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Abstract 

Driven by their economic and environmental advantages, smart grids promote the deployment of active 

components, including renewable energy sources (RESs), energy storage systems (ESSs), and electric 

vehicles (EVs), for sustainability and environmental benefits.  As a result of smart grid technologies 

and the amount of data collected by smart meters, better operation and control schemes can be 

developed to allow for cleaner energy with high efficiency, and without breaching network operating 

constraints. 

Power distribution networks may face some operational and control challenges as the integration of 

intermittent energy sources (wind and PV power systems) increases. Some of these challenges include 

voltage rise and fluctuation, reverse power flow, and the malfunction of conventional Volt/Var control 

devices. Depending on their location, RESs may introduce two issues related to the Volt/Var control 

problem,  the first of which is that the severity of loading variations will be greater than the case without 

RESs. The second occurs when the RES is connected between the load center and any regulating 

devices. The power in-feed from the intermittent RESs may not only mislead the regulator’s control 

circuit, resulting in unfavorable voltage, but may also enforce the regulator taps to operate randomly 

following bus voltage variations.  

This thesis investigates and presents a methodology for the Volt/Var control problem in Smart 

Distribution Grids (SDGs) under the high penetration and fluctuation of RESs. The research involves 

the application of predictive control actions to optimally set Volt/Var control devices before the 

predicted voltage violation takes place. The main objective of this controller is to manage and control 

the operation of Volt/Var devices in an optimal way that improves the voltage profile along the feeders, 

reduces real power losses and minimizes the number of Volt/Var device taps and/or switching 

movements under all loading conditions and for high penetration RESs. 

This thesis first presents a very Short-Term Stacking Ensemble (STSE) forecasting model for solar 

PV and wind power outputs that is developed to predict the generated power for intervals of 15 minutes. 

The proposed model combines heterogeneous machine learning algorithms composed of three well-

established models: Support Vector Regression (SVR); Radial Basis Function Neural Network 

(RBFNN); and Random Forest (RF) heuristically via SVR. The STSE model aims to minimize the 

prediction error associated with renewable resources when used in the real-time operation of power 

distribution networks.  
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 Secondly, a day-ahead Predictive Volt/Var Control (PVVC) model is developed to find the optimal 

coordination between Volt/Var control devices under the high penetration and power variations of 

RESs. The objective of the PVVC model is defined as simultaneous minimization of voltage deviation 

at each bus, power losses, operating cycle of regulation equipment, and RES curtailment. The benefit 

of using smart inverter interface RESs with the capability of injective/absorbing reactive power is 

examined and applied as ancillary services for voltage support.  

Thirdly, a Sequential Predictive Control (SPC) Strategy for smart grids is developed. The model uses 

the past and currently available data to forecast demand and RES outputs for intervals of 15 minutes, 

with real-time updating mechanisms. It then schedules the settings and operations of Volt/Var control 

devices by solving the Volt/Var control problem in a rolling horizon optimization framework. Because 

the optimization must be solved in a short interval with a global solution, a solution methodology for 

linearizing the nonlinear optimization problem is adapted. The original control problem, which is a 

Mixed-Integer Nonlinear Programming (MINLP) optimization problem, is transformed into a Mixed 

Integer Second Order Conic Programming (MISOCP) problem that guarantees a global solution 

through convexity and remarkably reduces the computational burden. Case studies carried out to 

compare the proposed model against state-of-the-art models provides evidence for the proposed 

model’s effectiveness. Results indicate that the SPC is capable of accurately solving the control 

problem within small time slots. 

The proposed models aim to efficiently operate SDGs at a high penetration level of RES for a day-

ahead, as well as in real-time, depending on the preference of network operators. The primary purpose 

is to minimize operating costs while increasing the efficiency and lifespan of Volt/Var control devices. 
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Chapter 1 

Introduction 

1.1 Preamble 

Driven by government incentives to install more clean energy resources, photovoltaic (PV) systems 

and wind turbines, which can be installed at different voltage levels, are globally among the fastest-

growing renewable energy sources (RESs). The deployment of these renewable sources will 

consequently have a positive impact on the reduction of greenhouse gas emissions in the current electric 

grid. It was reported that the installed capacity of wind energy had increased worldwide by a factor of 

almost 75 in the past two decades, jumping from 7.5 gigawatts (GW) in 1997 to some 564 GW by 2018 

[1]. In Canada, the Canadian Wind Energy Association believes that wind energy can satisfy 20 % of 

Canada’s electricity demand by 2025, reaching a capacity of 55 GW [2].  In contrast, in 2017, the 

capacity of  PV Generation represented 2% of the world power output, reaching a capacity of almost 

400 GW and generating 460 TWh. By 2023, solar PV is expected to grow to 580 GW, as calculated by 

the International Energy Agency (IEA) [3].   

The introduction of RESs can benefit a distribution network in terms of voltage support, loss 

reduction, equipment capacity release, and GHG emission reduction. All these remarkable benefits can 

be achieved only if energy resources are sized and located optimally in the network, and if their output 

is constant or adjustable to the network needs. However, with RESs such as wind or solar systems, 

these benefits fail to be fully achieved due to the intermittent output that depends on weather conditions 

as well as their locations, as some of them are not utility-owned.   As an example, the output power of  

PV systems ranges from zero at night to the rated value during the daytime, depending on weather 

conditions. The high penetration level of RESs in distribution systems is accompanied by challenges 

such as voltage profile variation due to the variations in power outputs. In addition, renewable sources 

may cause reverse power flow at times of high penetration with light loads, which interfere with local 

controllers of Volt/Var devices such as on-load tap changer (OLTC), step voltage regulator (SVR), and 

switched capacitor (SC) banks. The local control variables of OLTC and SVR operate based on line 

drop compensator that regulates bus voltage next to the regulator bus, given that power flows from the 

regulator bus to the next bus. However, reverse power flow or injecting power between the regulator 

and the regulation point can confuse the local regulator controller, which leads to inappropriate or 

excessive operations.  
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The development of smart grid technology has allowed for many previous issues to be addressed. 

The smart grid is able to have a two-way flow of electricity and information, which allows it to accept 

energy from distributed RESs and for the monitoring of real-time data. With this extra information, it 

becomes easier to optimally and efficiently operate the power system in the presence of these RESs. 

The purpose of this dissertation is to present a methodology by which the Volt/Var settings, given the 

existence of RESs, are optimal. The malfunction of voltage regulators as a result of the random 

operation of renewable distributed energy units will be minimized. This work is further extended to 

formulate an optimum coordination plan that harmonizes the operation of different voltage and var 

control equipment. The primary goal is to improve the voltage profile along the feeders and reduce real 

power losses with a minimum number of Volt/Var device taps and/or switching movements under all 

loading conditions and for high penetration RESs. The case study results demonstrate that the proposed 

methodology can achieve higher efficiency at minimum cost compared to traditional tools. 

1.2 Motivation 

Unfortunately, distributed RESs cannot fit seamlessly in a conventional power grid that is designed 

without a specific distributed generation in mind. The random variations in power produced by weather-

based generation cause different levels of uncertainty that affect a variety of decisions. The integration 

of RESs in a significant capacity with utility distribution systems has many benefits but, at the same 

time, faces many challenges. Issues pertaining to the impact of RESs on the power distribution system 

operation and control become extremely important for safety and quality as well as for the proper 

functioning of the power system. Of particular concern is their impact on the distribution system voltage 

profile and the operation of Volt/Var control devices. Although the Volt/Var control problem in 

distribution systems has been previously studied, it was under completely different operating 

conditions, with and without RESs; different solution methodologies for day-ahead or short time 

intervals were proposed. However, most of the related work does not consider the impact of RES output 

variations when it comes to short time operations and its impact on the optimal Volt/Var control 

solution. Also, no significant coordination between different control components was used, and no large 

scale implementation of intelligent tools was adopted. Motivated by the associated problems of the high 

penetration of intermittent energy sources, and the limitations of the existing tools for solving the 

Volt/Var problem, this research addresses these issues and provides solutions for Volt/Var control in 

highly renewable dominant smart distribution systems. This work also presents a day-ahead and 

sequential predictive Volt/Var control methodology to optimally operate smart grids to account for the 
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variations in generation and demand. The proposed methodology makes use of artificial intelligence 

tools to forecast RES output power and demand. 

1.3 Research Objectives 

The ultimate goal of this research is to investigate and introduce a new methodology for the Volt/Var 

control problem in smart distribution networks under the high penetration of renewable energy sources 

and all loading conditions. Managing and controlling the operation of Volt/Var control devices under 

high penetration of RESs will achieve the following objectives: 

 

 Voltage profile along the feeders will be improved 

 Active power losses will be minimized 

 The Volt/Var device operations will be decreased 

 

The objectives of this research will focus on three main respects: 

1. Developing a very short-term forecasting algorithm to predict the outputs of PV and wind 

power systems for 15 minutes ahead. It is then extended to incorporate recent smart meter 

measurements into the forecasting model to be used with the short-term operation.  

2. Developing a coordinated predictive control strategy for a day-ahead with limit RESs power 

variations, and make use of inverter interfaced RESs as ancillary service in coordination with 

the Vol/Var control devices to improve system performance 

3. Developing a short-term Sequential Predictive Control (SPC) strategy based on real-time 

updated PV/Wind forecaster for optimum and cost-effective operation. The control problem 

will be solved following the rolling horizon approach with intervals of 15 minutes to minimize 

the uncertainties associated with RESs. 

4. Developing an efficient solution based on a MISOCP convex optimization to guarantee the 

global solution.  The nonconvex Volt/Var control problem will be converted into a convex 

formulation by linearizing the objective function subject to linear and conic constraints. 
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1.4 Thesis Outline 

In addition to this introductory chapter, the following describes the structure of the remaining chapters.  

    Chapter 2 presents an introduction and a literature survey regarding the short-term forecasting of PV, 

wind, and load.  Furthermore, a survey of previous work is conducted in the area of Volt/Var control 

in power distribution systems.  

    Chapter 3 introduces a very-short term ensemble forecasting model for PV, Wind, and demand. 

Artificial Neural Network (ANN), Radial Basis Function (RF), and Support Vector Regression (SVR) 

are used to build the stacked ensemble model, which is composed of two prediction layers.  

    Chapter 4 presents a day-ahead predictive Volt/Var control scheme for a smart distribution grid 

dominated by PV and Wind power systems. The model forecasts the generated power and demand for 

a day-ahead and then solves an optimization problem to coordinate the operation of the Volt/Var control 

devices at unity and variable power factors of inverter-based RESs. The objective is to minimize the 

overall operating cost in terms of power losses, the operational cost of Volt/Var devices, and 

minimizing the impact of RES power variations on the voltage profile. 

    Chapter 5 introduces a new sequential predictive control scheme based on real-time forecasting 

mechanisms for operating smart distribution systems subjected to high penetration and fluctuations of 

PV and wind systems. The problem is solved based on the rolling horizon optimization technique for 

intervals of 15 minutes. The original Volt/Var control problem, which is a MINLP optimization 

problem, is transformed into a MISOCP optimization problem to guarantee a global solution and solve 

the problem in a very-short time domain.  

  Chapter 6 presents the thesis summary, contribution, and directions for future work.  
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Chapter 2 

Literature Review and Background 

2.1 Preamble 

Current interest in applying energy efficiency programs has driven distribution system operators to 

integrate more Renewable Energy Sources (RESs) and at the same time, develop effective methods for 

forecasting RES outputs and efficiently operating distribution systems. The following sections present 

a review of what has been achieved in literature in terms of RES and load forecasting, Vol/Var control 

in ADS and smart grids, and what techniques have been used to formulate and solve the voltage and 

reactive power control problem.  

2.2 Survey on PV and Wind Power Forecasting 

Solar and wind power generators are expected to play a substantial role on a global level as one of the 

leading Renewable Energy Sources (RESs) for future use. Translated into numbers, by 2023, solar PV 

is expected to grow to 580 GW, as calculated by the International Energy Agency (IEA) [3].  On the 

other hand, at a very fast pace of development, wind capacity evolved from 7.5 gigawatts (GW) in 1997 

to some 564 GW by 2018 [1]. On a global scale, the revenue involved with renewable power ($285.9 

billion) was more than twice the investment allocated to the conventional energy sources ($130 

billion)at the end of 2015 [4]. As an example, in Canada, the government has set a target to reduce 20% 

greenhouse gas emission by the year 2020, considering a baseline from the year 2006. Most of these 

targets are expected to be met through RESs [5]. The penetration of RESs offers many advantages along 

with particular challenges to the operational reliability of the power system. The intermittent and 

fluctuating nature of PV and wind energy systems pose a significant challenge on grid stability and 

power resource scheduling. Hence, accurate forecasting can relieve some of these challenges and help 

network operators to schedule their resources in advance.  

   RES forecasting techniques, in general, can be classified into three main categories: (1) Numerical 

Weather Prediction models (NWP); (2) statistical and probabilistic models methods; and (3) Machine 

Learning (ML) and hybrid methods [6][7].   

   Reviewing their recent development and applications, ML has shown a unique ability in the area of 

RES forecasting. It has become one of the most popular approaches for either short or long term PV 

and wind power forecasting. 
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2.2.1 Solar PV Forecasting 

Solar PV power forecasting depends on several factors, such as solar irradiance, reflectivity, estimation 

of PV cell temperature, and inverter efficiency [8]. The maximum power output is defined by  

𝑃 = 𝜇 𝑆𝐼 [1 − 0.05(𝑡0 − 25)]                                                             2.1 

where 𝜇 is the conversion efficiency (%) of the solar cell array; 𝑆 is the array area (𝑚2); 𝐼 is the solar 

radiation (𝑤/𝑚2); and 𝑡0 is the outside air temperature (°C).  

    Forecasting PV output for several minutes, hours, days, or even years ahead is an essential practice 

conducted by power utilities to relieve the technical challenges raised by the intermittency of the 

generated power [7]. Different prediction horizons will correspond to specific needs of decision-making 

activities in power systems  [9]. 

 Very short-term forecasting ( from minutes to hours) 

 Short-term forecasting (up to 1- 2 days ahead) 

 Medium-term forecasting ( up to 7 days ahead) 

 Long-term forecasting ( from 1 month to years) 

 

    Very short-term PV forecasting is an essential practice for effective operation and control of power 

grids. Accurate It is a necessary procedure particularly when solving a day-ahead or real-time Volt/Var 

control problem. From literature, several review papers summarized the previous and current PV 

forecasting techniques, as presented in [10][7][11][12][13] and [14].  Auto-Regressive Moving 

Average (ARMA), is one of the time series forecasting models used to forecast PV outputs due to its 

ability to extract useful statistical properties. [8]. The main drawback of the ARMA model is that the 

statistical properties of the time series do not change over time. Another popular statistical model used 

for PV forecasting is the Auto-Regressive Integrated Moving Average (ARIMA) model. The ARIMA 

model has the advantage of capturing the periodical cycle better than the ARMA model, as discussed 

in [15][16]. Artificial Intelligence (AI) has also shown a unique ability in solar PV forecasting, and it 

is used in several applications for approximating highly nonlinear system behavior.[17], Presented a 

one-day ahead forecasting model for a PV system based on Support Vector Machine(SVM) and the 

characteristic of weather classification. A Multilayer Perceptron (MLP) for short-term forecasting of 

PV output is presented in [18]. The inputs to the MLP are solar radiation, solar elevation angle, and 

temperature. A study in [19] presented a methodology based on the dynamics of Artificial Neural 
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Network (ANN) for hourly PV forecasting. First, the model predicts the main atmospheric parameters, 

namely, solar irradiance and air temperature, then uses another ANN model to predict the PV output.  

 

  A hybrid model based on Particle Swarm Optimization (PSO) with Extreme Learning Machine (ELM) 

technique for PV forecasting is presented in [9]. The PSO  is used to update the weights of the ELM so 

that the prediction accuracy is improved. A PV power forecasting method based on a combination of a 

Genetic Algorithm (GA), PSO and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) presented in 

[20]. The proposed hybrid method employs binary GA in the first stage to identify the most relevant 

subset of the input variables, while a combination of the GA and PSO algorithm in the second stage is 

used to optimize the ANFIS model. A weather-based hybrid method, combining Self-Organizing Map 

(SOM), Learning Vector Quantization (LVQ), SVR, and the fuzzy inference method for a day ahead 

forecasting of PV power output is presented in [21]. The proposed method comprises classification, 

training, and forecasting stages. The SOM and LVQ are used to classify the historical data, which is 

used in the training of SVR. When all SVRs are trained, the fuzzy inference selects the best predictor 

among them. 

     

    Ensemble method, which is popular in statistics and machine learning, uses multiple predictors to 

obtain an aggregated decision, which is better than any of the base predictors when applied individually 

[17]. Using real PV measured data, and various weather forecasts, a solar-time based analog ensemble 

PV forecasting method is presented in [22]. This method utilizes solar time, earth declination angle, 

and weather data to characterize historical measurement power data using table look-ups and weighted 

blending models. An ensemble method based on aggregating the outputs of Auto-Regressive, Forward 

Neural Network (FNN) and Radial Basis Function models is presented in [23]. The FNN and RBF were 

trained with PSO to enhance the training performance of the model.  

    

    Several PV generation forecasting models, based on physical, statistical, artificial, hybrid, and 

ensemble forecasting models, are proposed in the literature. Hybrid and ensemble models seem to have 

more generalized and accurate forecasting compared to classical forecasting models. Recent forecasting 

approaches focused more on ensemble models for their ability to combine individual models to form 

one output by either competing or collaborating.  
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2.2.2 Wind Power Forecasting 

Wind power is generated by propelling a turbine to rotate, which converts the mechanical power to 

electrical power. The conversion from wind speed to Wind power is shown as [24] 

𝑃 =
1

2
 𝜌 𝐴 𝐶𝑝(𝜆, 𝛽)𝑣3                                                                          2.2 

where 𝜌 is the air density, A is the area of the turbine blade when rotating, 𝐶𝑝(𝜆, 𝛽) is the efficiency, 

which is affected by two parameters: tip speed ratio λ and blade pitch angle β, and 𝑣 is the up-wind 

speed.  

 

    The high intermittency and uncertainty associated with wind power have brought some challenges 

to power system operators, such as increasing the operating costs by increasing the requirements on 

primary reserves. Hence, the need to apply a robust and accurate forecasting model has become a 

persistent requirement. Several forecasting techniques, which were successfully applied to forecast 

wind power for minutes, and one hour ahead, are reported in the literature. In [25][26][27][28][29], a 

comprehensive overview of current and new developments in wind power forecasting is presented. A 

classification of wind power forecasting according to time–scale, ranging from very-short-term (a few 

minutes) to long-term (weeks or years), is discussed in [29].  

 

    Generally, forecasting models are classified into three categories: statistical models, artificial 

intelligence-based models, and hybrid/ensemble models. Statistical models such as AR, ARMA, 

ARIMA, Bayesian approach, and gray predictions are used for short-time forecasting, but the prediction 

error increases when the variations from the entered data are high [29]. Artificial intelligence-based 

models such ANN, SVR, and fuzzy logic, as well as heuristic techniques, are widely applied in wind 

power forecasting because of their ability to efficiently handle the non-linear relationship between 

variables [30]. Probabilistic wind power forecasting using RBFNN is proposed in [31]. The developed 

RBFNNs are trained with an ordinary orthogonal least square algorithm, and their parameters are 

optimally tuned using PSO. In other attempts, the forecasting accuracy of RBFNN showed some 

improvement when the RBFNN parameters are automatically selected using a GA as presented in [32]. 

An investigation into the performance of an SVR algorithm against that of MLP proved the 

effectiveness of SVR for wind speed prediction [33]. For improving the prediction accuracy of SVR, 

optimization algorithms are usually used to tune its parameters, which are the regularization parameter 
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C, ε-insensitive loss function, and the bandwidth of the Kernel function. Parameter tuning of an SVR 

using GA to improve forecasting accuracy by minimizing prediction error is presented in [34].  

 

    Ensemble models for wind power forecasting, such as bagging and boosting ensemble algorithms 

are presented in [35].  In [12], a review of ensemble methods for wind and solar power forecasting is 

presented, in which the author classified the ensemble models into competitive and cooperative models. 

