
Accepted Manuscript

Research papers

Automatic Feature Selection and Weighting for the Formation of Homogeneous
Groups for Regional IDF Estimation

Zhe Yang, Donald H. Burn

PII: S0022-1694(19)30460-3
DOI: https://doi.org/10.1016/j.jhydrol.2019.05.015
Reference: HYDROL 23748

To appear in: Journal of Hydrology

Received Date: 18 May 2018
Revised Date: 2 May 2019
Accepted Date: 5 May 2019

Please cite this article as: Yang, Z., Burn, D.H., Automatic Feature Selection and Weighting for the Formation of
Homogeneous Groups for Regional IDF Estimation, Journal of Hydrology (2019), doi: https://doi.org/10.1016/
j.jhydrol.2019.05.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jhydrol.2019.05.015
https://doi.org/10.1016/j.jhydrol.2019.05.015
https://doi.org/10.1016/j.jhydrol.2019.05.015
Jordan Hale
The final publication is available at Elsevier via https://doi.org/10.1016/j.jhydrol.2019.05.015. © 2019. 
This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/�



  

1 
 

Automatic Feature Selection and Weighting for  

the Formation of Homogeneous Groups for Regional IDF Estimation 

 

Zhe Yang1, Donald H. Burn1 

1Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada 

N2L 3G1. 

Abstract: The intensity-duration-frequency (IDF) curve has been used as an effective tool to 

quantify the risk associated with the impact of extreme rainfall on civil infrastructure. However, 

recent changes in the rainfall climatology caused by climate change and urbanization have made 

estimates in the stationary environment provided by the traditional regional IDF approach 

increasingly inaccurate. This inaccuracy is mainly caused by the lack of consideration for the 

temporal and spatial difference in the selection of similarity indicators (attributes that are used to 

measure similarity of extreme rainfall patterns among different stations), resulting in ineffective 

formation of a homogeneous group (a group of stations that share similar extreme rainfall patterns) 

at various regions. To consider the temporal differences of similarity indicators, including 

meteorological factors, topographic features and urban impact indicators, a three-layer design is 

proposed based on the three stages in extreme rainfall formation: cloud formation, rainfall 

generation and change of rainfall intensity over an urban surface. During the process, the impacts 

from climate change and urbanization on extreme rainfall patterns are considered through the 

inclusion of potential features that relate to the rainfall mechanism at each layer. The spatial 

differences of similarity indicators for Homogeneous Group Formation (HGF) at various regions 

is resolved by using an automatic feature selection and weighting algorithm, specifically the hybrid 

searching algorithm of Tabu Search, Lagrange Multiplier and Fuzzy C-means clustering, to select 

the optimal combination of features for HGF based on the uncertainty in the regional estimates of 

the rainfall quantiles for a specific site. The proposed methodology fills the gap of including the 
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urbanization impacts on the extreme rainfall patterns during HGF process and challenges the 

traditional assumption that the same set of features can be equally effective in generating the 

optimal homogeneous group in regions with different geographic and meteorological 

characteristics. 

Key words: Regional frequency analysis; IDF curve; Feature selection and weighting; Climate 

change; Urbanization; Homogeneous group formation 

 

1. Introduction 

Extreme rainfall events can result in devastating impacts. Under the influence of climate change, 

more frequent and intensive extreme rainfall events have been observed around the world. In 1998, 

a series of extreme rainfall events on the Yangtze River affected the living situation for more than 

223 million people, which caused the estimated economic damages at 166,600 million Yuans 

(Zong & Chen, 2000). In 2005, Canada experienced one of the most devastating floods in the 

province of Alberta and large areas in southern Ontario, and suffered CAD 800 million insured 

damages (Sandink, 2013). In the same year, Hurricane Katrina, one of the deadliest and costliest 

storms in the history of the United States, resulted in nearly 1,500 fatalities (Boyd, 2010). In 2013, 

extreme floods in Central Europe, which were caused by long periods of heavy rains, resulted in 

€12 billion overall losses (Khazai et al., 2013). Under the current trend of climate change, the 

frequency of extreme rainfall events is expected to increase in some parts of world (Goswami et 

al, 2006; Cai et al., 2014).  Considering the potentially increasing damages that can be caused by 

future extreme rainfall, accurate intensity-duration-frequency (IDF) curves are needed for updating 

the drainage infrastructure especially in urban areas.  
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Regional frequency analysis, which extends the data records from one site by gathering the 

observations from sites that share similar rainfall characteristics, is widely used for IDF estimation 

at specific sites. However, the estimates of design rainfall using traditional regional IDF curves are 

becoming increasingly inaccurate in the nonstationary environment. One of the major problems 

that causes this inaccuracy is the ineffective formation of the homogeneous region. Normally, the 

stations in the homogeneous group are selected based on their rainfall similarity to the target site. 

The similarity indicators can be divided into the categories of site characteristics and at-site 

statistics (Hosking & Wallis, 1997). Site characteristics, which are the physical representations of 

the weather stations (such as the geographic location, the orientation of the landscape, etc.),  are 

used in the traditional geographic HGF process under the assumption that geographic proximity 

indicates rainfall similarity ( Hosking & Wallis 1997; Ahmad et al. 2013; Burn, 2014; Haddad et 

al. 2015). However, extreme rainfall events that are assumed to remain stationary have been altered 

by climate change across Canada since 1950, and the patterns of their changes are not spatially 

uniform (Warren & Lemmen, 2014). At a large scale, a large increase in precipitation totals is 

observed in the Arctic,  while decreasing trends have been detected in the Prairies region in 

southern Canada (Zhang et al, 2000). As for the rainfall patterns at a local scale, many papers have 

stated that daily rainfall is affected by the urban surface heat fluxes (Shepherd, 2005; Miao et al, 

2011; Li et al., 2013). Since the constant site characteristics, specifically the geographic features, 

cannot reveal the possible changes in the rainfall patterns, their effectiveness as similarity 

indicators in the HGF process needs to be questioned.  

Two potential solutions have been proposed to solve this problem. One is to ignore the 

regionalization step, and directly use remote sensing rainfall records at regional scale for the 

regional IDF estimation (Marra et al., 2017). However, this approach is used to provide areal 
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information of the IDF curves, and the high uncertainty associated with remote sensing rainfall 

records can still be a huge problem. The other is to search for the more effective similarity 

indicators, which will be the focus in this study. To adjust HGF process under climate change, the 

at-site statistics, such as the mean annual precipitation, the mean number of wet days, the ratio of 

minimum average 2-month precipitation to maximum average 2-month precipitation, the 

parameters of hydrologic distributions etc. (Easterling, 1989; Hosking & Wallis, 1997; Gaál & 

Kyselý, 2009; Yang et al., 2010), have been used as the additional indicators in the process. 

