to run the Cloud Dataflow code was installed using the following 

command: 

<path of the python directory>python.exe –m pip install apache-beam[gcp] 

Before deploying the Cloud Dataflow code on GCP, the code was run on a local machine, using 

Python which ran on Python Integrated Development Environment (IDE) PyCharm 2018.3.5. In the 
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configuration section, provided the following command line parameters which were needed by the 

DataFlow program. 

--input_topic projects/uw-cive-700-1/topics/hydrophone --output_table "uw-cive-

700-1:demo3.test" --project uw-cive-700-1 --temp_location gs://uw-cive-700-

1/tmp/ --staging_location gs://uw-cive-700-1/staging/ --runner DataFlowRunner 

 

--input_topic:   fully qualified path of Cloud Pub/Sub topic 

--output_table:  fully qualified name of the BigQuery where the prediction result along  

                                   with other values are stored.  

--project:      project name 

--temp_location: location on the Cloud Storage where the intermediate files from cloud    

                                   dataflow execution are stored. 

--staging_location: Cloud Storage path for staging the binary file of the Cloud Dataflow code. 

                   

--runner:        DirectRunner/DataFlowRunner 

 

A fully qualified topic has the structure projects/<project-name>/topics/<topic_name>. The project 

name used in this thesis was uw-cive-700-1 and the topic name is hydrophone. A fully qualified table 

has the structure <project-name>:<dataset-name>.table-name. A project consists of one or more data 

sets, where the data set consists of one or more tables.  

Dataset-name and table names used were demo3 and test, respectively. So the fully qualified table 

name is uw-cive-700-1:demo3.test. temp_location was taken as gs://uw-cive-700-

1/tmp/, where tmp is a folder under the bucket uw-cive-700-1. While the bucket and project 

names can be different, in this thesis they were retained to be the same. Bucket storage class was 

regional and us-cental1-a was selected for the region and zone. A folder named staging under the 

bucket was used for staging the Cloud Dataflow code executable file. Streaming was enabled in the 
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Python code for Cloud Dataflow. The Cloud Dataflow code was executed on local machine with –

runner set to DirectRunner in the command line parameters. After it was run successfully, the 

same Cloud Dataflow code was run on local machine with runner set to DataFlowRunner in 

command line parameters. When the code was executed, a pipeline was created on the cloud. Each 

data element of the incoming stream was decoded to utf-8 and keys and values of JSON were 

extracted by the Cloud Dataflow code. Values of the keys RMS and spectral peak were presented to 

the machine learning module, which in turn calls the training module and returns the prediction 

results to Cloud Dataflow. JSON data containing results and corresponding features and label, was 

sent to Bigquery to add it to the table test. An example of JSON data sent is given below: 

{"rms":"10.11","spectral_peak":"33.23","label":"-1","hydrant":"h3",”result”:”-

1”,"date_time":"2019-06-30T00:21:28"} 

Case 2: For mapping input stream data to BigQuery output table, a readily available dataflow 

template provided by GCP was used. This type of job was created by selecting “Cloud Pub/Sub topic 

to BigQuery” option on the template list and providing all the necessary details such as fully qualified 

BigQuery table name, name of the Cloud Dataflow job, temporary Cloud Storage location, region, 

fully qualified Cloud Pub/Sub topic name as in Case 1. The template to create a Cloud Dataflow job 

using the GCP provided template is shown in Figure 1. 
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Figure 1 Dataflow job creation template. 

When the job is running, it can be monitored used the job details shown in the Figure 2(a) and (b). 

Each operation on the data is represented by a rectangular box, which when highlighted as shown in 

Figure 2(a) provided the details such as how many data elements are processed and number of bytes 

processed. Similar pipeline appears for Case 1 as well when the job was deployed on to the GCP. 

