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Abstract

The potential effect of climate change needs to be considered in urban infrastructure design 

and risk assessment to improve reliability. The present study proposes a methodology for 

obtaining grid-scale relative changes for updating 24-h extreme rainfall intensity, through the 

estimation of rainfall intensity quantiles from baseline and future simulations using a pooled 

frequency analysis approach. Coherence of relative changes over return periods and time 

horizons is analysed, and adjustments are proposed to facilitate the application of relative 

changes in practice. The approach is applied to Canada, using gridded daily precipitation series 

from model combinations belonging to the North American Coordinated Regional Climate 

Downscaling Experiment. Multi-model 10th, 50th and 90th percentile relative changes are 

provided for six return periods, considering two future scenarios (RCP 4.5 and RCP 8.5), and 

two horizons (2050 and 2080). Overall, estimated relative changes varied smoothly and formed a 

number of clusters of similar values across the country. Relative changes for RCP 8.5 are 

recommended for 2050, whereas either those for RCP 4.5 or RCP 8.5 could be used for 2080. As 

an example, median multi-model 50th percentile relative change over Canada is found to be 

14%, 16% and 27% for RCP 4.5 – 2080, RCP 8.5 – 2050, and RCP 8.5 – 2080, respectively.

Keywords: climate change; grid-scale; intensity-duration-frequency (IDF) curves; pooled 

frequency analysis; extreme rainfall; Canada.

https://www.earthsystemgrid.org/search/cordexsearch.html
https://www.earthsystemgrid.org/search/cordexsearch.html
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1. Introduction 

Urban infrastructure design and risk assessment based on observed rainfall records assumes 

that similar climate conditions will be experienced in the future. However, climate change due to 

increasing greenhouse gases challenges this assumption (e.g., Kotamarthi et al. 2016). Analyses 

performed at a global scale provided evidence of the effect of climate change on precipitation 

extremes (e.g., Wang et al. 2017; Papalexiou and Montanari 2019). Climate model simulations 

considering different future scenarios are a common source of information to update rainfall 

intensity quantiles, usually presented as intensity-duration-frequency (IDF) curves, needed in 

urban infrastructure design (e.g., Willems et al. 2012). Climate model simulations are usually 

provided at a coarse grid-scale spatial resolution by Global Climate Models (GCMs) that can be 

downscaled to higher resolutions by dynamic downscaling, such as through Regional Climate 

Models (RCMs) (e.g., Kuo et al. 2015), or by statistical downscaling (e.g., Nguyen et al. 2007; 

Khalili and Nguyen 2017). 

Climate model simulations often present bias, which may be solved by bias correction 

methods, such as the well-known quantile mapping approach (e.g., Li et al. 2017; Switzman et 

al. 2017). To apply bias correction, climate model simulations and observations need to have a 

similar spatial and temporal resolution to avoid the inflation issue, which is caused by difference 

in scale, as a result of explaining station-scale variability with grid-scale variability (Maraun 

2013; Haerter 2015). A commonly used approach is the delta change method. Although 

sometimes defined as a bias correction method, the delta change method does not specifically 

provide bias corrected series of the climate model but rather an estimate of the climate (or 

“delta”) change between future horizon and baseline period simulations; applied to observations, 

it results in future projections (e.g., Maraun 2016). The underlying assumptions are the 
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following. Bias in baseline and future simulations is multiplicative and stationary and hence may 

be cancelled out when estimating the delta change (Li et al. 2015). Changes at a larger spatial 

scale also characterise those at a smaller spatial scale (Sunyer et al. 2015). Observation-based 

temporal and spatial variability is preserved (e.g., Switzman et al. 2017). The delta change 

method is used in local (e.g., Zhu et al. 2012; Switzman et al. 2017) and regional approaches 

(e.g., Ekström et al. 2005; Mladjic et al. 2011; Mailhot et al. 2012).

The use of a regional approach to estimate rainfall quantiles from either observations or 

climate model simulations allows obtaining more accurate estimates, especially for longer return 

periods (e.g., Mladjic et al. 2011; Requena et al. 2019), as well as smoother spatial patterns when 

estimating future changes (Li et al. 2017). Some form of fixed-region approach is used for 

analysing future changes in several studies (e.g., Ekström et al. 2005; Mailhot et al. 2007, 2012; 

Mladjic et al. 2011; Monette et al. 2012; DeGaetano et al. 2017). A pooled approach is used by 

Li et al. (2017), through which pooling groups of 500 grid-years are formed based on geographic 

proximity to estimate 24-h rainfall quantiles in the Greater Sydney region, Australia.  

The present study proposes a methodology for obtaining grid-scale relative changes to 

update 24-h extreme rainfall intensity, based on the estimation of rainfall intensity quantiles for 

baseline and future periods by using pooled frequency analysis. The grid scale approach provides 

relative changes closer to the catchment scale, which is usually needed in practice, avoiding 

downscaling to the station scale for later upscaling to catchment scale. It also allows supplying 

results across a large study area with a low gauge density, since in that case downscaling to 

station scale would imply only providing relative changes where stations are available and not 

using the available information for the rest of the study area. Because of considering grid-scale 

and low gauge density, the estimation of relative changes is based on the delta change method. 
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Relative changes at a grid-scale based on the delta change method are provided by several 

studies (e.g., Ekström et al. 2005; Mladjic et al. 2011; Mailhot et al. 2012). 

The present study estimates relative changes through a pooled approach rather than through 

a fixed-region approach as used in other large grid-scale studies. The pooled approach not only 

allows for a more accurate estimation of quantiles associated with longer return periods, but also 

for more flexibility in the formation of pooling groups for quantile estimation, avoiding marked 

limits between regions. The pooled approach used in this study is that recommended in Requena 

et al. (2019), which is focused on the gauged case; that is, on the estimation of pooled quantiles 

at a target site where rainfall series are available. Hence, it is in agreement with information from 

climate models, since precipitation simulation series are available at the target grid. The pooled 

approach is based on the index-event model, and the region of influence approach, with a 

geographic distance similarity measure. The method advocates for an increasing initial pooling 

group size with increases in return period, and a trade-off between pooling group size and 

homogeneity in pooling group formation for longer return periods. Since the approach was 

initially applied to observations, pooling group size was defined by number of station-years; in 

the present study, the approach is applied to gridded simulations and hence pooling group size is 

defined by number of grid-years. Once relative changes are estimated, coherence over return 

periods and horizons is analysed, and adjustments are proposed to facilitate their application in 

practice. 

Simpler pooled approaches are applied to relatively small areas in other studies (e.g., Li et 

al. 2017). In the present study, the approach is applied to a large case study, consisting of most of 

Canada, where grid-scale 24-h relative changes are estimated for six return periods (2, 5, 10, 25, 

50, and 100 years). Significant trends are found on observed annual maximum rainfall series 
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under local or regional approaches in Canada, with a larger presence of increasing trends (e.g., 

Burn and Taleghani 2013; Shephard et al. 2014; Requena et al. 2019). This supports the need of 

updating IDF curves in Canada based on climate model projections, in line with earlier studies 

performed at the grid scale for the country (e.g., Mladjic et al. 2011; Mailhot et al. 2012). RCMs 

are often considered as preferable to study extreme rainfall due to their ability to simulate 

mesoscale precipitation at a higher detail than GCMs (e.g., Kuo et al. 2014). Therefore, the latest 

RCM simulations, belonging to the North American Coordinated Regional Climate Downscaling 

Experiment (NA-CORDEX) are used in this study. Relative changes across Canada are 

estimated considering two future scenarios (Representative Concentration Pathways RCP 4.5 and 

RCP 8.5) and two future horizons (2050 and 2080). Results are also extracted for particular cities 

to provide an overview of relative changes across the country. Estimated relative changes are 

compared with those provided by existing studies over Canada; two studies based on a fixed-

region approach and one local approach. The present study is organised as follows. Methodology 

is described in Section 2. Case study and data are presented in Section 3. Application to Canada 

is shown in Section 4. Discussion is provided in Section 5, and conclusions are given in Section 

6.