However, the at-sites statistics are only obtainable at the gauged stations and can only achieve 

reliable conclusions when long rainfall records are available. To resolve this issue, atmospheric 

variables have been used as the new similarity indicators. Satyanarayana and Srinivas (2008) 

considered the region’s hydro-meteorology through including monthly mean series of the large-

scale atmospheric variables such as the specific humidity, temperature, precipitable water, wind 

velocity and wind direction, together with the geographical factors as the indicators for the HGF. 

Gabriele and Chiaravalloti (2013) used the Convective Available Potential Energy and the Q vector 

Divergence as indicators in the homogeneous macro region formation, and the Vertically Integrated 

Moisture Flux for the formation of homogeneous sub-regions. These methods are conducted under 

the assumption that the same set of features can serve as the optimal similarity indicators to detect 

rainfall patterns at different stations.  Asong et al. (2015) advanced the former approach by using 

canonical correlation analysis to select atmospheric variables, teleconnection indices and 

geographical site attributes that could explain the spatial patterns of precipitation of rainfall events 

in Canadian Prairie Provinces. However, the impacts of these selected indicators on the monthly 

precipitation were not consistent at different locations over the study area. Since there is a spatial 

difference among the extreme rainfall patterns at stations with different meteorological and 

geographic characteristics, should this difference be considered when selecting the similarity 
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indicators for representing these different extreme rainfall patterns at various stations? This paper 

proposes an objective-oriented automatic feature selection and weighting algorithm to select the 

optimal feature combination for describing the rainfall patterns at the target site, which is used to 

form the homogeneous group that has the lowest uncertainty in the quantile estimates.  

In the context of the above research gaps, this proposed methodology seeks to answer the following 

questions: 

1) Do the potential similarity indicators respond to extreme rainfall events on the same temporal 

scale?   

2) Is there a spatial difference in the similarity indicators that are used to distinguish rainfall 

patterns among the input stations at various locations? 

3) Can urbanization alter the extreme rainfall regime, thus changing the frequency and magnitude 

of extreme rainfall events for an urban area? 

These questions are explored through the proposed searching algorithm in a three-layer framework. 

The remainder of the paper is organized as follows. Section 2 presents the basic procedures for 

conducting regional IDF analysis. Section 3 describes the automatic feature selection and 

weighting algorithm in a three-layer design. Sections 4 and 5 present the data used in the study and 

the results from the analysis. The paper concludes in section 6 with conclusions and a discussion 

of potential avenues for future work.  

2. Regional IDF estimation 

An Intensity-Duration-Frequency (IDF) curve is used to describe the occurrence probability of 

certain rainfall intensity and can provide essential information for civil infrastructure design to 

reduce the potential damage caused by heavy rainfall. To quantify the associated risk of these 
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extreme rainfall events and capture the changes of the rainfall temporal distribution, extreme events 

are commonly described by their return periods (T).  In this research, IDF curves are estimated 

using the annual maximum rainfall series (AMS), which contains independent observations 

generated from different hydro-climatological events. 

Regional frequency analysis is performed under the assumption that rainfall series from all of the 

stations in the homogeneous region share the same frequency distribution. The quantile estimate 

can be described by the following index-event equation (Dalrymple, 1960): 

, ,
ˆ ˆ

T D D T DR R x                                                                      (1) 

where D indicates the duration of the rainfall events under consideration,
,

ˆ
T DR is the regional 

estimate of T-year event for D duration at a specific site, DR is the site’s index event at D duration 

and ,
ˆ

T Dx is the regional estimate of the dimensionless growth curve. The estimates can be obtained  

through the following steps (Burn, 2014): 

1) Data screening. To satisfy the stationary requirement in the traditional frequency analysis, the 

rainfall series with a change point or a trend identified through Pettitt test or Mann–Kendall 

nonparametric test are removed.  

2) Attribute selection. Geographic distance is used to identify stations sharing similar rainfall 

patterns with the target site.  

3) HGF. Homogeneous groups can be formed using the selected indicators through different 

pooling or clustering approaches. 

4) Evaluation of the homogeneous region. A heterogeneity measure is evaluated for the initial 

pooling group and revisions of this group will be conducted if the heterogeneity measure does 

not meet the criteria of homogeneity.  
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5) Estimation of quantiles. The scaled time series from the group obtained from step (4) is used 

to identify the appropriate distribution and the corresponding quantile function.  The rainfall 

quantile at a target site can be estimated by applying Equation (1) to the distribution obtained 

from step (5). 

6) Uncertainty quantification. Parametric samplings through 1000 simulations are used to quantify 

the uncertainty in the rainfall quantile estimates (Hosking & Wallis, 1997) 

3. Methodology 

To address the research questions and consider the possible alterations in the rainfall regime caused 

by climate change and urbanization, this paper explores the possibility of including relevant 

meteorological factors, topographic features and urban impact indicators as the similarity measures 

for HGF through the feature selection and weighting process in a three-layer framework. The 

procedures in the proposed algorithm can be briefly summarized as: 1) Based on the rainfall 

mechanism, potential similarity indicators at all three layers are selected. 2) The relationships 

between the most responsive indicators to the extreme rainfall events and less responsive ones are 

analyzed to determine their appropriate temporal resolutions (TRs). 3) Homogeneous groups are 

formed using the selected similarity indicators and the uncertainty in quantile estimates at the target 

site is quantified. During the HGF process, feature weighting is used to reduce the impact of feature 

correlation on the formation process.  4) Step (3) is repeated multiple times using a search 

algorithm, and the optimal combination of similarity indicators is determined based on the 

quantified uncertainties.  

The details of the proposed methodology are described in the following sections. Based on the 

mechanism of extreme rainfall events, a three-layer design is proposed in Section 3.1, and potential 
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features that can affect extreme rainfall events at each layer are identified. To obtain the optimal 

TRs for the potential features at each layer, entropy differences and correlation coefficients 

between the most responsive indicators and less responsive ones at different TRs are used as the 

measures in Section 3.2. In Section 3.3 and 3.4, Fuzzy C mean clustering is proposed as the tool 

for HGF, and Lagrange Multiplier is used to reduce the impact of feature correlation on the 

clustering results. Tabu Search, which is used as the search algorithm, is described in Section 3.5.         

3.1 Three-layer design 

Three stages can be identified in the process of extreme rainfall formation: cloud formation, rainfall 

generation and the change of rainfall intensity above the urban surface. Based on the possible 

heights of these stages, a three-layer design is proposed as the framework in which related features 

at each stage are selected as shown in Figure 1. The primary goal of this design is to distinguish 

the possible temporal differences among the features for the three layers. 

