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Abstract 

 
Over the past two decades, a growing body of literature has recognized the importance of droplet-based 

microfluidics. This advanced technology shows promise in enabling large scale interdisciplinary studies 

that require high throughput and accurate manipulation of reagents. Each droplet acts as a micro-sized 

reactor where complex reactions can be carried out on the micro-scale by splitting, mixing, sorting and 

merging droplets. Advantages of droplet-based microfluidics include miniature sample consumption, 

scaled-down reaction time, high-yield manipulation, rapid mixing, and negligible cross-contamination at 

channel walls. As a result, instead of continuing using conventional bench-top methods, many 

researchers working in different fields – such as pharmaceuticals, material sciences, biochemistry, and 

biology – have shifted their interest towards droplet-based microfluidic devices. 

The majority of these applied research studies require the encapsulation of particles or cells that range 

from 1 m to 200 m inside droplets for further studies – i.e, on bead-based nanomaterial synthesis, cell 

culturing, tissue engineering, and so on. Successful encapsulation of particles with such a large size 

range challenges the design and operation of microfluidic channel networks. It is very common that a 

design suitable for encapsulation of 10m cells completely fails when used to encapsulate 1m 

magnetic beads for nanomaterial synthesis or 120 to 150m embryoid bodies for development of mini- 

organs. Redesigning a microfluidic channel network to accommodate a new demand often leads to an 

entirely new project requiring extensive experience in droplet microfluidics and trial-and-error 

development. The vast majority of real-world applications also require multi-step reactions, involving 

the integration of multiple functions such as droplet generation, merging, mixing and precise splitting 

for controlling the reaction environment in the droplets. This adds an extra layer of difficulty in 

achieving robust performance. These challenges clearly point to the need for knowledge of droplet- 

based encapsulation strategies that will serve as a foundation for design and operation of microchannel 
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networks for real-world applications. Arguably, integrating active sources (electrical components, laser 

supplies, etc.) could realize cell or particle encapsulation using a relatively simple channel network 

design, however they are often unfavorable because of the limits of laboratory micro-fabrication. As a 

result of those challenges, there are not many commercialized droplet microfluidic devices, despite the 

extensive use of droplet microfluidics reported in the literature. 

This thesis is designed to meet the need for knowledge of droplet-based encapsulation strategies by 

carrying out systematic fundamental studies based on a double-cross configuration. This configuration 

has been commonly used for co-encapsulation of particles or cells with multiple reagents. Particular 

attention is also paid to the simplicity and robustness of the channel network for real-world applications. 

Proposed methods of single particle encapsulation and integration of multiple functional components are 

validated by two projects. The goal of the first project is to co-encapsulate a 1m magnetic bead (MB) 

with multiple Quantum Dots (QDs) for further bio-decorating the QD surfaces with different molecules 

(i.e. single strand DNA). The goal of the second project is to integrate in a single device a two-step 

reaction assay for functionalizing the surface of QDs with oligonucleotide strands while QDs are 

immobilized on MBs. The QD-Oligonucleotide conjugate serves as bio-sensing probes for nucleic acid 

detection. The comprehensive experimental study is designed to span a wide range of operating 

parameters. Since the validation of the proposed methods, namely, the above two projects, are carried 

out in parallel with a fundamental study of the controlling parameters and completed earlier, they are 

then presented first in this thesis. The detailed structure of the thesis is elaborated below. 

The thesis starts with a study that demonstrates the use of a double-cross junction for co-encapsulation 

of a single 1 𝜇m MB and a large number of QDs in an aqueous droplet. Specifically, a stratified flow 

structure is formed in the first junction which is well tuned to order MBs and the droplets are formed at 

the second junction by using the carrier fluid (i.e. silicon oil) to pinch the stratified flow structure. The 

formation of droplets in the second junction causes pressure fluctuations to occur during droplet 
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generation. By employing a 1-D electrical circuit analogy, the stratified flow structure is decoupled from 

these fluctuations. A chain of serpentine channels that provide chaotic mixing inside micro-droplets is 

added downstream of the double cross junction. This approach quickly reduces the conjugation time, 

resulting in high-yield MB-QD conjugating products. Performing the conjugation process on-chip offers 

a degree of precision in controlling local reaction conditions beyond a level possible in bulk solution 

reactions. A uniform and high-density coating of quantum dots on magnetic beads is thus obtained, 

substantially influencing the further functionalization of quantum dots with biomolecules. 

Next, in the second project, the on-chip bio-functionalization of quantum dot surfaces is achieved 

using oligonucleotide strands as the biomolecules of choice. The continuous and rapid immobilization of 

oligonucleotide strands on QD surfaces requires the integration of multiple functionalities into a single 

microfluidic device. These functionalities include two droplet makers in parallel; a one-to-one droplet 

synchronizing component; a droplet merging chamber; and a series of serpentine channels for droplet 

mixing. A set of criteria are developed to ensure the coupling effects caused by the integration of 

multiple components on one platform are eliminated. Experiments are used to verify the throughput of 

this platform. Not only can the design be used to conjugate biomolecules and nanoparticles, it can also 

be applied in many kinds of research requiring two-step chemical reactions. 

The above two projects not only validate the use of a double-cross geometry integrated with other 

functionalities for bio-modification of nanoparticles, but also suggest the focus of the fundamental study of 

its controlling parameters. This study aims to provide an overview of conditions altering the hydrodynamic 

focusing width and droplet generation, such as the flow rate ratio between two dispersed phases; the flow 

rate ratio between dispersed and continuous phases; the viscosity contrast ratio and the role of an orifice. 

This information can offer an experimental guideline for other non-specialists (biologists, chemical 

engineers, and tissue engineers) who would like to apply this platform to anysingle encapsulation studies. 

To demonstrate this practical guideline, the same microfluidic platform 
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used in the experimental study is employed to encapsulate single mouse embryonic stem cells in individual 

droplets. This specific application is a vital step for further cell culturing and studying single cell 

behaviors. Moreover, the knowledge of this study is useful for creating a microfluidic device that is able to 

enclose single embryoid bodies (a few hundred microns) in gel-droplets. Indeed, on-chip studying of 

spherical cell structures instead of monolayer structures is helpful for organoid growth research that 

supports potential drug discoveries and cancer treatments 
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Chapter 1: Introduction 

 
1.1 The developing world of microfluidics 

Since the early 2000s, Lab-on-a-chip (LOC) technology (Figure 1-1) has been driven by the desire of 

many bio/chemistry researchers to perform high throughput and low-cost bio/chemical reactions (Reyes et 

al. 2002; Stone, Stroock, and Ajdari 2004; Ziaie et al. 2004; Whitesides 2006; El-Ali, Sorger, and Jensen 

2006; Y. Liu and Jiang 2017). The underlying idea is to scale down the sample volumes and dimensions 

of laboratory devices to improve the performances of conventional bench-top assays. Microfluidics, 

belonging to LOC technology, refers to a platform that allows researchers to control and to manipulate 

fluids on the length scale of microns. Many microfluidic platforms have played a significant role in life- 

sciences research diversity, including biology, drug discovery, clinical diagnostics, genetics research, 

chemical synthesis, biosensors, and so on (Squires and Quake 2005; El-Ali, Sorger, and Jensen 2006; 

Sackmann, Fulton, and Beebe 2014; Shembekar et al. 2016; Feng, Sun, and Jiang 2016; Miller et al. 2012; 

Faustino et al. 2016) The inherent advantages of these platforms include low-cost, shorter analysis times, 

as well as, reduced reagent consumption, minimized waste, and increased production capacity. 

Microfluidic devices are typically small enough to be hand-held, advancing their portability. More 

importantly, microfluidic chips contain micro-channels with length scales comparable to those of cells 

and biomolecules, making them useful in bio-related studies and chemistry (Vreeland et al. 2010; 

Whitesides 2006; Jayaraj, Kang, and Suh 2007; Dressler, Casadevall i Solvas, and DeMello 2017). 

Therefore, researchers benefit greatly from microfluidics devices. For instance, using microfluidic 

devices, they can investigate the kinetics of chemical reactions; do drugs screening; develop bio-sensing 

platforms, etc. and obtain high yields but at low cost (Shui, Eijkel, and van den Berg 2007; Rivet et al. 

2011; Sesen, Alan, and Neild 2017; Dressler, Casadevall i Solvas, and DeMello 2017). As yet, 

microfluidic devices have not fully replaced conventional bench-top assays due to certain current 

limitations (Abgrall and Gué 2007). 
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Microfluidic devices include several components – mixers, valves, detectors, pumps, etc. that are 

connected by micro channels, which usually are on the order of 10 to 500 micrometers. The initial 

microfluidic devices were fabricated in glass or silicon by using microfabrication techniques; however, 

the cost was too high to be practical. Thanks to the novel fabrication process introduced in 1998, known 

as soft lithography, the fabrication cost has reduced dramatically (Xia and Whitesides 1998). Since then, 

the growth of LOC research, microfluidics in particular, has been exponentially increased. Generally, soft 

lithography is a micro-molding technique, where a polydimethylsiloxane (PDMS) pre-polymer mold is 

cast against a master with raised relief structures, representing the fluidic network. The mold is peeled 

from the master, cut off, and holes for injecting fluids are punched in it. To complete the microfluidic 

chip, the mold is bonded to another substrate, usually a glass slide coated with a thin layer of PDMS. 

Polydimethylsiloxane is optically transparent, largely insensate, bio-compatible, and can be withstand 

large temperature ranges in spite of its high rate of adsorption and absorption. Furthermore, by employing 

various surface treatments, users can modify the properties of PDMS; plus, a clean-room setting is not 

required for using PDMS and soft lithography. Therefore, in research, soft lithography and PDMS are 

preferred for making microfluidics chips – a part of LOC devices (P. Kim et al. 2008; Ren, Zhou, and Wu 

2013; Faustino et al. 2016). 

In the early days of microfluidics, most microfluidic devices were based on single phase systems 

consisting of various miscible aqueous phases (Papautsky and Frazier 2001; DeMello 2006). Fluids are 

mainly controlled by syringe pumps or pressure systems. A major concern in using single phase 

microfluidic devices is that samples come in direct contact with microchannel walls, resulting in wall- 

contamination which may cause sample impurities. The well-defined nature of laminar flow, such as its 

stability and sensitivity to channel geometries, does allow for the formation of unique working 

environments (Singh et al. 2002; Steinke and Kandlikar 2004; Vreeland et al. 2010). Nevertheless, the 

laminar flows inside micro channels, where viscous forces dominate inertial forces, impart significant 
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physical limitations in controlling reagents. For example, mixing two or more reagents together is 

uncontrollable because the mixing mainly depends on diffusion. Although a few studies have solved a 

mixing problem in single-phase microfluidic systems (Jacobson, McKnight, and Ramsey 1999; Vreeland 

et al. 2010; Ward and Fan 2015a), researchers have been attracted to another microfluidic system–known 

as two-phases microfluidics, specifically droplet-based microfluidics, which offers rapid mixing, plus no 

wall-contamination (Zhao and Middelberg 2011). Compared to single-phase microfluidics, two-phase 

microfluidic technology offers novel abilities, such as; targeted coalescence between droplets; mixing 

droplets in high throughput; providing tools for multi-step reactions by integrating different functions in 

one platform; manipulating individual droplets, and so on (Shui, Eijkel, and van den Berg 2007; Teh et al. 

2008; Baroud, Gallaire, and Dangla 2010; Tomasz S. Kaminski, Scheler, and Garstecki 2016; 

Vladisavljević, Al Nuumani, and Nabavi 2017; Shang, Cheng, and Zhao 2017). Additionally, generated 

droplets – oil-in-water or water-in-oil – are separated from the channel walls by a very thin film of carrier 

fluid, which prevents adsorption and cross-contamination between those droplets as well as wall- 

contamination. The carrier fluid also transports individual droplets to desired processing locations for 

mixing, splitting or merging. Practically, droplets can be generated and manipulated at rates between 1 Hz 

to 20 kHz, depending on the need for throughput; thus, the technology provides researchers with greater 

flexibility and scales-up products effectively (Chong, Tan, Gañán-Calvo, et al. 2016; P. Zhu and Wang 

2017). Compared with the state-of-the-art 96-well plates and robotics technology (i.e. digital microfluidics 

(K. Choi et al. 2012)), droplet microfluidics has demonstrated hundred-to-thousand-fold throughput and 

millions in cost reduction for applications. Thanks to these advantages, droplet microfluidic devices are 

recommended widely in numerous applications, specifically, screenings, chemical synthesis and 

diagnostics (Shestopalov, Tice, and Ismagilov 2004; Nisisako et al. 2006; B. W. Tan and Takeuchi 2007; 

Köster et al. 2008b; M. C. W. Chen, Gupta, and Cheung 2010; Courtney et al. 2016; Zubaite et al. 2017; 
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Giuffrida, Cigliana, and Spoto 2018; C. Liu et al. 2018). 
 

 
Although droplet microfluidic devices have been advocated for other life-science research, several 

challenges need to be solved (Shui et al. 2008; Casadevall I Solvas and Demello 2011). To design a 

multifunctional droplet-based LOC device that processes robustly is a significant obstacle, especially, 

when a passive droplet microfluidic platform is made to function only by the use of pressure sources (a 

syringe pump or pressure system). Many research groups have investigated the phenomena of droplets in 

micro-channels by fundamentally studying droplet formation (D R Link et al. 2004; G F Christopher and 

Anna 2007; Glawdel, Elbuken, and Ren 2012; van Loo et al. 2016; L. Wu et al. 2017), droplets 

coalescence (Aarts et al. 2005; K. Liu et al. 2007; X. Niu et al. 2008; X. Z. Niu et al. 2009), the resistance 

of droplets in micro-channels (Labrot et al. 2009; Parthiban and Khan 2013; Glawdel, Elbuken, and Ren 

2011), etc., to provide the information needed for making robust passive droplet microfluidic designs. In 

contrast, integrating other active sources (acoustic waves, electrical signals, etc.) to manipulate droplets in 

a microfluidic platform would provide more flexibility. However, at this moment, the soft-lithography 

fabrication at laboratory scale does not allow for fabricating perfect polymer complex droplet-based LOC 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. (a) Idea of controlled droplet microfluidic systems for multistep chemical assays 

(Kaminiski et al. 2017); (b) Cell chips as new tools for cell biology (Primiceri et al. 2013) 
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devices integrated with external sources, making the devices complicated to micro-fabricate and scale up 

(Mukhopadhyay 2007). 

In order to achieve the main objective of applying passive droplet microfluidics to other fields, 

particularly single cell engineering and single particle studies, an ideal microfluidic design should have 

the following features. First, the essential functions – generating droplets, encapsulating either single or 

multiple cells/particles and consistently injecting multiple reagents into droplets – should be included. 

Indeed, most bio/chemical applications and tissue engineering studies and analytical chemistry require 

those functions. Second, the design should be simple to fabricate by using the economical soft-lithography 

technique, leading to an expansion of droplet microfluidics’ uses. Although soft lithography using PDMS 

is not an ideal fabrication technique to use in commercializing microfluidic devices, it still attracts 

researchers largely because alternatives, such as silicon micromachining, are more expensive. Lastly, in 

some applications that need more functionality, the integration of extra components – droplet splitting, 

sorting, or merging functions– should be less burdensome. To address these requirements, a double-cross 

geometry with stratified flow forming in between the two junctions is proposed. 

This thesis focuses on applying the double-cross configuration and stratified flow structure occurring 

between the two cross junctions in different studies; specifically, (1) analytical chemistry and (2) tissue 

engineering. Additionally, the ability to passively integrate other functions, such as parallel droplet 

generation followed by droplet merging and mixing, with a current design is also achieved throughout this 

thesis work. This integrated microfluidic network shows the prospective applications in chemical or 

biological involving two-step reactions. Throughout this thesis, the physical parameters influencing the 

width of the hydrodynamic focusing (the inner stream of stratified flow) are comprehensively studied to 

provide an experimental guideline so that non-specialists can further utilize this research knowledge for 

achieving the single/multiple (bio) particles encapsulation. Hypothetically, a stratified flow structure 

occurring in between the two cross junctions allows researchers to generate monodispersed droplets 
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containing two to three miscible reagents and simultaneously to encapsulate multiple/single (bio) particles 

within those droplets. By the end of this thesis research, the double-cross geometry combining with a 

stratified flow structure will meet the three prerequisites: (1) to be simple, such that uncomplicated 

fabrication is capable, (2) to accomplish multiplex feasibility at the same time without external applied 

forces (electrical/optical) and (3) to be able to combine with the other compartmentalized functions, thus 

extending the capability of the droplet microfluidics. 

 

1.2 Thesis outline 

The rest of this thesis is organized as follows. Chapter 2 has two subsections. The first one provides an 

overview of droplet microfluidics showing the benefits of scaling-down current chemical and biological 

systems. The fundamentals of microfluidics, such as the various mechanisms used to generate, combine, 

mix, transport, and split droplets through microfluidic networks, are also discussed. The second presents a 

brief summary of basic concepts related to several applications that have used droplet microfluidic 

platforms. 

Chapter 3 describes the fabrication technique and the laboratory setup for all experiments throughout 

this research. 

Chapter 4 and Chapter 5 apply droplet microfluidics in an analytical chemistry study to achieve rapidly 

immobilize oligonucleotide strands on the surfaces of nanoparticles, synthesizing quantum dot 

oligonucleotide conjugates. After being released from solid phases, these conjugates act as bio-nano- 

probes which are used for nucleic acid detection. In particular, Chapter 4 describes the first step of the 

immobilization process, involving the conjugation between semiconductor nanoparticles and magnetic 

beads inside droplets using a double-cross geometry integrated with a series of serpentine channels. The 

design and flow conditions needed to achieve the single 1 µm magnetic bead encapsulated with multiple 

quantum dots in aqueous droplets are also discussed in detail. Chapter 5 covers the next step of the 
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conjugation, in which oligonucleotide strands are loaded onto the nanoparticle’s surfaces. This step is 

conducted using a multifunctional microfluidic device that includes two droplet generators, a droplet 

synchronized component, a merging chamber and a mixer. The oligonucleotide strands conjugating with 

quantum dots are collected at the outlet and released from the magnetic beads serving as solid-based 

holders. The nucleic acid detection is used to characterize the quality of these conjugation products. 

Overall, this study suggested an approach to achieving bio-nano-sensors by using a magnetic solid-phase 

method combined with a passive droplet microfluidic device. 

Chapter 6 presents the fundamental project that studies the impacts of experimental parameters on the 

formation of a hydrodynamic focusing formed by viscosity contrast stratified flow, occurring in between 

two cross junctions. In detail, the flow rate ratios, the viscosity contrasts, and the geometry of a double- 

cross junction are investigated. Therefore, the information obtained throughout this project provides 

experimental guideline for non-specialists to apply this approach in their studies involving the single (bio) 

particle encapsulation; for instance, the single encapsulation of single stem cells in aqueous/hydrogel 

droplets. 

Chapter 7 summarizes the contribution of this thesis research to the academic research and briefly 

mentions potential future research toward manufacturing commercial products. 
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Chapter 2: An overview of microfluidics and its applications 

 
Two-phase flow, which has been studied since the early 1800s, is a complex phenomenon in fluid 

mechanics. This short review chapter cannot cover the entire subject of two-phase flow, and it would be 

impractical to review all the aspects that are not related to this research. Hence, I narrow the topic to the 

scope of two-phase flow at micro-scale, specifically, segmented flow in micro-channels. The two-phase 

microfluidic flows is formed inside micro-channels when two immiscible fluids come into contact with 

each other. The most common two-phase flow systems in microfluidic devices are gas-liquid and liquid- 

liquid systems, known as bubbles and droplets, respectively. This chapter is divided into two main sub- 

sections: the first one covers the fundamentals of two-phase flow – droplet microfluidics and some 

features used to manipulate droplets/bubbles. The second part describes the potential applications of 

droplet microfluidics. Then, my personal motivation is briefly mentioned, connected to the research 

presented in Chapters 4-6. 

 

2.1 Fundamentals of two-phase flow micro-system 
 

Dimensionless number 
 

In droplet microfluidics, two immiscible fluids both exist within the same device and come into contact 

with each other. In a confining channel, one phase (the dispersed phase) forms discrete bubbles/droplets 

that are surrounded by the other phase (the continuous phase) due to surface/interfacial tension. A balance 

between viscous, inertial, interfacial and gravitational forces dictates a two-phase microfluidic flow 

system (Dreyfus, Tabeling, and Willaime 2003; Stone, Stroock, and Ajdari 2004; Teh et al. 2008; 

Rosenfeld et al. 2014). The relative information represents the relationship among these forces, 

characterized by dimensionless numbers consisting of the Reynolds (Re), Capillary (Ca), Grashof (Gr), 

Bond (Bo), Weber (We) (Baroud, Gallaire, and Dangla 2010; P. Zhu and Wang 2017). Table 2.1.1 

summarizes the scaling of these numbers with size. In microfluidics, the inertia and gravity force are 
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negligible in comparison to the viscous and interfacial forces because of the low flow velocity and high 

surface-to-volume ratio in flows at micro-scale. Thus, the Capillary number (viscous/interfacial) is the 

most important dimensionless number for analyzing micro-scale two-phase flow systems, such as droplet 

formation, coalescence, transportation, and so on. The Reynolds number (inertia/viscous) is another 

important dimensionless number, which is regularly low in microfluidics where the viscous force 

dominates the inertia force. The Grashof number (buoyancy/viscous), Bond number 

(gravitational/interfacial) and Weber number (inertia/interfacial) are not important in most microfluidic 

studies. In summary, the three independent variables that form the Capillary number: viscosity (Pa.s), 

flow velocity (m/s), surface tension (N/m), are employed to control overall droplet processing inside a 

systematic microfluidic network, such as generating droplets and splitting them (Garstecki, Stone, and 

Whitesides 2005; De Mench et al. 2008; van Loo et al. 2016; Doonan and Bailey 2017). The properties of 

the continuous phase are usually used to calculate the Capillary number (Glawdel, Elbuken, and Ren 

2012; Glawdel and Ren 2012c). Similarly, the Capillary number, mentioned in this thesis’ work, is based 

on the continuous phase properties. Additionally, the viscosity ratio between the two phases, and the flow 

rate ratio between them are introduced to support the studies of droplet-based microfluidics. 

 

Dimensionless # Definition Equation Scaling 

Capillary Viscous/Interfacial 𝜇𝑈 
 

𝛾 

0 

Reynolds Inertial/Viscous 𝜌𝑈𝐿 
 

𝜇 

1 

Weber Inertia/Interfacial ρ𝑈2L 
= Ca ∗ 𝑅e 

γ 

1 

Bond Gravitational/Interfacial 𝐿2(𝜌 − 𝜌𝑡)𝑔 
 

𝑔𝑐𝛾 

2 
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Grashof Buoyancy/Viscous 𝐿3𝜌2𝛽∆𝑇 

 

𝜇2 

3 

Viscosity ratio Dispersed 

viscosity/Continuous 

viscosity 

𝜇𝑑 
 

𝜇𝑐 

0 

Flow rate ratio Dispersed flow 

rate/Continuous flow 

rate 

𝑄𝑑 
 

𝑄𝑐 

0 

Table 2-1. Dimensionless numbers 

 

Wettability, carrier fluid properties, surface tension and surfactants 
 

Along with the dimensionless numbers representing the competition among physical forces applying in 

droplet microfluidic systems, wettability, surface/interfacial tension, surfactants, and carrier fluids 

properties also play immense roles in droplet manipulation; especially in forming droplets and 

transporting them along micro-channels. 

 

2.1.2.1 Wettability 

 
While a two-phase system operates, two fluids are injected into separate micro-channels and come in 

direct contact with substrates that form the channels. Either both fluids completely/partially wet the 

channel walls or one wets the wall and the other one does not. Therefore, wettability should be considered 

(G F Christopher and Anna 2007; Boruah et al. 2018). The contact angle between the fluids with the 

substrate represents their wettability and is determined by a force balance on the three-phase contact line. 

In this research, the two-phase system is a liquid-liquid system consisting of liquid 1, liquid 2 and a solid 

substrate (the material forming the channel walls). 
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𝛾𝑙1,𝑙2𝑐𝑜𝑠𝜃𝑒𝑞  = 𝛾𝑠,𝑙2 − 𝛾𝑠,𝑙1 (2.1) 

 
where 𝛾 is the interfacial tension between phases, and 𝜃 is an equilibrium contact angle. The wetting 

conditions strongly influence the formation and transport of droplets in micro-channels. To produce stable 

flow regimes, the continuous phase should wet the walls; whereas, the disperse phase should not 

(Dreyfus, Tabeling, and Willaime 2003; Garstecki, Stone, and Whitesides 2005; Gupta, Murshed, and 

Kumar 2009; Zhao and Middelberg 2011). Water-in-oil droplets are formed when micro-channels are 

hydrophobic – typically, oil wets the channel walls – and vice versa. 

 

 

 
Hydrophobicity of the micro-channels is characterized by the contact angle between the fluids and the 

channels. Surfaces of micro-channels are hydrophilic when the contact angle is less than 90o; in contrast, 

it is hydrophobic when the contact angle is more than 90o. Throughout this thesis research, unless stated 

Figure 2-1. Oil-in-water droplets vs. Water-in-oil droplets and channel surfaces 

wettability 
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otherwise, droplet-based microfluidic chips are operated to form water-in-oil droplets, requiring the 

hydrophobic microfluidic channels. Polydimethylsiloxane (PDMS) as mentioned in the beginning is the 

preferred material in microfluidics (Mukhopadhyay 2007; Ren, Zhou, and Wu 2013; Rosenfeld et al. 

2014). It is naturally hydrophobic after cross-linking, so an oil phase wets the walls but a polar solvent, 

such as water does not. However, during the soft lithography fabrication process, PDMS surface 

chemistry transforms to hydrophilic due to Silanol group (Si–OH) on its surface introduced through the 

oxidation plasma that is used to bond the PDMS mold to another substrate (Darmakkolla et al. 2016; 

Wharton 2017). Therefore, surface treatments are required to turn the hydrophobic property back to 

provide suitable wettability for generating water-in-oil droplets. Details of the fabrication method and 

surface treatments will be discussed in the next chapter – Chapter 3. 

 

2.1.2.2 Carrier fluids 

Many types of oils have been used in microfluidic devices as carrier fluids, such as hexadecane, silicon 

oil, light mineral oil, perfluorinated solution, olive oil and sunflower oil. Researchers should choose 

compatible oils depending on the applications involved. For instance, for biological applications, a 

perfluorinated solution (FC 40 or FC 70) and light mineral oil are recommended because they are 

chemically and biologically inert, and cause less swelling of PDMS channels (Baret 2012; Rosenfeld et al. 

2014). Silicon oil is also used in multiple applications, even though it does swell PDMS channels causing 

the changes of micro-channel dimensions over time (Rémi Dangla, Gallaire, and Baroud 2010). The 

swelling can reduce micro-channel sizes significantly, by up to 10%. Furthermore, a suitable oil viscosity 

must be chosen since it affects the continuous phase capillary number and the viscosity ratio between the 

two phases, as mentioned previously. The density of oil, which is usually lighter than that of the aqueous 

phase, should be carefully considered in some applications that require droplets to be collected and 

reinjected. 
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2.1.2.3 Surface/interfacial tension and surfactants 

Unlike in single-phase microfluidics, interfacial tension is a critical factor in droplet-based microfluidics. 