Fig. 2(b) provides the overall job summary including Apache-beam version used, memory usage and 

CPU usage. Errors/any execution details at any stage of execution could be seen using Stackdriver 

logs. 
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Figure 2 (a). Dataflow job details for monitoring the DataFlow execution 

 

Figure 2 (b). Dataflow job details for monitoring the DataFlow execution. 
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Cloud ML 

Prior to deployment on the cloud, the following steps were taken so that Cloud ML is accessible by 

Cloud Dataflow to obtain the prediction results.  

(i) AI-Platform Notebook API was enabled. 

(ii) On the web UI, Cloud Shell, which is a command line interface (CLI) with Cloud SDK was 

used to run the commands in the following steps. 

(iii) gcloud package was updated by running the command gcloud components update. 

(iv) Scikit-learn and Pandas packages were installed by running the following command: 

i. pip install --user scikit-learn pandas 

(v) Following commands were run to set the environment variables: 

BUCKET_NAME="uw-cive-700-1" 

JOB_NAME="hydrant3_scikit_learn_20190624_115958" 

JOB_DIR=gs://$BUCKET_NAME/ 

MODEL="Hydrant3_train_sklearn" 

MODEL_NAME="Hydrant3_train_sklearn" 

MODEL_DIR="uw-cive-700-1/hydrant3_20190624_171650" 

TRAINING_PACKAGE_PATH="./hydrant3_sklearn_trainer/" 

MAIN_TRAINER_MODULE="hydrant3_sklearn_trainer.hydrant4_sklearn" 

REGION=us-central1 

PYTHON_VERSION=3.7 

SCALE_TIER=BASIC 

PROJECT_ID="uw-cive-700-1" 

FRAMEWORK="SCIKIT_LEARN" 

INPUT_FILE="input.json" 

TEXT_INSTANCES="text_file" 

VERSION_NAME="v1" 

RUNTIME_VERSION=1.13 
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(vi) echo command was run on each of the above set environment variables to determine if the 

variables show the values that were set.  

(vii) Hydrant3_sklearn.py file which trains the model was written under the folder 

hydrant3_sklearn_trainer. The training part of the code was tested on local machine 

before it was uploaded on to GCP. The program hydrant3_sklearn.py contains the code 

subprocess.check_call(['gsutil', 'cp', os.path.join(data_dir,'AmbHydr3'), 

'AmbHydr4'], stderr=sys.stdout) and subprocess.check_call(['gsutil', 'cp', 

os.path.join(data_dir,'LeakHydr3'), 'LeakHydr3'], stderr=sys.stdout) to 

upload the local training data file AmbHydr3 and LeakHydr3 on to Cloud Storage. The 

program reads the above mentioned files and trains the model.  

(viii) The following command was run and its success status was tracked on GCP 

console/webUI under AI-Platform Jobs section. This command exported the model to 

model.joblib file and stored it on Cloud Storage under the path uw-cive-700-

1/hydrant3_20190624_171650. 

gcloud ai-platform jobs submit training $JOB_NAME --job-dir $JOB_DIR --package-

path $TRAINING_PACKAGE_PATH --module-name $MAIN_TRAINER_MODULE --region $REGION 

--runtime-version=$RUNTIME_VERSION --python-version=$PYTHON_VERSION --scale-tier 

$SCALE_TIER 

AI-Platform organized the trained models and their versions. This was done by creating a model and 

its version and linking them to model.joblib.This model.joblib is used by Cloud Dataflow and 

AI Platform Notebook Python code for prediction. 
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Visualization of results 

BigQuery 

Big query acts as a permanent storage for data and data analysis results. It provides data for batch 

processing as well as for result visualization. It stores the data in the table format which can accessed 

using standard query language (SQL) queries. An example of a simple SQL query to retrieve all the 

rows of a table test that belongs to data set demo3 and project uw-cive-700-1, between current 

time and last 10 minutes is given below, 

select * from `uw-cive-700-1.demo3.test` WHERE ((DATETIME_DIFF(CURRENT_DATETIME, 

PARSE_DATETIME('%Y-%m-%dT%H:%M:%SZ',  date_time), MINUTE))) <= 10; 

AI Platform Notebook 

AI Platform Notebook provides an interactive environment that comes integrated with machine 

learning tools such as scikit-learn and tensorflow for writing python code to perform data analytics. 