The first layer of the proposed framework includes the atmosphere beyond the Planetary Boundary 

Layer (PBL), and is designed to consider the climate change impacts on the formation of the clouds 

that produce the extreme rainfall events at a large scale. Cloud is a suspended water or crystal mass 

in the air, which forms when the water vapor in the atmosphere condenses on the nuclei such as 

dust or ice. Cloud formation is affected by several atmospheric variables including air temperature, 

geopotential height, specific humidity, U-component and V-component of wind velocity. Thus 

these features at three pressure levels (300hPa, 500hPa and 700hPa) are included as potential 

similarity indicators at this layer. In contrast to the rainfall events that are caused by low level 

clouds, extreme rainfall events are normally caused by two types of clouds located at middle or 

high levels of the troposphere: cumulonimbus and nimbostratus, which are corresponding to the 

production of convective and stratiform rainfall (Houze, 1989; Houze Jr., 1997). Cumulonimbus is 
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a multi-level cloud that starts as a low level cloud (cumulonimbus calvus) and expands to the 

middle (cumulonimbus capillatus) even high level (cumulonimbus incus) due to the unstable 

atmosphere. This cloud type is capable of producing severe convective rainfall events in a short 

period.  Nimbostratus forms in the middle level of the troposphere because of the rising warm air, 

and occurs along a warm or occluded front where the stratiform rainfall can be produced. To 

describe the atmosphere instability in the process of these two cloud formations,  the Convective 

Available Potential Energy (CAPE) index, which represents the amount of energy that would be 

needed to lift a parcel of air through a certain distance in the atmosphere (Moncrieff & Miller, 

1976), is selected and acts as the most responsive similarity indicator to the extreme rainfall events 

in the first layer (Gabriele & Chiaravalloti, 2013). 

After a cloud is formed, rainfall can be generated when the requirement of cooling is met, which 

happens within the PBL, i.e. in the Urban Mixing Layer (UML) which is the second layer of the 

framework.  As the linkage between the first and third layer, the UML is under the influence from 

both climate change and urbanization at a regional scale (Collier, 2006). Based on the cloud types 

that can be used to generate the extreme rainfall events, the types of rainfall can be divided into the 

convective rainfall, and stratiform rainfall type which can be further divided into relief and frontal 

rainfall depending on the underlying geographic topography. Thus the geographic attributes 

including latitude and longitude of the potential stations, and the same category of atmospheric 

variables used in the first layer but at lower pressure levels (850hPa and 925hPa) are collected as 

potential indicators. What makes the extreme rainfall events different from the normal rainfall 

events is the abundance of water supply to feed the events (Gabriele & Chiaravalloti, 2013).  Thus 

the vertical integral of divergence of moisture flux, which describes the transport of the net 

atmosphere moisture flux per unit volume, is selected as the most responsive indicator in this layer.  
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The final layer is the Urban Surface Layer (USL), where rainfall intensity can be affected by the 

urban surface energy in sub-regional or even local scale. Many papers have stated that the local 

rainfall climatology in the urban environment has been altered due to the following mechanisms 

(Li et al., 2013): 1) Urban heat island effects. The presence of high buildings can increase surface 

roughness, and also affect the local energy fluxes or disrupt the thermal balance. This results in the 

locally enhanced convergence and increased surface temperature, which causes changes in the 

rainfall patterns in the urban area (Roth & Oke, 1993; Roth, 2000; Bornstein & Lin, 2000; 

Shepherd, 2005); 2) Urban canopy effects. The lack of the canopy covers and the altered underlying 

surface characteristics can affect the surface temperatures or even divert precipitating systems 

(Shepherd, 2005; Loughner et al., 2012); 3) Urban aerosol effects. The increasing accumulation of 

aerosols in the atmosphere can both decrease and increase rainfall amount because of their radiative 

and cloud condensation nuclei (CCN) activities (Diem & Brown, 2003; Kaufman & Koren, 2006; 

Jin et al. 2010; Rosenfeld et al., 2014): a) radiation effects. On one hand, the aerosols impede the 

process of solar radiation reaching the land surface thus reduce the amount of available water for 

evaporation and cloud formation. On the other hand, aerosols can absorb solar radiation and cause 

the warming in the lower atmosphere, which can strengthen Asia monsoon circulation and increase 

local precipitation.  b) CCNs activities. While the added CNNs can accelerating the process of 

cloud drops turning into raindrops, they can also cause the adverse effects if the cloud drops are 

too small. Thus relevant features are selected as rainfall similarity indicators in the last layer: The 

urban energy flux including the surface sensible heat flux and the surface latent heat flux (Miao et 

al., 2011), Photosynthetically Active Radiation index (PAR), Surface Net Solar Radiation (SNSR), 

Surface Net Thermal Radiation (SNTR) and the Surface Roughness (SR).  Potential features at all 

three layers are listed in Table 1.  
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3.2 TR detection of the features series 

Based on the description in Section 3.1, the potential features at each layer are under the influence 

of various phenomena and thus can be related to the rainfall events at different temporal scales. It 

is necessary to obtain representative values of those features at the optimal TRs that can best 

describe the rainfall related patterns at the different layers. The correlations and entropy differences 

between the most responsive features and the less responsive ones at different TRs are used as 

indicators to measure their similarities and determine the optimal TRs at the three layers. While 

correlation coefficient works best among linear correlated features, the entropy difference may 

provide better explanations when the input features are nonlinearly correlated (Quiroz et al., 2011).       

The discrete wavelet decomposition (DWT) is used to obtain the orthonormal bases of feature 

values at different TRs. In the discrete form, the wavelet transform of a function  tf is defined as 

the integral transform as (Kumar & Foufoula-Georgiou 1997): 

     2
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where  f t   indicates the one-dimensional time series;  is the scale parameter; t  is a location 

parameter (indicates time in time series);    t, is the complex conjugate of    t,  (in this study, 

the  Least Asymmetric wavelet); wm and n are an integer and 0 is a fixed dilation step greater than 

1. Details of the multiresolution analysis can referred to Mallat (1989) and Daubechies (1990).  
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To focus the methodology solely on the annual extreme rainfall events, the feature values should 

match the date of occurrence for the annual extreme rainfall events and be extracted at the optimal 

TRs at each layer. 

3.3 Homogeneous group formation 

The primary goal of this study is to obtain homogeneous groups that can generate the lowest 

uncertainty in the quantile estimates. Normally, HGF can be conducted using two approaches: 

pooling and clustering.  The pooling method , such as the region of influence (ROI) approach, 

gathers the stations centred around the pre-set target site based on their similarities (Burn, 1990). 

However, the problem of determining the number of stations in the target group to achieve the 

optimal balance between the number of stations in the pooling group and its homogeneity is still 

unsolved (Burn, 2014). Here, the clustering, specifically the fuzzy c means clustering is used for 

the HGF (Bezdek et al, 1984). 

Unlike non-overlapping clustering, Fuzzy clustering provides the possibility for one site having 

partial membership in more than one cluster, which has the advantage to form the overlapping 

clusters for undistinctive data with vague boundaries (Bezdek et al, 1984). Furthermore, in the 

situation when only limited number of input stations are available, the possibility of non-target site 

being the cluster centre allows the clustering method to form better groups to generate the lowest 

uncertainty in quantile estimates.  

