
Motion Planning and Safety for
Autonomous Driving

by

Ryan De Iaco

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Ryan De Iaco 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis discusses two different problems in motion planning for autonomous driving.
The first is the problem of optimizing a lattice planner control set for any particular
autonomous driving task, with the goal of reducing planning time for that task. The
driving task is encoded in the form of a dataset of trajectories executed while performing
said task. In addition to improving planning time, the optimized control set should capture
the driving style of the dataset. In this sense, the control set is learned from the data and is
tailored to a particular task. To determine the value of control actions to add to the control
set, a modified version of the Fréchet distance is used to score how useful control actions
are for generating paths similar to those in the dataset. This method is then compared to
the state of the art lattice planner control set optimization technique in terms of planning
runtime for the learned task.

The second problem is the task of extending the Responsibility-Sensitive Safety (RSS)
framework by introducing swerve manoeuvres in addition to the nominal braking manoeu-
vres present in the framework. This includes comparing the clearance distances required by
a swerve to the braking distances in the original framework. This comparison shows that
swerve manoeuvres require less distance gap in order to reach safety from a braking agent
in front of the autonomous vehicle at higher speeds. For more realistic swerve manoeuvres,
the kinematic bicycle model is used rather than the 2-D double integrator model consid-
ered in RSS. An upper bound is then computed on the required clearance distance for a
swerve manoeuvre that satisfies bicycle kinematics. A longitudinal safe following distance
is then derived that is provably safe, and is shown to be lower than the following distance
required by RSS at higher speeds. The use of the kinematic bicycle model is then validated
by computing swerve manoeuvres with a dynamic single-track car model and Pacejka tire
model, and comparing the single-track swerves to the bicycle swerves.

iii

Acknowledgements

I would like to thank Professors Stephen Smith and Krzysztof Czarnecki for their time
and valuable advice throughout my degree.

I’d also like to thank my lab mates in both the Autonomy Lab and the WISE Lab for
their valuable discussions and help along the way.

iv

Dedication

To my parents, Roger and Rosa, for their love and support.

v

Table of Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Learning a Lattice Planner Control Set for Autonomous Driving 2

1.2 Safe Swerve Manoeuvres for Autonomous Driving 2

1.3 Thesis Contribution . 4

1.4 Organization . 5

2 Literature Review 6

2.1 Motion Planning for Autonomous Driving 6

2.1.1 Variational Optimization Planners 6

2.1.2 Sampling-based Planners . 7

2.1.3 Lattice Planners . 7

2.2 Data-driven Motion Planning . 8

2.3 Responsibility-Sensitive Safety (RSS) . 9

2.4 Swerve Manoeuvres . 10

3 Preliminaries 11

3.1 Lattice Planning . 11

vi

3.2 Spiral Path Planning . 12

3.3 Kinodynamic Vehicle Models . 15

3.3.1 Particle Model . 15

3.3.2 Kinematic Bicycle Model . 15

3.3.3 Dynamic Single Track Model . 16

3.4 Responsibility-Sensitive Safety . 18

4 Learning a Lattice Planner Control Set for Autonomous Driving 21

4.1 Problem Formulation . 21

4.2 Sparse Control Set Generation . 22

4.2.1 Scoring Measure . 22

4.2.2 Closest Path Algorithm . 23

4.2.3 Control Set Optimization . 30

4.2.4 Clustering . 31

4.3 Experiment and Results . 32

4.3.1 Experimental Setup . 33

4.3.2 Experimental Results . 35

5 Safe Swerve Manoeuvres for Autonomous Driving 39

5.1 Swerve Problem Formulation . 39

5.2 Computing the Longitudinal Safe Distance 41

5.2.1 Lateral Clearance Distance . 41

5.2.2 Swerving for a Braking Vehicle . 44

5.2.3 Braking for a Swerving Vehicle . 49

5.2.4 Swerving for a Swerving Vehicle . 50

5.2.5 Universal Following Distance . 53

5.3 Validation and Results . 57

5.3.1 Lower Bound Validation . 57

5.3.2 Dynamic Model Validation . 59

5.3.3 Simulation Results . 61

vii

6 Conclusions and Future Work 66

6.1 Future Work for Learning a Lattice Planner Control Set 67

6.2 Future Work for the RSS Framework . 68

6.3 Conclusion . 68

References 70

A Learned Lattice Planner Control Set Practical Considerations 82

APPENDICES 82

viii

List of Figures

1.1 An example of a lattice graph which will be used in the first portion of this
thesis, with labelled vertices. The control set is given by C, and each control
action is labelled by the number of path points (excluding the origin point).
An example control set from a different initial heading is given in orange at
vertex k. The dataset path to search the lattice for, Pd, is given in red. . . 3

3.1 (a) The kinematic bicycle model, along with its associated variables. (b)
The dynamic single track model [37]. Drag forces are omitted for simplicity,
but are included in computation. 17

4.1 An example of the closest path found (blue) by Algorithm 1 with the red
path as input. 21

4.2 An illustration of how lattice vertices are augmented in the search graph.
The control actions are labelled with their length, in terms of discrete path
points. 24

4.3 The search graph derived from Figure 1.1. Overlapping vertices correspond
to the same point in configuration space, but reached with a different number
of path points. Some vertices are omitted for visual clarity. 25

4.4 (a) An example scoring measure computation to vertex l. The light green
line segments correspond to comparisons for the control action coming out
of (h, 10), and the dark green lines represent comparisons for the control
action coming out of (g, 7). (b) An example of a greedily selected path, and
the resulting upper bound B at the point of maximum deviation along the
path. (c) An illustration of a particular Vk based on the greedy bound on
the scoring measure. 28

ix

4.5 An example of the K-means clustering on a roundabout path dataset. Each
cluster of paths has a different assigned colour, and the dotted line represents
each cluster’s mean path. 33

4.6 Comparison of the dense (a), DL[82] (b), λ1 (c), λ2 (d) control sets generated
in Experiment 2. Each colour corresponds to a different Cθ̄. 34

4.7 (a) The roundabout the dataset was extracted from for Experiments 1 and
2. (b) The synthetic dataset generated using the Autonomoose planner. . . 36

4.8 An example comparison of the curvature values between planned paths us-
ing the DL[82] and λ2 control sets. Each datapoint corresponds to a test
scenario; below the straight line means that the λ2 control set performed
better. 38

4.9 Comparison of the lattice planner paths for the dense, DL[82], λ1, and λ2

control sets for one of the scenarios in Experiment 3. 38

5.1 (a) The standard RSS braking manoeuvre for a braking leading vehicle.
Velocities and acceleration arrows point to path segment where they occur.
(b) The proposed swerve manoeuvre for a leading braking vehicle. The green
dot represents the lateral clearance point (xc, yc), according to RSS µ-lateral
distance. (c) The braking manoeuvre required for a swerving leading vehicle.
(d) The swerving manoeuvre required for a swerving leading vehicle. . . . 40

5.2 (a) An outer approximation to a vehicle chassis that rotates by θmax. d′ and
d̄ are used for longitudinal buffers during swerve manoeuvres, and b′ is used
as a lateral buffer. (b) An inner approximation to a rotating vehicle chassis. 42

5.3 The swerve manoeuvre used for safety analysis. The red path is taken by
the centre of mass, and the blue path is taken by the rear axle. α is the
distance between lanes, δc is the steering angle, βc is the slip angle. The
maximum angles achieved by the chassis yaw and the velocity of the centre
of mass are given by θmax and ψmax, respectively. The turning radius of the
rear axle and centre of mass’s paths are given by Rr and Rc, respectively. 46

5.4 (a) Scenario where the rear vehicle must swerve for a swerving vehicle 2 cars
ahead. (b) Scenario where the rear vehicle must brake for a braking vehicle
2 cars ahead. 54

x

5.5 A comparison of the longitudinal distance travelled between swerve and
brake manoeuvres, for varying initial velocities. The swerving distance re-
quired by the dynamic model is similar to the distance required by the
bicycle model. 59

5.6 The swerve manoeuvres generated according to the dynamic model. Each
swerve is for a different initial speed in the interval [10, 30] m

s
. The arrows

denote the heading of the vehicle. 61

5.7 (a) Plot of the longitudinal safe distance across a range of speeds, as com-
pared to the standard RSS braking distance, with amin,brake = 2 m

s2
. (b) Same

as (a), but with amin,brake = 3 m
s2

. (c) Same as (a), but with amin,brake = 4 m
s2

. 62

5.8 A comparison of different safe longitudinal distances for when vr = 15m
s
.

The maximum longitudinal and lateral accelerations is set to (a) 1 m
s2

, (b)
2 m

s2
, (c) 4 m

s2
, (d) 6 m

s2
, (e) 8 m

s2
. 64

5.9 A comparison of different safe longitudinal distances for when vr = 20m
s
.

The maximum longitudinal and lateral accelerations is set to (a) 1 m
s2

, (b)
2 m

s2
, (c) 4 m

s2
, (d) 6 m

s2
, (e) 8 m

s2
. 65

xi

List of Tables

4.1 Planning Runtime Results . 37

5.1 Parameters Table . 60

xii

Chapter 1

Introduction

One of the fundamental tasks of autonomous driving is safe motion planning, the task of
deciding where the car needs to go, while avoiding obstacles, obeying traffic rules, and
respecting the fundamental limits of what the vehicle can do. One factor that makes safe
motion planning difficult is the speed with which the situation around a car can evolve
with time. To compensate, autonomous driving motion planners often need to make deci-
sions quickly, so as to respond to ever-changing stimuli in the environment. In addition,
autonomous vehicles need to be proactive when it comes to safety, in order to be robust
to a variety of different potential actions from other agents in the environment.

This thesis analyzes and discusses two problems in the domain of safe motion planning
for autonomous driving. The first aims to improve path planning efficiency by leveraging
human data to specialize a particular planner to a particular driving task. These driving
tasks come from a wide variety of problems encountered in motion planning for autonomous
driving, ranging from parking lot manoeuvres to unprotected left turns. By making the
planner specialized to a particular task, the planner is able to solve motion planning prob-
lems associated with that task more quickly. The next problem involves determining when
it is safe for the autonomous vehicle to perform swerve manoeuvres in specific situations.
This is done by computing the initial distance required between the swerving autonomous
vehicle and the vehicle in front of it. In addition, this initial distance is compared to the
distance required by a brake manoeuvre, and it is shown that swerving allows for vehicles
to use the roadway more efficiently by reducing the gap between vehicles. To demonstrate
safety, this thesis shows that these manoeuvres are robust to a range of possible agent
actions, while not being so conservative as to over-constrain the autonomous vehicle.

1

1.1 Learning a Lattice Planner Control Set for Au-

tonomous Driving

A crucial portion of autonomous driving is motion planning. It is important for autonomous
vehicles to be able to quickly generate a collision-free, kinematically feasible path towards
their goal that minimizes the total cost of the path. An algorithm commonly used in path
planning is the lattice planner[81]. The goal of this work is to leverage data to improve
lattice planning for a particular autonomous driving task, while also capturing aspects of
the driving style present in the dataset. In this work, the driving task is assumed to be
implicitly encoded in the given dataset.

As will be discussed in further detail in section 3.1, the lattice planner is a graph-
based approach to the path planning problem that reduces the search space into a uniform
discretization of vertices corresponding to positions and headings. Each vertex in the dis-
cretization is connected to other points by kinematically feasible motion primitives, known
as control actions[84]. The lattice planner thus reduces the path planning problem into a
graph-search problem, which can be solved with A* or any other appropriate graph search
algorithm[83, 68, 41, 121]. An example of a lattice graph is given in 1.1.

The aim of this portion of the thesis is to develop a method for learning a lattice planner
control set from a dataset of trajectories representative of a particular driving task. In doing
so, the learned control set should allow for fast planning for that particular task, and in
addition, the learned control set should capture the driving style present in the dataset.
To do this, a densely populated lattice control set is refined into a set of control actions
that is optimized for the task implicitly represented by the dataset. Crafting control sets
in this manner will allow for specific control sets for specific driving tasks. For example,
one could generate a control set for roundabouts, parking lots, and u-turns. This would
allow for a speedup in planning time as compared to having one large general lattice for
each task, as the branching factor of each vertex in the lattice graph would be smaller.

1.2 Safe Swerve Manoeuvres for Autonomous Driving

The main bottleneck for the public acceptance and ubiquity of autonomous driving is the
current lack of safety guarantees. There are three main ways to establish the safety of an
autonomous vehicle. The first involves measuring crash statistics over a large number of

2

Figure 1.1: An example of a lattice graph which will be used in the first portion of this thesis, with
labelled vertices. The control set is given by C, and each control action is labelled by the number
of path points (excluding the origin point). An example control set from a different initial heading
is given in orange at vertex k. The dataset path to search the lattice for, Pd, is given in red.

autonomously driven kilometres and comparing them to the equivalent human rates for
each category of collision severity. However, particularly with severe collisions, the num-
ber of kilometres required to establish a statistically significant collision rate renders this
method impractical for establishing safety [55].

An alternative method for determining the safety of a system is through scenario-based
verification [104]. This method uses a set of scenarios that validate the vehicle’s behaviour
across a representative set of situations. The goal is for the set of scenarios to capture
most of the required driving behaviour necessary for safe driving. However, it is difficult
to construct such a set of scenarios that captures all of the challenging conditions faced by
an autonomous vehicle [1].

A third approach for verifying the safety of a system is formally proving the behaviour
of a vehicle is safe [3, 4, 96, 62]. In order to compute useful safety bounds, these works
often include simplifying assumptions. The difficulty with this method lies in selecting rea-
sonable assumptions to make. The stronger the assumptions made, the easier to prove the
system is safe. However, if the assumptions are too strong, they may not hold in general
driving scenarios. An additional challenge with this method is that to prove safety, the

3

driving behaviour may need to be conservative, or highly restrictive.

This portion of the thesis addresses the latter issue, especially as it pertains to the
Responsibility-Sensitive Safety (RSS) framework [96]. Fundamental to the RSS framework
is its assumption of responsibility, and that agents have a duty of care to one another. The
assumption of responsible behaviour allows for the autonomous vehicle to make meaningful
progress in the driving task. Under other frameworks that assume adversarial agents, the
autonomous vehicle often exhibits over-conservative behaviour that impedes progress. By
assuming responsible behaviour, one can compute safe distance gaps between vehicles based
on their speeds, reaction times, and maximum accelerations, assuming both agents exhibit
particle model kinematics. As long as these distance gaps are maintained, no collisions can
occur. The work in this thesis extends this analysis to prove safety when using swerves
feasible for the kinematic bicycle model. The kinematic bicycle model is discussed in detail
in section 3.3.

1.3 Thesis Contribution

This thesis analyzes two problems in the domain of motion planning for autonomous driv-
ing. The first part of the thesis focuses on the problem of optimizing a lattice planner
control set according to a particular task, which is encoded as a set of trajectories exe-
cuted as part of that task. We use a modified version of the Fréchet distance in combination
with a graph search to determine which control actions are most useful for executing the
trajectories present in the task dataset. The control actions are selected from a densely
populated control set, and the optimized control set is built bottom-up [50]. We then
validate this method by comparing it to the state of the art lattice planner control set
computation technique [81] with respect to computation time, as well as matching the
driving style of the dataset. Driving style is measured by comparing the curvature of the
planned paths to those in the dataset. The datasets used in the experiments are both real
human-driven trajectories in a roundabout, as well as synthetic turn manoeuvres.

The second part of the thesis explores extending the Responsibility-Sensitive Safety
(RSS) by using swerve manoeuvres feasible for the bicycle model as a valid response in
addition to braking. There are two main contributions in this chapter. The first is a
novel extension of the RSS framework to include kinematically feasible swerve manoeuvres,
according to the kinematic bicycle model. To do so, an initial distance between the swerving
agent and the agent in front of it is computed that is sufficient to guarantee safety. This

4

initial distance is then used to compute the gap required to a lead vehicle when performing
lane change or lane shift manoeuvres. The second contribution is a validation of the use of
the kinematic bicycle model by comparing the bicycle swerve manoeuvres to manoeuvres
generated under a dynamic single-track model. This dynamic single-track model includes
a Pacejka tire model to account for road surface traction. This thesis shows that the
kinematic model, when lateral acceleration is constrained, can accurately estimate the
longitudinal distance required to perform swerve manoeuvres using the dynamic single-
track model.

1.4 Organization

This thesis is organized as follows. A review of the literature on motion planning for
autonomous driving, RSS, and swerve manoeuvres is presented in chapter 2. Next, chap-
ter 3 discusses the necessary mathematical preliminaries for lattice planning, spiral path
planning, vehicle kinodynamic models, and RSS. The contents of chapter 4 discuss how to
optimize a lattice planner control set. Next, chapter 5 analyzes swerve manoeuvres and
proves their safety. Finally, the conclusions of this research and potential future work is
discussed in chapter 6.

5

Chapter 2

Literature Review

2.1 Motion Planning for Autonomous Driving

The task of motion planning for autonomous driving has been studied extensively [76]. In
the literature, there are three families of planners that are commonly used.