In this thesis, AI Platform Notebook was used to execute both batch analytics and extracting stream 

processing results from BigQuery. To access BigQuery, its library was installed by adding a line!pip 

install --upgrade google-cloud-bigquery[pandas] at the top of the AI Platform Notebook 

instance. SQL query similar to the one mentioned in the previous section was used to retrieve table 

rows that contained the data that was used in batch processing and visualization of results.  
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Appendix B 

One Class Support Vector Machine  (OCSVM) 

OCSVM[9] is an unspervised outlier detection method. Different kernel methods can be specified 

for decision making. Various kernel methods available for OCSVM are linear, polynomial, radial 

basis function (RBF) and sigmoid. They differ in the way they map the training data point to higher 

dimensions to create hyperplane decision boundary between the classes of data set. The default 

kernel used for OCSVM is RBF Gaussian. This default setting is used in this thesis. RBF is a real 

valued function whose value depends only on the distance from some point c in the Euclidean space, 

so that h (x, c) = h (‖x - c‖). If c is the origin, c=0, and h (x) = h (‖x‖). Commonly used RBF is of the 

Gaussian form which is:  

                                                               

where, x is an observation or data to be evaluated. N is the number of Gaussian kernels which is 

usually equal to number of data points in the training dataset. xi is the centre of ith Gaussian curve of 

the function h(x). wi is the ith weight that decides influence of Gaussian curve with centre xi on x. 

Curve with higher weight has higher influence on x. x belongs to the curve with highest weight which 

in turn decides which class x belongs to. 𝛾(gamma) must be greater than 0. 𝛾 is inversely 

proportional to the width of Gaussian curve. Higher the value of 𝛾, narrower the curve is. This leads 

to poor generalization. So care needs to be taken to find a good 𝛾 that leads to good generalization. 

In this thesis, as Python is used in classifying the data, using ocsvm, the details of python 

OneClassSVM class, its variables, methods are given below. OneClassSVM is a class of sklearn.svm 
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module. The following table provides various variables that belong to the class, their values and 

meanings.  

class sklearn.svm.OneClassSVM(kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0, 

tol=0.001, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, 

random_state=None) 

Type Name Value Meaning 

Parameters Kernel string, optional 

(default=’rbf’) 

Specifies the kernel type 

to be used in the 

algorithm. It must be one 

of ‘linear’, ‘poly’, ‘rbf’, 

‘sigmoid’, 

‘precomputed’ or a 

callable. If none is given, 

‘rbf’ will be used. If a 

callable is given it is used 

to precompute the kernel 

matrix. 

degree int, optional 

(default=3) 

Degree of the polynomial 

kernel function (‘poly’). 

Ignored by all other 

kernels. 

Gamma float, optional 

(default=’auto’) 

Kernel coefficient for 

‘rbf’, ‘poly’ and 

‘sigmoid’. Current 

default is ‘auto’ which 

uses 1 / n_features, if 

gamma='scale' is passed 

then it uses 1 / 

(n_features * X.var()) as 

value of gamma. The 
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current default of 

gamma, ‘auto’, will 

change to ‘scale’ in 

version 0.22. 

‘auto_deprecated’, a 

deprecated version of 

‘auto’ is used as a default 

indicating that no explicit 

value of gamma was 

passed. 

coef0 float, optional 

(default=0.0) 

Independent term in 

kernel function. It is only 

significant in ‘poly’ and 

‘sigmoid’. 

Tol float, optional Tolerance for stopping 

criterion. 

Nu float, optional An upper bound on the 

fraction of training errors 

and a lower bound of the 

fraction of support 

vectors. Should be in the 

interval (0, 1]. By default 

0.5 will be taken. 