Fuzzy c means clustering is conducted through the minimization of the following objective 

function (Bezdek et al, 1984): 
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where N is the number of stations; C is the number of clusters; iju is the membership value of 

station i  in the cluster j , and can be calculated using Equation (5) ; ix is the value of data points in 

station i ; jc is the center value of the cluster j ; and m  is the weighting exponent in the fuzzy c 

means cluster.  

3.4 Feature weighting 

To deal with the possible issues caused by feature correlation during clustering, the Lagrange 

Multiplier is used (Borgelt, 2008). The objective function that is used in Lagrange Multiplier can 

be described as: 

  
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where p is the exponential parameter that is used to control the sparsity of the feature weightings. 

Research has shown that the clustering results remain stable when p  increases to a certain value 

(Xu, et al. 2014), and is set to 6 in this study; V is the number of variables in the cluster; Vw  is the 

weighting value for each variable; N is the number of stations involved in the cluster; M  is the 

number of center groups obtained from clustering; ik  is the belonging value of each station to each 

cluster; 
V

ix is the time series vector for a variable for station i ; 
V

km is the time series vector of certain 

variable for each cluster center k  . 
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Based on the objective function in Equation (6), the Lagrange formula that will be applied to obtain 

the weighting value for each variable is (Xu, et al., 2014): 
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Based on Equation (7), the corresponding weightings can be derived from the derivative and are 

listed as (Xu, et al., 2014): 
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3.5 Search algorithm 

To address the first research question and select the optimal combination of similarity indicators 

for HGF, Tabu Search,  which is regarded as the most effective tool to obtain the optimal subsets 

of relevant attributes in the feature selection domain, is used (Zhang & Sun, 2002). The Tabu 

Search is a combinatorial optimization algorithm that avoids the possibility of the searching process 

being stuck in a local optimum by crossing the boundaries of local optimality through using the 

inferior objective values in the process (Glover, 1986).  

Three types of memory structures are involved in the search process: short, intermediate and long-

term. The short-term memory or the regency-based memory, which is constantly modified in the 

search, is used to record the Tabu list and guide the search process (Glover, 1989; Zhang & Sun 

2002). It is constructed by labeling the attributes that have been visited recently as the Tabu-active 

attributes, and these attributes will not be used again in the following search (Glover, 1989). While 

Tabu list is recorded to reduce the visiting of pre-visited attributes, the aspiration criteria is used to 
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restrict the pre-visited moves (i.e. the Tabu move), and can be updated if the objective function 

value resulted from using the solution in consideration is better than the current aspiration value 

(Glover, 1989).   In summary, the short-term Tabu Search can be carried out through the steps 

showing in Figure 2 (Sait & Youssef, 1999; Zhang & Sun, 2002). The intermediate memory and 

long term memory are used in the intensification and diversification process separately to either re-

evaluate historically good solutions or incorporate features that have not been previously included 

as new solutions (Glover, 1989). 

Considering the large number of potential features involved in Tabu Search, the process is 

established under the assumption that the best feature combinations that generates the optimal 

objective value at each layer can result in the best final outcome for the whole process.  During the 

process, the searching for the optimal feature combination at each layer will be conducted 

separately, as shown in Figure 3. To avoid over-clustering caused by conducting the search at every 

layer, the comparison of the objective values between the groups obtained from the higher layer 

and the lower layer are used as the criteria to determine the necessity of conducting the procedure 

at the lower layer. If the lower layer generates a better objective function value compared to that 

from the higher layer, the search results from the lower layer is acceptable. If this condition is not 

met, the proposed procedure will not be conducted in the lower layer, and the algorithm will 

directly move to the next layer instead. The objective value being used in the searching process is 

the uncertainty of quantile estimates generated from the formed group, i.e., the average widths of 

confidence interval (CI) for the rainfall quantile estimates at different return periods.   
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3.6 Automatic feature selection and weighting algorithm 

Based on the above sections, the automatic feature selection and weighting algorithm can be 

conducted through the following procedures. The flow chart of the proposed search algorithm is 

illustrated in Figure 3. 

1) Original Feature Gathering. The time series of the potential rainfall-related features for the 

initial group of stations at all three layers are extracted at available spatial resolutions. 

2) Temporal Scaling.  Based on the method presented in Section 3.2, wavelet decomposition is 

used to extract the feature values at different TRs.  

3) Feature Scaling.   The method of scaling to unit length is used to standardize the range of each 

feature value, can be achieved by using equation 
x

x
x

  , where x  is the feature vector before 

scaling, x  is the Euclidean length of the vector, and x is the vector after scaling.   

4) Feature selection and weightings at the first layer or the higher layer. The hybrid searching 

algorithm can be conducted through the following procedures: 

(a) Initial selection of features. Randomly select certain number of features from the potential 

feature datasets in the higher layer, and record them in the Tabu list.  

(b) Initial equal weightings for the selected features.  

(c) Fuzzy c mean clustering. Use the weightings from step (b) and the selected features from 

step (a) in the fuzzy c mean clustering to form the homogeneous group for the target site.  

(d) Features weightings recalculation. Based on the clustering results from step (c), re-

calculated the features weightings using Lagrange Multiplier. 

(e) Repeat step (c) and (d). Use the feature weightings from step (d) as the new weightings, 

and repeat the steps (c) and (d). This process continues until the weighting obtained from 
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step (d) is close to the weightings used in step (c). Then use these final weightings in step 

(d) to obtain the final homogeneous group for the target site. 

(f) Objective value calculation. Use the formed group obtained from step (e) for the objective 

value calculation, i.e., the average CI widths for the quantile estimates at different return 

periods. Record this objective value in the searching process. 

(g) Repeat steps (a) – (f) certain times. Based on the recorded memory of the objective values 

and Tabu list, select the next possible combination of features, and repeat the above 

process. 

(h) Searching stop. After the pre-set number of iterations in the search process, select the 

optimal set of features based on the recorded memory of objective values.        

5) Comparison. Compare the formed group from step 4) with the original input group for 

uncertainty in quantile estimates of the target site through the following steps: a) Uncertainty 

quantification. To quantify the uncertainty in the quantile estimates, parametric sampling is 

used to calculate the CI widths (Hosking & Wallis, 1997). b) Uncertainty Comparison. 

Calculate the ratio of the CI widths between the formed homogeneous groups from lower layer 

and the original input group from the higher layer. c) Boxplots. Repeat step b) 1000 times and 

box plots are created based on these calculated ratios.  If the median values of the ratio in this 

boxplot was less than one at most of the return periods, the formed group at the lower layer 

would be considered as a better homogeneous group and accepted as the input group for 

repeating step 4) at the next layer. If not, the original group of stations would be used as the 

input for repeating step 4) at the next layer.  

6) Repeat steps 4) and 5) at the second layer using the resulting group from previous layer as the 

input. 
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7) Repeat steps 4) and 5) at the third layer using the resulting group from previous layer as the 

input. 

8) Final homogeneous group is obtained. The resulting group from step 7) will be used as the final 

homogeneous group for the quantile estimation at target site.  