A Random Forest (RF) ensemble algorithm for combining SVRs from base learners is presented in 

[36]. Hence, the author used an intelligent weighting approach that takes into account weather situations 

and past forecasts of the models. Authors in [37] investigated some methods for predicting the 

probability density function of a generated wind power from wind farm locations. They constructed 

probability density forecasts from weather ensemble predictions, which is a type of weather forecast 

generated from atmospheric models. 

 

     The high penetration of wind power systems imposes some challenges to power systems operation 

and planning due to its intermittent nature. Therefore, accurate, short-term Wind power forecasting has 

become essential, particularly in the context of smart grid operation and control. Several forecasting 

techniques are proposed in the literature. Some of them are good at short-term predictions, while others 

perform better in long-term predictions.  However, very short-term forecasting models in the scale of 

minutes still an active area of research. Developing a very short-term forecaster able to capture the high 

nonlinearity in wind variations will positively impact the operation of power grids.  

2.2.3 Load Forecasting 

Short-Term Load Forecasting (STLF) is an essential task for energy planning, generation reserve, 

dispatching schedules, system security, and solving the Volt/Var control problem in distribution 

networks [38]. A review paper of electricity load forecasting, which discusses previous and current 

trends in load forecasting is presented in [39]. From literature, statistical models, such as auto-ARMA 

[40][41], ARIMA [42], and Seasonal ARIMA (SARMIA) [43] are widely used for short-term load 

forecasting. 

In [44], a review paper investigated the application of AI-based on short-term load forecasting 

techniques. Short term load forecasting via SVR with tuned parameters is proposed in [45]. The 

proposed model has achieved forecasting accuracy comparable to sophisticated ensemble methods such 

as bagging and Random Forest(RF). New algorithms to train RBF networks for 24-hours electric load 



 

 10 

forecasting is presented in [46]. The algorithm compared with the state-of-the-art model, and it shows 

a reliable forecasting accuracy.  A Neural network algorithm for short-term load forecasting based on 

real data collected for 18 months, is proposed in [47]. The approach decomposing the load curve into 

daily average power and intraday power variation, where each model with different variables and 

complexities forecasts each component separately. A long short-term memory (LSTM) recurrent neural 

network-based framework applied for short-term load forecasting is discussed in [48]. Multiple 

benchmarks are comprehensively tested and compared to the proposed LSTM load forecasting 

framework on a real-world dataset. 

Hybrid models are also used to improve forecasting accuracy, as discussed in [49], where PSO 

algorithm optimized the ANN weight values for hourly load forecasting. In [50], Wavelet Neural 

Networks (WNN) with data pre-filtering is developed to forecast loads for 1-hour using a moving 

window approach. Wavelet neural networks trained by Hybrid Kalman Filters (WNNHKF) for one-

hour load forecasting is presented in [51].  

From the literature, it seems that the variation in load data is less dependent on weather conditions, 

and the patterns from one day to another are almost the same. A small difference is observed between 

individual and hybrid models in terms of forecasting accuracy if the parameters of the individuals are 

optimally selected. However, the existing models are not performing very well when it comes to very 

short-term forecasting. 

2.3  Power Distribution System (PDS)  

Power distribution systems can be classified into two categories: passive distribution systems (PDS) 

and active distribution systems (ADS). A brief introductory followed by the role of Volt/Var control 

devices in both systems will be presented.  In addition, the impact of high penetration of RES on the 

operation of ADS followed by a review of Volt/Var control techniques from literature is discussed.  

2.3.1 Passive distribution systems 

PDS is a typical distribution system fed solely from a distribution substation that services one or more 

primary feeders. In such systems, there is only one source and direction for power flow from a 

substation to users [52]. On-Load Tap Changer (OLTC), Step Voltage Regulator (SVR), and Switched 

Capacitor (SB) are the main components for voltage regulation and reactive power compensation in 

PDS. Figure 2.1 shows a typical PDS. Generally, OLTC/SVR and SC regulate the system’s voltage and 

reduce losses based on their local control circuits and settings.  
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Figure 2.1 Simple passive distribution system 

2.3.2 Active distribution system 

ADS, as shown in Fig 2.2, is a new paradigm of the conventional distribution system that includes 

centralized and distributed generation from dispatchable and nondisposable energy sources. The 

presence of Distributed Generation (DG) and specifically RESs into the distribution system changes 

the topology of the system and the way it controlled.  
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Figure 2.2 Simple active distribution system 

 

    The integration of RESs has several economic and operational benefits as discussed in 

[53][54][55][56]. However, the high penetration level of RESs may create some operational challenges 

such as reverse power flow, voltage fluctuation, undesirable or frequent operation of Volt/Var control 

devices. The coming is a brief introduction to the conventional Volt/Var control devices and the impact 

of the stochastic nature of RESs on system operation.  

2.3.3 Voltage regulators 

Voltage regulators such as OLTC and SVR play a primary role in regulating the voltage on feeders to 

maintain it within certain limits as shown in Equation 2.3, where 𝑉𝑖 is the nominal voltage and 
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𝑉𝑚𝑖𝑛 𝑎𝑛𝑑 𝑉𝑚𝑎𝑥 are voltage limits. OLTC transformer regulates the secondary voltage at the 

substation, while SVR  can be connected at the distribution substation or downstream the substation.   

        𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖  ≤ 𝑉𝑚𝑎𝑥                                                                      2.3 

   OLTC/SVR are able to change the voltage in the range of ± 5% or ± - 10% [57]. Changing the taps 

of OLTC and SVR is determined by the Line Drop Compensator (LDC) that estimates the voltage drop 

along the line and regulate the voltage based on compensation circuit current 𝐼𝑐𝑜𝑚, load side voltage 

𝑉𝑟𝑒𝑔 and equivalent parameters 𝑅′ 𝑎𝑛𝑑 𝑋′. Figure 2.3 shows the control circuit and how it is connected 

to the line with line equivalent parameters 𝑅𝐿𝑖𝑛𝑒 𝑎𝑛𝑑 𝑋𝐿𝑖𝑛𝑒.  

 

 

Figure 2.3 Line drop compensator circuit [30] 

    The voltage drop 𝑉𝑑𝑟𝑜𝑝  and the relay voltage 𝑉𝑅 are calculated from Equations 2.4 and 2.5 as follows: 

𝑉𝑑𝑟𝑜𝑝 = 𝐼𝑐𝑜𝑚 (𝑅′ + 𝑗𝑋′)                                                       2.4 

𝑉𝑅 = 𝑉𝑟𝑒𝑔 − 𝑉𝑑𝑟𝑜𝑝                                                                2.5 

When the voltage at the load center or the regulation point estimated by the voltage drop exceeds the 

limit, the LDC issues a control signal to the motor to adjust the tap up or down to regulate the voltage. 

2.3.4 Switched capacitor bank  

Fixed and switched capacitors are widely used in distribution systems at secondary substation bus and 

feeders. The line reactive power can be reduced by installing an SC at the substation or the feeder. SCs 
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are modelled as a constant susceptance connected in either wye or delta. The operation of shunt 

capacitors is based on current, voltage, time, temperature, KVAR, or intelligent control modes[58]. 

 

2.4 Impact of RESs on Voltage and Volt/Var Control Devices 

The high integration of RESs usually causes some technical challenges to network operators. Given 

their remarkable benefits [53][54][55][56], the fluctuation in the generated power from RESs is one of 

the main reasons for voltage fluctuation, which may lead to frequent operations for the Volt/Var control 

devices. This unfavorable operating condition occurs if there is no coordination between the Volt/Var 

control devices. Also, if the control devices use their local control circuits, assuming that no power 

injected between the remote control point and the regulator.  

2.4.1 Impact of RESs on system voltage 

The operational conditions of power distribution systems are described by voltage and phase shift at 

each busbar, as well as, active and reactive power in each line. In ADS, the penetration level of RESs 

may particularly affect the voltage on the RES bus and generally on the system. Figure 2.4 shows a 

simplified diagram of a radial distribution system. The DG at bus 3 injects active and reactive power 

into the system. The voltage drop on the feeder can be calculated from Equation 2.6 where 𝑅𝐿  𝑎𝑛𝑑 𝑋𝐿 

are the resistance and reactance of the line. 𝑃𝐿  and 𝑃𝐷𝐺 are the active power of load and DG; whereas 

𝑄𝐿  𝑎𝑛𝑑 𝑄𝐷𝐺 are the reactive power of the load and DG, respectively. It can be seen from Equation 2.6 

that if the active power from DG increased, the voltage at the end of the feeder V3 would increase. 

 

𝑉3 − 𝑉2 ≅
𝑅𝐿(𝑃𝐿−𝑃𝐷𝐺)+𝑋𝐿(𝑄𝐿±𝑄𝐷𝐺)

𝑉2
                                         2.6 

 

    The presence of the DG at bus 3 may raise the voltage over the allowable limit according to the size 

of the DG relative to the load size, which may increase the general voltage of the feeder when the term 

(𝑃𝐿 − 𝑃𝐷𝐺) is negative[59]. 
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Figure 2.4 One-line diagram to illustrate the impact of DG on bus voltage 

 

2.4.2 Impact of RESs on OLTC, SVR, and SC operations 

Radial distribution system voltages are usually regulated using OLTC at the substation, SVR, and SC 

on feeders. OLTC and SVR operate based on LDC considering unidirectional power flow from the 

substation transformer to loads. The LDC estimates the line voltage drop and performs voltage 

correction based on line current, line R, and X parameters and load side voltage. Due to the presence 

of RESs, power flow could be unidirectional or bidirectional depending on the RES output and the load 

size. In the reverse power mode, where the power generated from the RES exceeds the load, the voltage 

regulator will be operating in reverse mode to regulate the substation voltage.  If the set-point of the 

substation transformer is higher than the set-point of the regulator, the regulator will step down to lower 

the voltage [55]. The high penetration and fluctuation of RESs may increase the operation of 

OLTC/SVR if no efficient coordination scheme is applied [60].  The propagation of the voltage 

oscillation due to RESs output change may result in feeder voltages exceeding the voltage limits, which 

enforce the OLTC and SVR to regulate feeder voltage every time the voltage goes over or under the 

specified range [61]. Hence, frequent operations of tap changers of OLTC or SVR will result in a 

reduction of tap changers’ life expectancy and higher maintenance costs[62]. 

    

     The operation of SC is also sensitive to the installation of RESs based on its control mode. If the 

capacitor uses a voltage control mode, the RESs may affect the operation of the capacitor if overvoltage 

occurs. For SC using line current control mode, the RES changes the line current if it is connected 

downstream the capacitor. For the other control modes used by SC, such as time and temperature 

control modes, the RES impact the capacitor operation if it operates based on constant power factor, 
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which increases the feeder end voltage when the capacitor switched on and the RESs still operating 

[58].  

 

2.5 Volt/Var Control in Active Distribution System 

Recently, there is a significant interest in integrating distributed generation and specifically RESs into 

the distribution systems.  However, the outputs of RESs are prone to intermittency and uncertainty, 

which leads to voltage rise, fluctuation, and improper conventional control operation.  The conventional 

Volt/Var control devices such as OLTC,  SVR, and SC are limited by their physical constraints, which 

can not respond to fast voltage variation triggered by a high fluctuation in the generated power from 

RESs. Therefore, a new Volt/Var control strategy should be considered for safe and reliable operation 

of power networks. From literature, several techniques of voltage and reactive power control are 

proposed. These techniques can be categorized based on communication requirements as centralized, 

distributed, and decentralized with a purely local option [63]. 

    Volt/Var control problem is usually formulated as an optimization problem based on various 

objective functions subject to system constraints. An objective of minimizing total switching operations 

and determining the optimal coordination between the control devices is proposed in 

[64][65][66][67][68][69]. Here, the authors investigated and solved the Volt/Var control problem with 

the objective of minimizing the control effort. Minimizing the switching operations will minimize the 

associated operating costs and increases the expected life of the control devices. Such optimization 

problems are usually formulated as MINLP and solved using heuristic search techniques such as PSO 

and ANN. Control variables such as OLTC, SVR, SC, and RESs are coordinated by formulating an 

optimization problem for optimal operational scheduling so that voltage deviation and control effort 

are both minimized.  The control process is solved from one centralized point considering a full 

communication infrastructure are exists. From the mentioned papers, the optimal scheduling is 

determined based on the hourly forecasting of load and RESs output for 24 hours. The DG’s inverters 

are coordinated with the conventional Volt/Var control devices for optimal solution. Another type of 

research papers investigated and proposed solutions for Volt/Var control problem by formulating the 

problem such that the total system losses are minimized as proposed in [65][66][69] 

[70][71][72][73][74] [75][76] [77]. Authors here applied centralized control schemes to minimize 

losses by controlling the flow of reactive power. Control variables such as OLTC, SC, SVR, and 

inverters are coordinated by solving MINLP problem. Formulating the optimization problem to 
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minimize power losses in the network is commonly used to enhance system efficiency and reduce the 

operation cost. The hourly forecasting output power of renewable energy sources and demands is 

performed in [65][71][73][74], where power flow problem is solved for a day ahead to determine the 

optimum settings of control devices on hour basis. The optimization problems in [65][76] are 

formulated as MINLP and solved by heuristic techniques subjected to system constraints. Additionally, 

high penetration level of RESs is investigated in [71][75]. The problem solved by controllable loads 

and microgeneration shedding in coordination among control devices. Minimizing voltage deviation 

from a nominal value due to the variation in loading conditions or high penetration of renewable 

sourcess is another approach to solve the Volt/Var control problem. Authors of [78][72][67] proposed 

voltage control methodology to coordinate LTC, SVR, and inverters interfaced RESs to minimize 

voltage deviation. Usually, this objective function is applied when there is a high penetration level of 

intermittent power sources. This formulation mitigates the voltage variation caused by the fluctuation 

of RESs. A methodology for generation curtailment due to voltage constraints was addressed in [79]. 

The approach aims to satisfy system constraints by curtailing distributed renewable sources in the case 

of high voltage imposed by reverse power flow considering a voltage sensitivity factor. A methodology 

for incorporating charging station of PEV in controlling the distribution system voltage in two steps 

through a centralized controller and under the high penetration level of PVs was introduced in [80]. In 

general, centralized Volt/Var control problem in ADS are usually solved using one of the 

aforementioned three objective functions or a combination between them depending on the type and 

requirement of the problem. Other approaches choose different objective functions based on problem 

type such as maximizing the output power from DERS or curtailing them to satisfy system constraints. 

 

    The decentralized control is another type of control strategies used in ADS for Volt/Var control. 

Solving the optimization problem in decentralized control mode is similar to the one used in centralized 

control mode. However, in a decentralized control model usually there is more than one optimization 

problem to be solved. If the distribution system is zoned or sectionalized, then each zone or local control 

area requires an objective function to be optimized with or without coordination with other local areas. 

In literature, many research papers tackled the Volt/Var control problem using decentralized control. 

Numerous research work applied power loss minimization as an objective function, as in[81][82][83]. 

The authors investigated and proposed solutions to the problem when having a high penetration of RES 

installed on distribution level. A decentralized control approach was applied to coordinate control 

variables in order to improve voltage profile in the presence of high RESs output power. Moreover, 
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minimizing voltage deviation was the objective function used in [81][84][85][83][86][87][88]. In [81], 

a decentralized control approach is used to coordinate SVR, and SC for optimal voltage profile with 

the presence of a PV system using feed-forward neural network FFNN trained and optimal data 

generated by Genetic Algorithm. Authors of [84], proposed a decentralized reactive power control 

considering remote terminal units (RTUs) installed at each DG and shunt capacitors. Coordination 

among RTUs through communication channels was implemented to regulate voltage profile and 

minimize system losses. In [85], power factor control of DGs and multi-agent technology considering 

the response delay of shunt capacitor and OLTC are used to regulate bus voltage. While in [86],  two 

stages control methodology for voltage control at busbar was proposed. In the first stage, the required 

reactive power from a connected DG unit to support a violated busbar voltage is estimated. In the 

second stage, if the violated busbar voltage cannot be regulated locally by the connected DG due to its 

capacity, a distributed algorithm exchange information with other controllers at neighbor busbar to 

compensate the reactive power in order to bring voltage to its desired limit. In addition, [87] proposed 

a control strategy for voltage rise due to the integration of distributed generation. The controller 

optimally limits the reactive power injected by DGs to a level prevents voltage violation and keeps the 

conventional voltage control approach runs by the distribution network operators. In [88], a 

decentralized voltage control scheme is proposed to handle the problem of high penetration of 

renewable generation.  The suggested control approach aims to effectively control traditional voltage 

regulators OLTC, and SVR by using multi-agent control system that controls single areas locally rather 

than centralized control. 

 

     Several Volt/Var control methodologies and techniques are investigated and implemented in the 

literature. The new infrastructure of distribution systems depends on communications and smart meters 

to play an essential role in the successful control strategy. Passive systems controlled based on 

unidirectional power flow, while the active system is controlled based on bidirectional power flow due 

to the existence of RESs. In literature many papers tackled the problem of high penetration of RESs 

and their impact on voltage profile. Proper forecasting techniques of loads and renewable generations 

in order to predict the actual demand and output power respectively played an essential role in the 

appropriate control strategy. Researchers proposed solutions for appropriate control actions under large 

installation of RESs by minimizing the control efforts as a function of operational cost with or without 

coordination with RESs output. However, the high penetration and fluctuation of RESs make the 

Volt/Var control problem more complex.  Therefore, better solution techniques that account for the 
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high uncertainty of these resources are needed. The very short-term operation and control of distribution 

system are better than the daily or hourly operations when PV and wind power systems are highly 

installed at the distribution level. The existing solution methodologies need to be accurate and fast in 

terms of computation cost with global solutions to cope with very fast variations of RESs and demand. 

 

2.6 Discussion and Conclusion 

Accurate forecasting of PV/wind power systems and demand is an important task for optimally 

operating ADS. From literature, the recent development in  ML techniques will promote them to play 

an essential role in RESs output forecasting. With the increasing demand for RESs, accurate short-term 

forecasting will be the main focus of system operators to efficiently schedule power resource.  

 

    Different Volt/Var control methodologies and techniques are investigated and implemented in the 

literature. The new infrastructures of a distribution system depend on communication and smart meters 

to play an important role in the effectiveness of a successful control strategy. The method of controlling 

a passive distribution system differs from that of an active distribution system. For some distribution 

networks, it is feasible to apply centralized control if there is a full communication channel between all 

control equipment and the centralized controller. In contrast, the decentralized control approach can be 

applied locally or for specific zones, given that communication is only needed between local control 

devices. The existence of RESs, as well as variable demands, may cause changes in the operational 

situation. In traditional distribution networks, the OLTC, SVR, and SC regulate any violated voltages 

based on LDC without considering the stream of the power flow caused RESs. The issue of having a 

high penetration level of RESs into the distribution system causes voltage fluctuation at the connection 

point, which forces the voltage regulators to respond more frequently to marinating the voltage within 

limits.  

     Given the previous operating challenges, it seems there is a need for a control Volt/Var control 

model able to operate distribution systems under high penetration and fluctuation of RESs in a very 

short time intervals. A fast and efficient algorithm for solving the Volt/Var control problem with the 

incorporation of RES outputs forecasting has become a favorable solution. 
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Chapter 3 

Very Short-Term Ensemble PV and Wind and Load Forecasting  

3.1 Preamble 

Due to the growing demand for clean and renewable energy, PV and wind power farms are being 

installed to a great extent in both transmission and distribution networks.  However, the stochastic and 

intermittent nature of RES brings some real operational challenges to system operators, especially at 

large-scale penetration levels. Voltage fluctuation, reverse power flow, and frequent operations of 

Volt/Var control devices are some of the challenges that system operators may encounter. Therefore, 

system operators make use of PV, wind, and load forecasting to schedule their resources in advance to 

ensure efficient and cost-effective operation. Hence, an accurate very short-term forecasting model is 

required to account for generation/demand uncertainties, especially when it comes to smart grid 

operation and control.  