Shrinking boolean, optional Whether to use the 

shrinking heuristic. 

cache_size float, optional Specify the size of the 

kernel cache (in MB). 

verbose bool, default: False Enable verbose output. 

Note that this setting 

takes advantage of a per-

process runtime setting in 

libsvm that, if enabled, 

may not work properly in 

a multithreaded context. 
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max_iter int, optional 

(default=-1) 

Hard limit on iterations 

within solver, or -1 for no 

limit. 

random_state int, RandomState 

instance or None, 

optional 

(default=None) 

Ignored. Deprecated 

since version 0.20: 

random_state has been 

deprecated in 0.20 and 

will be removed in 0.22. 

Attributes support_ support_ : array-

like, shape = 

[n_SV] 

Indices of support 

vectors. 

support_vectors_ support_vectors_ : 

array-like, shape = 

[nSV, n_features] 

Support vectors. 

dual_coef_ array, shape = [1, 

n_SV] 

Coefficients of the 

support vectors in the 

decision function. 

coef_ array, shape = [1, 

n_features] 

Weights assigned to the 

features (coefficients in 

the primal problem). This 

is only available in the 

case of a linear kernel. 

coef_ is readonly 

property derived from 

dual_coef_ and 

support_vectors_ 

Intercept_ array, shape = [1,] Constant in the decision 

function 

offset_ float Offset used to define the 

decision function from 

the raw scores. We have 

the relation: 

decision_function = 

score_samples - offset_. 
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The offset is the opposite 

of intercept_ and is 

provided for consistency 

with other outlier 

detection algorithms. 

The Following table provides the methods that belongs to OneClassSVM class, their input 

parameters, return values and the meaning of the method. 

 

Method Name Parameters Return values Meaning of the methods 

decision_function (self, X) X:array-like, shape 

(n_samples, 

n_features) 

dec: array-like, 

shape 

(n_samples,) 

Signed distance to the 

separating hyperplane. 

Returns the decision function 

of the samples. 

fit(self, X, y=None, 

sample_weight=None, 

**params) 

X: {array-like, sparse 

matrix}, shape 

(n_samples, 

n_features) 

Set of samples, where 

n_samples is the 

number of samples and 

n_features is the 

number of features. 

self : object Detects the soft boundary of 

the set of samples X. If X is 

not C-ordered contiguous 

array it is copied. 

sample_weight: array-

like, shape 

(n_samples,) 

Per-sample weights. 

Rescale C per sample. 

Higher weights force 

the classifier to put 
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more emphasis on these 

points. 

y: Ignored, not used, 

present for API 

consistency by 

convention. 

fit_predict (self, X[, y]) X: ndarray, shape 

(n_samples, 

n_features)Input data. 

y: ndarray, 

shape 

(n_samples,) 

1 for inliers, -1 

for outliers. 

Performs fit on X and returns 

labels for X. Returns -1 for 

outliers and 1 for inliers. 

y:Ignorednot used, 

present for API 

consistency by 

convention. 

get_params (self[, deep]) deep: boolean, optional 

If True, will return the 

parameters for this 

estimator and contained 

sub-objects that are 

estimators. 

params: 

mapping of 

string to any 

Parameter 

names mapped 

to their values. 

Get parameters for this 

estimator. 

predict (self, X) X: {array-like, sparse 

matrix}, shape 

(n_samples, 

n_features) 

For 

kernel=”precomputed”, 

the expected shape of X 

is [n_samples_test, 

n_samples_train] 

y_pred: array, 

shape 

(n_samples,) 

Class labels for 

samples in X. 

Perform classification on 

samples in X. For a one-class 

model, +1 or -1 is returned. 
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score_sample (self, X) X : array-like, shape 

(n_samples, 

n_features) 

score_samples: 

array-like, 

shape 

(n_samples,) 

Returns the 

(unshifted) 

scoring 

function of the 

samples. 