4. Data and study area 

4.1 Study area 

The proposed methodology is tested in four regions in Canada.  Across Canada, there are eight 

different climate regions: Arctic, Pacific Maritime, Cordilleran, Taiga, Boreal, Prairie, 

Southeastern and Atlantic Maritime. To verify the assumption of the proposed methodology that 

different optimal feature combinations can be used as the similarity indicators for HGF with 

different input stations at various regions, four regions with a large number of rainfall stations were 

selected as the tested regions:  

1) Region 1 is along the west coast and includes the IDF stations from Yukon Territory, Northwest 

Territories and intensive urbanized area in British Columbia.  Due to the close proximity to the 

ocean and unique geographic characteristic in the mountain area, this region mainly 

experiences the Pacific Maritime and Cordilleran climate type; thus stratiform rainfall will be 

the main rainfall type throughout the year.  

2) Region 2 is in the west and specifically includes weather stations from the Prairie and the 

adjacent Boreal climate region, where convective extreme rainfall is the main extreme rainfall 

type in the summer.  

3) Region 3 is in the Boreal and Southeastern regions and includes stations from Ontario and 

Quebec, both of which have some intensive urbanized areas. While convective extreme rainfall 
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events may be the main rainfall type in the Boreal region, stratiform rainfall is perceived to be 

more common in the Southeastern region due to its closeness to large water bodies.  

4) Region 4 is in the Atlantic region and includes the stations from Nova Scotia, New Brunswick, 

Prince Edward Island and Newfoundland, where rainfall events are affected by cyclonic storms 

from the Atlantic Ocean. Due to the limited number of IDF stations in the Atlantic region, some 

nearby sites from Quebec are also included. 

4.2 Extreme rainfall datasets 

Based on the methodology presented in Section 3, two categories of information are required before 

conducting the searching process: the values of the extreme rainfall at different durations and their 

corresponding dates of occurrence. The first category of information is used for the rainfall quantile 

estimation during the uncertainty comparison and can be retrieved from the Engineering Climate 

Datasets provided by Environment and Climate Change Canada (ECCC) in the form of the annual 

maximum rainfall series (AMS) at nine durations ranging from 5 min to 24 h (5, 10, 15, and 30 

minutes and 1, 2 6, 12, and 24 h). If the data records were not complete during the analysis period, 

the historical dataset also provided by ECCC could be used as an alternative source for providing 

missing AMS data points for the duration of 24h. For the second category, the corresponding dates 

of occurrence for the annual extreme rainfall events were obtained based on the information 

provided from both the historical dataset on ECCC website and the total precipitation from ERA-

Interim database provided by European Centre for Medium-Range Weather Forecasts (ECMWF) 

at the resolution of 0.125 degrees.  
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4.3 Potential features 

Based on the methodology presented in Section 3.1, the potential features that on a yearly basis 

correspond to the date of occurrence for the AMS are extracted at different TRs from two sources: 

NOAA Global Ensemble Forecast System Reforecast (GEFS/R) and ERA-Interim Database from 

ECMWF (Berrisford et al., 2011;Hamill et al., 2013). 

a) GEFS/R:  The geopotential height, temperature, U-component and V-component of the 

wind and the specific humidity were extracted at five pressure levels (925hPa, 850hPa, 700hPa, 

500hPa, 300hPa), plus the convective available potential energy, were collected at a resolution of 

1 degree. All the data were extracted at the 3-hourly temporal interval basis.    

b) ERA-Interim: The second layer indicator Vertical Integral of Divergence of Moisture Flux 

(VIMF) at a resolution of 1 degree, and the third layer indicators including Photosynthetically 

Active Radiation index (PAR), Surface Net Solar Radiation (SNSR), Surface Net Thermal 

Radiation (SNTR) and the Surface Roughness (SR) were extracted at a resolution of 0.125 degree. 

All of these indicators are extracted at the 6-hourly temporal interval basis.    

4.4 Data Screening 

Based on the availability of the observations from the above sources, the period for the search 

algorithm was set from 1985 to 2004. However, in the uncertainty comparison among different 

formed groups, all the available data points in the stationary rainfall period from the Engineering 

Climate Datasets were used considering the statistical accuracy that can be achieved with a larger 

sample size. Thus during the process of data screening, the selected stations in each region should 

have stationary extreme rainfall time series for two periods (the period from 1985 to 2004 and the 

whole available time period obtained from Engineering Climate Datasets), since the extreme 
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rainfall series from shorter period could be regarded as the representatives for the longer period if 

they were both stationary. This objective was achieved through applying Pettitt test and Mann–

Kendall nonparametric test with the block bootstrap resampling (Burn, 2014). The final number of 

stations with stationary rainfall series for each region is: 86 stations in Region 1 with 

VANCOUVER INTL A being the target site; 78 stations in Region 2 with the CALGARY INT'L 

being the target station; 162 stations in Region 3 with TORONTO CITY being the target station; 

and 72 stations in Region 4 with GANDER AIRPORT CS being the target station.   

5. Application 

To demonstrate the effectiveness of the proposed methodology and address all the research 

questions, the analysis in the following sections were conducted: 1) to answer the first research 

question, the methodology in Section 3.2 was applied in Section 5.1 to distinguish the optimal TRs 

for the features at different layers. 2) To answer the second question, all correlation coefficients 

and entropy differences between the most responsive indicators and less responsive ones at the first 

and second layers for all the stations were compared in Section 5.1 to demonstrate the spatial 

differences among their extreme rainfall pattern indicators. 3) To prove the necessity of conducting 

the algorithm at all three layers and answer the third question, the uncertainty in the quantile 

estimates from the homogeneous groups that were generated by using the algorithm at lower layer 

were compared to that in the formed groups from the higher layer in Section 5.2. 4) To illustrate 

the effectiveness of the proposed methodology, the algorithm was applied to form the 

homogeneous groups for rainfall events with different durations at four different regions in Section 

5.2 and 5.3, and the uncertainty in their quantile estimates were compared to that from using at-site 

analysis and also that in the formed groups generated by using a geographic approach in Section 

5.4.   
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5.1 Temporal scaling for the potential features  

Both entropy differences and correlation coefficients between the most responsive feature and less 

responsive ones at different TRs are used to determine the optimal TRs at first and second layers. 

Since the relationship among the potential features at each layer may not be linear, entropy 

differences may provide more reliable conclusions than correlation coefficients. In the first layer, 

correlations between the CAPE and the rest of the first layer features at all stations reach the highest 

values at the 128- day TR (level 10 decomposition), and their corresponding entropy differences 

are reasonably small at this level, thus 128 days is selected as the optimal TR for the features at the 

first layer. This 128-day TR is reasonable for the following reasons: 1) While precipitation process 

is a mesoscale atmospheric processes, it can be affected by the large scale phenomena including 

large clouds formation, warm and cold fronts collision etc. 2) In the three-layer design, the features 

in the first layer are used as the similarity indicators to gather stations that share similar extreme-

rainfall related atmospheric characteristics at large scales. 3) Studies shows that extreme events-

related atmospheric movements, specific CAPE-related features, are strong seasonal correlated 

with the seasonal migration of monsoon over West Africa and India (Murugavel et al., 2012; 

Meukaleuni et al., 2016).  

