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Abstract

Particle tracking of passive microscopic species has become the experimental measurement

of choice in diverse applications, where either the material volumes are limited, or the

materials themselves are so soft that they deform uncontrollably under the stresses and

strains of traditional instruments. As such, the results of countless biological and rheo-

logical analyses hinge pivotally on extracting reliable dynamical information from large

datasets of particle trajectory recordings. However, to do this in a statistically and com-

putationally efficient manner presents a number of important challenges. Addressing some

of these challenges is the focus of the present work.

In Chapter 2, we present a “superfast” set of tools for parametric inference in single-

particle tracking. Parametric likelihoods for particle trajectory measurements typically

consist of stationary Gaussian time series, for which traditional “fast” inference algorithms

scale as OpN2q in the number of observations. We present a superfast OpN log2Nq al-

gorithm for parametric inference for stationary Gaussian processes and propose novel su-

perfast algorithms for score and Hessian calculations. This effectively enables superfast

inference for stationary Gaussian process via a wide array of frequentist and Bayesian

methods. In Chapters 3 and 4, we use the superfast toolkit to address two outstanding

problems prevalent in many particle tracking analyses. The first is that particle position

measurements are generally contaminated by various forms of high-frequency errors. Fail-

ure to account for these errors leads to considerable bias in estimation results. In Chapter 3

we propose a novel strategy to filter high-frequency noise from measurements of particle

positions. Our filters are shown theoretically to cover a vast range of high-frequency noise

regimes and lead to an efficient computational estimator of model coefficients. Analyses

of numerous experimental and simulated datasets suggest that our filtering approach per-

forms remarkably well. The second problem we address is the considerable heterogeneity

of typical biological fluids in which particle tracking experiments are conducted. In Chap-

ter 4, we propose a simple metric by which to quantify the degree of heterogeneity of a fluid,

along with a computationally efficient estimator and statistical test against the hypothesis

that the fluid is homogeneous. The thesis is concluded by outlining several directions for

future research.
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Chapter 1

Introduction

In the past several decades, technological developments of optical spectroscopy have greatly

advanced the field of bio-imaging, providing vast amounts of information about target

particles at unprecedented accuracy and spatio-temporal resolution. In particular, the

ability to record single particle trajectories – rather than summary statistics of a large

ensemble – has become an invaluable approach to studying the dynamics of biological

particles [van der Schaar et al., 2008], microrheology of complex fluids [Mason et al., 1997]

and various mechanisms of drug delivery [Suh et al., 2005]. Here, a “particle” can be

anything from a single molecule diffusing in a biological fluid [Saxton and Jacobson, 1997]

to a probe used for detecting the rheological properties of diverse biomaterials [Mason

et al., 1997].

Single-particle tracking generally starts from a sequence of microscope images of par-

ticles, which are usually taken at an evenly-distributed times t “ r0,∆t, 2∆t, . . . , N∆ts

where ∆t “ 1
fps

is the fixed interobservation time and N∆t is the duration of the experi-

ment. The task of particle tracking can then be divided into the following three steps:

1. Detection, which consists of identifying the “spots” that represent particles from

the background and converting such spots into coordinates. In Figure 1.1 we show

the picture of particles diffusing in different media, where various methods can be

applied to locate the particles [Crocker and Grier, 1996, Newby et al., 2018] and

1



convert each image to a series of two-dimensional measurements, each corresponding

to a particle located in the frame.

Figure 1.1: Pictures of 1 µm beads diffusing in (a) water and (b) biological mucus. Lighter
and wider circles indicate particles that are further from the camera focal plane in the
direction perpendicular to the image.
Source of pictures: Ian Seim, David Hill (University of North Carolina - Chapel Hill)

2. Linking, which means connecting the particle positions on all microscope images and

then constructing a time-dependent particle trajectory. This step also involves de-

termining which particle trajectories are shorter in duration than T “ N∆t, because

those particles have moved far enough in the direction perpendicular to the focal

plane so as to no longer be detectable. In Figure 1.2 we demonstrate the trajectories

of 1 µm beads diffusing in water.

0 20 40 60 80 100

20
40

60
80

10
0

12
0

x−axis (µm)

y−
ax

is
 (

µm
)

Figure 1.2: Trajectories of 1 µm beads diffusing in water.
The interobservation time is ∆t “ 1{60psq and the experiment lasts for N∆t “ 30psq.
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3. Analysis, where particle trajectory data obtained from previous steps are studied to

understand the dynamic of particles and properties of fluids. In many experiments,

the resulting analysis hinges pivotally on the measurement of particles’ mean square

displacement (MSD), which for a 2-dimensional particle trajectory Xptq is given by

msdXptq “
1

2
ˆ E

“

‖Xptq ´Xp0q‖2
‰

.

In Figure 1.3 we show the 2D particle trajectory of a particle diffusing in water, and

its MSD in logarithm scale.

(a)

x−axis (µm)

y−
ax

is
 (

µm
)
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0.
02

0.
2

2

Figure 1.3: 2D Trajectory of a 1 µm bead diffusing in water and its MSD.
(a) 2D trajectory of a 1 µm diffusing in water.
(b) Non-parametric estimate of MSD using Equation (3.2.2).

For viscous fluids such as water and glycerol, the linear trend

msdXptq 9 t

seen in Figure 1.3 is predicted by Einstein’s theory of Brownian motion [Einstein, 1956].

However, most biological fluids are viscoelastic, for which a nearly ubiquitous experimental

finding is that the MSD has sublinear power-law scaling over a given range of timescales,

msdXptq „ 2Dtα, tmin ă t ă tmax, 0 ă α ă 1.
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This phenomenon is referred to as subdiffusion, and the interpretation of the parameters

pα,Dq has far-reaching consequences for numerous biological applications, which are dis-

cussed in Chapter 3.

At present there is no scientific theory by which to predict the subdiffusion parameters

from the properties of a given fluid, such that pα,Dqmust be estimated from empirical data.

However, obtaining reliable parameter estimates poses a number of statistical challenges:

1. The particle tracking literature predominantly uses a regression-based subdiffusion

estimator constructed from the nonparametric MSD estimator displayed in Fig-

ure 1.3. However, this MSD estimator becomes extremely variable at longer lag

times. Moreover, the nonparametric estimator suffers from considerable bias in the

presence of the drift which commonly occurs in fluid media [Mellnik et al., 2016].

2. Subdiffusion estimators derived from fully-parametric models of the stochastic trajec-

tory process are considerably more statistically efficient than their regression-based

counterparts. However, likelihood calculations for these models at best scale asOpN2q

in the number of observations, which in many practical applications is prohibitively

expensive.

3. Particle trajectory measurements are almost invariably subjected to various sources

of instrumental error [Savin and Doyle, 2005]. Failure to account for these errors can

lead to considerable bias in most subdiffusion estimators.

4. Single-particle experiments typically track tens to thousands of particles simultane-

ously over the spatial domain defined by the camera’s focal plane. Most biological

fluids exhibit considerable spatial heterogeneity due to a number of factors, includ-

ing the diverse molecular composition and the nonuniform distribution of biological

substance like mucus. Consequently, summarizing the subdiffusion dynamics by a

single pair of pα,Dq can be highly misleading.

This thesis presents several contributions to addressing the challenges described above.

In Chapter 2 we present a “superfast” set of tools for parametric inference in single-particle

tracking, where stationary Gaussian processes are involved. With the superfast algorithm

4



that inverts the covariance matrices of stationary Gaussian processes [Ammar and Gragg,

1988], we reduce the total complexity from OpN2q to OpN log2Nq for particle trajectories

of length N . Moreover, we present new superfast algorithms for the derivatives of the

likelihood, thus providing tools for highly efficient inference for stationary Gaussian process

via a broad array of frequentist and Bayesian methods.

In Chapter 3, we propose a likelihood-based method for correcting the instrumental

errors that distort particles’ behaviours in the high-frequency domain. We consider a family

of high-frequency filters that can readily be applied to a wide range of parametric particle

position models and show how to estimate all model parameters in a computationally

efficient manner. Extensive simulations and analyses of experimental data suggest that

our filter performs remarkably well.

In Chapter 4, we propose to quantify the degree of heterogeneity of a fluid with a

readily interpretable metric. With a computationally efficient estimator for this metric

and a statistical test against the hypothesis that the fluid is homogeneous, we can obtain

an intuitive sense of the degree of heterogeneity of the medium and better understand the

properties of the fluid in experiments. Chapter 5 presents the possible directions of future

research in superfast inference of stationary Gaussian process and particle tracking areas.

5



Chapter 2

Superfast Inference for Stationary

Gaussian Process

2.1 Introduction

Stationary Gaussian processes are widely used in a variety of statistical applications in-

cluding time series modeling [Breidt et al., 1998, Harvey, 2002, Granger and Joyeux, 1980,

Hosking, 1981], unsupervised function estimation [Smola and Bartlett, 2001], differential

equation modeling [Archambeau et al., 2007, Calderhead et al., 2009] and signal filtering

and smoothing [Särkkä et al., 2014]. They have convenient properties for various modeling

tasks in machine learning [Williams and Rasmussen, 2006], examples range from regression

over classification [Neal, 1997] to reinforcement learning [Engel et al., 2005].

