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Abstract

Field-theoretic simulations (FTS) provide fluctuation corrections to self-consistent
field theory (SCFT) by simulating its field-theoretic Hamiltonian rather than apply-
ing the saddle-point approximation. Although FTS work well for ultrahigh molecular
weights, they have struggled with experimentally relevant values. Here, we consider
FTS for two-component (i.e., AB-type) melts, where the composition field fluctuates
but the saddle-point approximation is still applied to the pressure field that enforces
incompressibility. This results in real-valued fields, thereby allowing for conventional
simulation methods. We discover that Langevin simulations are one to two orders of
magnitude faster than previous Monte Carlo simulations, which permits us to accu-
rately calculate the order-disorder transition of symmetric diblock copolymer melts at
realistic molecular weights. This remarkable speedup will, likewise, facilitate F'TS for
more complicated block copolymer systems, which might otherwise be unfeasible with

traditional particle-based simulations.



Introduction

Self-consistent field theory (SCFT)! has proven to be a remarkably successful theory for
predicting the equilibrium behavior of block polymer melts.?? It is generally applied to the
standard Gaussian-chain model (GCM),* which treats a melt as an incompressible system
of elastic threads interacting by contact forces. The universality of block copolymer phase
behavior implies that all systems reduce to the GCM at high molecular weights,®® where
polymers are many persistence lengths long and much larger than the range of their interac-
tions. The prototypical system is the diblock copolymer melt consisting of n linear polymers,
each with N4 A-type segments joined to Ng B-type segments, where the strength of the A-B
interactions is controlled by an effective Flory-Huggins x parameter. (Note that we apply
the usual convention of defining segments based on a common volume of p;'.)

In SCF'T, the particle-based GCM is transformed to a mathematically equivalent field-
based model, involving a composition field, W_(r), that couples to the difference between A
and B concentrations, ¢_(r), and a pressure field, W, (r), that couples to the total concen-
tration, ¢, (r), in a system of non-interacting polymers. The field-based Hamiltonian takes

the form?23
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where Yy is a bare interaction parameter and Q[W_, W,] is the partition function for a single
molecule in the system of non-interacting polymers. The total partition function of the melt
is evaluated using the saddle-point approximation. The saddle point, denoted by w_(r) and

w4 (r), is obtained by solving the self-consistent conditions g_[w_,wy] = g4[w_,w,] = 0,



where
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Once the saddle point is located, the free energy is given by Hy[w_,w.]. The self-consistent
field conditions generally have multiple solutions corresponding to different metastable phases;
the one of lowest free energy represents the stable phase. In SCFT, y and y; are the same.

Although SCFT is found to be accurate for ordered morphologies,” its treatment of the
disordered phase as a homogeneous mixture of A and B segments is wholly inaccurate.®
As a consequence, there are large fluctuation corrections to the order-disorder transition
(ODT). The size of the corrections is controlled by the invariant polymerization index, N =
a®pi N, where a is the statistical length of the segments. (Note that we limit our attention
to conformationally symmetric systems, where both components have the same a.) For

symmetric diblock copolymers (i.e., N4 = Ng), the ODT is given by
(xN)opr = 10.495 + 41.0N~'/3 + 123.0N 0% ()

where the first term is the SCFT prediction, the second is the well-known Fredrickson-Helfand
(F-H) correction,? and the third is an additional correction obtained from particle-based
simulations. 1°

In field-theoretic simulations (FTS), one simulates H,[WW_, W, ] rather than applying the
saddle-point approximation of SCF'T. Ideally, both fields would be allowed to fluctuate, but
this is complicated by the fact that W, (r) takes on imaginary values. Fredrickson and
coworkers have dealt with this by performing complex Langevin simulations (CL-FTS). 114
Another strategy is to assume that the composition fluctuations are dominant, and therefore

continue to apply the saddle-point approximation for W, (r). This is done by simulating