Raw scoring function of the 

samples. 

set_params (self, 

\*\*params) 

  self Set the parameters of this 

estimator. The method works 

on simple estimators as well 

as on nested objects (such as 

pipelines). The latter have 

parameters of the form 

<component>__<parameter> 

so that it’s possible to update 

each component of a nested 

object. 
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Appendix C 

Chapter 6   
Glossary 

Chapter 7   
API: It is a set of subroutine definitions to communicate between different components of a system. 

Containers: These are isolated user space instances that look like real computers from the view point 

of programs running on them but they are virtual environments provided by an operating system. A 

real computer can see all the devices connected to it however, a container can see only the devices 

assigned to it by the operating system.  

Distributed computers: These computers are located on different networks but can communicate 

and co-ordinate their actions by passing messages to one another. They interact with one another to 

achieve a common goal. Significant characteristics of distributed system are concurrency of 

computers, lack of a global clock, independent failure of computers or components. 

Kernel Methods: In machine learning, kernel methods are a class of algorithms for pattern analysis. 

The general task of pattern analysis is to find and study general types of relations (for example 

clusters, rankings, principal components, correlations, classifications) in datasets. In case of 

classification, kernels map data points to higher dimensional space via some transformation and 

linearly separable data points are found that helps to find hyperplane decision boundary that can 

classify the data into different classes. 

Machine Learning: Machine learning (ML) is a subset of Artificial Intelligence and is a scientific study of 

algorithms and statistical models that are based on sample data, known as "training data", in order to make 

predictions or decisions without being explicitly programmed to perform the task. 

Micromachines: Micromachines are the mechanical objects generally between 100 nanometres too 

100 micrometers in size and are fabricated in the same way as integrated circuits. 

Semi-supervised Learning: It is a machine learning task of learning a function from combination 

of (usually a small amount of) labelled and (a large amount of) unlabelled datasets. When it is not 

possible to get fully labelled datasets, semi-supervised learning is used. 

SPI protocol: It is a synchronous serial communication interface specification used for short 

distance communication in embedded systems. 

Supervised Learning: Supervised learning is the machine learning task of learning a function from 

labelled training data consisting of a set of training examples. In supervised learning, each example 

is a pair consisting of an input object or vector consisting of features and a desired output value. A 

supervised learning algorithm analyzes the training data and produces an inferred function, which 

can be used for mapping new examples.  
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Unsupervised Learning: It is a machine learning task of learning a function from unlabelled data. 

It usually involves grouping of data sets that are not labelled based on commonalities in the data and 

reacts to new data set based on the presence or absence of those commonalities. 

Virtual machine: It is an emulation of a computer system, i.e., it is based on computer architecture 

and provides functionality of a physical computer. Both hardware and software are involved in 

virtual machine implementation. 

Webhook: It is a way in which one web application provides information to other web application 

in real time. Data is sent in JSON format by webhooks. Webhooks use HTTP POST request to 

communicate. 

Interoperability: The ability of two or more systems or components to exchange information and 

to use the information that has been exchanged 
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Appendix D 

Hardware Datasheets 

 

 

 

Teensy 3.6 Pinouts 

 

 

 



 

119 
 

 

 

 

 

 

 

 

 

Hydrophone, SQ26-13 DataSheet 
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Raspberry Pi 3 Pinouts 
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System Block Diagrams 

Block diagram of the Nova board: 
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Input/Output Characteristics 
 

 

USB 
 

The Hologram Nova is designed to provide easy access to the u-blox SARA-U201 and 

SARA-R410-02B USB interface. 

 
SARA series modules include a high-speed USB 2.0 compliant interface with maximum 

480 Mb/s data rate. The module itself acts as a USB device and can be connected to any 

USB host. The USB is the suitable interface for transferring high speed data between 

SARA-U2 series and a host processor, available for AT commands. 