The attractive force of fluid molecules at the interface of two fluids creates a net force that pulls those 

molecules inward. When two fluids meet, fluid strives to reduce its surface energy by reducing the 

interfacial area to resemble a spherical shape that is ideal for minimizing surface energy. In a micro- 

channel, the curved shape of a droplet creates pressure gradient across the interface, as defined by a 

Young-Laplace equation: 

∆𝑃 =  𝛾𝒦 (2.2) 

 

where  𝒦 =  
1   

+  
1

  is curvature of the interface and 𝛾 is interfacial tension. In some applications 

𝑅1 𝑅2 
 

requiring droplets storage or collection, researchers need to use surfactants to stabilize droplets’ interfaces 

and prevent them from fusing. The term “surfactant” is formed from the words: surface active agent. Each 

surfactant molecule contains a hydrophilic head and a hydrophobic tail, as illustrated in Figure 2-2 (Shui, 

Van Den Berg, and Eijkel 2009). In addition, surfactants are prepared in an oil phase or aqueous phase 

depending on their solubility as determined by the hydrophyl-lipophile balance (HLB) value. HLB values, 

presenting the balance of the size and strength of surfactant hydrophilic and hydrophobic parts, range 

from 0 to 20. Surfactants in the range of 3.5 to 6 are appropriate for generating water-in-oil droplets; 

whereas, ones in the range of 8 to 18 are common in oil-in-water droplets applications. Thus, the right 

surfactant needs to be chosen carefully beforehand. Furthermore, the concentration of surfactant plays a 

role in droplet formation and stabilization, as well as, in the dynamics transportation of surfactant 

molecular at the interface of droplets (Baret 2012). To determine the effect of a surfactant on droplet 

generation, Glawdel and Ren (2012) carefully performed an experimental study, finding that at high 

concentrations, surfactant molecules rapidly transport to the interface between two phases and stay there, 

resulting in an equilibrium interfacial tension during the expansion of the interface through droplet 
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formation. As a result, to avoid the problem of interfacial tension gradients at the interface, a high 

surfactant concentration approximately ten times higher than the critical micelle concentration (CMC) is 

suggested to use (Glawdel and Ren 2012a). 

 

 
 

 

Droplet manipulation 
 

Droplet manipulation is a consequence of competition between forces, especially viscous force and 

interfacial tension. In particular, the competition between these two forces is represented by using the 

Capillary number which involves several independent variables: viscosity, interfacial tension, flow speed. 

These variables can be flexibly tuned. For instance, the viscosity can be changed by thermal manipulation, 

while interfacial tension can be altered by adding surfactants or by applying thermal effects. The shear 

stress on droplets can be changed by changing the flow speed (applied for Newtonian fluids). Overall, 

passive microfluidic systems are influenced by systematically changing flow rates, viscosity contrast 

between fluids, interfacial tension between phases, or locally changing the geometries of channels. As a 

result, researchers can design droplet microfluidic systems that consists of compartmentalized features: 

droplet generation, droplet break-up, droplet merging, etc. and implement them in different applications. 

Figure 2-2. Surfactant structure and emulsion types in macroscale emulsion preparation corresponding 

to HLB values. O and W subscript oil and water phases, respectively (Shui et al. 2009) 



 

 

2.1.3.1 Droplet generation 

 
Under laminar flow conditions, droplets are stably generated with controlled sizes at a range of 

frequencies from 1 Hz to 20 kHz. Droplet generation can be categorized: (1) passive droplet generation 

and (2) active droplet generation. This section mainly focuses on the passive methods to generate droplets 

which are Co-flowing, Flow-focusing and T-junction. Depending on the channel wettability, flow 

velocities, fluid viscosities, interfacial tension between phases and channel geometries, the two 

immiscible fluids that are injected into micro-channels can create either droplets or stratified flow 

patterns. 

Co-flowing 

 
The Co-flowing approach generating droplets is formed within two capillaries, where the inner capillary is 

used for a dispersed phase and the outer one is used for a continuous phase. The continuous phase 

stretches the interface of the dispersed phase when they come into contact; then, droplets are generated via 

viscous stresses between the two immiscible fluids. Co-flowing approach can be designed 2D planar or 

3D coaxial configurations (Guillot et al. 2009; P. Zhu and Wang 2017; G F Christopher and Anna 2007; 

P. Zhu, Tang, and Wang 2016). Droplet generation using this method was first introduced by 

Umbanhowar et al. (Umbanhowar, Prasad, and Weitz 2000). Two droplet generation regimes achieved by 

using this method are dripping and jetting. Briefly, the dripping regime happens when droplets are broken 

up near the capillary orifice; in contrast, when they are formed at the end of an extended thread, the 

droplet generation is under a jetting regime. In a follow-up study, Utada et al. experimentally investigated 

the dripping-to-jetting transition occurring in the co-flowing geometry, in which they found that the 

critical Ca was ~ 0.1 for the transition to start (Utada et al. 2008). Another study, characterizing sizes of 

bubbles generated using a co-flow geometry, was carried out by Hoeve and colleagues using the Navier 

Stokes equation (Van Hoeve et al. 2011; Castro-Hernández et al. 2011). They reported that the flow rate 

ratio of the inner phase to outer phase and their viscosity ratio strongly influenced the bubble radius. 
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Specifically, the diameter of bubbles was reduced and proportional to the flow rate ratio, 𝑄𝑖𝑛/𝑄𝑜𝑢𝑡 → 0, 

and was independent of the viscosity ratio between the inner and outer phases. A liquid-liquid droplet 

formation in co-flowing geometry was studied by Crammer et al. (Cramer, Fischer, and Windhab 2004). 

The authors considered the influence of the velocity of the continuous phase and that of the dispersed 

phase, as well as the effect of the dispersed viscosity. Experiments in this study suggested that the 

viscosity of the dispersed phase and the Ca number of the continuous phase are crucial to generate 

sequences of droplets. Lately, Taassob et al. investigated the generation of monodispersed non-Newtonian 

droplets using a co-flow geometry. The results presented that the volumes of droplets are less influenced 

by the viscosity of the dispersed phase; however, they are significantly affected by the flow rate of the 

continuous phase (Taassob et al. 2017). As yet there is no physical model to explain the non-Newtonian 

droplet generation using co-flowing approach which the model would be useful in advancing 

microfluidics applications, such as biology and food industry. Although small sizes of droplets/bubbles 

can be generated using co-flowing geometry, the 3D co-flowing microfluidic device is not practical 

because of the challenging fabrication, which requires researchers to carefully insert a tapered cylindrical 

glass capillary into a rectangular micro-channel or into a square glass capillary. 

Step emulsification, first introduced by Priest et al., is a modified configuration of co-flowing geometry 

(Priest, Herminghaus, and Seemann 2006b). Both phases are injected into a high aspect ratio channel 

where they flow beside each other. A sudden expansion of the micro-channel is applied to trigger droplet 

formation. Continuing Priest’s work, Dangla and Baroud investigated the physical mechanisms of step 

emulsification by introducing model for drop breakup based on a quasi-static balance between the 

curvature of the thread inside the inlet channel and the curvature of the stream at the step (Rémi Dangla et 

al. 2013). In detail, a sudden removal of the stabilizing walls at the step disturbs the co-flow thread 

resulting in breaking up into droplets. Droplets can be generated before/at/after the step depending on 

flow conditions that consist of the ratio between the flow rates and their magnitudes. Furthermore, the 
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droplet size decreases with an increasing step height and is independent of the continuous flow rate. 
 

 

 

 
Flow-focusing 

 
Flow-focusing configuration, first studied by Anna et al, is a well-highlighted method for generating 

monodispersed droplets (Anna, Bontoux, and Stone 2003). The planar flow-focusing usually consists of a 

cross-junction where both phases meet and flow coaxially. The continuous phase squeezes the dispersed 

phase to a critical point at which droplets are pinched off. The symmetric shearing caused by the 

continuous phase flowing on both sides of the dispersed phase improves the stability and controllability of 

droplet formation. In general, droplet formation using this configuration depends on the Capillary number, 

viscosity ratios, flow rate ratios, wettability of channels, and geometries (Garstecki, Stone, and Whitesides 

2005; Zhou, Yue, and Feng 2006; Ong et al. 2007; Cubaud and Mason 2008; W. Lee, Walker, and Anna 

2009; Derzsi et al. 2013; X. Chen et al. 2015). Adding an orifice would create a singular point of high 

shear stress (Zhou, Yue, and Feng 2006; Ong et al. 2007). As a result, the two immiscible fluids pass 
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Figure 2-3. (a) Stage of drop evolution (Umbanhowar et al, 2000); (b) Schematic and simulation domain 

of droplet formation in co-flow (Wu et al., 2017); (c) Step emulsification (top) Horizontal step, (bottom) 

Vertical step. 



 

 

through the orifice and consistently form very small droplets. Cubaud et al. provided a flow map showing 

four flow patterns in the flow focusing configuration. Specifically, the three primary regimes that form 

droplets are: (1) squeezing, (2) dripping, and (3) jetting (Cubaud and Mason 2008). Studying the 

transitional regimes (squeezing to dripping or dripping to jetting) is interesting because the transitions of 

the dominant force in droplet generation show up clearly (J K Nunes; S S H Tsai; J Wan; and H A Stone 

2009). 

 

 
A large and growing body of literature has investigated droplet generation under the squeezing, 

dripping and jetting regimes. Those regimes mainly depend on the flow rate ratio between two phases and 

the Capillary numbers (W. Lee, Walker, and Anna 2009). In detail, the breakup process under squeezing 

regime happens when the dispersed phase dominates the continuous phase and the flow rate ratio of both 

phases is usually high φ>1. The interface enters the orifice, expands and blocks the flow of the 

continuous phase. As a result, the upstream pressure increases; then, the continuous phase begins to 
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Figure 2-4. (a) Optical micrographs of microfluidic flow focusing devices. The angle between the inlet 

of the outer phase and the main channel is varied (Amstad et al. 2017); (b) Typical capillary number- 

based flow map with flow patterns (Cubaud et la. 2008); (c) Experimental images of drop breakup 

sequences occurring inside the flow-focusing orifice (Anna et al. 2003); (d) Droplet generation cycle in 

the flow focusing generator with three stages (Chen et al. 2015) 
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squeeze the dispersed phase and pinches off droplets. The interfacial tension dominates the viscous force, 

so the Ca is typically small. The droplets generated under the squeezing regime are confined in the micro- 

channels and the size of droplets are slightly bigger than the width of the orifice. Under dripping regime, 

when the dispersed phase is at the junction, the front interface enters the orifice and transforms into a 

bulb-end. The competition of interfacial tension and deceleration of the fluid play a role in breaking up 

droplets. The flow rate ratio slightly reduces to approximately φ~1. Both squeezing and dripping 

regimes are defined as upstream processes because droplets are usually generated before or inside the 

orifice. In the upstream operation, the droplet generation follows a power law curve of a dimensionless 

diameter versus the Capillary number ( 
d    

∝ Ca-
1

) (W. Lee, Walker, and Anna 2009; Zhao and 
Dh 

 

Middelberg 2011). In contrast, the jetting regime, considered as downstream process, occurs when the 

viscous shear force from the continuous phase overcomes the interfacial tension and the flow rate ratio is 

usually less than 1, φ≪1 (W. Lee, Walker, and Anna 2009; Rosenfeld et al. 2014). The jet thread is 

irregular at the interface that breaks off and forms droplets; consequently, droplets generated under the 

jetting regime are usually non-uniform. Under dripping close to jetting regime, very small satellite 

droplets are usually produced behind the main droplets; whereas, under the squeezing and transition to 

dripping regimes, no satellite droplets are produced and main droplets are highly monodispersed (Zhou, 

Yue, and Feng 2006). 

The droplet formation and breakup dynamics from the dripping to jetting regimes were recently studied 

by Fu et al. (Fu et al. 2012) The Micro-PIV technique was applied to quantify the flow field around a 

droplet and captured the dynamic changes during droplet formation. The results from this work 

consistently agreed with the blocking-pinching hypothesis before final pinch-off, as put forward by 

Guillot and Collin in 2005 and Garsteki et al in 2005 (Guillot and Colin 2005; Garstecki, Stone, and 

Whitesides 2005). Moreover, the authors also concluded that in jetting regime the stable jet width is a 
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function of the viscosity ratio and flow rate ratio when the viscosity contrast of both phases is low; 

whereas, that width is a function of only the flow rate ratio when the viscosity contrast between phases is 

high. Most studies of flow focusing droplet generation have presented the scaling laws or correlations 

based on the experimental data. Therefore, the 3D curvature of droplets during the formation, which has 

an impact on the accuracy of droplet volume, has been ignored. In 2014, Chen et al. modeled droplet 

generation in flow-focusing configuration, concentrating on generation under the squeezing regime (X. 

Chen et al. 2015). The model covered the 3D droplet shape during the formation process, as well as, a 

semi-analytical model predicting pressure drop over the 3D gutter between droplet curvature and channel 

walls. Other researchers were thus able to accurately determine droplet sizes, their spacing and the 

formation frequencies. As mentioned above, the geometry of the junction, where droplets form, also 

influences the volumes of droplets and their monodispersity. Amstad et al. investigated the role of the 

angle between the dispersed phase and the continuous phase, influencing droplet size uniformity 

experimentally (Amstad et al. 2017). Research, done by Yu et al., used a numerical simulation method to 

study the droplet formation (W. Yu et al. 2019). Follow up, a very fresh publication from Zheng’s group 

provided a 3D numerical simulation of droplet formation in a microfluidic flow-focusing device using 

Level-set method (W. Han et al. 2019). The filling stage, necking stage and pinching off stage are clearly 

shown via 3D numerical simulation, but the simulation does not capture the effects of altering the 

geometry dimensions, such as varying the channel width and channel height. Overall, the further work is 

needed to capture all factors related to droplet generation using flow-focusing. 

T-junction 

At a T-junction, the continuous phase is perpendicular to the dispersed phase. When the dispersed phase is 

injected into the main channel and the shear force created by the oil phase elongates the interface 

downstream, a droplet breaks off (Guillot and Colin 2005; Gupta et al. 2011). The T-junction design is 

widely implemented to generate droplets because a wide range of droplet sizes can be produced with this 
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configuration (X. Li et al. 2012). There are two operational regimes for the T-junctions, defined as: (1) 

when droplets are sheared off before the dispersed phase fills the main channel, and (2) when the 

dispersed phase is confined to the main channel and the breaking-off process happens. Similar to the flow- 

focusing configuration, droplet generation using a T-junction depends on the flow rate ratio, the viscosity 

ratio, the interfacial tension and the dimensions of geometries (aspect ratios and width ratios) (D R Link et 

al. 2004; Glawdel, Elbuken, and Ren 2012; Glawdel and Ren 2012a; Boruah et al. 2018; Loizou, Wong, 

and Hewakandamby 2018). Confinement will not happen when the inverse width ratio of the dispersed 

phase to the continuous phase is more than 5 and the flow rate ratio is really small (Glawdel and Ren 

2012c). 

At a very low flow rate ratio and high width ratio, droplet sizes are smaller than the channel width, 

defined as a dripping regime. Under this regime, droplet breakup is governed by the balance between the 

viscous continuous phase dragging on the emerging droplet and the interfacial tension resisting 

deformation (De Mench et al. 2008). In another regime – known as the squeezing regime – droplets are 

physically confined in micro-channels and generated at typically low Ca (De Mench et al. 2008; Gordon 

F. Christopher et al. 2008; Jullien et al. 2009). Under the squeezing regime, the dispersed phase first 

penetrates to the main channel, then the interface expands until it fills and blocks that channel. During the 

process, pressure upstream builds up, subsequently causing the continuous phase to squeeze the disperse 

phase to a thin neck. Eventually, a droplet is pinched off. The droplet moves downstream carried by the 

continuous phase and the remaining interface pulls back into the perpendicular channel to be ready for a 

new generation cycle. Droplets produced in this regime have a slug-like shape with the lengths of droplets 

usually being greater than their widths. Typically, confined droplets are generated at Ca≤0.002, when the 

width ratio between two phases is ~ 1 (Gupta and Kumar 2010). In early research on generating droplets 

using the T-junction configuration, the physic of the process was expressed by using the scaling law, 

𝑉∗ = 𝛼 + 𝛽𝜑, where 𝜑 is flow rate ratio, 𝑉∗ is a dimensionless droplet volume, and 𝛼, 𝛽 are 
𝑑𝑟𝑜𝑝 𝑑𝑟𝑜𝑝 
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constants respectively related to the initial fill volume and the rate of droplet growth during the necking 

stage (De Mench et al. 2008). 

 
 

 
Later, another study by Christopher et al. covered the effects of viscosity ratio in the droplet generation 

process (Gordon F. Christopher et al. 2008; G F Christopher and Anna 2009). In 2012, Glawdel et al. fully 

developed a model of droplet generation in the squeezing to transition regime using a T-junction and 

published their works in a series (Glawdel and Ren 2012a; Glawdel, Elbuken, and Ren 2012; Glawdel and 

Ren 2012b). The physical model was developed from the experimental observations, including the effect 

of surfactants on interfacial tension during the droplet formation. Until now, this model has been 

Figure 2-5. (a) Diagram of a T-junction with cross flow (Menech et al. 2008); (b) Diagram of the 

approximated area of the droplet from the projection of the 2D image (Glawdel et al. 2012); (c) Droplet 

formation cycle in the T-junction generator consisting of three stages (Glawdel et al. 2012); (d) Sketch of 

emerging droplet prior to detachment and the related force competition (Li et al. 2012). 
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considered as the most comprehensive physical model that covers most of the parameters influencing 

droplet generation under the transition regimes. 

Active droplet generator 

 
 

 

 
In contrast to the above technologies, the active methods involve external components that provide the 

local external energy to form droplets, such as mechanical, thermal, electrical, magnetic or optical energy 

(Cheng-Tso Chen and Gwo-Bin Lee 2006; Darren R. Link et al. 2006; Ting et al. 2006; Zeng, Shin, and 

Wang 2013; Chong, Tan, Ganan-Calvo, et al. 2016). For example, droplet formation processes can be 

mechanically manipulated by using either pneumatic/hydraulic valves or piezoelectric actuation (Zeng, 

Shin, and Wang 2013; Cheng-Tso Chen and Gwo-Bin Lee 2006). Not only can droplets be produced via 

Figure 2-6. (a) Charged-droplet generation (ITO electrodes on glass produces an E field) (Link et al. 

2006); (b) Experimental setup for droplet formation using hydrodynamic pneumatic choppers (Chen 

et al. 2006); (c) Schematic of experimental set up integrated with the permanent magnet for using 

generating ferrofluid droplet (Li et al. 2015); (d) Schematic concept of the microfluidic for the 

temperature dependency of the droplet formation (Nguyen et al. 2007) 
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mechanical approaches, they can also be generated via thermal ones (N. T. Nguyen et al. 2007). The 

temperature that influences the change of fluid viscosity and interfacial tension can be varied to tune 

droplets sizes. Electric fields are also used to generate droplets (H. Kim et al. 2007). This approach is 

usually used when dispersed phases contain electrorheological fluids. Applying magnetic and optical 

forces to produce droplets offers other options (Pamme 2006; H. Li et al. 2016). For instance, several 

articles have shown the formation of ferrofluid droplets by integrating an electromagnet (or a permanent 

magnet) into a T-junction (or a flow-focusing geometry) to change the viscosity of the ferrofluid. In some 

applications, researchers combine more than one method to generate droplets. Overall, the active droplet 

generators require extra steps during the fabrication procedure, thereby increasing the cost of complex 

microfabrication. The number of scale-up products for devices is also limited. Thus, most of these 

methods are barely employed in microfluidic applications. 

 

2.1.3.2 Droplet fusion 

 
The capacity to merge droplets together is one of the essential qualities integrated in droplet microfluidic 

platforms, because it allows researchers to combine at least two reagents together for further 

chemical/biological reactions (Gu, Duits, and Mugele 2011; X. Chen and Ren 2017a; Wong and Ren 

2016; Jin et al. 2010; Um et al. 2008; Baroud, Gallaire, and Dangla 2010; Mashaghi and van Oijen 2015). 

Mixing between reagents is also achieved when two/three droplets collide (Y. C. Tan, Ho, and Lee 2007; 

X. Chen and Ren 2017a). Droplets must be paired and synchronized before they fuse together. 

 

Uncontrolled droplet pairing, however, influences droplet fusion. Therefore, to pair droplets, researchers 

either alternatively generate droplets or synchronize two separate droplet-streams. 

Droplet pairing and synchronization 

 
In passive droplet microfluidics, the alternative droplet formation methods usually rely on the 

hydrodynamic coupling effects of multiple droplet generators; whereas, alternative droplets generated by 
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active methods depend on the controlling of micro-valves or electric/optic/magneto fields. Hong et al. 

introduced a platform consisting of two passive components to achieve controllable and alternative 

droplet generation (Hong et al. 2010). The system included a droplet-pair generator, a simple Y-junction 

for droplet fusion, and a winding channel for mixing. In the droplet-pair generator, the two important 

passive components were: (1) a pressure oscillator and (2) an oil regulator. The authors implemented the 

pressure oscillator to manipulate the time between two separated droplet generators via a fluidic network; 

and, the oil regulator was integrated into a platform to passively control pressure differences at the furcate 

junction. Other research by Zheng et al. showed alternative droplet formation at two opposing T-junctions 

sharing the same continuous phase (Zheng 2004). The same configuration, reported by Fidalgo et al, was 

also used to alternatively generate droplets from two opposite streams (Fidalgo, Abell, and Huck 2007). 

Similarly, Hung et al. also presented a platform that has three inlet channels joined at a double T-junction; 

however, the authors introduced two triangular wings between the inlets and each T-junction (Hung et al. 

2006). The purpose of the wings is to reduce flow instability and prevent back flow. The alternating 

droplet generation was the result of a “push-pull” mechanism. Saqib et al. replaced the double opposite T- 

junctions with two opposite tapered channels (Saqib, Şahinoǧlu, and Erdem 2018). The optimized design 

demonstrated the ability to controllably produce a sequence of alternating droplets. Specifically, by 

measuring the radius of droplet curvature at the necking and pinching-off times, and calculating the 

Laplace pressure during the necking stage, the researchers analyzed how the angle formed between the 

tapper dispersed phases and the continuous phase affects pattern repetition and droplet uniformity and 

spacing. In addition, Frenz et al. researched a dual nozzle for the production of droplet pairs (Frenz et al. 

2008). The size of paired droplets was manipulated by the flow rates of dispersed phases and the 
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continuous phase. 
 

 

 

 
Despite their different geometries meant to minimize instability, these methods introduced so far have 

problems with irregular fluid flow rates and pressure fluctuations because of the coupling effects of the 

microfluidic network. Thus, achieving uniform droplet formation is problematic. To avoid the coupling 

effect caused by sharing the same oil stream/oil bridge, another strategy is to synchronize pre-formed 

droplets that are generated with separated droplet generators. A ladder structure (Figure 2-8) is favored for 

that purpose, as was introduced by Prakash and Gerhenfeld (Gershenfeld and Prakash 2007). In their 

work, two streams of bubbles, which were produced separately by using two disconnect oil, streams 

entered into two micro-channels. The pressure difference between those channels guided the carrier oil 

flowing through the vertical micro-channel, connecting the two channels. Eventually, the resistance 

induced by the existence of bubbles in each channel balanced so that the two streams of bubbles were 

Figure 2-7. (a) Schematic diagram of the tapered microchannel pattern for alternating generate droplets 

(Hung et al. 2006); (b) Pairing module. Two aqueous phases are injected by the outer channels and are 

synchronously emulsified by the central oil channel (Frenz et al. 2008); (c) Schematic of the droplet 

generation device. The continuous phase inlet and the two dispersed phase inlets are shown. The angle 

of taper is denoted by α. (Saqib et al. 2018) 
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passively synchronized. To use this design, bubbles must be slug-shape to avoid the carrier oil flowing 

across them. In a follow-up study, Ahn et al. applied the same geometry to experimentally synchronize 

two trains of water droplets in oil (B. Ahn et al. 2011). From a numerical study of the transportation of 

droplets in the ladder geometry conducted by Song et al., a theoretical model was discovered based on the 

effects of network geometry, flow rates, and droplet resistances (K. Song, Zhang, and Hu 2012). Using 

the electronic-hydraulic analogy, the analytical model described the hydrodynamic behavior of the 

droplets in interconnected microfluidic ladder devices. 

 

The authors concluded that the pressure drop along the droplets had an impact on the droplet 

synchronization.  Later, the dynamics of aqueous droplets travelling in an asymmetric ladder network was 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-8. (a) A microfluidic ladder device for droplet synchronization (Song et al. 2012); (b) 

Ladder with a vertical bypass with a constant flowrate (Q)at inlets and constant pressure (P) at 

outlet channels and Three distinct configurations are possible when a pair of drops traverses 

through a symmetric ladder network (Maddala et al. 2013); (c) Asymmetric ladder design 

(Maddala et al. 2014) 
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investigated by Maddala et al. The research group found that temporary control of droplet spacing was 

achieved using the asymmetric ladder network instead of symmetric ladders (Maddala et al. 2013; 

Maddala and Rengaswamy 2014). 

Droplet coalescence 

 
When the oil thin film separating droplets is shortened or drained off, the eventual result is droplet 

collision, and subsequent fusion. Similar to droplet generation, droplet fusion in microfluidic networks 

has been achieved by means of passive methods or active methods. 

In passive methods, microchannel geometries must be properly designed to control droplet fusion. The 

most common configuration is to transport droplets to an expanding area where they slow down so that 

the carrier oil can draw off droplets. The next droplet comes and merges with the one that has been 

waiting inside the expanding location. Hung et al. and Bremond et al. both studied droplet fusion in an 

expanding channel. In Hung’s work, a tapered outlet was placed at the exit of a dual T-junction generator 

to merge the droplets (Hung et al. 2006). The tapered design was used to gradually slow the speed of the 

first droplet so that the next droplet would eventually come in contact with it. When the two surfactant- 

free droplets touched, they merged. However, the efficiency of pairing droplets and merging them was 

low, with 50% random droplet coalescence. In 2007, Tan and Lee pioneered to study the phenomenon of 

merging of two droplets travel at the same velocity in a micro-channel (Y. C. Tan, Ho, and Lee 2007). 

The authors concluded that to merge the droplets at the junction, the oil drainage time must be shorter 

than transport time of droplets. Instead of using the tapered channel, Bremond et al. used a divergent- 

convergent chamber (Bremond, Thiam, and Bibette 2008). Their study demonstrated that the droplets did 

not actually fuse into each other when they stayed in the expanding area; surprisingly, they merged closer 

to an exit site. Many fundamental investigations have predicted the positions where droplets merge and 

their behaviors in an expanding chamber. For example, a model by Lai et al. was used to study the 
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positions of droplets merging (Lai, Bremond, and Stone 2009). Lately, an experimental study involving 

the flow behavior of a droplet train in an expansion chamber under different viscosities and flow rates 

conditions was done by Jose et al. (Jose and Cubaud 2012). 

In a modified expanding chamber introduced by Niu and colleagues, two arrays of pillars in parallel 

were placed inside a merging chamber (X. Z. Niu et al. 2009). The arrays of pillars temporarily held the 

first droplet until the next droplet came into contact with it. The oil separating the droplets drained 

through the gaps between the pillars; thus, the distance between the droplets was shortened, causing them 

to collide and fuse. In 2017, Chen et al. published an article describing the relationship between the 

numbers of droplets merged, the length of input droplets and the length of output droplets (X. Chen, 

Brukson, and Ren 2017). Those parameters were considered key in the design of a merging chamber. The 

authors concluded that droplet merging events depend on the proportional relationship between Cacrit and 

the bypass resistance ratio (BRR), as well as on the ratio of the droplet length to the length of the merging 

chamber. Another geometry used for droplet coalescence is a T-junction, undertaken by Christopher et al. 

Droplets from two side streams were brought together at the junction where they merged after the 

collision (G F Christopher et al. 2009). The process of collision was governed by the timing of the droplet 

contact and the rate of oil film drainage. Droplets collided when they moved at low speeds; in contrast, 

they either split or slipped when they moved at higher speeds. Yang and Luo et al. also experimentally 

studied micro-bubble coalescence at a T-junction (L. Yang et al. 2012). Their study agreed with the one 

done by Christopher et al., in that the fluid dynamic conditions, such as characteristic contact time and 

film drainage time, influenced the efficiency of merging. Furthermore, the degree of viscosity influenced 

droplet merging. 