Generally, PV/wind generation and demand can be forecasted based on two approaches. The first 

approach estimates the meteorological parameters such as solar irradiance, air temperature, wind 

speed/direction, and then predict the output power. The second approach uses historical and current 

records of power data to forecast future samples based on statistical or artificial methods [89]. In this 

chapter, a very Short-Term Stacking Ensemble (STSE) forecasting model is developed to predict the 

generated power from PV and wind systems for intervals of 15-minutes. The proposed approach 

combines a heterogeneous machine learning algorithm composed of three well-established models: 

Support Vector Regression (SVR), Radial Basis Function Neural Network (RBFNN), and Random 

Forest (RF) heuristically via SVR. The aim of the proposed STSE model is: 

 Integrates heterogeneous algorithms to build a robust and generalized forecasting model 

 Minimizes the prediction error by appropriately tunning the meat-learner parameter  

 Accurately predicts PV/wind output power for short-term intervals  

 Assists system operators in scheduling their energy resources and setting optimal control 

plans 
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The proposed STSE model is evaluated using evaluation metrics such as Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Further analysis 

related to correlation and comparison with individual base models SVR, REFNN, RF, and classical 

models such as Multilayer Perceptron (MLP) is conducted. On the other side, historical residential load 

data, which has less variation compared with PV/wind data, is used to build an SVR forecasting model 

to predict power consumption for intervals of 15 minutes. Using SVR for load forecasting has been 

evaluated, and the results were comparable with the STSE model. 

 

3.2 Stacking Ensemble Model 

Ensemble learning improves the accuracy of machine learning by combining several models, which are 

initially developed to reduce the variability in classification/regression decisions and thereby increase 

generalization performance [90]. The stacking algorithm is an ensemble learning technique in which 

the predictions of individual learners in one layer are used to train a second layer learning algorithm 

(meta-learner)  

In this thesis, the proposed STSE model combines three diversified time series forecasting 

techniques, which are SVR, RBFNN, RF, via SVR. The criterion for constructing an efficient ensemble 

predictor is based on; (i) reliability of the base predictors for forecasting time series data set, and (ii) 

the number of the predictors that can achieve high performance. The advantage of using an ensemble 

model is that it reduces the effect of the “concept drift” phenomenon [91], which causes problems 

because the predictions become less accurate as time passes. 

3.2.1  Model structure 

The proposed STSE model is illustrated in Figure 3.1. The process starts with preprocessing power data 

as discussed in Section 3.2.3 and then uses the processed time series data for training base learners 

located in the first layer (RF, RBFNN, and SVR). The outputs of the base learners are then used to train 

a second learner (SVR) located in the second layer to form the final prediction.  
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Figure 3.1 STSE Proposed forecasting model 

 

The following is a brief description of each learning algorithm.  

3.2.1.1 Support vector regression  

SVR, which is based on Vapnik’s concept of support vectors [92], is introduced firstly in [93]. The 

concept of SVR is based on the computation of linear regression function in a higher dimensional 

feature space. One of the main characteristics of SVR is that instead of minimizing the observed training 

error, it attempts to minimize the generalized error bound to achieve generalized performance. The 

generalization error bound is the combination of the training error and a regularization term that controls 

the complexity of the hypothesis space [94]. 

Giving a set of training samples:  

{(𝑥1, 𝑦1), … … (𝑥𝑛, 𝑦𝑛)} 𝑤𝑖𝑡ℎ 𝑥𝑖 𝜖 𝑅𝑑    𝑎𝑛𝑑  𝑦𝑖  𝜖 𝑅 

 

The linear regression model can be expressed as: 

 

𝑓(𝑥) = 𝑤1 𝑥1 + 𝑤2𝑥2 + ⋯ . 𝑤𝑛𝑥𝑛 + 𝑏 = 〈𝑤, 𝑥〉 + 𝑏                       3.1 
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where 𝑤 = [𝑤1 𝑤2, … . , 𝑤𝑛]
𝑇

  represents the vector of coefficients and b represents the bias. The 

regression problem can be addressed by solving the following constrained optimization problem [95]. 

 

𝑀𝑖𝑛⏟
𝑤,𝑏,𝜉,𝜉,

∗

  
1

2
 𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)  𝑛
𝑖=1                                               3.2 

Subject to the following constraints 

𝑦𝑖 − (𝑤𝑇∅(𝑥𝑖) + 𝑏 ) ≤  𝜀 + 𝜉𝑖                                                     3.3 

(𝑤𝑇∅(𝑥𝑖) + 𝑏 ) − 𝑦𝑖  ≤ 𝜀 + 𝜉𝑖
∗                                                     3.4 

𝜉𝑖 , 𝜉𝑖
∗  ≥ 0,     𝑖 = 1, … . . , 𝑛                                                             3.5 

where  𝑥𝑖 is mapped to a higher dimensional space by the Kernel function ∅. 𝜉𝑖
∗ and 𝜉 are slack variables 

subject to the 𝜀-insensitive tube. The parameters, which control the prediction accuracy, are the 

regularization parameter  𝐶 , the width of the tube 𝜀 and the mapping function ∅. By applying the 

Lagrange multiplier method and fulfilling Karnsh-Kuhn-Tucker (KKT) conditions, the dual form is 

transformed into an optimization function as explained in appendix A [96]. 

3.2.1.2 Radial basis function neural networks   

The RBFNN is a particular kind of neural network widely used in function approximation and time-

series predictions. It is a three-layer feed-forward network consisting of an input layer, hidden layer, 

and an output layer. RBFNN generally uses a linear transfer function for the output units and a nonlinear 

transfer function for the hidden units. Its input layer consists of source nodes connected by weighted 

connections to the hidden layer, and the net input to a hidden unit is a distance measure between the 

input presented at the input layer and the point represented by the hidden layer [97].  

3.2.1.3 Random Forest  

Random forest is a non-parametric ensemble-based learning technique used for classification and 

regression suggested by L. Breiman [98]. RFs for regression are formed by growing trees depending 

on a random vector such that the tree predictor takes on numerical values as opposed to class labels. 

The output values are numerical, and we assume that the training set is independently taken from the 

distribution of the random vector. The random forest estimator is formed by taking the average over a 

number of trees similar to the classification scenario [98]. 
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3.2.2 STSE algorithm 

The design of the algorithm takes into consideration the diversity of the model and the proper selection 

of the base models. The pseudo-code of the proposed stacking ensemble algorithm is shown in 

algorithm 1.  

Algorithm 1. Short-Term Staking Ensemble (STSE) 

Input: Data set      D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … … … (𝑥𝑚, 𝑦𝑚)} 

   First-level learning algorithm   𝐿1, … … 𝐿𝑛; 

   Second-level learning algorithm𝐿; 

Process 

% Train the 1st level individual learner ℎ𝑡 by applying the first level learning algorithm 𝐿𝑡 to the 

original data set D 

                For  𝑡 = 1 ,2, … , 𝑇 ∶ 
     ℎ𝑡 = 𝐿𝑡(𝐷)      

 End; 

% Generate a new data set 

    𝐷′   = ∅ ;      
               For 𝑖 = 1,2, … . , 𝑚 

       For 𝑡 = 1,2, … . , 𝑇 

𝑧𝑖𝑡 = ℎ𝑡(𝑥𝑖)  % 𝑢𝑠𝑒 ℎ𝑡  𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑥𝑖 

                     End; 

                              𝐷′ = 𝐷′  ∪ {((𝑧𝑖1, 𝑧𝑖2, … … 𝑧𝑖𝑗), 𝑦𝑖  )} 

               End; 

     Train the 2nd  level learner SVR using 2nd  level algorithm  𝐿 to the new data set 𝐷′ 

 

ℎ′ = 𝐿(𝐷′)                             

Output:    𝐻(𝑥) = ℎ′(ℎ1(𝑥), ℎ2 (𝑥), … … . , ℎ𝑇(𝑥)) 

 

3.2.3 Data Ppocessing and model evaluation 

3.2.3.1 Data processing 

The time-series data was measured chronologically from January 1, 2014, to Dec 31, 2014, with 

readings taken every 15 min. The measured data represents a very short-term interval recorded from 

PV, and wind power farms located on Waterloo, ON, Canada, whereas the load data was provided from 

a utility measured at the same date [99]. Winter season data from Jan 1, to March 30, 2014, is used to 
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train and test the model. The data is normalized between 0 and 1, according to Equation 3.6. The data 

is then divided into training and testing sets to train and evaluate the model. 

𝑥𝑖 =
𝑃𝑖−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛                                                                          3.6 

where 𝑃 =  (𝑃1, 𝑃2, … … , 𝑃𝑛)  represents the original measured data before normalization and 𝑥𝑖 is the 

𝑖𝑡ℎ   normalized data. 

 

3.2.3.2  Model evaluation 

To evaluate the prediction performance of the base models and the proposed stacked model, MAE, 

RMSE, and MAPE are the evaluation metrics defined as: 

𝑀𝐴𝐸 =
1

𝑁
 ∑ |𝑥𝑛 − 𝑦𝑛|𝑁

𝑛=                                                                       3.7 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ (𝑥𝑛 −  𝑦𝑛)2𝑁

𝑛=1                                                      3.8 

𝑀𝐴𝑃𝐸 =
1

𝑁
 ∑ |

𝑥𝑛−𝑦𝑛

𝑦𝑛
|𝑁

𝑛=1                                                                3.9 

where  𝑥𝑛 and 𝑦𝑛 are the forecasted and the desired values respectively, and N is the total number of 

samples.  

3.2.4 Short and very-short term forecasting comparison 

In this section, the hourly PV and wind power outputs are compared with the 15-min outputs on the 

same date and time. The purpose is to show that during the hourly forecast, some information between 

one hour and another will be missed in the hourly forecasting. The hourly forecast is acceptable when 

the penetration and output variations of renewables are relatively low. However, in operational 

scheduling or real-time operation of a distribution network under high penetration of renewables, short-

time forecasting provides more information about the status of the system, and hence, proper control 

decisions can be effectively made. For demonstration, Figure 3.2 and Figure 3.3 show the difference 

between the hourly and 15 min outputs as specified from the circled and zoomed-in data for PV and 

wind power systems respectively.   



 

 25 

 

Figure 3.2. Hourly and 15min PV output 

 

 

Figure 3.3. Hourly and 15min Wind output 
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    It can be seen from both figures that the PV and wind power outputs on an hourly basis will miss 

some information about the actual variations that may occur at short time intervals. Therefore, the 

15minutes forecasting interval is more reliable and efficient techniques to account for high variations 

that occur at short intervals, which affects the decisions of the network operator.   

 

3.2.5 PV power forecasting 

 Figure 3.4  shows the normalized output data of a PV system measured at intervals of 15-minutes for 

one year from Jan 01, 2014 to Dec 31, 2014. Also, PV output for a selected three days from Feb 15, 

2014, to Feb 17, 2014, is shown in the second plot of Figure 3.4. Generally, solar radiation plays a 

primary role in PV power generation. On sunny days, where solar radiation is almost the same, usually, 

there is a high correlation between power data from day to another. On the other side, on cloudy, rainy, 

or foggy days, solar radiation is affected by weather conditions, and hence, power varies to a great 

extent accordingly.   

 

Figure 3.4 Normalized PV output 

    After processing and normalizing the recorded data, the STSE model is built for short-term PV output 

forecasting. To achieve a precise and generalized forecasting process, the parameters of the forecasted 

model need to be appropriately selected as they have a particular impact on the model performance. 
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From literature, some researchers tuned the parameters of the SVR and RBFNN by applying some 

optimization algorithms such as GA as discussed in [32][34] using the training data set. However, the 

tuning process using heuristic search techniques adds a more computational burden to the forecasting 

process. In this model, tuning the base learners’ parameters and the meta-learner parameters SVR is 

performed using cross-validation from the libsvm library [100]. A cross-validation technique using 

preceding sections to forecast future segments in order is applied to follow the direction character of 

the time series forecasting. An experiment on the impact of the regularization parameter C is performed 

to check its effect on RMSE and MAE values.  From Figure 3.5, it can be seen that changing the 

regularization parameter C from 0.01 to 100 has a small impact on the prediction accuracy  

 

 

Figure 3.5. Impact of C Parameter on MAE and RMSE 

    The regularization parameter C is selected to be 1.0 as a trade-off between overfitting and 

generalization. The RBF Kernel, as shown in 3.10, is chosen to perform nonlinear prediction. 

K(x, y) = exp (−
‖xn−xi‖2

2σ2 )                                                       3.10 

where 𝜎 = 0.001 is a constant determining the width of the RBF kernel, and the term ‖𝑥𝑛 − 𝑥𝑖‖2 , is 

the squared Euclidean distance between two feature vectors, and epsilon=0.001. 

When the appropriate parameters of the meta-learner SVR are determined, the STSE model is applied 

to the data set to predict future PV outputs. Figure 3.6 shows the forecasting of the STSE model on a 

sample of the data set, March 30, 2014, with a prediction step of 15 min. As can be seen, there is an 

adequate match between the actual and predicted data.  
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Figure 3.6 Prediction of the STSE model  

    A good correlation between the observed and the predicted data can be observed in Figure 3.7, which 

is 0.968. A value of correlation close to 1 indicates high accuracy of the forecasting model. 

 

 

Figure 3.7. Correlation between actual and predicted data 
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   To compare the prediction accuracy of the ensemble model, a comparison with the base models 

SVR, RBFNN, and RF on the same data set is conducted, where the base models trained and tested as 

stand-alone models. Figure 3.8 shows the performance of the base models SVR, RBFNN, and RF with 

a prediction step of 15 minutes. It can be seen from the figure that the ensemble model is the closest to 

the actual data line (dashed line) compared with the other models. 

 

Figure 3.8. Prediction of All models  

    Although the individual models achieve a certain degree of accuracy, they are not exactly following 

the trend and the variability of the actual generated power compared with STSE.  

 

    Table 3-1 shows the performance metrics of each model after evaluation. The forecasting process 

has been conducted on each model individually at first, and then the proposed stacked model is used 

for comparison purposes. Noticeably, the proposed model outperformed the individual models in terms 

of prediction error minimization specifically for the RMSE. The strength of the model comes from its 

ability to learn from three heterogeneous models determined by different algorithms. Further 

comparison is conducted with other forecasting models such as MLP to compare the proposed model 

with state-of-the-art models.  

 



 

 30 

Table 3-1. Comparison between the proposed and base models 

Model MAPE% RMSE MAE 

SVR 0.82 0.0647 0.0351 

RBFNN 3.53 0.0749 0.0403 

RF 1.35 0.0601 0.0319 

STSE 1.27 0.0445 0.0229 

MLP 2.19 0.056 0.0324 

 

    The prediction accuracy of the proposed model for forecasting PV output for a very-short interval 

has been proven and compared with state-of-the-art models. The correlation and evaluation metrics 

show that the STSE model is efficient and reliable and can be used in power system control and 

operation.  

 

3.2.6 Wind power forecasting 

Wind power is generated by wind propelling a turbine to rotate, which converts the mechanical energy 

to electrical energy. Wind speed and direction determines the amount of electricity generated by a 

turbine. Changes in wind speed and direction lead to intermittent power generation, which brings severe 

challenges to the power system at the large-scale penetration level. Therefore, the proposed STSE 

model is applied to predict the generated power from past time-series wind power data.  

Wind power data measured chronologically from January 1, 2014, to Dec 31, 2014, with readings 

taken every 15 minutes are used. The data are processed and normalized between 0 and 1 as discussed 

previously. Following the same procedure, the training process is conducted on a subsection from the 

data set from Jan 1 to March 30, 2014. Figure 3.9 shows the power data generated from a wind turbine 

for one year and for three selected days from Feb 15, to Feb 17, 2014. Unlike PV output, which is 

characterized by its periodicity due to irradiance time, wind power patterns are unlikely to repeat on a 

daily basis, and it has peaks and off-peaks depending on wind speed and direction.  
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Figure 3.9. Normalized Wind Power Output 

Tuning the base learners’ parameters and the meta-learner parameters of SVR is conducted in the 

same way as discussed in section 3.2.3. The best estimate for the regularization parameter C is 5.0. 

Increasing the parameter C over 5 achieves the same accuracy, but the computational time will increase, 

as shown in Figure 3.10. The RBF parameter 𝜎 = 0.005 and epsilon=0.001. 

 

Figure 3.10. Impact C Parameter on MAE and RMSE 
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When the appropriate parameters of the meta-learner (SVR) are estimated, the ensemble model is 

applied to the test data to predict wind power output for intervals of 15-min. The prediction results from 

March 30, 2014, is shown in Figure 3.11. It is clear that the proposed model follows the patterns of the 

initially recorded wind power data. From interval 70 to the end, the staking ensemble model achieves 

the highest accuracy as the generated power becomes almost linear. The short-term prediction of 15-

minute interval allowed for the capturing of the non-linearity in the generated power that occurs at short 

time scales, and the representation of the stochastic nature of the data.  

 

Figure 3.11. STSE model prediction   

     The correlation between the observed and predicted wind power data calculated can be observed in 

Figure 3.12, which is 0.9838.  Correlation between the two values is an indication of how the predicted 

values are close to the original values. Training the three base models and combining their predictions 

via SVR after determining the appropriate parameters ensures the generalization of the model as well 

as minimization of the prediction error between the observed and actual value.  
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Figure 3.12. Correlation between actual and predicted data 

 The proposed time-series prediction model is compared with the stand-alone base learners, as 

discussed before for comparison purposes. Figure 3.13 shows the predictions of all models as individual 

models and the STSE model with the actual data. 

 

Figure 3.13. Prediction of All models  

R² = 0.9748

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

d
ic

te
d

 O
u

tp
u

t

Actual Output

Correlation



 

 34 

 We can see that the proposed model outperforms all of the stand-alone models and achieves better 

prediction accuracy and the highest correlation to the original data set. RBF has the least correlation 

among all the models. Table 3-2 shows the performance metrics of each model after the evaluation of 

the test data set.  

Table 3-2. Comparative forecasting results proposed and base models 

Model MAPE% RMSE MAE 

SVR 13.57 0.1094 0.0932 

RBFNN 5.921 0.0597 0.0487 

RF 5.91 0.0597 0.0305 

STSE 1.314 0.0248 0.0186 

MLP 2.17 0.036 0.028 

 

 From the results,  the proposed model has less prediction error compared with SVR, RBFNN, and 

RF. The RMSE of the stacked ensemble model is 0.0248, which is the lowest among the others. Other 

evaluation metrics like MAPE and MAE also indicates the successfulness of the STSE model in 

predicting the short time interval efficiently compared with classical models. MLP is also used for 

comparison, but less than the STSE model. 

3.3 Load Forecasting 

Electric load forecasting is another important task, which plays an essential role in the distribution 

system operation.  System operators predict electricity consumption for a day ahead to balance 

generation and demand. Alternatively, operating smart grids dominated by RESs requires prediction on 

orders of minutes. Unlike PV and wind power systems, which depend on weather conditions, electricity 

load changes are mainly based on customer usage.  Different types of customers have different kinds 

of load profiles such as residential, commercial, industrial, or a mixture of these. In this study, as we 

only consider residential customers, short-term load forecasting for intervals of 15-min ahead is 

conducted. For modeling simplicity and accuracy, we have tried the three base models SVR, RBFNN, 

and RF as individual models and compared the results with the proposed STSE model. We found that 

SVR performance is very efficient and close to the STSE model. Therefore, as we introduce a 
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forecasting model for a medium voltage distribution system, we forecast the aggregated load using 

SVR and compare the forecasting performance with RBFNN and RF models. 

    Figure 3.14 shows the normalized residential load profile from Jan 1, 2014, to Dec 31, 2014 [99]. 

We can see from the second plot that the load pattern does not change much from day-to-day. However, 

changes occur in peak values from season-to-season as seen from the first plot.  

 

 

Figure 3.14 Normalized residential load profile 

 

  Figure 3.15 shows the performance of the SVR forecasting model on the visualized data from Figure 

3.14. We can see that the SVR model follows the trend of the load profile. Three Kernel functions are 

used to determine the best mapping function used in the SVR model: RBF, Polynomial, and Linear. 
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Figure 3.15. Forecasted load profile 

   The correlation between the actual data and the forecasted data is shown in Figure 3.16. Correlation 

equals 0.9982, which indicates that the actual and the predicted movements are associated.  