2. Methodology 

The procedure proposed for estimating grid-scale 24-h relative changes for extreme rainfall 

intensity update consists of three steps: (i) extraction of annual maximum rainfall series from 

grid-scale daily precipitation; (ii) pooled quantile estimation for grid-scale annual maximum 

rainfall intensity; and (iii) estimation of grid-scale relative changes. 

https://www.earthsystemgrid.org/search/cordexsearch.html
https://www.earthsystemgrid.org/search/cordexsearch.html
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2.1. Extraction of annual maximum rainfall series from grid-scale daily precipitation

The extraction of annual maximum series from climate model precipitation simulations and 

observations should be consistent to provide associated suitable projected changes for IDF 

update. In this regard, the same rainfall period needs to be considered for extraction of annual 

maximum rainfall series for observations and simulations. Furthermore, for cases where 

precipitation may occur as rainfall or snow, such as in cold and/or mountainous areas, 

precipitation extremes may be related to either of the two types of events. In these cases, 

observations are commonly associated with rainfall events (since stations are usually out of 

service during winter), whereas climate model precipitation simulations may correspond to 

rainfall or snow events. Over the literature, different approaches are considered. Mailhot et al. 

(2012) considered the entire year for building annual maximum precipitation series across 

Canada, whereas Mladjic et al. (2011) used the period April-September to avoid mixing snow 

and rainfall extremes across the country. Mailhot et al. (2007) and Monette et al. (2012) used the 

period May-October in particular case studies related to the province of Quebec, Canada. 

In the present study, starting and ending months of observed rainfall are analysed to identify 

objective periods for annual maximum rainfall series extraction from grid-scale precipitation 

simulations. The analysis is performed by dividing the area of study into regions according to 

different administrative and climate-based classifications. The lower and upper bound of the 

rainfall period assigned to a given region is estimated as the 25th percentile starting month and 

the 75th percentile ending month from stations within the region, respectively. Once the main 

rainfall period categories are determined across the area of study, each gridpoint (i.e., center of 

the grid) associated with climate model simulations is linked to the main rainfall period category 

in which it is located. Grid-scale daily annual maximum rainfall series are then extracted from 
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grid-scale daily precipitation simulations using the months defined by the rainfall period 

category. 

2.2. Pooled quantile estimation for grid-scale annual maximum rainfall intensity

The pooled estimate of the T-year rainfall intensity quantile is obtained following the 

recommendations provided by Requena et al. (2019), as a result of assessing a number of 

approaches for pooling group formation according to quantile estimation and uncertainty for 

pooled rainfall intensity frequency analysis at gauged sites. The approach is applied using “grid-

years” instead of “station-years”, since grid-scale instead of point-scale annual maximum rainfall 

intensity series are used in the present study. This allows for coherence in the estimation of both 

observation-based and simulation-based pooled quantiles. A summary of the pooled approach is 

provided below. Pooling groups are built based on the region of influence approach (Burn 1990) 

with the geographical distance similarity measure. The initial pooling group size, defined as the 

number of grid-years in a pooling group, increases with the return period according to the 5T 

guideline (Robson and Reed 1999), which suggests that the number of station-years of data in a 

pooling group should be at least 5 times the return period of interest. A minimum of 125 grid-

years is used regardless of the return period. For long return periods (i.e., T ≥ 50 years), a trade-

off between pooling group size and homogeneity is considered. In that case, the pooling group is 

tested for homogeneity and the most dissimilar grid (i.e., the furthest grid) is removed from the 

pooling group until reaching homogeneity (i.e., the heterogeneity measure, H, in Hosking and 

Wallis 1997, being less than two), under the condition that the final pooling group contains a 

minimum of 125 grid-years.  

The well-known index-event model (Dalrymple 1960; Hosking and Wallis 1997) is applied 

to the pooling group to obtain the grid-scale pooled estimate of the T-year rainfall intensity 
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quantile. For simplicity, the grid-scale pooled estimate of the T-year rainfall intensity quantile for 

the 24-h rainfall duration will be referred to as “baseline quantile”, “future quantile” and 

“observation-based quantile”, when obtained from baseline simulations, future simulations and 

observations, respectively. 

Comparison between baseline and observation-based quantiles is performed to provide a 

notion of the overall ability of the ensemble of climate model simulations to estimate suitable 

quantiles across the study domain. For that purpose, the multi-model median baseline quantile is 

obtained at each grid as the median value of the ensemble of baseline quantiles estimated from 

each climate model. Differences among the two types of quantiles are expected (e.g., Mailhot et 

al. 2007; Kuo et al. 2014; Li et al. 2015), since baseline quantiles are obtained from grid-scale 

series (i.e., they represent “areal” intensity) and observation-based quantiles are obtained from 

point-series (i.e., they represent “point” intensity). In this regard, the following analysis is done, 

motivated by the premise that maximum areal average rates are less than maximum point rates 

(Fowler et al. 2005), and by the estimation of lower and upper quantile bounds from stations and 

grids within the city of Edmonton for the assessment of simulated IDFs in Kuo et al. (2014). The 

analysis consists in identifying the minimum and maximum observation-based quantile from 

stations within a grid, and compare this range with the (grid-scale) baseline quantile. If the 

baseline quantile is within the range, it is considered to be suitable and a value of 1 is assigned to 

the grid, being 0 otherwise. The percentage of grids fulfilling the criterion, their spatial 

distribution, and the relationship with gauge density is then analysed.
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2.3. Estimation of grid-scale relative changes

Relative changes, , expressed in %, are calculated at each grid as follows:𝐶r

𝐶r = (𝑅T,f ‒ 𝑅T,b

𝑅T,b
)100 = (𝑅T,f

𝑅T,b
‒ 1)100 = (𝐶 ‒ 1)100 (1)

where  is the change factor, and  and  are the pooled estimate of the T-year rainfall  𝐶 𝑅T,f 𝑅T,b

intensity quantile for the 24-h rainfall duration obtained from future simulations (for a given 

RCP – horizon combination) and baseline simulations, respectively, for a particular climate 

model. Relative changes associated with each of the four RCP – horizon combinations are 

gathered over climate models to form the corresponding ensemble of relative changes (i.e., that 

associated with RCP 4.5 – 2050, RCP 4.5 – 2080, RCP 8.5 – 2050, and RCP 8.5 – 2080). Multi-

model median, lower and upper bounds are then estimated from each ensemble. Multi-model 

median (i.e., 50th percentile) indicates the most likely relative change. Multi-model lower bound, 

defined as 10th percentile, represents a less likely but possible lower relative change; and multi-

model upper bound, defined as 90th percentile, represents a less likely but possible greater 

relative change. Multi-model minimum and maximum relative changes are not considered to 

avoid the most extreme results from the climate models. Multi-model percentile relative changes 

are computed from ensembles of relative changes (e.g., Sunyer et al. 2015) and not from 

ensembles of baseline and future quantiles for a more precise estimation.