Droplet fusion can also be manipulated by partial-hydrophilic micro-channels (Fidalgo, Abell, and 

Huck 2007). To use this approach, managing the surface wettability is a critical step because carefully 

treating a part of a channel to be hydrophilic is required to provide the best control over the process. 
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Specifically, the pattern hydrophilic poly(acrylic acid) – PAA was placed on a planar PDMS substrate via 

UV photo-polymerization. Selective grafting was enhanced by exposing PDMS to UV through a 

photomask. The mechanism for merging droplets can be understood as two steps. The first step is trapping 

the droplet – the coalescence between droplets and the hydrophilic pattern. In sequence, the next droplet 

also comes into contact with the hydrophilic pattern. The contents of both droplets mix. When the viscous 

drag force overcomes the surface energy stabilization, the second step occurs – known as droplet 

detaching. The trapped droplets are released, forming a merged droplet. However, wall-contamination is a 

practical concern in using this method. 

 

 
Overall, the advantages of passive techniques are that they are easy to implement on a microfluidic 

platform, and can also be integrated with other components. However, they have the following drawbacks 

(X. Chen, Brukson, and Ren 2017): (1) they cannot be used for microfluidic systems involving 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-9. (a) (b) De-compression merging (Bremond et al. 2008); (c) Sequence of surface induced 

droplet fusion (Fidalgo et al. 2007); (d) CCD image showing the merging of two droplets (Niu et al. 

2008) 
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surfactants; (2) each design has a limitation in their operational range, such as in the speed of droplets and 

the spacing between droplets before they enter a chamber. Thus, in some applications, researchers need to 

use active methods. 

Active methods enable droplets to be manipulated regardless of whether microfluidic systems are using 

surfactants to stabilize the droplets or not, and they provide researchers with the flexibility to merge 

droplets by triggering external forces. The most common method for actively fusing droplets is to use 

electrofusion by applying either DC or AC fields (Chabert, Dorfman, and Viovy 2005; Priest, 

Herminghaus, and Seemann 2006a; Zagnoni, Baroud, and Cooper 2009; Zagnoni, Le Lain, and Cooper 

2010). Electro-coalescence is a popular active method for merging droplets. Under the non-uniform 

electric field, droplets tend to deform due to the electrical (Maxwell) stress. The imbalance between the 

total stress, consisting of electric and viscous stress, and the interfacial tension play a role in merging 

droplets. Therefore, the electro-coalescence is mainly influenced by the strength of the applied electric 

field. Another approach is called thermal-coalescence, in which droplet fusion is controlled by thermos- 

capillary effects (Köhler et al. 2004). A laser is employed to heat the interface of adjacent droplets until 

they merge (Baroud, Robert de Saint Vincent, and Delville 2007). The temperature gradient induces 

Marangoni effect at the droplet surfaces because of the temperature dependent properties of the interfacial 

tension and the viscosity of fluids. Additionally, the optical tweezer offer another tool with which to 

selectively merge droplets (Jung et al. 2015). Furthermore, the mechanical pneumatic actuator integrated 

in pillar structures also allows users to control the number of merged droplets having a wide range of 

droplet volumes (Yoon et al. 2014). Not only can droplets be merged by applying electrical or thermal 

forces, they can also be merged by utilizing acoustic waves. For instance, Sesen et al. experimentally 

demonstrated that multiple droplets can be trapped and immediately merged on-demand using surface 
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acoustic waves (SAWs) (Sesen, Alan, and Neild 2014). 
 

 
Lately, Wong et al. and Hebert et al. have developed a controller for manipulating droplets, such as by 

generating or merging them, etc. (Wong and Ren 2016; Hébert, Courtney, and Ren 2019). This approach 

is considered to be a combination of passive and active methods. Specifically, the controller uses 

information from images taken in real time as feedback signals for updating the controller on the current 

positions of droplets; as a consequence, the controller automatically tunes the pressure source to 

manipulate the droplets. The research seems promising for droplet on-demand manipulation, but so far the 

platform’s use has been limited by the processing frequency, around 10Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-10. (a) Droplet merging process using Semi-automated system (Hebert et al. 2019); (b) 

Schematic illustrations of the optofluidic droplet coalescence device (Jung et al. 2015); (c) Active 

control of droplet merging using horizontal pneumatic actuators (Yoon et al. 2014) 
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2.1.3.3 Droplet mixing – a micro-mixer 
 

 

 

Under the low Re condition, that is the unlikely Stoke flow of single phase microfluidics in which two 

streams flow side-by-side and the mixing depends on diffusion, the mixing of two reagents that are 

enclosed inside micro-bubbles/droplets using two-phase microfluidics is achieved via 3D flow circulation 

(Whitesides 2006; Jayaraj, Kang, and Suh 2007; Teh et al. 2008). Thus, the mixing is highly 

homogeneous and rapid. When droplets carry reagents inside and are transported inside channels, each 

droplet performs as an individual micro-mixer (Tice et al. 2003a; Shui et al. 2008; Ward and Fan 2015b; 

Vladisavljević, Al Nuumani, and Nabavi 2017). Compared with the bench-top methods, droplet-based 

Figure 2-11. (a) Schematic of asymmetric vortices formed in droplets moving through the bent channels 

(Jiang et al. 2012); (b) Rapid mixing inside plugs moving through winding channels at the same flow 

velocity (Song et al. 2003); (c) Using laser spot to achieve droplet mixing (MCGloin 2017); (d) Using 

microwave resonator to induce the asymmetric vortices inside droplet for mixing (Yesiloz et al. 2017) 
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microfluidics offers high-yield products, as the latter promote fast mixing at micron scale, leading to 

significantly low reaction times (Sesen, Alan, and Neild 2017). 

To equal recirculation vortices occur inside individual droplets when they move along a straight micro 

channel (Baroud, Gallaire, and Dangla 2010; Zhao and Middelberg 2011). Each half of the droplet 

experiences internal mixing because of this circulation, but 

there is not chaotic mixing happening between the two 

halves. The mixing between two halves later on depends 

on diffusion; thus, it is not as efficient as researchers had 

expected it to be. Investigating methods for providing fast 

mixing is essential. To achieve that goal, the internal flow 

and the recirculation of fluids inside single droplets 

flowing in a channel should be studied extensively (T. S. 

Kaminski and Garstecki 2017). In the early years of 

droplet mixing, the experimental study done by Tice et al. 

described the topology of the counter-rotating 

recirculation inside a droplet moving inside a micro- 

channel (Tice et al. 2003b; 2003a). Later, other 

researchers visualized the internal flow in a moving 

droplet by using micro Particle Image Velocimetry 

(Kinoshita et al. 2007; Lindken et al. 2009). From those 

studies, the recirculation of rotational patterns in droplets 

is known to be driven by differences in the speeds of 

droplets and the continuous phase. Generally, the internal 

flow patterns inside droplets relate to multiple parameters, 

Figure 2-12. 2D velocity distribution in 

each cross-section at different focus 

position (Kinoshita et al. 2006) 
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including the capillary number, size of droplet relative to channels, the choice and concentration of 

surfactants and the viscosity ratio between the droplet and the continuous phase (Baroud, Gallaire, and 

Dangla 2010). 

Additionally, several researchers have discussed the influences of viscosity contrast between droplets 

and carrier fluid and the chaotic advection inside droplets on mixing. For example, the shear stress at the 

liquid-liquid interface associated with droplet mixing was analyzed by Verguet et al. (Verguet et al. 2010) 

The authors concluded that decreasing the thickness of lubrication films between droplet and channel 

walls advanced greater advection velocities inside droplets, leading to the rapid mixing of reagents inside 

droplets. Furthermore, Song et al. observed and mentioned in their reports that rapid mixing was enhanced 

by passing droplets through a serpentine/winding channel as shown in Figure 2-11 (Helen Song, Tice, and 

Ismagilov 2003; H. Song et al. 2003; H. Song, Chen, and Ismagilov 2006). A follow-up study done by 

Liau et al. showed fast mixing using a serpentine channel with bumps integrated into the micro-channels 

(Liau et al. 2005). The results of this study agreed with those of the previous studies introduced by 

Verguet et al. and Song et al. that the proportional thinning of the continuous phase (in which the oil film 

stayed between the droplets and the channel walls) promoted the larger advection velocities inside 

droplets. Moreover, the asymmetric vortices induced when droplets are moving along curvy channels 

advanced rapid mixing. Serpentine channels are not the only way to enhance fast mixing; zigzag type 

structures and up-down rectangular channels also generate chaotic advection. Lately, a model showing a 

dynamic system for studying microfluidic mixing was presented by Balasuriya and colleagues (Balasuriya 

2015). The work involved using the motion of collective fluid parcel trajectories to study crucial interior 

flow patterns. Its applications may eventually include several microfluidic mixing systems. 

Other strategies to promote rapid mixing in droplet-based microfluidics involve integrating external 

sources into existed microfluidic devices. In some situations in which the device footprints are limited so 

that researchers cannot use a long serpentine channel to achieve homogenous mixing, they choose to use 
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one of the many active methods, such as by controlling electric fields (Paik et al. 2003; Hadwen et al. 

2012; MCGloin 2017). Song et al. enhanced droplet mixing using electro-wetting-on-dielectrics (J. H. 

Song et al. 2009). Droplets were moved back and forth on a linear electrode array. The thermos-capillary 

methods, such as using a laser spot, can also be used to advance the mixing inside droplets (MCGloin 

2017). Many studies involving this method have been done both experimentally and by using a numerical 

method studying parameters for mixing with laser patterns. Another active method recently introduced to 

the research community uses a microwave heater to speed up the mixing (Yesiloz, Boybay, and Ren 

2017). The capability of microwave resonators to mix droplets was investigated by Yesiloz and his 

colleagues, using an electromagnetic field to provide sufficient energy to heat-up droplets passing through 

a capacitive gap. Thus, the Marangoni effect at the surfaces of droplets was induced, resulting in the fast 

mixing of reagents enclosed inside droplets. The mixing efficiency was quantified by using the mixing 

index, which is up to 97%. The biggest challenge that limits the use of these active methods in 

applications is in the micro-fabrication techniques. Small defects induced via fabrication may affect the 

performances of the external forces applied to droplets. The cost of fabrication is another concern (Lagus 

et al. 2012). 
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2.1.3.4 Droplet Trapping and storage 

 
As discussed previously, droplet-based microfluidics offer rapid reaction times due to fast mixing; 

however, some applications require a longer residence time for storing droplets (several hours to days) 

(Laval et al. 2007; M. C. W. Chen, Gupta, and Cheung 2010; Miller et al. 2012; Courtney et al. 2016; 

Holtze, Weisse, and Vranceanu 2017; Basu and Gianchandani 2008; Hunt, Issadore, and Westervelt 

2007). The simple way is to extend the length of micro-channels, but the length of micro-channels cannot 

be infinite due to devices’ footprints. Furthermore, a long micro-channel containing thousands of droplets 

significantly increases the hydrodynamic resistance downstream, which may affect functionalities 

upstream. Expanding the outlet chamber to be wider and deeper so that droplets can be stored is another 

approach. For example, Courtois et al. developed a device containing a reservoir that holds up to 106 

droplets (Courtois et al. 2008). The researchers were able to conduct the in vitro expression of fluorescent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-13. (a) Generation of a serial dilution sequence from a metering trap (Korczyk et al. 2013); (b) 

Cell culture microfluidic chips (Yu et al. 2010); (c) Droplet trapping scenarios (Courtney et al. 2016); (d) 

System concept of droplet storage in a tubing and reinject for further study (Trivedi et al. 2010) 
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proteins inside the microfluidic device because the droplets were kept inside the chamber for six hours. 

The sequence of droplets was lost when droplets moved to the reservoir. Lately, Tang’s group studied the 

packing of droplets at the outlet and their rearrangement before they leave the chamber (Gai et al. 2016; 

Khor et al. 2019). Other researchers have proposed methods for trapping droplets at certain spots in the 

chamber, after which the droplets have the potential to be released in sequence (H. Chen et al. 2005; Shi 

et al. 2008; Huebner et al. 2009; Miller et al. 2012; X. Chen and Ren 2017a). In microfluidic devices, 

droplets move downstream following the flow of the carrier fluid. When they flow into trapping chamber 

arrays, as shown in Figure 2-13.b, they are kept inside these constrictions (Huebner et al. 2009; L. Yu, 

Chen, and Cheung 2010; Korczyk et al. 2013). Each chamber can be designed to hold one or multiple 

droplets, depending on the compatibility between droplet sizes and the chamber sizes (Courtney et al. 

2016; X. Chen and Ren 2017a). The drop-spot design has been optimized by integrating trapping wells 

and bypass channels downstream of a main channel (Shi et 

al. 2008). Generally, the length of bypass channel is designed 

so that its resistance is larger than the resistance of an empty 

trapping well, but smaller than the resistance of a trapping 

well containing one droplet. Thus, droplets tend to follow the 

flow to where the resistance is smaller. Lately, Courtney and 

Chen have added diluting oil streams and modified a 

trapping well design so that the microfluidic devices can trap 

and release droplets so as to test different assays (Courtney et 

al. 2016). Generally, drop-spot designs provide a method for 

hanging droplets inside microfluidic devices, but the droplets 

cannot then be incubated over the long term on-chip. The 

biggest challenge is that PDMS is gas permeable and subject 

Figure 2-14. Storage droplet inside 

PEEK tubing 



 

 

to absorption (Mukhopadhyay 2007). Therefore, the suggested solution for storing droplets long term is to 

collect them in a glass capillary or in small diameter PEEK tubing (Trivedi et al. 2010); then, droplets can 

be reinjected into a new chip for further studies (Theberge et al. 2012). To avoid droplets merging when 

they are stored inside the tubing or the capillaries, a suitable surfactant should be used (Theberge et al. 

2012). 

 
 

2.1.3.5 Splitting and sorting droplets 

 
In addition to those functions discussed above, other functions such as splitting and sorting of droplets 

must be implemented in some microfluidic platforms to meet the requirements of certain applications. 

Splitting droplets 

 
Splitting droplets increases the operational capacity of microfluidic devices since these daughter 

droplets can be processed further by merging them with other droplets (Y.-C. Tan et al. 2004). Breaking 

up droplets into two either equal or more predetermined-size daughter droplets indicates the promise 

inherent in tuning concentration gradients or multi-step reactions on microfluidic chips (D R Link et al. 

2004; Jullien et al. 2009). The majority of breakup mechanisms in micro-channels are based on using 

shear forces to sufficiently elongate a droplet so that its length exceeds a critical point at which it breaks 

up. Since water-in-oil droplets have a high relative interfacial tension, for instance, 

𝛾𝑠𝑖𝑙𝑖𝑐𝑜𝑛 𝑜𝑖𝑙 𝑣𝑠.𝑤𝑎𝑡𝑒𝑟 = 35𝑚𝑁/𝑚, surfactants may be used to reduce the interfacial tension, thereby assisting 

droplet splitting (Leshansky and Pismen L. M. 2009). A with other functions, passive and active methods 

can be applied in droplet splitting. Passive methods typically use T-junction geometry (Leshansky and 

Pismen L. M. 2009; G F Christopher and Anna 2009; Murshed et al. 2009; D R Link et al. 2004). Droplet 

break-up is manipulated by varying the flow rate of the continuous phase and relative resistances of two 

side channels, forming an inverse T-shape. The critical capillary number plays an important role in 

passive droplet splitting (D R Link et al. 2004). Below a critical value, droplets move to either one of the 
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outlet channels, instead of 
 

 

 
 

breaking up – a phenomenon termed droplet slipping. At the junction, droplets prefer to enter where the 

hydrodynamic resistance is smaller. A 2D analytical model worked out by Leshasky and Pismen showed 

that two daughter droplets were produced by the combination of the lubrication flow and the built-up 

pressure at the junction (Leshansky and Pismen L. M. 2009). In detail, the mother droplet elongated and 

blocked the main flow at the T-junction, leading to increased pressure upstream. Then, the continuous 

flow squeezed the mother droplet at a stagnation point until it split into two smaller droplets. This model 

also agreed with an experimental study done by Link et al. (D R Link et al. 2004). According to many 

research publications, the size of daughter droplets can be controlled by making the outlet channel 

asymmetric or symmetric, or by changing the flow rate and pressure at side-channels (Jullien et al. 2009). 

Figure 2-15. (a) The angle junction used to split droplets (Wang et al. 2018); (b) Non-breaking vs 

breaking droplet (Leshansky et al. 2009); (c) Droplet size vs Capillary represent droplet splitting cases 

(Jullien et al. 2009); (d) Images of droplet tri-splitting with varying location and magnitude of the 

acoustic wave (SAWs) (Park et al. 2018) 
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Later research showed that droplets can also be split by using a sharp angle geometry, instead of a 90 

degree one (Doonan and Bailey 2017; Xiang Wang, Liu, and Pang 2018). In summary, to use passive 

droplet splitting methods, the systematic critical Capillary number for break-up needs to be considered, 

and the influence of disturbances in the outlet channels should be minimized. 

Passive methods for splitting droplets depend on the geometries involved and the local critical Capillary 

number; therefore, such methods may be not reliable in some applications. Active methods, however, 

offer better controllability. For instance, electromagnetic force (Pamme 2006) can be used to split droplets 

containing magnetic particles, when the droplets are shuttled across a set of six electrodes for 30 seconds 

at a rate of 40Hz. Another method introduced by Sung’s group was applying surface acoustic waves 

(SAWs) to split droplets on-demand inside a straight micro-channel (Jung et al. 2016). The mechanism 

was interesting because the acoustic beam acted as an acoustic knife that gradually disturbed the interface 

of a water-in-oil droplet. Eventually, the droplet was cut into two parts. The splitting ratio was controlled 

by changing the SAW voltage and the flow rate of the two phases (Jung et al. 2016; Jinsoo Park et al. 

2018). Electrowetting-on-dielectric (EWOD) has also been proposed to split droplets (Cho, Zhao, and 

Kim 2007). Recently, studies using images taken in real-time as feedback signals to control a pressure 

source has opened a new research direction that combines droplet-based microfluidics and micro- 

controllers. A report by Wong and Ren demonstrated that this platform allows droplets to be generated, 

split and merged easily (Wong and Ren 2016). Although the system was control manually, it has shown 

the potential to function automatically in the future (Hébert, Courtney, and Ren 2019). 

Droplet sorting 

 
During experiments, many un-wanted droplets may be generated, requiring that they be sorted out from 

the desired population (M. M. Wang et al. 2005; Cristobal et al. 2006; Y. C. Tan, Ho, and Lee 2008; Baret 

et al. 2009; Z. Cao et al. 2013; Hejazian, Li, and Nguyen 2015; Xi et al. 2017a; X. Niu et al. 2007; 
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Carlson, Do-Quang, and Amberg 2010). In passive methods, sorting mechanisms follow the principal of 

applying a bias to constantly differentiate droplets; whereas, active sorting uses external sources as 

mechanisms to both manipulate the motion of droplets and detect the sorting parameter. Passive methods 

have limitations in terms of droplet size (Y. C. Tan, Ho, and Lee 2008; Chabert and Viovy 2008). There 

are a number of designs for passively sorting droplets at a bifurcation channel (Y. C. Tan, Ho, and Lee 

2008). The branches of the bifurcation are designed so that the stream lines split unevenly. The drag force 

on droplets exerted by the exit flows is proportion to the flow rate at the branches. The shear force 

imbalance applied on droplets of different sizes directs them to different channels (Y. C. Tan, Ho, and Lee 

2008; Hatch et al. 2013; Pit, Duits, and Mugele 2015). Active droplet sorting methods are preferred to 

passive ones. 

Dielectrophoresis (DEP) based devices have been developed for active sorting. In the research done by 

Weitz’s group, droplets are dielectrophoretically sorted based on the preset fluorescent intensity threshold 

(K. Ahn et al. 2006). The authors note that the shear at the junction might limit the sorting rate in the 

design; for instance, at high flow rates, droplets might possibly split. Wang et al. also demonstrated a 

means of sorting droplets into five separate chambers using DEP activation (L. Wang et al. 2007). 

Another technique for applying electrical signals to enhance droplet sorting was introduced by Ahn et al. 

(K. Ahn et al. 2006). Embedded ITO electrodes were used to sort droplets at frequencies of up to 4kHz. 

Generally, optical detection systems have been used both to detect fluorescent signals and sort droplets 

(Xi et al. 2017b). Nguyen’s group developed an optical detection system integrated with optical fibers for 

measuring droplet sizes (Hejazian, Li, and Nguyen 2015); and the system simultaneously sorted droplets 

based on their measured sizes. Similarly, Baret et al. developed the most complete droplet sorting system 

so far, based on two mechanisms: optical fluorescent detection and DEP manipulation (Baret et al. 2009). 

They showed that fluorescent-activated droplet sorting offered many advantages from micro-plate 

screening to fluorescent activated cell sorting. Magnetic sorting (Teste et al. 2015) and surface acoustic 



 

 

waves are other methods that allow un-desired droplets to be isolated. Overall, despite efforts at 

developing multiple ways to sort droplets, droplet sorting has been hampered either by the challenges of 

microfabrication in active methods or by the lack of robust designs in passive methods (Casadevall I 

Solvas and Demello 2011; Frenz et al. 2009; Ting et al. 2006; Pit, Duits, and Mugele 2015; Y. C. Tan, 

Ho, and Lee 2008; Baret et al. 2009; Z. Cao et al. 2013; Lombardo et al. 2019). 

 
 
 

2.2 Applications of the droplet microfluidics in other fields 

 
Droplet-based microfluidics have offered unique functionalities, advancing research that seemed 

impossible to achieve with conventional bench top methods and single phase microfluidic devices. This 

section will present a few interesting applications of droplet-based microfluidic platforms primarily in 

biology and chemistry, but also in nanotechnology, and in pharmaceutical, biochemical and tissue 

engineering. 
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Figure 2-16. (a) Schematic and snapshot of two junctions in the same device fed by identical means 

with outlet branches of equal lengths (Cristobal et al. 2006); (b) Size-based sepeartion of hydrogel 

droplets due to size-dependent lateral inertial focusing equilibrium positions (Li et al. 2018); (c) 

Schematic view of the microfluidic chip (Niu et al. 2007); (d) Schematic sketch and classification of 

droplet sorting with a magnetic field (Xi et al. 2017) 
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Nanotechnology 

 
In nanotechnology, droplet-based microfluidic devices offer experimental environments that can help in 

the comprehension of crystallization and the formation of crystals (Nisisako et al. 2006; Puigmartí-Luis 

2014; Xiaoguang Wang, Bukusoglu, and Abbott 2016; Yeap, Acevedo, and Khan 2019; Yoon et al. 

2014). The traditional batch-based methods are labor intensive, time consuming, and suffer from their 

stop and start nature, leading to difficulties in determining optimal conditions for crystallization. In 

contrast, droplet-based microfluidic techniques allow researchers to manipulate droplets which work as 

micro-reactors that offer continuous chaotic mixing in tiny volumes of fluids on the order of nanoliters or 

even picoliters. In addition, experiments conducted in droplet microfluidic devices are not influenced by 

gravity and are turbulence-free. Furthermore, in using droplet microfluidics devices, the high surface-to- 

volume ratio environments offer excellent control of mass and heat transport. 

In 2002, research by Edel and deMello established that droplet based method could be useful in 

investigating nanocrystalline semiconductors (Edel et al. 2002). By continuously producing small droplets 

containing Na2S and Cd(NO3)2.4H2O and observing the impact of the flow rate on the monodispersity of 

the nanoparticles, the authors concluded that the small sizes of droplets and their monodispersity ensured 

thermal and chemical homogeneity throughout the entire reaction volume, resulting in homogenous 

reaction conditions for nanoparticle synthesis. Similar to Edel’ study, Shestopalov et al. further 

investigated the multiple-step synthesis of nanoparticle performance in a microfluidic droplet system 

(Shestopalov, Tice, and Ismagilov 2004). In 2006, Hung and colleagues successfully demonstrated that 

their droplet-based microfluidic device could be used for the synthesis of CdS and CdSe core-shell 

nanoparticles (Hung et al. 2006). They noted that the multiple steps of the synthetic reaction would be 

better controlled by using the droplet-based microfluidic device. The experimental process was 

completely monitored under fluorescent microscopy. Another study, by Duraiswamy and Khan, reported 

that the sizes and shapes of functional nanocrystals could be precisely controlled using droplet-based 
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microfluidic devices (Duraiswamy and Khan 2009). To control the sizes and shapes of nanocrystals, the 

individual steps of the synthesize process, such as regent addition, diffusive mixing, reaction conditions, 

were carefully regulated. Other studies showing the key roles of droplet-based microfluidics in 

synthesizing nanoparticles have also been mentioned in many recent review articles (Valencia et al. 2012; 

Puigmartí-Luis 2014; Mashaghi et al. 2016). 

 
 

 

 
Biochemistry and pharmaceutical research 

 
A major role of droplet-based microfluidic devices in pharmaceutical research and biochemistry is in 

improving screening performances, as the devices enable scaling down of the reaction time; meanwhile, 

they facilitate scaling of the numbers of assays (Goddard and Erickson 2009; Agresti 2010; Tran et al. 

2012; Schneider, Kreutz, and Chiu 2013; Perozziello et al. 2014; Walsh et al. 2017; Giuffrida, Cigliana, 

and Spoto 2018; Yeap, Acevedo, and Khan 2019; Faustino et al. 2016). For example, the reaction and 

Figure 2-17. Formation of biocolored Janus droplet in a planar microfluidic geometry (Nisisako et al. 
2006); (b) & (c) TEM images of rod-shaped and spherical-spheroidal particles synthesized using 

droplet-based microfluidic systems (Duraiswamy et al. 2009) 
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analysis times for screening drug compounds that inhibit tau-peptide aggregation, related to Alzheimer’s 

 

disease, were significant reduced using a droplet-based microfluidic device (Courtney et al. 2016). 

Specifically, the process was conducted with on-demand trapping of droplets that carried sample reagents. 

The inside micro-wells and the reaction time of drug inhibition were studied by recording the change of 

relative fluorescent signals. In another study, Griffiths’s group showed that using a droplet-based 

microfluidic device achieved greater numbers of assays in the short-term, leading to increased numbers of 

data points that can be identified in a primary drug-screening and characterized in drug dose-response 

analysis (Miller et al. 2012). Thousands of independent micro-reactors have been generated, containing 

fixed concentrations of samples that are prepared in advance, but the concentrations of each sample inside 

individual droplets were varied by tuning the flow rates of individual streams. A 3D internal flow field of 

droplets advanced the reaction; as a result, complete mixing was achieved in milliseconds. 

Moreover, microfluidic devices are well-suited for studying enzymatic reactions; for instance, droplet- 

based microfluidic platforms have been used to investigate the evolution of CotA laccases (Mashaghi et 

al. 2016). Another screening platform advanced the evolution of discovering variants of the enzyme 

horseradish peroxidase (HRP) (Bai et al. 2010). The platform allowed researchers to robustly screen a 

library of 108 in ~10 hours, but less than 150uL of total reagent volume was consumed. Over several 

years, a range of microfluidic devices for performing protein analysis have been reported. The devices are 

capable of extracting and processing large amounts of information in a sensitive and throughput manner. 

In other biochemistry studies, droplet digital PCR (DDPCR) is another example of the use of droplet- 

based microfluidic devices supporting the research (Mashaghi et al. 2016; S. C. Taylor, Laperriere, and 

Germain 2017; Baume et al. 2019; Khater et al. 2019; Ma et al. 2019). One, among thousands of other 

studies, has showed that high throughput DDPCR systems can be enabled to achieve absolute quantitation 

of DNA copy numbers (S. C. Taylor, Laperriere, and Germain 2017). DDPCR devices also offer orders of 

magnitude more precision and sensitivity than the older real-time PCR, which used conventional TaqMan 
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assays with a 96-well plate workflow (Hindson et al. 2011; S. C. Taylor, Laperriere, and Germain 2017). 