 

 

Figure 3.16. Correlation between actual and predicted data 
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    A comparison with previous base models RBF and RF with the SVR model shows that  SVR 

outperforms the other models and provides the best-fit model as shown in Figure 3.17.  

 

Figure 3.17. Prediction of SVR, RBF, and RF models  

 

    The parameters of the SVR model to achieve high accuracy are C=0.5, Kernel=’RBF”, 

epsilon=0.001, exponent=2. The evaluation metrics for the three learners are depicted in Table 3-3. 

 

Table 3-3. Comparative forecasting results For SVR, RBF, and RF. 

Model MAPE% RMSE MAE 

SVR 3.319 0.0074 0.004 

RBF 6.24 0.027 0.022 

RF 3.81 0.0187 0.015 
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3.4 Conclusion 

Accurate forecasting of PV/wind power plays a significant role in improving the efficiency and 

reliability of power distribution systems. In this chapter, an STSE forecasting model has been 

established and applied to time series PV/wind power data for short-term power forecasting. The 

prediction models SVR, RBFNN, and RF are used to make the initial prediction. Then, the SVR model, 

which is trained by the outputs of the base models, is used to predict the final production. The evaluation 

of the stacked ensemble model based on RMSE, MAPE, RMS, and RAE, showed that the proposed 

model outperforms the individual base models and other models, such as MLP. Our results show that 

combining the base predictors via parameter tuned SVR improves the model prediction accuracy and 

generalization. Moreover, short-term forecasting of demand is conducted by the SVR model only. We 

conclude that SVR performs better than the other forecasting base models and is comparable with the 

STSE model when the variations in the data are relatively small.  
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Chapter 4 

Optimal Predictive Volt/Var Control For Smart Distribution Grids  

4.1 Preamble 

One of many advantages of Smart Distribution Grids (SDGs) is to allow for high penetration of 

renewable energy sources (RESs) such as solar PV and wind power systems. Several technical and 

economic advantages result from integrating RESs into power system networks, including an increase 

in grid reliability and a reduction in the increasing demand [101]. However, many operational problems 

are highlighted in the literature related to the high integration of solar PV and wind power systems, 

particularly on the medium and low distribution systems. Some of these issues are summarized in the 

following points [101][102]:  

 Voltage fluctuation and voltage regulation problem 

 Changes in feeder loading, including overloading of the system components 

 Malfunctioning of the voltage regulation equipment 

 Variation of power factor  

 Reverse power flow 

 Planning of distribution systems 

A review of the literature reveals that many research papers have proposed several techniques to control 

and operate SDGs dominated by RESs. Many of these techniques are discussed and summarized in 

[103]. Considering the conducted studies, managing a distribution system dominated by PV and wind 

farms, characterized by a high degree of uncertainty alongside their impact on the cost-effective 

operation of the network, still has room for improvement.  

    In this chapter, two versions of a model for an optimal day-ahead generic Predictive Volt/Var Control 

(PVVC)  are proposed. The PVVC models are formulated as an optimization problem and solved 

sequentially for one day-ahead. The models aim to overcome the operational challenges, such as 

overvoltage, power losses, and frequent operations of Volt/Var devices, that are brought by the high 

integration of RESs. The first model operates the RESs at unity power factor, where the objective is 

defined as simultaneous minimization of voltage deviation at each bus, power losses, operating cycle 

of regulation equipment, and RES curtailment. Unlike the drop-based active power curtailment 
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technique used in [104], this model minimizes the active power curtailment in collaboration with 

Volt/Var control devices to maintain the system's voltages within limits and minimizes the total 

operating cost of the network. A day-ahead of Solar PV and wind power forecasting in addition to 

network topology and bus/line parameters are the inputs to the optimization model.   

 The second control model of this chapter, which operates the RESs at variable power factor,  uses 

inverters interfaced with RES as an ancillary service for Volt/Var control. A dispatch schedule of PV 

and wind power inverters in coordination with OLTC, and SVR for minimizing power losses, 

operations of Volt/Var control devices, as well as improving the voltage profile, is developed.  

 

4.2 PVVC With RESs at Unity Power Factor 

In a power system, the Volt/Var control is an optimization problem used to maximize or minimize a 

certain objective subject to a network’s physical and operating constraints. In this chapter, the PVVC 

problem is modeled as an optimization problem, which is used to solve the Volt/Var control problem 

in SDGs. The PVVC problem is a form of OFP modeled to maintain the system voltage profile within 

the security ranges and minimize system losses by controlling the reactive power flow through the 

Volt/Var control devices.  

4.2.1 Objective Function 

The proposed PVVC problem is formulated as an MINLP optimization problem and solved in GAMS 

[105] to minimize power losses, voltage deviation, OLTC, SVR, SC operations, and RES active power 

curtailment. A multi-objective optimization problem is developed and then transformed into a single 

objective function using the weighted sum method. The method, which provides a single solution point 

that reflects preferences presumably incorporated in the selection of a single set of weights [106], is 

more practical in comparison with other multi-objective programming methods [63]. Different solution 

methodologies for solving multi-objective functions, such as the adaptive weighted sum method [107] 

and improved є-constrained approach [108], can also be used in solving the optimization problem. The 

objective function of the PVVC problem is described in Equation 4.1. The third, fourth, and fifth 

objectives are formulated in a way similar to the formulation in [60]. The first and second objectives 

are included for losses and voltage deviation minimization. 
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Min 𝐹 =  𝑤𝑙𝑜𝑠𝑠
𝐹𝑙𝑜𝑠𝑠

𝐹𝑙𝑜𝑠
0 + 𝑤𝐷𝑉

𝐹𝑉𝐷

𝐹𝑉𝐷
0 + 𝑤𝐿𝑇𝐶

 𝐹𝐿𝑇𝐶

𝐹𝑙𝑡𝑐
0 + 𝑤𝑠𝑣𝑟

 𝐹𝑆𝑉𝑅

𝐹𝑠𝑣𝑟
0 + 𝑤𝑠𝑐

𝐹𝑆𝐶

𝐹𝑠𝑐
0 − 𝑤𝑐𝑢𝑟

𝐹𝑐𝑢𝑟

𝐹𝑐𝑢𝑟
0       4.1 

where 𝐹𝑙𝑜𝑠𝑠, 𝐹𝑉𝐷,  𝐹𝐿𝑇𝐶 ,  𝐹𝑆𝑉𝑅 , 𝐹𝐶𝐵, 𝐹𝑐𝑢𝑟    are the single objectives of power losses, voltage deviation, 

OLTC operation, SVR operation, SC operation, and RES curtailment, respectively. 𝐹𝑜 represents the 

maximum absolute value for each objective obtained from historical operation data to scale the 

objective and make it unitless in order to satisfy the weighted sum method [109].  

 

A.  𝐹𝒍𝒐𝒔𝒔 = Active power losses 

The first objective represents the total active power losses in all lines calculated from Equation 4.2.  

𝐹𝑙𝑜𝑠𝑠,𝑡 = ∑   
1

2
 ∑  𝑔

𝑖𝑗
(𝑉𝑖,𝑡

2 + 𝑉𝑖,𝑡
2 − 2𝑉𝑖,𝑡𝑉𝑗,𝑡 𝑐𝑜𝑠 (𝛳𝑖𝑗,𝑡)(𝑖,𝑗)є𝑁𝑏

) 24
𝑡=1              4.2 

𝑉𝑖, 𝑉𝑗 are the voltages at buses i and j, whereas,  𝑔𝑖𝑗 represents the line admittance, and 𝑁𝑏 is the 

number of buses. 

  

B. 𝐹𝑽𝑫 = Voltage deviation (VD) 

The second objective is associated with the voltage deviation on each bus. The aim is to minimize the 

bus voltage to a reference point, where 𝑉𝑟𝑒𝑓 = 1.0 𝑝𝑢 . 

𝐹𝑣𝑑 = ∑  ∑ |𝑉𝑖,𝑡 − 𝑉𝑟𝑒𝑓|
𝑁𝑏
𝑖=1  𝑡=24

𝑡=1                                                                       4.3 

 

C.  𝐹𝑳𝑻𝑪= Switching operation of the OLTC transformer 

The third objective is associated with the tap changes of the OLTC between consecutive intervals, as 

shown in Equation 4.4. 

𝐹𝐿𝑇𝐶 = ∑   |𝑡𝑎𝑝𝑖,𝑡
𝑙𝑡𝑐 − 𝑡𝑎𝑝𝑖,𝑡−1

𝑙𝑡𝑐 | 24
𝑡=1                                                                  4.4 

where 𝑡𝑎𝑝𝑖,𝑡
𝑙𝑡𝑐  𝑎𝑛𝑑 𝑡𝑎𝑝𝑖,𝑡−1

𝑙𝑡𝑐  represent tap positions of the OLTC at time 𝑡, 𝑎𝑛𝑑 𝑡 − 1, respectively. 

 

D.  𝐹𝑺𝑽𝑹= Switching operation of the SVR  

The fourth objective is associated with the SVR. Similar to the OLTC, the aim is to minimize the tap 

changes between consecutive time intervals: 

𝐹𝑆𝑉𝑅 = ∑  ∑  |𝑡𝑎𝑝𝑖,𝑡
𝑠𝑣𝑟 − 𝑡𝑎𝑝𝑖,𝑡−1

𝑠𝑣𝑟 |24
𝑡=1𝑖∈𝑁𝑠𝑣𝑟

                                                   4.5 
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where 𝑡𝑎𝑝𝑖,𝑡
𝑠𝑣𝑟  𝑎𝑛𝑑 𝑡𝑎𝑝𝑖,𝑡−1

𝑠𝑣𝑟  represent tap positions of the SVR at time 𝑡, 𝑎𝑛𝑑 𝑡 − 1, respectively, and 

𝑁𝑠𝑣𝑟 represents the total number of step voltage regulators. 

 

E.   𝐹𝑆𝐶= Switching operation of the SC 

The fifth objective is associated with the SC between consecutive time intervals: 

𝐹𝑆𝐶 = ∑  ∑  |𝑍𝑖,𝑡 − 𝑍𝑖,𝑡−1|24
𝑡=1 𝑖∈𝑁𝑆𝐶

                                                             4.6 

 where  𝒁𝒊,𝒕 is a discrete number representing the SC units in service at node 𝑖 and time 𝑡.  𝑁𝑆𝑪 

represents the total number of capacitors in the system. 

 

F.  𝐹𝐶𝑢𝑟𝑡 = DGs Curtailment 

The sixth objective is associated with the curtailment of active power from solar PV and wind power 

systems from the maximum power outputs: 

𝐹𝑐𝑢𝑟𝑡 = ∑  ∑  |𝑃𝑖𝑛𝑣𝑖,𝑡

𝑚𝑎𝑥 − 𝑃𝑖,𝑡
𝑐𝑢𝑟|24

𝑡=1 𝑖∈𝑁𝑑𝑔
                                                        4.7 

where 𝑃𝑖𝑛𝑣𝑖,𝑡

𝑚𝑎𝑥   𝑎𝑛𝑑 𝑃𝑖,𝑡
𝑐𝑢𝑟  are the maximum power and the curtailed power from the RES units. 𝑁𝑑𝑔 is 

the total number of RESs.  

4.2.2 Equality and inequality constraints 

The main conventional Volt/Var control variables are OLTC, SVR, and SC. Each one of the control 

variables has physical and operational limitations. 

1. Power flow constraints 

 Real power injection constraints:  

               𝑃𝑔,𝑖,𝑡 + 𝑃𝑖𝑛𝑣,𝑖,𝑡 − 𝑃𝑑,𝑖,𝑡 = 𝑉𝑖,𝑡 ∑ 𝑉𝑗,𝑡(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗,𝑡 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗,𝑡)
𝑁𝑏
𝑗=1                    4.8 

 Reactive power injection constraints: 

              𝑄𝑔,𝑖,𝑡 + 𝑄𝑆𝐶,𝑖,𝑡 − 𝑄𝑑,𝑖,𝑡 = 𝑉𝑖,𝑡 ∑ 𝑉𝑖,𝑡(𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗,𝑡 − 𝐵𝑖𝑗𝑄𝑑,𝑖,𝑡𝑖𝑗
𝑐𝑜𝑠𝜃𝑖𝑗,𝑡

𝑁𝑏
𝑗=1 )         4.9 

where 𝑃𝑔,𝑖,𝑡 , 𝑄𝑔,𝑖,𝑡 are the real and reactive power from the grid, whereas, 𝑃𝑑,𝑖,𝑡 , and 𝑄𝑑,𝑖,𝑡 are the real 

and reactive power for demand. 𝑃𝑖𝑛𝑣,𝑖,𝑡 and 𝑄𝑆𝐶,𝑖,𝑡 the are active and reactive power from RES inverters 

and SCs. 
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2. Voltage constraints  

Voltage must be within the specified ANSI C84.1 standard limit  (i.e., 0.95-1.05 pu) [110]:   

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡 ≤ 𝑉𝑚𝑎𝑥                                                                                    4.10 

 

3. Tap ratio of the LTC and SVR 

As previously discussed, all Volt/Var control devices will be controlled from a centralized point instead 

of their local controllers. The physical constraints of both devices are the maximum and the minimum 

number of taps and the maximum daily number of operations. The objective is to minimize frequent 

operations, which decreases the device’s lifespan and increases maintenance costs. 

 

 OLTC constraints: 

𝑇𝑎𝑝𝑙𝑡𝑐
𝑚𝑖𝑛  ≤ 𝑡𝑎𝑝𝑡

𝑙𝑡𝑐 ≤ 𝑇𝑎𝑝𝑙𝑡𝑐
𝑚𝑎𝑥    , ∀𝑖∈ 𝑁𝑙𝑡𝑐                                                4.11 

∑   |𝑡𝑎𝑝𝑡
𝑙𝑡𝑐 − 𝑡𝑎𝑝𝑡−1

𝑙𝑡𝑐 | 24
𝑡=1 ≤ 𝛽𝑙𝑡𝑐                                                                 4.12 

 SVR constraints:  

𝑇𝑎𝑝𝑠𝑣𝑟
𝑚𝑖𝑛 ≤ 𝑡𝑎𝑝𝑖,𝑡

𝑠𝑣𝑟 ≤ 𝑇𝑎𝑝𝑠𝑣𝑟
𝑚𝑎𝑥  ,   ∀𝑖∈ 𝑁𝑠𝑣𝑟                                                   4.13 

∑  |𝑡𝑎𝑝𝑖,𝑡
𝑠𝑣𝑟 − 𝑡𝑎𝑝𝑖,𝑡−1

𝑠𝑣𝑟 |24
𝑡=1 ≤ 𝛽𝑠𝑣𝑟                                                                  4.14 

where 𝛽𝑙𝑡𝑐 , 𝑎𝑛𝑑 𝛽𝑠𝑣𝑟 are the total number of LTC and SVR switchings per day. 

 

4. SC Control 

Switched capacitor banks are mainly used to improve the power factor by compensating the reactive 

power from inductive loads. An SC bank consisting of three units, which can be remotely controlled in 

discrete steps, is considered. The daily limit on the unit's switchings and the maximum reactive power 

when all capacitors are active are shown in the following equations [60]: 

 

𝑄𝑆𝐶,𝑖,𝑡 = 𝑞𝑖
𝑆𝐶  𝑍𝑖,𝑡      , ∀𝑖∈ 𝑁𝑆𝐶                                                                        4.15 

∑ |𝑍𝑖,𝑡 − 𝑍𝑖,𝑡−1|24
𝑡=1 ≤ 𝛽𝑆𝐶                                                                               4.16 

0 ≤ 𝑍𝑖,𝑡 ≤  𝑍 𝑚𝑎𝑥                                                                                            4.17 
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where 𝑞𝑖
𝑆𝐶 is the reactive power capacity of each unit of the SC at node 𝑖, and  𝑍𝑖,𝑡 is a discrete number 

that represents the SC units in service at node 𝑖 and time 𝑡. 𝛽𝑆𝐶 represents the maximum daily number 

of switchings for each unit. 𝑍 𝑚𝑎𝑥 is the maximum number of banks of each SC. 

   

5. RES active power curtailment constraint 

The active power is limited by the apparent power limit of the inverter. 

 

0 ≤ |𝑃𝑖𝑛𝑣𝑑,𝑡

𝑚𝑎𝑥 − 𝑃𝑑,𝑡
𝑐𝑢𝑟| ≤ 𝑆𝑖𝑛𝑣

𝑚𝑎𝑥                                                           4.18 

where 𝑆𝑖𝑛𝑣
𝑚𝑎𝑥 is the apparent power of the inverter. 

 

6. Line capacity constraints 

|𝐼𝑖𝑗,𝑡
𝑡 | ≤ |𝐼𝑖𝑗,𝑡

𝑚𝑎𝑥|                                                                                      4.19 

where 𝐼𝑖𝑗,𝑡
𝑚𝑎𝑥  is the maximum line capacity. 

 

The summation of all weights must be equal to 1 in order to satisfy the weighted sum method when 

solving the optimization problem. The weight coefficients are determined based on a decision matrix, 

as explained in [109].  

 

𝑤𝑙𝑜𝑠𝑠 + 𝑤𝐷𝑉 + 𝑤𝐿𝑇𝐶 + 𝑤𝑠𝑣𝑟 + 𝑤𝑠𝑐𝑏 + 𝑤𝑐𝑢𝑟 = 1                           4.20 

 

4.3 Assumptions  

To solve the control problem and schedule the operation of SDG components, the following 

requirements are assumed to be available: 

 Full communication infrastructure for information exchange. 

 Smart meters at each bus for data measurements.  

 The OLTC, SVR, and SC are switched according to a signal from a supervisory controller.  
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 An energy management system for solving the optimization problem and sending control 

signals to system components.  

    A Supervisory Control and Data Acquisition (SCADA) system, which plays the role of monitoring 

and controlling components, should be available. A SCADA system that sends field data back to the 

supervisor controller via a communications link, where the master permits the operator to perform 

remote control tasks [111]. 

4.4 Case Studies 

In this section, case studies on the modified IEEE 33-Bus test systems are performed to evaluate the 

proposed control strategy. Numerical experiments are implemented using GAMS on a desktop 

computer with Intel Core (i3, 3.3GHz) and 8GB memory. COINBONMIN solver is used for solving 

the formulated MINLP control problem.  

 IEEE 33-Bus Test System 

The proposed model is evaluated on an IEEE 33-bus 11-kV radial distribution test system [34], as 

shown in Figure 4.1. The total active and reactive loads are 3,635 kW and 2,265 kVAR, respectively. 

The line parameters and load data are presented in Appendix B. The OLTC regulates the voltage on the 

secondary side of the substation transformer up to ± 10% with ±16 steps, where each step equals 5/8% 

pu. The SVR is placed on the main feeder between buses 6 and 7 to regulate the voltage by ± 10%. Two 

SC banks located at buses 18 and 33 each of which produces reactive power in steps of 150 kVAR and 

up to 450 kVAR. The permissible range of voltage deviation is limited by ± 5% of the nominal voltage 

at the slack bus.  
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Figure 4.1. IEEE 33-Bus test system 
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    Two scenarios, 30% and 60% of RES penetration are applied.  The forecasted PV and wind power 

outputs are shown in Figure 4.2. The hourly load profile, as shown in  Figure 4.3, is considered as the 

same profile for consecutive days. It can be seen from the normalized PV profile that the generated 

power changes during the day due to the change in weather conditions. Similarly, as the wind speed 

and direction change,  the generated power from wind turbines changes accordingly. Hence, the 

fluctuation in the generated power under the high integration of renewables may bring serious 

operational and automation challenges to the network operators.  

     It should be noted that the location and size of the reactive compensation devices have an impact on 

the performance of the PVVC; however, the optimal placement of the components is beyond the scope 

of this study. The penetration level of the PV and wind power systems is calculated based on the formula 

from Equation 4.21, where the term 𝑅𝐸𝑆𝑟𝑎𝑡𝑒𝑑 represents the summation of all renewable sources at 

their rated values, and 𝑆𝑙𝑜𝑎𝑑 is the total demand. The rated capacity of  PV and wind power systems is 

0.0292 pu, 0.0279 pu, and 0.013 pu, 0.0098 pu, respectively. The weights in Equation 4.20 are: 

0.2,0.06,0.14,0.13,0.07,0.4 respectively. 