H,[W_,w,], where w,(r) satisfies g [W_,w,] = 0. As it turns out, wy(r) is real valued,



which then allows for the use of conventional simulation methods. Most studies apply Monte
Carlo dynamics (MC-FTS), !5 but a couple have implemented standard Langevin dynamics
(L-FTS).20:2t

The simulations are typically performed in a cubic simulation box of volume V = L3
with periodic boundaries. The fields are represented on a discrete grid with m points in
each direction, separated by a uniform spacing of A (i.e., L = mA). One might expect the
simulations to become increasingly accurate as A — 0, but instead this leads to an ultraviolet
(UV) divergence that tends to disorder the melt. Olvera de la Cruz et al.?? showed that this
could be compensated for by renormalizing the x parameter. Although this works well at
large N,'7 it begins to fail as the experimentally relevant regime is approached.'® We recently
showed!® that the UV divergence can be dealt with by defining an effective y parameter using

the Morse calibration® "1%23 devised for particle-based simulations. For the case of FTS,

_ ZooXb T ClXZ (5)
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is the fraction of intermolecular contacts in an athermal melt.'® The remaining coefficients, ¢,
and ¢y, are determined by fitting the structure function, S(k), from FTS to renormalized-one
loop (ROL) predictions. 2%

Although this strategy resolved the UV divergence, the Monte Carlo dynamics used in ref
19 became relatively slow as N was reduced to realistic values. This was further exacerbated
by the fact that the amplitude of the MC moves had to be reduced for increasing system
size. It was suggested that this shortcoming might be overcome by switching to Langevin
dynamics. Here, we investigate this possibility, in an effort to resolve the last major obstacle

impeding FTS for realistic molecular weights.



Statistical mechanics of non-interacting polymers

The most computational part of field-theoretic calculations is the statistical mechanics for
the system of non-interacting polymers in the W_(r) and W, (r) fields.'* It requires the
calculation of a partial partition function, ¢(r,t), for the first ¢ segments of a polymer with

the t’th segment constrained at position r. This function satisfies the diffusion equation

dq  a?
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subject to the initial condition ¢(r,0) = 1. Here, we define y(t) to be +1 for the A block
and —1 for the B block. One also requires an analogous function, ¢f(r,t), for the last N — ¢
segments. It is obtained by integrating eq 7 with one side multiplied by —1, backwards
in ¢, starting from ¢'(r, N) = 1. Once the two partial partition functions are known, the

single-chain partition function is obtained from

Q- / g(r, t)q (r, t)dr (s)

The above integral can be evaluated using any value of ¢, and so one typically chooses t = N.

The composition and total concentration of the noninteracting polymers are

0-r) = I / (e, O (x, £)dt (9)

r) = o ! r,t)q (v
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respectively, where the number of polymers is given by n = pgV/N.

We solve the diffusion eq 7 numerically using a pseudo-spectral method?” with Richardson
extrapolation,?® and we evaluate the integrals in eqs 9 and 10 using the Simpson quadrature.
The number of integration steps along the polymer contour serves as our definition of the

polymerization, N. The grid resolution is chosen as A = a, which is sufficiently large relative



to the integration step for the polymers to behave as continuous chains.'® The segment

density is set to py = 8/a®, which results in an invariant polymerization index of N = 64N .

Langevin simulation algorithm

In order to reduce the simulations to one fluctuating field, W, (r) is set to the saddle point,
w, (r), which we obtain iteratively using Anderson mixing.?*3° The algorithm follows that
of the SCFT calculations in ref 31.32 Here, we apply the iterations until the self-consistent
condition, g [W_,w,]| = 0, is satisfied to an error tolerance of € = 107,