The situation is more complicated at the second layer. For the majority of the stations, the 

correlation coefficients between the VIMF and the rest of features at the second layer increase 

steadily as the decomposition level increases until it reaches either level 10 or 9 (64-day TR) and 

the declines in their corresponding entropy differences become barely noticeable after level 9. Thus 

the 64-day TR is used as the optimal TR for extracting feature values at the second layer. In the 

third layer, the optimal TR is set to the duration of the extreme rainfall events of concern (i.e., 24-

hour in this case) for two reasons: 1) No universal TR for all the stations can be obtained based on 
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the values of entropy differences and correlation coefficients. 2) To meet the needs of considering 

extreme events at different durations for different construction purposes.  

The spatial difference of the correlations between potential features for the stations in Region 1 is 

presented in Figure 4. Although at each station, the highest correlation coefficient values between 

the most responsive features and less responsive ones were all reached at level 10 or 9 

decomposition for the first or second layers, major differences are still observed among these 

correlation values across different stations. At each station (which is described as each column in 

Figure 4), all the potential features at first (Figure 4(a)) and second (Figure 4(b)) layers have 

different levels of correlations to the extreme rainfall mechanisms. For each potential feature 

(which is described as each row in Figure 4), its correlations to extreme rainfall events vary largely 

among different stations at both layers. Thus the assumption of spatial difference for similarity 

indicators existing at different stations is valid. The same situation can be applied in Regions 2, 3 

and 4. 

However the approach of determining similarity indicators by choosing the ones that have higher 

correlation values at the target site is not suggested for the following reasons: 1) The correlation or 

entropy differences obtained is not equivalent to the representation of the mutual information 

among different features. 2) Even if the mutual information were used as a potential measure, the 

approach of choosing the features that are highly relevant to the most responsive features might 

result in biased clustering as these features may not represent all aspects in the complex rainfall 

system. 3) In the stations where low correlations have been detected across all the features, such as 

the first column in Figure 4 (a), the approach of choosing comparatively higher correlated features 

as the similarity indicators may result in inferior HGF.              
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5.2 HGF in Tabu Search 

The cluster number was set to 2 in the fuzzy c mean clustering for the following reasons: 1) the 

larger the formed group the lower the uncertainty in the quantile estimates. The goal of this study 

is to form homogeneous groups with the lowest uncertainty in the quantile estimates not to find the 

optimal partition of the input stations in the clustering. In the formed group, both group 

heterogeneity and small group size can increase the uncertainty in the final quantile estimates. But 

the influence from group size normally outweighs the impact from heterogeneity as the geographic 

proximity of the original input group guarantees a certain level of group homogeneity. 2) The pre-

knowledge of the cluster number for the first two layers. The clustering at the first layer is 

constructed to distinguish the stations whose extreme rainfall events are mainly caused by 

cumulonimbus or nimbostratus clouds. However, the extreme rainfall events at certain durations, 

especially the longer ones, are likely caused by the combination of different cumulonimbus or 

nimbostratus clouds. For those stations whose rainfall events are caused by the combination of 

cumulonimbus and nimbostratus, the second layer is used to further separate the input stations into 

the convective and stratiform rainfall type. For those stations whose rainfall events are caused by 

the nimbostratus, the clustering at the second layer is used to further separate rainfall type into 

relief and frontal rainfall. 3) The validity measures including partition coefficient (PC) index, 

partition entropy (PE) and the modified Xie–Beni index are not very effective in determining the 

optimal cluster number in this study (Xie & Beni, 1991; Wang & Zhang, 2007; Satyanarayana & 

Srinivas, 2011). As a conclusion, to gather a large number of stations to form the homogeneous 

group and reduce the computational cost without jeopardizing the search for the optimal feature 

combination, the search for the optimal feature combination was conducted with the fixed value of 

the weighting exponent (m=2) and the cluster number (n=2) for the clustering at all layers.  
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Based on the methodology presented in Section 3.4 and 3.5, the automatic feature selection and 

weighting algorithm is conducted consecutively in three layers. At each layer, the number of 

iterations is set to 60 with 3 repetitions in Tabu Search.  

Two possible issues should be noted when selecting the optimal feature combination based on the 

memories recorded in Tabu Search: 1) Due to the stochastic characteristics in the estimation for 

the objective function values for each homogeneous group formed, one choice of feature 

combination can repeat several times in the Tabu Search with different objective function values.  

Thus the frequency of the feature combinations appearing in the top 100 in the recorded memory 

is also taken into consideration during the determination of optimal feature selection. 2) The high 

correlations among the input features can cause many sets of feature combinations, with different 

weightings, to generate the same clusters. Thus, the combinations with the minimal number of 

features that can be used to form the homogeneous group is selected as the final choice. The 

selected feature combination with the corresponding weightings are presented in Table 2. The 

homogeneous groups at each layer in four regions can then be generated using the selected features; 

the groups are presented in Figure 5.  

According to the graphic displays in Figure 5 and the boxplots for comparison of uncertainty in the 

quantile estimates in Figure 6, several findings can be observed: 1) The algorithm at first layer 

serves its purpose.  As shown in Figure 5, all of the stations from each final homogeneous group 

(Groups 1, 2 and 3) in Regions 1, 2 and 3 lie within the same climate region and its adjacent area.  

In Region 4, the limited number of rainfall stations in the climate region are insufficient to produce 

accurate estimates and stations from other climate regions are also included in Group 4 to improve 

the accuracy of the estimates.  2) The implementation of judging criterion is effective. During the 

searching process in Region 3, the formed group from the second layer is not admissible as the 
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uncertainty in its quantile estimates is higher than that from the formed group generated from the 

first layer as shown in the second plot in Figure 6 Region 3. This forces the search process to skip 

the procedure in the second layer and step directly to the third layer. 3) The three-layer framework 

is effective.  The uncertainty in the quantile estimates from the formed groups is decreasing after 

each layer even when the number of stations in these group is also decreasing. 4) The third layer 

in the proposed algorithm can be equally effective in the less urbanized area. In Regions 2 and 4 

where most of the stations are located in the less urbanized area, only a small number of stations 

are removed from the formed group generated from the procedure at the second layer, and the final 

homogeneous region resulted from the procedure at third layer can still generate the most accurate 

quantile estimates among all the formed groups. 5) Within each homogeneous group, the gathered 

stations may be located far away from the target site for the following reasons: a) the geographic 

location is just one potential similarity indicators used in HGF in the second layer. The final formed 

group does not entirely relied on the geographic proximity. b) The Fuzzy C-mean clustering allows 

for the possibility of non-target site being the centre of the formed group since the generated 

clusters are heavily depending on the information from the input group. In the case where some 

stations locating away from the target site, these stations may still have the feature values that are 

similar to the cluster centre. c) Even under the circumstance that the selected stations are 

comparatively far away from the target station, all the stations in the formed homogeneous group 

are still located in the same climate region. 