Climate model simulations present uncertainty, and so does the use of an ensemble of 

climate models and the estimation of rainfall intensity quantiles. As a result, relative changes 

may benefit from adjustments for their use in practice. First, coherence in relative changes over 

horizons for a specific RCP needs to be ensured for the application of relative changes in 

practice. This is motivated by the necessity of providing design rainfall intensity quantiles that 
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increase (or stay the same) for later horizons to guarantee reliability. For instance, the relative 

change factors are expected to be a non-decreasing function of the time horizon considered. In 

the present study, this is solved by a simple adjustment through which, for a specific RCP, the 

relative change for both horizons is compared and that associated with 2080 is set equal to the 

value for the larger of the two relative changes. Coherence in relative changes over RCPs for a 

specific horizon is, however, not sought since although a higher RCP is expected to lead to a 

greater global temperature increase, this may not result in larger increasing rainfall intensity at a 

given location. In this line, Herath et al. (2016) remarked that the Clausius-Clapeyron scaling 

relationship that links extreme rainfall and temperature may not be valid for high temperatures, 

for which extreme rainfall may decrease. This could result in the estimation of lower extreme 

rainfall relative changes for future horizons. Wang et al. (2017) presented evidence of a negative 

relationship between daily extreme precipitation and temperature for high temperatures across 

the globe, and underlined that the Clausius-Clapeyron scaling relationship is only valid under 

constant relative humidity or without moisture limitation. Roderick et al. (2019) pointed out that, 

in the tropics, negative scaling may be attributed to temperature limitation because of 

evaporation. For high temperature, the latter may lead to a negative relationship between 

temperature and integrated water vapor, and hence to lower extreme rainfall as a result of the 

positive relationship between integrated water vapor and rainfall intensity.

It may be relevant to analyse, and if possible to improve, the agreement in the relationship 

between relative change and return period over RCP – horizon combinations. One reason is that 

a decreasing relationship could lead to conflicts when updating rainfall intensity quantiles using 

relative changes associated with different return periods. To understand this relationship, a linear 
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regression model between relative change (response) and return period (predictor) is fitted and 

the corresponding slope (regression coefficient) is estimated at each grid.

3. Case study and data

The case study is Canada (Fig. 1a) and the analysis is based on available NA-CORDEX 

baseline and future simulations for the study area. NA-CORDEX uses multiple GCMs from the 

Coupled Model Intercomparison Project Phase 5 (CMIP5) as RCM boundary conditions, in a 

similar way that the well-known North American Regional Climate Change Assessment Program 

(NARCCAP) used GCMs from the multiple Coupled Model Intercomparison Project Phase 3 

(CMIP3). NA-CORDEX (https://na-cordex.org) aims at supplying simulations for six RCMs 

driven by six GCMs at several spatial resolutions, considering different RCPs. Bias corrected 

simulations based on kernel density distribution mapping, planned to be provided by NA-

CORDEX, were not available at the time the present study was performed. NA-CORDEX is in 

progress with several model combinations currently available. NA-CORDEX simulations have 

been used in recent research (e.g., DeGaetano et al. 2017; Wong et al. 2017; Ganguli and 

Coulibaly 2019).

The NA-CORDEX data archive is in line with recommendations for estimating projected 

changes by taking into account different sources of uncertainty, such as by considering several 

RCMs driven by several GCMs, and different future scenarios. Distinguishing between RCPs 

avoids merging model uncertainty and human choice uncertainty. Simulations with a similar 

horizontal resolution and at a common reference grid are also provided. At the time the present 

study was conducted, six NA-CORDEX model combinations were available according to these 

criteria and are used herein. The models presented daily temporal resolution, and a spatial 

resolution of 0.44˚ (~ 50 km) native rotated-pole grid interpolated to a common 0.5˚ latitude-

https://na-cordex.org
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longitude grid; they presented projections for two RCPs (RCP 4.5 and RCP 8.5) (Mearns et al. 

2017). Their nomenclature is established here by first indicating the RCM and then the driving 

GCM (Table 1): CanRCM4/CanESM2, CRCM5-UQAM/CanESM2, CRCM5-UQAM/MPI-

ESM-LR, HIRHAM5/EC-EARTH, RCA4/CanESM2 and RCA4/EC-EARTH. Information about 

the models may be found at https://na-cordex.org.

 NA-CORDEX simulations are available for historical (1950 to 2005) and future (2006 to 

2100) periods. The use of a 30-year study period is recommended for climate change assessment 

and hence, the commonly used baseline period 1971-2000, and future periods 2041-2070 and 

2071-2100 are selected in this analysis (e.g., Charron 2014). These future periods are commonly 

known as horizon 2050 and 2080, and are used in many studies (e.g., Nguyen et al. 2007; Kuo et 

al. 2015; Herath et al. 2016). A total of 30 grid-scale daily precipitation simulations are used in 

this study, which comprises five simulations (one baseline simulation and four future 

simulations) for each of the six NA-CORDEX model combinations (Table 1). Future simulations 

are associated with each of the four RCP – horizon combinations: RCP 4.5 – 2050, RCP 4.5 – 

2080, RCP 8.5 – 2050 and RCP 8.5 – 2080. The NA-CORDEX grid domain used is restricted to 

Canada, with an upper limit at 65˚ latitude (Fig. 1a). This delimitation is coherent with the 

domain used when performing pooled frequency analysis based on observed rainfall series 

(Requena et al. 2019). The use of an upper limit to latitude is also supported by the predominant 

underestimation of daily precipitation of gridded climate products in northern Canada (Wong et 

al. 2017).

The pooled estimate of the T-year rainfall intensity quantiles obtained from observed 24-h 

rainfall in Requena et al. (2019), with return period T = 2, 5, 10, 25, 50 and 100 years, are the 

observation-based quantiles used in the present study (see Section 2.2 for details about the 

https://na-cordex.org
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pooled approach). The raw data used for estimating these observation-based quantiles consisted 

of 24-h annual maximum rainfall depth series from 554 of the 565 rainfall stations used by 

Environment and Climate Change Canada (ECCC) for estimating at-site IDFs (ECCC 2018). 

The set of 554 stations was obtained by removing six stations north of 65˚ latitude, three stations 

due to nonstationarity issues and two stations without records for the 24-h rainfall duration. 

Station location is shown in Section 4.2.

4. Application to Canada 

4.1. Extraction of annual maximum rainfall series from grid-scale daily precipitation

Most of the rainfall stations used for IDF estimation in Canada are out of service during the 

winter months (Hogg et al. 1989). The dataset used in this study for analysing starting and 

ending months of observed rainfall consisted of 1-h rainfall intensity observed dates from 1937 

to 2018 associated with around 18 700 station-years that were provided by ECCC upon request. 

Three types of classifications are assessed for dividing the country to identify the approach that 

provides the best representation of rainfall periods: administrative units (e.g., Fig. 1a), ecozones 

and ecoprovinces (Fig. 1b). Canada consists of 13 administrative units (specifically, 10 provinces 

and 3 territories), and is divided into 15 ecozones comprising 53 ecoprovinces (Ecological 

Stratification Working Group (ESWG) 1995; 

http://sis.agr.gc.ca/cansis/nsdb/ecostrat/index.html). 

Three main rainfall period categories are identified across Canada following Section 2.1: 

January – December (Jan – Dec), March – December (Mar – Dec), and April – November (Apr – 

Nov). The largest variability is generally associated with the starting month of the first category 

regardless of the classification considered (i.e., administrative units, ecozones or ecoprovinces). 

http://sis.agr.gc.ca/cansis/nsdb/ecostrat/index.html
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The classification based on ecoprovinces is selected because it allows for a better 

characterization of the rainfall period categories across the country thanks to its greater number 

of subdivisions (Fig. 1). The study domain consists of 4792 grids (Fig. 1a) of which 11.5% are 

linked to the rainfall category Jan – Dec, 16.5% to Mar – Dec, and 72% to Apr – Nov. The 

category Jan – Dec is associated with the West Coast, southwestern British Columbia (BC), the 

southernmost part of Ontario (ON), most of Newfoundland and Labrador (NL) and most of the 

Maritimes (i.e., Nova Scotia (NS), Prince Edward Island (PE), and part of New Brunswick 

(NB)). The category Mar – Dec is associated with the rest of BC except its northern part, 

southern Alberta (AB), southern Saskatchewan (SK), southwestern and southeastern ON, Saint 

Lawrence River proximities, eastern Quebec (QC), and eastern NL. The category Apr – Nov is 

associated with the rest of the country. 