Many of the applications listed above involve the estimation of the unknown parameters

θ of a stationary Gaussian time series from N consecutive equally spaced observations

x “ px1, . . . , xNq. In the simplest case, we have

x „ N p0,Vθq,

6



where

Vθ “

»

—

—

—

—

–

γθp0q γθp1q γθp2q . . . γθpN ´ 1q

γθp1q γθp0q γθp1q . . . γθpN ´ 2q
...

. . . . . . . . .
...

γθpN ´ 1q γθpN ´ 2q γθpN ´ 3q . . . γθp0q

fi

ffi

ffi

ffi

ffi

fl

is a Toeplitz matrix of which the elements γθphq “ covpxn, xn`h | θq are parametrized by

θ.

The log-likelihood for this problem is

`pθ | xq “ ´
1

2

“

x1V ´1
θ x` log |Vθ|

‰

, (2.1.1)

such that most approaches to parameter inference require repeatedly solving the Toeplitz

system Vθ ¨ z “ x and evaluating log |Vθ| for different values of θ. Exploiting the Toeplitz

structure of the variance matrix, “fast” algorithms for evaluating (2.1.1) require onlyOpN2q

operations [Levinson, 1946, Durbin, 1960, Trench, 1964, Zohar, 1969, Bareiss, 1969]. This

is a massive computational improvement over unstructured variances, for which the cor-

responding calculations are OpN3q. However, the quadratic scaling of fast algorithms

becomes a serious limitation when N is large.

Beginning with work on displacement ranks of Kailath et al. [1979], it was realized that

Toeplitz systems could be solved by “superfast” FFT-based methods scaling asOpN log2Nq [Brent

et al., 1980, Bitmead and Anderson, 1980, De Hoog, 1984, de Hoog, 1987, Musicus, 1988,

Ammar and Gragg, 1988, 1987, Chandrasekaran et al., 2007]. However, these algorithms

have yet to be leveraged for statistical analyses for a several reasons. For one, most of

them do not provide direct means of calculating the log-determinant of Vθ (though super-

fast methods for this calculation do exist, e.g. Kravanja and Van Barel [2000]). Moreover,

many superfast algorithms bury considerable overhead in the big-O notation [Sexton, 1982].

Third and perhaps most importantly, many superfast algorithms are numerically unsta-

ble [Bunch, 1985], prompting the developments of stable OpN logpNq solvers with p ą 2

(e.g., the algorithms of Stewart [2003] and Chen et al. [2006] with p = 3 and p = 5{2,

respectively).

In this chapter, we present a set of methods for superfast inference for stationary

7



Gaussian time series. They build upon the superfast Toeplitz solver of Ammar and Gragg

[1988], the only algorithm of those mentioned above which provides the log-determinant

as well. This algorithm has provably low overhead, crossing over Levinson’s fast solver

around N “ 260. As the Ammar-Gragg algorithm is defined only for matrices of size

N “ 2K ` 1, we present a novel extension to arbitrary N with no additional overhead.

Moreover, we present new superfast algorithms for the score and Hessian functions, thus

providing tools for highly efficient inference for stationary Gaussian process via a broad

array of frequentist and Bayesian methods. An implementation of our method is publicly

available in the R/C++ library SuperGauss.

The remainder of the chapter is organized as follows. In Section 2.2, we provide an

overview of the Ammar-Gragg superfast Toeplitz solver and its generalization to arbitrary

N . In Section 2.3 we present superfast gradient and Hessian algorithms for (2.3.2) and

show how to extend these algorithms to profile likelihoods where the mean of x is given by

a regression equation (2.3.7). In Section 2.4, we provide speed and stability comparisons

with several fast and superfast algorithms. It is noted that for a variety of commonly-used

models for statistical inference, numerical instability does not appear to be a practical

issue. In Section 2.5, we present an application to Gaussian process factor analysis (2.5.1).

Concluding remarks are offered in Section 2.6.

2.2 The Generalized Schur Algorithm for Toeplitz Sys-

tems

In this section, we present the generalized Schur Algorithm proposed in [Ammar and Gragg,

1988]. It is an algorithm that computes the inverse and determinant of size N “ 2k ` 1

Toeplitz matrix in OpN log2Nq steps. The Ammar-Gragg algorithm, including many of

the algorithms mentioned in the introduction [Bareiss, 1969, Brent et al., 1980, Bitmead

and Anderson, 1980, Sexton, 1982], are manifestations of Schur algorithm [Ammar, 1996].

The Ammar-Gragg divide-and-conquer version of Schur algorithm is referred by them as

the “generalized” Schur algorithm. For consistency we keep this nomenclature, although

“generalized Schur algorithm” is more widely accepted to refer to a fast algorithm for the
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Cholesky factorization of positive-definite structured matrices [Chandrasekaran and Sayed,

1996]. In order to give a clearer picture of the algorithm as a whole, technical details are

omitted whenever possible. For an in-depth discussion of the mathematics underlying the

Ammar-Gragg algorithm, the reader is referred to Ammar and Gragg [1987, 1988].

2.2.1 Gohberg-Semencul Formula

Let V denote an N ˆN symmetric positive definite Toeplitz matrix. From the definition

of V , it is clear that all entries can be obtained from the first row (or column). A seminal

result of Gohberg and Semencul [Gohberg and Semencul, 1972] is that the same is true for

V ´1. Namely, let δ “ rδ1, δ2, . . . , δN s denote the first row of V ´1. Then

V ´1
“

1

δ1

pL1L
1
1 ´L2L

1
2q , (2.2.1)

where

L1 “

»

—

—

—

—

–

δ1

δ2 δ1

...
. . . . . .

δN . . . δ2 δ1

fi

ffi

ffi

ffi

ffi

fl

and L2 “

»

—

—

—

—

–

0

δN 0
...

. . . . . .

δ2 . . . δN 0

fi

ffi

ffi

ffi

ffi

fl

are lower-triangular Toeplitz matrices [Gohberg and Semencul, 1972].

The Gohberg-Semencul formula not only reduces the storage from a whole matrix

OpN2q to a vector OpNq, but also simplifies the computation that involves solving the

Toeplitz system V x “ b. While matrix-vector multiplication generally takes OpN2q steps,

the matrix product V ´1b can be computed as successive matrix-vector products with

triangular Toeplitz matrices. It is well known that each of these multiplications can be

obtained in OpN logNq steps using the fast Fourier transform (FFT) [Kailath and Sayed,

1999b]. The exact algorithm is provided in Appendix A.
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2.2.2 Generalized Schur Algorithm

For a size N ˆ N Toeplitz covariance matrix V with first column γ “ rγ1, γ2, . . . , γN s,

consider a rational function

φ0pxq “

řN´1
j“1 ´γj`1x

j

řN´1
j“1 γjxj

.

The Schur algorithm is an iterative procedure that can generate a rational function φnpxq

from φ0pxq using the following linear functional transformation

φi`1pxq “
1

x
¨
φipxq ´ µi

1´ µi ¨ φipxq
, µi “ φip0q, i “ 0, . . . , n´ 1,

where tµiu
n
i“1 are the Schur parameters. For a given n-th order polynomial φpxq, let

φ̃pxq “ xnφnp1{xq, which is also a polynomial of order at most n. Then the n-th step

of Schur’s algorithm can be expressed as φnpxq “ T´1
n pφ0pxqq, where the φn are rational

functions and Tn has following representation

Tnpxq “
ξnpxq ` η̃npxq ¨ x

ηnpxq ` ξ̃npxq ¨ x
,

where ξn and ηn are polynomials of degree ă n with coefficients depending on those of φ0,

such that φ0pxq “ Tnpφnpxqq.

It was realized by Ammar and Gragg [1987] that the coefficients of the N ´ 1 step of

Schur’s algorithm TN´1 “
ξN´1pxq`η̃N´1pxq¨x

ηN´1pxq`ξ̃N´1pxq¨x
produce the first column of V ´1 via

δ “ rδ1, δ2, . . . , δN s “
1

σ2
N´1

prη
p1q
N´1, . . . , η

pN´1q
N´1 , 0s ` r0, ξ

p1q
N´1, . . . , ξ

pN´1q
N´1 sq,

where σ2
N´1 “ γ1

śN´1
j“1 p1´µ

2
jq, η

piq
N´1 and ξ

piq
N´1 is the i-th coefficient of polynomials ηN´1pxq

and ξN´1pxq respectively. And the determinant of the Toeplitz matrix is given by

|V | “ γ1

N´1
ź

i“1

σ2
i , σ2

i “ γ1

i
ź

j“1

p1´ µ2
jq.
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While the sequential calculation of tT1, . . . , TN´1u requires OpN2q operations, Ammar

& Gragg realized a doubling procedure avoiding most of the intermediary Tn. That is, if

for φ0 “ Tmpφmq, define Tm,mpxq as the rational function obtained from applying m steps

of Schur algorithm to φm, such that

φ2m “ T´1
m,mpφmq “ T´1

m,mpT
´1
m pφ0qq “ T´1

2mpφ0q,

i.e. T2m “ Tm ˝ Tm,m. The merged transformation T2m “ Tm ˝ Tm,m is generated through

polynomial multiplications:

ξ2m “ η̃mξm,m ` ξmηm,m, η2m “ ξ̃mξm,m ` ηmηm,m, γ2m “ γm ` λ
mγm,m.