2.1.1 Variational Optimization Planners

The first group is those that use calculus of variations to optimize a trajectory function of
time according to a cost functional. Alternatively, they may optimize a path function of
arc length instead. If π is the trajectory function to optimize, J is the cost functional, xinit

is the initial state, Xgoal is the set of goal states, and f and g capture the kinodynamic
constraints of the system, then the general form of the problem these planners try to solve
is

argmin
π

J(π)

s.t. π(0) = xinit

π(T) ∈ Xgoal

f(π(t), π′(t), ...) = 0, ∀t ∈ [0, T]

g(π(t), π′(t), ...) ≤ 0, ∀t ∈ [0, T].

These problems are usually projected into a lower dimensional vector space and solved
as non-linear programs [76, 22, 21]. These types of planners have been successfully applied

6

to autonomous driving [105, 118, 106], and more generally to mobile robotics as well. In
particular, the CHOMP [90, 122] and TrajOpt [95] are two variational methods that are
commonly used.

2.1.2 Sampling-based Planners

The second group of planners are the sampling-based planners, which sample the config-
uration space of the vehicle to generate kinodynamically feasible paths to a goal set. In
general, these methods incrementally build up an increasingly fine discretization of the
configuration space until the goal is reached [76]. RRT* and PRM* are examples of such
algorithms [56]. These algorithms have been used with great success in both urban and
off-road environments, and are robust to unstructured or previously untested scenarios [59].

2.1.3 Lattice Planners

The final group of planners, and the focus of the first problem discussed in this thesis, are
the lattice planners. At a high level, a lattice planner discretizes the configuration space
with the goal of decomposing the motion planning problem into a tractable graph search
problem.

Broadly speaking, there are two varieties of lattice planner used in autonomous driv-
ing. The first is the standard lattice planner [83, 81], in which a database of manoeuvres
is computed offline. The vertices of the graph are uniform samples of the configuration
space, and the edges are formed by the manoeuvres in the database. The advantage of
these types of lattice planners is that most of the planning and collision checking process is
pre-computed offline [82], which reduces online planning to graph search. The disadvantage
is that these planners do not exploit the on-road structure inherent to motion planning
in autonomous driving. These planners then require a large database of manoeuvres, in
which only a small fraction of manoeuvres are relevant at a given time [65]. This type of
planner excels in semi-structured environments where complex manoeuvres are required,
and as a result, a large variety of manoeuvres within the database will be used. Examples
of such environments include culdesacs and parking lots [105].

The second variety of lattice planners are the conformal lattice planners. The funda-
mental difference between these lattice planners and the standard lattice planners is that

7

the configuration space is sampled relative to the road the car is travelling on. In general,
this means that the configuration states are sampled along the Frenet frame of the road,
instead of sampled uniformly in configuration space [68, 42, 112, 40]. The advantage of
these lattice planners is that since the configurations are relative to the road, the planner
needs to consider fewer manoeuvres to plan a feasible path. However, since the Frenet
frame of the road varies between each planning cycle, a conformal lattice planner cannot
pre-compute the manoeuvres that make up the edges of its search graph. Instead, they
must be generated through optimization methods (such as those in Section 2.1.1). This
can be computationally expensive, and limits the breadth and depth of the search graph
that can be considered.

2.2 Data-driven Motion Planning

The first portion of this thesis focuses on using datasets of paths to inform the construc-
tion of lattice planner control sets. However, previous research into data-driven motion
planning has often focused on learning search heuristics or policies for the motion planner
rather than learning the underlying structure of the planner itself. Ichter et al. developed
a method for learning a sampling distribution for RRT* motion planning[51]. Imitation
learning can also be used to learn a search heuristic based on previously planned optimal
paths[18, 8]. Paden et al. have developed a method for optimizing search heuristics for a
given kinodynamic planning problem[77]. Xu et al. used reinforcement learning to learn a
control policy for quadcopters by training on MPC outputs[116].

For work involving lattice planner control set optimization, Pivtoraiko et al. have de-
veloped a D*-like (DL) algorithm for finding a subset of a lattice control set that spans
the same reachability of the original control set, but does so within a multiplicative factor
of each original control action’s arc length[82]. This algorithm does not rely on data, but
instead relies on the structure of the original control set to find redundancy. In contrast,
the method outlined in this thesis attempts to leverage data for a particular application
to optimize the control set. This thesis uses the DL algorithm as the state-of-the-art com-
parison for the quality of the presented learning algorithm.

Optimizing a lattice planner control set requires a measure of similarity between two
paths. This has been discussed in the field of path clustering [115], where measures such
as the pointwise Euclidean distance, Hausdorff distance[14], the Longest Common Sub-

8

Sequence, and the Fréchet distance[26] are commonly used.

The work most closely related to the process of matching a specific path in a graph is
the map-matching problem[107, 13]. The problem entails finding a path in a planar graph
embedded in Euclidean space that best matches a given polygonal curve according to the
Fréchet distance. However, unlike the work in this thesis, the map-matching algorithm re-
quires the full graph to be defined beforehand, and cannot be used if the graph is implicitly
defined in terms of the lattice control set. Another similar problem is that of following a
path in the workspace for a redundant manipulator[74, 47].

When using data to inform the construction of a lattice control set, it would be benefi-
cial for the learned control set to capture the driving style present in the data. In terms of
driving style, Macadam gives a broad overview of the driving task[67]. This thesis focuses
on the properties of paths and not trajectories. For the driving style of a given path, one of
the most intuitive indicators is the vehicle’s steering function, which under the commonly
used bicycle model[86], is directly related to path curvature. As such, curvature serves as
a natural measure for comparing the driving styles of different paths. A path with points
of high curvature corresponds to a a more aggressive steering function, and vice versa.

2.3 Responsibility-Sensitive Safety (RSS)

While there are many approaches to formally defining and proving safety for autonomous
driving, this thesis focuses on extending the RSS framework [96]. At the core of this frame-
work is the required distance that must be maintained between the autonomous vehicle
and the agents adjacent to it at all times. Under the assumptions of the framework, so
long as the appropriate distance gap is maintained, no collisions can occur. This required
distance gap is computed such that the autonomous vehicle can safely and comfortably
brake in response to another agent in front of it performing a hard brake. In RSS, this
distance gap takes the limits of comfortable and responsible deceleration as well as the
reaction delay of the autonomous vehicle into account.

Fundamental to the RSS framework is its assumption of responsibility, and that agents
have a duty of care to one another. This assumption allows for the autonomous vehicle to
make meaningful progress in the driving task. Under other frameworks that assume ad-
versarial agents, the autonomous vehicle often exhibits over-conservative behaviour. This

9

is especially true with reachability methods, which can cause the autonomous vehicle to
be overly cautious or evasive when interacting with other agents [4, 62].

2.4 Swerve Manoeuvres

Previous work on emergency manoeuvres for autonomous driving have often focused on
feasible swerve manoeuvres according to various kinodynamic models [94]. In particular,
many of these papers have assumed some variant of the bicycle model [100, 98, 97, 24] and
performed optimization to generate optimal swerve manoeuvres. However, under these
models the optimal solution is not generated through a closed form solution, which makes
formally proving safety challenging.

Other work has instead simplified the vehicle model to a point mass or particle model [99,
52, 78] in order to yield closed form, optimal solutions. However, this comes at the cost of
the non-holonomic constraint present in the bicycle model, which can result in manoeuvres
that would be unrealistic for a car to execute. An important part of the second problem
discussed in this thesis is to generate closed form, feasible solutions to swerve manoeuvre
boundary conditions, while still preserving the kinematic constraints that allow the ma-
noeuvre to be executable by a real vehicle.

To validate the use of the kinematic bicycle model when proving safety in this thesis,
the bicycle model is compared to a dynamic vehicle model that represents the limits of
what a real vehicle can truly execute. To do this, a dynamic single track model [37] with
a Pacejka tire model [75] is used.

10

Chapter 3

Preliminaries

This chapter enumerates some of the mathematical definitions and concepts used in this
thesis. Section 3.1 defines the terms used in lattice planning [83], which will be of use
in chapter 4. Section 3.2 gives an overview of using polynomial spirals for path planning,
which will be used for computing control actions for lattice planner control sets in chapter 4.
Section 3.3 introduces some commonly used kinodynamic vehicle models, and Section 3.4
discusses some of the background on RSS, and the definition of safety used in this thesis.
Both of these two sections will be used in chapter 5.

3.1 Lattice Planning

A graph G is composed of two sets, a set of vertices V and a set of edges E. Each v ∈ V
represents a vertex in the graph, and each e ∈ E represents an edge. Each edge e = (u, v)
connects two vertices, u, v ∈ V . In a directed graph, each edge e = (u, v) has a unique
direction, from u to v.

Definition 3.1.1. SE(2). SE(2) is a topological space that is equivalent to R2 × S1. It
corresponds to the set of all possible transformations to a 2-D rigid body that can translate
and rotate in the plane [60].

Definition 3.1.2. Configuration Space. The configuration space of the vehicle, W ⊂
SE(2), is the set of feasible transformations that can be applied to the vehicle [60].

Definition 3.1.3. Lattice Point. A lattice point (x, y, θ) ∈ W is a single configuration of
the vehicle considered by the lattice planner. x and y correspond to displacement from

11

a global origin, and θ corresponds to yaw rotation (heading) relative to a global frame.
Lattice points are discretized according to some fixed x spacing ∆x, fixed y spacing ∆y,
and a set of headings Θ.

Definition 3.1.4. Control Action. A control action c corresponds to a kinematically
feasible spatial path from one lattice point to another. This action results in a transition
from a lattice point (x, y, θ) to a lattice point (x′, y′, θ′), where the relative position (x′ −
x, y′ − y, θ′ − θ) is fixed for that action. Thus, the action connects all identically arranged
pairs of lattice points[85].

Definition 3.1.5. Lattice Graph. A lattice graph G is a directed graph of vertices corre-
sponding to lattice points v ∈ V and edges e = (u, v) ∈ E where each edge corresponds to
the traversal from vertex u to v by a control action c.

Definition 3.1.6. Control Set. A control set C is the collection of all control actions
considered by the lattice planner. For each heading θ̄ ∈ Θ there is an associated control
subset Cθ̄ ⊆ C, which corresponds to the control actions that can be applied at any lattice
point (x, y, θ̄).

Definition 3.1.7. Lattice Path. A lattice path Pl is a sequence of contiguous edges in the
lattice graph. This lattice path corresponds to a spatial path formed by the concatenation
of the control actions underlying the sequence of contiguous edges in the lattice path.

3.2 Spiral Path Planning

When constructing lattices, one must select an underlying path representation that allows
vertices to connect to one another using the control set. In autonomous driving, vehicles
have curvature constraints that prevent the instantaneous turning radius from being too
small at any point. To account for this, a commonly used motion primitive is the poly-
nomial spiral [57]. The spiral is defined as a curvature function that is polynomial in arc
length, s. In this thesis, when constructing the lattice, a cubic function of arc length is
used

κ(s) = a+ bs+ cs2 + ds3. (3.1)

The curvature being a closed form polynomial function of arc length allows one to
constrain the curvature along the path, and ensures that the curvature is smooth and
well-behaved along the entire path. This is not necessarily true when using spline control

12

actions [79, 9]. In addition, if the initial heading of the vehicle is denoted by θ0, the heading
at any point of the path is easily computed as the integral of the curvature with respect
to arc length

θ(s) = θ0 + as+
b

2
s2 +

c

3
s3 +

d

4
s4. (3.2)

However, the drawback with using polynomial spirals is that they do not have a closed
form solution for the x and y position at any intermediate or final point along the path. If
the (x, y) position of the start of the spiral is given by (x0, y0), then the x and y positions
as functions of arc length are given by

x(s) = x0 +

∫ s

0

cos(θ(s′)) ds′, (3.3)

y(s) = y0 +

∫ s

0

sin(θ(s′)) ds′. (3.4)

If the final arc length of the spiral is defined as sf , to satisfy boundary conditions as
required by edges in the lattice graph

x(sf) = xf , (3.5)

y(sf) = yf , (3.6)

θ(sf) = θf , (3.7)

κ(sf) = κf , (3.8)

one needs to solve for the parameters of the spiral numerically. To encourage an even
distribution of curvature across the spiral, it is common to minimize the bending energy
of the spiral. The bending energy is the integral of square curvature with respect to arc
length along the entire spiral [48].

To limit path curvature, one method is to add constraints for the curvature at evenly
spaced points along the spiral [113]. To compute a spiral that satisfies the boundary condi-

13

tions required by the lattice control set, one can use the following optimization formulation

min
b,c,d,sf

∫ sf

0

κ2(s) ds s.t. (3.9)

x(sf) = xf , (3.10)

y(sf) = yf , (3.11)

θ(sf) = θf , (3.12)

κ(sf) = κf , (3.13)∣∣∣κ(sf
3

)∣∣∣ ≤ κmax, (3.14)∣∣∣∣κ(2sf
3

)∣∣∣∣ ≤ κmax, (3.15)

where spiral parameter a is given by the initial curvature.

To improve optimization convergence, a common tool is to remap the spiral param-
eters to the curvature at points uniformly spaced along the spiral [113]. For the above
formulation, this results in the following mapping

p1 = κ
(sf

3

)
= a+ b

(sf
3

)
+ c
(sf

3

)2

+ d
(sf

3

)3

, (3.16)

p2 = κ

(
2sf
3

)
= a+ b

(sf
3

)
+ c

(
2sf
3

)2

+ d
(sf

3

)3

, (3.17)

p3 = κ (sf) = a+ bsf + cs2
f + ds3

f , (3.18)

p4 = sf . (3.19)

p3 is known immediately from the kf constraint.

In addition, softening the constraints on the final position improves optimizer perfor-
mance, using weights α1, α2, and α3. By doing so, the final optimization formulation for
generating spirals is then

min
p1,p2,p4

∫ sf

0

κ2(s) ds+ α1(x(p4)− xf)2 + α2(y(p4)− yf)2 + α3(θ(p4)− θf)2 s.t. (3.20)

|p1| ≤ κmax, (3.21)

|p2| ≤ κmax. (3.22)

This formulation also has the added benefit of optimizing over 3 variables instead of 4,
which significantly improves performance.

14

3.3 Kinodynamic Vehicle Models

The analysis in this thesis relies upon three different kinodynamic models. Each model
has a varying degree of complexity. The more complex the model, the more faithfully it
captures the true dynamics of a car, at the cost of higher computational complexity.

3.3.1 Particle Model

The first model considered is the particle kinematic model, which is used in the RSS
framework. As with all kinodynamic models in this section, x is longitudinal displacement
and y is lateral displacement. The control input is the acceleration in each dimension, ax
and ay

ẍ = ax, (3.23)

ÿ = ay. (3.24)

This model is a two-dimensional double integrator. It is useful because computing opti-
mal swerve manoeuvres with respect to longitudinal distance travelled has a closed form
solution [98]. However, it does not capture the non-holonomic constraints present in a
vehicle [101], and as a result feasible manoeuvres for the particle model may not be kine-
matically feasible for a real car.

3.3.2 Kinematic Bicycle Model

In order to generate realistic swerve manoeuvres, one option is to capture the non-holonomic
constraints present in a car. To do so, one can use the kinematic bicycle model, a model
commonly used in autonomous driving [101, 64, 58]. This model is illustrated in Fig-
ure 3.1a.

In this model, v is the velocity of the vehicle, ψ is the heading of velocity at the centre
of mass, θ is the yaw of the chassis, β is the slip angle of the centre of mass relative to the
chassis, a is the input acceleration, δ is the input steering angle, Rc is the turning radius
of the centre of mass, and lr and lf are the distances from the rear and front axle to the
centre of mass, respectively

15

ẋ = v cos(ψ + β), β = tan−1

(
lr

lr + lf
tan(δ)

)
,

ẏ = v sin(ψ + β), θ = ψ − β,

θ̇ =
v tan(δ)

lr + lf
, |δ| ≤ δmax

v̇ = a, |alat| =
v2

Rc

≤ alat
min,

Rc =
lr + lf

cos(β) tan(δ)
, −abrake,min ≤ a ≤ amax. (3.25)

3.3.3 Dynamic Single Track Model

To further improve the representation of the true vehicle model, one can include dynamics.
For a car, some important considerations omitted in the previous models include the tire
friction, wheel slip, rotational inertia, and drag. These are captured in the dynamic single-
track vehicle model [37] with tires modelled using the Pacejka tire model [75]. This model
is shown in Figure 3.1b. In this vehicle model, v, ψ, β, δ, lf , and lr are the same as the
bicycle model (except the direction of β is flipped). αf and αr denote the slip angles of the
front and rear tires, respectively. Fsf and Fsr denote the lateral tire forces and Flf and Flr
denote the longitudinal tire forces at the front and rear tires, respectively. eSP is the drag
mount point, and FAx and FAy are the longitudinal and lateral drag forces, respectively.
wz is the yaw rate, and wδ is the input steering rate. m is the mass of the car, and Izz is
the inertia about the z-axis. The vehicle dynamics are given by

ẋ = v cos(ψ − β), (3.26)

ẏ = v sin(ψ − β), (3.27)

v̇ =
1

m
[(Flr − FAx) cos(β) + Flf cos(δ + β)− (Fsr − FAy) sin(β)− Fsf sin(δ + β)], (3.28)

β̇ = wz−
1

mv
[(Flr−FAx) sin(β)+Flf sin(δ+β)+(Fsr−FAy) cos(β)+Fsf cos(δ+β)], (3.29)

ψ̇ = wz, (3.30)

ẇz =
1

Izz
[Fsf lf cos(δ)− Fsrlr − FAyeSP + Flf lf sin(δ)], (3.31)

16

(a)

(b)

Figure 3.1: (a) The kinematic bicycle model, along with its associated variables. (b) The dynamic
single track model [37]. Drag forces are omitted for simplicity, but are included in computation.