Grid-scale daily annual maximum rainfall series are extracted from grid-scale daily 

precipitation simulations using the rainfall period category associated with each gridpoint. For 

instance, for a grid associated with the rainfall period category Apr – Nov, this means that the 

daily annual maximum rainfall at the grid is the maximum value associated with rainfall 

occurring from April to November (i.e., without considering rainfall that occurred in January, 

February, March or December). This is done for the 30 NA-CORDEX simulations. The use of 

the three rainfall period categories to extract annual maximum series at grids belonging to each 

type of category is briefly analysed for discussion. Annual maximum series extracted at grids 

belonging to the categories Mar – Dec and Apr – Nov are found to be less affected by the rainfall 

period considered. This is likely due to annual maxima generally occurring within the months 

associated with each category. Annual maximum series extracted at grids belonging to the 

category Jan – Dec are found to be more affected by the use of shorter periods, which supports 
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annual maxima occurring throughout the year. Therefore, if it was not possible to assign rainfall 

period categories for annual maximum rainfall extraction, the use of the entire year (e.g., Mailhot 

et al. 2012) would be preferred to the use of a shorter period for the entire country (e.g., Mladjic 

et al. 2011).

Trends on the extracted annual maximum rainfall series are analysed using the block 

bootstrap Mann-Kendall test, which accounts for serial correlation (Khaliq et al. 2009; Önöz and 

Bayazit 2012; Sarhadi and Soulis 2017). Significant trends at a 5% significance level are found 

at fewer than 8.6% of the grids for each simulation. On average, 5.6% of the grids presented 

significant trends over the 30 simulations. These percentages are similar to those obtained by 

Maihot et al. (2012), and analogously, all simulations are assumed as stationary for the purpose 

of the present study. In this regard, Mailhot et al. (2007) underlined that significant trends may 

not be identified in commonly used record lengths for studying climate change, even in 

simulations for future study periods. 

4.2. Pooled quantile estimation for grid-scale annual maximum rainfall intensity

An overview of the pooling group characteristics obtained after applying the pooling 

approach (Section 2.2) to the 30 NA-CORDEX simulations is presented below. The median 

number of grids in a pooling group ranged from five to 17, depending on the return period. The 

25th – 75th percentile interval of the heterogeneity measure H reached up to (-2.3, 0.2) for 

 years. This is lower than for observations, since grid-scale simulations from climate 𝑇 = 100

models are generally more correlated (Li et al. 2017). Maximum distance from grids in a pooling 

group to the target grid was less than 290 km.

Grid-scale pooled estimates of the T-year rainfall intensity quantile for the 24-h rainfall 

duration are obtained using the generalized extreme value distribution, which is recommended as 
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the pooled parent distribution in Canada (Requena et al. 2019). Daily annual maximum rainfall 

intensity series from NA-CORDEX simulations were multiplied by a factor of 1.13 (World 

Meteorological Organization (WMO) 2009), to convert daily annual maximum rainfall intensity 

to 24-h rainfall intensity, following ECCC’s practice. A similar factor of 1.15 is used in Australia 

to obtain 24-h annual maximum rainfall series from daily rainfall observations (Johnson and 

Green 2018). Papalexiou et al. (2016) indicted that this multiplier, known as Hershfield factor, 

may be treated as a random variable within [1, 2], for which different values are associated with 

different exceedance probabilities. When treated as a random variable, the uncertainty introduced 

may result in larger uncertainty in quantiles estimates. The mean value, commonly used in 

practice, presents an exceedance probability of around 35% for rainfall durations greater than 6h. 

The pooled estimate of the T-year rainfall intensity quantile for the 24-h rainfall duration, with T 

= 2, 5, 10, 25, 50 and 100 years, is obtained at each grid for each of the 30 NA-CORDEX 

simulations.

Grids with at least one station are identified for comparison between observation-based and 

baseline quantiles. Only 388 of the 4792 grids in the study domain contained at least one station, 

which represents around 8% of the grids. The percentage of grids regarding those with a given 

number of stations (over all return periods), for which the multi-model median baseline quantile 

is within the observation-based quantile range, is found to increase as the number of stations 

increases from two to four stations in a grid (Fig. 2a). The median percentage of grids fulfilling 

the criterion ranged from 18% to 50%. The increase may be expected, since the presence of a 

greater number of stations may provide more information about the spatial distribution of rainfall 

intensity within the grid. Results for grids with more than five stations are not discussed here due 

to the low number of occurrences of these events (Fig. 2; text within parenthesis below x-axis 
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ticks). Results for grids with just one station cannot be obtained in this case, since at least two 

observation-based quantiles are needed to form the assessing range (Fig. 2a). 

The analysis of the analogous percentage of grids for which multi-model median baseline 

quantile is less than the maximum observation-based quantile is computed for comparison 

purposes (Fig. 2b). This analysis generates results for grids with at least one station. For grids 

with one to three stations, the percentage of grids fulfilling this latter criterion was larger than 

that for the previous analysis, whereas both analyses provided similar results for grids with at 

least four stations. This implies that if a baseline quantile is less than the maximum observation-

based quantile at the grid, it is more likely for it to also be within observation-based quantile 

range when the number of stations within the grid is large. This may be expected, since a greater 

number of stations provides a better representation of rainfall intensity within the grid and more 

chances for the baseline quantile to be within the observation-based quantile range. Differences 

between observation-based and baseline quantiles are also expected since NA-CORDEX 

simulations are not bias corrected and such comparison is based on quantile estimates rather than 

on “measured” values. Therefore, the two aforementioned criteria may be considered as 

reasonableness tests, where false outcomes do not invalidate either type of estimate.

The results for the present case study indicate a better representation of the “areal” versus 

“point” relationship for grids containing at least four stations. This is in line with the general 

recommendation of the WMO for the control area of a gauge station to be less than 600 km2 

(Tian et al. 2018), which is equivalent to at least four stations per 2500 km2. Note that areal 

reduction factors to deal with differences between point and gridded rainfall intensity are not 

available for the entire Canada mainly due to the low density of the gauge network (Mailhot et 

al. 2012). Areal reduction factors may change depending on the region, rainfall duration and 
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return period (DeNeale et al. 2018), and may be affected by climate change (Li et al. 2015). The 

results also underline the difficulty in bias correcting grid-scale simulations when gauge density 

is low, since spatial distribution of observed rainfall intensity may not be reliably estimated for 

the grid. The assumption in the present study is that bias from climate models affects baseline 

and future simulations in a similar way and hence the associated relative change (through which 

computation bias is cancelled out) may be considered as suitable for updating observation-based 

quantiles (e.g., Ekström et al. 2005). Note that the lack of a dense gauge density in Canada 

prevents a fair direct comparison of quantiles from RCM simulations and observations, since it is 

not possible to perform a suitable bias correction of gridded RCM simulations and use areal 

reduction factors for the entire country.