5.3 Homogeneous group modification for rainfall series in short durations 

For the rainfall events that have durations shorter than 24h, the three layer algorithm is simplified 

to the procedure at the first layer, since information about the date of occurrence for short duration 

events is not available. The reasons to only apply the first layer of proposed methodology in the 
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HGF are: 1) the temporal step selected to extract feature values is 128-day, nearly a four-month 

period. Considering the extreme rainfall patterns before 2007, there is a great chance that the date 

of occurrence of the short and long extreme rainfall events happen in the same four-month period. 

2) The first layer is used to gather stations that share similar extreme rainfall condition above the 

PBL. No matter the length of concerned duration, the pre-conditions for the occurrence of extreme 

rainfall events especially above the PBL are similar, even when the long- and short- duration events 

do not happen in the same time frame. Thus the approach of using the same feature values as the 

similarity indicators can be justified. 3) To factor the difference in the rainfall amounts among 

different durations into the HGF for the extreme rainfall events at short durations, the annual 

maximum rainfall series at short durations will be used to calculate the objective values in the new 

searching process.  

Based on the assumption that the shorter duration events occurred in the same four-month time 

window as the 24h duration events, this simplified procedure can be conducted. The homogeneous 

groups for the rainfall events at shorter durations are shown in Figure 7, and the following findings 

can be observed: 

1) Region 1: The homogeneous group for the rainfall events in all of shorter durations is the same 

and consists of 38 stations in one climate region shown as the red dots (Group 1) in Figure 7(a) 

and 7(b). For the 24 hour rainfall series, the homogeneous group obtained from the procedure 

at the first layer consists of 53 stations, and has the same level of uncertainty in the quantile 

estimates as that which resulted from this 38-station group. Following the principle of gathering 

as many stations as possible without increasing the uncertainty in the quantile estimate, the 53- 

station group is regarded as the better homogeneous group for the quantile estimates of 24h 

duration rainfall events. Due to the proximity to the ocean, most of extreme rainfall events in 
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this region are caused by stratiform rainfall, which can last for a long duration and increases 

the possibility that rainfall at all durations are caused by the same rainfall event and thus share 

a similar homogeneous region. 

2) Region 2: The homogeneous groups for the rainfall events that have durations shorter than 1h 

share the same group which consists of 31 stations shown as the yellow dots (Group 2) in Figure 

7(a). For the rainfall at all longer durations, the homogeneous region consists of 42 stations 

shown as the yellow dots (Group 2) in Figure 7(b). Region 2 is in the Prairies, where convective 

extreme rainfall events occur during shorter time windows. Extreme rainfall events at longer 

durations are likely caused by the stratiform rainfall events or the combination of convective 

and stratiform rainfall events.  

3) Region 3: The same homogeneous group with 93 stations (shown as green dots of Group 3 in 

Figure 7(a) and 7(b)) for the rainfall events at all durations are identified and are located inside 

the Southeastern region. The main rainfall type in the Southeastern region is stratiform rainfall 

that can last for long durations.  

4) Region 4: The homogeneous group allocation in this region is similar to the situation in Region 

2. In summary, two homogeneous groups for the rainfall events are identified: 27-station group 

for the rainfall events with the durations less than 1h shown as the blue dots in Group 4 from 

Figure 7(a), 29-station group for the events with durations between 1h to 12h shown as the blue 

dots in Group 4 from Figure 7(b). For the homogeneous region for the 24h duration rainfall 

events, the group of 35 stations obtained from the procedure at the first layer has the same level 

of uncertainty as the 29-station group. This situation can be explained by the same reasons 

noted above for Region 2.      
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5.4 Comparison between proposed approach and traditional geographic approach 

To prove the homogeneity of the formed homogeneous groups in the selected regions, the 

homogeneity (H) test which can be constructed by using L-CV, L-skew or L-kurtosis was used 

(Hosking & Wallis, 1997). If one of these three calculated H measures for the formed group is less 

than 2, the formed groups can be regarded as homogeneous. The HGFs for the AMS at 24-h 

duration in Region 1, 3 and 4 meet above requirement as their lowest positive H measures equal to 

0.16, 1.80 and 1.18, respectively. For the homogeneous group in Region 2, all of the H measures 

are negative because of the positive correlation among the included sites (Castellarin, et al., 2008). 

To demonstrate the effectiveness of the proposed methodology, the obtained homogeneous regions 

are compared with the pooling groups generated from the traditional geographic approach in which 

the geographic distance from the target stations is used as the similarity indicator in the process 

(Burn, 2014). To reduce the possible impacts from sample size on the uncertainty in the quantile 

estimates, the formed groups from the proposed method and the groups generated using the 

geographic approach have the same number of stations.  

The boxplots for this comparison of uncertainty in the quantile estimates for the rainfall series at 

24-h duration are shown in Figure 8. The median values of the ratios in all boxplots at all return 

periods are less than one, which indicates that the selected features at all three layers are more 

effective than the geographic distance as similarity indicators to form the homogeneous regions. In 

terms of the applicability of the first layer algorithm of proposed methodology for the rainfall 

events at shorter durations, the same procedure is conducted to obtain the boxplots for comparison, 

and the same conclusions are reached. 

To further validate the proposed methodology, two additional comparisons are conducted using the 

AMS at 24-h duration: 1) the comparison of CI widths in the quantile estimates from using the at-
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site approach and the proposed regional methodology. Based on the results shown in Figure 9, the 

formed homogeneous groups at four target sites generate narrower CI widths than that from using 

at-site approach for the longer return periods, and generally perform equally or inferior for the 2-

year return period in terms of the uncertainty in the estimates. 2) The comparison of root mean 

square error (RMSE) in the growth curves of the HGFs from using proposed method and the 

traditional geographic approach. In this study, the RMSEs are the average differences between at-

site and regional growth curves at different return periods, and can be calculated by using the 

procedures introduced by Mostofi Zadeh, et al. (2019). Based on the results shown in Table 3, the 

HGFs from using the proposed methodology generally generate lower RMSEs than that from using 

traditional geographic approach at all return periods.   

6. Conclusions 

A HGF process based on the feature selection and weighting algorithm in a three-layer design is 

proposed to consider the spatial difference of similarity indicators at various regions and reduce 

the uncertainty for the quantile estimation in regional IDF estimation. Based on the stages of the 

extreme rainfall formation at different heights, the process extracted both atmospheric and 

geographic features to consider the possible alteration of rainfall patterns caused by climate change 

and urbanization at certain locations. During the process, the hybrid searching, which is the 

combination of Tabu Search, fuzzy c mean clustering and Lagrange multiplier is used to select the 

optimal feature combination and form the homogeneous group that generates the lowest uncertainty 

in the quantiles estimates.     