 
The USB_D+ / USB_D- lines carry the USB serial data and signaling. The USB interface is 

automatically enabled by an external valid USB VBUS supply voltage (5.0 V typical) 

applied on the VUSB_DET pin. 

 
For additional details, please see the following datasheets: 

u-blox SARA-U201 datasheet 

u-b lox SARA-R4 Series datasheet 

https://www.u-blox.com/sites/default/files/SARA-U2_DataSheet_%28UBX-13005287%29.pdf
https://www.u-blox.com/sites/default/files/SARA-R4_DataSheet_%28UBX-16024152%29.pdf
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UART 

 
At Hologram, we believe in providing an open platform for developers to build hardware. 

To support this mission, the Nova exposes the u-blox modem's UART interface as 

solderable pads on the top half of the board. For more advanced hardware devlopment, 

this provides direct access to the u-blox modem which runs at 1.8V 

 
Note: USE UART PADS AT YOUR OWN RISK. Pads are directly connected to the u-blox 

modem so using these I/O or improperly handling the board runs the risk of damaging 

the u-blox modem. Additionally, we do not officially provide support this interface. 
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Technical Specifications 
 

 

Absolute Maximum Ratings (Power Inputs) 

 
Stressing the device above one or more of the ratings listed in the Absolute Maximum 

Rating section may cause permanent damage. These are stress ratings only. Operating 

the device at these or at any conditions other than those specified in the Operating 

Conditions should be avoided. Exposure to Absolute Maximum Rating conditions for 

extended periods may affect device reliability. 

 
Symbol Description Min. Max. Unit 

VCC, USB 5V Input DC voltage at VCC pins -0.30 5.50 V 

USB D+/D- line Input DC voltage at USB_D+/D- pins -1.00 5.35 V 

UBLOX_RTS 
UBLOX_CTS 

UBLOX_TXD 

UBLOX_RXD 

Input DC voltage at u-blox digital interface 
pins 

-0.30 3.60 V 

UBLOX_RESET_N Input DC voltage at u-blox RESET_N pin -0.15 2.10 V 

GPIO2 
GPIO3 

GPIO4 

Input DC voltage at u-blox GPIO pins -0.30 3.60 V 

 
For power draw characteristics under certain cellular conditions, please view respective 

u-blox datasheets. 

 
Operating Conditions 

 
The Hologram Nova is designed to operate within temperatures between -45°C to 85°C. 

It is not designed to withstand material contact with moisture or any other conductors, 

aside from intended use of the USB. The Hologram Nova may be installed into 

appropriate enclosures that can protect the device from heat, cold, moisture, and 

humidity for Industrial use. 

 

 
If handling the Nova circuit board directly, please do so in an ESD-safe environment and 

wear ESD protection. 
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Radio Specifications 

 
The Hologram Nova platform features cellular modems which support a global list of 2G, 

3G, and LTE Cat-M1/NB-IoT frequencies. 

 

Nova 3G/2G (SARA-U201) 
 

 3G Bands: 

o Americas: Band 5 (850MHz), Band 2 (1900MHz) 
o Europe/Asia/Africa: Band 8 (900MHz), Band 1 (2100MHz) 

 2G Bands 

o GSM - 850MHz 
o E-GSM - 900MHz 
o DCS - 1800 MHz 
o PCS - 1900 MHz 

 

Nova LTE-M & NB-IoT (SARA-R410M-02B) 
 

 LTE Cat-M1/N1 Bands: 
o LTE FDD: 1, 2, 3, 4, 5, 8, 12, 13, 17, 18, 19, 20, 25, 26, 28 
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Mechanical Dimensions 

 
The Hologram Nova board without an enclosure is: 

 

 Length: 61.58 millimeters 
 Width: 19.4 millimeters 

 Height: 5.84 millimeters (maximum height) Below 

are views of the Hologram from the top and side. Top View: 

 
 
 
 
 
 
 
 
 
 
 
 

 
Side View: 
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LEDs 

 
The Nova has two clear LEDs for providing power and connectivity feedback. A power 

LED that represents whether the modem is on or off, and a network LED that indicates 

the current network status. 