Spatial distribution of grids under these criteria is displayed in Fig. 3a and Fig. 3b, 

respectively, for T = 100 years as an illustration. 28% of the 79 grids with at least two stations 

fulfilled the first criterion for T = 100 years (Fig. 3a), and 42% of the 388 grids with at least one 

station fulfilled the second criterion for T = 100 years (Fig. 3b). Spatial results indicate that the 

ensemble of NA-CORDEX model combinations may provide representative relative changes 

across Canada, since grids for which the baseline quantile is within the observation-based 

quantile range, or for which the baseline quantile is less than the maximum observation-based 

quantile, may be found across the country. Similar conclusions apply to other return periods.

4.3. Grid-scale relative change before adjustments

Grid-scale 24-h relative change for RCP – horizon combinations are estimated across 

Canada as indicated in Section 2.3. Boxplots for RCP 8.5 – 2050 and RCP 8.5 – 2080 are shown 

in Fig. S1 in the supplementary material as an illustration. Median relative change over return 

periods increased with RCP and horizon for all multi-model percentiles, following the order RCP 
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4.5 – 2050, RCP 4.5 – 2080, RCP 8.5 – 2050, RCP 8.5 – 2080. Considering each return period 

separately, minimum 25th percentile and maximum 75th percentile also kept this order; yet this 

was not always the case for minimum and maximum relative change. The latter anticipates 

potential lack of coherence over RCPs or horizons at particular locations. Relative change 

variability increased with return period for all cases. Median relative change presented a 

decreasing relationship with return period for multi-model 10th percentile, an increasing 

relationship for multi-model 90th percentile, and remained constant for multi-model 50th 

percentile, which stresses the greater relative change variability with return period. 

The spatial distribution of grid-scale 24-h relative change is also analysed, and relative 

changes are extracted at specific locations across Canada to further illustrate the results. Capital 

cities of Canadian administrative units, and Canada are the locations used for this analysis. For 

simplicity and comparison with existing studies, the closest station to the geographical 

coordinates of the city is identified (Table 2), and the associated relative change is considered as 

that at the grid where the station is located. In practice, the area of the specific city (or the area of 

a catchment) could be used for identifying associated grids, through which an average relative 

change may be estimated. The corresponding maximum relative change may be obtained instead, 

if a design accounting for potential relative changes anywhere within the city (or catchment) is 

desired. The latter option would be in line with discussion in Bárdossy and Pegram (2018).  

Multi-model 50th percentile grid-scale 24-h relative change presented different values and 

relationships with return period, RCP and horizon across cities, with changes ranging from -11% 

to 51% when considering the four RCP – horizon combinations (Table 3). All cities presented 

positive relative changes, except Halifax for RCP 4.5 – 2050, where large negative relative 

changes are found. The relationship of relative change with return period may change across 
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RCP – horizon combinations for a city. For instance, Ottawa presented a positive relationship for 

RCP 4.5 – 2050 but a negative relationship for RCP 4.5 – 2080 (not shown). Different 

relationships of relative change with return period across horizons may also be seen in other 

studies (e.g., Herath et al. 2016 Table 4).

Min, mean and max multi-model 50th percentile relative change over return periods at cities 

increased between 2050 and 2080 (i.e., over horizons) for RCP 8.5, and between RCP 4.5 and 

RCP 8.5 (i.e., over RCPs) for 2080 (Table 3). The only exception was St. John’s, with mean and 

max relative change for RCP 8.5 – 2080 less than for RCP 8.5 – 2050 (Table 3; bold values in 

the last two columns). However, many cases presented lack of coherence when looking at 

relative change over horizons for RCP 4.5, and over RCPs for 2050 (Table 3; bold values from 

columns two to seven); this underlines a general discrepancy associated with relative changes for 

RCP 4.5 – 2050. Analysis of relative changes at grids within the entire domain supported the 

generalization of this finding, although with many exceptions. Overall results are hence in line 

with behaviour of global surface temperature change (e.g., Charron 2014 Figure 20). That is, a 

more marked difference among climate models is seen (i) for a later horizon (2080) in 

comparison with a nearer one (2050) when using a higher RCP (RCP 8.5), and (ii) among RCPs 

(RCP 4.5 and RCP 8.5) when considering a later horizon (2080). In view of these results and 

taking into account that a higher RCP may be more likely for the nearer horizon 2050, RCP 4.5 – 

2050 is no longer considered in the present study and hence, associated adjustments over 

horizons are not applied to RCP 4.5 – 2080.     

4.4. Grid-scale relative changes after adjustments

The previous results underlined the large variability of multi-model percentile grid-scale 24-

h relative changes across Canada and hence, the need for adjustments to provide coherent 



  

22

relative changes for extreme rainfall intensity update under climate change. The agreement in the 

relationship between relative change and return period over RCP – horizon combinations is 

analysed through the estimation of the associated regression slope. Slope magnitude ranged from 

-0.5 to 1.3, and increased with multi-model percentile (Fig. 4). There was a larger negative slope 

presence for multi-model 10th percentile, and a larger positive slope presence for multi-model 

90th percentile. Slope sign (Fig. 5a) supported these results and showed a relatively high spatial 

coherence of grids with coherent slope sign over the three retained RCP – horizon combinations. 

The slope range [-0.06, 0.06] (i.e., from a decreasing 6% to an increasing 6% slope) is 

considered to be small enough to characterise a constant relationship between relative change 

and return period. Relative change for grids with a constant slope is assigned to be the 

corresponding mean relative change over return periods. This is done for each of the three RCP – 

horizon combinations. The slope range [-0.06, 0.06] is used as this range results in an absolute 

maximum difference no greater than 15% for relative changes at return periods before and after 

the adjustment. As an illustration, the slope magnitude for RCP 8.5 – 2080 is shown in Fig. 5b, 

indicating grids with slopes within that range. The adjustment aims at improving the agreement 

in the relationship between relative change and return period over RCP – horizon combinations 

for application of relative changes in practice. The average percentage of grids affected by this 

adjustment is 30%, 41% and 17% for the multi-model 10th, 50th and 90th percentile, respectively, 

when accounting for the three RCP – horizon combinations. Adjustment for coherence over 

horizons affected an average of 13% of grids for RCP 8.5, when accounting for all multi-model 

percentiles and return periods. This adjustment would have affected an average of 37% of grids 

if applied to RCP 4.5. An additional check is done to ensure coherence over multi-model 
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percentiles after the two previous adjustments. The average percentage of grids affected by this 

is negligible (about 0.1%).

Boxplots of grid-scale 24-h relative change before (e.g., Fig. S1) and after (not shown) 

adjustments presented similar overall behaviour. Nevertheless, as expected, after adjustments the 

analysed statistics stayed the same or increased with horizon for RCP 8.5. A similar median 

multi-model 50th percentile of 14%, 16% and 27% was obtained before and after adjustments for 

RCP 4.5 – 2080, RCP 8.5 – 2050, and RCP 8.5 – 2080, respectively, as well as a similar overall 

range for relative change (-46%, 182%). Multi-model 50th percentile ranged from -17% to 88% 

when considering the three retained RCP – horizon combinations. As an illustration, grid-scale 

24-h relative changes after adjustments for T = 2 and 100 years are shown for RCP 8.5 – 2080 in 

Fig. 6. Corresponding results for RCP 4.5 – 2080 and RCP 8.5 – 2050 are displayed as Figs. S2 

and S3 in the supplementary material. In general, relative changes for RCP – horizon 

combinations varied smoothly and formed a number of clusters of similar values across the 

country. Negative relative changes were mostly related to multi-model 10th percentile. Multi-

model 90th percentile presented practically no negative relative changes. Multi-model 50th 

percentile presented few small clusters of negative relative changes. In general, relative changes 

increased in magnitude with return period.