Researchers have also claimed that DDPCR makes it possible to explore complex genetic landscapes and 

discover new molecular diagnostics (Mcdermott et al. 2013; Petralia and Conoci 2017). 

 

Figure 2-18. Droplet digital PCR workflow 

(Hindson et al. 2011) 
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Cell and tissue engineering 

 
Droplet-based microfluidic technology offers a vital approach to studying single cells or single 

embryoid bodies, a field related to tissue engineering (Köster et al. 2008b; Shi et al. 2008; L. Yu, Chen, 

and Cheung 2010; Mazutis et al. 2013; Schoeman et al. 2014; Rotem et al. 2015; Blauch et al. 2017; Klein 

et al. 2015; Lecault et al. 2012; Lan et al. 2017) To develop new diagnostic and therapeutic approaches, 

the key information – molecular distributions, drug-target interactions – may be hidden at the level of 

single molecules or single cells (Novak, Richard; Zeng, Yong; Shuga, Joe; Venugopalan, Gautham; 

Fletcher, Daniel; Smith, Martyn; Mathies 2011; Fernandes et al. 2009; Heath, Ribas, and Mischel 2016a). 

The single-cell level data is important and significantly advances single-cell studies, such as single-cell 

barcoding (Lan et al. 2017), single-cell analysis in cancer research and therapy (Yin and Marshall 2012; 

Lecault et al. 2012; D. K. Kang et al. 2014), and so on. Isolating single cells, typically in the size range of 

a 2-30𝜇𝑚, in a high throughput manner and analysis of those cells at the molecular level is problematic in 

bench-top methods. In general, the encapsulation process depends on Poisson distribution (Collins et al. 

2015; Lagus and Edd 2013a). Thus, the probability of finding a certain number of cells inside a particular 

volume should follow the equation: 

 
Dk,Poisson= 

λke-λ 

k! 
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where 𝜆 is an average number of cells per volume. Mazutis et al. introduced a platform that encapsulated 

individual mouse hybriodma cells, fluorescent probes and single beads coated with anti-mouse IgG 

antibodies, in each droplet (Mazutis et al. 2013). Similarly, Schoeman et al. presented a droplet-based 

device for screening a heterogeneous hybridoma-cell population to obtain clones producing monoclonal- 

antibodies (mAbs) (Schoeman et al. 2014). Not only can single cells be encapsulated in a droplet, Lagus 

and Edd et al. demonstrated that inertial microfluidic flow enabled them to self-order cell trains in a 

micro-channel, leading to encapsulation of single or dual cells in droplets (Lagus and Edd 2013a; 2013b). 
 

However, they utilized high flow rates and high aspect ratio channel geometry to achieve the inertia self- 

ordering in microfluidics. This approach had drawbacks; for example, it requires a large footprint for 

making long/spiral channels and high flow rates that usually must be applied by syringe pumps causing 

fluctuation during droplet formation, etc. (X. Chen and Ren 2017b). 
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Further research, presented by Yu et al., showed that bringing together the encapsulation of LCC6/Her2 

breast tumor cells in droplets and trapping them in U-shaped drop-spots, facilitated the comprehensive 

study of multicellular tumor spheroid formation (L. Yu, Chen, and Cheung 2010). This approach was 

proposed as means for developing anti-cancer drug testing. Another investigation related to cancer 

therapeutics also presented the development of single-cell cytotoxicity assays with automated generation 

of optically-coded droplet libraries using a droplet-based microfluidic device. Brouzes et al. proved the 

concept of the possible cytotoxic effects of single leukemic monocyte U937 cells in the presence of 

mitomycin C at different concentrations (Brouzes et al. 2015). Over recent years, researchers have not 

only developed platforms for encapsulating single cells and studied them in 2D environments, but also 

established a PDMS-based microfluidic hanging drop for forming single embryo bodies (3D aggregates of 

pluripotent stem cells) (Bratt-Leal, Carpenedo, and McDevitt 2009; Y. Y. Choi et al. 2010; E. Kang et al. 

2010; C. Kim et al. 2011; H. W. Wu et al. 2016). PDMS-based microfluidic hanging drop technology has 

opened up a new era of studying embryoid bodies on-chip. Compared to the conventional hanging drop 

technique, the device allowed for media exchange while the droplets were hanging on-chip, as well as for 

high throughput formation of EBs without using complex equipment. Thus, the study suggested that 

characterization of EBs and the study of immunochemistry could be accomplished on-chip, and offered 

the hope of growing mini-organs for further development of customized-drugs (Bratt-Leal, Carpenedo, 

and McDevitt 2009; H. W. Wu et al. 2016). 

Taken together, all studies introduced above among the mass of literature suggest massive roles for 

droplet-based microfluidic technology in different research areas, from nanotechnology to biochemistry 

and pharmaceutical studies. 

Figure 2-19. (a) Rare target molecules in complex biological sample are compartmentalized, amplified 

and analyzed using droplet microfluidics at the single- molecule level (Kang et al. 2014); (b) Agaros 

droplet based single cell ddPCR system (Novak et al. 2011); (c) Embryoid body formation on-chip (Wu 

et al. 2016) 
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2.3 Personal perspective 

Droplet based microfluidic technology is involved in many research areas, offering fast chemical 

mixing, homogeneous droplets generation for chemical synthesis, etc. The evidence also suggests that 

using droplet-based technology for the encapsulation of particles/cells, especially loading single 

cells/particles in droplets of controlled volume in the pL to nL range, is among the most important factors 

for microbiology (Rotem et al. 2015), single cell genomics (Gawad, Koh, and Quake 2016), drug 

discovery (Kalisky and Quake 2011), therapeutic research (Leeper, Hunter, and Cooke 2010), and 

material synthesis (Choe et al. 2018). Studying whole cell populations is difficult and misleading due to 

population heterogeneity and varied time dynamics within the sample; thus, molecular biology studies 

with single cell resolution are needed. Sizes of (bio) particles are typically varied from a few microns to 

hundreds of microns (1µm to 200 µm), such as functional magnetic beads, eukaryotic cells and embryoid 

bodies (Marshall et al. 2012). It is noted that the term (bio) particles mentioned throughout this thesis 

indicates cells, bio-functionalized particles, and embryoid bodies. 

Single (bio) particle encapsulation, whether achieved by passive or active methods using droplet-based 

microfluidics devices has been explored in the last two decades. Overall, active methods provide users 

more flexibility and controllability to isolate droplets containing single (bio) particles from unwanted 

populations (Mazutis et al. 2013; Klein et al. 2015). Nevertheless, these methods have faced the 

difficulties and inconsistencies related to complex microfabrication and the need to integrate active 

sources into polymer devices. Current fabrication methods significantly increase the cost of devices, 

which limits the use of active methods in many applications. In addition, in some active methods, the heat 

applied to droplets to disturb their interfaces for sorting may influence real samples, such as cells, 

proteins, etc. Those active methods are rarely implemented in microfluidic devices unless necessary. In 

contrast, for passive droplet microfluidics, the inertial microfluidic technique to initially order 

cells/particles before the encapsulation is recommended (Edd et al. 2008; Clausell-Tormos et al. 2008; Je- 
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kyun Park 2008; Lagus and Edd 2013a; Kemna et al. 2012). Although this method provides high 

encapsulation efficiency, a major challenge arises in single cell encapsulation due to the high absolute 

flow rates required (≥ 10 µL/min) and the enlarged device footprint needed for holding the curvy and 

long micro-channels required for cell-ordering. For instance, when using high volumetric flow rates to 

encapsulate single embryoid bodies within droplets, the induced high shear stress applied on the embryoid 

bodies would break the 3D cell aggregation structure into single cells. Moreover, co-encapsulation of 

single (bio) particles with another solution by injecting that solution downstream is challenging because 

of a lack of droplet synchronization. Additionally, integration of multiple components in one microfluidic 

device is difficult as it requires the understanding of coupling effects via the microfluidic network. These 

challenges limit the uses of passive droplet-based microfluidic devices in single (bio) particle 

encapsulation studies combined with multi-steps reactions. With these difficulties in mind, I realized the 

need to devise a microfluidic platform that: 

 functions robustly during the multiple or single (bio) particle encapsulation processes, and does 

not require high flow rates to achieve the inertia needed for particle pre-ordering before 

encapsulation; 

 enables the co-encapsulation of multiple reagents and these particles in one step, thus, 

minimizing the device footprint used for encapsulation and for the later injection of reagents 

into droplets; 

 minimizes coupling effects induced by the integration of multiple components, such as 

merging, mixing, generating droplets in parallel, etc., in one platform; 

 does not require costly and complex fabrication procedures. 

Motivated by these criteria, I started by investigating a double-cross junction geometry and stratified flow 

structure, the latter of which is needed to generate hydrodynamic focusing between the two cross 
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junctions. Fine tuning the focusing width provides a new approach to align (bio) particles before 

encapsulation. The thesis’s hypothesis is that using stratified flow structure occurring between the two 

cross junctions allows researchers to encapsulate either single or multiple (bio) particles with at least two 

reagents simultaneously in one step. Following chapters will demonstrate the immense impacts of this 

approach on the applications of interest. Chapter 6 will deliver a comprehensive experimental study to 

provide in depth knowledge of using a double-cross configuration with stratified flow to achieve 

hydrodynamic focusing with a viscosity contrast that assists the single encapsulation process. 
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Nomenclature 

 
Acronyms: 

1D one dimensional 

2D two dimensional 

3D three dimensional 

DEP dielectrophoresis 

DNA deoxyribonucleic acid 

EWOD electrowetting on a dielectric 

FACS fluorescence activated cell sorting 

LOC lab on a chip 

O/W oil-in-water 

PDMS polydimethylsiloxane 

PTFE polytetrafluoroethylene 

Pe Peclet number 

µ-PIV micro particle image velocimetry 

UV ultra violet 

W/O water-in-oil 

 
 

Mathematical Symbols: 

𝛼 fitting factor 

𝛽 fitting factor 

𝛾 interfacial tension (N/m) 

𝜃 contact angle (rad) 

𝜅 curvature (1/m) 

𝜇 dynamic viscosity of fluid (Pa.s) 

𝜌 density of fluid (kg/m3) 

𝜑 ratio of dispersed to continuous phase flow rates 

D diameter (m) 

gc geometric constant (dimensionless) 

U velocity (m/s) 

Qd,c,m flow rate of dispersed phase, continuous or main channel (m3/s) 
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Chapter 3: Fabrication process and experiment setup 

 
The section below describes the fabrication protocol and experimental facilities used to accomplish the 

experiments presented in this thesis. 

 

3.1 Fabrication protocol 

 
The microfabrication technique chosen for making microfluidic devices presented in this thesis is soft 

lithography technique. This approach is preferred in microfluidic research for its simplicity and cost- 

effectiveness (P. Kim et al. 2008). In addition, the polydimethylsiloxane (PDMS) material used to form 

microfluidic devices is inexpensive and compatible with most bio/chemical applications. 

Soft lithography, first introduced in 1998 by Xia and Whitesides, has since been widely employed in 

many research groups (Xia and Whitesides 1998). In the Waterloo Microfluidic Laboratory, the 

fabrication protocol has been updated over the years and modified from the original to provide high- 

quality microfluidic masters. In detail, the process begins with designing a photo-mask that includes 

negative images of the microchannel layout designed by AutoCAD software and printed on Mylar film 

with 20k dpi resolution (CAD/Art Service, OR, USA). The minimum microchannel size that can be 

printed with good quality is 8um due to the limited resolution of printers. In detail, the fabrication can be 

separated into two steps: (1) making a master and (2) making a PDMS microfluidic device. Starting the 

fabrication correctly is essential. To prevent bubbles inside the dispensing tube transferring to a master, 

the preparation of a negative photoresist (SU8-2000 series) one day before is required. A suitable 

photoresist should be chosen for the desired thickness of micro-channels. 

Masters are fabricated from the negative photoresist SU-8 on 4-inches silicon wafers. Firstly, a silicon 

wafer as a solid substrate on which to fabricate a master is dehydrated to remove moisture from the 

surface. Then, it is placed on the spin check of the spin coater, and aligned with the centering tool for 



 

 

depositing photoresist. The thickness of the SU-8 defines the height of micro-channels; thus, it is 

controlled by different types of SU-8 and the spin coating process (adjusted for speed, acceleration, time). 

A thin layer of SU-8 2005 (5-10um) is deposited before the actual layer that defines the height of the 

channels is dispensed. The SU-8 layers are dynamically deposited using a precise pneumatic dispensing 

system (Ultra 1400, Engineered Fluid Dispensing). Next, soft baking is performed at 65oC and 95oC to 

evaporate the solvent in the photoresist and harden the layers. Subsequently, the wafer is exposed to UV 

light (Newport) while it is covered with the photo mask containing a design. UV light (~365nm) 

illuminates and photo-polymerizes the exposed regions, causing cross-linking to begin. Post baking is 

required to complete the cross linking. Depending on the thickness of the SU-8 layers, the required time 

varies from 2 to 30 minutes. To achieve multiple-layer lithography fabrication, the processes of spin 

coating, soft baking, UV-exposure and post baking should be repeated for other layers. Mask alignment is 

extremely important if a master requires the multi-layer fabrication process. It is recommended that the 

master containing SU-8 layers is placed in a dark place at least 2 hours before it is transferred into a large 

bath of SU-8 developer to dissolve unexposed regions. The fabrication process is completed after the 

wafer is washed with clean SU-8 developer, isopropyl alcohol, deionized water, and blown dry with 

nitrogen. Furthermore, the moisture in the SU-8 may affect the long-term quality of a master. Therefore, a 

master should be stored inside a clean and dry container. To keep the photoresist from peeling off, UV 

glue (Locitte 3311) can be used to cover the edges of the wafer. An overview of the soft lithography 

fabrication process is illustrated in Figure 3-1. 

In the second step, after a developing process, a PDMS molding is prepared by mixing a 10:1 ratio of 

base to a curing agent, degassing it and pouring it onto a silicon master. According to Johnston and 

Tracey, the mechanical properties of bulk Sylard 184 PDMS were varied with curing temperature and 

time (Johnston et al. 2014). Compared to Dow Corning recommendation for the curing duration, their 

research provided a corrected tensile curing duration as well as compressive curing duration versus 
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temperatures. Our group recommends baking the PDMS mold on a hot plate at 95oC for at least an hour 

and a half. The mold is peeled off and shaped after cooling. Fluidic access holes are made using a biopsy 

punch. Bonding PDMS micro-channels with a glass slide, already coated with a thin layer of PDMS (5- 

10µm), is the last step in achieving a PDMS microfluidic device. Both the glass slide and the trimmed 

PDMS mold are treated with oxygen plasma for 10 seconds at high power level. The plasma treatment 

temporarily makes the surface of PDMS hydrophilic against the natural hydrophobicity of PDMS. To 

generate water-in-oil droplets, in which oil phase wets the channels, hydrophobic micro-channels are 

required to prevent partial wetting issues, or droplets leaking. Hence, after an oxygen plasma treatment, a 

microfluidic device is placed on the hot plate at 120oC for a least a day before use. Ideally, it should be 

baked for 2 days. In some applications, depending on the oil used, such as FC-40 and FC-70, surface 

treatments may be required to provide the perfect wetting condition for droplet generation. Surface 

treatment with Aquapel (PPG Industries) is usually applied to coat PDMS channels (Köster et al. 2008b; 

Bai et al. 2010; Lan et al. 2017). To use this method, the oxygen plasma treatment should be done for 1 to 

2 minutes at high power instead of 10 seconds. During the treatment, Aquapel (PPG Industries) should be 

applied slowly into the microfluidic network using an air-tight syringe to prevent micro-bubbles being 

trapped at corners, leading to non-uniform coating. Furthermore, after 30 seconds to 1 minute treatment of 

micro-channels with Aquapel, a device should be baked at 95oC for 1 minutes. Then, nitrogen should be 

injected into the channels to remove extra Aquapel. Especially after a treatment, devices should not be 

exposed to air before use. 

Before running experiments, both the microfluidic device and a master need to be measured. The width 

of channels can be measured using a microscope and a CCD camera. By using the calibrated scale 

provided by NIS Element Advanced software, the number of pixels measured can be converted into 

distance on the image. The height of channels can be measured by adjusting the focusing to the top and 

the bottom planes respectively. The difference between two planes is the height of channels. To be more 
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accurate, five to 10 random points from a master are picked for measurement. The difference between 

those measured points should be less than 5 um to confirm that the microfluidic device has a uniform 

channel height. 

  
 

 

3.2 Experimental setup 

The experiment setup is illustrated in Figure 3-2. The general system used to run experiments consists of 

either a pressure system or a syringe pump, inverted epifluorescence microscope, high-speed camera, 

CCD camera, UV light hand held, mercury lamp and other connecting equipment. 

Injecting and driving fluid flows requires a microfluidic pressure control system (Fluigent MFCS -4C/8C) 

and/or syringe pump (pump 33, Harvard Apparatus). In this thesis work, a pressure system is chosen to 

use as an applied pressure source because the syringe pump limits the number of inputs, and it takes up to 

30 minutes for the system to reach steady state depending on the flow rate and the compliance of the 

system. Fluids are prepared in sterile vials (Simport), which are tightly screwed to the reservoir holders – 

Fluidwells (Fluigent). A pressure system can control up to 8 outputs at the same time and provide a 
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Figure 3-1.(Left) Soft lithography technique using for micro-fabrication (source: 

https://cleanroom.soe.ucsc.edu/microfluidics); (Right) Microfluidic design 

fabricated on a silicon wafer using Waterloo Microfluidics Laboratory facilities 

https://cleanroom.soe.ucsc.edu/microfluidics
https://cleanroom.soe.ucsc.edu/microfluidics
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maximum of up to 1 bar (for Fluigent MFCS-8C) and up to 2 bars (for Fluigent MFCS-4C). ETFE 

(Ethyltrifluoroethylene) tubing (IDEX) is used to carry fluids from vials to microfluidic chips. The tubing 

has a large inner diameter (~ 500 um) in comparison to the channels, to minimize any pressure loss from 

the source-to-chip inlets. Pressures are tuned by using provided software. Furthermore, the liquid flow 

sensors (Sensirion) are also integrated with the pressure system to verify the flow rates during 

experiments. 

 

 
In addition to the pressure system, experiments are visualized using an inverted epifluorescence 

microscope system (Eclipse Ti, Nikon) and two cameras: (1) a highspeed camera (Phantom V210) and (2) 

a CCD camera (Retiga, Q-imaging). In detail, a CCD Retiga camera is excellent for fluorescence imaging 

because of its sensitivity and high resolution. However, the CCD camera can only capture up to 21 frames 

per second, which is not good enough to capture the dynamics of droplet generation in a few hundred 

hertz to kilohertz. Therefore, a high-speed camera, able to capture up to 2000 frames per second at full 

Figure 3-4. Overview of an experiment set up in the UW microfluidics laboratory (E3-3175B) 



60  

 

resolution (1280x800 pixels), is installed with the microscope on the left port using a C-mount adapter 

(1X DXM, Nikon). Lowering the resolution, or scaling down the field of view means that the CMOS 

highspeed camera can easily capture 10,000 frames per second. The camera continuously records images 

until the trigger is activated. The microscope system mainly includes a programmable stage 3D (x, y, z), 

objective nosepiece, fluorescent turret and shutters. The lens objectives include CFI Plan fluor 4X, 10X, 

20X, 40X and 60X. Available fluorescent filter cubes, installed inside the microscope, provide suitable 

working range emission and excitation wavelengths. The halogen lamp is used for bright field 

applications and phase contrast; whereas, a 100W mercury laide lamp (Intensilight, C-HGFIE) is used flor 

fluorescence. All videos and images are recorded and saved under the .TIFF format or .RAW format and 

analyzed using ImageJ software (National Institute of Health, MD, USA) and built-in MATLAB codes. 

Images and videos are recorded when the system is stable. 
 

 

Figure 3-5. A reservoir holder, microtubes and PEEK tubing, silicon master holding microfluidic channel 

network, a PDMS microfluidic device (filled with food dye) 
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During the fabrication and experiments, several chemicals mentioned above, including SU-8 photoresists, 

PGMEA photoresist developers, acetone, PDMS base and curing agent, different types of oils, etc., are 

hazardous. Safety training is thus required, and all the appropriate safety procedures are followed based on 

the guidelines described in the MSDS. Chemical preparation must be conducted under a fume hood. 

Goggles, gloves, respiratory devices, and lab coats must be put on before handling chemicals. Chemical 

wastes are disposed of carefully following instructions written by the UW safety office. 
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Chapter 4: A droplet-based microfluidic platform for rapid 

immobilization of quantum dots on individual magnetic microbeads 

The work presented in this chapter was published in the following article: 

 

Thu H. Nguyen, Xiaoming Chen, Abootaleb Sedighi, Ulrich J. Krull, Carolyn L. Ren, “A droplet- 

based microfluidic platform for rapid immobilization of quantum dots on individual magnetic 

microbeads”, Microfluidics and Nanofluidics, 2018, 22 (6), 1-11 

 
 

This work was also presented in poster format at the following conference: 

 

Thu H. Nguyen, Xiaoming Chen, Abootaleb Sedighi, Ulrich J. Krull, Carolyn L. Ren, “ Development 

of co-encapsulating and well-mixing droplet microfluidic platform for rapid immobilizing semiconductor 

quantum dots onto micro-sized magnetic beads”, Ontario-on-a-Chip Symposium, Toronto, Canada, May 

25-26, 2017 

 
 

Thu H. Nguyen (Ph.D. candidate, Department of Mechanical and Mechatronics Engineering) designed 

the final version of a microfluidic platform reported in this thesis chapter. She mainly performed 

experiments and analyzed experimental results. Xiaoming Chen (Post Doctoral Fellow in the Department 

of Mechanical Engineering, University of Waterloo) assisted in the first version of the platform design 

and provided fabrication training. Abootaleb Sedighi (Post Doctoral Fellow in the Department of 

Chemical and Physical Sciences, University of Toronto Mississauga) assisted in preparing chemical 

samples for the experiments. Prof. Ulrich Krull (Department of Chemical and Physical Sciences, 

University of Toronto Mississauga) and Prof. Carolyn Ren (Department of Mechanical Engineering, 

University of Waterloo) provided thoughtful discussions to accomplish the project. 
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4.1 The scope of this project 

Quantum dots (QDs) provide opportunities for the development of bioassays, biosensors, and drug 

delivery strategies. Decoration of the surface of QDs offers unique functions such as resistance to non- 

specific adsorption, selective binding to target molecules, and cellular uptake. The quality of decoration 

has a substantial impact on the functionality of modified QDs. Single-phase microfluidic devices have 

been demonstrated for decorating QDs with biological molecules. The device substrate can serve as a 

solid phase reaction platform, but its uses is limited by difficulty in realizing reproducible decoration at a 

high density coverage of QDs. Magnetic beads (MBs) have been explored as an alternative form of solid 

phase reaction platform for decorating QDs. As one example, controlled decoration to achieve unusually 

high density can be realized by first coating MBs with QDs, followed by the addition of molecules such as 

DNA oligonucleotides. Uniformity and high density coatings on QDs have been obtained using MBs for 

solid phase reactions in bulk solution, with the further advantage that the MBs simplify procedural steps 

such as purification. 

This chapter explores the use of a droplet microfluidic platform for achieving solid phase decoration of 

MBs with QDs, offering control of local reaction conditions beyond that available in bulk solution 

reactions. Initial testing was based on a similar design that was successful for encapsulation of 10m 

microbeads, which received little success with extensive tuning of the flow rate ratios and viscosity 

contrast. The fundamental study of the flow focusing for ordering the 1 𝜇m MB provided very structured 

guidance to shorten the optimization time. A microchannel network with a double-cross configuration is 

designed and optimized to co-encapsulate one single 1 𝜇m MB and many QDs into individual droplets. 

Each micro droplet becomes a reaction vessel and enhance conjugation through its confined environment 

and fast mixing. A high density of QDs is coated onto the surface of a single MB even when using a low 

concentration of QDs. This approach quickly produces decorated MBs, and significantly reduces QD 

waste, ameliorating the need to remove excess QDs. The methodology offers a degree of precision to 
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control conjugation processes that cannot be attained in bulk synthesis methods. The proposed droplet 

microfluidic design can be widely adopted for nanomaterial synthesis using solid phase assays. 

 

4.2 Introduction and project objectives 

In the last two decades, a promising nanomaterial, comprised of semiconductor nanoparticles or 

quantum dots (QDs), has demonstrated tremendous potential for enhancing imaging. Examples include 

applications such as fixed cell labeling, imaging of live cell dynamics, sensing and in vivo animal 

imaging. QDs are chemically synthesized semiconductor nanocrystals with diameters of a few nanometers 

(2 to 10 nm) and quantum yields that routinely approach 50-80% (Bruchez Jr. 1998; C.-Y. Zhang et al. 

2005; Xing and Rao 2008; Algar, Tavares, and Krull 2010; Sun and Gang 2013; Chou, Zagorovsky, and 

Chan 2014; He et al. 2014; Y. Cao et al. 2016; F. Yang et al. 2018). They are 100 times more resistant to 

photo-bleaching than molecular fluorescent dyes (Resch-Genger et al. 2008). 

To endow QDs with selective binding capability, different biomolecules such as nucleic acids and 

antibodies that act as targeting agents or probes have been used to modify the surface of QDs via 

bioconjugation (Mattoussi et al. 2000; C.-Y. Zhang et al. 2005; Algar and Krull 2007; Resch-Genger et al. 

2008). Such functionalized quantum dots have drawn a great deal of attention from both academia and 

industry because they enable the development of assays, in vitro diagnostics, and biosensors (Huo, 

Lytton-Jean, and Mirkin 2006; J. Kim et al. 2009; Prabhu et al. 2009; Chou, Zagorovsky, and Chan 2014; 

Inoue et al. 2016; B. Liu and Liu 2017; Godakhindi et al. 2017). For instance, QDs functionalized with 

DNA oligonucleotides have been successfully used for biological applications within in vitro and in vivo 

environments (Boeneman, Deschamps, Buckhout-white, Prasuhn, Goldman, et al. 2010; Lalander et al. 

2010; Giri et al. 2011; Cutler, Auyeung, and Mirkin 2012; Noor, Tavares, and Krull 2013; Petryayeva, 

Algar, and Medintz 2013; Stanisavljevic et al. 2015). QD-based DNA hybridization assays can operate on 

the basis of fluorescence resonance energy transfer (FRET) which often involves the conjugation of 
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single-stranded DNA oligonucleotides (ssDNA) with QDs. A FRET pair can form where QDs are donors, 

and hybridization of the probe oligonucleotide with a target DNA strand that carries a fluorescent label 

serves as the acceptor (C.-Y. Zhang et al. 2005; Peng et al. 2007; Suzuki et al. 2008; Coopersmith, Han, 

and Maye 2015). The sensitivity and selectivity of the ssDNA-QD conjugates depends on the density and 

structural uniformity of the oligonucleotide strands at the surface of the QDs. 

One method for increasing the deposition density is to first immobilize QDs on the surface of magnetic 

beads (MBs) via electrostatic reaction, and then continuously load oligonucleotides onto the surface of the 

QDs (Sedighi and Krull 2016). This solid phase conjugation strategy also offers the opportunity to 

concurrently decorate the QDs with different molecules, meaning that the exposed part of the QD surface 

is coated with a particular probe ssDNA, and on release from the MB, the other face of the QD can be 

coated with a different probe, or even a different class of molecule than an oligonucleotide. This strategy 

was implemented for a batch setting by using a bulk solution reaction. While functional, the batch 

operation imposes limitations. The batch approach does not allow multiple coating processes to be 

completed in a continuous manner. The reagent concentration is high to push reactions forward, but the 

consumption in each batch is small, resulting in high cost and large waste. The entire process is prone to 

variability due to changing conditions such as temperature, and to contamination (e.g. dust). Finally, yet 

importantly, purification is required to remove excess reagents and QD aggregates at each 

functionalization step in batch settings (Coopersmith, Han, and Maye 2015). Microfluidics has potential 

to address these challenges by offering continuous processing using a confined environment for enhancing 

reactions, reducing reagent consumption, offering sample management for purification and efficient NP 

collection. 