By calculating these multiplications via FFT, the computational cost of calculating T2m is

Opm logmq. Thus, for N “ 2K`1, the cost of going through the entire doubling procedure

is OpK2 ¨ 2Kq “ OpN log2Nq, which is demonstrated in Figure 2.1.'

&

$

%

T2K

T2K´1

T2K´2

...

T1 T1,1

...

T2K´2,2K´2

...

T..,1 T..,1

...

T2K´1,2K´1

T2K´1,2K´2

...
...

T..,1 T..,1

T3¨2K´2,2K´2

...
...

T..,1 T..,1 “ Op1 ¨ 2K´1q

...

OppK ´ 2q2K´1q

OppK ´ 1q2K´1q

OpK2 ¨ 2Kq

˝

˝ ˝

˝ ˝¨ ¨ ¨

O

˜

K´1
ÿ

i“1

i ¨ 2K´1

¸

+

+

+

=

=

ó

OpKpK ´ 1q ¨ 2K´2q

=

˝ ˝

“ ô

¨ ¨ ¨

Figure 2.1: Tree diagram of the generalized Schur algorithm.
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The generalized Schur algorithm for size N “ 2K ` 1 is presented in Algorithm 1. The

Ammar-Gragg version contains a number of technical accelerations, for which they prove

that an exact operation count crosses over with Levinson’s algorithm an N “ 28 ` 1 “

257 [Ammar and Gragg, 1989]. For ease of presentation we do not describe these technical

improvements in Algorithm 1, although we do implement them in the SuperGauss library.

2.2.3 Extension of Generalized Schur Algorithm

Our extension stems from Ammar and Gragg’s observation that for n ‰ m, by defining

Tm,n as the n-steps of Schur’s algorithm applied to φm, we have Tm`n “ Tm ˝ Tm,n, and

ξn`m “ η̃nξn,m ` ξnηn,m, ηn`m “ ξ̃nξn,m ` ηnηn,m, γn`m “ γn ` λ
nγn,m.

Assuming that N is the dimension of the target Toeplitz matrix and M “ N ´ 1 is the

step of the Schur algorithm, we can first decompose M into the summation of powers of 2:

M “

K
ÿ

k“1

sk, s1 ă . . . ă sK ,

where sk are powers of 2. For any positive integer M , the corresponding vector s “

rs1, . . . , sKs always exists and is unique. With this vector s, we can decompose a size M

rational function TM into smaller ones with size being a power of 2

TM “ Ts1 ˝ Tc1,s2 ˝ . . . ˝ TcK´1,sK , ck “
k
ÿ

j“1

sj for k “ 1, . . . , K ´ 1,

where each Tck´1,sk can be directly computed using the original generalized Schur algorithm

with its input φck´1
provided. We thus propose to calculate the coefficients of TM by

merging pieces of various sizes obtained from the original algorithm for powers of 2. The

exact steps are given by Algorithm 2.

To better explain this procedure, we demonstrate how the extended generalized Schur
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Algorithm 1 Generalized Schur Algorithm for M “ 2k

1: function GSchur(α
pMq
0 , β

pMq
0 )

Ź α
pMq
0 , β

pMq
0 : polynomials of degree M ´ 1

2:

$

’

’

’

’

&

’

’

’

’

%

»

—

–

ξ0,1

η0,1

fi

ffi

fl

Ð

»

—

–

α
p1q
0

β
p1q
0

1

fi

ffi

fl

µ0,1 Ð ξ0,1

Ź rT0,1 Ð GSchurpα
p1q
0 , β

p1q
0 qs

3: for m “ 1, 2, 4, . . . ,M{2 do

4:

»

–

α
pmq
n

β
pmq
n

fi

flÐ
1

xm
ˆ

»

–

η0,m ´ξ0,m

´ξ̃0,m η̃0,m

fi

fl

»

–

α
p2mq
0

β
p2mq
0

fi

fl

Ź Truncate α
pmq
n , β

pmq
n to degree m´ 1

Ź r
α
pmq
n

β
pmq
n

“ T´1
0,mp

α
p2mq
0

β
p2mq
0

qs

5: tξm,m, ηm,m, µm,mu Ð GSchurpα
pmq
n , β

pmq
n q Ź rTm,m Ð GSchurpα

pmq
n , β

pmq
n qs

6:

$

’

’

’

’

&

’

’

’

’

%

»

—

–

ξ0,2m

η0,2m

fi

ffi

fl

Ð

»

—

–

η̃0,m ξ0,m

ξ̃0,m η0,m

fi

ffi

fl

»

—

–

ξm,m

ηm,m

fi

ffi

fl

µ0,2m Ð pµ0,m, µm,mq

Ź rT0,2m “ T0,m ˝ Tm,ms

7: end for

8: return tξ0,M , η0,M , µ0,Mu

Ź µ0,M : vector of Schur parameters

9: end function

algorithm solves an M “ 7 system in Figure 2.2(b), where

T7 “ T1 ˝ T1,2 ˝ T3,4,

and compare it with the original generalized Schur algorithm for M “ 8 in Figure 2.2(a).
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T1 T1,1 T2,1 T3,1 T4,1 T5,1 T6,1 T7,1

T2 T2,2 T4,2 T6,2

T4 T4,4

T8

(2.2(a)) Demonstration of the generalized Schur Algorithm when M “ 8.

T7

T1 T1,2

T1,1 T2,1

T3,4

T3,2 T5,2

T3,1 T4,1 T5,1 T6,1

(2.2(b)) Demonstration of the generalized Schur Algorithm when M “ 7.
Different rectangles stand for various transformations T , where the width of rectangles is the

size of the transformation. The blue line stands for the sequence of mergence steps.
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Algorithm 2 Generalized Schur Algorithm for arbitrary M

1: function GSchur2(α
pMq
0 , β

pMq
0 )

2: s “ rs1, s2, . . . , sks, where sumpsq “M , si are power of 2 in ascending order.

3: m “ s1

4: tξ0,m, η0,m, µ0,mu Ð GSchurpα
pmq
0 , β

pmq
0 q

Ź rT0,m Ð GSchurpα
pmq
0 , β

pmq
0 qs

5: (END if k ““ 1)

6: for n “ 2, . . . , k do

7:

»

–

α
psnq
m

β
psnq
m

fi

flÐ
1

xm
ˆ

»

–

η0,m ´ξ0,m

´ξ̃0,m η̃0,m

fi

fl

»

–

α
pm`snq
0

β
pm`snq
0

fi

fl

Ź r
α
psnq
m

β
pmq
sn

“ T´1
0,mp

α
pm`snq
0

β
pm`snq
0

qs

8: tξm,sn , ηm,sn , µm,snu Ð GSchurpα
psnq
m , β

psnq
m q

Ź rTm,sn Ð GSchurpα
psnq
m , β

psnq
m qs

9:

$

’

’

’

’

&

’

’

’

’

%

»

—

–

ξ0,m`sn

η0,m`sn

fi

ffi

fl

Ð

»

—

–

η̃0,m ξ0,m

ξ̃0,m η0,m

fi

ffi

fl

»

—

–

ξm,sn

ηm,sn

fi

ffi

fl

µ0,m`sn Ð pµ0,m, µm,snq

Ź rT0,m`sn “ T0,m ˝ Tm,sns

10: m “ m` sn

11: end for

12: return tξ0,N , η0,N , µ0,Nu

13: end function

2.3 Inference for Stationary Gaussian Processes

In this section we present superfast algorithms for the log-likelihood and its derivatives for

a general family of Gaussian observations with Toeplitz covariance structure. In addition,

we show how to extend these algorithms to profile likelihood when the mean process of
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target time series can be expressed in forms of a regression equation.

LetXptq “ µθptq`Zθptq be a d-dimensional stochastic process whereZθptq “ r Z1ptq ¨¨¨ Zdptq s,

Ziptq is a mean-zero Gaussian process with separable stationary covariance structure, such

that

covpZiptq, Zjpsqq “ Σθij ¨ γθp|t´ s|q,

where Σθ is a size dˆ d covariance matrix.