17

δ̇ = wδ. (3.32)

The lateral tire forces are computed according to the Pacejka model, where A,B,C,D
are empirically calculated for the front and rear tires (denoted by subscript f and r,
respectively)

Fsf (αf) = Df sin(Cf tan−1(Bfαf − tan−1(Bfαf))), (3.33)

Fsr(αr) = Dr sin(Cr tan−1(Brαr − tan−1(Brαr))), (3.34)

αf = δ − tan−1

(
lf ψ̇ − v sin(β)

v cos(β)

)
, (3.35)

αr = tan−1

(
lrψ̇ + v sin(β)

v cos(β)

)
. (3.36)

The longitudinal front and rear tire forces are based on the braking forces FBf and FBr,
the rolling resistance forces FRf and FRr, and the drivetrain moment Mwheel, which is a
function of the accelerator input φ and the gear µ

Flf = −FBf − FRf , (3.37)

Flr =
Mwheel(φ, µ)

R
− FBr − FRr. (3.38)

The equations for air resistance, rolling resistance, and drivetrain torque are omitted, but
are present in the reference [37].

Implicit in the use of this dynamic single-track model is the assumption that the effect of
pitching and rolling of the vehicle, which can affect normal forces of the tires, is negligible.
This deviation of the normal force at each tire impacts each tire’s lateral (cornering) force.
In addition, our tire model does not include combined tire slip, which can impact the
cornering and braking forces at the tires during aggressive manoeuvres.

3.4 Responsibility-Sensitive Safety

This thesis relies on two aspects of the RSS framework when analyzing safety, the longi-
tudinal and lateral safe distances required between two vehicles. In particular, the second
problem of this thesis examines how the equivalent longitudinal safe distance for a swerve
manoeuvre compares to that of a brake manoeuvre, while maintaining an appropriate lat-
eral safe distance when required. This thesis compares swerve manoeuvres moving to the

18

left as in Figure 5.1, however, the same analysis is symmetric and can be applied to swerves
moving to the right.

In RSS, safe distances are a function of several variables that describe the situation.
The initial speed of the rear autonomous vehicle is given by vr, and the initial speed of the
front vehicle is denoted by vf . The reaction time is given by ρ. The interpretation of the
reaction time is the duration after which an agent can apply a mitigating action. During
the reaction time, both agents apply the most dangerous acceleration possible, amax,accel,
amax,brake in the longitudinal case, and alat

max in the lateral case. This is done to be robust
to all possible actions during the reaction delay. To ensure passenger comfort, as well as
to prevent tailgater safety issues, the mitigating reaction of the rear vehicle is assumed
to be a comfortable deceleration, denoted amin,brake. This term comes from RSS, and is
interpreted as the threshold acceleration for a safe, responsible braking response for the
self-driving car. As a result, amin,brake is smaller in magnitude than amax,brake.

The positive part of an expression is denoted with [·]+. If the post-reaction speeds vr,ρ
and vf,ρ are given by

vr,ρ = vr + amax,accelρ, (3.39)

vlat
r,ρ = vlat

r − alat
maxρ, (3.40)

vlat
f,ρ = vlat

f + alat
maxρ, (3.41)

then the longitudinal and lateral safe distances in RSS are given by

dlong =

[
vrρ+

1

2
amax,accelρ

2 +
(vr + vr,ρ)

2

2amin,brake

−
v2
f

2amax,brake

]
+

, (3.42)

dlat = µ+

[
−

(
vlat
r + vlat

r,ρ

2

)
ρ+

(vlat
r,ρ)

2

2alat
min

+
vlat
f + vlat

f,ρ

2
ρ+

(vlat
f,ρ)

2

2alat
min

]
+

. (3.43)

Chapter 5 extends the RSS framework to include swerves. For the purposes of this
thesis, the definitions of longitudinal and lateral safe distances are modified as follows.

Definition 3.4.1. Longitudinal Safe Distance. An agent is at a longitudinal safe distance
from another agent in front of it if the front agent can either decelerate at amax,brake or
perform a swerve manoeuvre and then decelerate at amax,brake, and after reaction delay
ρ the rear agent can either brake at amin,brake or swerve and brake at amin,brake to avoid
collision.

19

Definition 3.4.2. Lateral Safe Distance. An agent is at a lateral safe distance from another
agent if both agents can laterally accelerate towards one another at alat

max, then laterally
accelerate away from one another at alat

min until reaching zero lateral velocity, while still
maintaining at least a µ distance buffer at all times.

The longitudinal safe distance is between the frontmost point of the rear vehicle and
the rearmost point of the front vehicle along the longitudinal direction, and the lateral safe
distance is between the rightmost point of the rear vehicle and the leftmost point of the
front vehicle (or vice versa) along the lateral direction. The distances from the centre of
mass to the front and sides of the chassis are left implicit in the original RSS formulation,
but since swerves involve rotation of the chassis, these distances are made explicit in this
thesis. When computing safety for swerve manoeuvres, the vehicle must maintain these
safe distances with relevant agents. These agents are relevant according to longitudinal
and lateral adjacency, as defined below. The vehicle dimensions are denoted df , dr, bl, br
as in Figure 5.2a. Let the positions of each agent be denoted as (x1, y1) and (x2, y2).

Definition 3.4.3. Laterally Adjacent. Two agents are laterally adjacent if x2− dr − df ≤
x1 ≤ x2 + dr + df .

Definition 3.4.4. Longitudinally Adjacent. Two agents are longitudinally adjacent if
y2 − bl − br − dlat ≤ y1 ≤ y2 + bl + br + dlat.

Combining the definitions for safe distances and adjacency gives a definition of safety.

Definition 3.4.5. Laterally/Longitudinally Safe. An agent is laterally/longitudinally safe
from another agent if it is not laterally/longitudinally adjacent to the other agent, or
if it is laterally/longitudinally adjacent to the other agent and there is at least the lat-
eral/longitudinal safe distance between them.

When computing the safe distance required for swerve manoeuvres, the distance at
which the swerving agent has cleared the agent in front of it is also useful.

Definition 3.4.6. Lateral Clearance Distance. For a swerving agent and a non-swerving
agent, as well as a given swerve manoeuvre, the lateral clearance distance, yc, is defined
as the earliest point in the swerve at which the swerving agent is no longer longitudinally
adjacent to the non-swerving agent.

In Figure 5.1, yc is reached at the green dot along the swerve. The lateral clearance
distance allows one to compute the longitudinal distance covered by the swerve, which is
denoted by xc. In Chapter 5, xc is used to compute the equivalent of dlong for a swerve
manoeuvre, and is compared to Equation 3.42.

20

Chapter 4

Learning a Lattice Planner Control
Set for Autonomous Driving

4.1 Problem Formulation

In this chapter, the main goal is to learn a sparse control set for a lattice planner that
retains the driving style that is present in a dataset. The dataset will be a representative
sample of trajectories of performing a particular driving task. The process starts with
a dense control set and then incrementally generates a subset by selecting the control
actions that best improve the ability of the lattice planner to execute the paths present in
the dataset. In essence, the dataset paths should become approximate subpaths of lattice
paths formed using the learned control set, as in Figure 4.1.

Figure 4.1: An example of the closest path found (blue) by Algorithm 1 with the red path as input.

While optimizing in this way, however, encouraging sparsity is also important, since
larger control sets result in longer planning times. This then yields the following high-level
problem.

21

High-Level Problem. Given a dense set of control actions C, and a dataset of
representative paths D, compute a minimal subset Ĉ ⊂ C that allows a lattice planner to
execute the paths present in D.

The high-level problem can be split into two sub-problems. The first is measuring how
well control sets match the dataset, and the second is optimizing the control set accordingly.

Subproblem 1. Given a path Pd and a set of control actions Ĉ, compute how well Ĉ
executes Pd according to a scoring measure d.

Subproblem 2. Given a scoring measure d, a dataset of paths D, and a dense set of
control actions C, select as small a subset of C, Ĉ, as possible that best executes D in
aggregate according to a scoring measure d.

4.2 Sparse Control Set Generation

4.2.1 Scoring Measure

To find the closest path generated by a lattice planner, Pl, to a path in the dataset, Pd,
one first needs a scoring measure d to evaluate the similarity of two paths. For two paths
parameterized by t ∈ [0, 1], and two monotonic increasing onto functions α, β : [0, 1] →
[0, 1], the Fréchet distance is given by

df (Pd, Pl) = inf
α,β

max
t∈[0,1]

||Pd(α(t))− Pl(β(t))||.

The scoring measure should rewards Pl for matching Pd closely at each point along the
path, where points of comparison are at equal arc lengths along each path. This means
that rather than allowing any monotonic increasing traversal of the paths during distance
computation as in the Fréchet distance, the paths should be traversed at the same rate. In
other words, if both paths were traversed at a constant velocity, then the scoring measure
should compare points that are reached at the same time. When traversing both paths at
the same rate, path pairs with a low score are likely to have similar driving styles along
the entire path.

To get such a scoring measure, the Fréchet distance is then modified as follows. For a
given path to match Pd with arc length T , a matching path Pl that is at least as long as
Pd, and where t is an arc length parameterization of both paths, then the scoring measure,
denoted as d, is

d(Pd, Pl) = max
t∈[0,T]

||Pd(t)− Pl(t)||. (4.1)

22

An advantage of using this measure instead of the Fréchet distance is that its simplicity
allows for faster computation than the discrete Fréchet distance in a graph[108]. Note that
this scoring measure is no longer a distance metric, as it is asymmetrical. The fact that
this measure performs a comparison only along the arc length of Pd (and no further) is
motivated as follows: rather than forcing the lattice path Pl to be the same length as Pd,
Pl can be planned to be arbitrarily longer and then truncated to the arc length of Pd. This
opens up a greater number of terminal lattice vertices when computing Pl, which results
in closer matching paths and faster runtime. The generation of Pl is discussed in further
detail in Section 4.2.2.

Now, assume that d is calculated for two discrete paths, sampled with respect to arc
length with segments of equal length δ. Appendix A, contains implementation details,
including how to handle paths with length not integer-divisible by δ. Let Pd contain K
sampled path points, {0, ..., K − 1}, where the 0th point is the origin. Let Pd(k), Pl(k)
denote the kth path point of each respective path. Then Equation (4.1) simplifies to

d(Pd, Pl) = max
k∈{0,...,K−1}

||Pd(k)− Pl(k)||. (4.2)

Equation (4.2) can be evaluated in O(K) time.

Finally, the algorithm discussed in the section below requires the calculation of d be-
tween a control action c ∈ C and a sub-path of an input path, where the sub-path starts
at path point k1 and ends at path point k2 of Pd. In this case, both c and the sub-path
have k2 − k1 segments between path points. This is denoted by

d(Pd, c, k1, k2) = max
k∈{k1,...,k2}

||Pd(k)− c(k − k1)||. (4.3)

4.2.2 Closest Path Algorithm

In lattice planning, one typically searches for the shortest path in the lattice graph to
some goal point or region, where the lattice graph is constructed according to a particular
control set. However, to address Subproblem 1 of Section 4.1, the path Pl in the lattice
graph with minimum distance d to a given dataset path Pd must be found instead. It is
assumed both paths start at the origin O.

Algorithm 1 solves this problem. In the following subsections, the first describes the
input of a given problem instance. The next sections then discuss how to generate a search
graph for the algorithm, followed by the algorithm’s searching process. The final section
analyzes the proposed algorithm.

23

Algorithm Input

Figure 1.1 illustrates example input to the algorithm. Here there is a dataset path Pd
overlaid on top of a lattice graph constructed from an input control set C. The labelled
vertices correspond to particular positions and headings in space. A single heading across
all vertices is displayed for visual clarity, except at vertex k, which contains a control set
for an alternative initial heading in orange. The edges correspond to the underlying paths
of the control actions that join points in space according to C. The set C is illustrated
adjacent to the lattice graph. The underlying paths of each control action are uniformly
sampled with arc length δ, and the corresponding number of path points along each control
action’s path (excluding the origin point) are given as labels.

Each path is represented by a sequence of discrete path points, and as a result, the
scoring measure d requires that the kth point along Pl be compared with the kth point
along Pd during computation. To handle this, when generating the search graph the lattice
vertex is augmented with the number of discrete path points k along the path used to reach
said lattice vertex. The number of discrete path points is given by the sum of path points
along the control actions that compose the path. This is illustrated in Figure 4.2. The
integer value alongside each edge denotes the number of path points along each control
action. The augmenting integer value shown in the vertex is the total number of path
points used to reach the lattice vertex. As can be seen, lattice vertex g can be reached in
two different ways, each requiring a different number of path points, and as a result, there
are two different search graph vertices overlapping in space.

Figure 4.2: An illustration of how lattice vertices are augmented in the search graph. The control
actions are labelled with their length, in terms of discrete path points.

24

Search Graph

This section describes the construction of the search graph. As discussed in the previous
section, there are multiple ways to reach vertices within the lattice graph (for example,
vertex l in Figure 1.1, some of which have different numbers of path points used along the
way. If Pd contains K path points, the search graph contains up to K copies of each vertex
in the lattice graph to compute d. Each copy is differentiated by the number of path points
required to reach it.

These copies are illustrated in Figure 4.3. Revisiting vertex l, there are now three copies
of l in the search graph, each of which have a different value for the number of path points
required to reach it. The copies all correspond to the same point in configuration space,
but with a different number of path points used to reach them. This is similar to vertex g
in Figure 4.2.

Figure 4.3: The search graph derived from Figure 1.1. Overlapping vertices correspond to the
same point in configuration space, but reached with a different number of path points. Some
vertices are omitted for visual clarity.

To illustrate why the search graph is useful, suppose one wishes to compute the d scor-

25

ing measure of the control action from (g, 7) to (l, 10), as in Equation (4.3). This is shown
in Figure 4.4a. The path points along this edge must be compared to the path points
7 to 10 of Pd. This is shown by the dark green line segments between both paths. The
scoring measure of the control action from (g, 7) to (l, 10) is then the length of the longest
dark green line. However, if instead one wishes to compute the d scoring measure of the
control action from (h, 10) to (l, 15), the path points 10 to 15 of Pd must be compared.
This comparison is given by the light green lines between the paths. In this way, the search
graph allows the algorithm to keep track of how much of Pd has already been used in the
computation of the d scoring measure, and as a result, match the underlying paths of each
edge to the proper portion of Pd.

Algorithm 1 ClosestPath(Pd, C,O,B)

1: bestEnd← O
2: costs, predecessors← HashTable()
3: K = length(Pd)
4: V = Array(HashTable(), K)
5: V [0][O] = O
6: costs[O, 0] = 0
7: for all i ∈ 0, ..., K − 1 do
8: for all u ∈ V [i] do
9: for all c ∈ Cu.θ do

10: (v, j)← applyControlAction(u, c, i)
11: du,v ← d(Pd, c, i, j)
12: if du,v > B then
13: continue
14: V [j][v] = v
15: if max(costs[u, i], du,v) < costs[v, j] then
16: predecessors[v]← u
17: costs[v, j]← max(costs[u, i], du,v)

18: if costs[v, j] < B and j ≥ K then
19: bestEnd← v
20: B ← costs[v, j]

21: return (bestEnd, predecessors)

26

Search Process

Recall Equation (4.2) solves for the maximum pointwise distance between Pd and Pl. The
algorithm then seeks to minimize this distance, i.e., find the closest path to Pd in the
search graph. As the algorithm explores the search graph, it keeps track of the maximum
pointwise distance computed along the closest path that reaches each search graph vertex.

To solve this search problem, first denote the set of search graph vertices that require
k path points to reach them as Vk, and the collection of all Vk as V as shown in Line 4
of Algorithm 1. All edges entering a vertex in Vk come from some vertex in Vk′ such that
k′ < k. This then gives the vertices in the search graph a topological ordering that can
be exploited, which is iterated through in Lines 7-20. Through each iteration, successor
vertices are found through applyControlAction(), which takes in a lattice vertex, a control
action, and the path point i of that vertex, and outputs the successor lattice vertex as well
as the resulting path point j after applying the control action. The next step is to apply
a dynamic programming update for each search graph vertex in every Vk in increasing
order of k that computes the closest scoring measure across all paths to each search graph
vertex. If costs[] stores the best d measure found so far for each vertex, U is the set of all
predecessors of vertex (v, j), and du,v is computed for the control action linking (u, i) to
(v, j) according to Equation (4.3), then the update is given by

costs[v, j] = min
u∈U

max(costs[u, i], du,v).

This update is shown in Lines 15 to 17.