Single phase microfluidics using miscible fluids to transport samples and perform reactions has been 

reported for decoration of QDs, where the channel surface serves as the solid substrate for immobilizing 

QDs (Noor, Shahmuradyan, and Krull 2013). This work demonstrated that microfluidic-based solid phase 
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reactions allowed nucleic acid hybridization within seconds to minutes due to small sample volumes, in 

contrast to bulk solution reactions where the identical hybridization reaction took hours to reach 

equilibrium. Despite its success, single phase microfluidics has some inherent limitations such as slow 

mixing, low throughput and high risk of cross contamination, which have largely limited the quantity and 

quality of the functionalized QDs and the opportunity to selectively decorate the surfaces of QDs. Droplet 

microfluidic methods that use an immiscible fluid to disperse the sample reagents into pico- to nano-liter 

droplets is capable of addressing these inherent limitations (Günther and Jensen 2006; Teh et al. 2008; Y. 

Zhu and Fang 2013; Rosenfeld et al. 2014; Tomasz S. Kaminski, Scheler, and Garstecki 2016), while 

maintaining the continuous flow advantage. First, benefiting from the confinement of microchannels, 

monodispersed droplets can be generated from Hz to kHz rates offering the potential to handle a 

reasonable quantity of decorated QDs even when the volume per droplet is quite small. Second, three- 

dimensional (3D) motion occurs within the droplets, which provides almost instantaneous mixing that 

enables faster and more homogeneous reactions. Finally, selective decoration of the surface of QDs is 

possible by merging, splitting, trapping and releasing droplets in a controllable manner. Droplet 

microfluidics allows the integration of multiple reactions, which is needed for the immobilization of QDs 

on solid substrates such as MBs, conjugation of biomolecules with the solution-facing surface of QDs, 

releasing the partially-decorated QDs from MBs, and conjugating other biomolecules onto the freshly 

exposed surface of QDs. 

In this study, we target the first step of a process for selectively decorating the surface of QDs, as 

discussed in the study by Sedighi and Krull(Sedighi and Krull 2016), which demonstrated the feasibility 

of using a droplet microfluidics platform to enhance rapid, high-density immobilization of QDs onto 

single 1 𝜇m MBs that serve as solid substrates. This step is critical to the subsequent processes and quality 

of bioconjugation, and thus to the performance of QDs for biosensing and imaging. The ability to 

manipulate one single MB that is coated with QDs offers a degree of control of the conjugation conditions 
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that is unattainable in batch settings. One question that arises is whether a droplet microfluidics approach 

is promising for ameliorating the need for QDs to reach uniform coating density on MBs. Therefore, 

efforts have been made to characterize the quality of deposition by physical inspection using fluorescence 

microscopy. 

 

4.3 Working principle and Design of a microfluidic platform 
 

Working principle 

To ensure the coating of QDs onto a MB, co-encapsulation of many QDs with only one single MB in 

one droplet must be achieved which is one of the goals of the design of the microfluidic system. The 

conjugation between QDs and MBs is via electrostatic attraction, which tends to be rapid and can be 

facilitated by enhancing mixing in the reaction environment. It is expected that the conjugation occurs 

within seconds, benefiting from the fast mixing within the droplet due to 3D motion. Electrostatic 

conjugation requires QDs and MBs to have opposite charges. This is realized by coating QDs with 

glutathione (GSH) to render surfaces negatively charged, and functionalizing the MBs with positively 

charged diethyllaminoethyl (DEAE) groups. The association of a magnetic bead with many QDs is 

referred to as the MB-QD conjugate. This process is schematically illustrated in Figure 4-1. 
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Monodispersed droplets can be generated using either passive or active methods(Teh et al. 2008; Chong, 

Tan, Gañán-Calvo, et al. 2016; Y. Zhu and Fang 2013), with each method offering opportunities and 

disadvantages. A passive method is chosen in this study to form monodispersed water-in-oil droplets 

because the design requires multiple pressure controls, which is simplified by operating with a multi- 

output pressure system (MFSC 4C, Fluent). To co-encapsulate one single magnetic bead and QDs, two 

junctions in series are designed. Two streams of aqueous buffer solutions with one carrying MBs and the 

other transporting QDs meet at the first junction, forming a stratified flow which is the dispersed phase. 

The continuous oil phase then interacts with the dispersed phase at the second junction forming 

monodispersed water-in-oil droplets. Details of this design are introduced later. 

Encapsulation of single micron-sized MBs is challenging. In general, each bead should be physically 

directed and sequentially ordered by using a focused flow. Some strategies have explored the use of gel 

materials to first encapsulate the beads (B. W. Tan and Takeuchi 2007; Um et al. 2008; Edd et al. 2008; 

Velasco, Tumarkin, and Kumacheva 2012). Stratified flow with a viscosity contrast between the two 

fluids to focus the bead stream is proposed to achieve the single encapsulation particle. In the stratified 

Figure 4-1. Schematic illustration of on-chip, in-droplet Magnetic Bead-Quantum Dots (MB-QD) conjugation 

via electrostatic adsorption 
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flow design used herein, the inner fluid has a higher viscosity than the outer focusing fluid. In the 

beginning, the inner fluid moves more slowly than the outer fluid, resulting in a shear force at the 

interface. The shear force will speed up the flow of the inner phase, until the velocity difference at the 

interface disappears. Under constant flow rates, the cross-section area of the inner fluid will decrease 

when the velocity increases, leading to a sharpened thin line of the inner phase ideal for focusing 

microbeads. In addition, the high viscosity inner fluid acts like a soft wall, largely reducing the vortex 

inside the inner fluid. It therefore prevents microbeads from moving out of the droplet during a droplet 

formation cycle. 

The QD solution is used to focus the fluid carrying MBs at the first junction, resulting in a thin stream 

that allows one single MB of 1 𝜇m diameter to enter a solution that contains many QDs. These two 

solutions form the total dispersed phase which is then formed into droplets, squeezed by the continuous 

oil phase at the second junction. Tuning of the flow and geometric parameters allows the encapsulation of 

single MBs into individual droplets as illustrated in Figure 4-2. 

 

Design a microfluidic platform 

Initial work explored the in-series two-junction design for manipulation of relatively large polystyrene 

(PS) beads that had nominal diameters of 10 𝜇m and 4 𝜇m. The design was demonstrated to operate 

successfully (Appendix B). Challenges arise when applying the same design and operational parameters 

for selecting individual 1 𝜇m MBs. The MBs are more sensitive to disturbance of flow than the larger PS 

beads, and refinement of the design and precise control of all the parameters affecting flow is required. 

The key is to ensure that the focused bead stream between the two junctions is not disturbed by any event 

occurring downstream, such as droplet formation in the channel network, which causes changes in local 

and global flow resistance. Attention has also been paid to ensure homogenous mixing. Several 
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parameters that are widely applicable to single particle analysis influence this process. 
 

 
The distance between the two junctions, 𝐿𝑗, is critical and should satisfy two main requirements: (1) 

allowing the stratified flow to fully develop, and (2) minimizing diffusion at the interface between the two 

miscible fluids. In addition, because the two junctions are coupled together, the hydrodynamic focusing at 

the first junction is also affected by the pressure change during the droplet formation cycle at the second 

junction(Garstecki et al. 2006; Glawdel and Ren 2012b; X. Chen et al. 2015). A design with the above 

concerns addressed is proposed using an electrical circuit analog method (Figure 4-2b). The microfluidic 

network is treated as a 1D circuit where the pressures applied at the inlets and outlets are considered as 

applied voltages, hydrodynamic resistances act like electrical circuit resistors and the volumetric flow rate 

in each stream is treated as the electronic current. Kirchhoff’s current law (KCL) and Kirchhoff’s voltage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-2. a) Layout of the droplet microfluidic platform for co-encapsulating a single MB and many 

QDs in individual droplets, with rapid mixing to enhance MB-QD conjugation, and b) The equivalent 

electrical circuit used to modify the microfluidic network. 
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law (KVL) are applied to analyze the circuit, and thus the operating parameters for the microfluidic 

network. 

In order to minimize the coupling effects caused by the pressure drop between the two junctions and 

maintain the hydrodynamic focusing of the bead stream, the length between the two junctions (𝐿𝑗) in our 

design is set at 300 𝜇m. Smaller channel dimensions provide for improved spatial control of smaller 

particles such as 1 𝜇m MBs. However, the overall hydrodynamic resistance would increase dramatically, 

requiring much higher applied pressures to control the flow. In addition, smaller channels are prone to 

blockages. To balance these concerns, the channel height is set to 25 𝜇m, the widths of the channels 

upstream and downstream are set to 40 𝜇m and 50 𝜇m, respectively. The microfluidic chip is made of 

polydimethylsiloxane (PDMS), which absorbs silicon oil. In practice, this absorption results in slight 

swelling of the polymer and provides smaller channel heights than stipulated (i.e. < 25 𝜇m) – a problem 

that has been considered in the design. In this study, the channels are primed with silicon oil for 20 

minutes to reach saturation, resulting in a channel height of ~18 𝜇m (measured by using an optical 

microscope focused on the top plan and the bottom plan of the channel). An orifice is used at the second 

junction to better control and reduce droplet size (Um et al. 2008; Velasco, Tumarkin, and Kumacheva 

2012; L. Wu et al. 2017) (Figure 4-2a). The total length of the mainstream after the orifice is adjusted to 

carry more than 50 droplets, so as to minimize fluctuations in the hydrodynamic resistance and flow rate 

caused by droplets entering and exiting the mainstream (Glawdel and Ren 2012c). 

A long serpentine channel is placed after the orifice to provide homogeneous mixing. 3D motion occurs 

in each half of the droplet due to the symmetrical vortices created by droplets travelling through straight 

channels. Mixing between the two halves of the droplet is dominated by molecular diffusion. To ensure 

homogeneous mixing across the entire droplet, the symmetry must be disturbed by pumping droplets 

through serpentine channels(Shestopalov, Tice, and Ismagilov 2004; H. Song, Chen, and Ismagilov 2006; 
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Y. Song, Sauret, and Shum 2013). Non-axisymmetric vortexes inside droplets induced by the time 

periodic recirculating flow inside plug-shaped droplets results in chaotic advection. This recirculating 

flow is the result of shearing interaction between the channel wall and the fluid of the droplet. The chaotic 

flow happening inside the droplet can be interpreted by using Baker’s transformation (Tice et al. 2003a; 

H. Song et al. 2003). The thickness of layers of fluids is calculated by: 

 
stl (𝑛) =  stl (0) ×  2−𝑛               

 
where 𝑛 is the number of chaotic cycles. The mixing time is estimated by: 

 

𝑡𝑚𝑖𝑥 , Ca ~  (
𝑎𝑤

𝑈
) Log (𝑃𝑒)                    

 
(2) 

 

where 𝑎 is the dimensionless length of the plug measured relative to the channel width, 𝑤, and 𝑃𝑒 is the 

Peclet number. Based on the range of operating conditions, the serpentine channel is designed to have 20 

turns, each with an inner and outer diameter of 150 and 200 𝜇m respectively, so that the conjugation 

between QDs and MBs is guaranteed. 

 

4.4 Experimental Validation 
 

Materials and Experimental setup 
 

 
4.4.1.1 Device Fabrication and Materials 

 
Microfluidic devices are fabricated at the Waterloo Microfluidics Laboratory using standard soft- 

lithography. Briefly, SU8 -2015 negative photoresist (MicroChem) is used to form the micro-mold 

containing the microchannels. For replica molding, a PDMS (Sylgard 184, Dow Corning) base and a 

curing agent are mixed and de-gassed at a ratio of 1:9, poured on top of the mold and baked at 95oC for 2 

hours. The ratio is tuned so that the PDMS is harder than usual, ensuring that the small channels are not 

deformed easily through the bonding step. The PDMS substrate is then peeled and cleaned with isopropyl 



73  

 

alcohol before being bonded to a clean glass slide coated with a thin film of PDMS exposed to oxygen 

plasma treatment. Inlets and outlets are made using a 1.5 mm biopsy punch. To achieve wetting stability, 

the microfluidic chip is placed on a hot plate at 110oC for 2 days, rendering its surface hydrophobic before 

the experiment. 

The samples for this study were prepared by Dr. Sedighi (University of Toronto-Mississauga). The 

information on sample preparation is as follows. Green-emitting CdSe/ZnS core/shell quantum dots 

(photoluminescence, PL at 518 nm) are purchased from Cytodiagnostics (Burlington, ON, Canada). 

Diethylaminoethyl (DEAE)-functionalized magnetic beads (MB, 1 um) are from Bioclone Inc. (San 

Diego, CA). The capturing buffer for immobilizing QDs on MBs is a Tris-borate buffer (100 mM, pH 7.4) 

with 20 mM NaCl. The buffer for releasing QDs from MBs is borate buffer (100 mM, pH 10) with 1 M 

NaCl. The 5 cSt silicon oil is from Sigma Aldrich Canada. Water-soluble quantum dots have been 

prepared from the oleic acid-capped CdSe/ZnS quantum dots using a previously reported ligand exchange 

procedure with glutathione (GSH) (Noor, Shahmuradyan, and Krull 2013). Approximately 0.2 g GSH is 

dissolved in 600 μL of TMAH. Then 700 pmol of QDs is dissolved in 2 mL of chloroform that is 

gradually added to the GSH solution. Thereafter, the solution is briefly agitated and incubated overnight at 

room temperature. After incubation, the GSH-modified QDs (GSH-QDs) are extracted to a top layer of 

200 μL of borate buffer (BB) containing 250 mM NaCl, at pH of 9.2. The organic layer is discarded and 

the aqueous layer is transferred to a 1.5 mL centrifuge tube. Ethanol is added to the QD solution until the 

solution becomes turbid. The mixtures are centrifuged at 8000 rpm for 7 min to obtain a pellet of QDs. 

The buffer addition, ethanol precipitation and centrifugation steps are repeated two more times. Finally, 

GSH-QDs are re-dispersed in a borate buffer at pH 9.2 without NaCl. The concentration of QDs is 

determined using UV-vis absorption spectroscopy. 
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4.4.1.2 Experimental setup 

The experimental system consists of two main parts: 1) a pressure system (MSFC 4C, Fluigent) that is 

used to pump the fluids through microchannels, and 2) an inverted microscope (Nikon Ti-Eclipse) that is 

used to record the dynamic flow of droplets and detect luminescence. The conjugation processes are 

visualized using a microscope with 40 x (N/A: 0.75mm) and 20 x (N/A: 0.45mm) objectives. The 

excitation sources are a 100 W LED lamp (Nikon) for bright field images and 100 W mercury halide lamp 

(Nikon) for fluorescence images. All fluorescent images are captured using a CCD camera (Q-imaging 

R2000), and videos are recorded using a high-speed CMOS camera (Phantom v210, Vision Research). A 

fluorescein isothiocyanate (FITC) filter cube is used within the microscope. 

 

Experimental procedure 

 

4.4.2.1 Co-encapsulation of QDs and a single particle 

The stock solution of QDs solution is diluted to 0.5 nM (unless noted otherwise) using the capturing 

buffer (Tris-borate, 100 mM, pH 7.4). Following the step-by-step protocol provided by Bioclone Inc., 1 𝜇l 

(50 𝜇g) of the MB solutions supplied by the manufacturer is washed two times with the releasing borate 

buffer (100 mM, pH 10), and then diluted by the capturing Tris-borate buffer (100 mM, pH 7.4) mixed 

with 80 % (wt %) glycerol. The viscosity of the mixture of glycerol buffer is ~44.1 mPa.s, while the 

viscosity of the mixture of quantum dots buffer is ~1.02 mPa.s. The resulting concentration of MBs is 

~107 beads/mL. The microfluidic chip is primed with silicon oil for 20 minutes for good wetting condition 

and thus stable droplet formation. The encapsulation process is controlled by utilizing two side streams 

(dispersed phase 2) to squeeze the middle stream (dispersed phase 1), resulting in a focusing stream 

(Figure 4-3).  The droplets were generated under the squeezing regime, which the Capillary is kept in the 

range from 0.002 to 0.006, and the ratio between the dispersed phase and continuous phase is tuned from 

1/8 to 1/4. In details, the flow rate of the continuous phase was set at the range from 0.4 to 0.8 µl/min; 
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whereas, the total flow rate of the dispersed phase was kept as constant ~ 0.1 µl/min. The single 

encapsulation is efficient when the ratio of dispersed phase 1 and dispersed phase 2, (𝜆), is from 0.6 to 

0.8. As a result, the 1 𝜇m MBs are kept inside the inner stream since the highly viscous inner fluid acts as 

a soft wall, and encapsulation into a droplet with the QDs happens at the second junction. 

 

 

 
Three bead sizes – 1 𝜇m, 4 𝜇m, and 10 𝜇𝑚 – are used to test the effectiveness of the flow system. 

Results showing the single encapsulation of 4 𝜇m, and 10 𝜇𝑚 PS beads are presented in Appendix B. By 

counting the number of droplets and frames captured during a droplet generation cycle using the high- 

speed CMOS camera, the efficiency of encapsulation of a single 1 𝜇m MB was determined to be up to 70 

%. Miscounting of the beads that are not at the focal plane is possible but unlikely because the channel 

height is designed to be 25 𝜇m before swelling and measured roughly 18 𝜇m after swelling. It is observed 

that the majority of the beads are near the focal plane, which is close to the middle of the channel. Image 

processing, using ImageJ tool box, was necessary to remove background noise and clearly visualize the 

Figure 4-3. Using stratified flow with viscosity contrast in order to align a train of MBs and enhance co- 

encapsulation of a single MB and many QDs into a single droplet 
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single encapsulation of 1 𝜇m MBs (Figure 4-4). 
 

 

 
 

4.4.2.2 Immobilization process 

After a magnetic bead and a number of quantum dots are co-encapsulated into one single droplet, the 

electrostatic association occurs within ~ 10 seconds and continues while the droplet is travelling through 

the serpentine channel (Figure 5). By comparing the intensity contrast between the empty droplets and the 

droplets that have entrained a single MB, it is demonstrated that this microfluidic device enables rapid 

conjugation. One of the disadvantages of batch processing is the use of large quantities of QDs to ensure a 

high-density coating of QDs on MBs. The consequence is the need for extensive washing to remove 

unbound QDs before proceeding to the subsequent step of QD conjugation to biomolecules. It is found 

that a microfluidic droplet used as a reaction compartment facilitates coating of MBs with a high density 

of QDs, without the use of a large quantity of QDs. This finding is supported by two observations. First, 

the comparison of the fluorescent intensity between the inlet filled with the original solution containing 

QDs (before conjugation) and the outlet where there is a mixture of MB-QDs and excess QDs shows that 

the occurrence of excess QDs after conjugation is unlikely (Appendix A). Second, the fluorescent 

Figure 4-4. (Left) RGB images showing a single 1𝝁m MB encapsulation. (Right) Binary images showing 

the single 1 um MB encapsulation. 



 

 

intensity of the recovered QDs, detached from MBs using the releasing buffer is about 75 % that of the 

original QDs solution (Figure 4-6). There is some loss of QDs due to the multiple pipetting steps required 

for preparation of the samples for the fluorescence spectroscopy measurements, suggesting that the actual 

extraction of QDs on MBs can be higher than 75 % (Appendix A). Therefore, the proposed droplet-based 

microfluidic platform has potential to facilitate subsequent bio-conjugation of the MB-QDs (with 

biomolecules such as single stranded oligonucleotides), as it could be done by continuous flow without 

washing to remove excess QDs, simplifying the process of nanoparticle decoration. It is noteworthy that 

differences in the fluorescent intensity of the MB-QD conjugates between two adjacent droplets are 

primarily due to off-focus collection of the signal (Figure 4-5 and Appendix A-2). 

 

 

 
Improvement of the optical interrogation used to control focal position makes it possible to 

quantitatively evaluate the extent of QDs conjugation onto each single MB, offering a degree of quality 

control to adjust conjugation processes on-the-fly that is impossible with batch reactions. In order to 
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Figure 4-5. Zoom-in (40x magnification) images of fluorescence from QDs confirm the association 

with MBs in a 50 µm sized channel. a) The image was taken under the bright field, resulting in gray 

scale image. b) The QD-MB conjugate is luminescent in the fluorescent field 
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confirm that the electrostatic adsorption onto single MBs does not alter the optical properties of QDs, the 

fluorescence spectra of the recovered and original QDs are compared. The emission profiles of the QDs 

before and after interaction with MBs are identical (Figure 4-6), confirming that the solid phase 

manipulation does not alter the spectral properties of the QDs. The indication that the QDs retain their 

excitation spectral characteristics which is essential for further applications, such as using QDs as donors 

in Forster resonance energy transfer (FRET)-based bioassays. 

 

 
 

4.5 Project summary 

Droplet microfluidic methods are currently used in various fields such as biotechnology, pharmaceuticals, 

and biochemistry, for sample handling, synthetic reactions, and diagnostics. In this chapter, a droplet 

microfluidic platform has been explored as a platform that could eventually support processes for 

decorating quantum dots with biomolecules, which will be discussed in Chapter 5. The droplet 

microfluidic approach has been demonstrated to be capable of encapsulating a single 1 𝜇m magnetic bead 

Figure 4-6. Comparison the intensity of original QDs solution before running experiment and the 

intensity of the recovery QDs. 
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with many quantum dots in one aqueous droplet. Furthermore, a rapid electrostatic association of the QDs 

onto the MB surface has been demonstrated, with speed being associated with the chaotic advection inside 

nanoliter sized droplets. The efficiency of sample consumption has been improved, and the aqueous 

droplets are extraordinarily uniform. Such precise of droplet formation enables quantitative control of the 

reaction environment. This methodology can be applicable to other types of nanoparticle (i.e, gold 

nanoparticles, up-conversion nanoparticles, etc.). The next step of this study is to integrate multiple 

components in one droplet microfluidic platform that allows researchers to decorate QDs with 

biomolecules in continuous flow production, suggesting a promising manufacturing approach. 
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Chapter 5: Integrating a double-cross geometry with other 

functionalities into a complex droplet microfluidic platform for rapid 

immobilization of oligonucleotides on semiconductor quantum dots 

The work presented in this chapter was submitted as the following article: 

 

Thu H. Nguyen, Abootaleb Sedighi, Ulrich J. Krull, Carolyn L. Ren, “A multifunctional droplet 

microfluidic platform for rapid immobilization of oligonucleotides on semiconductor quantum dots”, ACS 

Sensors, 2019, Submitted 

 
 

This work was also presented in poster format at the following conference: 

 

Thu H. Nguyen, Abootaleb Sedighi, Ulrich J. Krull, Carolyn L. Ren, “ A complex droplet-based 

microfluidic platform for rapid immobilization of oligonucleotides on semiconductor quantum dots”, APS 

Division of Fluid Dynamics – November 18th-20th, 2018, Atlanta, Georgia (USA) 

 
 

Thu H. Nguyen (Department of Mechanical and Mechatronics Engineering) mainly designed a 

microfluidic platform, conducted experiments and analyzed experimental results. Abootaleb Sedighi (Post 

Doctoral Fellow in the Department of Chemical and Physical Sciences, University of Toronto 

Mississauga) assisted in preparing chemical samples for experiments. Prof. Ulrich Krull (Department of 

Chemical and Physical Sciences, University of Toronto Mississauga) and Prof. Carolyn Ren (Department 

of Mechanical Engineering, University of Waterloo) provided thoughtful discussions to accomplish the 

project. 

 

5.1 The scope of this project 

Quantum dot-DNA oligonucleotide (QD-DNA) structures have been used in many fields such as nucleic 

acid bioassays, intracellular probes, and drug delivery systems. A typical solid-phase method that 
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achieves rapid loading of oligonucleotides on surfaces of QDs involves a two-step reaction and is 

performed using a batch-based approach. In contrast, droplet microfluidics offers numerous advantages 

that are unavailable when using batch processing, providing rapid and dense immobilized DNA 

oligonucleotides on QDs. However, integration of the two droplet generators with droplet merger and 

mixer raises challenges in design for robustness operation of co-encapsulation, which further enhances the 

need of fundamental knowledge for flow focusing towards controlled encapsulation. The two generators 

are designed for co-encapsulation of MBs and QDs, and oligonucleotides respectively to realize the two- 

step reaction assay. Specifically, in one section, a microfluidic device encapsulates QDs and magnetic 

beads (MBs) in droplets for the production of QD-MB conjugates. Each droplet is then merged with a 

section of different droplets that contain oligonucleotides. Subsequently, the merged droplets travel along 

a serpentine micro-channel for better mixing, resulting in QD-DNA conjugation structures of high quality. 

This multifunctional microfluidic device provides advantages such as improved control over the reaction 

conditions, minimized cross-contamination and impurities, reduced reagent consumption, while 

eliminating any need for external vortexing and pipetting. To evaluate the performance of the QD-DNA 

conjugates, they were used as Forster Resonance Energy Transfer (FRET) probes to quantify oligonucleic 

targets. 

 

5.2 Introduction of the project 

The semiconductor quantum dot-DNA oligonucleotide (QD-DNA) conjugate has emerged as a powerful 

platform for the development of nucleic acid bioassays, intracellular probes, and drug delivery (Chou, 

Zagorovsky, and Chan 2014; Coopersmith, Han, and Maye 2015; Inoue et al. 2016; Suzuki et al. 2008; Sun 

and Gang 2013; Pinaud et al. 2006; Y. Han et al. 2017; Medintz et al. 2005; Sedighi and Krull 2018; Das, 

Sedighi, and Krull 2018). Preparing the conjugate is challenging as the electrostatic repulsion between 

oligonucleotide strands and the surfaces of QDs limits the DNA packing densities and reduces nanoparticle 

stability. A conventional method for achieving high-density packing of oligonucleotides on QDs is known 
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as the salt-aging method, which is typically completed over two days (B. Liu and Liu 2017). Lately, the 

conjugation process has been reduced to minutes by a new approach consisting of a two-step reaction 

(Sedighi and Krull 2016). First, semiconductor quantum dots are adsorbed on the surface of positively 

charged magnetic beads, creating magnetic bead - quantum dot conjugates (MB-QD). Second, negatively 

charged oligonucleotides are electrostatically adsorbed onto the MB surface, accumulating in the vicinity 

of QD surfaces. Owing to the pre-concentration effect, the density of oligonucleotides on the surfaces of 

QDs increases significantly. Although this method promises fast preparation of high-quality QD-DNA 

conjugates, the current batch-based setting is prone to environmental effects and broad dispersity of coating, 

does not allow for the entire procedure to be monitored, and is difficult to integrate with other processes. 

To address these drawbacks, a droplet microfluidics platform that offers a controllable reaction 

environment through monodispersed aqueous droplets in oil streams is an excellent alternative approach. In 

general, these droplets are generated and transported at Hz to kHz rates in microchannel networks making 

them ideal reactors for continuous production of decorated QDs with conjugate densities at speeds, rarely 

achieved with batch processing. With this approach, the bench-level reagents are now divided into multiple 

nano-liter or femto-liter volumes in order to take advantage of their high surface to volume ratio leading to 

rapid reactions, compartmentalization and decreased reagent use (Tomasz S. Kaminski, Scheler, and 

Garstecki 2016; J. Wang et al. 2017; Ganan-Calvo et al. 2013; Gruner et al. 2015; Rosenfeld et al. 2014; D. 

K. Kang et al. 2014; Zubaite et al. 2017; Shembekar et al. 2016). Droplet microfluidics has been applied in 

a wide range of areas such as biological analysis, drug screenings, material sciences, and many more (Y.-C. 