The remaining field, W_(r;7), is then evolved using Langevin dynamics. The previous
L-FTS by Reister et al.?® studied the kinetics of macrophase separation in A+B homopoly-
mer blends, whereas we just use Langevin dynamics to produce a sequence of equilibrated
configurations. Thus, there is no need for us to calibrate the time-like variable, 7. The

sequence (i.e., 7 = két for k =1,2,3,...) is generated using
W_(r;7407) = W_(r;7) — Alr, 7)01 + N(0,0) (11)

where A(r,7) is a forcing term and N (0, o) is random noise with a normal distribution of

zero mean and variance
9 20T
O’ g
A?py

(12)

To improve accuracy, we apply the predictor-corrector algorithm.?* A predicted field, W* (r; 7+

d7), is first evaluated using eq 11 with

N =g W) (13)

W_(r;7)

and then a corrected field, W_(r; 7 + 07), is obtained with

A=1A% %g_[W_,er]‘ (14)

1
5 *
W* (r;7407)



(Note that the predictor and corrector steps use the same random number.) As usual, the
Langevin dynamics are applied for a sufficient amount of time (e.g., 10°67) to allow the

system to equilibrate, before observables are sampled, typically once every 1047.

(x107)
10 T T T T T T T T T T T T
(a)
g [ _-m ]
| g \‘
o)/ N
o o N\ A N
Ral 6 /‘ \ | | i
:E /. / «\A
e o
Y -0 -
7'4
¢
—@— N=16
2r —A— N=28 ]
- —@— N=64
0 L 1 1 1 I
0.0 0.2 0.4 0.6 0.8
0.03 —— T
Q!
S I
= I u T
= 002¢ e ]
= -
| //A//.:A//.
= ool //'/* |
~— 4‘5/. —@®— N=16
F* —A— N=28
L o™ —m— N=64
0.00 L L L 1 1 L L 1 1 1 1 1 L L L
0.0 0.2 0.4 0.6 0.8
0T

Figure 1: (a) Change in 7 per Anderson mixing iteration and (b) measure of the relative
difference in the corrector and predictor parts of the Langevin dynamics as a function of
step size, 7, for different polymerizations, N. The peaks in plot a identify the optimum
step sizes and the small differences between A and A* in plot b ensure the accuracy of the
predictor-corrector algorithm.

Normally, the time step, 47, is chosen as large as possible, limited only by the requirement
of numerical accuracy. However, in our case, there is the additional consideration that the
number of Anderson mixing iterations, m;,, increases for larger steps. This leads to an
optimum time step, as illustrated in Figure la for simulations near the ODT. The optimum
value depends on N, but has no noticeable dependence on m. This latter fact leads to far
superior scaling with respect to system size than was the case for previous MC-FTS.1?

Of course, we still need to ensure that the finite size of 7 does not significantly impact



the accuracy of the predictor-corrector algorithm. As a rule of thumb, the difference between
A*07 and AdT defined by eqs 13 and 14, respectively, should be small relative to the typical
change in W_(r; 7), the magnitude of which is given by the standard deviation of the random
noise, 0. Figure 1b illustrates that this condition is indeed well satisfied. In fact, we could
probably drop the corrector step without any noticeable sacrifice in accuracy. Nevertheless,
the computational cost of including the corrector step is minimal on account of the relatively

few Anderson mixing iterations required, and so we choose to keep it.

Morse Calibration

Armed with the ability to simulate larger systems, we repeat the Morse calibration®%23 for

the effective x in eq 5 performed previously in ref 19. The fraction of intermolecular contacts,
Zoo = 0.7084 (15)

still obeys the analytical expression in eq 6, and thus is unaffected. However, ¢; and ¢, are

obtained from simulations of the structure function,?°

Sk) n o 1
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which is affected by the finite size, m, of the simulation box. In particular, its finite size
restricts the wavevector to the discrete values: k = 2w (h, k,l)/mA, where h, k, and [ are
integers. The consequence of this is illustrated in Figure 2, where the spherically-averaged
S(k) for N = 16 from MC-FTS in a simulation box of m = 16 is compared to that from
L-FTS in a box of m = 32. Although the previous MC-FTS results are accurate for most
x»IN values, a significant inaccuracy occurs at the highest segregations, where the number
of wavevectors in the peak is relatively few.