To reduce the number of vertices searched, an upper bound is computed on the optimal
d scoring measure by greedily selecting control actions that minimize the d of the appro-
priate section of Pl. An example of the greedy selection process is given in Figure 4.4b.
The maximum distance from Pd along the greedily selected path, according to the scoring
measure d, is then an upper bound on the optimal scoring measure in the lattice. This
bound, denoted as B, then defines a radius around each kth point of the path Pd. B then
restricts the size of each Vk. This is illustrated in Figure 4.4c. Only points within the
shaded green circle can meet the scoring measure threshold B given by the greedy path.
This means that (g, 7) belongs to V7, but (e, 7) does not, as it is too distant. As a result,
outgoing control actions that reach (e, 7) can be safely ignored, as any path that passes
through them is not as “close” to Pd as the greedily selected path. This is shown on Lines
12-13. Recall the lattice resolution is given by ∆x and ∆y. If A = ∆x∆y, the cardinality

27

(a) (b)

(c)

Figure 4.4: (a) An example scoring measure computation to vertex l. The light green line segments
correspond to comparisons for the control action coming out of (h, 10), and the dark green lines
represent comparisons for the control action coming out of (g, 7). (b) An example of a greedily
selected path, and the resulting upper bound B at the point of maximum deviation along the path.
(c) An illustration of a particular Vk based on the greedy bound on the scoring measure.

28

of each set Vk is bounded by d B
∆x
ed B

∆y
e|Θ| ∈ O(B

2

A
|Θ|).

Figure 4.1 gives an example solution using this method. The algorithm takes in a path
to follow, Pd, a control set, C, the origin of the lattice, O, and the greedy bound, B,
as input. The algorithm starts at the origin, iterating through each Vk and applying the
dynamic programming update described above. The Vk are populated during the graph
search by successively applying control actions.

For example, if the search starts at the origin in Figure 4.4b, the vertices (b, 3) and
(g, 7) can be reached using control actions that remain within the greedy bound B, so these
vertices are added to V3 and V7, respectively, with predecessor (O, 0). The best scoring
measure for each search graph vertex (as well as the associated predecessor vertex) is stored
as the search progresses. On the next iteration, the algorithm goes through all the vertices
in V3, since it is the set of vertices that is closest to the origin. There is only one, (b, 3), and
there are two outgoing vertices that satisfy B, (f, 6), and (g, 8). These are then added to
V6, and V8, respectively, with (b, 3) as their predecessor vertex. If the algorithm encounters
a destination vertex more than once, its saved score is updated with the minimum scoring
measure value. This continues until all viable vertices have been searched. The vertex in
the vertex sets Vk, for k ≥ K, which has the minimum score then denotes the terminal
vertex of the closest path Pl.

Algorithm Analysis

This section discusses the correctness and runtime of Algorithm 1. In the algorithm, an
empty entry in the costs hash table corresponds to infinite cost. To prove the algorithm is
correct, the proof shows that when each vertex is processed in topological order, the cost
for said vertex is the minimum across all incoming paths. In terms of runtime, recall that
B is the greedy bound, A = ∆x∆y, K is the number of points in Pd. In addition, the
maximum number of path points across all control actions is denoted as N .

Theorem 1. Algorithm 1 is correct, and has runtime O(N B2

A
K|C|).

Proof. The first part of this proof demonstrates correctness. This can be shown through
induction on the vertices processed from V , as well as the fact that the vertices are pro-
cessed in topological order.

29

Induction Assumption. For each vertex u ∈ Vk processed from each Vk ∈ V , we have
that the cost assigned to u is the minimal d possible on any path from the origin to u,
when comparing said path to u to the subpath Pd(0 : k).

Base Case. The origin is the first processed vertex, and since Pd starts at the origin, d
is zero, which is the correct distance.

Induction. Now, assume every processed vertex satisfies the induction assumption.
Suppose vertex v is the current vertex to be processed. Since the algorithm processes
vertices in topological order, all potential predecessors of v have already been processed,
and therefore satisfy the induction assumption. By the dynamic programming update,
taking U to be the set of predecessors of v, we then have that

costs[v] = min
u∈U

max(costs[u], du,v).

Now, let u′ in V0:k−1 denote the optimal predecessor of v. By the update, we have that

costs[v] ≤ max(costs[u′], du′,v),

thus the induction assumption holds for v.

For runtime, Algorithm 1 iterates through a topological ordering of the search graph,
which can be thought of as K groups of at most B2

A
vertices. For each vertex in the topolog-

ical ordering, we perform a dynamic programming update for each control action available
to it. Across all headings, the total number of control actions available to any particular
vertex is |Cθ̄|, which in aggregate yields

∑
θ̄∈Θ |Cθ̄| = |C|. Each dynamic programming up-

date calculates d for an edge, which takes O(N) time. Combining, this gives the algorithm
a computational complexity of O(N B2

A
K|C|).

The runtime is heavily dependent on the quality of the bound B provided, as a tight
bound results in far fewer vertices to search. The N factor is generally small relative to
K|C|, so for a tight greedy bound B the runtime of the algorithm approaches O(K|C|).
This would be ideal, as it corresponds to searching the control set at each point along the
path.

4.2.3 Control Set Optimization

This section presents a method for optimizing the control set structure such that it is best
able to reproduce a given dataset. This is required to address Subproblem 2 in Section 4.1.

30

Recall that the objective is to select as small of a subset as possible, Ĉ, of an original dense
control set C, while still maintaining the ability to execute the paths in a given dataset.
To accomplish this, the objective function should trade off between the sparsity of Ĉ and
the ability of Ĉ to match the dataset. Recall that the scoring measure in Equation (4.2)
is denoted as d, the dataset of paths as D, the initial dense control set as C, and the
optimized control set as Ĉ. Define the set of all potential paths in the lattice as P(Ĉ),
and the parameter that trades off between sparsity and dataset matching as λ. Then, the
resulting objective formulation is

min
Ĉ⊂C

1

|D|
∑
Pd∈D

min
Pl∈P(Ĉ)

d(Pd, Pl) + λ
|Ĉ|
|C|

. (4.4)

For each Pd, d is computed between Pd and the closest path in the lattice graph con-
structed from Ĉ, and summing over the entire dataset. This value is normalized by the
size of the dataset, to ensure consistency between different dataset sizes. The second term
penalizes the size of the learned control set to encourage sparsity, and is normalized by the
size of the initial dense control set. The λ term is what trades off between sparsity and
dataset matching; a larger λ results in a sparser control set, whereas a smaller λ allows the
control set to fit the data more closely. In this sense, the λ term acts as a regularizer in
the objective function. Occam’s Razor objective functions that encourage simplicity are
commonly used for tasks such as model selection or learning, one of which is the Bayesian
Information Criterion (BIC)[70].

To perform the optimization, one starts with a small control set Ĉ. The optimization
then greedily add the control action that results in the largest decrease in Equation (4.4),
and repeat until no control action can be added to further decrease the objective. Al-
gorithm 1 is used when computing the closest path according to d as required by Equa-
tion (4.4).

4.2.4 Clustering

The optimization method above requires evaluation of the objective function for each
available control action not yet within Ĉ across all dataset paths to determine which control
action is best to add. However, this is computationally expensive. In addition, real world
data often contains many similar paths. This is because there are often a limited number
of ways to navigate a given scenario, and certain ways are more common than others.
To alleviate these issues, the dataset is first clustered using the K-means algorithm[70].

31

To measure the distance between paths, the pointwise Euclidean norm[14] is used. An
example of a clustering result is shown in Figure 4.5.

After clustering, the search process is biased based on how well the learned control set
is currently matching each path cluster. Initially, each cluster has a large, equal weight.
The optimization algorithm proceeds as follows:

Control Set Optimization

1. Select a path cluster according to the selection weights, and randomly sample a subset
of the path cluster and a subset of control actions.

2. Compute the optimization objective for these subsets, adding each control action
individually to Ĉ and calling Algorithm 1 for each path in the cluster subset.

3. Add the control action that decreases the objective the most to Ĉ permanently.
Terminate if no control action improved the objective.

4. Update the cluster selection weights with the resulting value of the optimization
objective. Return to Step 1.

This method focuses the optimization on clusters that are poorly matched. Through this
process, the optimization runs faster, and is more likely to match all types of paths present
in the dataset, rather than the most common ones.

4.3 Experiment and Results

To evaluate the preceding method, this thesis analyzes three experiments. The first two
used data from human-driven trajectories around a roundabout, and the third used syn-
thetic paths created through randomly generated scenarios. In all three experiments,
there is an 85%-15% split of the dataset between the training and test sets. The al-
gorithms were written in Julia. The source code for the experiments can be seen at
https://github.com/rdeiaco/learning_lattice_planner. For all experiments, the
dense initial control set was a set of cubic spirals[57] arranged in a cone, generated for
all θ ∈ Θ. The endpoints of the control actions in the cone had a range of x values between
0.4m and 4.0m, a range of y values between -2.0m to 2.0m, and θ values within [0, tan−1(1

3
),

tan−1(1
2
), π

4
, tan−1(2), tan−1(3)]. These angles were chosen because they encourage straight

line traversal between vertices in the lattice graph, which improves path quality[81]. The
initial dense control set is shown in Figure 4.6a.

32

https://github.com/rdeiaco/learning_lattice_planner

Figure 4.5: An example of the K-means clustering on a roundabout path dataset. Each cluster of
paths has a different assigned colour, and the dotted line represents each cluster’s mean path.

Each experiment compares the performance of the learning algorithm to the state-
of-the-art lattice computation algorithm[82]. The learning algorithm was run with λ1 =
0.311 and λ2 = 0.0311. These values were determined by logarithmically spaced grid
search. Values of λ larger than this were found to generate control sets that were too
sparse with poor manoeuvrability. Swath-based collision checking was performed using
a rectangular vehicle footprint of length 4.5m and width 1.7m. Since the goal was not
necessarily reachable in the lattice graph, the lattice planner instead searched for goal
points that minimized the distance and heading difference from this goal.

4.3.1 Experimental Setup

Experiment 1: Roundabout Scenario The first experiment involved taking 213 paths
in a roundabout dataset1and sampling them at a constant arc length step size. The round-
about is illustrated in Figure 4.7a. The training portion of the dataset was then sliced
into 10m arc length slices using a sliding window with a 1m step size. These slices were
then taken as input to the clustering and optimization algorithms. This slicing method
allows the extraction of as much information as possible from the dataset[2]. To evaluate

1Dataset obtained with permission from DataFromSky. The paths were extracted from cars driving
through a European roundabout. The paths ranged in length from 27.6 to 87.4m.

33

www.datafromsky.com

(a) (b)

(c) (d)

Figure 4.6: Comparison of the dense (a), DL[82] (b), λ1 (c), λ2 (d) control sets generated in
Experiment 2. Each colour corresponds to a different Cθ̄.

34

the learned control sets, the test portion of the dataset was used to construct scenarios
from each path. This was done by taking the test set path as the lane centerline, with
lateral offsets from the path forming the lane boundaries in an occupancy grid. Finally,
the endpoint of the test set path was used as the goal. Using the occupancy grid, a lattice
planner was run using each generated control set to compare the quality of each control
set’s planned paths.

Experiment 2: Roundabout Lane Change Scenario The second experiment also
involved the same training paths from the roundabout dataset, except this time a second
lane was added to the test set by extending the lateral offset forming the lane boundaries.
Rather than the goal being to travel to the end of the original lane, the goal was changed
to be the end of the adjacent lane. This meant that the planner was required to perform
a lane change, in order to demonstrate that the learned control set could generalize to a
situation not explicitly present in the training set. The direction of the lane change was
equally distributed between a left and right lane change. Otherwise, scenario generation
was the same as in Experiment 1.

Experiment 3: Synthetic Double Swerve Scenario The third experiment involved
generating 100 different lane structures by randomly sampling clothoids of varying length
and curvature connected to straightaways of varying length. Next, a second lane was
added, along with an obstacle in the first lane. The goal of this experiment was for the
planner to perform a double swerve manoeuvre to avoid the obstacle. The motion planner
currently used on the University of Waterloo Autonomoose self-driving car[118] was then
used to generate the training set of synthetic paths. This dataset is shown in Figure 4.7b.

4.3.2 Experimental Results

The results of all 3 experiments are shown in Table 4.1. It shows that the learned control
sets are significantly smaller than both the dense control set as well as the control set
formed after performing the DL[82] lattice computation algorithm, illustrated in Figure 4.6.
Notably, this results in up to an approximately 7.5x planning speedup over the dense set
and up to a 4.31x planning speedup over the DL[82] set when executing the test set.

To measure how well each control set matched the dataset in terms of driving style,
the curvature at each point was computed along each planned path and dataset path as a
proxy for the steering function, as discussed in Section 1.1. Next, the maximum difference
in curvature was computed between each path point along the planned path and the dataset

35

(a)

(b)

Figure 4.7: (a) The roundabout the dataset was extracted from for Experiments 1 and 2. (b) The
synthetic dataset generated using the Autonomoose planner.

36

Table 4.1: Planning Runtime Results

Experiment 1 Dense DL[82] λ1 λ2

Control Set Size 311 194 64 109
Planning Speedup Ratio 1.00 1.82 6.40 3.49
Matching Differential (31 Scenarios) - -1 +9 +11

Experiment 2

Control Set Size 311 194 65 109
Planning Speedup Ratio 1.00 1.73 7.46 3.83
Matching Differential (31 Scenarios) - +7 +13 +23

Experiment 3

Control Set Size 311 194 57 83
Planning Speedup Ratio 1.00 1.90 7.73 4.70
Matching Differential (15 Scenarios) - +5 +11 +13

path. This is called the curvature matching score. Afterwards, these curvature matching
scores were compared across the planned paths for each control set. The value in the table
reports the number of times a planned path had a lower maximum curvature deviation
than the dense set’s planned path; a positive number denotes the control set was better at
matching more often than the dense set, and negative the opposite. A sample comparison
between the DL control set and the λ2 control set is given in Figure 4.8.

This shows that the learned control sets match the driving style (measured by curvature)
of the dataset more closely than both the dense and DL[82] control sets, while also offering
faster planning times. In addition, it is clear that as λ gets smaller, the planned paths
more closely match the data, at the cost of a larger control set and slower planning times.

Figure 4.9 shows a sample planning run from Experiment 3, comparing all 4 control
sets. The red box denotes the obstacle for the scenario. It is clear all 4 planners were able
to complete a plan to the goal state equally well, which shows that the learned planners
had no loss of manoeuvrability.

37

Figure 4.8: An example comparison of the curvature values between planned paths using the
DL[82] and λ2 control sets. Each datapoint corresponds to a test scenario; below the straight line
means that the λ2 control set performed better.

Figure 4.9: Comparison of the lattice planner paths for the dense, DL[82], λ1, and λ2 control sets
for one of the scenarios in Experiment 3.

38

Chapter 5

Safe Swerve Manoeuvres for
Autonomous Driving

5.1 Swerve Problem Formulation

The fundamental problem this chapter addresses is to compute the longitudinal safe dis-
tance required when there is a free lane (or shoulder) to the left or right of the vehicle,
allowing for an evasive swerve manoeuvre. This requires knowing the longitudinal safe
distance required for a braking lead vehicle as well as a swerving lead vehicle. These ma-
noeuvres are illustrated in Figure 5.1. As can be seen, when computing the longitudinal
safe distances for swerves, one needs to consider both longitudinal and lateral clearance,
since swerves contain lateral and longitudinal displacement.

Since vehicles rotate during swerves, rotation must compensated for when computing
these clearances. After compensating for rotation, the distance xc can then be used to
compute the longitudinal safe distance required for a swerve. In RSS, safety was proved
for a particle model. This chapter extends those results to prove the safety for swerves
feasible for the kinematic bicycle model. It is then shown how this result can be applied
to more general models in Section 5.3. This task then breaks down into five subproblems.

Subproblem 1. Given the initial speed of the swerving vehicle vr, the vehicle dimen-
sions df , dr, bl, br as in Figure 5.2a, and parameters µ and ρ, compute a lateral clearance
distance yc sufficient for lateral safety when a swerving vehicle becomes laterally adjacent
to a lead vehicle.

39

(a) (b)

(c) (d)

Figure 5.1: (a) The standard RSS braking manoeuvre for a braking leading vehicle. Velocities and
acceleration arrows point to path segment where they occur. (b) The proposed swerve manoeuvre
for a leading braking vehicle. The green dot represents the lateral clearance point (xc, yc), according
to RSS µ-lateral distance. (c) The braking manoeuvre required for a swerving leading vehicle. (d)
The swerving manoeuvre required for a swerving leading vehicle.

40

Subproblem 2. Given the kinematic constraints in (3.25), the initial vehicle speeds
vr and vf , the lateral clearance distance yc, and parameters ρ, amax, amin,brake, amax,brake,
alat

max, and alat
min, compute a longitudinal safe distance sufficient for safety when swerving for

a braking lead vehicle. This is illustrated in Figure 5.1b.

Subproblem 3. Given the initial vehicle speeds vr and vf , the clearance point yc, and
parameters ρ, amax, amin,brake, a

lat
max, and alat

min, compute a longitudinal safe distance sufficient
for safety when braking for a swerving lead vehicle. This is illustrated in Figure 5.1c.