Tan et al. 2004; R. Dangla, Kayi, and Baroud 2013; Miller et al. 2012; Carroll 2008; R., Z., and A.J. 2016; 

Klein et al. 2015; Courtney et al. 2016; Schneider, Kreutz, and Chiu 2013). Despite the rapid growth of the 

field, its adoption as an enabling tool for high throughput screening analysis is rather slow. Among the many 

reasons, the integration of multiple droplet manipulation functions with robust performance as required by 

typical real-world assays is one of the key contributing factors. Lately, Chen et al. have introduced a 
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platform that integrate with droplet generation, pairing, trapping, merging, mixing and releasing (X. Chen 

and Ren 2017a) and demonstrated its performance for a drug screening assay towards treatment of 

Alzheimer’s disease. This promising platform, however, is not suitable for the reaction of making QD-DNA 

conjugates because its main functions are to trap and screen droplets that encapsulate different 

concentrations of drug compounds. 

In this study, we present a droplet microfluidic platform with a focus on realizing the two-step reactions 

needed for high-density immobilization of oligonucleotides onto the surfaces of QDs, while also considering 

production scale-up. This platform is also applicable to other assays that involve two steps of reactions. The 

quality of the produced QD-DNA conjugates is evaluated using an efficient fluorescence transduction of 

nucleic acid hybridization performed on a paper-based platform off-chip. The ratio-metric signal 

(Red/Green) before and after forming fluorescence resonance energy transfer (FRET) pairs is carefully 

characterized using an iPhone’s camera. Nanoparticle-based FRET bioassay is considered to be a technique 

sufficient for fluorescence detection that provides for selective and sensitive quantification of biomarkers 

(Algar and Krull 2007; Kapanidis et al. 2015; Long et al. 2012; Crivat et al. 2010; Hsieh, Pan, and Lee 

2009). 

 

5.3 Rational Design 

The general strategy for designing a chip suitable for the two-step reaction is to enable a “plug and 

collect” operation. Specifically, the platform is designed to allow users to inject their samples into the 

microfluidic device by means of a pressure system (Figure 1); then, collect the reaction product for further 

evaluation. To realize this strategy, the platform should consist of the following droplet operations 

working in an integrated and robust manner: i) parallel droplet generation with one stream of droplets 

containing MBs and QDs for the first step of the reaction, while the other encapsulating oligonucleotide 

DNA towards the second step of the reaction; ii) a merging chamber with controlled one-to-one droplet 

merging from the two streams of droplets respectively to initiate the second step of the reaction; iii) 
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thorough mixing to complete the second step of the reaction; and iv) ease of recovering the reaction 

product. Such a platform then presents several benefits over the batch-based method, including: i) a higher 

degree of control over the reaction conditions; ii) elimination of the need for external vortex mixing and 

pipetting, presenting the potential for high throughput analysis; iii) minimized cross-contamination and 

reduced influence from wall impurities; and iv) considerably reduced cost due to the order of 

magnitude lower reagent consumption. An additional benefit is its portability. 
 

 

 
 

 

Design of microfluidic platform 

It is desirable to recover a relatively large amount of QD-DNA conjugates for further processes, such as 

in-vitro diagnostics, intracellular assays and DNA-programmed nanoparticle assembly (Chou, 

Zagorovsky, and Chan 2014; Bruchez Jr. 1998; Boeneman, Deschamps, Buckhout-white, Prasuhn, 

Blanco-canosa, et al. 2010; Y. Han et al. 2017), which requires a series of design concerns to be 

Figure 5-1. Schematic of a “plug and collect” droplet microfluidic platform for QD-oligonucleotide 

conjugate 
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considered. In this study, for instance, in order to quantify the quality of the QD-DNA conjugates, the 

required minimum volume is 50 µL. To produce this volume of conjugates, there are several options such 

as making large droplets and running the experiments for a long time. However, the size of droplets must 

be within a certain range to ensure that the one-to-one merging function is robust, which is 1.2 ≤ 
𝑉𝑑𝑟𝑜𝑝    

≤ 
𝑤2ℎ 

 

1.8, where 𝑊 and ℎ are the channel width and height, respectively. The operation time is also limited by 

reagents used, as some aggregate after a certain time period. In this study, it is observed that MBs tend to 

sink to the reservoir bottom and aggregate after one hour of operation. 

 
 

To accommodate all of the above features without sacrificing the quality of QD-DNA conjugates, a co- 

encapsulation component is designed in which the QD solution of 3 𝑝𝑚𝑜𝑙 and the MBs prepared in a 

solution of ~ 4 × 107𝑀𝐵𝑠/𝑚𝐿 are co-encapsulated into nanoliter-sized droplets for the first step of the 

reaction (Figure 2b). The choice of concentrations is made to ensure a high density of immobilized QDs 

(Sedighi and Krull 2016; T. H. Nguyen et al. 2018). The mechanism for conjugating MBs and QDs is 

electrostatic attraction, which is enhanced with the small droplet volume. The conjugation is expected to 

happen in seconds, facilitated by the rapid mixing within the droplet caused by the 3D motion present in 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-2. a) The general layout of the complex droplet microfluidic platform. b) The co-encapsulation 

component with two cross junctions in series. c) The flow focusing droplet generation geometry used for 

the generate droplet containing oligonucleotide DNA in parallel. d) The oil bridge used for balance the 

pressure between up and down streams, resulting in droplet synchronization. e) The merger chamber. f) 

The serpentine channel promotes the full-mixing inside droplets. 
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droplets. Electrostatic conjugation requires QDs and MBs to have opposite charges. Thus, QD surfaces 

are modified with glutathione (GSH) to have negatively charged surfaces, whereas MBs are coated with 

positively charged diethylaminoethyl  (DEAE) groups. The combination of a magnetic bead with many 

QDs is considered to be the QD-MB conjugate. 

In parallel, another stream of droplets that contain oligonucleotide DNA are generated (Figure 2c). the 

platform design keeps these two streams of droplets separated until they merge in a chamber (Figure 2e) 

consisting of two arrays of pillars, at a one-to-one ratio, which is ensured by the bridge balancing the two 

streams (Figure 2d) (K. Song, Zhang, and Hu 2012; D.-H. Lee and Park 2010; Gershenfeld and Prakash 

2007; Maddala and Rengaswamy 2014). The merging mechanism is the competition between 

hydrodynamic forces and interfacial tension (X. Chen, Brukson, and Ren 2017; X. Niu et al. 2008; 

Baroud, Gallaire, and Dangla 2010). In order to ensure the complete conjugation between the QD-MB 

conjugates and oligonucleotide DNA strands within the merged droplets, the reagents must be mixed well, 

which is achieved by pumping the merged droplets through a serpentine microchannel with 30 turns 

(Figure 2f). The number of turns was optimized to ensure homogeneous mixing induced by the 3D flow 

motion with asymmetric vortices inside the droplets (Tung, Li, and Yang 2009; H. Song, Chen, and 

Ismagilov 2006; Helen Song, Tice, and Ismagilov 2003; H. Song et al. 2003) without increasing the 

device footprint. This step of conjugation is via electrostatic attraction between the positively charged 

MBs covered by the QDs and the negatively charged oligonucleotide DNA strands, leading to the 

accumulation of DNA strands surrounding the QD-MB conjugate; thus, the QD-DNA conjugation occurs 

via the di-thiol group. 

The two-step reaction can be realized only when all the functional components perform robustly in an 

integrated manner, which is ensured by the following strategies. First, the co-encapsulation of MBs and 

QDs is designed to occur using two junctions in series. The detailed design principles can be found 

elsewhere (X. Chen and Ren 2017b; T. H. Nguyen et al. 2018). Briefly, the MB solution with a higher 
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viscosity is injected into the middle stream that meets the low viscosity QDs solution coming from the 

two sides at the first junction. The viscosity ratio plays a key role in focusing the MB stream to a desired 

width before it enters the second junction to be dispersed into droplets by the oil stream (X. Chen and Ren 

2017b). The level of control of the focusing width offers advantages of the concentration of each stream 

into the droplets eventually (Cubaud and Mason 2008). The other parallel generator for producing 

droplets encapsulating with DNA oligonucleotide employs a simple flow-focusing geometry, whereby the 

DNA solution is dispersed into droplets by the oil stream coming to the junction perpendicularly. 

In this study, the width of all channels is 300 𝜇𝑚, unless specified otherwise. The width ratio between 
 

the droplet (dispersed phase) and carrier oil (continuous phase) (Λ = 
𝑊𝑑) is 1 to minimize interface 
𝑊𝑐 

 

expansion during the droplet generation cycle, thereby reducing local fluctuations (Glawdel and Ren 

2012c). The length between the two junctions is set as 900 𝜇𝑚 which has optimized so that the focusing at 

the first junction is not influenced by the droplet generation at the second junction. Additionally, the 

generated droplets are transported in a channel of 25 𝑚𝑚 long before they arrive at the merging section. 

This design minimizes the fluctuations in the hydrodynamic resistance and thus flow rate in the channels 

due to droplets entering and leaving the channel. The length after the droplet formation junction is 

adjusted to carry more than 30 droplets (Glawdel and Ren 2012c; Baroud, Gallaire, and Dangla 2010). 

That length has also been amended to guarantee that the conjugation between QDs and MBs is enhanced, 

as estimated from our previous work (T. H. Nguyen et al. 2018). To achieve the one-to-one droplet 

merging ratio, not only the frequencies of the two droplet generators but also the frequencies of two 

droplets moving to the merging chambers must be well synchronized. An oil bridge (figure 2d) is 

designed to connect the upper and lower streams of droplets before the merger to alter the sequence of 

alternating droplets that later flow to a merging chamber. This oil bridge is 100 𝜇𝑚 wide and 2600 𝜇𝑚 

long. The hydrodynamic resistance difference in each channel is balanced automatically due to the 
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crossflow of carrier oil via the oil bridge (B. Ahn et al. 2011; K. Song, Zhang, and Hu 2012). 

Consequently, droplets from each stream are synchronized in turn. 

The merger chamber is designed based on the numbers of input droplets to be merged, the length of 

input droplets, and the length of output droplets (Figure 2e)(X. Chen, Brukson, and Ren 2017). The length 

of each pillar (𝐿𝑝) and the spacing between the pillars (𝐿𝑠) are 300 𝜇𝑚 and 75 𝜇𝑚 respectively, to prevent 

droplets from entering the chamber’s bypass channel (the region between the chamber walls and the 

pillars) while still allowing oil to bypass through the gaps between those pillars. To ensure the quality of 

individual pillars after fabrication, the pillar width (𝑊𝑝) cannot be too small, and is 100 𝜇𝑚 here. In 

addition, the length of the chamber should be equal or larger than the merged droplet’s length (𝐿0), which 

is identified by the number of merged droplets (N = 2) multiplier of the input droplets length (𝐿𝑑), such 

that (𝑁 − 1)𝐿𝑑 < 𝐿𝑐ℎ𝑎𝑚𝑏𝑒𝑟 < 𝑁𝐿𝑑. Herein, the length of the chamber (𝐿𝑐ℎ𝑎𝑚𝑏𝑒𝑟) is 1.2 𝑚𝑚. The details are 

explained in Appendix E. 

Even though mixing between reagents occurs during droplet fusion, homogeneous mixing is not 

observed. The full-mixing is guaranteed by incorporating 30 turns after the merging chamber. The 

recirculating flow caused by the shearing between the channel wall and droplet fluid induces non- 

axisymmetric vortexes inside droplets. This chaotic flow happening inside droplets is inferred by using 

Baker’s transformation (H. Song, Chen, and Ismagilov 2006; Helen Song, Tice, and Ismagilov 2003). 

Each turn has an inner and outer diameter of 200 𝜇𝑚 and 500 𝜇𝑚, respectively. The entire platform 

design is fabricated using soft lithography technique to get a 100 𝜇𝑚 channel height. In fact, the channel 

height could be reduced to as small as 85 𝜇𝑚 because of oil swelling the polydimethylsiloxane (PDMS) 

chip material, which has been considered in the design. 

 

Device fabrication 

The microfluidic device is fabricated using standard soft-lithography technology. Briefly, two layers of 

 

SU-8 2025 negative photoresist (MicroChem) are employed to form the mold holding the microchannels 
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(h = 100 𝜇𝑚). For replica molding, a PDMS base and a curing agent are first mixed with a 1:10 ratio, 

degassed and poured on the top of the mold. Then, the mold with PDMS is baked at 95oC for 2 hours. The 

PDMS substrate is peeled off, cleaned with isopropyl alcohol and nitrogen dried, before being bonded 

with a clean glass slide coated with a thin layer of PDMS through oxygen plasma treatment. The inlets 

and outlets are made through the PDMS substrate using a 1.5 mm biopsy punch. Finally, a device is 

placed on a hot plate at 170oC for 2 days to recover its surface hydrophobic property before experiments 

for wetting oil. 

 

Material 

Green-emitting CdSe/ZnS core/shell quantum dots (PL = 518 nm) were obtained from Cytodiagnostics 

(Burlington, ON, Canada). Diethylaminoethyl (DEAE)-functionalized magnetic beads (MB, 1 μm) were 

from Bioclone Inc. (San Diego, CA). Sodium tetraborate, tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP), l-glutathione (GSH, reduced, ≥98%), and tetramethylammonium hydroxide (TMAH) were from 

Sigma-Aldrich (Burlington, ON, Canada). Probe oligonucleotide (5′-DTPA- 

AATATCATCTTTGGTGTT-3′) and target oligonucleotides (5′-AACACCAAAGATGATATT-Cy3-3′) 

were synthesized and purified by Integrated DNA Technologies (Coralville, IA). All buffer solutions were 

prepared using deionized water (Milli-Q, 18 MΩ cm–1) and were autoclaved prior to use. The buffer 

solutions included 100 mM tris-borate buffer (TB, pH 7.4), and 50 mM borate buffer (BB, pH 10). 

 

Experimental procedure 

To produce stable droplets, the chip material needs to preferably wet the continuous phase over the 

dispersed phase. Therefore, prior to each experiment, the microfluidic chip is primed with silicon oil for 

30 minutes rendering a good wetting condition. After priming, the channel height and width are usually 

reduced due to oil swelling the chip material, and therefore must be carefully measured again. 
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Following the instruction provided by Bioclone Inc., 0.1 mg magnetic beads are washed twice with the 

borate buffer (100 mM, pH 10) and then diluted in the capture tris-borate buffer (50 mM, pH 7.4), which 

is mixed with 50% (wt %) glycerol. The viscosity of the mixture of glycerol buffer is ~5 mPa.s. The 

concentration of MBs is ~4 × 107 beads/mL. GSH-QDs (3pmol) are also prepared in the capture buffer. 

The glutathione-capped quantum dots (GSH-QDs) are prepared using a previously reported protocols. The 

viscosity of the solution is approximately 1.02 mPa.s. Additionally, oligonucleotides DNA is incubated 

with 100 equiv of TCEP, and the solution is prepared an hour before starting the experiment. 

 
Co-encapsulation function and droplet generation in parallel 

As mentioned before, two streams of droplets are generated in parallel for the two-step reactions. Figure 

3(a) shows the droplet generation for the first-step reaction producing MB-QD conjugates. The MB 

solution is injected into the horizontal channel whereas the QD solution is injected from the two 

perpendicular channels to focus the MB stream forming a stratified flow structure at the first junction. 

This stratified flow structure was designed to maintain its shape until being sheared into droplets co- 

encapsulating with QDs and MBs at the second junction. Droplets are generated in the squeezing to 

transition regime (0.001 < 𝐶𝑎 < 0.005) (Gordon F. Christopher et al. 2008) where 𝐶𝑎 is the capillary 

number comparing viscous force and interfacial tension force. The droplets generated within this regime 

generally have a very small size distribution with its interface touching the channel walls, which makes 

the prediction of droplet volume based on its length more accurately. Droplet length ranges from 1.2𝑊𝑐  to 

1.8𝑊𝑐   for the flow rate ratio 0.6 ≤ 𝑄𝑀𝐷⁄𝑄𝑄𝐷< 0.8 (T. H. Nguyen et al. 2018; X. Chen and Ren 2017b). 

A high-speed CMOS camera (Phantom V210) mounted to the fluorescent microscope (TiE, Nikon) is 

used to capture the co-encapsulation and droplet-generation cycles (Figure 3). The throughput of interest 

here is to have sufficient number of QD-MB conjugates for quantification which is achieved by 
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generating relatively large droplets (8 to 10 nL), each containing 268 to 407 well-dispersed MBs with 

3nM QDs so as to cover the MBs’ surfaces37. 

In parallel, droplets containing oligonucleotides are generated (Figure 3b) at a comparable frequency by 

tuning the flow rate ratios of the dispersed and continuous phases (Supplemental Video). To ensure that 

each droplet generator performs robustly, they are decoupled by using two separate oil streams and a long 

channel after the cross generators. To achieve a one-to-one merging ratio, the sizes of these two streams 

of droplets are tuned to stay as close to each other as possible. 

 

 

One-to-one droplet fusion and droplet full-mixing 

As mentioned before, two streams of droplets are synchronized to enter the merger alternatively via the 

assistance of the oil bridge connecting the upper and lower parts (Figure 4). When a droplet from one 

stream arrives at the bridge location, it blocks one of its ends, pushing the oil into the other stream and 

thus increasing its flow rate and vice versa(Hong et al. 2010). The detailed working principle of the 

merger can be found in our previous work (X. Chen, Brukson, and Ren 2017). Briefly, the merger is 

Figure 5-3. (Left) CAD design of two droplet generators in parallel (1) for the co-encapsulation of MBs 

and QDs and (2) for the encapsulation with Oligonucleotide DNA; (Mid) A schematic; (Right) 

Experiments of two droplet generators in parallel. 
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designed so that the droplet cannot flow into the bypass region. When the leading droplet enters the 

merger, it is temporarily trapped inside the two arrays of pillars increasing its resistance and causing the 

oil to flow through the bypass channels. The next droplet is then forced to enter the two arrays of pillars 

merging with the leading droplet. 

 

To ensure one-to-one droplet fusion, the platform is operated under three main conditions. First, the 

droplet that enters the merger cannot flow through the bypass channels. Second, the ratio of droplet length 

relative to the chamber length (𝐿𝑑𝑟𝑜𝑝⁄𝐿𝑐ℎ𝑎𝑚𝑏𝑒𝑟) is adjusted to be in the range of 0.23 to 0.6 (X. Chen, 

Brukson, and Ren 2017). Niu et al. mentioned that the relative ratio of droplet size to a central branch of a 

merger influences successful droplet merging (X. Niu et al. 2008). Last, the spacing between the droplets 

to be merged is 1.5 ≤ 𝜆 < 2.5 because too large a spacing makes the leading droplet leave the merger 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-4. A cycle of one-to-one droplet fusion recorded by using a high-speed camera (frame rate: 

1,000 frames/s) 
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before the following droplet enters it and too small a spacing tends to merge multiple droplets. A droplet 

merging cycle takes from 0.5s to 0.7s. In practice, there are some uncertainties, such as fabrication 

defects, imperfect wetting conditions, and bubbles trapped in a dead volume zone of the bypass channel, 

which together lead to approximately 20 % of droplets not merging with each other. 

The merged droplets are pumped through a 30-turn serpentine channel to advance the QD-DNA 

conjugates on MBs’ surfaces. The asymmetric vortices induced by shear force between the channel walls 

and droplets promote the rapid mixing of different reagents inside droplets (figure 5-5). 

 
 

 

Figure 5-5. 3D chaotic mixing inside droplets promotes the QD-MB-DNA conjugates 
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Nucleic acid detection and validation of the QD-DNA conjugates 

Oligonucleotide-QD conjugates are collected at the outlet and remobilized from the MBs’ surfaces via a 

washing step. First, we remove the unbound QDs and oligonucleotide DNA strands from the collected 

solution using a magnet holder. Second, the collected MB-based conjugates are dispersed in the releasing 

buffer solution (EB) to release the QD-DNA conjugates, which are then transferred to a sterile microtube 

for the detection of nucleic acid using Forster resonance energy transfer (FRET) techniques (Figure 6). 

The FRET-based detection utilizes the QD-DNA as a probe to detect target oligonucleotides where the 

QDs serve as the donor and the Cy3-dye (attached to the 5-end of the target oligonucleotide) as the 

acceptor. The nucleic acid detection is conducted on built-in micro-paper-wells acquired using VSCO 

software on iPhone (Apple Inc., Cupertino, USA) as per an economic and efficient detection method 

developed by Noor and Krull (Noor, Shahmuradyan, and Krull 2013). 

 

 

Figure 5-6. The schematic and experiments show the nucleic acid detection based on FRET 

technique 
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Following the protocol developed by the same group (Sedighi and Krull 2018), Whatman cellulose 

chromatography papers are patterned with wax using a Xerox ColorQube 8570DN solid ink printer. An 

array of 8 by 4 circular reaction zones 3 mm in diameter is printed in each 60 x 26 mm2 paper. The printed 

papers are subsequently baked at 120oC for 2.5 minutes. The reaction zones on the paper are used without 

chemical modification. First, 2 𝜇𝐿 of QD-DNA conjugates are pipetted onto the circular reaction zones 

and allowed to distribute themselves in the paper pores for 1 minute. Next, the paper is exposed to UV 

light (120 W UV lamp, 356nm wavelength). Images shown before the hybridization are carefully 

recorded by taking out the color-balance function provided by CMOS sensor built in a phone camera. 

Subsequently, the same volume of target oligonucleotides is injected into the reaction zones. The 

hybridization reactions are allowed to proceed for 5-7 min. Thereafter, the post-hybridization image is 

captured under UV light. DNA hybridization between the QD-immobilized oligonucleotide and the target 

oligonucleotide places the Cy3 dye in the vicinity of QD, leading to the excitation of Cy3 dye through the 

FRET process. The camera setup was kept unchanged throughout the hybridization and imaging 

processes. Different concentrations of target strands (25 to 500 pmol) are allowed to hybridize to their 

complementary probe oligonucleotides immobilized on the QD surfaces. 

The intensities of red and green channels are extracted using ImageJ software, and the Red-to-Green 

(R/G) ratio is obtained to represent the FRET signal. The background has been subtracted during the 

image processing and the final R/G ratio is calculated by  

𝑅

𝐺
 𝑅𝑎𝑡𝑖𝑜 = (

𝐼𝑟

𝐼𝑔
) 𝐷𝐴 − (

𝐼𝑟

𝐼𝑔
) 𝐷 

where 𝐼𝑟 and 𝐼𝑔 correspond to the photoluminescence from each paper zone in the red and green channel, 

respectively (Noor, Shahmuradyan, and Krull 2013). DA is a subscript of the presence of donor and 

acceptor, whereas D stands for a measurement taken in the absence of an acceptor. Figure 7 shows the 

R/G ratio in the presence of 25 to 500pmol of target strands. The response linear increases in the range of 
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50 to 200 pmol, which illustrates the sensitivity of the QD-DNA conjugates (Appendix D). However, 

below 50 pmol of target oligonucleotide, the data cannot be quantified (limit of quantification). In both 

cases 175 pmol of oligonucleotides have conjugated with QDs and 300 pmol of oligonucleotides have 

conjugated with QDs. The bio-recognitivity of the probes that leads to creating FRET pairs is confirmed 

based on hybridization testing. Additionally, the reproducibility of the platform that integrates the solid- 

phase assay with a droplet microfluidic device for producing QD-DNA conjugates is evaluated. Each 

presented data point is a mean average of the data from five different experiments conducted in five 

different microfluidic chips using different batches of chemicals. 

To test the number of oligonucleotides that can be immobilized onto the QD surfaces, the number of 

oligonucleotides is varied from 175 pmol to 300 pmol. From the R/G results, the ratio increases with the 

oligonucleotide strands, suggesting that there are more oligonucleotide strands captured onto the surfaces 

of quantum dots. Nevertheless, that ratio does not significantly change when the number of 

oligonucleotides is greater than 300 pmol, which is considered to be the saturation number for 

oligonucleotide strands that can be immobilized on the surfaces of QDs (Sedighi and Krull 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-7. R/G ratios confirm the sensing capability of the produced QD-DNA 
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5.4 Project conclusion 

 
One of the benefits of this droplet microfluidic platform is the integration of multiple functions enabled 

by the continuous flow nature. The platform can be used for conjugating not only oligonucleotide-QD, but 

also possibly for conjugating oligonucleotide-gold nanoparticles (Sedighi and Krull 2019). Furthermore, it 

can also be applied to bio/chemical assays requiring two-step reactions. The idea of “plug and collect” 

clearly demonstrated through this work allows oligonucleotide-QD conjugates to be produced without 

environmental effects and tedious manual processes. The quality of oligonucleotide-QD conjugation, 

validated using a FRET-based DNA hybridization technique, further confirms the feasibility of using the 

droplet microfluidic platform for functionalizing particles’ surfaces. The washing steps for releasing the 

conjugates from MBs point to the direction of future work; for instance, integrating these steps and the 

detection onto one microfluidic device presenting a point-of-care bio-sensing opportunity. 
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Chapter 6: A hydrodynamic focusing formation considering viscosity 

contrast fluids integrated with droplet generation, and the effects on 

single cell encapsulation: an experimental study 

The work presented in this chapter is in preparation for the following article: 

 

Thu H. Nguyen, Carolyn L. Ren, “Hydrodynamic focusing formed by stratified flow of contrasting 

viscosity fluids, and its influence on the single (bio) particle encapsulation”, in preparation 

 
 

This work was presented in poster format at the following conference: 

 

Thu H. Nguyen, Sarah Chan, Evelyn Yim, Carolyn L. Ren, “Encapsulation of single stem cell inside 

Gelatin Methacryloyl (GelMA) droplet using a stratified flow with viscosity contrast strategy”, CSME – 

CFDSC Congress, June 2-3rd  , 2019, London, Ontario 

 
 

Thu H. Nguyen (Ph.D. candidate in the Department of Mechanical and Mechatronics Engineering) mainly 

investigated this study by designing a microfluidic platform, performed experiments and analyzed 

experimental data. Prof. Evelyn Yim (Department of Chemical Engineering, University of Waterloo) and 

Sarah Chan (Master’s candidate in the Department of Chemical Engineering, University of Waterloo) 

assisted in preparing bio-chemical samples (mouse mesenchymal stem cells (mouse MSCs), Phosphate 

borate buffer solution, gelatin-methacryloyl (GelMA)). Prof. Carolyn Ren supported this study and 

provided fruitful discussions. I would also like to acknowledge Jeremy (a Co-op student working in the 

Waterloo Microfluidic Laboratory) for help provided in the experimental discussion section. 

 

6.1 The scope of this project 

Droplet microfluidics has become a powerful platform for multiple applications in not only biological 

and chemical applications but also in tissue and cell engineering. Indeed, the technology enables high- 



 

 

throughput encapsulation of single cells inside separate droplets for further experimentation and analysis 

that would be very challenging in batch-based settings or in single-phase microfluidics. Currently, the 

encapsulation of single cells inside aqueous droplets using droplet-based microfluidic platforms has been 

achieved following two strategies: (1) inertial cell ordering in micro-channels, and (2) post-encapsulation, 

meaning isolating droplets containing only one cell after the encapsulation is required. Application of 

these strategies is limited by some practical constraints. For example, achieving the inertial cell self- 

ordering requires high flow rates and adequate space in a platform footprint for a curvature channel or a 

very long channel. Another way to achieve single encapsulation is by sorting the droplets containing only 

single cells downstream after the encapsulation process. To apply this method, cells are usually 

barcoded/labelled and specific cell concentrations should be determined. An external source must be used 

to detect and isolate the droplets of interest from the rest of the population. Most chemical/biological 

reactions in tissue engineering applications and biochemistry research require that multiple reagents be 

encapsulated with a single cell within individual droplets. Therefore, a platform is needed that not only 

enables encapsulation of single cells suspended in one fluid within another fluid, but that is also easy to 

implement in practice and does not require a large footprint. 