Fitting the updated values of S(k*), expressed as a function of x;, to the ROL predictions,



0

10—1 L L L L 1 s L L n 1

kaN1/?

Figure 2: Structure function, S(k), for molecules of polymerization N = 16 calculated at
different segregations, y,/N. Crosses denote previous MC-FTS results with a simulation box
of m = 16, while circles correspond to L-FTS with m = 32. The curves are fits used to
extract the peak, S(k*).

expressed as a function of x, gives

g =1246 and ¢y =1.367 (17)

The quality of the fit is illustrated in Figure 3, where the L-F'TS results are plotted with
symbols and the ROL predictions are given by solid curves. As a result of the partial saddle-
point approximation, the L-FTS results converge to the mean-field prediction from RPA
(dashed line)3* at small yN. Consequently, the L-FTS are unable to reproduce the slight
deviation predicted by ROL, which is well reproduced by particle-based simulations.?%!°
Therefore, we limit our fit to the data points for YN > 7. The inset of Figure 3 shows the
resulting relationship between x and y,, as well as the linear approximation, x ~ z.Xs,
corresponding to the renormalization first used in ref 17. The difference in x from the

previous calibration in ref 19 is slight, but nevertheless large enough to have a noticable

effect.
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Figure 3: Inverse peak height of the structure function, S~!(k*), plotted in terms of the
effective x parameter for different invariant polymerization indexes, N = 64N. Symbols
denote FTS results, solid curves are ROL predictions, and the dashed line is the RPA pre-
diction. The inset compares the nonlinear dependence of x on x,, eq 5, with the linear
approximation, Y ~ ZsoXb-

Order-Disorder Transition

We now reexamine the ODT estimated previously by MC-FTS for N = 16, 28 and 64,
but this time using L-FTS with much larger simulation boxes. As before, the equilibrium
lamellar period is estimated by D ~ 27 /k*, where k* is the peak of the disordered-state
structure function, S(k), extrapolated to the expected ODT in eq 4. Using the revised
peaks, this gives D/a ~ 6.28, 8.11, and 11.91 for N = 16, 28 and 64, respectively.

The previous estimates of the ODT used parallel tempering,* where M simulations are
performed in parallel over a sequence of interaction parameters, Xl(f), spanning the expected

position of the transition. At intervals of 10357, the configurations W (r) and W'V (r) of

10



the replicas at Xz(;i) and Xl(fﬂ), respectively, are swapped with a probability of

Pswap = min {1,exp [(% - 5_?_1))
Xb Xb
x /([WE")]2 - W) dr]} (18)

To take full advantage of the parallelization, swaps are attempted between all pairs of neigh-

boring replicas simultaneously, alternating between odd and even values of ¢. The phase at

each X,(f) value is monitored by evaluating the order parameter (¥), where

v = (g)mx WP (19

is averaged over the last 10*67. One parallel-tempering run is performed starting from
disordered configurations, and then a second run is performed starting from ordered lamellar
configurations generated during the first run. Comparing the two runs generally reveals a
metastability interval, where the disordered and ordered phases both survive for the full
duration of the simulation. The position of the interval brackets the true equilibrium ODT.

Figure 4a shows our new parallel tempering results for N = 16. The previous MC-
FTS results'® from disorder and order produced statistically equivalent curves in a small
simulation box, m = 12, corresponding to two periods, which are consistent with our L-
FTS results (only the run from disorder is shown). Given the increased speed of L-FTS,
we can now apply parallel tempering to larger boxes of m = 18. The resulting run from
disorder produces the lamellar configurations shown in Figure 5; the label (hkl) denotes a
lamellar phase with principle wavevector k* = 27 (h, k,1)/mA. The (220) configuration has
a period 1.3% above the expected value, while the (300) and (221) configurations have a
period 4.5% below. Therefore, the run from order is seeded with equal numbers of (220)
and (300) configurations. For this larger system, the runs from disorder and order produce

a narrow but distinct metastability interval centered around y, N ~ 21. L-FTS allow us to

11
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Figure 4: Order parameter, (¥), from parallel-tempering runs for molecules of polymerization
(a) N =16 and (b) N = 28 in simulation boxes of different sizes, m. Solid and open symbols
denote runs initialized with disordered and ordered configurations, respectively.