For equally spaced observations rX1, . . . ,XN s,Xn “ Xpn ¨ ∆tq, the matrix XNˆd “
„ X1

...
XN



has a matrix-normal distribution

X „ MatNormpµθ,Vθ,Σθq, (2.3.1)

where Vθ is the among-column covariance matrix with elements Vθij “ γθp|i ´ j|∆tq, Σθ

is the among-row covariance. Its vectorized form vecpXq follows a multivariate normal

distribution

vecpXq „ N pvecpµq,Σθ b Vθq,

where vecpµq is the vectorized form of the mean process µθ, and ΣθbVθ is the Kronecker

product between Σθ and Vθ and is a matrix of size NdˆNd.

In either a frequentist or Bayesian inference, the estimation of parameters θ involves

repeated evaluation of the log-likelihood

`pθ |Xq “ ´
1

2
tr
 

Σ´1
θ pX ´ µθq

1V ´1
θ pX ´ µθq

(

´
d

2
log |Vθ| ´

N

2
log |Σθ|, (2.3.2)

which requires the inverse and determinant of a size N covariance matrix Vθ. With the

extended generalized Schur algorithm, both V ´1
θ and determinant |Vθ| can be easily com-

puted in superfast steps.

2.3.1 Superfast Computation of the Gradient

To estimate model parameters θ, one popular method is to find the maximum of the

likelihood `pθ | Xq (2.3.2). Optimization methods that maximize the likelihood typically
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require first order, even second order derivatives. In this section, we show that the first

order derivative of `pθ |Xq with respect to parameter θi P θ can also be computed within

OpN log2Nq steps.

The first derivative of the log-likelihood with respect to parameter θi consists of the

five parts

B

Bθi
`pθ |Xq “ ´

1

2
trtΩθZ

1
θζiZθ

looooomooooon

Apθq

` 2ΩθZ
1
iζθZθ

looooomooooon

Bpθq

`ΩiZ
1
θζθZθ

looooomooooon

Cpθq

u ´
d

2
trt ζθVi

loomoon

Dpθq

u ´
N

2
trtΩθΣi

loomoon

Epθq

u,

where

Zθ “X ´ µθ, Zi “
BZθ
Bθi

, Σi “
BΣθ

Bθi
, Vi “

BVθ
Bθi

, Ωθ “ Σ´1
θ ,

Ωi “
BΩθ

Bθi
“ ´Σ´1

θ ΣiΣ
´1
θ , ζθ “ V

´1
θ , ζi “

Bζθ
Bθi

“ ´V ´1
θ ViV

´1
θ

are the partial derivatives, and Vθ’s partial derivative Vi is still a Toeplitz matrix.

With ζθ given in terms of the Gohberg-Semencul formula (2.2.1), the computation of

part Apθq, Bpθq and Cpθq only involves the multiplication between a Toeplitz matrix or

its inverse (Vθ, ζθ or Vi) and a size N ˆ d matrix (Zθ or Zi), which only costs OpN logNq

steps (since d ! N in applications, we typically ignore d when examining the complexity).

As for the remaining terms, part Epθq requires the inversion and multiplication of a size

d ˆ d matrix and takes Opd3q steps, while the computation of Dpθq is non-trivial. The

direct computation of part trtζθViu takes OpN2q steps, and we here demonstrate how to

obtain this term in OpN logNq steps.

A Toeplitz covariance matrix Vi with first row γ “ rγ1, γ2, . . . , γN s has displacement

rank 2 [Kailath et al., 1979] and can be written as

Vi “
1

γ1

rU1U
1
1 ´U2U

1
2s, (2.3.3)

where U1 and U2 are upper triangular Toeplitz matrices with first row being rγ1, . . . , γN s

and r0, γ2, . . . , γN s respectively. Combining this with the Gohberg-Semencul representation
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of ζ “ V ´1 “ 1
δ1
rL1L

1
1 ´L2L

1
2s, we have that

trtζViu “
1

δ1γ1

trtrL1L
1
1 ´L2L

1
2s rU1U

1
1 ´U2U

1
2su

“
1

δ1γ1

trtL1L
1
1U1U

1
1 ´L2L

1
2U1U

1
1 ´L1L

1
1U2U

1
2 `L2L

1
2U2U

1
2u

“
1

δ1γ1

ptrtU 1
1L1L

1
1U1u ´ trtU 1

1L2L
1
2U1u ´ trtU 1

2L1L
1
1U2u ` trtU 1

2L2L
1
2U2uq .

(2.3.4)

Since

Aij “ U
1
iLj

is the product of two lower triangular Toeplitz matrices, we can verify that Aij is also a

lower triangular Toeplitz matrix that can be computed in OpN logNq steps. The trace of

AijA
1
ij can be determined in OpNq steps with following equation

trtAijA
1
iju “

N
ÿ

i“1

i
ÿ

j“1

a2
j “

N
ÿ

j“1

pn´ j ` 1qa2
j , (2.3.5)

where aij “ ra1, . . . , aN s is the first column of Aij. Therefore the calculation of trtAijA
1
iju

is OpN logNq. All these together leads to the OpN logNq complexity of trtζViu. In

conclusion, the evaluation of the gradient of likelihood B

Bθi
`pθ |Xq is superfast.

2.3.2 Automatic Differentiation

Given the dimension of unknown parameters p, the present algorithm for the gradient
B

Bθi
`pθ | Xq scales as Opp ¨ N log2Nq, which is suitable for p ! N . However, for p „ N

repeated calculation of the trace formula above breaks the superfast scaling. This is an

important restriction for applications of automatic differentiation, where derivatives with

respect to each element of the autocorrelation function θ “ γ “ rγ1, . . . , γN s are desired.

A superfast algorithm for this situation is presented here.
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Consider the derivative of V with respect to γi, a sparse symmetric Toeplitz matrix:

BV

Bγi
“ Ipiq “

»

—

—

—

—

—

—

—

–

i´ 1
hkkkikkkj

0 ¨ ¨ ¨ 0 1

N ´ i
hkkkikkkj

0 ¨ ¨ ¨ 0
...

. . . . . . . . . . . . . . .
...

1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1 ¨ ¨ ¨

...
. . . . . . . . . . . . . . .

...

0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

When i “, Ip1q is an identity matrix. For the derivative of likelihood (2.3.2) with respect

to vector γ, we have that B

Bγ
`pθ |Xq is a vector with elements

B

Bγi
`pθ |Xq “ ´

1

2
trtΩZ 1ζiZu ´

d

2
¨ trtζIpiqu,

where ζi “ ´ζI
piqζ.

Recall that Ω “ Σ´1 “

„ ω11 ¨¨¨ ω1d

...
...

...
ω1d ¨¨¨ ωdd



is a dˆ d symmetric matrix and Z “ r Z1 ¨¨¨ Zd s is

a N ˆ d matrix, we have

trtΩZ 1ζiZu “trt

„ ω11 ¨¨¨ ω1d

...
...

...
ωd1 ¨¨¨ ωdd



«

Z11
...
Z1d

ff

ζi r Z1 ¨¨¨ Zd su

“

d
ÿ

n“1

d
ÿ

m“1

ωnm ¨Z
1
nζiZm “ ´

d
ÿ

n“1

d
ÿ

m“1

ωnm ¨Z
1
nζI

piqζZm

For a vector lpn,mq “ rl1, l2, . . . , lN s of following form

lpn,mq “ U panq ˆ am `Upamq ˆ an

where an “ ζZn, am “ ζZm and Upanq is the upper triangular Toeplitz matrix with first

row being an, we can verify that Z 1nζ1Zm “ l1{2 and Z 1nζiZm “ li for i “ 2, . . . , N . In

other words, by putting l̃pn,mq “ rl1{2, l2, . . . , lN s we can obtain the vector of trtΩZ 1ζiZu
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immediately

»

—

–

trtΩZ 1ζ1Zu

. . .

trtΩZ 1ζNZu

fi

ffi

fl

“ ´

d
ÿ

n“1

d
ÿ

m“1

ωnm ¨ l̃
pn,mq

Similarly, considering the Gohberg-Semencul formula (2.2.1) that constructs the V ´1
θ

from its first column δ “ rδ1, . . . , δN s, we can define a vector v “ rv1, v2, . . . , vN s as

v “
1

δ1

t

»

—

—

—

—

–

δ1 δ2 δ3 . . . δN

0 δ1 δ2 . . . δN´1

...
. . . . . . . . .

...

0 0 0 . . . δ1

fi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

–

N ¨ δ1

pN ´ 1q ¨ δ2

...

1 ¨ δN

fi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

–

0 δN δN´1 . . . δ2

0 0 δN . . . δ3

...
. . . . . . . . .

...

0 0 0 . . . 0

fi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

–

0

pN ´ 1q ¨ δN
...