Subproblem 4. Given the kinematic constraints in (3.25), the initial vehicle speeds vr
and vf , the parameters ρ, amax, amin,brake, amax,brake, a

lat
max, and alat

min, compute a longitudinal
safe distance sufficient for safety when swerving behind a swerving lead vehicle. This is
illustrated in Figure 5.1d.

Subproblem 5. Given longitudinal safe distance sufficient for safety when swerving
for a braking vehicle, braking for a swerving lead vehicle, and swerving for a swerving lead
vehicle, compute a longitudinal safe distance akin to dlong that is sufficient for universal
safety when maintained by all vehicles on the road.

The first subproblem is addressed in Section 5.2.1, the second in Section 5.2.2, the third
in Section 5.2.3, the fourth in Section 5.2.4, and the fifth in Section 5.2.5.

The work in this chapter makes the following assumptions on responsible behaviour:

1. A vehicle will only perform a swerve manoeuvre if it is not braking, and will only
perform a brake manoeuvre if it is not swerving.

2. For every swerve manoeuvre, each vehicle reaches the lateral clearance distance only
once. As a result, once an vehicle has committed to a lane change by reaching the
lateral clearance distance, it will not return to its previous lane.

3. Each vehicle moves forward along the road, v ≥ 0 and −π
2
≤ ψ ≤ π

2
.

5.2 Computing the Longitudinal Safe Distance

5.2.1 Lateral Clearance Distance

The lateral clearance distance, as was defined in Section 3.4, is used to determine when
a swerving vehicle is laterally safe from a braking lead vehicle. To compute the lateral

41

clearance distance, denoted yc, Equation (3.43) is modified to account for vehicle rotation.
If the maximum chassis yaw θmax during the manoeuvre is known, an axis-aligned bounding
rectangle can be computed as an outer approximation to the vehicle footprint. This is useful
for safety analysis, and is illustrated in Figure 5.2a.

(a)

(b)

Figure 5.2: (a) An outer approximation to a vehicle chassis that rotates by θmax. d′ and d̄ are
used for longitudinal buffers during swerve manoeuvres, and b′ is used as a lateral buffer. (b) An
inner approximation to a rotating vehicle chassis.

The three distances needed for safety analysis are from the centre of mass to the front
of the bounding rectangle, d′, from the centre of mass to the side of the bounding rectangle,
b′, and from the centre of mass to the rear of the bounding rectangle, d̄. dr and df are
the distances from the centre of mass to the rear and front of the chassis, respectively. bl
and br are the distances to the left and right of the chassis, respectively. As the vehicle

42

rotates, the length and width of the bounding rectangle increases until θmax reaches the
angles from the centre of mass to the corners of the rectangle. Further rotation past these
points decreases the dimensions of the bounding rectangle. These angles can be written
in terms of φ and γ, illustrated in Figure 5.2a. The equations for the bounding rectangle
distances are then d′, d̄, and b′ are

d′ =

{
df cos(θmax) + br sin(θmax) θmax ≤ φ,√
d2
f + b2

r θmax > φ,
(5.1)

d̄ =

{
dr cos(θmax) + bl sin(θmax) θmax ≤ γ,√
d2
r + b2

l θmax > γ,
(5.2)

b′ =

{
dr sin(θmax) + br cos(θmax) θmax ≤ π

2
− γ,√

d2
r + b2

r θmax >
π
2
− γ.

(5.3)

Using θmax, which is computed in Section 5.2.2, the required bounding rectangle di-
mensions of a rotating vehicle can be computed.

Using b′ and the lateral clearance distance dlat, the lateral clearance distance yc can be
computed, as required for Subproblem 1.

yc = b′ + bl + dlat. (5.4)

Denote the time yc is attained as tc.

Theorem 2. Equation 5.4 gives a lateral clearance distance sufficient for lateral safety
when a swerving vehicle becomes laterally adjacent to a lead vehicle, or any time before.

Proof. To show lateral safety, we must show that laterally adjacent agents are at least dlat

from one another, as given in Equation 3.43. Since the swerving agent’s lateral speed is
variable but nonnegative, a conservative lower bound on its lateral velocity is zero when
computing dlat. From assumption 1, since the other agent is braking, it is not swerving, and
therefore has lateral velocity during the swerve. The required dlat can then be computed
using Equation 3.43, taking vlat

r and vlat
f to be zero, and using the parameters alat

min, alat
max,

and ρ. The distance dlat acts as a buffer to ensure that upon reaching lateral adjacency,
both agents are laterally safe from one another.

43

For t < tc, the swerving vehicle is not laterally adjacent to the other vehicle, and is
laterally safe. For t ≥ tc, from Assumption 2, tc is the time at which the two vehicles
are closest while laterally adjacent. From Equation 5.4, there is at least dlat of distance
between the agents, and thus they are laterally safe ∀t ≥ tc.

5.2.2 Swerving for a Braking Vehicle

The clearance distance yc can be used to compute the longitudinal safe distance required
when swerving to avoid a braking lead vehicle, denoted ds,b. This distance ds,b is computed
under the constraints of the bicycle model outlined in Section 3.3. In addition, if α denotes
the lane width, tf denotes the end time of the swerve, and the origin of the coordinate
frame is at the centre line of the current lane at the rear vehicle’s position at t = 0, the
swerve must satisfy the following boundary conditions:

θ(tf) = 0, y(tf) = α. (5.5)

However, computing the optimal bicycle swerve manoeuvre with respect to longitudinal
clearance is an optimization problem with no closed form solution [98]. Instead, one can
compute a swerve manoeuvre feasible for the kinematic bicycle model, and use that to ob-
tain an upper bound on the actual longitudinal distance required by a swerve constrained
by the kinematic bicycle model.

As in Equation 3.42, the lead vehicle is travelling with velocity vf , and then brakes
at amax,brake during the entire manoeuvre. The swerve is preceded by the rear vehicle
maximally accelerating during the reaction delay ρ, at which point it begins the swerve
manoeuvre with post-acceleration velocity vr,ρ. To ensure monotonicity in the gap between
the rear and lead vehicles, a lower bound on the distance travelled until tf by lead vehicle
is used, denoted xf .

The swerve considered is bang-bang in the steering input with zero longitudinal acceler-
ation, and is illustrated in Figure 5.3. The longitudinal distance travelled by the swerving
vehicle until the swerving vehicle reaches the lateral clearance distance is denoted as xc.
This distance xc is computed in Equations 5.16 and 5.21.

For the swerve manoeuvre, the turning radius of the circular arcs depends on the
maximum lateral acceleration, as well as the kinematic limits of the steering angle. The

44

constraints on steering angle and lateral acceleration from (3.25) give two constraints on
the turning radius

Rmin,δ =

√
(lr + lf)2

tan(δmax)2 + l2r
, (5.6)

Rmin,a =
v2
r,ρ

alat
min

. (5.7)

To ensure both constraints are satisfied, Rc from (3.25) is set to the maximum of the two.
From this turning radius, the steering angle δc and the slip angle βc can be computed

δc = tan−1

(√
(lr + lf)2

R2
c − l2r

)
, (5.8)

βc = tan−1

(
lr tan(δc)

lr + lf

)
. (5.9)

The θmax required to satisfy the boundary conditions in Equation 5.5 can now be
computed. The angle θmax denotes how far the vehicle travels along each circular arc,
which gives the switching point for the bang-bang steering control. From the rear axle, the
two circular arcs are symmetrical in lateral distance travelled, as in Figure 5.3. Therefore,
the angle along the first circular arc required to reach a lateral distance of α

2
can be

computed. First, the turning radius at the rear axle, Rr, is computed

Rr =
lr + lf
tan(δc)

. (5.10)

The lateral distance travelled during the first circular arc is then given by

y(t) = Rr(1− cos(θ(t))). (5.11)

For a given value of δc, θmax is then

θmax = cos−1

(
1− α

2Rr

)
. (5.12)

To compute xc, there are two cases, depending on if yc is reached in the first or second
circular arc. The angle ψmax can be computed using (3.25). From Assumption 3, ψmax ≤ π

2
.

Thus, the first case occurs if

yc ≤ Rc(cos(βc)− cos(ψmax)), (5.13)

otherwise the second case occurs.

45

Figure 5.3: The swerve manoeuvre used for safety analysis. The red path is taken by the centre
of mass, and the blue path is taken by the rear axle. α is the distance between lanes, δc is the
steering angle, βc is the slip angle. The maximum angles achieved by the chassis yaw and the
velocity of the centre of mass are given by θmax and ψmax, respectively. The turning radius of the
rear axle and centre of mass’s paths are given by Rr and Rc, respectively.

46

First Circular Arc

Similar to Equation 5.11, the longitudinal position along the first circular arc is given by

x(t) = Rc(sin(ψ(t))− sin(βc)). (5.14)

Using the centre of mass equivalent of Equation 5.11 and yc, the ψ value at the clearance
point, ψc, can be computed

ψc = cos−1

(
cos(βc)−

yc
Rc

)
. (5.15)

Substituting this value for ψ in Equation 5.14, and adding the outer approximation for the
chassis d′ gives the longitudinal swerve clearance distance

xc = Rc(sin(ψc)− sin(βc)) + d′. (5.16)

The magnitude of the velocity is constant during the swerve, and so tc can be computed
using the arc length travelled up to the clearance point yc,

tc =
Rc(ψc − βc)

v
. (5.17)

Second Circular Arc

In the second circular arc, the initial heading of the centre of mass is denoted as ψ̂ =
ψmax − 2βc, the initial x position as x̂ = Rc(sin(ψmax)− sin(βc)), and the initial y position
as ŷ = Rc(cos(βc) − cos(ψmax)). The longitudinal and lateral distances along this arc are
then

x(t) = Rc(sin(ψ̂)− sin(ψ(t))) + x̂, (5.18)

y(t) = Rc(cos(ψ(t))− cos(ψ̂)) + ŷ. (5.19)

As in Case 1, substituting yc yields ψc,

ψc = cos−1

(
1

Rc

(yc − ŷ) + cos(ψ̂)

)
(5.20)

Substituting this value for ψ in Equation 5.18 gives

xc = Rc(sin(ψ̂)− sin(ψc)) + x̂. (5.21)

47

Similar to Case 1, the clearance time, tc, can be computed

tc =
Rc(ψmax − βc + ψ̂ − ψc)

v
. (5.22)

From these longitudinal swerve clearance values, the longitudinal safe distance can then
be computed. To do this, the rear braking distance in Equation 3.42 can be replaced with
the longitudinal swerve distance xc. In addition, to ensure a monotonically decreasing gap
between the two vehicles, the initial speed of the lead vehicle is set (as a conservative lower
bound) to

v′f = min(vf , vr cos(ψmax)). (5.23)

The distance travelled by the lead vehicle, xf , depends on the the clearance time tc. If

ρ+ tc ≥
v′f

amax,brake
, then the lead vehicle brakes to a stop during the swerve, and the distance

travelled is the stopping distance. Otherwise, it is the distance travelled during deceleration
up to time tc. Thus, the distance travelled by the lead vehicle is given by

xf =

v′f (ρ+ tc)− amax,brake(ρ+tc)2

2
, ρ+ tc ≤

v′f
amax,brake

,
v′2f

2amax,brake
, ρ+ tc >

v′f
amax,brake

.
(5.24)

Using the parameters amax,accel and ρ introduced in Section 3.4, and using Equa-
tions 5.16, 5.21, and 5.24, the longitudinal safe distance between a swerving rear vehicle
and a braking lead vehicle, ds,b, is then

ds,b =

[
vrρ+

1

2
amax,accelρ

2 + xc − xf
]

+

+ d′ + dr. (5.25)

Theorem 3. Equation 5.25 gives a longitudinal safe distance sufficient for safety when
swerving for a braking lead vehicle.

Proof. For t > tc, y(t) > yc, and therefore the swerving vehicle is no longer longitudinally
adjacent to the lead vehicle, so is safe from the lead vehicle’s braking. For t ≤ tc, from
Equation 5.23, a conservative lower bound is used for the speed of the lead vehicle to
ensure the lead vehicle’s speed is less than the swerving vehicle during the entire swerve.
This implies the gap between the two vehicles is monotonically decreasing, which further

48

implies that the minimum gap between the two vehicles occurs at time tc.

The swerving vehicle travels xc + vrρ+ 1
2
amax,accelρ

2, and a conservative lower bound on
the lead vehicle’s travel distance is given by xf . There is at most d′ of distance from the
centre of mass to the front of the swerving vehicle, and there is a constant d of distance
from the front vehicle centre of mass to the front vehicle’s bumper. Thus, if a swerving
vehicle maintains distance ds,b, it will not collide with a braking vehicle in front of it, and
is therefore safe from the lead vehicle at time tc. Since the gap is monotonically decreasing
for t ≤ tc, it is safe ∀t ≤ tc.

5.2.3 Braking for a Swerving Vehicle

The longitudinal safe distance required to swerve for a braking vehicle was computed in
the preceding section, and this section considers the opposite problem, computing the
longitudinal safe distance required to brake for a swerving lead vehicle without collision.
Since the lead vehicle intends to occupy the other lane, it requires less longitudinal distance
for the rear vehicle to brake to avoid the swerving lead vehicle than it would for it to
brake for a braking lead vehicle. It is assumed the front vehicle is performing the same
swerve discussed in Section 5.2.2. To account for rotation of the front vehicle, d̄ is used to
compensate as defined in Section 5.2.1.

Equations 5.16, 5.21, 5.17, and 5.22 can be used to compute the xc and tc for the
front vehicle’s swerve. As in Equation 3.42, it is assumed that the rear vehicle accelerates
maximally during its reaction time, and then brakes comfortably until tc. As before, denote
the rear vehicle’s post-acceleration velocity as vr,ρ. Then its minimum velocity during the
braking manoeuvre is

vr,min = max(min(vr, vr,ρ − amin,brake(tc − ρ)), 0). (5.26)

As in Section 5.2.2, the proof of safety is simplified if the gap is monotonically decreasing
until lateral safety is reached. To ensure this, the lead vehicle speed is conservatively
approximated with v′f

v′f = min(vf cos(ψmax), vr,min). (5.27)

A conservative lower bound for the longitudinal distance travelled by the swerving front
vehicle is then

xf = v′f tc. (5.28)

49

The distance xf is a lower bound on the distance travelled by the front vehicle during the
swerve that creates a monotonically decreasing gap.

The distance travelled by the rear braking vehicle during its reactions delay and its
braking manoeuvre is denoted by xr. This distance depends on the clearance time tc,
similar to the distance travelled by the front vehicle in the preceding section. The distance
travelled during the rear vehicle’s braking manoeuvre, xr,brake, is given by

xr,brake =

vr,ρ(tc − ρ)− amin,brake(tc−ρ)2

2
, tc − ρ ≤ vr,ρ

amin,brake
,

v2r,ρ
2amin,brake

, tc − ρ > vr,ρ
amin,brake

.
(5.29)

Following this, the distance travelled by the braking rear vehicle is

xr =
(vr + vr,ρ)ρ

2
+ xr,brake. (5.30)

Using Equations 5.28 and 5.30, the longitudinal safe distance when braking for a swerv-
ing vehicle, db,s is then

db,s = [xr − xf]+ + df + d̄. (5.31)

Theorem 4. Equation 5.31 gives a longitudinal safe distance sufficient for safety when
braking for a swerving lead vehicle.

Proof. For t > tc, the swerving vehicle is laterally clear from the rear braking vehicle, and
therefore the rear vehicle is safe. The velocity used for the lead vehicle is a conservative
lower bound on its true speed ∀t ≤ tc, as per Equation 5.27. In addition, v′f ≤ vr,
∀t ≤ tc, and as a result the gap between the two vehicles is monotonically decreasing on
that interval. The minimum distance between the two vehicles thus occurs at time tc.
Equation 5.31 thus gives enough clearance such that no collision occurs at time tc, so the
rear vehicle is safe at time tc. Since the gap is monotonically decreasing over the interval,
the rear vehicle is safe ∀t ≤ tc.

5.2.4 Swerving for a Swerving Vehicle

The final relevant longitudinal safe distance is the distance required when swerving behind
a swerving lead vehicle. This is illustrated in Figure 5.1d. Both vehicles are longitudinally
adjacent during the entire manoeuvre. From Assumption 1, the lead vehicle will not brake

50

during its swerve. The goal is then to compute the longitudinal distance required to
swerve behind a lead swerving vehicle, such that if the lead vehicle were to immediately
brake with deceleration amax,accel at the end of its swerve, and the rear vehicle were to
brake with deceleration amin,accel at the end of its reaction-delayed swerve, there would be
no collision. Using Equation 5.12 to compute the maximum yaw angle during each vehicle’s
swerve, θmax,r, θmax,f , and Equation 5.10 to compute each vehicle’s rear axle turning radius,
Rr,r, Rr,f , the swerve completion times of the rear and front vehicle are given by t1 and t2,
respectively

t1 =
2Rr,r(θmax,r)

vr
, (5.32)

t2 =
2Rr,f (θmax,f)

vf
. (5.33)

Similar to the previous section, v′f denotes a conservative lower bound on the front vehicle’s
speed

v′f = min(vf cos(ψmax,f), vr). (5.34)

The longitudinal safe distance required to swerve in response to a swerving vehicle, ds,s,
is then

ds,s =
vr + vr,ρ

2
ρ+ vr,ρ(t1 − ρ) +

v2
r,ρ

2amin,brake

−
(
v′f t2 +

v′2f
2amax,brake

)
+ d′ + d̄. (5.35)

Theorem 5. Equation 5.35 gives a longitudinal safe distance sufficient for safety when
swerving for a swerving lead vehicle.