Chapter 4 successfully demonstrated a process in which a hydrodynamically focused stream with a 

viscosity contrast and a simple double-cross configuration enables the encapsulation of a single 1m 

magnetic bead within a quantum dot solution. Chen et al. previously used a similar strategy to 

successfully order 10 m micro polystyrene beads and then encapsulate single micro bead in individual 

droplets with a high rate (>50%). As mentioned earlier, when a new need arises for example 

encapsulation of 150 m embryoid body for tissue engineering studies, the entire channel network design 

fails and calls for redesign and optimization which requires extensive experience in droplet microfluidics 

and trial-and-error practice. To address this issue by providing a foundation for guiding the general design 

of double-cross for encapsulation of a wide range of particle sizes, a systematic fundamental study is 
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designed. The preliminary testing of encapsulation of 150 m embryoid body and the knowledge gained 

through the above two projects suggest that this fundamental study should focus on the width of 

hydrodynamic focusing under different experimental conditions because the width affects the ordering of 

the particles. This chapter describes an experimental study conducted to further investigate parameters 

influencing the formation of a hydrodynamically focused stream before droplet generation. 

 

6.2 Introduction of the project 

The impacts of microfluidic technology have been emphasized in many bio-related applications over the 

last two decades (Whitesides 2006; Goddard and Erickson 2009; Y. Zhu and Fang 2013; D. K. Kang et al. 

2014; Heath, Ribas, and Mischel 2016b; J. Wang et al. 2017; Scheler, Postek, and Garstecki 2019). In 

practice, compared to conventional multi-well plates, the dimensions of microchannels permit high- 

throughput and rapid manipulations, such as localizing, fusing, concentrating, and mixing reagents with 

cells (Breslauer, Lee, and Lee 2006; Stone and Kim 2001; J. Taylor, Stubley, and Ren 2008; Nan, Jiang, 

and Wei 2014). For example, by simply connecting a large channel (a few hundred micrometers in width) 

to many small channels (with widths of a few micrometers) oriented orthogonally to the large channel, the 

cell bodies of neurons can be placed in the large channel while cellular processes occur inside the small 

channels (A. M. Taylor et al. 2005). However, with single phase microfluidic methodologies, in some 

applications, cell stiction and adhesion to microchannel walls (PDMS channels) significantly limit the 

reusability of such devices (Ishikawa et al. 2011; Collins et al. 2015). Furthermore, evenly distributing 

bio-objects (polymer/bio-particles or cells) in drops for bioassays seems to be impossible using single 

phase microfluidic devices. In contrast, droplet microfluidic technology offers unique advantages 

(DeMello 2006; Baroud, Gallaire, and Dangla 2010; Dressler, Casadevall i Solvas, and DeMello 2017; 

Vladisavljević, Al Nuumani, and Nabavi 2017). For instance, single cells/particles can be enclosed inside 

pico-to-nanoliter droplets surrounded by an immiscible fluid. Thus, the chemical/biological reactions 

between cells and reagents are accommodated within a controlled micro-environment. Cells or bio- 

100 



101  

 

particles are also kept inside droplets, preventing their adsorption to the micro-channel walls. 

Furthermore, with microfluidic technology, the droplets containing single cells/particles can further be 

merged with other droplets or sorted at the hertz to kilohertz rate (Lai, Bremond, and Stone 2009; Z. Cao 

et al. 2013; Dong et al. 2016; X. Chen and Ren 2017a). Some review articles underline how well droplet- 

based microfluidic technology has been recently applied in the chemical and biological sciences (C. 

Zhang and Van Noort 2011; Yin and Marshall 2012; Lecault et al. 2012; Heath, Ribas, and Mischel 

2016b). This technology can potentially impact genetic and tissue engineering research consisting of gene 

expression (Spurgeon, Jones, and Ramakrishnan 2008), single cell genomics (Kalisky and Quake 2011), 

stem cell differentiation (Chung et al. 2005), cell sorting (Chabert and Viovy 2008; Johansson et al. 

2009), and so on. This wide range of applications draws attention to the need for methodologies that 

provide high throughput encapsulation of bio-objects; specifically, the means to achieve single-cell 

encapsulation is urgently needed due to the importance of single-cell level data (Lecault et al. 2012). 

Although there are methods for loading single cells/bio-particles into droplets, most are too limited for 

widespread adoption. For instance, bio-particles/cells that are well-dispersed in an aqueous phase can be 

enclosed in individual droplets following Poisson distribution. Therefore, the concentration of cells/bio- 

particles (#particles per volume) is usually diluted, generating many empty droplets (Köster et al. 2008a). 

As a result, reagent waste significantly increases. Another approach is using inertia flow to self-align 

cells/particles moving inside a high aspect ratio micro-channel (Edd et al. 2008; Lagus and Edd 2013a). 

This method is claimed to be superior to the Poisson distribution method. Another strategy is applying the 

secondary flow – a Dean flow induced inside a curved channel at high flow rate – to assist the self- 

ordering of cells/particles (Schoeman et al. 2014; Al-Halhouli et al. 2018). Despite the high encapsulation 

efficiency offered by these methods, they have the following limitations. First, to achieve cell self- 

ordering, a high flow rate (10 to 40 µL/min) must be used to induce inertia flow, which makes the droplet 

generation systems operate in the dripping to jetting regimes. Under these regimes, droplet sizes are not 
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homogeneous (C.V. > 5%) because of a series of tiny bubbles/droplets generated after the main droplets 

are pinched off (J K Nunes; S S H Tsai; J Wan; and H A Stone 2009; Kovalchuk et al. 2019). In contrast, 

droplets generated under the squeezing regime are highly monodispersed (C.V. < 5%) (X. Chen et al. 

2015; van Loo et al. 2016). However, droplets generated under the squeezing regime are usually larger 

than ones generated under the dripping regime. Therefore, adding an orifice at the pinching junction 

would help to generate smaller droplets (Anna, Bontoux, and Stone 2003; Ong et al. 2007; L. Wu et al. 

2017). Secondly, the requirement for high aspect ratio micro-channels would not be practical in reality 

because dust, or unwanted particles, etc. could not be removed and would block the channel. Moreover, 

the channel length required for cells/particles to reach their equilibrium positions is a function of the 

aspect ratio and diameter of those cells/particles. In some applications, to encapsulate single bio- 

particles/cells (ranging from 1 to 10 microns) inside droplets using the induced inertial flow approach, the 

length for focusing must be extended to 10cm, which is not practical in microfluidic chip designs (Dino 

Di Carlo et al. 2007; Dino Di Carlo 2009). If Dean flow is used to support self-ordering, the microfluidic 

device footprint must be enlarged to hold a curved (spiral) channel. 

 

 

Figure 6-1. Hydrodynamic focusing formation considering viscosity contrast fluids integrated with 

droplet generation, and the effects on single cell encapsulation 
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Lately, another strategy, briefly mentioned in Chen et al.’s study, has shown the potential of using 

stratified flow formed between viscosity contrasting fluids in single encapsulation (X. Chen and Ren 

2017b). This study mainly compares droplet generation between the cases of stratified flow dispersed 

phase and uniform dispersed phase. Different spanwise velocity distributions are formed between 10% 

Glycerol and 80% Glycerol, depending on whether the inner stream is the high or low viscosity fluid. 

However, this study does not focus on the experimental conditions for single encapsulation. In another 

study, the stratified flow structure in the dispersed phase has been applied to hold and align microbeads (1 

micron) before they are enveloped within droplets containing quantum dots (T. H. Nguyen et al. 2018). 

Even though the criteria for designing a platform have been discussed and the single encapsulation 

process demonstrated, the study did not explore multiple parameters (i.e., flow rates between phases, 

viscosity contrast ratio, geometries) that alter the focusing width of the middle stream of the stratified 

flow. 

This chapter experimentally studies the different parameters influencing the formation of hydrodynamic 

focusing integrated with droplet generation. The results section will discuss the optimized conditions for 

achieving the hydrodynamic focusing needed for single cell/(bio)particle encapsulation. This study 

provides information for researchers not only on the parameters affecting hydrodynamic focusing 

formation, which is coupled with droplet generation, but also on adopting this approach in other studies in 

biology, tissue engineering and drug discovery (Figure 6-1). As a demonstration, single mouse embryonic 

stem cells (mESCs) are encapsulated in droplets. Specifically, mESCs are prepared in a diluted gelatin- 

methacryloyl (GelMA) hydrogel and encapsulated within individual droplets containing a borate 

phosphate buffer (PBS). Stem cells have been chosen for this work because studying them potentially 

provides information needed by researchers and doctors in understanding diseases, developing drugs and 

creating diagnostic techniques (Pouton and Haynes 2007; Leeper, Hunter, and Cooke 2010; Herberts, 

Kwa, and Hermsen 2011). In general, stem cells can self-renew and differentiate into multiple lineages 



 

 

consisting of pluripotent stem cells and multipotent stem cells. Even though the cell population is 

genetically homogenous, scientists often observe that individual cells behave differently when they are 

encapsulated in the same environment (Hood et al. 2004). The differences in how cells respond to the 

environment can provide information on the control mechanisms in biological systems. Hydrogels such as 

GelMA are used to provide tissue-like environments, acting as a means of stem cell transportation. 

Furthermore, cellular environments offered by micro-gel vesicles can be tuned to support research related 

to stem cell transplantation, thus, maximizing the advantages of stem cell therapeutic studies (Choe et al. 

2018; Alkayyali et al. 2019; Castiaux, Spence, and Martin 2019) 

 

6.3 Experimental Design 

Before applying this approach in any application, we first explore the effects of parameters on the 

hydrodynamically focused stream forming between two dispersed fluids. This study uses a double-cross 

junction geometry, in which the first junction joins two dispersed phases and the second junction pinches 

droplets. Specifically, two miscible fluids of different viscosities are separately pumped into a 

microfluidic chip and meet at the first junction; where stratified flow is formed. The middle stream 

contains a mid-to-high viscosity fluid and is surrounded by a low viscosity fluid. A mixture of glycerol 

with different weight concentrations (30% w/w, 50% w/w, 70% w/w) is used as the mid-to-high viscosity 

fluid; whereas, pure de-ionized water is used as the low viscosity fluid stream. This stratified flow is then 

considered as the dispersed phase entering the second junction, where it is squeezed by a continuous 

phase to a critical point. Subsequently, droplets are generated. Silicon oil (20 cSt, surfactant free) is used 

for the continuous phase in all experiments. All fluids were purchased from Sigma Aldrich, Canada. The 

microfluidic device used in this study is designed to ensure that the channel network is not sensitive to 

any uncertainties, for instance, flow rate fluctuations during droplet generation, tubing compliance, 

materials for chip fabrication, etc. In brief, after fabrication, the cross-sectional shape of a microchannel is 

rectangular, and the channel height of each chip is assumed to be uniform. The actual channel width and 
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height are measured carefully before and after priming the micro-channels with oil following the method 

suggested by Glawdel et al. (Glawdel and Ren 2012a). 

 
There are three scenarios when two dispersed phases enter the first junction and form a stratified flow 

pattern before droplet generation, as mentioned in Chen et al.’s research (X. Chen and Ren 2017b). This 

present study focuses only on a case in which a mid-to-high viscosity fluid (DP1) is injected into a center 

stream, while a low viscosity fluid (DP2) is injected into the two side streams, as illustrated in Figure 6-3. 

The two fluid then form stratified flow inside the rectangular channel. This flow is driven by a pressure 

gradient along the microchannel under laminar conditions. In the beginning, when two dispersed phases 

join at the first junction and continuously flow downstream, a velocity contrast at the interface exists. 

Therefore, the mid-to-high viscosity fluid moves slower than the low viscosity fluid running along the two 

 

sides. Due to shear force presented at the interface, the axial velocity of DP1 tends to increase while that 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6-2. A range of hydrodynamic focusing widths suitable for achieving single encapsulation. 

Middle stream contains 50% glycerol mixture and the two side streams contain DI water; Silicon oil 

20cSt is used for a continuous phase 
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of DP2 reduces until there is no velocity contrast between the two dispersed phases. Additionally, the 

width of each stream is inversely proportional to the average velocity of its respective fluid; thus, the 

width of DP1 is thinner when the axial velocity of DP1 increases, resulting in hydrodynamic focusing. 

This flow pattern is similar to the hydrodynamic focusing that has been indicated as the best choice for 

converging single cells/bio-particles in the middle of a micro-channel. This method is popular in 

developing flow-cytometry platforms (L. Wang et al. 2007; Mao et al. 2009; Di Carlo et al. 2010). 

When coupled with droplet generation, the hydrodynamically focused stream occurring between two 

cross junctions is affected by multiple parameters: the dynamic viscosity of fluids (𝜇1, 𝜇2, 𝜇𝑐), the flow 

rates of different streams (𝑄1, 𝑄2, 𝑄𝑐), the geometries of micro-channels (width and height named 

𝑊1, 𝑊2, 𝑊𝐷𝑃, 𝑊𝐶𝑃, 𝐻, 𝐿𝑗 ), and the interfacial tension of the dispersed and continuous phases (𝜎𝐷𝑃⁄𝐶𝑃). 

 
𝐹𝑓𝑜𝑐𝑢𝑠𝑖𝑛𝑔 = 𝑓(𝑄1, 𝑄2, 𝑄𝑐, 𝜇1, 𝜇2, 𝜇𝑐, 𝜎𝐷𝑃⁄𝐶𝑃, 𝑊1, 𝑊2, 𝑊𝐷𝑃, 𝑊𝐶𝑃, 𝐻, 𝐿𝑗) (1) 

 
where 1 & 2 are written as subscript for dispersed phase 1 and dispersed phase 2, respectively; DP & CP 

are subscript for the total dispersed phase and the continuous phase. The Buckingham 𝜋 Theorem is 

employed to group the parameters involved together so as to understand their physical impacts on the 

focusing stream. Thus, the systematic non-dimensional function of hydrodynamic focusing is suggested to 

be: 

𝑊∗  = 𝑓(𝜙, 𝜆, 𝜂, 𝐶𝑎) (2) 

 
 where 𝜙 = 𝑄𝑑/𝑄𝑐  represents the flow rate ratio of a dispersed phase to a continuous phase;  

𝜆 =
𝑄2

𝑄1 + 𝑄2
=

𝑄2

𝑄𝑑
 

represents the flow rate ratio of the two dispersed phases corresponding to the total flow rate of a dispersed 

phase (𝑄𝑑); 𝜂 is the viscosity ratio between two dispersed phases; and Ca is the capillary number 

representing the competition between the viscous force and the interfacial force. 
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Preliminary results also indicate that the combination of the flow rate of two dispersed phases and the 

viscosity contrast between them strongly influence the hydrodynamic focusing width. Additionally, the 

Capillary number and the flow rate ratio between the total dispersed phase and the continuous phase 

impact droplet generation (droplet size, generation regime). Hence, these four parameters are the main 

ones that will be studied throughout this chapter. Varying those key parameters will alter the 

hydrodynamic focusing width, making it compatible with the size of bio-objects and allowing them to be 

focused before encapsulation (Figure 6-2). Indeed, in most single cell encapsulation studies, cell sizes are 

in a range of 1 to 20 microns. 

 

Microfluidic design 

Overall, the length of the main channel is designed to be 5cm to hold 30 to 50 droplets so as to minimize 

uncertainties due to the existence of droplets. An orifice is added for two purposes: (1) to differentiate 

between the upstream and downstream parts, (2) to induce strong hydrodynamic focusing effects (Anna, 

Bontoux, and Stone 2003; Ong et al. 2007; L. Wu et al. 2017). The channel widths of all dispersed phases 

are set to be 100 µm, while the width of a continuous phase is slightly different (125 µm), so that the 

width ratio (Λ∗) at the second junction is 1.25. The aspect ratio of the channel is 𝐻∗  =  
𝐻

 
𝑊𝑑 

= 
3  

. The length 
5 

 

connecting two junctions is 500 µm. This length should be designed properly so that the flow of a 

dispersed phase can fully develop before it reaches the second junction. If this distance is too short, the 

pressure fluctuation during droplet generation can cause oscillation at the first junction, resulting in 

unstable hydrodynamic focusing. However, this distance should not be too long, so that the diffusion 

between the two dispersed phases is insignificant, which can be neglected. 

From the work presented by Nishijima and Oster (1960), the diffusion in glycerol-water system is 

related to the weight percentage concentration of glycerol. Interestingly, the diffusion coefficient, 

approximately 1  × 10−5  (cm2/s), does not depend on the glycerol concentration up to 70% w/w. 
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However, the dynamic viscosity of the glycerol-water mixture changes (Nishijima 1960). This conclusion 

has been confirmed by a recent work from Takamur et al. (Takamura, Fischer, and Morrow 2012). 

Therefore, in this study, the concentration of glycerol (% w/w) used in dispersed phase 1 is altered from 

30% w/w (2.16 mPa.s) to 50% w/w (5.1 mPa.s) and up to 70% w/w (19.96 mPa.s). The dynamic viscosity 

is measured by using a rheometer (Brookfileld DV III). Glycerol has been chosen because of its uses in 

tissue engineering, serving as a potent inhibitor of cell proliferation (Wiebe and Dinsdale 1991). 

 
 

 

Figure 6-3. Design of a microfluidic chip 
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Experimental validation 

 

6.3.2.1 Method for calibrating and measuring focusing width 

 

 

 
 

 
All experiments are recorded using a CMOS high-speed camera (Phantom, V210) and a CCD camera 

(Qimaging) that are integrated with a phase contrast microscope (Nikon, Eclipse Ti). Images and videos 

are captured in 8-bits grey-scale format. The dynamics of droplet generation is recorded using a high- 

speed camera that offers a high frame rate (up to 2000s frames per second in full scale resolution). 

Figure 6-4. a) Hydrodynamic focusing widths taken using Q-imaging camera under different flow- 

rate-ratio conditions. b) Intensity recorded using NIS Element Advance. The bandwidth of the 

focusing narrows down when the flow rate ratio increases. c) ImageJ used to re-check the intensity 

measurement (presented in grayscale format). 
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However, the width of the focusing is retrieved by measuring the intensity differences between the phase 

contrasts induced by different fluids (Figure 6-4). During experiments, intensity variations are recorded by 

using a CCD camera and software (NIS Element Advance) (Figure 6-4b). The x-axis represents the 

number of pixels along the width of a channel, and the y-axis represents the intensity (a.u.) measured in 

real-time. To retrieve the width of the focusing in dimensional units (microns), both the number of pixels 

and size of each pixel must be calibrated. To ensure the focusing width can be analyzed based on the 

width of the contrast profile, representing the differences between two dispersed phases, images are also 

processed using ImageJ software (NIH, USA). The profile plots for each image agree well with the 

intensity plots taken by the NIS Element Advance software (Figure 6-4c). 

 

6.3.2.2 The effect of viscosity contrast between two dispersed phases 

To study the effect of the viscosity contrast between the two dispersed phases on the hydrodynamic 

focusing width, the viscosity contrast and the flow rate ratio between them are varied. Several 

experiments are performed under the same condition: fixed Ca and 𝜙. In Figure 6-5, for each flow rate 

ratio between two dispersed phases associated with the total flow rate of the main dispersed phase, 𝜆 = 

1 

1+
𝑄1 
𝑄2 

, the width of the hydrodynamic focusing (middle stream) slightly decreases when then the viscosity 

 

contrast between the two dispersed phases increases. From observation, the width under consideration is 

suggested to lie between two points showing minimal intensity around the stream. If a stratified flow is 

formed by two immiscible fluids (Cubaud and Notaro 2014), the edge between them is obviously 

recognized by their interface. However, in this work, a stratified flow between the two cross junctions is 

formed by two miscible fluids so that the edge between them is not as sharp as in Cubaud et al.’s study, 

especially when the viscosity contrast between two dispersed phases is low, 𝜂 = 2. Therefore, the actual 

focusing width, as presented in Figure 6-5a, is computed by using the full half width maximum method. 

The focusing width is also presented in non-dimensional format by normalizing by the width of the 
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𝑓 

𝒇 

 

channel. Each data point is a mean average value taken from five different experiments using a new 

device for each test. By varying 𝜆 from 0.6 to 0.85, the normalized focusing width is realized to be within 

a range of 0.32 ≥ 𝑊∗ ≥ 0.13. Thus, the width (≈ 32 𝜇𝑚 ≥ 𝑊𝑓 ≥ ≈ 13 𝜇𝑚) is considered to be suitable  

for aligning cells/bio-particles (in 1 to 10 microns) before their encapsulation. Interestingly, the 

normalized focusing width does not significantly change when 𝜆 = 0.9, even though the viscosity ratio is 

10 times greater. This result suggests that the focusing width is mainly influenced by the flow rate ratio 

between two dispersed phases and is proportional to that ratio, 𝑊∗  ∝ 𝑘𝜆, where 𝑘 is a constant related to 

the viscosity contrast, 𝜂, between the two dispersed phases. 
 

 
Figure 6-5. Normalized focusing width (𝑾∗ ) versus the flow rate ratio between two dispersed phases, 

corresponding to the total dispersed phase (fixed condition: 𝝓  ≅ 𝟏. 𝟒; 𝑪𝒂  ≅ 𝟏 × 𝟏𝟎−𝟑). Scale bar is 100 

µm. 

 
 

Moreover, the development of hydrodynamic focusing is monitored by measuring the width of the 

focusing stream from right after the first junction to before the droplet generation (Figure 6.6). As the 

formation of viscous hydrodynamic focusing begins, the velocities between the inner stream and the outer 

stream differ. When the stratified flow is formed and developed, the width of the focusing keeps varying 

when the flow is not fully developed. The induced shear stress at the barrier between two fluids balances 
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the velocity contrast between them so that the transverse velocity along the channel width is zero. After 

 

the flow is fully developed, and there is no variation in the focusing width. The transient length (𝐿𝑠) is 

measured and normalized to the width of a dispersed phase instead the length of between two cross 

junctions. From experiments, at the low flow rate ratio, when the viscosity contrast between the two 

dispersed phase fluids has been varied, the transient length of the focusing width is different; however, 

that difference is only noticeable when the flow rate ratio between the two dispersed phases is high. These 

results indicate that the flow rate ratio between the two dispersed phases has a crucial influence on the 

width of the focusing and a greater impact the viscosity contrast. Additionally, it is noted that the viscosity 

ratio between the two fluids is not very high, 2 ≤ 𝜂 ≤ 20, resulting in the outer fluid (DI water) not fully 

lubricating the inner fluid (glycerol mixture). 

 
Figure 6-6. The formation of 𝑳∗ depending on the viscosity contrast between two miscible dispersed 

phases and the flow rate ratio between them (fixed condition: 𝝓 ≅ 𝟏. 𝟒; 𝑪𝒂 ≅ 𝟏 × 𝟏𝟎−𝟑). The scale bar 
is 100 µm. 

 

 

6.3.2.3 The effects of flow rate ratio and Capillary number 

As mentioned previously, this microfluidic network is designed to be insensitive to any induced 

uncertainties, so that the local pressure fluctuation during droplet generation at the second junction does 
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not influence the formation of the focusing width, as long as the flow rate ratio between the two 

dispersed phases is kept constant (Figure 6.7). Furthermore, the length between the two junctions should 

be long enough for the developed-flow. To vary the size of droplets, the flow rate ratio between the total 

dispersed phase and the continuous phase has been varied and the Capillary number is fixed in the range 

of 0.001 ≤ 

𝐶𝑎 ≤ 0.005 to ensure droplet generation in the squeezing regime. Figure 6.8 shows when the flow rate 

ratio between the total dispersed phase and the continuous phase is manipulated, droplet sizes respond 

accordingly, 2.65 ≤ 𝑉∗ ≤ 3.75. In addition, the flow rate ratio between two dispersed phases is also 

tuned from 0.65 to 0.85 to alter the focusing width. 

 
Figure 6-7. Stability of a normalized focusing width versus a variation of the flow rate ratio between 

a dispersed phase and a continuous phase (𝐟𝐢𝐱𝐞𝐝 𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧: 𝝀 ≅ 𝟎. 𝟖; 𝜼 = 𝟓; 𝑪𝒂 ≅ 𝟏 × 𝟏𝟎−𝟑). The 
scale bar is 100 µm. 

 

 

At the flow rate ratio 𝜆 from 0.6 to 0.65, the dispersed phase is considered to be filled with 26% to 

32% of glycerol mixture, which is estimated based on the normalized focusing width (𝑊∗) depending 

on the viscosity ratio between the two dispersed phases. In contrast, the dispersed phase is considered to 

filled with 10% to 12% when 𝜆 ≅ 0.85. From experiments, although the total flow rate ratio between the 
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total dispersed phase and the continuous phase has been kept stable, the droplet size is slightly smaller 

when 𝜆 is close to 0.65 and larger when 𝜆 is close to 0.85 (Figure 6.8). This trend was also observed in 

the study by Chen et al. (X. Chen and Ren 2017b). Under the same 𝜙 condition, when a total dispersed 

phase is filled with only high viscosity fluid, a droplet is smaller than one that is generated when a total 

dispersed phase is filled with only water. In detail, the filling time equals the time it takes for the total 

dispersed phase to enter and fully block a cross junction. This time is influenced by the resistance of a 

dispersed phase experiencing this process, which is a combination between the interfacial force for 

holding the dispersed phase penetrating to a main channel and the pressure gradient along an interface. 

Therefore, a lower viscosity fluid has a longer filling time compared to a mid-to-high viscosity fluid. 

The viscosity ratio of the total dispersed phase depends on the variation of the flow rate ratio between 

two dispersed phases, 

𝜇𝐷 ∝  
𝑄1

. According to these results and the work by Chen et al., it takes a shorter time for the filling 
𝑄2 

 

stage and a longer one for the necking stage when a dispersed phase is more occupied by mid-to-high 

viscosity fluid and vice versa. 

 
Figure 6-8. Normalized droplet volume versus a variation of flow rate ratio between a total dispersed 

phase and a continuous phase, at different flow rate ratios between the two dispersed phases (Fixed 

condition: 𝜼 = 𝟐). The scale bar is 100 µm. 
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6.3.2.3.1 Role of local geometry 

 

Several lines of evidence suggest that the geometry of a junction between two phases impacts droplet 

generation (Hashimoto et al. 2008; W. Lee, Walker, and Anna 2009; L. Wu et al. 2017). Specifically, at a 

low Capillary number (in the squeezing regime), the pinching off of droplets is affected by the dimensions 

of the orifice (Anna and Mayer 2006). According to Anna and Mayer, under a geometry-controlled regime 

– squeezing regime – droplets are highly uniform (monodispersity > 98%). In this work, an orifice 

configuration is located downstream, at the second junction, to provide highly monodispersed droplet 

generation. Furthermore, the escalating pressure of the continuous phase forces the dispersed phase to 

squeeze into a narrow gap, which maintains the high focus during droplet generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9. Unstable focusing tip during the filling stage in the case without an orifice. Experimental 

conditions: 𝑪𝒂 = 𝟎. 𝟎𝟎𝟓, 𝝀 = 𝟎. 𝟖𝟓, 𝝓 ≅ 𝟎. 𝟒, 𝜼 = 𝟓. The scale bar is 50 µm. 
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On the other hand, without an orifice, although the focusing tip is stable during the necking stage, it is 

not very stable during the filling stage. From observation, during the filling stage, while the focusing tip 

tends to continuously move forward, the surrounding flow tends to expand and cover the entire junction. 

At the end of the filling stage and before the necking stage, existent small vortices occur in the dispersed 

phase around the focusing tip. Thus, the tip has been disturbed (Figure 6.9). The disturbance happens 

only briefly and so might not affect the entire formation of the inner focusing stream. However, it might 

affect the single cell/bio-particle encapsulation process if cells/particles become trapped by the induced 

vortices. 