As expected from adjustments, min, mean and max multi-model 50th percentile 24-h relative 

change over return periods are equal or increase with horizon for RCP 8.5 at cities (Table 4). In 

general, relative changes for RCP 4.5 – 2080 are closer to values for RCP 8.5 – 2050, and less 

than RCP 8.5 – 2080. Adjustments for cities are generally small and related to the use of a 

constant slope, except for St. John’s for RCP 8.5 – 2080, where adjustments due to lack of 

coherence between horizons were needed. Small and coherent mean multi-model 50th percentile 
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over return periods for the three RCP – horizon combinations (RCP 4.5 – 280, RCP 8.5 – 2050 

and RCP 8.5 – 2080) are found at Halifax (5%, 11% and 20%), Quebec City (10%, 12% and 

21%), Victoria (7%, 8% and 16%) and Winnipeg (9%, 8% and 21%). Coherent large values for 

the three RCP – horizon combinations are found at Edmonton (25%, 24% and 32%), Iqaluit 

(24%, 24% and 37%) and Whitehorse (31%, 39% and 49%), which are generally located north of 

the rest of the sites. Positive multi-model 50th percentile relative changes are found at capital 

cities for the three RCP – horizon combinations (Fig. 7 and Figs. S4 to S6; colored lines).

Multi-model 10th, 50th and 90th percentile grid-scale 24-h relative change after adjustments 

are presented for Edmonton, Ottawa, Toronto and Victoria as representative of different 

behaviours in Fig. 7; results for the rest of the cities are displayed in Figs. S4 to S6 in the 

supplementary material. The associated regression slope between relative change and return 

period is shown in Table 5. Victoria presented an overall constant relationship of relative change 

with return period (Fig. 7), with a similar behaviour in Iqaluit (Fig. S4). Edmonton showed an 

overall positive relationship between relative change and return period (Fig. 7), with a similar 

behaviour in Fredericton (Fig. S4). Ottawa displayed a positive relationship between relative 

change and return period for multi-model 90th percentile, and a negative relationship for multi-

model 10th percentile (Fig. 7). A similar behaviour is seen in Charlottetown and St. John’s (Fig. 

S4). Toronto presented a mixed behaviour (Fig. 7), as well as the rest of the cities (Figs. S5 and 

S6). Most cities belonged to this last category.  

4.5. Comparison of relative changes with existing studies

Grid-scale 24-h (or daily) relative changes using a fixed-region approach are provided for 

Canada by two studies: Mailhot et al. (2012) and Mladjic et al. (2011). A web tool is also 

available to estimate future IDFs under climate change in Canada, using a local approach 
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(IDF_CC tool: Simonovic et al. 2016; Schardong et al. 2018). Comparison among results from 

different studies is complex due to the different methodologies (regional or local), extraction of 

annual maximum series (annually or from a given period of months), spatial resolution (grid or 

point), type and number of climate models (dynamical or statistical downscaled GCMs; one 

model or an ensemble), definition of future scenarios (Special Report on Emissions Scenarios 

SRES A2, or RCPs), horizons (2041-2070 or at least a 50-year future period) and return periods 

(up to T = 20 years or longer). 

Overall comparison among approaches is done by extracting relative changes (if available) 

for T = 2 and 100 years at the location of the stations associated with each city (Table 2). An 

overview of the outcome is presented below; further results and discussion are shown in the 

supplementary material (text and Fig. S7). Relative changes for T = 2 years presented positive 

values for all cities and a similar range for all compared approaches. In general, positive relative 

changes were also found for T = 100 years, but the overall range of relative changes over cities 

differed among approaches. The lowest range is associated with Mladjic et al. (2011), whereas 

the largest range is associated with the IDF_CC tool. Larger overall values obtained by the 

IDF_CC tool could be related to the longer future period (2041-2100) used, the estimation of 

point- instead of grid-scale rainfall intensity, the different type of climate models considered, and 

the use of a local approach. Lower overall values associated with Mladjic et al. (2011) could be 

related to the use of a single RCM, and the use of the period April to September for annual 

maximum series extraction for all of Canada. As expected, the estimation of relative changes at a 

particular location depended on the approach. The smallest differences between relative changes 

from the IDF_CC tool and the present study, considering both return period values and RCPs, 
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are found for Charlottetown, St. John’s and Yellowknife. The largest differences are found for 

Halifax and Iqaluit. 

5. Discussion

Estimation of relative changes in 24-h extreme rainfall intensity is dependent on the climate 

model simulations used. Additional model combinations may avoid more extreme relative 

changes when computing multi-model percentiles. Therefore, current relative changes should be 

updated as additional simulations from NA-CORDEX model combinations become available. 

Up to 36 NA-CORDEX model combinations are expected. Higher resolution (0.22˚ ~ 25km) 

grid-scale relative changes could be provided when associated NA-CORDEX simulations are 

accessible for several RCPs. However, a lack of grid resolution influence on relative change was 

found when performing an upscaling experiment using NA-CORDEX simulations for the State 

of New York (DeGaetano et al. 2017). 

Regional approaches do not usually consider temporal downscaling and hence, the temporal 

resolution of the estimated relative changes is at most that given by the temporal resolution of the 

climate model (e.g., Mailhot et al. 2007). Future research will deal with the estimation of grid-

scale relative changes for sub-daily rainfall durations to allow for a complete IDF update. The 

application of relative changes in practice needs to lead to physically possible IDFs. This may 

only be ensured for increasing relative change with return period and decreasing relative change 

with duration, which implies that joint adjustments may be needed in practice. 

Low gauge density is problematic for obtaining accurate gridded products for an entire 

country, such as in the case of Canada (e.g., Roy et al. 2017; Wong et al. 2017). This premise is 

also supported by the analysis of baseline and observation-based quantiles performed in this 
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study as a function of the number of stations in a grid. In this line, Tian et al. (2018) found 

dependence of the performance of a (grid-scale) satellite-based rainfall product on gauge density 

in China, with higher gauge density improving values of assessment metrics. Thus, bias 

correction of grid-scale simulations using observations of a similar resolution is not performed in 

the present study. The application of the alternative scale-adapted statistical bias correction 

approach (Haerter et al. 2015), where grid-scale simulations may be bias corrected by station-

scale observations through data aggregation, is not possible due to the limited available temporal 

resolution for simulations. The estimation of relative changes is hence based on the delta change 

method. 

Further research may be conducted to estimate grid-scale 24-h relative changes in areas of 

Canada where a denser gauge network is available and hence, where grid-scale observations may 

be more accurate. This could allow for a more precise relative change estimation in these areas, 

since bias correction may reduce change magnitude (Li et al. 2017). Recently, the IDF_CC tool 

incorporated the estimation of grid-scale IDFs for Canada with the aim of providing future IDFs 

at ungauged locations using the delta change method, under a local quantile estimation approach 

(Schardong et al. 2018). Grid-scale annual maximum series used for obtaining those IDFs were 

estimated from grid-scale reanalysis predictors, and machine learning models calibrated at the 

closest station. Spatial correction factors at the station were also considered. The performance of 

the procedure is therefore expected to be affected by station density. 

Positive multi-model 50th percentile grid-scale relative changes generally obtained over 

Canada by the present study support the need of considering the effect of climate change on 24-h 

extreme rainfall intensity in the country. This effect is not uniform and hence, needs to be 

assessed for the area of interest. Since the estimation of relative changes is dependent on the 
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climate model simulations considered, additional models should be incorporated when available 

to account for as much information as possible in their estimation. Grid-scale 24-h relative 

changes estimated in the present study may be applied to update 24-h observation-based rainfall 

intensity quantiles available at a particular location, catchment or city across the country. Multi-

model 50th percentile relative change may be seen as the most likely relative change; however, 

variability in relative changes should be accounted for in practice by also considering the 

potential effect of multi-model bounds. For safety, it is not recommended to apply negative 

relative changes to update rainfall intensity quantiles in practice. 