𝑅𝐸𝑆𝑝𝑒𝑛 =
𝑅𝐸𝑆𝑟𝑎𝑡𝑒𝑑  

𝑆𝑙𝑜𝑎𝑑
𝑥100%                                                            4.21 

 

Figure 4.2. Forecasted PV and wind profiles  
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Figure 4.3. Normalized residential load profile 

 

4.5 Simulation results 

In this section, the two scenarios are applied to determine the impact of RESs output fluctuations on 

the operation of SDG. The two penetration levels are studied to determine the optimal coordination 

between the Volt/Var control devices and to examine RES curtailment options if needed for the secure 

and efficient operation of SDG. 

4.5.1 Base case    

To determine the impact of high penetration of RESs on voltage profile, power flow is performed 

without RES curtailment options.   It can be seen from Figure 4.4 that voltage violation occurs on the 

buses connected to the PV and wind power systems. The voltage profile of RES buses 13, 21, 24, 28, 

as well as end-of-feeder buses 18 and 33, are considered as they experience higher voltage fluctuation 

and voltage drop than the others.  

Buses 21 and 24, which are connected to the wind turbines, experience a voltage level that exceeds the 

limit of 1.05 p.u.  In contrast, buses 13 and 28, which are connected to the PV systems, experience 

over-voltage as a result of light demand and high PV generation around 3:00 PM. Buses 18 and 33, 
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which are located at the end of the feeder, are considered for plotting as they may experience under-

voltage at the end of the day when the demand is high, and the solar PV output is at a minimum. 

 

 

Figure 4.4. System voltage under no-curtailment options 

 

4.5.2  Low RES penetration 

This case examines the performance of the proposed model at a 30% penetration level of RESs. The 

objective function, as described in Equation 4.1, has been solved to minimize active power losses, 

voltage deviation, RES active power curtailment, and operations of the OLTC, SVR, and CB.  

    Figure 4.5 shows the voltage profile of the selected buses for the 24 hour simulation period. At 30% 

penetration level, the impact of RESs on the voltage profile is relatively small. The variations in the 

generated power from the PV and wind power systems at low penetration levels do not cause severe 

voltage violations or fluctuations problems.  Under these operating conditions, the proposed PVVC 

model solved the problem efficiently and without the need to curtail any of the RESs.  
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Figure 4.5. Voltage profile 30% penetration.  

 

It can be seen from Figure 4.6 that the operation of both OLTC and SVR is minimized to the 

minimum limit. The OLTC switched once,  counting for 1 tap from 1 to 0 position at 9:00 PM. On the 

other side, the SVR switched once, counting for 1 tap from position -2 to -1 at 11:00 AM. The operation 

of both devices in coordination with the SCs is scheduled according to the solution of the PVVC model, 

considering the minimization of losses, voltage deviation, and RES curtailment.  

 

Table 4-1 shows the daily scheduled operation of the SC banks after solving the problem. The SC on 

bus 18 switched on one bank (150kVAR) from 8:00 – 11:00 PM. This is to offset the consumed reactive 

power because the demand during these intervals is high. The second SC at bus 33 switched off for the 

entire day as the voltage kept within the permissible limits.  



 

 50 

 

Figure 4.6. OLTC and SVR Tap operation at 30% penetration.  

Table 4-1. Switched capacitor bank status 

Time 

Cap-18 

(Q*K) 

Cap-33 

(Q*K) Time 

Cap-18 

(Q*K) 

Cap-33 

(Q*K) 

K K K K 

1:00 0 0 13:00 0 0 

2:00 0 0 14:00 0 0 

3:00 0 0 15:00 0 0 

4:00 0 0 16:00 0 0 

5:00 0 0 17:00 0 0 

6:00 0 0 18:00 0 0 

7:00 0 0 19:00 0 0 

8:00 0 0 20:00 1 0 

9:00 0 0 21:00 1 0 

10:00 0 0 22:00 1 0 

11:00 0 0 23:00 1 0 

12:00 0 0 24:00 0 0 
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4.5.3 High RES penetration 

In the second case, the penetration level has been increased to 60%. At high integration of RESs with 

high power variations, the control problem becomes more challenging. Frequent operations of voltage 

regulators, reverse power flow, overvoltage, and voltage fluctuation are some of the challenges that 

need to be solved.  

In this section, two scenarios are studied to verify the capability of the proposed algorithm in solving 

the control problem under the high penetration of solar PV and Wind power systems. 

4.5.3.1 Scenario 1 

The optimization problem is solved based on the minimization of power losses, voltage deviation, and 

RES curtailment only. In this scenario, when the penetration level is high, power curtailment at peak 

generation is an option if the voltage exceeds the permissible range and cannot be mitigated by the 

voltage regulators. In Figure 4.7, which shows the voltage profile of the selected buses, it can be 

observed that the voltages at bus 13 and bus 18 have a little spike due to the peak generation of the PV 

unit at 5:00 PM, where the demand is low, and the PV generated power is high.  

 

Figure 4.7. Scenario 1.Voltage profile at 60% penetration. 
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Minimizing the voltage deviation, as one of the sub-objective functions, has maintained the voltages 

on all buses close to the reference value. Additionally, as one of the sub-objectives is to minimize the 

active power curtailment from RESs if necessary, only the PV unit at bus 13 curtails some of its output 

during peak generation times. The amount of the curtailed power was 0.017 pu for the entire simulation 

period. This is a small curtailment as it happens for only one generation unit at the peak generation time 

to maintain the voltage at bus 13 within limits.  

Figure 4.8 shows the daily operation of the OLTC and SVR under the 60% penetration level. Without 

considering the minimization of the Volt/Var control devices in the optimization process, and with 

highly integrated and fluctuated RESs, the OLTC and SVR will experience frequent operations as a 

response to voltage variation. Figure 4.8 also demonstrates that the  OLTC switched seven times, 

counting for 18 taps, while the  SVR switched six times, counting for 13 taps. The number of taps might 

be more or less depending on demand and RES generation. Therefore, it is essential to simultaneously 

coordinate the operation of the Volt/Var control device with RESs curtailment in order to minimize the 

total operating cost and ensure the optimal operation of the SDG.   

 

Figure 4.8. OLTC and SVR tap operation at 60% penetration (Scenario 1). 
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Table 4-2 shows the daily operation of both SC banks at buses 18 and 33, respectively.  

 

Table 4-2. Switched capacitor bank status (Scenario 1). 

Time 

Cap-18 

(Q*K) 

Cap-33 

(Q*K) Time 

Cap-18 

(Q*K) 

Cap-33 

(Q*K) 

K K K K 

1:00 1 0 13:00 1 0 

2:00 1 0 14:00 0 0 

3:00 1 0 15:00 0 0 

4:00 1 0 16:00 2 0 

5:00 1 0 17:00 0 0 

6:00 1 0 18:00 1 0 

7:00 1 0 19:00 1 0 

8:00 1 0 20:00 0 2 

9:00 0 1 21:00 0 2 

10:00 0 1 22:00 1 1 

11:00 1 0 23:00 0 2 

12:00 1 0 24:00 0 2 

 

 

    It can be observed that multiple switchings occur per day for both capacitors in the presence of high 

fluctuation of RES generation. The integer K in Table 4-2 determines how many banks are switched 

on/off during the simulation period. Similar to the OLTC and SVR, the number of switchings plays the 

main role in the device’s end of life, which can be decreased if many switchings occur every day. The 

capacitor at bus 18 provided maximum reactive power of 300 KVAR at 4:00 PM, while switched 

between 0 and 1 for the rest of the day to post the voltage and keep it close to 1.0 p.u. The capacitor at 

bus 33 switched on two banks (K=2) from intervals 8:00-9:00 PM and 11:00-12:00 PM, which is the 

time of high demand and zero generation from PV units.  
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    Figure 4.9  shows the 24-hour voltage profile of all buses under Scenario 1. One can notice that the 

voltage profile is minimized to the reference voltage except in the area where the PV generation is at 

its peak.  

 

 

Figure 4.9. System’s voltage profile for 24-hours (Scenario 1). 

 

 

4.5.3.2 Scenario 2 

In this scenario, the proposed PVVC model, as described in Equation 4.1, is applied to the test system 

at 60% penetration of RESs. The main objective is to minimize the total operating cost by including 

the switching cost of the Volt/Var control devices into the optimization problem. 

     Figure 4.10 shows the voltage profile of the selected buses for the 24 hour simulation period. It can 

be observed that the voltage profile is optimized to the reference value of 1.0 pu. A small voltage spikes 
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at buses 13 and 18 between intervals 2:00 PM and 5:00 PM due to the injected power from the PV unit 

at bus 13, where the generated power rapidly changes.   

 

Figure 4.10.Voltage profile of the selected buses (Scenario 2). 

 

RES power curtailment occurred for the PV unit at bus 13 only at 3:00 PM with the amount of 0.0163 

pu. The amount of curtailed power is minimal compared with the actual output of the unit. Similar to 

the curtailment option in Scenario 1, in the middle of the day, when the PV unit produces the highest 

output, a portion of its output is curtailed to avoid the overvoltage that occurs at bus 13.     

A remarkable reduction is observed in the operations of the OLTC and SVR, as shown in Figure 

4.11. The OLTC switched only once at 3:00 AM, counting for 1 tap, while the SVR switched twice at 

11:00 AM and 11:00 PM, counting for only 3 taps.  
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Figure 4.11.OLTC and SVR operation at 60% penetration (Scenario 2). 

 

The SC bank operations have also reduced to the minimum possible option. The capacitor at bus 18 

injected 150 KVAR during the 24 hours, while the capacitor at bus 33 stayed off for the entire 

simulation period, as shown in Table 4-3. 

 

Table 4-3. Switched capacitor bank status 

Time 

Cap-18 

(Q*K) 

Cap-33 

(Q*K) Time 

Cap-18 

(Q*K) 

Cap-33 

(Q*K) 

K K K K 

1:00 1 0 13:00 1 0 

2:00 1 0 14:00 1 0 

3:00 1 0 15:00 1 0 

4:00 1 0 16:00 1 0 

5:00 1 0 17:00 1 0 

6:00 1 0 18:00 1 0 
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7:00 1 0 19:00 1 0 

8:00 1 0 20:00 1 0 

9:00 1 0 21:00 1 0 

10:00 1 0 22:00 1 0 

11:00 1 0 23:00 1 0 

12:00 1 0 24:00 1 0 

 

The overall voltage profile of the system is optimized, as depicted in Figure 4.11. It can be seen that 

the voltage on each bus during the 24 hours operational schedule has kept close to the references value 

1.0 pu. From the surface plot area, the impact of the high generation of the PV units, specifically at bus 

13, which has the highest capacity among all the others, causes a small rise in voltage even after 

regulation. This small rise in voltage appears clearly as spikes between the time slots 2:00 PM and 6:00 

PM, as shown in Figure 4.12.  

 

 

Figure 4.12.System voltage profile for 24-hours (Scenario 2).  

 



 

 58 

4.6 Cost analysis 

 The main target of the developed PVVC model is to operate an SDG dominated by RESs with 

minimum cost while satisfying the operational and engineering constraints. The best scenario for both 

penetration levels was the solution of the complete objective function where the system’s losses, 

voltage deviation, RES curtailment, and control equipment operation were all minimized. Similar to 

the cost associated with the switchings of the Volt/Var control devices and power losses discussed in 

[83]. It has calculated based on the price, expected lifetime, and the number of switchings to keep the 

transformer in service based on the expected lifetime. The cost reduction between the two studied 

scenarios are shown in Table 4-4 and Table 4-5. In this cost analysis, the power purchased from the 

main grid is not included. 

 

Table 4-4. Operational cost at 30% RES penetration 

Scenario 
OLTC SVR Cap-18 Cap-33 Ploss 

PV-Curt 

(MW)/day 

Cost 

($) 

Oper/day Oper/day Oper/day Oper/day (MW)/day   

 1 1 2 0 2.23 0 194.5 

 

 

Table 4-5. Operational cost at 60% RES penetration 

 

    The total operational cost has been reduced from $442.04 to $234.94 at a 60% penetration level, 

which proves the effectiveness of the PVVC model. The model not only minimizes the operational 

costs but also minimizes the voltage deviations caused by RES variations. 

  

 

Scenario 
OLTC 

Oper/day 

SVR 

Oper/day 

Cap-18 

Oper/day 

Cap-33 

Oper/day 

Ploss 

(MW)/day 

PV-Curt 

(MW)/day 

Cost ($) 

Scenario 1 18 13 11 6 2.22 0.468 442.04$ 

Scenario 2 1 3 1 0 2.241 0.352 234.94$ 
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4.7 PVVC With RESs at Variable Power Factor 

Given the advances of power electronics, RESs can also provide fast and flexible reactive power 

support for voltage regulation [112].  A review of the literature reveals that several studies considered 

the dispatch schedule of an inverter-based RES  in coordination with Volt/Var conventional control 

devices for optimal SDG operation. Furthermore, several studies investigated the advancement of 

having inverters operating in a 2-quadrant plane, which enables inductive and capacitive reactive power 

support for voltage regulation in the large-scale deployment of RESs. This section proposes a second 

PVVC control model for dispatching reactive power from inverters in coordination with OLTC and an 

SVR in an SDG dominated by PV and Wind power systems. The objective of the proposed strategy is 

to optimally operate the grid by minimizing active power losses, voltage deviation, reactive power from 

IBRESs, and reducing the frequent operations of OLTC and the SVR.  

4.7.1 Reactive power from RES inverters 

Current standards or guidelines, such as IEEE1547 [113], were established on the assumption that the 

integration of distributed generation is relatively low. However, the high penetration of RESs with a 

high degree of uncurtaining may push the grid voltage beyond the limits considered by ANSI C84.1 

and disturb the regular operation of Volt/Var control devices [114]. Different types of organizations 

introduce a new concept in which users have to provide some ancillary services to the grid by adjusting 

the reactive power exchanged [115][116].  Hence, new codes allow the inverters to actively participate 

in the voltage regulation presented [117][118]. Figure 4.13 shows an inverter in a 2-quadrant P-Q plane 

mode. The inverter can be either capacitive (right side) or inductive (left side), as also shown in Figure 

4.13. 

 

Figure 4.13.  2-quadrant P-Q control method[119] . 
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    It has been discussed in the literature that oversizing the inverter by 10% will increase the capability 

of the reactive power when maximum real power is generated by the PV system [118][115]. Increasing 

the inverter size by 10% will maximize the apparent power of the inverter,  𝑆𝑖𝑛𝑣 = 1.1𝑃𝑖𝑛𝑣
𝑚𝑎𝑥, hence the 

maximum available reactive power, 𝑄𝑖𝑛𝑣
𝑚𝑎𝑥,𝑡

, is quantified by the remaining capacity of the inverter’s 

rating, 𝑆𝑖𝑛𝑣, as shown in the following formula [120]: 

 

−√(𝑺𝒊𝒏𝒗)𝟐 − (𝑷𝒊𝒏𝒗
𝒕 )𝟐  ≤ |𝑸𝒊𝒏𝒗

𝒎𝒂𝒙,𝒕| ≤ √(𝑺𝒊𝒏𝒗)𝟐 − (𝑷𝒊𝒏𝒗
𝒕 )𝟐            4.22 

 where 𝑃𝑖𝑛𝑣
𝑡  is the instantaneous power at each interval 𝑡. In this study, the inverters of both PV and 

wind power systems will be assumed to have the same structure and operating conditions. 

    Given the capability of the inverters to actively participate in the Volt/Var control problem, their 

dispatch schedule for a day-ahead is essential in order to determine the required reactive power to 

regulate the system’s voltage, minimize losses, as well as to reduce the operation of the Volt/Var control 

equipment.                                                        

4.7.2     Objective function 

The PVVC problem is solved for a day-ahead, including the reactive power support from the inverters.  

The objective function is normalized and solved as a single weighted objective function, as formulated 

in Equation 4.23. The first five terms of the objective function are similar to the objective used in 

Equation 4.1. The sixth term represents the minimization of the reactive power from the inverters, as 

shown in Equation 4.24. 

  

𝐹 = 𝑤𝑙𝑜𝑠𝑠
𝐹𝑙𝑜𝑠𝑠

𝐹𝑙𝑜𝑠
0 + 𝑤𝐷𝑉

𝐹𝑉𝐷

𝐹𝑉𝐷
0 + 𝑤𝐿𝑇𝐶

 𝐹𝐿𝑇𝐶

𝐹𝑙𝑡𝑐
0 + 𝑤𝑠𝑣𝑟

 𝐹𝑆𝑉𝑅

𝐹𝑠𝑣𝑟
0 −𝑤𝑐𝑢𝑟

𝐹𝑐𝑢𝑟

𝐹𝑐𝑢𝑟
𝑜 +  𝑤𝑖𝑛𝑣  

  𝐹𝑄𝑖𝑛𝑣

𝐹𝑄𝑖𝑛𝑣
𝑜      4.23 

 

𝐹𝑄𝑖𝑛𝑣 = ∑  ∑  |𝑄𝑖𝑛𝑣,𝑖,𝑡| 24
𝑡=1𝑖∊𝑁𝑖𝑛𝑣

                                                                               4.24 

 

 where 𝑸𝒊𝒏𝒗,𝒊,𝒕 represents the reactive power from the inverter.  Reactive power compensation using 

smart inverters is competitive compared to conventional reactive power devices. However, reactive 

power compensation using smart inverters increases the current flow, which increases losses and the 
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temperature of the devices. Therefore, the inverters’ lifespan will be degraded with increasing reactive 

power utilization, incurring costs to the system’s owner [121]. Therefore, minimizing the reactive 

power supplied by inverters could increase the lifespan of the devices. The weights in Equation 4.23 

are: 0.22,0.05,0.15,0.14 ,0.41,0.03 respectively 

 

    The operation and device constraints are similar to the constraints described in Section 4.2.2. The 

only changes are shown in Equations 4.26 and 4.27 by adding the reactive power term 𝑄𝑖𝑛𝑣,𝑖,𝑡 in the 

reactive power injection constraint and its operational limit.  

 Real power injection constraints:  

𝑃𝑔,𝑡 + 𝑃𝑖𝑛𝑣,𝑖,𝑡 − 𝑃𝑑,𝑖,𝑡 = 𝑉𝑖,𝑡 ∑ 𝑉𝑗,𝑡(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗,𝑡 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗,𝑡)
𝑁𝑏
𝑗=1                           4.25 

 Reactive power injection constraints: 

𝑄𝑔,𝑖,𝑡 + 𝑄𝑖𝑛𝑣,𝑖,𝑡 − 𝑄𝑑,𝑖,𝑡 = 𝑉𝑖,𝑡 ∑ 𝑉𝑖,𝑡(𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗,𝑡 − 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗,𝑡
𝑁𝑏
𝑗=1 )                       4.26 

 

 

Reactive power from IBRES constraints: 

−√(𝑆𝑖𝑛𝑣)2 − (𝑃𝑖𝑛𝑣,𝑖,𝑡)2  ≤ |𝑄𝑖𝑛𝑣,𝑖,𝑡| ≤ √(𝑆𝑖𝑛𝑣)2 − (𝑃𝑖𝑛𝑣,𝑖,𝑡)2          4.27 

 

    The formulated PVVC problem seeks the optimal dispatch schedule of the inverters in coordination 

with the OLTC and SVR. The power losses and voltage deviation minimization are also included to 

ensure the optimal operation of the network for a day-ahead under the high fluctuation of the generated 

power from RESs.   
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4.8 Case Study 

The proposed model is evaluated using the same 33-Bus 11-kV test system, as shown in Figure 4.1. 

The location of the PV and wind power systems are the same. There are no SC banks because the target 

is to have reactive power only from the inverters.  