The advantages of the proposed methodology can be summarized into the following points: our 

method 1) considers the possible changes in the homogeneous region for the rainfall events causing 

by climate change and urbanization. 2) Considers spatial difference of the similarity indicators at 
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different regions for conducting more effective HGF. 3) Allows the possibility of letting the data 

itself to drive the group centre and best utilize the most information provided from the available 

weather stations. The proposed method is applied in four regions across Canada with different 

rainfall types. The results are evidently superior in comparison with the traditional geographic 

approach. 
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Figures 

 

Figure 1 The vertical structure of the three-layer design: Planetary Boundary Layer (PBL), Urban Mixing Layer (UML), Urban Surface Layer (USL). In the figure, the green area indicate the 

height of vegetation cover, the dark grey boxes indicate buildings ( Adapted from Figure 1 in Shepherd, 2005)  
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Figure 2 Algorithmic description of Tabu Search (Adapted from Figure 3 in Tahir et al, 2007) 
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Figure 3 The flowchart of Automatic Feature Selection and Weighting algorithm 
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Figure 4 Graphic display of the correlation coefficient values between the most responsive features and the less responsive ones in the first (a) and second (b) layers at level 10 and 9 

decomposition from the stations in Region 1. The column number indicates the stations in Region 1, and the row number indicates the potential features in first and second layers. Each grid 

represents correlation value between the most responsive feature and one of the less responsive ones at one station. 

(a) 

(b) 
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Figure 5 Graphic display of homogeneous groups and original input groups for extreme rainfall events at 24h duration in Region 1, 2, 3 and 4. The circle dots in red, yellow, green and blue in the 

graph indicate the original input stations, while the solid dots at four colors represent the homogeneous groups in four regions. The black triangles represent the target sites in four different 

regions.   
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Figure 6 Boxplots of the ratio of CI widths among different formed groups in Regions 1, 2, 3 and 4 using the AMS at 24-h duration.  The boxplots compare the homogeneous group from 

procedures at higher layer to that from previous lower layer, and numbers in the brackets indicate the number of stations in the formed homogeneous groups.  The red line in every boxplot 

indicates where the value equals to 1.  

 

 

(a) 

(b) 
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Figure 7  Graphic display of homogeneous groups for extreme rainfall events at duration 5 min, 15 min, and 30 min in (a) and at duration 1h, 2h, 6h and 12h in (b) for Region 1, 2, 3 and 4 The 

solid dots in red, yellow, green and blue represent the homogeneous groups in four regions. The black triangles represent the target sites in four different regions.   
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Region 2 
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Region 3 

    

Region 4 

Figure 8   Boxplots of the ratio of CI widths between formed groups obtained from using the proposed approach and the geographic approach in Regions 1, 2, 3 and 4 using the AMS at 24-h 

duration.  The boxplots are conducted at all three layers in which the proposed homogeneous groups are compared with the groups that have the same number of stations formed using 

geographic approach.   The numbers in the brackets indicate the number of stations in the formed homogeneous groups.  The red line in every boxplot indicates where the value equals to 1. 
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Region 1                                                                                         Region 2  

 

Region 3                                                                                         Region 4  

Figure 9 Boxplots of the ratio of CI widths between proposed approach and at-site approach for four target sites in the selected regions using the AMS at 24-h duration. Each target site contains 

more than 50 data points. 
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Tables 

Table 1 Potential feature dataset for each layer at the three layer design 

Target layer Potential features 

First layer 

Air temperature (Air), Geopotential height (Geo), Specific humidity (Sphu), U-component (Uwind) 

and V- component (Vwind) of the wind velocity (at the 300hPa, 500hPa and 700hPa pressure level), 

Convective Available Potential Energy (CAPE) and Q vector Divergence (QD) 

Second layer 

Air temperature (Air), Geopotential height (Geo), Specific humidity (Sphu), U-component (Uwind) 

and V- component (Vwind) of the wind velocity (at the 850hPa and 925hPa pressure level), Vertical 

Integral of Divergence of Moisture Flux (VIDWV), Latitude, Longitude, Elevation 

Third layer 

Urban Surface Sensible Heat Flux (SHTFL), Urban surface Latent Heat Flux (LHTFL), 

Photosynthetically Active Radiation index (PAR), Surface Net Solar Radiation (SNSR), Surface Net 

Thermal Radiation (SNTR), Surface Roughness (SR) 

 

Table 2 Feature selection and weighting results from Three-layer search algorithm 

(a) results from the procedure at first layer  

    air300 air500 air700 geo300 geo500 geo700 vw300 vw500 vw700 uw300 uw500 uw700 sphu300 sphu500 sphu700 CAPE 

Region 1 
Selection 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 

Weightings     0.243   0.239         0.167   0.166   0.184     

Region 2 
Selection 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 

Weightings 0.242     0.236               0.166 0.177 0.178     

Region 3 
Selection 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 

Weightings           0.308         0.233       0.245 0.214 

Region 4 
Selection 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 

Weightings       0.190 0.188 0.185         0.140     0.148 0.149   
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(b) results from the procedure at second  layer 

    air850 air925 geo850 geo925 vw850 vw925 uw850 uw925 sphu850 sphu925 VIMF Latitude Longitude Elevation 

Region 1 
Selection 1 0 1 0 0 1 0 0 1 1 0 0 0 0 

Weightings 0.236   0.235     0.166     0.181 0.181         

Region 2 
Selection 1 0 1 0 0 0 0 1 0 0 0 0 0 0 

Weightings 0.366   0.370         0.264             

Region 3 
Selection                             

Weightings                             

Region 4 
Selection 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Weightings                 1           

(c) results from the procedure at third layer 

    LHTFL SHTFL PRS SSR SNR SRH 

Region 1 
Selection 0 0 0 1 0 0 

Weightings       1     

Region 2 
Selection 1 1 1 1 0 0 

Weightings 0.239 0.248 0.259 0.254     

Region 3 
Selection 1 0 0 0 0 1 

Weightings 0.510         0.490 

Region 4 
Selection 0 0 0 1 0 1 

Weightings       0.520   0.480 

 

Table 3 Summary of RMSEs from using different HGF approaches with the AMS at 24-h duration 

  Return Period  

Testing Regions Approach 2-year 5-year 10-year 25-year 50-year 100-year 

Region 1 
Proposed method 0.016 0.012 0.013 0.030 0.047 0.065 

Traditional geographic method  0.014 0.018 0.036 0.063 0.084 0.107 

Region 2 
Proposed method 0.010 0.006 0.011 0.016 0.019 0.021 

Traditional geographic method  0.017 0.027 0.050 0.078 0.099 0.120 
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Region 3 
Proposed method 0.009 0.020 0.030 0.042 0.051 0.059 

Traditional geographic method  0.016 0.019 0.039 0.067 0.089 0.113 

Region 4 
Proposed method 0.017 0.019 0.031 0.051 0.067 0.085 

Traditional geographic method  0.011 0.020 0.037 0.055 0.068 0.081 

 

 