Proof. The gap between each vehicle can be written as a piecewise function of time. The
endpoints of the intervals are the reaction delay, ρ, the time it takes for the front vehicle to
finish its swerve, t2, the time it takes for the rear vehicle to finish its swerve, t1, the brake
time of the front vehicle, tb,2, and the brake time of the rear vehicle, tb,1. The swerve times
for the kinematic bicycle model for varying speeds are proportional to v cos−1

(
1− 1

v2

)
,

which is quasi-constant across all relevant road speeds. In addition, amax,accel > amin,accel,
and swerve times are longer than reasonable reaction times. From this, it is reasonable
to assume that ρ < t2 < ρ + t1 < t2 + tb,2 < ρ + t1 + tb,1. If the longitudinal distance
travelled during the swerves by the front and rear vehicle are denoted by xs,2(t) and xs,1(t)
respectively, the initial gap between the vehicles is denoted by g0, and (for the moment)
the distances from the centre of mass to the front and rear bumpers are ignored, then the
gap as a function of time g(t) is given by

51

g(t) =



g0 + xs,2(t)− (vrt+ 1
2
amax,accelt

2) t ≤ ρ,

g0 + xs,2(t)− (vr+vr,ρ
2

ρ+ xs,1(t− ρ)) ρ < t ≤ t2,

g0 + xs,2(t2) + vf (t− t2)− 1
2
amax,brake(t− t2)2−

(vr+vr,ρ
2

ρ+ xs,1(t− ρ)) t2 < t ≤ ρ+ t1,

g0 + xs,2(t2) + vf (t− t2)− 1
2
amax,brake(t− t2)2−

(vr+vr,ρ
2

ρ+ xs,1(t1 − ρ) + vr,ρ(t− t1)− 1
2
amin,brake(t− t1)2) ρ+ t1 < t ≤ t2 + tb,2,

g0 + xs,2(t2) +
v2f

2amax,brake
− (vr+vr,ρ

2
ρ+ xs,1(t1 − ρ)+

vr,ρ(t− t1)− 1
2
amin,brake(t− t1)2) t2 + tb,2 < t ≤ ρ+ t1 + tb,1,

g0 + xs,2(t2) +
v2f

2amax,brake
− (vr+vr,ρ

2
ρ+ xs,1(t1 − ρ) +

v2r,ρ
2amin,brake

) t > ρ+ t1 + tb,1.

(5.36)

The maximum longitudinal velocity during the rear vehicle swerve is vr,ρ. If the max-
imum ψ value during the front vehicles swerve is denoted ψmax,f , the minimum longi-
tudinal velocity during the front vehicle’s swerve is given by vf cos(ψmax,f). Set v′f =
min(vf cos(ψmax,f), vr). This means that

xs,1(t) ≤ vr,ρt, (5.37)

xs,2(t) ≥ v′f t. (5.38)

Substituting this in Equation 5.36 results in a monotonically decreasing function of t,
ĝ(t), with the property that ĝ(t) ≤ g(t),∀t

ĝ(t) =



g0 + v′f t− (vrt+ 1
2
amax,accelt

2) t ≤ ρ,

g0 + v′f t− (vr+vr,ρ
2

ρ+ vr,ρ(t− ρ)) ρ < t ≤ t2,

g0 + v′f t− 1
2
amax,brake(t− t2)2 − (vr+vr,ρ

2
ρ+ vr,ρ(t− ρ)) t2 < t ≤ ρ+ t1,

g0 + v′f t− 1
2
amax,brake(t− t2)2−

(vr+vr,ρ
2

ρ+ vr,ρ(t− ρ)− 1
2
amin,brake(t− t1)2) ρ+ t1 < t ≤ t2 + tb,2,

g0 + v′f t2 +
v′2f

2amax,brake
− (vr+vr,ρ

2
ρ+ vr,ρ(t− ρ)−

1
2
amin,brake(t− t1)2) t2 + tb,2 < t ≤ ρ+ t1 + tb,1,

g0 + v′f t2 +
v′2f

2amax,brake
− (vr+vr,ρ

2
ρ+ vr,ρ(t1 − ρ) +

v2r,ρ
2amin,brake

) t > ρ+ t1 + tb,1.

(5.39)

52

This implies that the minimum of ĝ(t) occurs for t > tb,1, where ĝ(t) is constant

min
t
ĝ(t) = g0 + v′f t2 +

v′2f
2amax,brake

−
(
vr + vr,ρ

2
ρ+ vr,ρ(t1 − ρ) +

v2
r,ρ

2amin,brake

)
. (5.40)

Since ĝ(t) ≤ g(t),∀t, if ĝ(t) ≥ 0,∀t, no collision occurs. This is satisfied if the initial gap
satisfies

g0 ≥
vr + vr,ρ

2
ρ+ vr,ρ(t1 − ρ) +

v2
r,ρ

2amin,brake

−
(
v′f t2 +

v′2f
2amax,brake

)
. (5.41)

By adding in the distances from the centre of mass to the ends of the chassis, compensating
for the rotation of each swerving vehicle, an initial gap is sufficient for safety ∀t if

g0 ≥
vr + vr,ρ

2
ρ+ vr,ρ(t1 − ρ) +

v2
r,ρ

2amin,brake

−
(
v′f t2 +

v′2f
2amax,brake

)
+ d′ + d̄. (5.42)

Which yields Equation 5.35.

At t ≥ t2, the time at which the lead vehicle begins hard braking, there is enough
longitudinal distance to brake for the leading vehicle, as ĝ(t) ≥ 0,∀t ≥ t2, so the rear
vehicle is safe. Since ĝ(t) in Equation 5.39 is monotonically decreasing with t, the safe
longitudinal distance is satisfied for t < t2, and thus the rear vehicle is safe ∀t.

5.2.5 Universal Following Distance

The final subproblem addressed in this chapter aims to combine the results of the previous
sections into a final following distance that can be maintained by all vehicles in a given
straight road system to ensure universal safety, assuming the vehicles can brake or swerve
as a response to the behaviour of other vehicles in front of them. In this sense, this section
extends the analysis of the preceding sections into the case of more than two vehicles in
a road system. The following distance will be a function of the speed of the vehicle, as
well as the speed of the 2 vehicles in front of the vehicle, and the parameters outlined
in 3.4. Denote the distance required to brake for a braking lead vehicle as db,b(vr, vf , ρ),
the distance required to swerve for a braking lead vehicle as db,s(vr, vf , ρ), the distance
required to swerve for a braking lead vehicle as ds,b(vr, vf , ρ), and the distance required to
swerve for a swerving lead vehicle as ds,s(vr, vf , ρ).

53

(a)

(b)

Figure 5.4: (a) Scenario where the rear vehicle must swerve for a swerving vehicle 2 cars ahead.
(b) Scenario where the rear vehicle must brake for a braking vehicle 2 cars ahead.

54

In such a road system, there will be blocks of vehicles where the front vehicle is much
greater than both db,b and ds,s away from the nearest vehicle in front of it. Since it is at
least this far, it can safely brake or swerve for any vehicle in front of it, and therefore any
vehicle in front of it can be ignored. Because of this, these blocks can be considered in
isolation, and if each block of vehicles is considered safe, all vehicles in the road system is
considered safe. For any vehicle in a given block, denote its speed by v1, and the speeds
of the first and second vehicles in front of it (if they exist within the block) as v2 and v3,
respectively. The longitudinal position of each vehicle as a function of time is denoted by
x1(t), x2(t), and x3(t). A sufficient safe following distance for each vehicle is then

d̂long = max(db,s(v1, v2, ρ), db,s(v1, v2, ρ),

ds,s(v1, v3, 2ρ)− ds,b(v2, v3, ρ), db,b(v1, v3, 2ρ)− ds,b(v2, v3, ρ)). (5.43)

Theorem 6. Equation 5.43 gives a longitudinal safe distance sufficient for universal safety
when maintained by all vehicles.

Proof. As mentioned earlier, each block of vehicles can be analyzed individually for safety,
and if every block is safe, all vehicles are safe. The safety of any given block can be proved
using an inductive argument across all of the vehicles, starting from the front of the block.
The following is a proof sketch.

• For the base case, the safety of the first two vehicles is proven when following with
at least d̂long.

• For the inductive step, it is assumed the ith agent is following with at least d̂long and

is safe, and it is shown that if the (i + 1)th agent follows with at least d̂long, then it
is safe.

Base Case

The first vehicle at the front of the block is by definition at least db,b and ds,s from any
vehicle in front of it (if such an vehicle exists). As a result, any potential vehicle in front
of the first can be safely avoided if necessary with either a brake or a swerve. This means
that the first vehicle in the block is safe, and any potential vehicle in front of the first can
be safely ignored by all vehicles in the block.

The second vehicle follows the first vehicle at d̂long. If the front vehicle brakes, the
second vehicle is at least ds,b away from it, and can swerve to safety. If the front vehicle

55

swerves, the second vehicle is at least db,s away from it, and can brake safely. The second
vehicle is therefore safe from the first vehicle, and is therefore safe.

Induction

Now, suppose the ith vehicle is following with at least d̂long of distance, and is safe from
the vehicles in front of it. Denote the (i+ 1)th as vehicle 1, the ith vehicle as vehicle 2, and
the (i− 1)th vehicle as vehicle 3. The distance between vehicle 1 and vehicle 2 is d̂long. If
vehicle 2 brakes or swerves, vehicle 1 is at least ds,b and db,s away from it, and is safe from
vehicle 2 if it responds with a swerve or brake, respectively.

If vehicle 1 swerves in response to vehicle 2’s brake, there are 2 cases to consider. The
first case is if vehicle 3 brakes. Since vehicle 2 was assumed to be safe from vehicle 3,
x2(t) ≤ x3(t),∀t. Combining this with the fact that ds,b is sufficient for vehicle 1 to swerve
safely from vehicle 2, vehicle 1 must be safe from vehicle 3 if vehicle 3 brakes.

If vehicle 3 swerves, ds,s(v1, v3, 2ρ) is a sufficient distance for vehicle 1 to follow vehicle
3 to ensure safety. This case is illustrated in Figure 5.4a. The reaction delay is doubled
to account for the reaction propagating through 2 vehicles instead of the usual one. Since
vehicle 2 was assumed to be safe from vehicle 3, ds,b(v2, v3, ρ) is a lower bound on vehicle 2’s
following distance from vehicle 3. This means that in this case, ds,s(v1, v3, 2ρ)−ds,b(v2, v3, ρ)
is a sufficient following distance between vehicle 1 and 2 to guarantee safety.

If vehicle 1 brakes in response to vehicle 2’s swerve, as before there are 2 cases to con-
sider. The first case is if vehicle 3 is swerving. As before, since vehicle 2 was assumed to
be safe from vehicle 3, x2(t) ≤ x3(t),∀t. Combining this with the fact that db,s is sufficient
for vehicle 1 to brake safely from vehicle 2’s swerve, vehicle 1 must be safe from vehicle 3’s
swerve.

If vehicle 3 brakes, db,b(v1, v3, 2ρ) is a sufficient distance for vehicle 1 to follow vehicle
3 to ensure safety. This case is illustrated in Figure 5.4b. Again, the reaction delay is
doubled to account for propagation between two vehicles. Since vehicle 2 was assumed to
be safe from vehicle 3, ds,b(v2, v3, ρ) is again a lower bound on vehicle 2’s following distance.
Thus, in this case, db,b(v1, v3, 2ρ)− ds,b(v2, v3, ρ) is a sufficient following distance between

56

vehicle 1 and 2 to guarantee safety.

Since d̂long is greater or equal to each of these following distances, vehicle 1 is safe, and
thus the (i + 1)th is safe. By induction, any block of vehicles is safe that maintains this
following distance, and as a result, the entire system is safe.

At high speeds, this new following distance can be used to allow for tighter following
between agents. At low speeds, the agents can revert to the braking following distance
used in RSS. A comparison between the RSS following distance and this new following
distance across a range of speeds is shown in Figure 5.7.

5.3 Validation and Results

To validate the bicycle model assumptions, the first subsection checks the validity of the
conservative upper bound on the required swerve distance by computing a lower bound. In
the next subsection, a dynamic single-track vehicle model [37] is used to see if the previously
computed swerve distances are reasonable conservative approximations. The lower bound
is computed and compared to the upper bound distance, as well as the braking distance,
in Section 5.3.1. In Section 5.3.2, the upper bound swerve clearance distance, as computed
in Section 5.2.2, is compared to swerves from the dynamic single-track model.

5.3.1 Lower Bound Validation

The lower bound on the longitudinal swerve distance in this section is computed while
satisfying the constraints of the particle model in Equations 3.23 and 3.24. The minimum
ax and maximum ay values are set to be −amin,brake and alat

min, respectively, from the bicycle
model. This ensures that any acceleration possible for the bicycle model is also possible
for the particle model.

For a particle model, maximal lateral acceleration towards yc as well as maximal longi-
tudinal deceleration leads to lateral clearance in the shortest longitudinal distance x̄c [99].
Thus, x̄c ≤ xc for any other manoeuvre feasible for the particle model.

Finally, for computing the clearance, an inner approximation of the vehicle’s chassis
during rotation is used. To do so, the clearance distance uses the square inscribed on the

57

circle of radius bl centred on the centre of mass with side length 2d′i. This is shown in
Figure 5.2b. Through this inner approximation, d′i ≤ d′ for any possible chassis rotation.
This implies that anything the chassis can clear during the swerve will be cleared by the
inner square. If xf is used as in Section 5.2.2, a lower bound on the longitudinal safe
distance, denoted by d̄long, is given by

d̄long = [vrρ+
1

2
amax,accelρ

2 + x̄c − xf]+ + d′i + d. (5.44)

Theorem 7. Equation 5.44 gives a longitudinal safe distance necessary for safety when
swerving for a braking lead vehicle.

Proof. The clearance time and associated longitudinal distance at which point the particle
model reaches yc are given by

tc =

√
2yc
alat

min

, (5.45)

x̄c = vtc −
amin,braket

2
c

2
+ d′i. (5.46)

By the acceleration constraints imposed on the particle model, any feasible accelera-
tion in the bicycle model is feasible for the particle model. In addition, the manoeuvre
is optimal with respect to longitudinal distance travelled for the particle model. Both of
these points imply that the x̄c in Equation 5.46 is a lower bound on any feasible xc for
the bicycle model. Next, the inner approximation implies that for any manoeuvre, if the
chassis can clear, the square with side length 2d′i can clear as well, allowing a buffer of d′i
to be added.

If the initial longitudinal distance between the vehicles is denoted as x2, then the
distance between the swerving vehicle and the braking vehicle during the reaction delay
is given by x2 − d′i − dr + vf t − 1

2
amax,braket

2 − vrt − 1
2
amaxt

2. If the distance between the
vehicles at the end of the reaction delay is denoted as xρ, then after the reaction delay
the distance between the vehicles is given by xρ + vf t− 1

2
amax,braket

2 − vr,ρt+ 1
2
amin,braket

2.
Since −amax,brake − amax < 0 and −amax,brake + amin,brake < 0, the distance between the
swerving and braking vehicle is concave on both intervals. This implies that the minimum
gap occurs at the boundaries of the time intervals {0, ρ, tc}. Since the distance between
the vehicles is differentiable everywhere, the time ρ is a critical point only if the derivative
is zero. In this case, since the distance is concave before and after time ρ, the derivative

58

is positive for t < ρ and negative for t > ρ, implying the distance at time ρ is a local
maximum. Taking everything together, assuming the vehicles are not already in collision
at t = 0, this implies that Equation 5.44 is a lower bound on the longitudinal safe distance
required for a swerve feasible for the bicycle model.

A comparison between the lower bound and upper bound on the longitudinal distance
travelled during a swerve, as well as the equivalent braking distance is shown in Figure 5.5.
The plot is across a range of initial speeds.

Figure 5.5: A comparison of the longitudinal distance travelled between swerve and brake ma-
noeuvres, for varying initial velocities. The swerving distance required by the dynamic model is
similar to the distance required by the bicycle model.

5.3.2 Dynamic Model Validation

Next, the kinematic approximation is validated by comparing the longitudinal swerve dis-
tance under a dynamic model to the distance computed in the preceding sections. This
section focuses on the ability of the dynamic model to swerve, and not an associated con-
troller, and as a result the manoeuvres are generated in open loop. However, doing a grid
search over all possible control inputs to find the best swerves is impractical. Instead, the
steering input is broken into 4 equal length intervals of time, and binary search is per-
formed over steering rate magnitudes until the boundary conditions in Equation 5.5 are

59

satisfied. In addition, linear search is performed over brake input and the total time of
the manoeuvre, where the manoeuvre that minimizes the longitudinal swerve distance xc
is selected.