1 ¨ δ2

fi

ffi

ffi

ffi

ffi

fl

u.

such that trtV ´1
θ Ip1qu “ v1{2 and trtV ´1

θ Ipiqu “ vi for i “ 2, . . . , N . That is to say

»

—

–

trtV ´1
θ Ip1qu

. . .

trtV ´1
θ IpNqu

fi

ffi

fl

“ ṽ

where ṽ “ rv1{2, v2, . . . , vN s.

In conclusion, we have that

B

Bγ
`pθ |Xq “

1

2

d
ÿ

n“1

d
ÿ

m“1

ωnm ¨ l̃
pn,mq

´
d

2
ṽ.

Since the vectors l̃ and ṽ can be computed in OpN logNq steps with δ provided, we can

obtain the gradient vector B

Bγ
`pθ | zq in superfast speed.
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2.3.3 Superfast Computation of the Hessian matrix

The second derivative of the log-likelihood with respect to parameter θi, θj P θ consists of

six terms:

B2

BθiBθj
`pθ |Xq “ ´

1

2
tr

"

BApθq

Bθj
`
BBpθq

Bθj
`
BCpθq

Bθj

*

´
N

2
tr tΩθΣij ´ΩθΣjΩθΣiu

´
d

2
tr tζθViju `

d

2
tr tζθVjζθViu ,

(2.3.6)

where

BApθq

Bθj
“ ΩjZ

1
θζiZθ `ΩθZ

1
jζiZθ `ΩθZ

1
θζijZθ `ΩθZ

1
θζiZj

BBpθq

Bθj
“ 2

`

ΩjZ
1
iζθZθ `ΩθZ

1
ijζθZθ `ΩZ 1jζjZθ `ΩθZ

1
iζθZj

˘

BCpθq

Bθj
“ ΩijZ

1
θζθZθ `ΩiZ

1
θζθZθ `ΩiZ

1
θζjZθ `ΩiZ

1
θζθZj,

and

Zij “
B2

BθiBθj
Zθ, Vij “

B2

BθiBθj
Vθ, Σij “

B2

BθiBθj
Σθ,

Ωij “
B2

BθiBθj
Ωθ “ Σ´1

θ ΣjΣ
´1
θ ΣiΣ

´1
θ `Σ´1

θ ΣiΣ
´1
θ ΣjΣ

´1
θ ´Σ´1

θ ΣijΣ
´1
θ

ζij “
B2

BθiBθj
ζθ “ V

´1
θ VjV

´1
θ ViV

´1
θ ` V ´1

θ ViV
´1
θ VjV

´1
θ ´ V ´1

θ VijV
´1
θ

are the second order partial derivatives, and Vij is also a Toeplitz matrix.

The first three terms still consist of the multiplication between Toeplitz matrices or

inverse (Vθ, ζθ, Vi, Vj, Vij) and size N ˆ d matrices (Zθ, Zi, Zj, Zij), which takes

OpN logNq steps. The fourth term involves matrix computation of several size d ˆ d

matrices and is of complexity Opd3q. The fifth term can be computed in superfast steps

using Equation (2.3.4). In the following we present the non-trivial superfast computation
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for the last part tr tζθVjζθViu.

In addition to the chain rule, the partial derivative of ζθ admits another computation

via the Gohberg-Semencul formula

ζ “ ζpδq “
1

δ1

rL1pδqL1pδq
1
´L2pδqL2pδq

1
s ,

where L1 and L2 are simple permutations of δ. Therefore we have

ζi “´
δ1,piq

δ1

ζ `
1

δ1

“

L1pδpiqqL1pδq
1
`L1pδqL1pδpiqq

1
´L2pδpiqqL2pδq

1
´L2pδqL2pδpiqq

1
‰

“hpδ, δpiqq,

where δpiq “
B

Bθi
δ, δ1,piq is the first element of δpiq and L1pδpiqq,L2pδpiqq are lower triangular

Toeplitz matrices constructed from δpiq in the same way as L1 and L2. To obtain this

vector δpiq, recall that δ is the first column of ζ, such that

V δ “ e1, e1 “ r1, 0, . . . , 0s
1.

Taking derivatives on both sides, we have

Viδ ` V δpiq “ 0 ñ δpiq “ ´ζViδ.

With δ computed, the matrix-vector product Viδ can be obtained in OpN logNq steps, af-

ter which δpiq “ ´ζViδ can also be obtained in OpN logNq steps by applying the Gohberg-

Semencul decomposition (2.2.1).

Thus the computation of trtζViζVju “ ´trtζiVju can be obtained from

trtζiVju “
1

δ1

trt
“

L1pδpiqqL1pδq
1
`L1pδqL1pδpiqq

1
´L2pδpiqqL2pδq

1
´L2pδqL2pδpiqq

1
‰

Vju

´
δ1,piq

δ1

trtζVju.

With the decomposition formula (2.3.3) of Vj and the efficient computation of the trace of

product between lower and upper Toeplitz matrices (2.3.5), we can compute trtζViζVju in
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OpN logNq steps. In conclusion, the computation of the Hessian matrix (2.3.6) is superfast

OpN log2Nq.

2.3.4 Profile Likelihood

In many applications, the mean function ErXptqs is modeled via a regression equation

ErXptqs “ µθptq “
p
ÿ

i“1

βigiptq, (2.3.7)

and a separable covariance structure

covpXiptq, Xjpsqq “ Σij ¨ γθp|t´ s|q.

In these cases, the distribution of observation matrix XNˆd is given by

XNˆd „ MatNormpGβ,Σ,Vθq,

whereGNˆp “ rg1, ¨ ¨ ¨ , gps is the observation matrix of regression processes, gi “ rgip∆tq, . . . , gipN ¨

∆tqs, βpˆd “

»

—

–

β1

...

βp

fi

ffi

fl

is the vector of coefficients of the regression process, Σdˆd is the co-

variance matrix, and θ “ tθ1, . . . , θmu is the parameter set that determines the covariance

matrix Vθ.

In this case, for fixed θ the condition maximum likelihood estimates

pβ̂θ, pΣθq “ arg max
β,Σ

"

´
d

2
log |Vθ| ´

N

2
log |Σ| ´

1

2
trrΣ´1

pX ´Gβq1V ´1
θ pX ´Gβqs

*

are given by [Jones et al., 1998, Lysy et al., 2016] as

pβθ “ pG
1V ´1
θ Gq´1G1V ´1

θ X, pΣθ “
1

N
pX ´Gpβθq

1V ´1
θ pX ´Gpβθq,
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leading to a profile likelihood function

`profpθ|X,Gq “ ´
Nd

2
logp2πq ´

d

2
log |Vθ| ´

N

2
log |pΣθ| ´

N

2
. (2.3.8)

Optimization over this function greatly reduces the dimensionality. Gradient and Hes-

sian algorithms for the profile likelihood are provided in Appendix B.

2.4 Numerical Experiments

For the purpose of efficient inference of stationary Gaussian processes, we implemented the

extended generalized Schur algorithm in C++ in forms of a head-only library called Super-

Gauss, where the Fast Fourier transformation is implemented using the fftw library [Frigo

and Johnson, 2005]. An R library, SuperGauss [Ling and Lysy, 2017] is also provided.

To compare the computation speed of the generalized Schur algorithm, we implemented

the Levinson’s algorithm in C++ and use the fftw library for the FFT computations.

The theoretical cross-over point between the generalized Schur algorithm and Levinson

algorithm is N “ 257 [Ammar and Gragg, 1989]. In our implementation the real cross-over

point is around N “ 260. We also look into the performance of the Fortran implementation

of the Hierarchical Structured Solver (HSS) algorithm of Xia et al. [2012], Xi et al. [2014],

an OpN log2Nq stable algorithm that works for asymmetric and complex Toeplitz matrices

as well. In Figure 2.3 we present the computation time for the extended Generalized Schur

algorithm and Levinson algorithm for matrices of sizes ranging from 100ˆ100 to 105ˆ105.

To better measure the computation time, we repeat each trial 100 times and record the

average value.

2.4.1 Numerical Stability Experiments

The main concern about the generalized Schur algorithm is its numerical stability. Ac-

cording to Stewart and Van Dooren [1997], Chandrasekaran and Sayed [1998], the Schur

algorithm for Toeplitz matrix inversion is stable, and extensive numerical experiments on

24



102 103 104 105

10
−3

10
−2

10
−1

1
10

1
10

2

Levinson
GSchur
HSS

Size

T
im

e(
s)

(250, 6.5 × 10−4)

(9000, 0.7)

Figure 2.3: Average time for solving Toeplitz systems V ¨x “ y using different algorithms.
A size N Toeplitz system V ¨ x “ y comes with an N ˆN Toeplitz covariance matrix V and a
length-N vector y. The first column of V is the ACF of a fractional Gaussian noise process (2.4.1)

with α “ 0.8. The vector y has elements yi
iid
„ N p0, 1q.