VY

(220) (300) (221)

Figure 5: Lamellar configurations that spontaneously formed during the parallel-tempering
run for N = 16 in the m = 18 simulation box. The lamellar period of a (hkl) configuration

is given by D = mA/vh? + k? + [2.
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consider even larger boxes of m = 24. In this case, the run from order is seeded with (321)
lamellae, the only configuration produced during the run from disorder and also the one that
best matches the expected period. Not surprisingly, the metastability interval for m = 24 is
much wider and brackets the one for m = 18.

Analogous results for the longer chains of N = 28 are shown in Figure 4b. As before,’
the two-period box, m = 16, fails to produce a discernible metastability interval. Therefore,
we increase the box size to m = 24. The disorder run mainly produces (300) and (221)
configurations with a period 1.3% smaller than the expected value, but there is one (220)
configuration with a period 4.6% larger than the expected value. Given the clear preference
for the smaller period, the run from order is just seeded with (300) configurations. Again,

the larger box size results in a well-defined metastability interval, locating the transition at

(xoV)opT =~ 20.
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Figure 6: Speed comparison of L-FTS and MC-FTS showing the number of Anderson mixing
iterations, muiy, required for an initial field of W_(r) = 0 to spontaneously order into a
lamellar phase for chains of N = 16 at x;,/N = 21.9 in a simulation box of m = 18.

To understand why the previous MC-FTS' were unsuccessful for the larger boxes, Figure
6 compares the computational time for an initial field of W_(r) = 0 to spontaneously order
into a stable lamellar phase at x;,/N = 21.9. Even in a relatively small box of m = 18,
the L-FTS produce the ordered phase approximately 20 times faster than the MC-FTS; the

difference becomes even more pronounced for larger simulation boxes. Nevertheless, even

13



with the much improved speed, the finite widths of the metastability intervals in Figure 4
seriously limit the resolution of our ODT measurements.

We address this problem by employing thermodynamic integration. The first step is to
determine the free energy of the polymeric system relative to a reference system of known free
3

energy. For this, we use an Einstein crystal consisting of independent harmonic oscillators, *

with the Hamiltonian
He. [W—] Lo / 2
——— = — [ [W_(r) = W d 20
=2 v - WP (20)
where x; is our estimate of the ODT and Wy(r) is a reference field used to select the desired
phase. We set Wy(r) = 0 to obtain the disordered phase and Wy(r) o sin(k - r) to obtain

a lamellar phase of wavevector, k. (Note that the free energy of the Einstein crystal is

independent of Wy(r).) The composite Hamiltonian
HW_] = H,[W_,wi] 4+ (1 — \)He [W_] (21)

is then simulated by changing the forcing term to

A 2(1— \)

-] = X[ ]+ W+ (W~ W) (22)

*

Xb

To obtain the free energy of the composite system relative to the Einstein crystal, F/(\), we

simply integrate the derivative

dF

o= (H, W w]) = (e[ W-)) (23)

This is done using continuous thermodynamic integration,® where the integration and en-
semble averaging is performed simultaneously by incrementing A between successive Langevin
steps. Figure 7a shows F'()\) obtained from MC-FTS and L-FTS (solid curves), using the

same relatively large step size of d\ = 1073. Naturally, F(\) approaches an asymptotic

limit (dashed curve) as dA — 0. Noting that the error accumulates faster at large A, our