6. Conclusions

A methodology for obtaining grid-scale relative changes based on pooled rainfall intensity 

quantiles estimated from baseline and future climate model simulations is proposed in the 

present study. The pooled approach allows for a more accurate estimation of quantiles for longer 

return periods. The methodology is applied to Canada, where six NA-CORDEX model 

combinations at a common 0.5˚ latitude-longitude grid are used to generate multi-model 10th, 

50th and 90th percentile grid-scale 24-h relative changes for six return periods up to 100 years. 

Grid-scale 24-h relative changes are estimated for two future scenarios, RCP 4.5 and RCP 

8.5, and two horizons, 2050 and 2080. Analysis of the relationship between relative change and 

return period is performed, and adjustments are done when this relationship may be considered 

as constant to facilitate the application of relative changes in practice. As a result of analysing 

coherence of relative changes over horizons, relative changes for RCP 8.5 are recommended for 

2050, whereas either relative changes for RCP 4.5 or RCP 8.5 could be used for 2080. 

In general, relative changes varied smoothly and formed a number of clusters of similar 

values across the country. Multi-model 50th percentile relative change were mostly positive, 
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with a few small clusters of negative values and ranged from -17% to 88%, with a median of 

14%, 16% and 27% for RCP 4.5 – 2080, RCP 8.5 – 2050, and RCP 8.5 – 2080, respectively. 

Relative changes provided for capital cities, as those associated with the grid where the closest 

station is located, revealed positive multi-model 50th percentile for the three RCP – horizon 

combinations, and different behaviours of multi-model percentiles as a function of return period. 

Comparison with existing studies using different approaches and climate models showed an 

overall agreement in estimating positive multi-model median (or mean) relative changes at the 

selected cities, whereas different values were assigned to each particular city depending on the 

approach. A more marked difference in the range of relative changes over cities among 

approaches was found for a longer return period.
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Acronym Definition

AB Alberta

BC British Columbia

CMIP3 Coupled Model Intercomparison Project Phase 3 

CMIP5 Coupled Model Intercomparison Project Phase 5

ECCC Environment and Climate Change Canada

ESWG Ecological Stratification Working Group 

GCM Global climate model

IDF Intensity-duration-frequency

MB Manitoba

NA-CORDEX North American Coordinated Regional Climate Downscaling Experiment

NARCCAP North American Regional Climate Change Assessment Program

NB New Brunswick

NL Newfoundland and Labrador

NS Nova Scotia

NSERC Natural Science and Engineering Research Council 

NT Northwest Territories

NU Nunavut

ON Ontario

PE Prince Edward Island

QC Quebec

RCM Regional climate model

RCP Representative Concentration Pathways

SRES Special Report on Emissions Scenarios 

SK Saskatchewan

WMO World Meteorological Organization

YT Yukon
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Table 1. Six NA-CORDEX model combinations with five grid-scale daily precipitation 

simulations used in the study. 

NA-CORDEX 
model combination RCM GCM Type of simulation: study period (horizon)

1 CanRCM4 CanESM2

2 CRCM5-UQAM CanESM2

3 CRCM5-UQAM MPI-ESM-LR

4 HIRHAM5 EC-EARTH

5 RCA4 CanESM2

6 RCA4 EC-EARTH

Baseline: 1971-2000; 

Future for RCP 4.5: 2041-2070 (2050);

Future for RCP 4.5: 2071-2100 (2080);

Future for RCP 8.5: 2041-2070 (2050);

Future for RCP 8.5: 2071-2100 (2080). 



  

38

Table 2. Canadian capital cities and closest station. The grid selected for each city is that where 

the corresponding station is located.

January to December (Jan – Dec); March to December (Mar – Dec); April to November (Apr – Nov).

City Administrative unit  IDF station code Lon (˚) Lat (˚) Rainfall category
Charlottetown Prince Edward Island (PE) 8300300 -63.13 46.29 Jan – Dec

Edmonton Alberta (AB) 3012208 -113.52 53.57 Mar – Dec

Fredericton New Brunswick (NB) 8101605 -66.61 45.92 Jan – Dec

Halifax Nova Scotia (NS) 8202200 -63.57 44.65 Jan – Dec

Iqaluit Nunavut (NU) 2402590 -68.55 63.75 Apr – Nov

Ottawa Canada 6105978 -75.72 45.38 Mar – Dec

Quebec City Quebec (QC) 7016280 -71.22 46.8 Mar – Dec

Regina Saskatchewan (SK) 4016560 -104.67 50.43 Mar – Dec

St. John's Newfoundland and Labrador (NL) 8403506 -52.74 47.62 Jan – Dec

Toronto Ontario (ON) 6158355 -79.4 43.67 Jan – Dec

Victoria British Columbia (BC) 1018610 -123.33 48.41 Jan – Dec

Whitehorse Yukon (YT) 2101300 -135.07 60.71 Apr – Nov

Winnipeg Manitoba (MB) 5023233 -97.1 49.88 Mar – Dec

Yellowknife Northwest Territories (NT) 2204100 -114.44 62.46 Apr – Nov



  

39

Table 3. Multi-model 50th percentile grid-scale 24-h relative change (%) at cities before 

adjustments. 

RCP 4.5 RCP 8.5

2050 2080 2050 2080City

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Charlottetown 7 9 12 15 16 18 2 7 14 22 30 37
Edmonton 11 20 28 19 25 34 17 24 31 20 32 41

Fredericton 8 23 37 8 22 32 11 19 26 21 34 45
Halifax -11 -5 5 2 5 8 9 11 14 18 20 21
Iqaluit 19 26 30 19 24 27 23 24 28 30 37 40

Ottawa 15 26 34 13 18 22 14 17 19 27 30 32
Quebec City 10 13 16 6 10 13 9 12 15 19 21 22

Regina -1 6 10 7 15 23 13 17 20 26 33 41
St. John’s 10 11 12 8 11 17 20 30 43 26 27 29

Toronto 5 9 13 0 6 12 6 8 11 26 32 38
Victoria 7 9 12 3 7 10 6 8 10 13 16 18

Whitehorse 20 26 33 23 31 44 31 39 48 48 49 51
Winnipeg 2 11 18 4 9 14 6 8 10 19 21 26

Yellowknife 7 13 20 7 14 22 5 11 15 25 28 32

Min, mean and max values are estimated over return periods. 

Bold values for RCP 4.5 – 2050 indicate cases where relative change do not increase between RCP 4.5 and RCP 8.5 
for 2050; all relative changes increase between RCP 4.5 and RCP 8.5 for 2080. 

Bold values for 2080 indicate cases where relative change do not increase between 2050 and 2080 for the given 
RCP. 
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Table 4. Multi-model 50th percentile grid-scale 24-h relative change (%) at cities after 

adjustments for the three retained RCP – horizon combinations. 

RCP 4.5 RCP 8.5

2080 2050 2080City

Min Mean Max Min Mean Max Min Mean Max
Charlottetown 16 16 16 2 7 14 22 30 37

Edmonton 19 25 34 17 24 31 20 32 41
Fredericton 8 22 32 11 19 26 21 34 45

Halifax 5 5 5 11 11 11 20 20 20
Iqaluit 24 24 24 24 24 24 30 37 40

Ottawa 13 18 22 17 17 17 30 30 30
Quebec City 10 10 10 12 12 12 21 21 21

Regina 7 15 23 17 17 17 33 33 33
St. John’s 11 11 11 20 30 43 27 33 43

Toronto 0 6 12 8 8 8 26 32 38
Victoria 3 7 10 8 8 8 16 16 16

Whitehorse 23 31 44 31 39 48 49 49 49
Winnipeg 4 9 14 8 8 8 19 21 26

Yellowknife 7 14 22 5 11 15 28 28 28

Min, mean and max values are estimated over return periods. 