25



the generalized Schur algorithm display that its growth rates of computation errors are

comparable with those of the Szegö recursions, which is equivalent with algorithms like

the Levinson algorithm [Ammar and Gragg, 1989]. However, numerical methods that are

based on explicit inversions are usually unstable [Higham, 2002], which is exactly the case

with the generalized Schur algorithm. In extreme cases where ill-conditioned Toeplitz co-

variance matrices are generated, the generalized Schur algorithm has worse performance

than the Levinson algorithm [Stewart, 2003, Chen et al., 2006]. In this section, some nu-

merical experiments are conducted to examine the performance of the generalized Schur

algorithm with respect to various kinds of stationary Gaussian processes.

For a Toeplitz covariance matrix V , its condition number is defined as

κpV q “ ||V ||p ¨ ||V
´1
||p,

where matrix norm p can be arbitrary. In this chapter, we choose p “ 8, whose corre-

sponding matrix norm ||V ||8 “ max1ďiďN

řN
j“1 |Vij| is the maximum absolute row sum of

the matrix, and ||x||8 “ max1ďjďN |xi| is the maximum element of the vector. The con-

dition number is the index of the singularity of matrices. A matrix with a high condition

number κ is viewed as ill-conditioned and for singular matrices, its κ “ 8.

Given an N ˆ N Toeplitz covariance matrix V , its measurement error is defined and

estimated in the following steps:

1. Simulate a length N vector y “ ry1, . . . , yN s whose elements are i.i.d. yi „ N p0, 1q.

2. Solve the Toeplitz system V ¨ x “ y and obtain the estimation x̂

3. Check the measurement error rpV , x̂,yq “ ||V x̂´y||
||V ||¨||x̂||`||y||

.

where the matrix supremum norm is applied here.

Stewart’s Example

We can generate an arbitraryNˆN Toeplitz covariance matrix V (with first element V1,1 “

1) for given Schur parameters tµku
N´1
k“1 using Szegö recurrence [Ammar and Gragg, 1987].
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In a numerical experiment [Stewart, 2003], ill-conditioned Toeplitz covariance matrices are

generated by manipulating the Schur parameters tµku
N´1
k“1 in the particular way explained

in Figure 2.4.

(a)
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Lag
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Figure 2.4: Auto-covariance of Stewart’s experiments
(a) Experiment 1, where µi „ Unifp´0.5, 0.5q, i “ 1, 2, . . . , N ´ 1.
(b) Experiment 2, where µ10 “ 1´ 10´6, µ15 “ ´0.99 and µi „ Unifp´0.3, 0.3q for remaining i.

In Table 2.1 we demonstrate the estimation errors of 4 different algorithms: the gener-

alized Schur algorithm, Levinson algorithm, Cholesky decomposition, HSS algorithm and

an OpN log5{2Nq preconditioned conjugate gradient algorithm (PCG) developed by Chen

et al. [2006] for long-memory processes. In both experimental setups, κpV q grows rapidly

as matrix size N increases. For the generalized Schur algorithm, its relative error rGSchur

grows at a similar rate as κpV q. On the contrary, the result of LTZ and Cholesky algorithm

is accurate and robust against the conditions of V . As for the PCG method, its relative

error is stable but constantly large.

Despite the performance of the generalized Schur algorithm in this numerical experi-

ment, from Figure 2.4 we can see that the auto-covariance generated in such a way hardly

exists in real applications. Since our Toeplitz-system solver is developed for statistical ap-

plications, we are more interested in the performance of the generalized Schur algorithms

under ill-conditioned statistical models. Time series models are roughly categorized into

two types for their decay speed: short-memory processes and long-memory process. Sce-
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Table 2.1: Measurement errors of different algorithms in Stewart’s examples.
Experiment (a), where µi „ Unifp´0.5, 0.5q, i “ 1, ¨ ¨ ¨ , N ´ 1.
Experiment (b), where µi „ Unifp´0.3, 0.3q, i P t1, 2, . . . , N ´ 1uzt10, 15u, µ10 “ 1´ 10´6, µ15 “

´0.99.

Experiment (a) Experiment (b)

N “ 64 N “ 128 N “ 256 N “ 64 N “ 128

κpV q 2.9ˆ 104 1.1ˆ 109 3.5ˆ 1015 8.9ˆ 1013 1.8ˆ 1017

rGSchur 8.1ˆ 10´13 6.3ˆ 10´7 1.3ˆ 10´2 2.7ˆ 10´4 2.1ˆ 10´1

rLTZ 7.4ˆ 10´16 1.7ˆ 10´14 6.2ˆ 10´14 4.2ˆ 10´15 2.8ˆ 10´14

rChol 4.9ˆ 10´16 5.6ˆ 10´16 8.7ˆ 10´16 9.2ˆ 10´16 1.0ˆ 10´15

rPCG 1.5ˆ 10´4 5.7ˆ 10´5 4.5ˆ 10´5 5.4ˆ 10´8 1.2ˆ 10´8

rHSS 5.1ˆ 10´16 4.5ˆ 10´10 1.2ˆ 10´8 7.1ˆ 10´9 6.3ˆ 10´9

narios of both types are simulated in the following sections, and the performance of the

generalized Schur algorithms is evaluated.

Long-Memory process

Models for long-memory time series are believed to have ill-conditioned covariance matrices

because their auto-covariances decline slowly at a power law rate [Chen et al., 2006].

Therefore they are inappropriate for the generalized Schur algorithm. In this section, two

well-known models for long-memory processes are applied to study their condition numbers

κpV q and the corresponding impact on the measurement errors of the generalized Schur

algorithm.

The autoregressive fractionally integrated moving average (ARFIMA) model [Granger

and Joyeux, 1980] measures the persistence of shocks by introducing fractional differen-

tiation into autoregressive moving average models. An ARFIMApp, d, qq model has the

following form

p1´
p
ÿ

i“1

φiB
i
qp1´BqdXn “ p1`

q
ÿ

i“1

θiB
i
qεn, εn

iid
„ Np0, σ2

q,
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where B is the lag operator such that Bk ¨Xn “ Xn´k. The ARFIMAp0, d, 0q model has

the following auto-correlation function (ACF)

ρn “
Γpn` dqΓp1´ dq

Γpn´ d` 1qΓpdq
« n2d´1, n “ 1, 2, . . . .

When d P p0, 0.5q, we have that
ř8

n“1 ρn “ 8, meaning that Xn has long-range persistence.

Another popular stationary model with long-range dependence is the fractional Gaus-

sian noise (fGn), the increment process of fractional Brownian motion Bαptq

Xn “ Bαpn` 1q ´Bαpnq,

whose ACF is

ρn “
1

2
rpn` 1qα ` |n´ 1|α ´ 2 ¨ nαs . (2.4.1)

For α P p1, 2q, we also have that
ř8

i“1 ρi “ 8, indicating its long-memory property. In

Figure 2.5 we show the ACF of two long-memory models with different parameters. For

the ARFIMA model, the long range dependence is more significant for d closer to 1. For

the fGn model, the long-memory property is more obvious for α closer to 2.

In order to verify the degree of ill-conditioning for long-memory processes, we generate

the covariance matrices for ARFIMAp0, 0.49, 0q and fGn with α “ 1.9 of different sizes,

ranging from 2000 to 105. By repeating the procedures of the previous section, we compute

the condition number κpV q and measure the relative errors of the generalized Schur al-

gorithm, LTZ and PCG algorithm (Cholesky decomposition is a OpN3q algorithm, we are

not going to apply it for time series longer than 1000). In Table 2.2 we show the relative

errors for different long-memory processes. Judging from the condition number κpV q, we

discover that the covariance matrices of long-memory processes are ill-conditioned, but not

to an extreme degree like Stewart’s examples. The relative errors of the generalized Schur

algorithm are systematically larger than the result of the LTZ algorithm but still within a

tolerable range.
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Figure 2.5: Auto-correlation function of long-memory models.
(a) ARFIMAp0, d, 0q where d “ 0.1, 0.2, 0.3, 0.4.
(b) fGn model where α “ 1.2, 1.4, 1.6, 1.8.