14



accurate estimates of the relative free energy of the polymeric system, F(1), are evaluated
using d\ = 1076 for A < 0.9 and switching to d\ = 10~7 for A > 0.9. Figure 7b compares
the error, AF, at the end of the thermodynamic integration for L-FTS (solid symbols) and
MC-FTS (open symbols) as a function of dA. To achieve an equivalent level of accuracy,
the MC-FTS requires d\ to be about 30 times smaller, which slows down the simulations
by a similar factor. This explains why previous efforts to use thermodynamic integration

with MC-FTS were unsuccessful.!® With L-FTS, we can now readily obtain accuracies of

AF/nkgT < 1074,
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Figure 7: (a) Free energy, F'()A), of the composite H[W_] in eq 21 calculated by L-FTS and
MC-FTS with an integration step of d\ = 1073 compared to a highly accurate result for
N =16, xp/N =20 and m = 18. (b) Absolute error, AF, at A\ = 1 as a function of step size,
d\, obtained with L-FTS (closed symbols) and MC-FTS (open symbols).

Once we have the relative free energy of the disordered phase, Fpis, at a x; below the

15



ODT, it is integrated in the positive y; direction using

dF . _kBTPO
dxe X;

/ (W2(r)) dr (24)

with a small step size of dy, = 107%/N, which provides a similar accuracy to that of the A
integrations. Likewise, the relative free energy of the lamellar phase, Fan, is integrated in
the negative y, direction, starting from a point above the ODT. Figure 8 plots the difference
in the two free energies as a function of x,N. The kinks at small x,N result when the
backward run for the lamellar phase disorders, and the kinks at large x,/V result when the
forward run for the disordered phase spontaneously orders. Thus, it is only in the intervening
interval that actually corresponds to the free energy difference between the disordered and
lamellar phases. The flat regions to either side occur because both phases are the same, and
the free energy is displaced from zero because the thermodynamic integration is unable to
follow the change in free energy through a discontinuous phase transition. The fact that the
slopes, obtained from continuous thermodynamic integrations of the same phase in opposite
directions, are so close to zero testifies to the high accuracy of the Yy, integrations.?¢ There
are, nevertheless, a couple of instances where the slope for the two lamellar phases is slightly
positive or negative, but this is only because they happen to have different periods.

Our results for the short N = 16 polymers in Figure 8a show that the (300) lamellar
configuration is slightly favored over the (220) one in the m = 18 simulation box, which
is indeed consistent with the expected period, D ~ 2 /k*. Furthermore, the ODT (i.e.,
Fram = Fpis) nicely matches the metastability interval in Figure 4a from parallel tempering.
With thermodynamic integration, however, we can now obtain an accurate estimate of the
ODT for the larger system of m = 24. As it turns out, this only results in a slight shift
to smaller (x»/V)opr, implying that boxes of L 2 3D are adequate. Similar results for
N = 28 are presented in Figure 8b. This time, the (300) lamellar configuration is significantly

preferred over the (220) one in the m = 24 box, which is again consistent with the parallel

16



~

q

<2

<

~

<2

A

~

|

5 —— m=18(220)

q —— m=18 (300)

Lj/ — m=24 (321)
-8 P S S S S S S B S S S
20.0 20.5 21.0 215 22.0
4 M T M T T T T T T T T T T T T T T T

& L

n

<2

I

~

—~

n

[

~

|

5 L m=24(220)

= | —— m=24(300)

~ | —— m=32(400)

S~—
0 S Y Y S —
19.0 19.5 20.0 20.5 21.0
4 T T T T T T T T T T T T T T T T T T

E‘ L

S

4& L

<

= 0

9 L

&)