    The distribution test system feeds only residential customers with normalized daily load profiles, as 

illustrated in Figure 4.3, assuming this pattern is similar for consecutive days. The maximum 

penetration level of RESs considered in this study is 60%, calculated from the rated output power of 

PV and Wind farms as a percentage of the peak demand. The forecasted PV and wind power systems 

are the same as shown in Figure 4.2. 

 

    The dispatch schedule of the reactive power from PV and wind power systems are determined 

according to the system’s requirements of reactive power from each inverter to keep the voltage at each 

bus close to 1.0 pu with minimum losses and minimum device operations.  Figure 4.14 shows the 

voltage profile during the 24-hours on the selected buses after using smart inverters to inject/absorb 

reactive power in coordination with OLTC/SVR devices. Comparing the voltage profiles from Figure 

4.4 and Figure 4.7, with and without RES curtailment options, it can be observed that the voltage profile 

in Figure 4.14 has a smoother pattern with less fluctuation and is closer to the desired reference voltage. 

It can be observed that the highest voltage point is 1.02 pu, which occurs on bus 13 at 3:00 PM, where 

the PV injects the maximum power. In contrast, 0.97 is the lowest voltage, which occurs at the end of 

the feeder at bus 18 during the high demand at the end of the day, where the PV generation is zero and 

the wind power supply is relatively small. The fluctuation in the voltage profile without deploying smart 

inverters, as shown in Figure 4.7, has almost vanished, and during the 24-hour simulation period, the 

voltage profile in Figure 4.14 becomes more flattened. The ability of the inverters to inject/absorb 

reactive power to offset the reactive power from the load, and to reduce the voltage increase as a result 

of high RES injection, has achieved better voltage control when coordinated with Volt/Var control 

equipment. 
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Figure 4.14. System voltage on the selected buses. 

  

    Figure 4.15 shows the dispatch of the PV inverters for 24-hours. The inverter at bus 13, which has a 

larger capacity, supplied/consumed most of the reactive power determined by the centralized controller 

to keep losses and voltage deviation at a minimum. Both inverters inject and consume reactive power 

following similar patterns due to the influence of the load shape and RES output profile, as well as the 

remaining available capacity in each inverter. Between intervals 6:00 AM- 11:00 AM and intervals 

6:00 PM -11:00 PM, most of the reactive power is supplied to compensate for the reactive power 

consumed by the loads, so the voltage drop is kept at a minimum value. From intervals 2:00 PM – 5:00 

PM, the injected active power from PV systems is high, which raises the voltage. Hence, the inverters 

start consuming reactive power in coordination with OLTC/SVR equipment to mitigate the voltage 

rise. Figure 4.16 shows the reactive power injected by wind inverters on buses 21 and 28. Given that 

the capacity of PV systems is larger than Wind systems, the reactive power share from Wind inverters 

is comparably small.  Between 2:00 PM–5:00 PM, the inverters consume reactive power to contribute 

to voltage rise mitigation. Reactive power is subsequently supplied during load peak times, similar to 

PV inverters, to keep the voltage drop at a minimum.  
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Figure 4.15. Inverter reactive power from PV. 

 

Figure 4.16. Inverter reactive power from wind farms 
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    That small reactive power injection/consumption is dispatched between all four inverters to run the 

system at high efficiency and lower operating costs.  

 

    Figure 4.17 shows the switching operations of the OLTC and SVR. The daily operations of the OLTC 

and SVR are decreased to two switchings for the OLTC and two switchings for the SVR compared 

with the previous case, as shown in Figure 4.8. At 8:00 PM, the OLTC changed its tap from 3 to 5 and 

stayed at this level for the rest of the day. In contrast, the SVR stepped down one tap from 0 to -1 at 

6:00 PM. The SVR subsequently stepped up one-step to 0 taps at 8:00 PM. The active contribution of 

the inverters assisted in minimizing the voltage variations and kept them close to the reference value, 

which positively reduced the operations of the OLTC and SVR. The centralized controller executed the 

coordination between the OLTC, SVR, and the inverters after solving the optimization problem, which 

at the end of the day reduces the operating costs associated with Volt/Var device operations and the 

total active losses of the distribution system. 

 

Figure 4.17. Switching operations of OLTC and SVR 

 

    Figure 4.18 shows the active power losses over the 24-hour simulation period, as well as a 

comparison between the active power losses when using reactive power from the inverters and when 

the inverters operate at a unity power factor with the curtailment option. It can be observed that when 
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using the reactive power from the inverters as ancillary services, the losses are further minimized. The 

contribution of the inverters in providing reactive power at load peak times reduces the reactive current 

coming from the substation, hence the term 𝐼2𝑅 is reduced. Between 2:00 PM and 4:00 PM, a spike in 

power losses, namely “the blue line”, is observed, due to the high active power injection from the PV 

systems. On the other side, the spike causes “the red line” to disappear, due to the curtailment action 

that occurs at that time. The active power losses reduce from 2.5MW to 1.75MW when using the 

inverters as a reactive power supply rather than supplying active power only.  

 

 

  

 

Figure 4.18.  System active power losses  

 

A summary of the operation cost in terms of Volt/Var devices operation and total active power losses 

during the simulation period is depicted in Table 4-6. 
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Table 4-6. Summary of the operational cost 

 
OLTC 

Oper/day 

SVR 

Oper/day 

Ploss 

(MW)/day 

Cost ($) 

Operational cost 2 2 1.75 166$ 

 

Figure 4.19 shows all voltages in the test system during the 24 hours (48 intervals). It can be observed 

that there are two main areas with a small voltage rise on buses 13 and 31, respectively. The area of 

voltage rise is due to the highly injected power from the PV systems. Moreover, the impact of wind 

farms on buses 21 and 24 appears on the graph as a small voltage rise for most of the day. Most 

importantly, all the voltages in the distribution network are within the permissible limit and close to the 

reference value. 

 

Figure 4.19. The surface plot for all voltages for 24 hours 
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4.9 Conclusion 

High variations in PV and wind power outputs may occur in minutes or hours depending on weather 

conditions. The high variations under high penetration may bring serious operating challenges such as 

voltage fluctuation and frequent operation of Volt/Var devices such as SVR, OLTC, and SCs. 

Therefore, in this chapter, two generic predictive Volt/Var control models are developed. The first 

model coordinates the operation of the Volt/Var control equipment with curtailing part of the 

renewables at peak generation times to keep the system voltage profile within security limits. The 

developed model has shown an excellent ability to reduce the operations of the Volt/Var control devices 

while keeping the curtailment of RES sources at a minimum when the voltage violates the limits. The 

second model operates inverter-based RESs at variable power factor and uses them as ancillary services 

for reactive power support. Under this strategy, RES curtailment options at certain penetration levels 

are avoided, where the voltage rise can be mitigated by controlling the reactive power of the inverter at 

the connected bus.  Oversizing the inverter by 10% from the rated capacity gives some extra capacity 

to inject or absorb reactive power even when the generation unit produces maximum power. The 

proposed control models improved the overall voltage profile and maximized the utility profit by 

minimizing losses. The models also minimized the frequent operations of the OLTC, SVR, and SCs, 

which reduces the maintenance cost and increases the operational lifespan of the equipment. The day-

ahead operating schedule is acceptable to a certain degree of penetration and RESs output fluctuation. 

The operation depends heavily on the forecast of renewables and load.  If the variations in the generated 

power are severe, a more precise forecasting tool and real-time operation of the smart grid is a favorable 

option. This will be discussed in the following chapter.  
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Chapter 5 

A Sequential Predictive Control Strategy for Renewable Dominant 

Smart Distribution System 

5.1 Preamble 

In the previous chapter, the development of day-ahead Volt/Var control models for operating a Smart 

Distribution Grid (SDG) under high deployment of RESs was presented.  Scheduled hourly operation 

is acceptable under some degree of uncertainty. However, solar PVs and wind power farms are known 

by their stochastic nature, consequently, it is challenging to predict power generation over a long period 

from the perspective of predictive or real-time operation. At a high integration level of solar PVs and 

wind power systems on a distribution level, several operational issues could occur, as discussed in the 

literature. Although Volt/Var control devices such as OLTC, SVRs, and SCs are effective in managing 

slow voltage variations, they might not be efficient with fast and high voltage fluctuations on a time 

scale of minutes. Hence, a fast and efficient Volt/Var control strategy that considers short-term changes 

in RESs generated power and demands is required. 

    In this chapter, a Sequential Predictive Control (SPC) Strategy for voltage and reactive power control 

is developed. The control strategy uses past and currently available data to forecast demand, and RES 

outputs for 15-minutes, then optimally schedule the next interval settings and operations of the Volt/Var 

control devices by solving an optimization problem in a rolling horizon approach. The STSE model 

proposed in Chapter 3 is used for forecasting PV/wind outputs and demand by sequentially updating 

itself each 15-minutes, based on the newly measured data. When the next forecasted generation and 

demand are available, the proposed control strategy is applied to ensure the optimal operation of SDGs. 

As the solution has to be accurately executed in a short time, a solution methodology to linearize the 

nonlinear control problem is adapted. The original MINLP control problem, which is very difficult and 

time-consuming to solve, is transformed into a Mixed Integer Second Order Cone Programming 

(MISOCP) problem, which is a convex problem subject to linear and conic constraints. The proposed 

control model is able to accurately predict the short-term RES output and demand then act accordingly 

to overcome any abnormal or undesirable operating conditions.   
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5.2 Forecasting With Forgetting and Updating Mechanism 

At the large scale penetration of PV and wind power systems, real-time or sequential short-term 

operation of an SDG is required to account for the stochastic and intermittent nature RESs. Therefore, 

an online forecasting process based on the STSE model with a forgetting and updating mechanism is 

developed. The process works by omitting the oldest data points and sequentially retraining the model 

with new measured data while moving over the horizon, as shown in Figure 5.1. The figure explains 

the training process, which is updated at each new measured point. The initial training starts with the 

training vector from T-2: T0 to predict T1. When the next point T1 is available, the model forgets the 

outdated point T-2 and retrained by the new vector from T-1: T1 to predict T2. The advantage of the 

forgetting and updating technique is to keep the training data short and reduce the impact of concept 

drift [122].  

 

 

Figure 5.1. Forgetting and updating forecasting mechanism 

 

5.3 Modeling the Sequential Predictive Control Strategy  

The SPC is described by a mathematical model and formulated as an optimization problem using the 

branch flow model presented in  [123]. The bus injection model focuses on nodal variables such as 

voltage, current, and power injections and does not deal directly with power flows on individual 

branches. Instead of nodal variables, the branch flow model focuses on currents and power on the 

branches [124].  
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5.3.1 Requirements for the sequential applications 

To implement the proposed methodology, the following requirements need to be satisfied first [125] 

1. A central control unit (CCU) and support for SCADA system. 

2. An advanced metering infrastructure for real-time data measurements. 

3. Remotely controllable equipment with commutable controllers. 

4. An efficient and modern communication infrastructure. 

 

5.3.2 Objective function 

The SPC model is represented by an objective function, as shown in  Equation 5.1, which is a linear 

weighted combination of minimum active power losses, switching operations of the OLTC/SVR, and 

voltage deviation. Each individual objective function is normalized to satisfy the weighted sum method, 

as discussed in Chapter 4. The weight coefficient of each term is shown in Table 5-2. 

  

𝑚𝑖𝑛 𝐹 =  𝑤𝑙𝑜𝑠𝑠𝐹𝑙𝑜𝑠𝑠 + 𝑤𝐷𝑉𝐹𝑉𝐷 + 𝑤𝐿𝑇𝐶  𝐹𝐿𝑇𝐶 + 𝑤𝑠𝑣𝑟 𝐹𝑆𝑉𝑅                            5.1 

 

The active power losses of the network are the power losses in all branches defined by the square of 

the line current 𝐼𝑖𝑗,𝑡
2  multiplied by the line resistance  𝑟𝑖𝑗 , where 𝑁𝑏𝑟 is the set of branches. 

𝐹𝑙𝑜𝑠𝑠,𝑡 = ∑ 𝑟𝑖𝑗 𝐼𝑖𝑗,𝑡
2

𝑖𝑗∈𝑁𝑏𝑟
                                                                                    5.2 

 

The second objective is the voltage deviation [126][127]. 𝑁𝐵 is the set of buses. 

 

𝐹𝑉𝐷,𝑡 = ∑ |𝑉𝑖,𝑡
2 − 1|

𝑁𝐵
𝑖=1                                                                                        5.3 

 

The third objective is associated with the tap changes of the LTC transformer between consecutive 

intervals. 

𝐹𝐿𝑇𝐶,𝑡 = ∑  |𝑡𝑎𝑝𝑖𝑗,𝑡
𝑙𝑡𝑐 − 𝑡𝑎𝑝𝑖𝑗,𝑡−1

𝑙𝑡𝑐 |𝑖𝑗∈𝑁𝑙𝑡𝑐
                                                            5.4 
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where 𝑁𝑙𝑡𝑐 is the set of OLTC transformers and 𝑡𝑎𝑝𝑖𝑗,𝑡
𝑙𝑡𝑐   / 𝑡𝑎𝑝𝑖𝑗,𝑡−1

𝑙𝑡𝑐  are the tap positions at interval t 

and t-1, respectively. 

 

Similarly, the fourth objective is associated with the tap changes of the SVR between consecutive 

intervals: 

𝐹𝑆𝑉𝑅 = ∑  |𝑡𝑎𝑝𝑖𝑗,𝑡
𝑠𝑣𝑟 − 𝑡𝑎𝑝𝑖𝑗,𝑡−1

𝑠𝑣𝑟 |𝑖𝑗∈𝑁𝑠𝑣𝑟
                                                            5.5 

where 𝑁𝑠𝑣𝑟 is the set of OLTC transformers and 𝑡𝑎𝑝𝑖𝑗,𝑡
𝑠𝑣𝑟  / 𝑡𝑎𝑝𝑖𝑗,𝑡−1

𝑠𝑣𝑟  are the tap positions at interval t 

and t-1, respectively. 

5.3.3 Constraints 

1. System operation constraints 

Figure 5.2 shows a partial distribution feeder with a transformer. Transformer  𝑖𝑗 can be divided into 

branch 𝑚𝑗,  which contains a tap changer. The impedance of branch 𝑖𝑚 is the same as branch 𝑖𝑗. The 

branch flow model shown in Figure 5.2  is used to model the distribution network [110]. The 

mathematical representation of the model is described in the following: 

Pij , Qij

Rij + jXij

Pjk , Qjk
tij : 1

i j K

Pj , Qj

m

 

Figure 5.2. One-line diagram of the feeder with a transformer. 

 

∑ (𝑃𝑖𝑗,𝑡 − 𝑟𝑖𝑗 𝐼𝑖𝑗,𝑡
2 )𝑖𝑗∈𝑁𝑏𝑟

+ 𝑃𝑗,𝑡 = ∑ 𝑃𝑗𝑘,𝑡  𝑖𝑗∈𝑁𝑏𝑟
                                                5.6 

∑ (𝑄𝑖𝑗,𝑡 − 𝑥𝑖𝑗  𝐼𝑖𝑗,𝑡
2 )𝑖𝑗∈𝑁𝑏𝑟

+ 𝑄𝑗,𝑡 = ∑ 𝑄𝑗𝑘,𝑡 𝑖𝑗∈𝑁𝑏𝑟
                                              5.7 

𝑉𝑖,𝑡
2 − 𝑉𝑗,𝑡

2 = 2(𝑟𝑖𝑗 𝑃𝑖𝑗,𝑡 + 𝑥𝑖𝑗𝑄𝑖𝑗.𝑡) − (𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 )𝐼𝑖𝑗,𝑡
2                                         5.8 

𝐼𝑖𝑗,𝑡
2 𝑉𝑖,𝑡

2 = (𝑃𝑖𝑗,𝑡
2 + 𝑄𝑖𝑗,𝑡

2 )                                                                                   5.9 

𝑃𝑗,𝑡 = 𝑃𝑗,𝑡
𝑖𝑛𝑣 − 𝑃𝑗,𝑡

𝑑𝑒𝑚                                                                                           5.10 

𝑄𝑗,𝑡 = 𝑄𝑗,𝑡
𝑖𝑛𝑣 − 𝑄𝑗,𝑡

𝑑𝑒𝑚                                                                                         5.11 
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Equations 5.6 and 5.7 represent the branch flow equations. 𝑃𝑖𝑗,𝑡 and 𝑃𝑗𝑘,𝑡 represent the active power 

flow in branches  𝑖𝑗 and jk, respectively, while 𝑄𝑖𝑗,𝑡 𝑎𝑛𝑑 𝑄𝑗𝑘,𝑡 represent the reactive power flow in 

branch 𝑖𝑗 and jk. Ohm’s law for branch 𝑖𝑗 is expressed in Equation 5.8. Equation 5.9 determines the 

current magnitude in each line. Equations 5.10 and 5.11 represent the injected active and reactive power 

at node 𝑗. 𝑃𝑗,𝑡
𝑖𝑛𝑣 𝑎𝑛𝑑 𝑄𝑗,𝑡

𝑖𝑛𝑣  represent the active and reactive power injected by the RES inverters at time 

t, while 𝑃𝑗,𝑡
𝑑𝑒𝑚 𝑎𝑛𝑑 𝑄𝑗,𝑡

𝑑𝑒𝑚 are the demand active and reactive power of node j at time t.  

 

2. Voltage and current security constraints 

 

(𝑉𝑚𝑖𝑛)
2

≤ 𝑉𝑖,𝑡
2 ≤ (𝑉𝑚𝑎𝑥)2                                                                               5.12 

𝐼𝑖𝑗,𝑡
2 ≤ (𝐼𝑚𝑎𝑥)2                                                                                                  5.13 

Where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the maximum/minimum allowable voltage limits on each bus. 𝐼𝑚𝑎𝑥 

represents the maximum line current capacity.  

 

3. RES operation constraints 

𝑃𝑖,𝑡
𝑖𝑛𝑣 = 𝑃𝑖,𝑡+1

𝑓𝑜𝑟𝑒
+ ∆𝑃𝑖,𝑡

𝑒𝑟𝑟                                                                                   5.14 

−√(𝑆𝑖
𝑖𝑛𝑣)

2
− (𝑃𝑖,𝑡

𝑖𝑛𝑣)2  ≤ |𝑄𝑖,𝑡
𝑖𝑛𝑣| ≤ √(𝑆𝑖

𝑖𝑛𝑣)
2

− (𝑃𝑖,𝑡
𝑖𝑛𝑣)2                                5.15 

    As discussed in Chapter 4, the reactive power provided by the RES inverter is limited by the active 

power at time t and the rated capacity of the inverter 𝑆𝑖
𝑖𝑛𝑣, where 𝑃𝑖,𝑡

𝑖𝑛𝑣 is the injected active power 

from the RES inverter at time t calculated from the forecasted power 𝑃𝑖,𝑡+1
𝑓𝑜𝑟𝑒 and the forecasting 

error ∆𝑃𝑖,𝑡
𝑒𝑟𝑟. The forecasting error is determined at the current time t,  assuming that the trend and error 

between two consecutive intervals do not significantly deviate.  

 

4. OLTC/SVR operation constraints 

The OLTC and the SVR have the same constraints and relationship between the primary and the 

secondary voltage [127]. 

𝑉𝑗,𝑡 = 𝑚𝑗𝑖,𝑡  𝑉𝑖,𝑡                                                                                                5.16 
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𝑚𝑖𝑗,𝑡 = 𝑚𝑖𝑗
𝑚𝑖𝑛 + 𝑀𝑖𝑗,𝑡  ∆𝑚𝑖𝑗                                                                              5.17 

−𝑀𝑖𝑗
− ≤ 𝑀𝑖𝑗,𝑡 ≤ 𝑀𝑖𝑗

−, ∀ 𝑖𝑗 ∈ 𝑁𝑙𝑡𝑐 , 𝑁𝑠𝑣𝑟                                                            5.18 

where 𝑚𝑗𝑖
𝑚𝑖𝑛  is the initial turns ratio, while ∆𝑚𝑖𝑗 denotes the turns ratio for each step. The 𝑀𝑖𝑗,𝑡 integer 

variable represents the actual tap. 𝑀𝑖𝑗
−, represents the maximum tap level for the OLTC/SVR. 