The parameters used in this validation are summarized in Table 5.1. The deceleration
amin,brake was chosen to represent braking at the limit of comfort, and amax,brake was chosen
to represent a hard, uncomfortable brake. The swerves generated for various initial speeds
are illustrated in Figure 5.6.

Table 5.1: Parameters Table

m 1239 kg lf 1.19 m lr 1.37 m

Izz 1752 kg ·m2 eSP 0.5 m R 0.302 m

cw 0.3 ρdrag 1.25 kg
m3 A 1.438

Bf 10.96 Cf 1.3 Df 4560.4

Ef -0.5 Br 12.67 Cr 1.3

Dr 3947.81 Er -0.5 alat
max 4.0 m

s2

alat
min 2.0 m

s2
amin,brake 2.0 m

s2
amax,brake 8.0 m

s2

amax,accel 2.0 m
s2

µ 0.1 m ρ 0.1 s

α 3.7 m dr 2.3 m df 2.4 m

br 0.9 m bl 0.9 m δmax
π
6

Using these computed swerves, the clearance distance yc is then computed as before
and is used to find the longitudinal swerve distance travelled xc that occurs at time tc.
Substituting this value in at Equations 5.25 and 5.31 then gives the required longitudinal
safe distance for the dynamic model. For the range of initial vehicle speeds where swerving
is more efficient than braking, the longitudinal safe distances required for the dynamic
model are plotted and compared to those computed in Section 5.2 in Figure 5.5.

60

Figure 5.6: The swerve manoeuvres generated according to the dynamic model. Each swerve
is for a different initial speed in the interval [10, 30] m

s . The arrows denote the heading of the
vehicle.

5.3.3 Simulation Results

In Figure 5.5, the lower bound is within 30.3-61.9% error of the upper bound, which cor-
responds to a range of 8.8-16.3m of additional distance. This gives a range of clearance
values required for a swerving bicycle to clear a lead vehicle.

This plot also illustrates the advantage of swerves; across a initial speeds ranging from
5-30 m

s
, the swerves reach safety using up to 63.5m less of longitudinal distance travelled

than braking does. In addition, the longitudinal swerve distance required by the dynamic
single-track model is within 15.6-24.0% error of the upper bound distance, and is always
above the lower bound distance. This shows that the kinematic approximation can ac-
curately bound the swerve distance required by the dynamic single-track model, across
initial speeds from 8-30 m

s
. This verifies that the kinematic approximation can be used as

a closed form and efficient method for computing longitudinal safe distances as described
in the preceding sections.

Figure 5.7 compares the safe distance required when using swerves, d̂long, as compared
to the standard dlong required in the RSS framework, when each vehicle is moving along
at the same speed. For low speeds, the required braking distance is lower, which is in
line with what is expected from Figure 5.5. However, at higher speeds it is clear that
the required following distance to maintain safety is reduced. By allowing swerves, the
following distance can be reduced by up to 40%, or 14.1 - 14.9m, even when allowing for
large magnitudes of amin,brake, and as a result, more aggressive brake responses. The main
difference that increasing amin,brake has is increasing the cutoff velocity at which the swerv-
ing following distance falls below the braking following distance.

61

(a) (b)

(c)

Figure 5.7: (a) Plot of the longitudinal safe distance across a range of speeds, as compared to the
standard RSS braking distance, with amin,brake = 2m

s2
. (b) Same as (a), but with amin,brake = 3m

s2
.

(c) Same as (a), but with amin,brake = 4m
s2

.

62

Along the same vein, it is also interesting to compare the safe distance required for
braking for a braking vehicle to the safe distance required for swerving for a braking ve-
hicle as the amin,brake and alat

min parameters are varied. The maximum deceleration is set
to amax,brake = 8 m

s2
, and the other acceleration parameters amin,brake and alat

min are varied
between [1, 8] m

s2
while holding both equal to one another. Comparing the safe longitudinal

distances when braking or swerving in this manner gives a visualization for when braking
or swerving is advantageous, depending on the magnitude of acceleration allowed. The
rear vehicle initial speed vr is set to 15 and 20m

s
, and the braking front vehicle initial speed

vf is swept from 5 to vr
m
s
.

In Figure 5.8, when the rear vehicle is travelling at 15m
s
, for low acceleration rates,

the swerve manoeuvres require less longitudinal safe distance than braking. For acceler-
ation values higher than 4 m

s2
, braking requires less following distance. This trend implies

that braking scales better with increased acceleration limits than swerving does. However,
swerving allows for more efficient manoeuvres than braking when acceleration is limited.
This can be useful in certain situations, such as when there is a tailgating vehicle behind
the autonomous vehicle. Different vehicles may also have different braking capabilities,
which may prevent high acceleration rates from being achievable.

In Figure 5.9, a similar trend emerges; at lower accelerations swerving requires less
following distance than braking. However, of note is that swerving allows the autonomous
vehicle to reach safety earlier than braking does even when the maximum acceleration is
set to 6 m

s2
. Even when the maximum acceleration is set to 8 m

s2
, for a range of lead vehicle

initial speeds, swerving and braking require roughly the same longitudinal safe distance.
This implies that as the initial speed of the autonomous vehicle increases, the effectiveness
of swerves in reaching safety improves. This gives additional evidence that swerves can be
useful in high speed situations, such as highway driving, particularly when other vehicles
cut off the autonomous vehicle.

63

(a) (b)

(c) (d)

(e)

Figure 5.8: A comparison of different safe longitudinal distances for when vr = 15m
s . The

maximum longitudinal and lateral accelerations is set to (a) 1m
s2

, (b) 2m
s2

, (c) 4m
s2

, (d) 6m
s2

, (e)
8m
s2

.

64

(a) (b)

(c) (d)

(e)

Figure 5.9: A comparison of different safe longitudinal distances for when vr = 20m
s . The

maximum longitudinal and lateral accelerations is set to (a) 1m
s2

, (b) 2m
s2

, (c) 4m
s2

, (d) 6m
s2

, (e)
8m
s2

.

65

Chapter 6

Conclusions and Future Work

This thesis discussed and analyzed two different problems related to motion planning for
autonomous driving. The first problem involved optimizing a lattice planner control set for
a particular driving task, with the goal of improving planning time as well as capturing the
driving style present in a given dataset of trajectories for said driving task. The proposed
approach involved selecting control actions that allowed a lattice planner to plan paths
similar to those in the dataset. This measurement of similarity was computed using the
modified Fréchet distance. We evaluated this method using both real data from round-
about driving as well as synthetic datasets.

The second problem discussed in this thesis extended the RSS framework by introducing
safe swerve manoeuvres. This involved developing a method for computing the longitudi-
nal distance required for safety during a swerve manoeuvre under the RSS framework, and
compared it to the standard braking distance used previously. The safety of these manoeu-
vres was proven under a set of reasonable assumptions about responsible behaviour, while
incorporating the original assumptions in the RSS framework. This extended framework
can be used to reduce longitudinal clearance, to react more quickly to dangerous situations,
or to compute the clearance required for proactive swerve manoeuvres, such as lane changes.

66

6.1 Future Work for Learning a Lattice Planner Con-

trol Set

To improve this approach, there are two promising avenues of research. The first is to
replace the search for the closest path in the lattice with a greedy search over the motion
primitives in the control set instead. The analysis in this thesis shows that the closest path
search algorithm tends to O(K|C|) for a tight greedy bound, but in practice the algorithm
tends to slow down significantly as the control set grows larger. To improve runtime, one
option may be to use the path generated through greedy search for the closest path instead
of the optimal closest path. Then the runtime will be, even in the worst case, O(K|C|).
The value of dL for the greedy path has been empirically observed to be close to the optimal
found during closest path search, so it is likely that the control sets generated by using the
greedy path instead are not significantly degraded.

The next improvement could come from the use of inverse reinforcement learning (IRL)
in the learning process. Currently, the dense control set is populated based on spirals to
uniformly distributed points, with various initial and final headings. Instead, one may
first generate the motion primitives directly from the dataset using IRL. This dense set of
primitives could then be refined according to the learning process already outlined in this
work. This would allow for stronger results in terms of matching the driving style present
in the dataset, as IRL is a powerful tool for doing so.

In terms of other related problems, it would be interesting to combine learning the struc-
ture of a lattice planner with learning the lattice planner’s search heuristic, to see if lattice
planner performance can be improved even further for specific applications. Extending this
algorithm to handle trajectories rather than paths is also a potential improvement. This
would require a way to scale the algorithm efficiently as the dimensionality of the problem
increases. In a separate vein, formulating the optimization objective as a submodular func-
tion, similar to what was done by Dey et al. [23], could also yield interesting theoretical
guarantees on learning performance.

67

6.2 Future Work for the RSS Framework

To further improve the RSS framework, one option would be to extend the inclusion of
swerve manoeuvres to more general cases. An example of this would be to generalize the
swerve manoeuvre to arbitrary Frenet frames, as opposed to straight lines. One could also
compute bounds on the error from using a straight line approximation to the Frenet frame.
Further experimental work of the RSS framework and its extensions, through on-car testing
or scenario simulation, would also be beneficial, to determine the strengths and weaknesses
of the framework in real driving situations.

An interesting related problem would be to try to extend the RSS framework to con-
sider interactive agents who react to the autonomous vehicle. This would allow for safe lead
distances to be computed for more complex driving tasks, such as lane changes, lane merg-
ing, or cut-in situations. Since computing agent reactions are tightly linked to behaviour
prediction, extending RSS in this manner will probably require the framework to shift to
be probabilistic, rather than having fixed safe distances. This is due to the probabilistic
nature of behaviour prediction.

In its current form, the RSS framework addresses the instantaneous safe distance be-
tween different agents, but ignores the transient effects present as a system of agents evolves
with time. While there is a prescription to brake when the safe distance is violated, the
braking response as well as the stability or convergence of agents to a given speed are
not explored in detail. As a result, an interesting avenue to explore would be to consider
control laws that result in stable, safe following distances, with convergence to a constant
following distance, as opposed to oscillations.

The analysis in this thesis has ignored the effects of occlusions when analyzing chains
of safe agents. Instead, safe distances are computed assuming reaction delays propagate
uniformly between consecutive agents. A more robust definition of safety would account
for the time it takes for an occluded object to be revealed to the reacting vehicle.

6.3 Conclusion

In the field of autonomous driving, two important areas of research are how to leverage data
to improve motion planning, as well as how to ensure safety in a multi-agent environment.

68

This thesis has briefly explored these two exciting areas of research, and has laid the
groundwork for future endeavours. While it is clear that this thesis has only scratched
the surface of these topics, continued work on these problems will certainly help make
autonomous driving a reality.

69

References

[1] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek. Generating adversarial driving
scenarios in high-fidelity simulators. 2019 International Conference on Robotics and
Automation (ICRA), 2019.

[2] F. Altche and A. De La Fortelle. An LSTM network for highway trajectory prediction.
IEEE ITSC, 2017.

[3] M. Althoff, D. Althoff, D. Wollherr, and M. Buss. Safety verification of autonomous
vehicles for coordinated evasive maneuvers. 2010 IEEE Intelligent Vehicles Sympo-
sium, 2010.

[4] M. Althoff and J. M. Dolan. Online verification of automated road vehicles using
reachability analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014.

[5] M. Althoff, M. Koschi, and S. Manzinger. Commonroad: Composable benchmarks
for motion planning on roads. 2017 IEEE Intelligent Vehicles Symposium (IV), 2017.

[6] J. Van Den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for real-
time multi-agent navigation. 2008 IEEE International Conference on Robotics and
Automation, 2008.

[7] P. Berman, A. Bhattacharyya, K. Makarychev, S. Raskhodnikova, and G. Yaroslavt-
sev. Approximation algorithms for spanner problems and directed steiner forest.
Information and Computation, 222:93–107, 2013.

[8] M. Bhardwaj, S. Choudhury, and S. Scherer. Learning heuristic search via imitation.
CoRR, abs/1707.03034, 2017.

[9] C. Bianco, G. Lo, and A. Piazzi. Optimal trajectory planning with quintic g/sup
2/-splines. Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat.
No.00TH8511), 2000.

70

[10] A. Blake, A. Bordallo, M. Hawasly, S. Penkov, S. Ramamoorthy, and A. Silva.
Efficient computation of collision probabilities for safe motion planning. CoRR,
abs/1804.05384, 2018.

[11] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer. Scalable decision
making with sensor occlusions for autonomous driving. 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[12] M. Brown, J. Funke, S. Erlien, and J. C. Gerdes. Safe driving envelopes for path
tracking in autonomous vehicles. Control Engineering Practice, 61:307–316, 2017.

[13] D. Chen, A. Driemel, L. Guibas J., A. Nguyen, and C. Wenk. Approximate map
matching with respect to the Fréchet distance. Proceedings of the Thirteenth Work-
shop on Algorithm Engineering and Experiments (ALENEX), pages 75–83, 2011.

[14] J. Chen, R. Wang, L. Liu, and J. Song. Clustering of trajectories based on Hausdorff
distance. International Conference on Electronics, Communications and Control
(ICECC), 2011.

[15] J. Chen, W. Zhan, and M. Tomizuka. Constrained iterative lqr for on-road au-
tonomous driving motion planning. IEEE 20th International Conference on Intelli-
gent Transportation Systems (ITSC), 2017.

[16] O. Cheong, H. Haverkort, and M. Lee. Computing a minimum-dilation spanning tree
is np-hard. Computational Geometry, 41(3):188–205, 2008.

[17] I. Chevyrev and A. Kormilitzin. A Primer on the Signature Method in Machine
Learning. ArXiv e-prints, March 2016.

[18] S. Choudhury, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade, S. Scherer, and
D. Dey. Data-driven Planning via Imitation Learning. ArXiv e-prints, November
2017.

[19] B. Cserna, W. J. Doyle, T. Gu, and W. Ruml. Safe temporal planning for urban
driving. AAAI 2019 Workshop, 2019.

[20] A. Dragan D., K. C. T. Lee, and S. S. Srinivasa. Legibility and predictability of robot
motion. 2013 8th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2013.

71

[21] A. Dragan D., K. Muelling, A. J. Bagnell, and S. S. Srinivasa. Movement primitives
via optimization. 2015 IEEE International Conference on Robotics and Automation
(ICRA), 2015.

[22] J. David, R. Valencia, R. Philippsen, P. Bosshard, and K. Iagnemma. Gradient based
path optimization method for autonomous driving. 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017.

[23] D. Dey, T. Y. Liu, B. Sofman, and D. Bagnell. Efficient optimization of control
libraries. Robotics: Science and Systems VIII, Jan 2011.

[24] P. Dingle and L. Guzzella. Optimal emergency maneuvers on highways for passenger
vehicles with two- and four-wheel active steering. Proceedings of the 2010 American
Control Conference, 2010.

[25] A. D. Dragan, G. J. Gordon, and S. S. Srinivasa. Learning from experience in
manipulation planning: Setting the right goals. Springer Tracts in Advanced Robotics
Robotics Research, pages 309–326, 2016.

[26] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Technische Universitat Wien, 1994.

[27] J. Fisac F., A. Akametalu K., M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J.
Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 2018.

[28] P. Felzenszwalb F. and D. P. Huttenlocher. Distance transforms of sampled functions.
Theory of Computing, 8, 2012.

[29] Y. Chen Fan, M. Everett, M. Liu, and J. P. How. Socially aware motion planning with
deep reinforcement learning. 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[30] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson, and L. Tapia.
Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning
and sampling-based planning. 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018.

[31] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Shankar, and A. D. Dragan.
Hierarchical game-theoretic planning for autonomous vehicles. 2019 International
Conference on Robotics and Automation (ICRA), 2019.

72

[32] T. Fraichard and A. Scheuer. From reeds and shepps to continuous-curvature paths.
IEEE Transactions on Robotics, 20(6):1025–1035, 2004.

[33] C. Fulgenzi, A. Spalanzani, and C. Laugier. Dynamic obstacle avoidance in un-
certain environment combining pvos and occupancy grid. Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007.

[34] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression mod-
els. Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD 99, 1999.

[35] E. Galceran, A. Cunningham, R. Eustice, and E. Olso. Multipolicy decision-making
for autonomous driving via changepoint-based behavior prediction. Robotics: Science
and Systems XI, 2015.

[36] M. Van Gennip. Vehicle dynamic modelling and parameter identification for an
autonomous vehicle. Master’s thesis, University of Waterloo, 2018.

[37] M. Gerdts. Solving mixed-integer optimal control problems by branch & bound: a
case study from automobile test-driving with gear shift. Optimal Control Applications
and Methods, 26(1):1–18, 2005.

[38] F. Giovannini, G. Savino, M. Pierini, and N. Baldanzini. Analysis of the minimum
swerving distance for the development of a motorcycle autonomous braking system.
Accident Analysis and Prevention, 59:170–184, 2013.

[39] D. Godbolen., V. Hagenmeyer, R. Sengupta, and D. Swaroop. Design of emergency
manoeuvres for automated highway system: obstacle avoidance problem. Proceedings
of the 36th IEEE Conference on Decision and Control, 1997.