~

A |

= I

S |

Ef', L —— m=36 (300)
-8 P S S S S S N S ST S S B S S S
18.0 18.5 19.0 19.5 20.0

Xp NV
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The kinks at small and large x;/V result when the metastable phase switches to the stable
phase.
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tempering. As before, the ODT shifts to slightly smaller (x,N)opT, when the system size
is increased. Now that we have a good gauge of the finite-size effects, we only perform one
set of thermodynamic integrations for N = 64 in Figure 8c, using a m = 36 box and a (300)

lamellar configuration that is within 1% of the expected period.
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Figure 9: Fluctuation correction to the ODT of symmetric diblock copolymer melts plotted
in terms of the effective y and the invariant polymerization index, N. The solid curve
denotes the universal result from particle-based simulations, eq 4,'° and the dashed curve is
the Fredrickson-Helfand prediction.®

Based on the thermodynamic integrations for our largest system sizes, we estimate the
ODT for N = 16, 28, and 64 to be (xsN)opr = 21.0, 20.0, and 18.9, respectively. These
estimates are plotted in Figure 9 in terms of the effective x in eq 5 and the invariant polymer-
ization index N = 64N. The L-FTS agree well with the universal results from particle-based
simulations (solid curve), much better so than the Fredrickson-Helfand prediction (dashed

curve).

Discussion

We have conducted the first head-to-head comparison of MC-FTS and L-FTS, illustrating
that simulations that would have taken months by MC-FTS can now be completed in a few
days by L-FTS. This efficiency was not recognized previously, because it also relies on the

algorithms for the diffusion equation and the partial saddle-point approximation. The origi-
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nal L-FTS of Reister et al.?* only managed 73 wavevectors, because they solved the diffusion
equation with a spectral method and the saddle point with a Jacobian-based algorithm.
Alexander-Katz and Fredrickson?! performed L-FTS in simulation boxes with 48 x 48 x 16
grid points, but only for relatively weak fluctuations corresponding to N = 5.4 x 10° and a
far lower error tolerance for w, (r). They implemented the pseudo-spectral method without
Richardson extrapolation and located the saddle point with a simple mixing iteration. Key
to the current performance is our use of Richardson extrapolation and Anderson mixing.3!
Naturally, we can expect further improvements in the future, as L-FTS gains more attention.

The universality hypothesis for block copolymer phase behavior > implies that the (xN)opr
values from our L-FTS should match the universal curve in eq 4 obtained from particle-based
simulations. ' Indeed, Figure 9 shows that it does capture the vast majority of the fluctuation
correction to the SCFT prediction, (xN)opr = 10.495. Nevertheless, there is a noticeable
discrepancy of up to 0.5 for our smallest N ~ 103. Given the slopes of the free energy
differences in Figure 8, the contribution due to inaccuracies in the thermodynamic integra-
tion should be less than 0.02. The contribution due to finite-size effects is larger but still
presumably below 0.1, based on, for example, the spread among the ODTs for the N = 16
polymers in Figure 8a. Thus, the discrepancy undoubtedly results from something else.

One potential explanation for the discrepancy is the finite grid spacing relative to the
width of the internal A /B interfaces, which is estimated by w; & 2a/1/6x.3" For our shortest
N = 16 chains, w; ~ 0.8a is comparable to A = a. As N increases, the value of y at the
ODT decreases resulting in wider interfaces, and thus the discrepancy should diminish with
increasing N, as it appears to do so in Figure 9. Another source of discrepancy is the partial
saddle-point approximation for W, (r), which becomes increasingly inaccurate as N deviates
from infinity. Although past comparisons with CL-FTS have shown it to be accurate, !5
they have not considered the level of fluctuations in the present study. The clearest evidence

of inaccuracy in our study is the inability of L-FTS to capture the departure of S(k*) from

the RPA prediction at small x/V in Figure 3. Even still, this inaccuracy remains relatively

19



small for N > 10°.