 

 

6.3.2.4 Demonstration of single stem cell encapsulation 

This section will describe the encapsulation of single stem cells in droplets following the optimized flow 

rate combinations and the viscosity contrast between two dispersed phases. In detail, mouse embryonic 

stem cells ( 5 × 106 cells/mL) are dispersed in a GelMA 2.5% wt solution and injected into dispersed 

phase 1. Phosphate buffered saline is injected into dispersed phase 2. Silicon oil is used for the continuous 

phase. Although the hydrogel has non-Newtonian fluid properties, by which the viscosity is varied with 

the shear rate, in this study, the GelMA solution has been diluted to 2.5% wt. Thus, the non-Newtonian 

fluid properties can be ignored. 
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Figure 6-10. (Left) Schematic of single stem cell encapsulation. (Right) Experiment showing single stem 

cell within droplets under the conditions: 𝑪𝒂 = 𝟎. 𝟎𝟎𝟐;  𝝓 = 𝟏. 𝟒;  𝜼 ≅ 𝟓;  𝝀 = 𝟎. 𝟕 
 

To encapsulate single stem cells inside droplets, the entire platform functions under a fixed condition: (1) 

droplets are generated in the squeezing regime (𝐶𝑎 ≅ 0.002); (2) the flow rate ratio between two 

dispersed phases is varied in a range from 0.65 to 0.75; (3) the viscosity contrast between the two fluids is 

similar to that between 30% glycerol and water (𝜂 ~2). The flow rate of the continuous phase is kept 

constant ≅ 1.5 𝜇𝐿/𝑚𝑖𝑛 and the flow rate of the total dispersed phase is ≅ 2.1 𝜇𝐿/𝑚𝑖𝑛. In terms of 

geometry, the length between the two cross junctions is 500 µm, and the orifice width (𝑊𝑜𝑟 ) is set at 

50µm.  Figure 6-10a shows that with this platform, single mouse stem cells can be successfully enveloped 
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𝑓 

inside droplets containing GelMA and phosphate buffered saline. Considering the number of droplets 

having one cell over the other droplet generated gives an efficiency for the process of up to 70%. In 

Figure 6-10, the focusing width between two fluids is not observed clearly due to the low contrast 

between the GelMA 2.5% wt and the phosphate buffered saline solution. 

 
Figure 6-11. Cells aggregate upstream causing non-uniform cell distribution in dispersed phase 1, 

generating empty droplets downstream 

 

The encapsulation process is successful at first; however, after one hour of experiments, cells start to 

aggregate at the inlet of dispersed phase 1. Hence, these cells are non-uniformly distributed in the prepared 

solution. As a result, many empty droplets are generated, decreasing the encapsulation efficiency of the 

single encapsulation process (Figure 6-11). 

 

6.4 Conclusion of the project 

In summary, the impacts of the flow rate ratios between phases and the viscosity contrast between two 

dispersed phases on the width focusing in between the two junctions have been systematically 

investigated. Moreover, the influence of the orifice on the focusing tip during droplet generation has been 

discussed. As a result, this study offers optimized experimental conditions for achieving a thin 
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hydrodynamic focusing width, 0.15 ≤ 𝑊∗  < 3.2, which can be used for the single encapsulation that is 

useful in single cell studies. For instance, using the experimental conditions, described in this thesis, 

single mouse stem cells have been successfully encapsulated inside droplets containing two different 

reagents – GelMA and phosphate buffered saline, with the encapsulation efficiency of up to 70%. A 

double cross junction configuration is suggested not only for achieving single encapsulation of cells/bio- 

particles (in microns); but also for enveloping single embryoid bodies (3D aggregates of 1000 mESCs) 

within droplets to screen their development into mini-organs. 
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Chapter 7: Conclusion and recommendations for future work 

 
7.1 Conclusion of the thesis 

Droplet-based microfluidic devices are promising tools for advancing the performance of bio-chemical 

assays. Specifically, to be generated from low to high frequency (up to 10 kHz), each droplet (CV < 3%) 

acts as an individual vesicle carrying multiple reagents and bio-particles/cells. While these droplets are 

traveling inside microfluidic networks, they are enveloped by immiscible oil phase, which prevents the 

precipitating of substances and cross contamination between different droplets and between them and 

channel walls. Furthermore, the volume of droplets varies usually from nano-liter to femto-liter which 

advances the mass transfer inside droplets. Even though microfluidic systems function under low Reynold 

number conditions, the chaotic advection inside droplets is still achievable, particularly, when the droplets 

pass through serpentine micro-channels. As a result, the rapid and homogeneous mixing of bio-chemical 

components inside droplets is enhanced. Fast mixing is one of the key features making droplet-based 

microfluidic technology attractive to researchers and scientists. Additionally, generated droplets can be 

manipulated downstream, such as by merging them with other droplets; splitting them into daughter 

droplets to increase their capacities, trapping them in micro-wells for screening, and so on, enabling 

development of Lab-on-a-chip devices. 

Despite extensive growth of this technology, its commercialization remains restricted due to limitations, 

such as a lack of robust designs that includes multiple compartments (to either actively or passively 

control droplets), plus, a scarcity of fabricating platforms and scaling up products. To expand the uses of 

droplet-based microfluidic platforms in multiple applications (i.e, cell studies, analytical chemistry and 

diagnostics) and narrow the gap between microfluidic research and other science studies, it is important 

(1) to make platforms easy to use and fabricate, (2) to be able to integrate them with other components so 

as to increase a platform’s capabilities, and (3) to provide experimental guidelines for users. In response 
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to these three main requirements, the three projects discussed in this thesis have been designed and 

evaluated. In particular, this thesis focuses on investigating a strategy for encapsulating single/multiple 

(bio) particle/s within droplets containing multiple reagents. A double-cross configuration with viscosity 

contrast stratified flow is proposed. In detail, the first junction is where two dispersed fluids meet, then 

form stratified flow; and the second junction is used for generating droplets, as well as encapsulating (bio) 

particles inside droplets. Hypothetically, to hold and align the (bio) particles before they are loaded into 

droplets with other reagents, a middle stream of stratified flow formed by two miscible fluids, which 

contains a mid-to-high viscosity fluid, should be controlled to form a thin focusing stream. 

In the first project, as discussed in Chapter 4, this strategy has been applied for encapsulating single 

magnetic bead (1 micron) with quantum dots that are prepared in aqueous solution. A double-cross 

junction is coupled with a series of serpentine channel downstream to provide a rapid mixing mechanism 

inside droplets, resulting in homogeneously coating the beads with quantum dots. Overall, this strategy 

cannot only can be applied to achieve the immobilization of quantum dots in micron magnetic beads, but 

also used in other one-step coating (bio) particle applications. Continuing the first project, the second 

project, as described in Chapter 5, indicates the ability to combine the existent platform having a double- 

cross junction configuration with more complex compartments, such as another droplet generator, a 

merging chamber, and a series of serpentine channels downstream. This project successfully achieved a 

main goal of providing a “plug and collect” microfluidic platform for biochemists to use in the two-step 

conjugating of oligonucleotide strands with nanoparticles, which are immobilized on solid magnetic 

beads. In addition to the capacities to separately generate two chains of droplets in parallel, merge them 

alternatively, and mix reagents inside droplets uniformly, this platform is driven by a pressure system and 

can be easily fabricated using a standard soft-lithography technique. Therefore, this approach presents one 

step towards narrowing the gap between the academic research and commercialization products. As 

presented in Chapter 6, the experimental study offers an experimental guideline for achieving a thin 
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focusing stream. The impacts of parameters on the formation of hydrodynamic focusing coupled with 

droplet generation are investigated throughout this study. With the optimized experimental conditions 

provided, single mouse embryonic stem cells have been successfully encapsulated inside droplets that 

contain diluted GelMA solution and phosphate buffered saline solution. Compared to other 

methodologies, this strategy is attainable because of the design simplicity that allows researchers to inject 

multiple reagents and simultaneously encapsulate (bio) particles inside droplets. Furthermore, this method 

does not need a high flow rate to order cells/particles before the encapsulation, which could potentially 

affect cell membrane rates; as well as, a large footprint for long straight/curvy channels are not required. 

 

7.2 Recommendations for future work 

 
The results from this thesis’s research have shown that a double-cross junction and hydrodynamic 

focusing stream formed in between are possible. However, many aspects should be further studied. For 

instance, the experimental study, as presented in Chapter 6, does not fully cover the impacts of geometries 

(i.e, the angle created in between streams, the aspect ratio and the width ratio) on the hydrodynamic 

focusing width. Especially; at the second junction, the droplet generation is a function of multiple 

parameters, including the aspect ratio and the width ratio. Moreover, the influences of surfactant and its 

concentration have not been investigated in this study. 

In this thesis, the two-sided flow (dispersed phase 2) surrounding the hydrodynamic focusing is only 

filled with one type of fluid (DI water). In future work, the inlet of the dispersed phase 2 could be split 

into two so that researchers can inject three different reagents and envelope them with (bio) particles 

within individual droplets. In the current study, the width ratios between dispersed phases are proportional 

to the flow rate ratio between them. This ratio can be considered to estimate the volume fraction of 

reagents inside a single droplet, suggesting a volume concentration of each fluid inside a droplet. 
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Embryoid body 

 

However, a model to precisely estimate the concentration of each reagent that is loaded into individual 

droplets should be further investigated. 

The approach discussed in this thesis for encapsulating single cells/particles in droplets can be further 

employed for encapsulating single embryoid bodies in droplets. The materials that are encapsulated with 

embryoid bodies need not only be aqueous solutions but could also be hydrogel, mimicking the tissue 

environment for cell and mini-organ studies. Some preliminary experiments have been conducted (Figure 

7-1). Nevertheless, the current challenges are listed as follows: (1) injecting embryoid bodies into a 

microfluidic device without breaking them; (2) working with different polymer solution to create different 

tissue environments, incomplete understanding of polymer fluid properties (i.e, non-Newtonian fluid 

behaviors, viscoelasticity, etc.). Thus, efforts to discover a model for generating droplets considering non- 

Newtonian fluid, to explore a stratified flow formed with viscoelastic fluids, and to employ these models 

in tissue engineering applications are crucial. Furthermore, densities and shapes of embryoid bodies 

should also be concerned in an updated study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1. Embryoid bodies encapsulated within hydrogel droplets 
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Lastly, before ending this thesis, I would like to suggest another method to enhance commercialized 

microfluidic products. Compared to the other traditional methods to fabricate microfluidic devices (hot 

embossing, hard-lithography, silicon wafer etching), soft-lithography is the best option. Nonetheless, this 

technique is not feasible for using in scaling up microfluidic products. Another inexpensive but sufficient 

method to fabricate microfluidic devices, such as the low force stereo-lithography technique (a 3D 

printer), should be carried out. Compared to the soft-lithography technique, the stereo-lithography 

technique is promising for manufacturing microfluidic devices. It would also allow researchers to explore 

initial ideas with low-risk. For instance, a microfluidic device with multiple channel heights would be 

easy to fabricate using a 3D printer, instead of a soft-lithography technique which actually requires 

control in coating multiple photoresist layers (Figure 7-2). Moreover, microfluidic devices can be made 

with different materials by replacing different resins. However, the current problem with this technique is 

the printing resolution, resulting in significant surface roughness. The roughness can lead to a non- 

uniform surface property that could potentially cause partial wetting issues, influencing droplet generation 

and droplet transportation. Thus, a sufficient coating method to treat surface of micro-channels, fabricated 

using this technique, should be carefully characterized. 

Figure 7-2. A microfluidic platform printed using a Formlab3 3D printer 
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Appendix A 

 
Comparing fluorescent intensity at the inlet and outlet to 

confirm conjugation yield 

A – 1. Evaluating the conjugate yield 

To evaluate conjugtion yield, the fluorecent intensity of QDs at the inlet (prior to conjugation) and 

outlet (post conjugation) are compared. Conjugation-yield efficiency is estimated as: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (1 −  
# 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐵𝑄𝐷 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑖𝑚𝑎𝑔𝑒𝑠

# 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑄𝐷𝑠 𝑖𝑚𝑎𝑔𝑒𝑠
) × 100   (A-1) 

 

 

 

where white pixels represent the concentration of QDs shown in binary images. Equation (A-1) indicates 

A1 A2 

Grayscale to Binary 

B1 B2 

Figure A-1. A1) A grayscale image of the inlet with QDs well dispersed, A2) The binary image converted 

from A1 using the developed MATLAB code. B1) A grayscale image of the outlet with QD-MB 

conjugates. B2) The binary image converted from B1 using the developed MATLAB code. 
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the concentration of the excess QDs after conjugation.A higher determined value means a lower 
 

concentration of excess QDs after conjugation, indicating a higher conjugation yield. The image directly 

obtained from the microscope is in gray scale and is converted to a binary image using an in-house 

written MATLAB code with a treshold of 18 for white pixels (Figure A-1). The total number of pixels 

for all images is 480000 pixels (600x800). 

  
 

 
The threshold of 18 is chosen because the value of the gray pixel is 17, and when a threshold of 17 or 

below is chosen, the binary image of the outlet shows many more MB-QDs conjugates than what are 

observed in the corresponding gray scale image (Figure A-1(a)). The threshold cannot be too high 

a) 

Threshold set at 17 or lower 

 
c) 

Threshold set at 18 

b) 

Threshold set at 35 or higher 

 
d) 

Threshold set at 34 

Figure A-2. a) When the threshold is set at 17 and below, the binary image of the outlet shows more 

white pixels (a higher concentration of MB-QDs conjugates) than is observed in the corresponding gray 

scale image; b) when the threshold is set at 35 or higher, the binary image of the inlet with QDs well 

dispersed presents a lower number of white pixels than is desirable supposed to be, i.e, the original 
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because that might result in the loss of white pixels representing QDs (Figure A-2(b)). In this study, the 

maximum threshold is set up as 35. In order to ensure that choosing a threshold within the range of 18-

35 does not influence the efficiency determined for Equation (A-1), the same image was processed based 

on different threshold values, including 18, 20, 25, 28, 30 and 34, which all produce the same results. 

The images processed with the threshold values of 18 and 34 are presented in Figure A-2(c) and (d) 

respectively. 

Table A1 provides information for the binary images of a typical inlet with QDs well dispersed before 

conjugation, and the corresponding outlet where both MB-QD conjugates and excess QDs exist. The 

efficiency is around 98.4 based on the information provided in Table A-1. 

 
 

Table A-1: Information on the binary images for the QD solution prior and post conjugation 
 

 QDs at the inlet 

(binary image) 

MB-QD conjugate 

(binary image) 

Size of image (pixels) 600x800 600x800 

Threshold value of white pixel 18 18 

# of white pixels 394859 6198 
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A – 2. Method for evaluating intensity of the conjugation inside droplets 
 

 

The fluorescent image taken in the RGB format is transferred to the monogram image (8 bits) for image 

processing. Under the monogram 8-bits image, the pixel value varies from 0 to 255. The conjugation is 

confirmed by processing the images, as in Figure A-3. When droplets contain a single MB-QD conjugate, 

the highest peak value (> 100) of the intensity profile plot is induced due to the full coverage of QDs on 

MB surfaces; whereas, the highest value for the background is 60. 

Figure A-3. Steps to evaluate conjugation occuring inside droplets 
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Appendix B 

 
Single encapsulation 10 um sized polystyrene bead 

 
Similarly to the designed discussed in Chapter 4, this design is used to encapsulate micro-beads, ~4 to 10 

 

𝜇𝑚 in diameter, in aqueous droplets. The channel widths of all fluidic streams are consistently set at 100 

um, and channel height is 60 um (before the PDMS swelling). The encapsulation of large micro-particles 

is tested to confirm the hypothesis that a double cross-junction and a hydrodynamic focusing induced by 

viscosity contrast fluids can be used as an approach for single encapsulation of particles. Figure B-1 

illustrated the encapsulation of polystyrene (PS) particles (𝜌 = 1.055 𝑔/𝑐𝑚3) in aqueous droplets, in 

which the PS particles are prepared in a mixture of 80% wt glycerol. The droplet generation frequency is 

95 to 110 Hz. Using this approach, single encapsulation is enhanced when a droplet is generated. 

 
 

 

Figure B-1. Experimental result showing the single encapsulation of 10 um polystyrene bead inside 

droplets using a double cross junctions approach and stratified flow with viscosity contrast fluids 
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Appendix C 

 
A complex microfluidic circuit to an electric circuit analysis 

 
The functional performance of passive microfluidic designs mainly depends on channel dimensions and 

the precision of fabrication. The entire microfluidic network is well-connected, so any event happening in 

this network will change local and global hydrodynamic resistance. Thus, the microfluidic network, 

specifically a complex one, should be designed to be insensitive to multiple uncertainties, such as 

fabrication defects or local resistance changes, etc. The numerical simulation – Computational Fluid 

Dynamics (CFD) – can help to illustrate the fluid flow in detail and accurately; however, the high level of 

physical details as well as multiple parts integrated in one design will cause high computational cost. 

 

Figure C-1. Electric circuit analysis is used to simplify a complex droplet microfluidic system. 
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As discussed in Chapter 5, based on the analogous behavior of hydraulic and electric circuits with the 

associations of parameters (i.e, pressure to voltage, volumetric flow rate to current, hydraulic resistance to 

electric resistance, etc.), the applications of circuit methods are used to simplify a complex microfluidic 

design with multiple functions. The circuit analysis offers rapid adjustments of pressure-driven laminar 

flow in micro-channels; therefore, the prognosis for the microfluidic design and the system’s performance 

can be predicted in advance of fabrication. Particularly, this design includes three main parts, illustrated in 

Figure C-1. Part a) and c) represent the electric circuits that are used to simplify the encapsulation 

coupling with the droplet generator and another separate droplet generator, respectively. Details of design 

criteria for a double cross-junction for the encapsulation as well as the one for a flow-focusing droplet 

generator are discussed in Chapter 4 and also in Dr. Xiaoming Chen’s thesis (UWspace). Meanwhile, the 

alternative droplet merging component is illustrated in Part b). In detail, since the hydraulic resistances 

upstream are designed to be almost similar, as well as the flow conditions and the droplet generation 

frequencies of both generators are also maintained during the experiment, it will be valid to assume that 

𝑄𝑚1 
= 𝑄𝑚2 

is equivalent. Additionally, droplets are assumed to follow the flows of each branch. 

Therefore, there are 2 possible scenarios (Figure C-2). 

1. Designing the two side branches to be symmetrical, 𝑅𝑆1 
= 𝑅𝑆2 

, leads to equivalent flow rates in 

the two side branches, 𝑄𝑚1′ = 𝑄𝑚2′. Thus, the droplets from both sides will arrive at the 

junction at the same time and fuse into each other before they enter the chamber (𝑅𝑚𝑒𝑟). 

(Figure C-2-1) 

2. Designing the two side branches to be asymmetrical achieves alternating merging when the 

 

hydraulic resistance of one branch is slightly greater than that of the other, 𝑅𝑆2 
≤ 𝑅𝑆1 

+ 𝑅𝑑𝑟𝑜𝑝. 

At the beginning of a merging cycle, when both branches are filled with droplets, 𝑅𝑆2   
+ 

1𝑅𝑑𝑟𝑜𝑝   ≤  𝑅𝑆1    
+ 2𝑅𝑑𝑟𝑜𝑝, 
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2 

2 

2 

 

 At the left note, 𝑄𝑚1′   
=   𝑄𝑚1   

− 𝑄𝑜𝑏   (1) 

 
 At the right note, 𝑄𝑚′  = 𝑄𝑚2  

+ 𝑄𝑜𝑏 (2) 

 
Equations (1) & (2) lead to 𝑄𝑚1′ < 𝑄𝑚2′, resulting in the droplet from the right branch, which 

follows 𝑄𝑚′ , moving faster than the ones from the left branch. Therefore, the right droplets will 

enter the chamber first and be partially trapped inside the pillar arrays (Figure C-2-2). 

Subsequently, when a droplet leaves the right branch, the resistance of the right branch can be 

 

described as 𝑅𝑆2 
< 𝑅𝑆1 

+ 𝑅𝑑𝑟𝑜𝑝. The oil keeps draining from the left branch to the right branch, 

increasing 𝑄𝑚′ so that another droplet staying in the right branch tends to move forward to 

where it has higher flow rate. Meanwhile, the first droplet, staying in the left branch, also 

moves forward and temporarily blocks the junction, inducing built-up pressure. Continuously, 

another droplet from the right branch comes and blocks the node right where the oil bridge and 

the main right channel meet. The flow in the oil bridge reverses its direction from right to left 

(Figure C-2-3). Now, the flow at the left branch increases through the addition of flow from the 

oil bridge (3), pushing remain droplets in the left branch to move forward until another coming 

droplet blocks a left node. A new merging cycle begins. 

 At the left note, 𝑄𝑚1′   
=   𝑄𝑚1   

+ 𝑄𝑜𝑏   (3) 
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2 

 

 At the right note, 𝑄𝑚′  = 𝑄𝑚2  
− 𝑄𝑜𝑏 (4) 

 

 

 

 

Figure C-2. The two scenarios show one-to-one droplet merging. (1) 2 side branches are 

symmetrical, (2) 2 side branches are asymmetrical 

Figure C-3. The multifunctional droplet based microfluidic device fabricated using the standard 

soft-lithography technique and PDMS substrate 
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The similarities between the physical parameters used in microfluidics and electronic parameters, which are 

useful in electric circuit analysis, are presented in Table C-1. 

 

Microfluidics Electronics 

Fluid molecules Electrons 

Flow of fluid Flow of fluid 

Volumetric flow rate 

𝑄 [
𝑚3

𝑠
] 

Electric current 

𝐼[𝐴𝑚𝑝] 

Pressure drop 

∆𝑃[𝑃𝑎] 

Voltage drop 

∆𝑉[𝑉𝑜𝑙𝑡] 

Hydraulic resistance   

𝑅𝐻 =
12𝜇𝐿

𝑤ℎ3  (for cases that w/h <1and 

for a rectangular channel)  

Electric resistance 

𝑅 =
𝜌.𝐿

𝐴
  

Hagen-Poiseuille’s law 

∆𝑃 = 𝑄. 𝑅𝐻 

Ohm’s law 

∆𝑉 = 𝐼. 𝑅 

Equivalent fluidic resistor in series 

𝑅𝑒𝑞 = 𝑅𝐻1
+ 𝑅𝐻2

+ ⋯. 

Equivalent electronic resistor in series 

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 + ⋯. 

Equivalent fluidic resistor in parallel 

1/𝑅𝑒𝑞 =
1

𝑅𝐻1

+
1

𝑅𝐻2

+ ⋯.  

Equivalent electronic resistor in 

parallel 

1/𝑅𝑒𝑞 =
1

𝑅1

+
1

𝑅2

+ ⋯. 

Atmospheric pressure Floating ground (GND) 

Conservation of mass Kirchhoff’s current law 

Conservation of energy Kirchhoff’s votage law in a closed 

path 

Pressure division Voltage division 

Flow division Current division 

 

Table C-2. Physical similarities between microfluidics and electronics 
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Appendix D 

 
Measurement R/G ratio by using ImageJ tool 

 
Generally, the ratio-metric detection presented in Chapter 5 is achieved by detecting two detection color 

channels from digital images. In this work, the photoluminescence (PL) of gQDs and Cy3 are associated 

with the G and R channels. Each photosensitive element (pixel) is related to either a red, green, or blue 

filter to pass certain wavelengths, such as long, middle and short wavelengths of visible white light. A 

digital image, captured using an IPhone camera, is split into R-G-B color channels using ImageJ software 

(Figure D-1). A ratio of the mean PL intensity of the R channel to one of the G channel for a given spot is 

used to confirm optical transduction, which is based on the ratio metric detection requiring concurrent 

detection of two wavelength bands. The R/G ratio achieved using the simple method could also represent 

the FRET signal (Noor and Krull 2014). However, the automatic image contrast adjustments can 

potentially cause the reproducibility of digitization of the color intensity response. Therefore, firstly, to 

minimize the influences of the automatic exposure time, variations in the ambient light, a white balance of 

images, all images are captured in RAW format using the VSCO photography mobile app for iOS (Visual 

Supply Company, CA, USA). Furthermore, the distances between a UV light source and paper-based 

substrates are maintained, and all pictures are imaged in a dark room. Last but not least, the background of 

paper-based substrates is printed in black; thus, the control spots serves as the brightest spots in the field 
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of view. As a result, the imaging contrast adjustment also increases. 
 

 

 

Step-to-step to confirm optical transduction from a digital image: 

 
1. Drop the same volume of QD-Oligonucleotide solution (1.5 𝜇𝐿) , release from the surfaces of 

MBs, to individual control spot on paper-based substrate. 

2. Wait for 1 min before capturing image – initial stage: before FRET pair is created 

 
3. Drop the same volume of Cy3-DNA* solution (1.5 𝜇𝐿) with different concentration to different 

control spots 

4. Wait for 3 to 5 minutes for the hybridization – creating FRET pair between Cy3-DNA. During 

this time, the UV light is covered (although the light source is on). 

5. Shine the UV light onto a paper-based substrate 

 
6. Capture image – end stage: FRET pair created achieving optical transduction 

 
7. Image processing: 

 

Process the initial stage to retrieve the (  ) 
𝐺   𝐷 

Figure D-1. The RGB photo is split into the G channel and R channel for image processing by using 

the imageJ software 
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a. ImageJ (NIH, USA) is used and images (RAW format) are loaded. 

 
b. Measure and record the mean intensity of the background of each control spot 

 
c. Under the toolbar, choose Image > Color > Slit channel 

 
d. Measure and record the mean intensity of each control spot corresponding to the R 

channel 

e. Similarly, the mean intensity of G signal is achieved 
 

f. Process the end stage to retrieve the (  ) , follow all steps discussed above 
𝐺   𝐷𝐴 

 

 

Figure D-2. The R/G ratio, the case that 175 pmol of oligonucleotide 

conjugating with QDs using this microfluidic platform, responses linearly 

in the presence of 50 pmol to 200 pmol Cy3-target DNA*.
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Appendix E 

 
Detail of merging chamber design 

 
As discussed in the main text, the geometry of the merger has influenced the droplet fusion. The length of 

the chamber must be equal or larger than a merged droplet length (𝐿0), identified by the number of 

merger droplets (N = 2) multiplier of the input droplet length (𝐿𝑑). Herein, the merger is evaluated using 

the ratio (BRR) between the total bypass flow resistance (𝑅𝐵𝑦𝑏𝑎𝑠𝑠) and the one of the mid-channel (𝑅𝑐) 

where the droplets fuses. Since that ratio is proportional to the ratio of oil flowing through each branch, 

BRR must be smaller than 1 to ensure that a droplet will enter the central channel when it arrives at the 

chamber. In this work, the dimensionless of all parameters used to design a merger chamber are as 

follows: 

𝐿𝑝
∗ =

𝐿𝑝

𝑊
= 1; 𝐿𝑠

∗ =
Ls

𝑊
= 0.25; 𝑊𝑝

∗ =
𝑊𝑝

𝑊
= 0.33; 

𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
∗ =

𝐿𝑑

𝐿𝑐ℎ𝑎𝑚𝑏𝑒𝑟
; 

𝐵𝑅𝑅 =
𝑅𝑏𝑦𝑝𝑎𝑠𝑠

𝑅𝐶
=

𝑅(ℎ, 𝑆𝑝, 𝐿𝑝) +  
1
2 (ℎ, 𝑊𝑏𝑦𝑝𝑎𝑠𝑠, 𝐿𝑐ℎ𝑎𝑚𝑏𝑒𝑟)

𝑅(ℎ, 𝑊𝑐, 𝐿)
 

where 𝐿𝑝   is the length of each pillar, 𝐿𝑠  is the spacing between each pillar, 𝑊𝑝       is the width of each pillar, 

𝐿𝑑 is the length of each droplet before merging, 𝑊 is the width of a main channel and ℎ is the height of an 

entire microfluidic network. 