Bold values indicate different relative change before and after adjustments. 
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Table 5. Slope of the regression between relative change and return period at cities. Results for 

multi-model 10th, 50th and 90th percentile. 

RCP 4.5 RCP 8.5

2080 2050 2080City

10th 50th 90th 10th 50th 90th 10th 50th 90th

Charlottetown - r + - - + - + +
Edmonton r + + - + + + + +

Fredericton + + + r + + r + +
Halifax - r r - r + - r +
Iqaluit r r r r r + r - r (+)

Ottawa - - + - r + - r +
Quebec City - r + r r + - r +

Regina r + + - r + r r +
St. John’s - r + - + + - r (+) +

Toronto - - r - r + - + r
Victoria r - r - r r - r r

Whitehorse - + + r + + - r r
Winnipeg r + + - r + r + +

Yellowknife - + + r + + - r +

Results after adjustments are shown within parenthesis if different from the ones before adjustments. 

The symbol “r” indicates slope within the range [-0.06, 0.06], “+” indicates slope > 0.06, and “-” indicates slope < -
0.06.
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Figure captions

Fig. 1. Canada as case study: (a) gridpoints classified by rainfall period category from 

ecoprovinces (administrative units indicated); and (b) ecoprovince division (thin black 

lines) within ecozones (colored regions). 

Fig. 2. (a) Percentage of grids within each category in the x-axis, for which multi-model median 

baseline quantile is within observation-based quantile range; and (b) percentage of grids 

within each category in the x-axis, for which multi-model median baseline quantile is less 

than maximum observation-based quantile. Categories in the x-axis represent number of 

stations within a grid. Boxplots represent values over return periods. Boxes corresponds 

with the 25th -75th percentile interval; whiskers reach up to 1.5 times the interquartile range.

Fig. 3. Spatial distribution for T = 100 years of (a) grids (with at least two stations) under the 

criterion of multi-model median baseline quantile within observation-based quantile range; 

and (b) grids (with at least one station) under the criterion of multi-model median baseline 

quantile less than maximum observation-based quantile. Points represent stations. 

Fig. 4. Slope between grid-scale 24-h relative change and return period. Boxplots for the three 

retained RCP – horizon combinations in respect of multi-model 10th, 50th and 90th 

percentile. Boxes corresponds with the 25th -75th percentile interval; whiskers reach up to 

1.5 times the interquartile range.

Fig. 5. Slope between grid-scale 24-h relative change and return period: (a) slope sign of grids 

with coherent slope sign over the three retained RCP – horizon combinations; and (b) slope 

magnitude for RCP 8.5 – 2080. Multi-model 10th, 50th and 90th percentile results by rows. 

Grids associated with cities in Table 2 are marked in purple.
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Fig. 6. Grid-scale 24-h relative change (%) for RCP 8.5 – 2080 after adjustments. Multi-model 

10th, 50th and 90th percentile results (rows) for T = 2 and 100 years (columns). Grids 

associated with cities in Table 2 are marked in purple.

Fig. 7. Grid-scale 24-h relative change (%) for Edmonton, Ottawa, Toronto and Victoria. Results 

for RCP 4.5 and RCP 8.5, horizon 2050 (dashed line) and 2080 (continuous line), and 

multi-model 10th (black), 50th (colored) and 90th (black) percentile. Results for the grid 

associated with each city (see Table 2).
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Fig. 1. Canada as study case: (a) gridpoints classified by rainfall period category from 

ecoprovinces (administrative units indicated); and (b) ecoprovince division (thin black lines) 

within ecozones (colored regions). 
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Fig. 2. (a) Percentage of grids within each category in the x-axis, for which multi-model 

median baseline quantile is within observation-based quantile range; and (b) percentage of grids 

within each category in the x-axis, for which multi-model median baseline quantile is less than 

maximum observation-based quantile. Categories in the x-axis represent number of stations 

within a grid. Boxplots represent values over return periods. Boxes corresponds with the 25th -

75th percentile interval; whiskers reach up to 1.5 times the interquartile range.
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Fig. 3. Spatial distribution for T = 100 years of (a) grids (with at least two stations) under the 

criterion of multi-model median baseline quantile within observation-based quantile range; and 

(b) grids (with at least one station) under the criterion of multi-model median baseline quantile 

less than maximum observation-based quantile. Points represent stations.
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Fig. 4. Slope between grid-scale 24-h relative change and return period. Boxplots for the 

three retained RCP – horizon combinations in respect of multi-model 10th, 50th and 90th 

percentile. Boxes corresponds with the 25th -75th percentile interval; whiskers reach up to 1.5 

times the interquartile range.
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Fig. 5. Slope between grid-scale 24-h relative change and return period: (a) slope sign of 

grids with coherent slope sign over the three retained RCP – horizon combinations; and (b) slope 

magnitude for RCP 8.5 – 2080. Multi-model 10th, 50th and 90th percentile results by rows. Grids 

associated with cities in Table 2 are marked in purple.
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Fig. 6. Grid-scale 24-h relative change (%) for RCP 8.5 – 2080 after adjustments. Multi-

model 10th, 50th and 90th percentile results (rows) for T = 2 and 100 years (columns). Grids 

associated with cities in Table 2 are marked in purple.
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Fig. 7. Grid-scale 24-h relative change (%) for Edmonton, Ottawa, Toronto and Victoria. 

Results for RCP 4.5 and RCP 8.5, horizon 2050 (dashed line) and 2080 (continuous line), and 

multi-model 10th (black), 50th (colored) and 90th (black) percentile. Results for the grid associated 

with each city (see Table 2).
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Highlights 

 A methodology to estimate relative changes based on a pooled approach is proposed. 

 Gridded relative changes for 24-h rainfall intensity update are obtained.

 Adjustments on relative changes are proposed for facilitating their application. 

 The approach is applied to Canada.

Abstract

The potential effect of climate change needs to be considered in urban infrastructure design 

and risk assessment to improve reliability. The present study proposes a methodology for 

obtaining grid-scale relative changes for updating 24-h extreme rainfall intensity, through the 

estimation of rainfall intensity quantiles from baseline and future simulations using a pooled 

frequency analysis approach. Coherence of relative changes over return periods and time 

horizons is analysed, and adjustments are proposed to facilitate the application of relative 

changes in practice. The approach is applied to Canada, using gridded daily precipitation series 

from model combinations belonging to the North American Coordinated Regional Climate 

Downscaling Experiment. Multi-model 10th, 50th and 90th percentile relative changes are 

provided for six return periods, considering two future scenarios (RCP 4.5 and RCP 8.5), and 

two horizons (2050 and 2080). Overall, estimated relative changes varied smoothly and formed a 

number of clusters of similar values across the country. Relative changes for RCP 8.5 are 

recommended for 2050, whereas either those for RCP 4.5 or RCP 8.5 could be used for 2080. As 

an example, median multi-model 50th percentile relative change over Canada is found to be 

14%, 16% and 27% for RCP 4.5 – 2080, RCP 8.5 – 2050, and RCP 8.5 – 2080, respectively.

https://www.earthsystemgrid.org/search/cordexsearch.html
https://www.earthsystemgrid.org/search/cordexsearch.html
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