 

Note: Nova LTE-M & NB-IoT modem and Nova 3G/2G modem have same placement of 
LED color indicators but opposite use for power/network indication. Please use below 
table for reference. 

 
 
 

MODEL 

 
 

POWER LED 

 
 

NETWORK LED 

Nova 3G/2G Red Blue 

Nova LTE-M & NB-IoT Blue Red 

 

 Power LED status indicator (Red – 3G/2G, Blue – LTE-M & NB-IoT) 
o On: USB 5V is connected and the Nova is powered on 
o Off: USB 5V is not connected and the Nova is not powered on (modem may take 

up to 30s to boot up and power the LED) 

 Network LED status indicator (Blue – 3G/2G, Red – LTE-M & NB-IoT) 

o On, solid: Nova connected in active data session 
o On, rapid blink: 3G network detected (3G/2G Nova Only) 
o On, double blink: 2G network detected (3G/2G Nova Only) 
o Off: No network detected 

 Make sure antenna is securely connected, positioned to receive cell signal 

and SIM properly inserted 

 Device can take up to 200s to detect available networks 
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Antennas 

 
The Nova is made for ultimate flexibility and this extends to available antennas. Each 

model’s included antenna characteristics are listed below: 

 

Nova 3G/2G (SARA-U201) 
 

 Black, flexible antenna (Sinbon A9702472) 
o Size: 37x7x1mm 
o Weight: <1g 
o Connector: U.FL 
o Mounting: Adhesive 3M tape 
o Temperature: -40C - +85C 

 

Nova LTE-M & NB-IoT (SARA-R410) 
 

 Black, flexible antenna (Pulse PN W3907B0100) 
o Size: 111.70x20.4x1mm 

o Weight: <1g 
o Connector: U.FL 
o Mounting: Adhesive 3M tape 
o Temperature: -40C - +85C 

 
The Nova can also be used with additional antennas. If you'd like to use the Nova with an 

antenna which has an SMA connector, you need to purchase a UFL - SMA adapter. 
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Bill of Materials 
 

 
 

DESIGNATOR 

 
 

QUANTITY 

 
 

MFG 

 
 

MPN 

ANT_UFL 1 Amphenol A-1JB 

C2, C6, C48 3 MURATA GRM155R61C104KA88D 

C11 1 SAMSUNG CL10A225MQ8NNNC 

C39 1 MURATA GRM155R71C103KA01D 

C34 1 Murata GRM188R60J106ME84D 

C46 1 AVX/ELCO 04025A150JAT2A 

C36, C37, C38 3 MURATA GRM188R60J226MEA0D 

C41, C42, C43, 

C44, C45 (U201 

Nova Only) 

5 AVX 04025A470JAT2A 

C40 1 KEMET C0402C560J5GACTU 

C47, C49, C50 3 AVX F950J337MBAAQ2 

L7 1 Murata BLM18KG121TN1D 

L5 1 Coilcraft XFL4020-102MEC 

D1 1 VISHAY VLMB1500-GS08 

D2 1 VISHAY VLMS1500-GS08 

D3, D4, D5 3 Littlefuse PESD0402-140 
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DESIGNATOR 

 
 

QUANTITY 

 
 

MFG 

 
 

MPN 

L1 1 YAEGO RC0603JR-070RL 

R13 1 YAEGO RC0402FR-071ML 

R3, R5 2 YAEGO RC0402FR-073KL 

R4, R6, R7, R8 4 YAEGO RC0402JR-0710KL 

R1, R2 2 YAEGO RC0402FR-0722RL 

R11, R51 2 PANASONIC ERJ-2GEJ104X 

R12 1 YAEGO RC0402FR-07150KL 

R9 1 PANASONIC ERJ-2GEJ471X 

U16 1 U-BLOX SARA-U260-00S 

SIM1 1 GLOBAL CONNECTOR 

TECHNOLOGY 

SIM8050-6-0-14-01-A 

U2 1 TI TPS63020DSJ 

Q1, Q2, Q3, Q4 4 ON Semiconductor MMBT3904LT1G 

J1 1 MOLEX 480372200 
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Regulatory information 