Model Size N κpV q rGSchur rLTZ rPCG rHSS

ARFIMA(0,d,0)

2000 8.2ˆ 103 9.9ˆ 10´13 6.6ˆ 10´15 5.6ˆ 10´16 1.3ˆ 10´15

d = 0.49

5000 1.9ˆ 104 1.9ˆ 10´12 9.3ˆ 10´15 3.1ˆ 10´15 1.3ˆ 10´14

104 3.5ˆ 104 1.2ˆ 10´12 1.5ˆ 10´14 6.7ˆ 10´16 1.1ˆ 10´15

105 4.1ˆ 105 2.1ˆ 10´11 3.6ˆ 10´13 1.3ˆ 10´15 1.6ˆ 10´14

fBM

2000 2.9ˆ 103 4.1ˆ 10´14 8.0ˆ 10´15 4.6ˆ 10´16 4.9ˆ 10´16

α = 1.9

5000 5.9ˆ 103 2.6ˆ 10´13 1.1ˆ 10´14 7.6ˆ 10´16 8.9ˆ 10´15

104 1.0ˆ 104 2.0ˆ 10´13 9.2ˆ 10´15 7.3ˆ 10´16 6.7ˆ 10´15

105 2.1ˆ 105 3.6ˆ 10´12 1.2ˆ 10´14 8.1ˆ 10´16 3.1ˆ 10´14

Table 2.2: Measurement errors of different algorithms, long-memory models.
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Short Memory Process

Time series with exponential decay ACF, as an important model for short-memory pro-

cesses, is established to be well-conditioned. These time series are also stationary Gaussian

processes and are widely applied in applications including social communication [Karagian-

nis et al., 2010] and neuronal performance [Stein, 1965, Byron et al., 2009]. In this section,

the performance of the generalized Schur algorithm is evaluated when analyzing processes

with exponential decay ACF of the following form

γn “ expt´λ ¨ ndu, n “ 1, 2, . . . , N, (2.4.2)

where parameters λ and d determine the decreasing speed of γn. For larger λ and d, γn

drops more rapidly. In Table 2.3 we show the measurement error of three different Toeplitz

system solvers, where all algorithms have similarly good performance.

d κpV q rGSchur rLTZ rPCG rHSS

1 6.3 8.4ˆ 10´16 3.2ˆ 10´16 4.0ˆ 10´16 5.3ˆ 10´16

2 2.3 7.0ˆ 10´16 4.9ˆ 10´16 4.2ˆ 10´16 6.2ˆ 10´16

3 2.0 9.9ˆ 10´16 5.4ˆ 10´16 4.0ˆ 10´16 4.9ˆ 10´16

4 2.0 8.8ˆ 10´16 3.6ˆ 10´16 5.4ˆ 10´16 5.6ˆ 10´16

Table 2.3: Measurement errors of different algorithms, exponential decay models.
Data size N “ 105, λ “ 1.

It is worthwhile mentioning that PCG algorithm solves the Toeplitz system by re-

cursively updating its output, where the number of iterations is related to the condition

number of Toeplitz matrix κpV q. During our experiments with the PCG algorithm, we

discovered that this algorithm solves a long-memory Toeplitz system much faster than a

short-memory system. More specifically, let V1 be the covariance matrix of a long-memory

process and V2 be the covariance matrix of an exponential decay process. If V1 and V2 are

equivalently ill-conditioned (we can achieve this by having a very small λ in (2.4.2)), PCG

algorithm will take many more iterations to invert matrix V2 than V1.
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2.4.2 Parameter Estimation for Long-Memory Models

One main purpose of the evaluation of the log-likelihood for stationary Gaussian processes

is to estimate the parameters. In the previous section we investigate the measurement

error of the generalized Schur algorithm with respect to various time processes but are still

in lack of a straightforward impression of the impact of these errors. In order to reveal

a potential bias when applying the generalized Schur algorithm, we design a numerical

experiment to measure the accuracy of estimation results using the generalized Schur al-

gorithm. Among all common statistical models, long-memory series are established to be

ill-conditioned and turn out to be most unsuitable for the generalized Schur algorithm. In

order to see the limitation of the generalized Schur algorithm, M long-dependency time

series X “
“

Xp1q, . . . ,XpMq
‰

are generated, where Xpmq “ rX
pmq
1 , . . . , X

pmq
N s i.i.d. follows

ARFIMAp0, d, 0q model for m “ 1, . . . ,M , i.e.

p1´BqdXpmq
n “ εn, ε

iid
„ Np0, σ2

q, n “ 1, 2, . . . , N.

In the simulation, we generate M “ 500 time series with true parameters d “ 0.45, σ “ 1

and length of data N “ 104. This is a long-memory time series model with only two

unknown parameters θ “ td, σu, which can be estimated by maximizing the following

likelihood

`pθ |Xpmq
q “ ´

1

2

”

Xpmq1VθX
pmq
` log |Vθ| `N logp2πq

ı

,

where Vθ is the Toeplitz covariance matrix whose first column is the auto-covariance of

ARFIMAp0, d, 0q multiplying σ2.

In addition to the MLE estimates

θ̂m “ arg max
θ
t`pθ |Xpmq

qu,

we can also compute their covariance matrix using the observed Fisher information

covpθ̂mq “ ´

„

B2

Bθ2
`pθ |Xiq

ˇ

ˇ

ˇ

ˇ

θ“θ̂m

´1

.
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Based on θ̂m and covpθ̂mq, we evaluate the quality of estimation using three statistics

of the estimator, including the bias, the MSE and the true coverage rate:

• Bias, 1
M

řM
m“1 θ̂m ´ θ0 where θ0 “ t0.45, 1u is the true parameter value.

• MSE, 1
M

řM
m“1pθ̂m ´ θ0q

2 measures the average of squares of errors.

• True coverage Pαpθ̂q, for different confidence intervals for each parametric estimator

it is calculated as

Pαpθ̂q “
1

M

M
ÿ

m“1

1tθ0 P θ̂m ˘ qα ¨ sepθ̂mqu,

where qα is the normal quantile for significance level α, sepθ̂mq is the square root of

the diagonal elements of the covariance matrix covpθ̂mq. When correct models are

applied, their corresponding coverage rate should be close to the theoretical coverage

rate, which is the significance level α.

In Table 2.4 we show the estimation results using the generalized Schur algorithm,

Levinson algorithm and PCG. For all methods the estimation errors in both parameters

tσ, du are negligible, and the coverage rate rα suggests that the estimations of confidence

intervals for various significant levels α “ 90%, 95%, 99% are also accurate.

algorithm bias MSE P90% P95% P99%

σ
GSchur ´8.4ˆ 10´5 9.9ˆ 10´5 90 95 99

Levinson 1.5ˆ 10´5 1.3ˆ 10´4 91 95 99
PCG 6.9ˆ 10´6 2.6ˆ 10´5 92 97 100

d
GSchur ´1.2ˆ 10´3 1.0ˆ 10´4 93 97 98

Levinson ´7.4ˆ 10´4 8.9ˆ 10´5 93 96 99
PCG 1.0ˆ 10´3 7.4ˆ 10´5 91 94 98

Table 2.4: Estimation results of different algorithms, ARFIMAp0, d, 0q model.
The true parameterare d “ 0.45, σ “ 1.

To conclude the experiments on numerical stability, we first propose an empirical rela-

tion between the measurement errors of the generalized Schur algorithm and the condition
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number of Toeplitz matrices

rGSchur 9 κpV q,

which explains the concerns about the numerical stability of the generalized Schur algo-

rithm. However, with further investigation of the covariance matrices involved in sta-

tistical applications, including long-memory processes whose covariance matrix is most

ill-conditioned, their condition number is still within a tolerable degree such that the rel-

ative error of the superfast Toeplitz-system solver is acceptable. The result of parametric

estimation experiment also supports this point of view. In general, the generalized Schur

algorithm is applicable in the majority of statistical applications, and its disadvantage in

numerical stability will hardly hinder the correct inference of models.

2.5 Application: Gaussian Process Factor Analysis

Summarizing a high dimensional data set with a low dimensional embedding is a standard

approach for exploring the data structure. Typical techniques which can be used for di-

mensionality reduction includes linear discriminant analysis, principal component analysis

(PCA) and factor analysis. The Gaussian process factor analysis (GPFA), whose moti-

vation can be traced back to the use of PCA for extracting informative low dimensional

views of high-dimensional neural data [Byron et al., 2009], actually accomplishes the di-

mensionality reduction and smoothing operations in a common probabilistic framework.

In this section we describe the GPFA model and later propose a superfast Gibbs sampling

for the inference.

Let yptq “ r y1ptq ¨¨¨ yDptq s P R1ˆD be the vector of the high-dimensional processes

recorded at time t, where D is the number of processes recorded. In the framework of

GPFA, we try to extract a corresponding low-dimensional signal xptq “ r x1ptq ¨¨¨ xKptq s P

R1ˆK at time t, where K is the number of factors used to explain y. Each factor xkptq has

mean 0 and a stationary covariance function

cov pxkptq, xkpsqq “ fkp|t´ s|,θkq.
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For the discrete observation y “ ry1, ...,yN s P RNˆD,yn “ ypn∆tq at evenly distributed

time series t “ r∆t, . . . , N∆ts, we define a conditional Gaussian distribution of yn given

xptq:

yn | xptq „ N pxpn∆tqβ,Σq ,

where βKˆD is the coefficient of factors and ΣDˆD “

«

σ2
1

...
σ2
D

ff

is the diagonal covariance

matrix.