    The objective function and constraints that appear in the model’s Equations 5.2 to 5.18 have 

continuous and discrete variables.  They represent a non-convex and MINLP problem, which is difficult 

and time-consuming to solve. Equations 5.9 and 5.16 represent the nonlinear relationship between the 

variables. The integer variable that appears in Equation 5.17 converts the problem from an NLP 

problem into an MINLP problem. Hence, in order to solve the sequential predictive control problem, 

there is a  need for an accurate and fast solution algorithm.  

5.4 Mixed-Integer Second-Order Cone Programming (MISOCP) 

Mixed-integer second-order cone programming problems (MISOCPs) can be expressed as [128]: 

          min
x∈X

   𝑐𝑇𝑥  

subject to  ‖𝐴𝑖 𝑥 + 𝑏𝑖‖ ≤ 𝑎0𝑖
𝑇 𝑥 + 𝑏0𝑖 ,          𝑖 = 1, … . , 𝑚 

where 𝑥  is the 𝑛 − 𝑣𝑒𝑐𝑡𝑜𝑟 of decision variables. 𝑋 = {(𝑦, 𝑧): 𝑦 ∈ 𝑍𝑝  , 𝑧 ∈ 𝑅𝑘 , 𝑝 + 𝑘 = 𝑛}, and the 

data are 𝑐 ∈ 𝑅𝑛 , 𝐴𝑖 ∈ 𝑅𝑚𝑖 𝑥 𝑛 , 𝑏𝑖 ∈ 𝑅𝑚𝑖  , 𝑎0𝑖 ∈ 𝑅𝑛  𝑓𝑜𝑟 𝑖 = 1, … . , 𝑚.  

The notation ‖. ‖ denotes the Euclidean norm, and the constraints are said to define the second-

order cone, also referred to as the Lorentz cone. 

    MISOCP is a specialized branch of convex MINLP. The concept of MISOCP is to minimize a linear 

objective function subject to a set of linear and second-order cone constraints. MISOC is an active 

research area, with several applications in many real-life fields such as finance and engineering.  A 

thorough survey of the literature on the application of MISOCP algorithm is presented in [129].  In 

solving power distribution problems that require a fast and accurate solution, there are several 

methodologies to linearize a non-convex power flow problem as stated in [130][131][132][133]. The 

NLP and MINLP problems were converted to LP and MILP problems in the aforementioned 

linearization techniques. In [134], the radial load flow is modeled as a conic programming problem, 

which is a convex optimization problem that can be efficiently solved by existing algorithms. MINLP 

problems, which consist of integer variables such as transformer tap and capacitor sets, are converted 



 

 75 

into a MINSOCP optimization problem by introducing binary linearization for the integer variables and 

cone relaxation [127]. In [135] a comparison between MILP and MISOCP for the optimal operation of 

DNs with energy storage devices showed that MISOCP is a more effective solution. Among all the 

linearization and convexification techniques, SOCP exhibits excellent performance in terms of a rapid 

and global solution.  

To convert the original MINLP problem, convex relaxation is used to transform it into a MISOCP 

problem. The square representations of voltage and currents that appear in Equations 5.2, 5.3, 5.6-5.9  

5.12, and 5.13 are replaced by new variables. Variable substitution is used to realize the linearization 

by letting 𝑈𝑖,𝑡 = 𝑉𝑖,𝑡
2   𝑎𝑛𝑑 𝑙𝑖𝑗,𝑡 = 𝐼𝑖𝑗,𝑡

2 .  

The power loss objective function is linear when representing the current by its new variable 𝑙𝑖𝑗,𝑡 as 

shown in Equation 5.19. The remaining Equations 5.20-5.24 are the new representation of Equations 

5.6-5.8 and 5.12-5.13. 

𝐹𝑙𝑜𝑠𝑠,𝑡 = ∑ 𝑟𝑖𝑗 𝑙𝑖𝑗,𝑡𝑖𝑗∈𝑁𝑏𝑟
                                                                                    5.19 

∑ (𝑃𝑖𝑗,𝑡 − 𝑟𝑖𝑗 𝑙𝑖𝑗,𝑡)𝑖𝑗∈𝑁𝑏𝑟
+ 𝑃𝑗,𝑡 = ∑ 𝑃𝑗𝑘,𝑡 𝑖𝑗∈𝑁𝑏𝑟

                                                5.20 

∑ (𝑄𝑖𝑗,𝑡 − 𝑥𝑖𝑗  𝑙𝑖𝑗,𝑡)𝑖𝑗∈𝑁𝑏𝑟
+ 𝑄𝑗,𝑡 = ∑ 𝑄𝑗𝑘,𝑡  𝑖𝑗∈𝑁𝑏𝑟

                                               5.21 

𝑈𝑖,𝑡 − 𝑈𝑗,𝑡 = 2(𝑟𝑖𝑗 𝑃𝑖𝑗,𝑡 + 𝑥𝑖𝑗𝑄𝑖𝑗.𝑡) − (𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 )𝑙𝑖𝑗,𝑡                                      5.22 

(𝑉𝑚𝑖𝑛)
2

≤ 𝑈𝑖,𝑡 ≤ (𝑉𝑚𝑎𝑥)2                                                                              5.23 

𝑙𝑖𝑗,𝑡 ≤ (𝐼𝑚𝑎𝑥)2                                                                                                  5.24 

Constraint 5.9 can be expressed as a convex constraint through SOCP relaxation [124] as follows: 

 

‖

2𝑃𝑖𝑗,𝑡

2𝑄𝑖𝑗,𝑡

𝑙𝑖𝑗,𝑡 − 𝑈𝑖,𝑡

‖

2

≤ 𝑙𝑖𝑗,𝑡 + 𝑈𝑖𝑗,𝑡                                                                             5.25 

 

RES operational constraint from Equation 5.15 is a nonlinear quadratic constraint that can be 

converted into a rotated quadratic cone constraint [126]: 

(𝑃𝑖,𝑡
𝑖𝑛𝑣)2  + (𝑄𝑖,𝑡

𝑖𝑛𝑣)2  ≤ 2 (
𝑆𝑖

𝑖𝑛𝑣

√2
) (

𝑆𝑖
𝑖𝑛𝑣

√2
)                                                              5.26 
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(𝑃𝑖,𝑡
𝑖𝑛𝑣)2  + (𝑄𝑖,𝑡

𝑖𝑛𝑣)2  ≥ −2 (
𝑆𝑖

𝑖𝑛𝑣

√2
) (

𝑆𝑖
𝑖𝑛𝑣

√2
)                                                           5.27 

 

After the introduction of the new voltage and current variables, Equation 5.16 is rewritten as: 

𝑈𝑗,𝑡 = 𝑚𝑗𝑖,𝑡
2  𝑈𝑖,𝑡                                                                                                5.28 

The integer variable 𝑀𝑖𝑗,𝑡 can be represented by a set of binary variables [136] as follows: 

𝑀𝑖𝑗,𝑡 = ∑  [(𝑚 −
2𝑀𝑖𝑗

−

𝑚=0 𝑀𝑖𝑗
−)𝑏𝑖𝑗,𝑡,𝑚                                                                      5.29 

∑ 𝑏𝑖𝑗,𝑡,𝑚
2𝑀𝑖𝑗

−

𝑚=0 = 1                                                                                               5.30 

where 𝑏𝑖𝑗,𝑡,𝑚 is a binary variable that belongs to the set [0,1] 

 

By substituting 5.17 and 5.29 into 5.28 

𝑈𝑗,𝑡 = ∑  [(
2𝑀𝑖𝑗

−

𝑚=0 𝑚𝑖𝑗
𝑚𝑖𝑛 + (𝑚 − 𝑀𝑖𝑗

−)∆𝑚𝑖𝑗)2 𝑈𝑖,𝑡  𝑏𝑖𝑗,𝑡,𝑚]                                  5.31 

 

A new variable 𝑈𝑖𝑗,𝑡
𝑐  is introduced to represent the nonlinear product of 𝑈𝑖,𝑡𝑏𝑖𝑗,𝑡,𝑚 . In addition, new 

constraints are added to make the equation linear [137] as follows:  

𝑈𝑗,𝑡 = ∑  [(
2𝑀𝑖𝑗

−

𝑚=0 𝑚𝑖𝑗
𝑚𝑖𝑛 + (𝑚 − 𝑀𝑖𝑗

−)∆𝑚𝑖𝑗)2 𝑈𝑖𝑗,𝑡,𝑚
𝑐  ]                                       5.32 

𝑈𝑖𝑗,𝑡,𝑚
𝑐 = 𝑈𝑖,𝑡𝑏𝑖𝑗,𝑡,𝑚                                                                                            5.33 

Equation 5.32 is linear, but 5.33 presents the product of a continuous variable and a binary variable 

that can be substituted by two equivalent linear constraints as shown below: 

(𝑉𝑖
𝑚𝑖𝑛)

2
 𝑏𝑖𝑗,𝑡,𝑚 ≤ 𝑈𝑖𝑗,𝑡,𝑚

𝑐 ≤ (𝑉𝑖
𝑚𝑎𝑥)2 𝑏𝑖𝑗,𝑡,𝑚                                                     5.34 

(𝑉𝑖
𝑚𝑖𝑛)

2
 (1 − 𝑏𝑖𝑗,𝑡,𝑚) ≤ 𝑈𝑖,𝑡 − 𝑈𝑖𝑗,𝑡,𝑚

𝑐  ≤ (𝑉𝑖
𝑚𝑎𝑥)2 (1 − 𝑏𝑖𝑗,𝑡,𝑚)                    5.35 

 

For the absolute term representing the consecutive tap changes of OLTC and SVR in the objective 

functions from Equations 6.4 and 6.5, new auxiliary variables 𝑀𝑖𝑗,𝑡
+  , 𝑅𝑖𝑗,𝑡

+ are introduced. The linear 

equivalent to the objectives is shown: 
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𝑡𝑎𝑝𝑖𝑗,𝑡
𝑙𝑡𝑐 − 𝑡𝑎𝑝𝑖𝑗,𝑡−1

𝑙𝑡𝑐 ≤ 𝑀𝑖𝑗,𝑡
+                                                                                 5.36 

𝑡𝑎𝑝𝑖𝑗,𝑡−1
𝑙𝑡𝑐 − 𝑡𝑎𝑝𝑖𝑗,𝑡

𝑙𝑡𝑐 ≤ 𝑀𝑖𝑗,𝑡
+                                                                                 5.37 

𝑀𝑖𝑗,𝑡
+ ≥ 0                                                                                                            5.38 

And for the SVR: 

𝑡𝑎𝑝𝑖𝑗,𝑡
𝑠𝑣𝑟 − 𝑡𝑎𝑝𝑖𝑗,𝑡−1

𝑠𝑣𝑟 ≤ 𝑅𝑖𝑗,𝑡
+                                                                                 5.39 

𝑡𝑎𝑝𝑖𝑗,𝑡−1
𝑠𝑣𝑟 − 𝑡𝑎𝑝𝑖𝑗,𝑡

𝑠𝑣𝑟 ≤ 𝑅𝑖𝑗,𝑡
+                                                                                 5.40 

𝑅𝑖𝑗,𝑡
+ ≥ 0                                                                                                             5.41 

so that the final objective of the OLTC and SVR is the minimization of  

𝐹𝐿𝑇𝐶,𝑡 = ∑  (𝑀𝑖𝑗,𝑡
+ )  𝑖𝑗∈𝑁𝑙𝑡𝑐

                                                                                 5.42 

𝐹𝑆𝑉𝑅,𝑡 = ∑  (𝑅𝑖𝑗,𝑡
+ )  𝑖𝑗∈𝑁𝑠𝑣𝑟

                                                                                 5.43 

For the voltage deviation, a linearization methodology similar to the formulation in [137] is used. By 

introducing a new positive auxiliary variable 𝑉𝑎𝑢𝑥𝑖,𝑡, the absolute value of Equation 5.3, is linearized 

as: 

𝑉𝑎𝑢𝑥𝑖,𝑡 ≥ 𝑉𝑖,𝑡 − 1                                                                                            5.44 

𝑉𝑎𝑢𝑥𝑖,𝑡 ≥ 1 − 𝑉𝑖,𝑡                                                                                            5.45 

𝑉𝑎𝑢𝑥𝑖,𝑡  ≥ 0                                                                                                      5.46 

And the minimization of the voltage deviation is the minimization of the auxiliary variable as follows: 

𝐹𝑉𝐷,𝑡 = ∑ 𝑉𝑎𝑢𝑥𝑖,𝑡   𝑖∈𝑁𝐵
                                                                                    5.47 

Using the convex relaxation and linearization, the original MINLP problem is formulated as a MISOCP 

problem. The final objective function is: 

Min  (5.19), (5.42), (5.43), (5.47) 

S.t    (5.20)-(5.27), (5.30), (5.32),(5.34),(5.35), (5.36)-(5.41), (5.44)-(5.46) 
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5.5 Actual Implementation 

The implementation of the proposed algorithm is shown in the flowchart of Figure 5.3  using the 

following steps: 

 

Start

Input the initial PV, 
Wind, and Load data

Pre-process the data

STSE model training 

Model prediction 
(15-min)

Prediction error 
calculation

Measured data 
from SCADA 

system

Updating/Forgetting 
mechanism

Start

Forecast PV, Wind, 
and Load

Network Topology 
and bus/line 
parameters

Solve MISCOP 
problem at time t

Send control signals 
to OLTC, SVRs, 

Inverters at time 
t+1

t=Tmax

End

Yes

No

 

Figure 5.3. Flowchart of the proposed model 

 

1. Initialization: In this phase, network information, such as configuration, line parameters, loads, 

and rated power of RESs, is provided to the central controller as inputs. 
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2. Monitoring: At this stage, smart meters at loads and generation units record and send the 

measured data to the central control unit (CCU) at time 𝑡. 

3. Forecasting: At each time instant, short-term forecasting of PV, Wind, and load for 15minutes 

using the STSE model with the forgetting and updating mechanism as depicted in Figure 5.1, 

is implemented.  The forecast is applied at time 𝑡 to predict generation/demand at 𝑡 + 1 

4. System optimization: The system operators impose the network operating constraints regarding 

voltage limits, branch current, RES reactive power limits, and OLTC/SVR operating limits. 

When the operating constraints are identified, the CCU solves the optimization problem at the 

current time 𝑡 to prepare for the optimal control actions at 𝑡 + 1. 

5. Control action: In this phase, control signals are passed to the Volt/Var control devices and 

inverters to maintain minimum system losses and voltage deviation. 

6. Repeating: At the next time step 𝑡 + 1, steps 2 to 5 are repeated to the end of the control horizon 

decided by the system operators. 

    Solving the optimization problem follows the concept of rolling horizon optimization, as depicted in 

Figure 5.4. The advantage of using a rolling horizon in the proposed real-time strategy is to avoid the 

effect caused by the predicted generation/demand forecasting error and to use the newly collected data. 

Figure 5.4 shows the stages of the optimization framework for three-time steps. Stage 2 starts after the 

time steps of Stage 1 is finished and continues as such for the rest of the receding horizon. 
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Figure 5.4. Rolling horizon framework 
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    The algorithm that is proposed in this work is compared with the work presented in [100]. The 

proposed method has the advantage of accurately capturing fast power variations and solving the model 

in shorter time slots, and with a global solution. 

 

5.6 System Under Study 

The 12.66KV,  IEEE 33-bus test system used in Chapter 4 is used. Two PV generators located at buses 

11 and 28 and two wind farms located at buses 17 and 21 are used in this study. The size of each RES 

unit is depicted in Table 5-1. The characteristic of the OLTC and SVR are similar to those used in 

Chapter 4. The OLTC at the substation and SVR between buses 6 and 7 with ±16 taps regulate the 

voltage by +/-10%. All RESs operate at a variable power factor, where the reactive power is constrained 

by Equations 5.26 and 5.27, except for the base case scenario. The operational cost of the OLTC/SVR 

is similar to the operational costs used in Chapter 4, as suggested in [138], where the active power cost 

is $80/MW, and the depreciation cost of the OLTC/SVR is $6.36 for each step change, assuming they 

have a similar depreciation factor. 

 

Table 5-1. RESs locations and sizes 

DG Unit Capacity (KVA) Location(bus) 

PV1 1360 13 

PV2 1200 28 

WD1 920 17 

WD2 600 21 

 

    During the simulation study, the peak load of each bus is multiplied by the forecasted load profile at 

each time instance. The short-term forecast of the load profile and PV/Wind units using the proposed 

STSE model are shown in Figure 5.5 and Figure 5.6, respectively. These results are obtained from real-

time forecasting, based on the forgetting and updating mechanism. The average time for the forecasting 

at each interval takes around 3 minutes, which highly depends on the efficiency of the processor. 
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Figure 5.5. Forecasted load profile 

 

Figure 5.6. Forecasted PV/Wind power outputs 
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5.7 Case study 

Three case studies are examined to assess the impact of the high and fast variation of renewables at the 

steady-state operation of the distribution system and to evaluate the proposed algorithm. The first case 

operates the system considering the optimization of voltage deviation only at a 60% penetration level. 

The second and third cases evaluate the proposed model at 30% and 60% penetration. 

5.7.1 Case1: Base Case 

Generally, voltage regulators such as OLTC and SVRs are controlled by their local control circuits, 

which depend on the line drop compensation mechanism. When renewables are installed on the 

distribution level, the amount and variation of the injected power confuse the operations of the 

regulators, which leads to a high number of switchings in response to voltage variation. At the base 

case scenario, only voltage deviation and power loss minimization from Equations 5.19 and  5.47 are 

applied to examine how power variations from renewables affect the operation of the voltage regulators 

at 60% penetration without reactive power support from inverters. Although, the CCU solves the 

problem, excluding the regulators’ actions from the objective function increases the operational cost, 

hence decreases the lifespan of the devices [139].  

The following objective function is implemented in the base case scenario. The weight coefficients 

are determined to be 0.7 and 0.3 for losses and voltage deviations, respectively. However, the selection 

of weights can be a utility’s decision based on its preference, as suggested by some research studies as 

in [140]. The weight coefficients of each case study are shown in Table 5-2.  

 

 

𝑚𝑖𝑛 𝐹 =  𝑤𝑙𝑜𝑠𝑠(∑ 𝑟𝑖𝑗 𝑙𝑖𝑗,𝑡𝑖𝑗∈𝑁𝑏𝑟
) + 𝑤𝐷𝑉(∑ 𝑉𝑎𝑢𝑥𝑖,𝑡   𝑖∈𝑁𝐵

)                              5.48 

subject to  (5.20)-(5.25), (5.30), (5.32),(5.34),(5.35), (5.44)-(5.46) 

    Figure 5.7 shows the operations of the OLTC and SVR equipment for a one day simulation period. 

It can be observed that, without switching minimization, excessive operations that occurred when the 

variation of RES is very high. The 15minute time operation shows that the voltage can be maintained 

within security constraints, but more control action is required.  Unlike the hourly operating periods, 

the short time operations clearly show the direct impact of the highly integrated renewables on the 
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operation of the Volt/Var control devices. Hence, an efficient and fast control mechanism to effectively 

operate a smart distribution system efficiently is required.  

 

Figure 5.7. Operations of the OLTC/SVR (Base Case). 

    The switching operations of the OLTC show that it has many more operations per day counts for 46 

taps/day. In contrast, the SVR has fewer actions compared with the OLTC, where the tap changed its 

position 43 taps/day. It should be noted that the operation of both devices is based on the optimal power 

flow solution, which minimizes power losses and voltage deviations. The operations of the OLTC and 

SVR occur without considering the control effort required to maintain the voltage within the security 

operating constraints.  

    Figure 5.8 shows the voltage profile of the selected buses during the simulation period. The impact 

of renewable variation can be clearly seen from the fluctuation in the voltage profile. The direct impact 

of high PV fluctuations can be seen on the voltage profile of buses 11 and 17 between 12:30 PM and 

4:30 PM, where the voltage profile has high variations. However, the voltage is kept within the security 

constraints by applying more control actions, which is not a desirable operation as they directly reduce 

the lifespan of the Volt/Var control devices and increase the maintenance and replacement costs.   
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Figure 5.8. Voltage profile of the selected buses (Base case) 

 

 

5.7.2 Case 2: Low Penetration 

In this case, the full optimization problem is employed. The SPC strategy is applied to the test 

distribution system under 30% penetration of PV and Wind power systems. Equation 5.49 represents 

the objective function of the proposed control model. 