[40] D. S. Gonzalez, O. Erkent, V. Romero-Cano, J. Dibangoye, and C. Laugier. Modeling
driver behavior from demonstrations in dynamic environments using spatiotemporal
lattices. 2018 IEEE International Conference on Robotics and Automation (ICRA),
2018.

[41] T. Gu. Improved Trajectory Planning for On-Road Self-Driving Vehicles Via Com-
bined Graph O. Search and Topology Analysis. PhD thesis, Carnegie Mellon Univer-
sity, 2017.

[42] T. Gu, J. M. Dolan, and J. Lee-Woo. Automated tactical maneuver r. discovery and
trajectory planning for autonomous driving. 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2016.

73

[43] M. Gmez, R. V. Gonzlez, T. Martnez-Marn, D. Meziat, and S. Snchez. Optimal
motion planning by reinforcement learning in autonomous mobile vehicles. Robotica,
30(02):159–170, 2011.

[44] J. Hardy and M. Campbell. Contingency planning over probabilistic hybrid obstacle
predictions for autonomous road vehicles. 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010.

[45] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[46] K. Hauser. Continuous pseudoinversion of a multivariate function : Application
to global redundancy resolution. The International Workshop on the Algorithmic
Foundations of Robotics, 2016.

[47] R. M. Holladay and S. S. Srinivasa. Distance metrics and algorithms for task space
path optimization. IEEE/RSJ IROS, 2016.

[48] B. K. P. Horn. The curve of least energy. ACM Transactions on Mathematical
Software, 9(4):441–460, Jan 1983.

[49] T. Howard, M. Pivtoraiko, R. A. Knepper, and A. Kelly. Model-predictive motion
planning: Several key developments for autonomous mobile robots. IEEE Robotics
Automation Magazine, 21(1):64–73, March 2014.

[50] R. De Iaco, S. L. Smith, and K. Czarnecki. Learning a lattice planner control set for
autonomous vehicles. 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.

[51] B. Ichter, J. Harrison, and M. Pavone. Learning sampling distributions for robot
motion planning. arXiv preprint arXiv:1709.05448, Sep 2017.

[52] H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou. Collision avoidance analysis for
lane changing and merging. IEEE Transactions on Vehicular Technology, 49(6):2295–
2308, 2000.

[53] P. Agarwal K., R. Avraham Ben, H. Kaplan, and M. Sharir. Computing the discrete
frchet distance in subquadratic time. Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 156–167, Jun 2013.

74

[54] N. Kaempchen, B. Schiele, and K. Dietmayer. Situation assessment of an autonomous
emergency brake for arbitrary vehicle-to-vehicle collision scenarios. IEEE Transac-
tions on Intelligent Transportation Systems, 10(4):678–687, 2009.

[55] N. Kalra and S. M. Paddock. Driving to safety: How many miles of driving would it
take to demonstrate autonomous vehicle reiliability? Technical Report RR-1478-RC,
RAND Coroporation, 2016.

[56] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
CoRR, abs/1105.1186, 2011.

[57] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via parametric
optimal control. The International Journal of Robotics Research, 22(7):583–601, Jan
2003.

[58] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and dynamic vehi-
cle models for autonomous driving control design. 2015 IEEE Intelligent Vehicles
Symposium (IV), 2015.

[59] Y. Kuwata, G. Fiorea., J. Teo, E. Frazzoli, and J. P. How. Motion planning for
urban driving using rrt. 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008.

[60] S. M. LaValle. Planning algorithms. Cambridge University Press, 2014.

[61] J. Lee, J. Han, and K. Whang. Trajectory clustering: A partition-and-group frame-
work. Proceedings of the 2007 ACM SIGMOD international conference on Manage-
ment of data - SIGMOD 07, 2007.

[62] K. Leung, E. Schmerling, M. Chen, J. Talbot, J. C. Gerdes, and M. Pavone. On
infusing reachability-based safety assurance within probabilistic planning frameworks
for human-robot vehicle interactions. 2018 International Symposium on Experimental
Robotics, 2018.

[63] L. Li, X. Peng, F. Wang, D. Cao, and L. Li. A situation-aware collision avoidance
strategy for car-following. IEEE/CAA Journal of Automatica Sinica, 5(5):1012–1016,
2018.

[64] A. De Luca, G. Oriolo, and C. Samson. Feedback control of a nonholonomic car-like
robot. Lecture Notes in Control and Information Sciences Robot Motion Planning
and Control, pages 171–253, 1998.

75

[65] T. Howard M., C. Green J., A. Kelly, and D. Ferguson. State space sampling of feasi-
ble motions for high-performance mobile robot navigation in complex environments.
Journal of Field Robotics, 25(6-7):325–345, 2008.

[66] L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma, and N. Zheng. Efficient sampling-based
motion planning for on-road autonomous driving. IEEE Transactions on Intelligent
Transportation Systems, 16(4):1961–1976, 2015.

[67] C. C. Macadam. Understanding and modeling the human driver. Vehicle System
Dynamics, 40(1-3):101–134, Jan 2003.

[68] M. Mcnaughton, C. Urmson, J. M. Dolan, and J. Lee-Woo. Motion planning for
autonomous driving with a conformal spatiotemporal lattice. IEEE ICRA, 2011.

[69] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent hamilton-jacobi
formulation of reachable sets for continuous dynamic games. IEEE Transactions on
Automatic Control, 50(7):947–957, 2005.

[70] K. P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

[71] M. Naumann, H. Knigshof, and C. Stiller. Provably safe and smooth lane changes in
mixed traffic. IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2019.

[72] M. Naumann, M. Lauer, and C. Stiller. Generating s. comfortable and comprehen-
sible trajectories for automated vehicles in mixed traffic. 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), 2018.

[73] M. Ono, M. Pavone, Y. Kuwata, and J. Balaram. Chance-constrained dynamic
programming with application to risk-aware robotic space exploration. Autonomous
Robots, 39(4):555–571, 2015.

[74] G. Oriolo, M. Ottavi, and M. Vendittelli. Probabilistic motion planning for redundant
robots along given end-effector paths. IEEE/RSJ IROS, 2002.

[75] H. B. Pacejka and E. Bakker. The magic formula tyre model. Vehicle System Dy-
namics, 21:1–18, 1992.

[76] B. Paden, M. Cap, S. Yong Zheng, D. Yershov, and E. Frazzoli. A survey of motion
planning and control techniques for self-driving urban vehicles. IEEE Transactions
on Intelligent Vehicles, 1(1):33–55, 2016.

76

[77] B. Paden, V. Varricchio, and E. Frazzoli. Verification and synthesis of admissible
heuristics for kinodynamic motion planning. IEEE Robotics and Automation Letters,
2(2):648–655, 2017.

[78] C. Pek, P. Zahn, and M. Althoff. Verifying the safety of lane change maneuvers of
self-driving vehicles based on formalized traffic rules. 2017 IEEE Intelligent Vehicles
Symposium (IV), 2017.

[79] A. Piazzi, C. Bianco, and G. Lo. Quintic g/sup 2/-splines for trajectory planning of
autonomous vehicles. Proceedings of the IEEE Intelligent Vehicles Symposium 2000
(Cat. No.00TH8511), 2000.

[80] J. Pimentel, J. Bastiaan, and M. Zadeh. Numerical evaluation of the safety of self-
driving vehicles: Functionality involving vehicle detection. 2018 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), 2018.

[81] M. Pivtoraiko and A. Kelly. Generating near minimal spanning control sets for
constrained motion planning in discrete state spaces. IEEE/RSJ IROS, 2005.

[82] M. Pivtoraiko and A. Kelly. Kinodynamic motion planning with state lattice motion
primitives. IEEE/RSJ IROS, 2011.

[83] M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially constrained mobile robot
motion planning in state lattices. Journal of Field Robotics, 26(3):308–333, 2009.

[84] M. Pivtoraiko, I. A. D. Nesnas, and A. Kelly. Autonomous robot navigation using
advanced motion primitives. IEEE Aerospace Conference, 2009.

[85] M. N. Pivtoraiko. Differentially constrained motion planning with state lattice motion
primitives. PhD thesis, Carnegie Mellon University, 2012.

[86] P. Polack, F. Altche, B. Dandrea-Novel, and A. De La Fortelle. The kinematic bicycle
model: A consistent model for planning feasible trajectories for autonomous vehicles?
IEEE Intelligent Vehicles Symposium, 2017.

[87] M. Pollack. Letter to the editor-the maximum capacity through a network. Opera-
tions Research, 8(5):733–736, 1960.

[88] X. Qian, A. De La Fortelle, and F. Moutarde. A hierarchical model predictive con-
trol framework for on-road formation control of autonomous vehicles. 2016 IEEE
Intelligent Vehicles Symposium (IV), 2016.

77

[89] Y. Rasekhipour. Prioritized Obstacle Avoidance in Motion Planning of Autonomous
Vehicles. PhD thesis, University of Waterloo, 2017.

[90] N. Ratliff, M. Zucker, A. J. Bagnell, and S. Srinivasa. Chomp: Gradient optimization
techniques for efficient motion planning. 2009 IEEE International Conference on
Robotics and Automation, 2009.

[91] E. Rehder, J. Quehl, and C. Stiller. Driving like a human: Imitation learning for path
planning use convolutional neural networks. IEEE/RSJ International Conference on
Robotics and Automation Workshops, 2017.

[92] M. Rufli, D. Ferguson, and R. Siegwart. Smooth path planning in constrained envi-
ronments. 2009 IEEE International Conference on Robotics and Automation, 2009.

[93] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone. Multimodal probabilistic
model-based planning for human-robot interaction. 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), 2018.

[94] C. Schmidt, F. Oechsle, and W. Branz. Research on trajectory planning in emer-
gency situations with multiple objects. 2006 IEEE Intelligent Transportation Systems
Conference, 2006.

[95] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Finding locally c.
optimal-free trajectories with sequential convex optimization. Robotics: Science and
Systems IX, 2013.

[96] S. Shalev-Shwartz, S. Shammah, and A. Shashua. On a formal model of safe and
scalable self-driving cars. CoRR, abs/1708.06374, 2017.

[97] Z. Shiller and S. Sundar. Emergency maneuvers for ahs vehicles. SAE Technical
Paper Series, 1995.

[98] Z. Shiller and S. Sundar. Emergency maneuvers of autonomous vehicles. IFAC
Proceedings Volumes, 29(1):8089–8094, 1996.

[99] Z. Shiller and S. Sundar. Emergency lane-change maneuvers of autonomous vehicles.
Journal of Dynamic Systems, Measurement, and Control, 120(1):37, 1998.

[100] Z. Shiller and S. Sundar. Optimal emergency maneuvers of automated vehicles.
eScholarship, University of California, Oct 2005.

78

[101] J. M. Snider. Automatic steering methods for autonomous automobile path tracking.
Master’s thesis, Carnegie Mellon University, 2009.

[102] A. Stentz. Optimal and efficient path planning for partially-known environments.
Proceedings of the 1994 IEEE International Conference on Robotics and Automation,
1994.

[103] S. Su, K. Muelling, J. Dolan, P. Palanisamy, and P. Mudalige. Learning vehicle
surrounding-aware lane-changing behavior from observed trajectories. IEEE IV Sym-
posium, 2018.

[104] E. Thorn, S. Kimmel, and M. Chaka. A framework for automated driving system
testable cases and scenarios. Technical Report DOT HS 812 623, Virgina Tech Trans-
portation Institute, Sep 2018.

[105] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M.
Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peterson,
B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y. Seo-Woo, S. Singh, J. Snider,
A. Stentz, W. Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish,
B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms,
and D. Ferguson. Autonomous Driving in Urban Environments: Boss and the Urban
Challenge, pages 1–59. Springer Berlin Heidelberg, H. Berlin, 2009.

[106] S. L. Waslander, S. Fischmeister, and K. Czarnecki. From zero to autonomous in six
months: Creation of an autonomous driving demonstrator for ces 2017. 2016.

[107] C. Wenk. Shape Matching in Higher Dimensions. PhD thesis, FU Berlin, 2003.

[108] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed:
Localizing global curve-matching algorithms. 18th International Conference on Sci-
entific and Statistical Database Management, 2006.

[109] M. Werling, J. Ziegler, Kammel Soren, and S. Thrun. Optimal trajectory generation
for dynamic street scenarios in a frenet frame. 2010 IEEE International Conference
on Robotics and Automation, 2010.

[110] J. Xie, A. R. Hilal, and D. Kulic. Driving maneuver classification: A comparison of
feature extraction methods. IEEE Sensors Journal, 18(12):4777–4784, 2018.

79

[111] H. Xu, Y. Zhou, W. Lin, and H. Zha. Unsupervised trajectory clustering via adaptive
multi-kernel-based shrinkage. 2015 IEEE International Conference on Computer
Vision (ICCV), 2015.

[112] W. Xu, J. Pan, J. Wei, and J. M. Dolan. Motion planning under uncertainty for
on-road autonomous driving. 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[113] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha. A real-time motion planner with
trajectory optimization for autonomous vehicles. 2012 IEEE International Confer-
ence on Robotics and Automation, 2012.

[114] W. Yang, T. Lyons, H. Ni, C. Schmid, L. Jin, and J. Chang. Leveraging the path
signature for skeleton-based human action recognition. CoRR, abs/1707.03993, 2017.

[115] G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang. A review of moving object trajectory
clustering algorithms. Artificial Intelligence Review, 47:123–144, Mar 2016.

[116] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep control policies for
autonomous aerial vehicles with MPC-guided policy search. IEEE ICRA, 2016.

[117] Y. Zhang, H. Chen, S. L. Waslander, J. Gong, G. Xiong, T. Yang, and K. Liu. Hy-
brid trajectory planning for autonomous driving in highly constrained environments.
IEEE Access, 6:32800–32819, 2018.

[118] Y. Zhang, H. Chen, S. L. Waslander, T. Yang, S. Zhang, G. Xiong, and K. Liu.
Toward a more f. complete, and safer speed planning for autonomous driving via
convex optimization. Sensors, 2018.

[119] Y. Zhang, A. Dakibay, J. Lee, and S. Waslander. Continuous optimization based
path planning for autonomous vehicles. 2016.

[120] A. Zhou and A. D. Dragan. Cost Functions for Robot Motion Style. ArXiv e-prints,
August 2018.

[121] J. Ziegler and C. Stiller. Spatiotemporal state lattices for fast trajectory planning in
dynamic on-road driving scenarios. IEEE/RSJ IROS, 2009.

[122] M. Zucker, N. Ratliff, A. Dragan D., M. Pivtoraiko, M. Klingensmith, C. Dellin M.,
A. J. Bagnell, and S. S. Srinivasa. Chomp: Covariant hamiltonian optimization for
motion planning. The International Journal of Robotics Research, 32(9-10):1164–
1193, 2013.

80

APPENDICES

81

Appendix A

Learned Lattice Planner Control Set
Practical Considerations

Arc Length Relaxation. Since the lattice control actions connect vertices in the lattice
graph, a realistic application of this method would require a small line segment length δ,
which would in turn increase the size of K required in each path matching calculation. To
remedy this, the requirement that each control action has an arc length that is integer-
divisible by δ is relaxed. This potentially results in a leftover portion of each control action
that would be left out of the closest path calculation. This is overcome by checking if the
leftover portion of the control action is greater than or equal to half of δ. If it is, then it
is treated as a full line segment for d computation. Otherwise, it is ignored. In practice,
using a δ that is a 1

4
of min(∆x,∆y) allows for good results.

Optimization Initialization. The learned control set is initialized with a single short,
straight action for each possible initial direction, to ensure that the closest path algorithm
can make forward progress when it encounters a point with any particular heading.

82

	List of Figures
	List of Tables
	Introduction
	Learning a Lattice Planner Control Set for Autonomous Driving
	Safe Swerve Manoeuvres for Autonomous Driving
	Thesis Contribution
	Organization

	Literature Review
	Motion Planning for Autonomous Driving
	Variational Optimization Planners
	Sampling-based Planners
	Lattice Planners

	Data-driven Motion Planning
	Responsibility-Sensitive Safety (RSS)
	Swerve Manoeuvres

	Preliminaries
	Lattice Planning
	Spiral Path Planning
	Kinodynamic Vehicle Models
	Particle Model
	Kinematic Bicycle Model
	Dynamic Single Track Model

	Responsibility-Sensitive Safety

	Learning a Lattice Planner Control Set for Autonomous Driving
	Problem Formulation
	Sparse Control Set Generation
	Scoring Measure
	Closest Path Algorithm
	Control Set Optimization
	Clustering

	Experiment and Results
	Experimental Setup
	Experimental Results

	Safe Swerve Manoeuvres for Autonomous Driving
	Swerve Problem Formulation
	Computing the Longitudinal Safe Distance
	Lateral Clearance Distance
	Swerving for a Braking Vehicle
	Braking for a Swerving Vehicle
	Swerving for a Swerving Vehicle
	Universal Following Distance

	Validation and Results
	Lower Bound Validation
	Dynamic Model Validation
	Simulation Results

	Conclusions and Future Work
	Future Work for Learning a Lattice Planner Control Set
	Future Work for the RSS Framework
	Conclusion

	References
	Learned Lattice Planner Control Set Practical Considerations
	APPENDICES