Carrier Specific Certifications 
 

NOVA-U201 (3G/2G): AT&T, T-Mobile, PTCRB, GCF 

NOVA-R410 (LTE-M & NB-IoT): Verizon ODI, AT&T, T-Mobile (In progress), 

PTCRB, GCF 

 
Verizon Open Development Device #7721 

AT&T Network Compatibility Record: 10bkv4QCDm 

 

Export Control Classification Number (ECCN) 

 

ECCNs are five character alpha-numeric designations used on the Commerce Control 

List (CCL) to identify dual-use items for export control purposes. An ECCN categorizes 

items based on the nature of the product, i.e. type of commodity, software, or 

technology and its respective technical parameters. 

 
ECCN for All Nova Modems: 5A992.c 

 

RoHS Compliance 

 
The Nova modem family complies with the RoHS (Restriction of Hazardous 

Substances) directive of the European Union, EU Directive 2011/65/EU. 

 

Harmonized Tariff Schedule Code (HTS) 

HTS Code for All Nova Modems: 8517.62.0010 

https://opendevelopment.verizonwireless.com/device-showcase/device/7721
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Interference Statement 

 

This device complies with Part 15 of the FCC Rules and Industry Canada licence-

exempt RSS standards. Operation is subject to the following two conditions: (1) 

This device may not cause harmful interferences, and (2) this device must accept any 

interference received, including interference that may cause undesired operation. 

FCC & IC Compliance 

 

If the modem’s antenna is located farther than 20cm from the human body and 

there are no proximate transmitters, the FCC/IC approvals of the constituent u- blox 

SARA-U201 or SARA-R410-02B can be reused by the end product. 

 

Should the modems antenna be mounted closer than 20cm from the human body or 

if there are proximate transmitters, additional FCC/IC testing may be required for the 
end product. 

 

Nova 3G/2G & Nova LTE-M & NB-IoT modems make use of the underlying u-

blox module’s FCC & IC identification numbers below. 

 
 
 

MODEL 

 
 

FCC ID 

 
 

IC ID (CERTIFICATION NUMBER) 

Nova 3G/2G XPY1CGM5NNN 8595A-1CGM5NNN 

Nova LTE-M & NB-IoT XPY2AGQN4NNN 8595A-2AGQN4NNN 

 

Additionally, all Nova modems are compliant with FCC Part 15 Class B 
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Modification Statement 

Hologram has not approved any changes or modifications to this device by the 
user. Any changes or modifications could void the user’s authorization 

to operate the equipment. 

End Product Labeling Requirements 

 

End products utilizing Nova 3G/2G modems should be labeled with the 

following information: 

 

Device Uses Approved Radio: NOVA-U201 

Contains FCC ID: 

XPY2AGQN4NNN Contains 

IC: 8595A-1CGM5NNN 

 

This device complies with Part 15 of the FCC Rules and Industry Canada 
licence-exempt RSS standards. Operation is subject to the following two 

conditions: (1) This device may not cause harmful interferences, and (2) 
this device must accept any interference received, including interference 
that may cause undesired operation. 

 

End products utilizing Nova LTE-M &NB-IoT modems should be labeled with the 

following information: 

 

Device Uses Approved Radio: NOVA-R410 

Contains FCC ID: 

XPY2AGQN4NNN Contains 

IC: 8595A-2AGQN4NNN 

 

This device complies with Part 15 of the FCC Rules and Industry Canada 
licence-exempt RSS standards. Operation is subject to the following two 

conditions: (1) This device may not cause harmful interferences, and (2) 
this device must accept any interference received, including interference 
that may cause undesired operation 