𝑚𝑖𝑛 𝐹𝑡 =  𝑤𝑙𝑜𝑠𝑠(∑ 𝑟𝑖𝑗 𝑙𝑖𝑗,𝑡𝑖𝑗∈𝑁𝑏𝑟
) + 𝑤𝐷𝑉(∑ 𝑉𝑎𝑢𝑥𝑖,𝑡   𝑖∈𝑁𝐵

) + 𝑤𝑙𝑡𝑐 ∑  (𝑀𝑖𝑗,𝑡
+ )  𝑖𝑗∈𝑁𝑙𝑡𝑐

+

                          𝑤𝑠𝑣𝑟 ∑  (𝑅𝑖𝑗,𝑡
+ )  𝑖𝑗∈𝑁𝑠𝑣𝑟

                                                                  5.49 

subject to Equations (5.20)-(5.27), (5.30), (5.32),(5.34),(5.35), (5.36)-(5.41), (5.44)-(5.46) 

    In this scenario, the reactive power from the inverter based renewables is used as an ancillary service 

in coordination with the OLTC and SVR devices. The reactive power limits imposed by constraints 

5.26 and 5.27 are based on oversizing the inverter capacity by 10% and incorporating the forecasting 

error of the renewable active power.  The procedure for solving the SPC strategy follows the steps 

presented in Section 5.5. 
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 Figure 5.9 shows the voltage profile of the selected buses at a low penetration level. In this case, the 

impact of renewables’ variation is not very large; hence, low voltage fluctuation is expected.  

 

Figure 5.9. Voltage profile of the selected buses (Low penetration) 

 

    From the voltage profile, it can be observed that minimizing the voltage deviation by using the 

reactive power from the inverters has noticeably contributed to the smoothness of the voltage profile. 

The proposed oversized capacity of the reactive power from the inverters has an advantage over the 

methodology used in [141], which depends on the limited power factor of the RES (0.95 laging).  

    Figure 5.10 presents the dispatched reactive power from PV inverters during the simulation period. 

It can be seen that the reactive power follows the pattern of the load profile to offset the reactive power 

consumed by customers. The reactive power determined by the SPC model is a function of the RESs 

active power and the forecasted error calculated at each time step. Small reactive power is consumed 

by the inverters between 1:15 PM and 2:30 PM is due to the high injected power from PVs during that 

time. 

    Similarly, Figure 5.11 shows the dispatched reactive power from the wind system inverters. The 

amount of the supplied/consumed reactive power is subject to the generator capacity.  
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    Figure 5.12 shows the operation of both OLTC/SVR for one day. At a low penetration level of 

renewables, the SPC strategy solved the problem very efficiently, with the low operation of taps and 

maintained the voltage profile smooth. Just 6 taps for OLTC and 2 taps for SVR were enough to achieve 

optimal operation. 

 

Figure 5.10. Dispatched reactive power from PVs inverter (Low penetration) 
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Figure 5.11. Dispatched reactive power from Wind inverter (Low penetration) 

 

Figure 5.12. Operations of OLTC/SVR (Low penetration). 
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   At low penetration, no reverse power flow was observed during the simulation period, as shown from 

Figure 5.13. It can also be seen that the lowest power supply occurs when the injection from the PVs is 

at maximum. The total amount of active power losses calculated during the optimization period for one 

day is 3.19 MW.  

 

 

Figure 5.13. Power supplied by substation transformer (Low penetration). 

 

5.7.3 Case 3: High Penetration 

Under the high integration of renewables, the control action becomes more complicated due to the high 

fluctuation in the supplied power, hence there are more reactions from the Volt/Var control devices to 

maintain voltages within specified limits. In this case, two scenarios were applied, with and without 

OLTC/SVR operation minimization. 

5.7.3.1 Scenario 1 

In this scenario, the following objective function is applied: 

𝑚𝑖𝑛 𝐹 =  𝑤𝑙𝑜𝑠𝑠(∑ 𝑟𝑖𝑗 𝑙𝑖𝑗,𝑡𝑖𝑗∈𝑁𝑏𝑟
) + 𝑤𝐷𝑉(∑ 𝑉𝑎𝑢𝑥𝑖,𝑡   𝑖∈𝑁𝐵

)                               5.50 
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    The objective of this scenario is to show the impact of reactive power support from inverters on the 

operation of voltage regulation devices. In Case 1, the excessive operation of the OLTC/SVR occurred 

when the inverters operated at the unity power factor, which means no reactive power was injected or 

absorbed to mitigate voltage variation. Figure 5.14 shows the voltage profile from the selected buses 

without minimizing the operations of the OLTC/SVR devices.  It can be seen that the voltage profile 

was maintained close to the reference voltage value regardless of the operations of the voltage regulator 

devices. 

 

 

Figure 5.14. Voltage profile of the selected buses (High penetration: Scenario 1) 

 

   The dispatch schedule between  PV and wind power inverters appears in Figure 5.15 and Figure 5.16, 

respectively. The amount of reactive power injected or absorbed by the RES inverters depends on the 

size of each inverter and the location of the RES unit. PV inverters inject most of the reactive power 

needed by the system to minimize losses and maintain the voltage profile close to the reference values 

with respect to their sizes and locations.  
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Figure 5.15. Dispatched reactive power from PVs inveter (High penetration: Scenario 1) 

  

 

Figure 5.16. Dispatched reactive power from wind farms inverter (High penetration: Scenario 1) 
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The operations of OLTC and SVR without coordination with RESs inverters appear in Figure 5.17. It 

can be observed that the number of switchings has decreased compared with Case 1, as depicted in 

Figure 5.7, where inverters operated at the unity power factor. Although the number of operations is 

still high, the reactive power support from inverters has helped in minimizing voltage variation, which 

reduced the OLTC operations from 46 oper/day to 28 oper/day, and SVR operations from 43 oper/day 

to 17 oper/day. 

 

Figure 5.17. Operations of OLTC/SVR (High penetration: Scenario 1) 

 

 

5.7.3.2 Scenario 2  

In this scenario, the full optimization problem, as described in Equation 5.49 is used. Here, full 

coordination between inverters and voltage regulators is considered. Including the minimization of 

regulators operations have reduced the overall system operating cost and has met security and operation 

constraints.  

 Figure 5.18 shows that the SPC can overcome the problems of voltage violations due to the high 

uncertainty associated with the intermittent energy source and load demand variations. The voltage 

profile is flattened and maintained within the allowable operating limits even under the high use of 
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intermittent energy sources. Short-term forecasting in the real-time proposed model has significantly 

minimized the uncertainty in the renewable prediction, consequently feeding the centralized controller 

with accurate data to perform optimal control actions. As a result, the voltage deviation is minimized 

as an objective by the optimal coordination between the Volt/Var equipment.  

 

Figure 5.18. Voltage profile of the selected buses (High penetration: Scenario 2) 

    The dispatch schedule between the PV and Wind power inverters appears in Figure 5.19 and Figure 

5.20, respectively. It is noticeable that the majority of reactive power support comes from the PV 

inverters because they hold larger capacity than Wind farms, as indicated in Table 5-1. An observation 

of inverter negative reactive power appears between 1:00 PM and 2:45 PM as a result of voltage rise 

mitigation created by a large amount of injected power from the RESs. 
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Figure 5.19. Dispatched reactive power from PVs (High penetration: Scenario 2) 

 

Figure 5.20. Dispatched reactive power from wind farms (High penetration: Scenario 2) 
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    The optimal coordination between OTLC/SVR and the inverters has also decreased the operations 

of OLTC/SVR as shown in Figure 5.21. The optimization of the OLTC/SVR switching in the proposed 

model has significantly reduced the daily operations of both devices when compared with the base case 

scenario, as shown in Figure 5.7. Allowing for reactive power support up to 10% of the inverters’ rated 

capacity helped in offsetting voltage deviation, and consequently reduced the switching mechanism of 

the mechanical devices. 

 

Figure 5.21. Operations of OLTC/SVR (High penetration: Scenario 2) 

    Figure 5.22 shows the total active power supplied from the substation transformer for the entire 

simulation period. It can be observed that between 12:00 PM and 4:00 PM, the supplied active power 

is negative, which indicates a reverse power flow. This is due to the peak generated power from the 

RESs, specifically for the solar PV systems, and the offpeak demand during the specified intervals. 

With the conventional Volt/Var control that depends on the LDC of OLTC/SVR, the control actions 

will not be efficient due to the reverse power flow. However, the proposed SPC can handle this problem 

by estimating the amount of generated and consumed power, and accordingly and taking control action. 

Figure 5.23 shows the voltage on all buses during the simulation period. All system voltages are 

flattened without spikes or high variations as a proof of the robustness of the SPC. 
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Figure 5.22. Power supplied by the substation transformer (High penetration). 

 

Figure 5.23. System voltage of all buses 

 



 

 96 

Table 5-2 shows the weight coefficients of the three cases determined based on the methodology used 

Chapter 4. 

 

Table 5-2. Weights of the three case studies 

 

 

5.7.4 Cost Analysis 

As the goal of the proposed SPC is to optimally control and run smart distribution systems dominated 

by intermittent renewable resources, Table 5-3 summarizes the operating cost of the regulator's 

operations as well as total system losses for a one-day simulation period. A summary of the operating 

cost of the proposed model for the one-day simulation period appears in Table 5-3. It can be seen that, 

when comparing Case 1 with Case 3, the total operation cost has been dramatically minimized by 

approximately 42%. The coordination between the voltage regulators and the distributed generation 

inverters minimized the regulator's switches as well as power losses in branches. Power losses from 

Case 3 declined from 3.316 MW to 2.54 MW, and the total operations of OLTC and SVR reduced from 

89 oper/day to 24 oper/day. The cost of purchasing power from the primary grid is not reported in the 

analysis.  

 

 

 

 

Case 𝑤𝑙𝑡𝑐  𝑤𝑠𝑣𝑟 𝑤𝑙𝑜𝑠𝑠 𝑤𝐷𝑉 

Case 1 - - 0.7 0.3 

Case 2 0.25 0.15 0.5 0.1 

Case 

3 

Scenario1 - - 0.72 0.28 

Scenario2        0.2        0.15        0.55        0.1 



 

 97 

Table 5-3. Cost of operation for IEEE 33-Bus system 

Case Study OLTC(oper/day) SVR(oper/day) Loss (MW)/day Total  Cost $ 

Case 1 46 43 3.316 849.12 

Case 2 6 2 3.19 307.68 

Case 

3 

  Scenario 1 28  17 2.54 497.3 

Scenario 2         17          7        2.56 360.64 

 

 

5.8  Algorithm Evaluation 

To evaluate the performance of the proposed model, three standard metrics for evaluation are used: 

time, iteration, and objective.   The execution time for one optimization stage is given in Table 5-4. It 

can be seen that the SPC model has solved the problem in a shorter time compared with the other 

MINLP models. 

Table 5-4 Comparison SPC and MINLP models for the IEEE 33-Bus system 

 

    The difference (percentage error) in voltage at bus 11 when using  MISOCP and the original MINLP 

“emp” models for the entire simulation period is depicted in Figure 5.24. It can be seen that the error is 

very small, which guarantees the effectiveness of transforming the original problem to the MISOCP 

problem with the advantage of fast convergence. 

Method Time(s) Iter Objective 

Proposed SPC 0.438 15 0.0586 

MINLP (emp [142]) 1.59 11 0.0586 

MINLP (Knitro [143]) 1.84 - 0.05869 

MINLP (Dicopt  ) 2.85 - infeasible 
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Figure 5.24. Error in bus voltage (MISOCP - MINLP “emp”) 

 

5.9 Conclusion 

High penetration and excessive power variation of PV and Wind power systems cause severe 

operational problems. In this chapter, an SPC strategy for an SDG dominated by RESs is proposed. The 

model uses the short-time forecasting algorithm based on online forgetting and updating mechanisms. 

The prediction accuracy of generation and demand comes from incorporating the most recent measured 

data into the optimization process while moving over the horizon. The proposed model converts the 

original nonconvex problem to a convex problem by linearizing the objective function subject to linear 

and conic constraints. The original MINLP problem is converted to a MISOCP problem, which is then 

solved by applying a rolling horizon optimization framework. Convexification and linearization of the 

problem guarantee a global solution to the problem within very-short timeframe, which satisfies the 

real-time operation demands of smart grids. The presented results show that the SPC is an efficient 

model when solving smart distribution grids even with a large number of buses, in a reasonable time. 

The feasibility of the solution is guaranteed due to the convexification of the problem, which is not 

guaranteed with nonlinear models, especially when the number of variables increases exponentially.  

 

1 11 21 31 41 51 61 71 81 91

Time (15 min)

Error%
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Chapter 6 

Conclusions and Future Work 

Power distribution companies are committed to continuously regulating the voltage at the distribution 

level within ±5% ANSI standard range (0.95 p.u to 1.05 p.u) under normal operating conditions. 

However, the proliferation of intermittent energy sources, such as PV and wind power systems, makes 

the operation and control of the distribution system very difficult.  As such, developing an accurate, 

reliable, and cost-effective solution methodology to cope with the high-scale integration of RESs has 

become a matter of great interest. This research work is an attempt to address some of the challenges 

made by the integration of RESs on the voltage profile and operation of Volt/Var control devices in the 

context of the smart grid. This dissertation explores the impact of the high penetration of RESs on 

system voltage profile and operation of Volt/Var control devices. It develops an optimization procedure 

for determining the reactive power and voltage control parameters that maximize the smart grid 

performance (minimization of operation cost and system losses) 

6.1 Conclusion 

Building upon the background presented in Chapter 2, this research focuses on three main aspects of 

operating a smart distribution grid, namely; short-term forecasting, day-ahead predictive Volt/Var 

control, and sequential predictive control based on a real-time updating and forecasting approach. The 

major contributions of this research are:  

1. An STSE-based real-time forecasting algorithm to accurately capture the output variation of 

intermittent energy sources and demands. 

2. Predictive control actions for RES dominated systems to optimally set Volt/Var control devices 

before the predicted voltage violation takes place.  

3. A global solution algorithm for Volt/Var control problem based on a MISOCP convex 

optimization framework. 

  In Chapter 3, a forecasting model, referred to as an STSE, has been established and applied to 

PV/wind power output data for short-term forecasting. The proposed approach heuristically combines 

a heterogeneous machine learning algorithm composed of three well-established models, SVR, 

RBFNN, and RF, via SVR. The model is evaluated using evaluation metrics such as RMSE, MAE, and 

MAPE, where the results show that the STSE model is a reliable and accurate tool for very short-term 
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PV/wind power forecasting. Further, the model is extended in Chapter 5 to incorporate real-time 

measurements from smart meters and update itself every 15 minutes in order to capture the most recent 

data. Thus, better prediction accuracy and optimum Volt/Var control actions are accordingly achieved.   

  Chapter 4 presents a proposal for two generic predictive Volt/Var Control models for optimally 

operating smart distribution grids for a day-ahead. The first model operates the RESs at unity power 

factor, where the objective was minimizing voltage deviation, power losses, operating cycles of 

regulation equipment, and RES curtailment. The second model uses the advantages of smart inverters 

interfacing RESs as an ancillary for reactive power support so that the objectives from the first model 

are achieved without RES curtailment. The two models schedule the operation of a smart distribution 

grid on an hourly basis for a day-ahead under the high penetration of PV and Wind power systems 

characterized by their high degree of uncertainty. 

   In Chapter 5, a sequential predictive control strategy for smart distribution grids dominated by RES 

is developed. The model uses both the past and currently available data to forecast demand and RES 

outputs for intervals of 15 minutes ahead, with real-time updating mechanisms. It then schedules the 

settings and operations of  Volt/Var control devices by solving the Volt/Var control problems in a 

rolling horizon optimization framework. The original nonconvex MINLP problem is converted to a 

convex MISOCP problem by linearizing the objective function subject to linear and conic constraints. 

Convexification and linearization of the problem guarantee a global solution and minimizes the 

computational time. Case studies conducted to compare the proposed model against state-of-the-art 

models provides evidence for the proposed model’s effectiveness. Results indicate that the sequential 

predictive control approach is capable of accurately solving the control problem with high RES 

penetration within short time slots.     
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6.2 Research Contributions 

The major contributions of this dissertation are:  

1. Development of a real-time forecasting algorithm to accurately capture the output variation of 

intermittent energy sources and demands. 

2. Development of an optimum coordination algorithm for Volt/Var control devices such that 

their daily operations are minimized, hence their expected life is extended. The proposed 

formulation is applicable to one day-ahead with and without incorporating smart converters 

interfacing with PV/Wind units. 

3. Development of an optimal predictive control method for the Volt/Var control problem in 

smart grids. The proposed framework uses rolling horizon optimization to solve the 

optimization problem. The Volt/Var problem is formulated as a convex optimization to 

guarantee a global solution. 

 

6.3 Future work 

 

Based on the work presented in this thesis, future research may explore the following subjects: 

 

1. Investigate the hierarchical control based on the convexification of the power flow problem. 

Volt/Var control devices will be classified based on their fast and low response control 

actions to deal with fast voltage variations.  

2. Explore the high integration of electric vehicles (EV) and its impact on the proposed real-

time predictive control. 

3. Investigate the use of energy storage systems as an ancillary service for Volt/Var control in 

coordination with voltage regulation equipment. 
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Appendix A 

Chapter 3.  

Section 3.6 

𝑴𝒊𝒏∝,∝∗   
𝟏

𝟐
 (∝ −∝∗)𝑻𝑸(∝ −∝∗) + 𝜺 ∑(𝜶𝒊 + 𝜶𝒊

∗) + ∑ 𝒚𝒊(𝜶𝒊 − 𝜶𝒊
∗)

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

S.T 

∑ (𝜶𝒊 − 𝜶𝒊
∗) = 𝟎,       𝟎 ≤ 𝜶(∗) ≤ 𝑪

𝒏

𝒊=𝟏
 

 

where 𝑄𝑖𝑗 = ∅(𝑥𝑖)𝑇∅(𝑥𝑖). The inner product can be replaced by Kernel function from the type of RBF, 

which is commonly used in nonlinear prediction. 

. 
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Appendix B 

IEEE 33 Bus 

 

 

Bus P (KW) Q(KVAR) From bus To bus R(ohm) X(ohm)

1 0 0

2 100 60 1 2 0.0922 0.047

3 90 40 2 3 0.493 0.2511

4 120 80 3 4 0.366 0.1864

5 60 30 4 5 0.3811 0.1941

6 60 20 5 6 0.819 0.707

7 200 100 6 7 0.1872 0.6188

8 200 100 7 8 0.7114 0.2351

9 60 20 8 9 1.03 0.74

10 60 20 9 10 1.044 0.74

11 45 30 10 11 0.1966 0.065

12 60 35 11 12 0.3744 0.1238

13 60 35 12 13 1.468 1.155

14 150 110 13 14 0.5416 0.7129

15 60 10 14 15 0.591 0.526

16 60 20 15 16 0.7463 0.545

17 60 20 16 17 1.289 1.721

18 130 80 17 18 0.732 0.574

19 90 40 2 19 0.164 0.1565

20 180 120 19 20 1.5042 1.3554

21 325 230 20 21 0.9095 0.7784

22 100 50 21 22 0.9089 0.9373

23 100 70 3 23 0.4512 0.3083

24 420 200 23 24 0.898 0.7091

25 420 200 24 25 0.896 0.7011

26 60 25 6 26 0.203 0.1034

27 60 25 26 27 0.2842 0.1447

28 60 20 27 28 1.059 0.9337

29 120 70 28 29 0.8042 0.7006

30 200 600 29 30 0.5075 0.2585

31 150 70 30 31 0.8744 0.853

32 210 100 31 32 0.2705 0.3119

33 60 50 32 33 0.301 0.453