Although partial saddle-point approximation can, in principle, be avoided with CL-FTS,
this approach has its own challenges. In addition to the UV divergence, CL-FTS for the
standard Gaussian chain model (GCM) experience an instability that prevents their appli-
cation to realistic values of N.3® Delaney and Fredrickson'4 remove the UV divergence and
the instability by introducing compressibility and a finite-range to the interactions. This,
however, requires a calibration in order to map the modified model back onto the standard
GCM. They mention the possibility of performing a Morse calibration, but leave it for a
future calculation. However, to obtain universal behavior, the range of the interactions can-
not be too large relative to the width of the A/B interfaces, w;. It remains to be seen if
CL-FTS can be performed at realistic values of N, while keeping the interactions sufficiently
short range. In any case, even with the partial saddle-point approximation, our estimate
of the fluctuation correction in Figure 9 is accurate to well within 10%, which is already a
considerable improvement over the Fredrickson-Helfand prediction.®

A convenient feature of L-FTS are their similarity to SCFT calculations, on account
of the fact that they rely on the same statistical mechanics of non-interacting polymers.
Consequently, the conversion of SCFT code to L-FTS code is trivial. Instead of solving 2m?
equations (i.e., g_[w_,w,] = g4[w_,w,] = 0) for the full saddle point, w_(r) and w,(r),
one just solves m? equations (i.e., g, [W_,wy] = 0) for the partial saddle point, w(r), and
evolves W_(r) using Langevin dynamics with g_[W_, w,] as the forcing term.

Although conventional particle-based simulations can already handle diblock copolymer
melts over the full experimental range of N,71%3% this is not generally the case for more
complicated systems. On the other hand, as explicitly demonstrated in previous studies,
field-theoretic simulations can be readily extended to elaborate block copolymers architec-

4041 and innovative ensembles for dealing with blends.*?>#* For AB-type systems, this

tures
just involves changing the nIn @) term in eq 1 for the Hamiltonian from that of non-interacting

diblock copolymers in a canonical ensemble to the appropriate expression for the system of
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interest in the ensemble of interest. Of course, this also involves modifications to eqs 9
and 10 for the composition, ¢_(r), and total concentration, ¢, (r), respectively, but that is
also relatively trivial. The extension to three or more chemically-distinct components (e.g.,

ABC-type melts) is more involved,3® but certainly not overly onerous.

Summary

This study has presented an algorithm for field-theoretic simulations (FTS), capable of han-
dling the level of fluctuations typical of experiment.2% It evolves the composition field, W_(r),
using conventional Langevin dynamics while approximating the pressure field with its saddle
point, w, (r).2° The saddle point is located using Anderson mixing and the single-chain sta-
tistical mechanics is solved using a pseudo-spectral method with Richardson extrapolation.3!
This Langevin approach (L-FTS) proves to be much faster than the previous Monte Carlo
approach (MC-FTS) used in ref 19, which allows for far superior statistics and considerably
larger simulation boxes.

The algorithm was demonstrated on symmetric diblock copolymer melts with invariant
polymerization indexes of N ~ 10%. We first improved the Morse calibration®?? of the
effective y parameter, shown in the inset of Figure 3, and then evaluated the ODT for
N =16, 28, and 64 using parallel tempering and thermodynamic integration. Both methods
gave consistent predictions for the ODT, but the latter provided the more accurate results
plotted in Figure 9. Based on our assessment of statistical inaccuracies and finite-size effects,
our estimates of the ODT should be accurate to within the symbol size used in the plot.
This leaves a small but significant deviation from the universal curve, eq 4, obtained from
particle-based simulations.'® One potential source of the deviation is the finite size of our
grid, A, relative to the estimated width of the internal A/B interfaces, w;. Another is the
partial saddle-point approximation for the pressure field.

Despite this, the L-FTS predicts the fluctuation corrections in Figure 9 to an accuracy
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of better than 10%. The attractiveness of this approach is the ease with which SCFT
calculations can be switched to L-FTS. However, the most significant merit of L-FTS is the
advantage they have over particle-based simulations to consider blends and complicated block
copolymer architectures. Given this, coupled with their remarkable efficiency, we anticipate

that L-FTS will become the method of choice for evaluating fluctuation corrections to SCF'T.
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