The matrix form of the GPFA model is

y “ xβ ` εΣ1{2, (2.5.1)

where the signal matrix x “ rx1, ¨ ¨ ¨ ,xN s P RNˆK ,xn “ r x1pn∆tq ¨¨¨ xKpn∆tq s, εNˆD is the

matrix of white noises εij
iid
„ N p0, 1q and the factor observations xk are assumed to follow

independent multivariate normal distributions

xk
ind
„ N p0,V pkq

θ q, (2.5.2)

where V
pkq
θ is the covariance matrix with elements V

pkq
θ pn,mq “ fkp|n´m|∆t,θkq.

Normally the parameters of the GPFA model are learnt in a straightforward way using

the expectation-maximization (EM) algorithm, where the conditional distribution ppx | yq

is required in the E-step:

xk | y „ N
´

pβk: b V
pkq
θ qΩ´1vecpyq,V

pkq
θ

´1
´ pβk: b V

pkq
θ qΩ´1

pβTk: b V
pkq
θ q

¯

(2.5.3)

where βk: is the k-th row of β, Ω “
řK
k“1 β

T
k:βk:bV

pkq
θ `Σb IN is a NdˆNd matrix. The

evaluation of Ex|y r`pβ,Σ,θ | x,yqs, where `pβ,Σ,θ | x,yq is the log-likelihood of (2.5.1),

requires the inversion of Ω, which can only be achieved with the Cholesky decomposition

in Opd3N3q steps. The overall computation cost of the EM algorithm is too expensive.

In order to reduce the computational cost, we propose the following superfast Gibbs

sampling for parameter estimation. Each step of sampling can be efficiently done in
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OpN log2Nq steps. For a prior

σ2
d „ Inv-Gammapαd, βdq, β:d „ N pΨd,Sdq, d “ 1, 2, . . . , D,

the Gibbs sampling updates its various components using the analytical distributions

x | y,β,Σ,θ „ ppx | y,β,Σ,θq

σ2
d | x,y,β „ Inv-Gamma pα‹d, β

‹
dq

β:d | x,y,Σ „ N pΨ‹
d,S

‹
dq

θ | x „ qpθ | xq

where α‹d “ αd`
N

2
, β‹d “ βd`

pyd ´ xβ:dq
T pyd ´ xβ:dq

2
, Ψ‹

d “

„

S´1
d `

x1x

σ2
d

´1 „

S´1
d Ψd `

x1yd
σ2
d



and S‹d “

„

S´1
d `

x1x

σ2
d

´1

.

The conditional distribution ppx | y,β,Σ,θq is not trivial. Consider

y‹k “ y ´
ÿ

i‰k

xiβi: “ xkβk: ` εΣ
1{2.

We find that xk | y
‹
k follows a multivariate normal distribution

xk | y
‹
k „ N

´

pβk: b V
pkq
θ qΩ´1

k vecpy‹kq,V
pkq
θ

´1
´ pβk: b V

pkq
θ qΩ´1

k pβ
T
k: b V

pkq
θ q

¯

where Ωk “ β
T
k:βk: b V

pkq
θ `Σ b IN is also an Nd ˆNd matrix. Unlike the computation

that requires ppxk | yq (2.5.3), the calculation involving Ωk can be greatly simplified with

the Woodbury matrix identity [Higham, 2002]

Ω´1
k “ Σ´1

b IN ´ pΣ
´1βTk:βk:Σ

´1
q b V

pkq
θ Q´1

where c “ βk:Σ
´1βTk: is a scale and Q “ c ¨ V

pkq
θ ` IN is an N ˆ N Toeplitz matrix. We
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find that

pβk: b V
pkq
θ qΩ´1

k vecpy‹kq “ V
pkq
θ Q´1y‹kΣ

´1βTk:

and

V
pkq
θ ´ pβk: b V

pkq
θ qΩ´1

k pβ
T
k: b V

pkq
θ q “ V

pkq
θ Q´1,

that is to say

xk | y
‹
k „ N

´

V
pkq
θ Q´1y‹kΣ

´1βTk:,V
pkq
θ Q´1

¯

,

whose simulation can be achieved efficiently by generating

xk “ Q
´1ε1 ` V

pkq
θ Q´1ε2,

where

ε1 „ N p0,V pkq
θ q, ε2 „ N py‹kΣ´1βTk:, c ¨ INq.

Since both V
pkq
θ and Q are size N ˆN Toeplitz matrices, sampling from ppx | y,β,Σ,θq

is superfast.

As for the posterior qpθ | xq, we have that

qpθ | xq “
K
ź

k“1

qpθk | xkq, qpθk | xkq 9 Lpθk | xkq

where Lpθk | xkq is the likelihood of (2.5.2)

Lpθk | xkq “
exp

´

´1
2
xkV

pkq
θ

´1
xk

¯

b

|2πV
pkq
θ |

,

To verify the quality of the proposed Gibbs sampler, we simulated a length N “ 2000,

d “ 10 dimensional data y containing two factors x1,x2, where x1 is a short-memory
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process with exponential decay ACF and x2 is a long-memory fGn process

acfx1pnq “ expt´λ ¨ n2
u

acfx2pnq “
1

2
rpn` 1qα ` |n´ 1|α ´ 2 ¨ nαs .

For β and Σ, their elements are drawn from uniform distributions

βij
iid
„ Unifp´10, 10q, σj

iid
„ Unifp0, 3q, 1 ď i ď 2, 1 ď j ď 10.

In Figure 2.6 we show the posterior distribution of α and λ, and in Table 2.4 we

demonstrate the point estimation of β and Σ with the standard deviation. The estimated

coefficients tα̂, λ̂, β̂, Σ̂u are very close to their true value, indicating that the result of the

proposed Gibbs sampling procedure for GPFA model (2.5.1) is consistent and asymptoti-

cally unbiased.

1.74 1.76 1.78 1.80 1.82 1.84 1.86

0
5

10
15

20
25

(a)  α

mean = 1.79
se = 0.018

0.90 0.95 1.00 1.05 1.10 1.15 1.20

0
2

4
6

8
10

(b)  λ

mean = 1.04
se = 0.042

Figure 2.6: Posterior distribution of the factor parameters tα, λu using the proposed Gibbs
sampling procedure.
(a) The posterior density of estimated α.
(b) The posterior density of estimated λ.
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β1,1 β1,2 β1,3 β1,4 β1,5 β1,6 β1,7 β1,8 β1,9 β1,10

True 9.2 6.4 1.2 ´3.9 4.0 ´2.2 ´1.1 5.2 4.1 ´5.2
Mean 9.2 6.2 0.98 ´4.0 4.1 ´2.4 ´1.2 5.0 4.3 ´5.2
SD 0.16 0.093 0.064 0.11 0.10 0.11 0.082 0.10 0.13 0.11

β2,1 β2,2 β2,3 β2,4 β2,5 β2,6 β2,7 β2,8 β2,9 β2,10

True ´7.9 3.4 4.2 7.0 ´6.8 7.3 5.5 5.5 ´8.5 6.2
Mean ´7.6 3.5 4.2 6.9 ´6.7 7.2 5.4 5.5 ´8.4 6.1
SD 0.35 0.19 0.15 0.26 0.25 0.26 0.20 0.23 0.32 0.25

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

True 2.0 2.7 0.71 1.8 0.81 2.9 0.55 2.6 1.7 2.3
Mean 2.0 2.6 0.78 1.9 0.96 2.9 0.61 2.4 1.5 2.3
SD 0.077 0.091 0.035 0.037 0.036 0.038 0.031 0.091 0.044 0.039

Table 2.5: Estimated β and Σ for the simulated GPFA data.

2.6 Discussion

In this chapter, we have provided computationally efficient algorithms for the inference of

stationary Gaussian processes. Realizing that the covariance matrix for stationary Gaus-

sian process is Toeplitz, we implemented the generalized Schur algorithm that solves the

Toeplitz systems in superfast steps pOpN log2Nqq and extend the range of this algorithm

from N “ 2K ` 1 to an arbitrary N . With a superfast solution to the Toeplitz system,

the evaluation of the log-likelihood (2.3.2) and its derivatives for a general family of Gaus-

sian observations with Toeplitz covariance structure can also be accomplished in superfast

speed, which greatly reduce the time cost for parameter estimation, in either frequentist

or Bayesian approaches. Profile likelihood for a special condition (2.3.7) is also provided

for dimensionality reduction.

Based on our R/C++ implementation of the extended generalized Schur algorithm, ex-

tensive numerical experiments are conducted to compare the superfast method and other

distinguished Toeplitz-system solves in aspects of overall computation speed and numerical

stability. Despite that the generalized Schur algorithm can be unstable in very extreme
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cases, we show that for statistical applications its measurement error remains within a tol-

erable extent and will return unbiased estimates. Finally, we introduce a GPFA model for

smoothing and dimensionality reduction and propose a superfast Gibbs sampling procedure

that returns consistent and asymptotically unbiased estimates.
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Chapter 3

Camera Error Correction for Particle

Tracking

3.1 Introduction

With the development of high-resolution microscopy, single-particle tracking has emerged

as an invaluable tool in the study of biophysical and transport properties of diverse soft ma-

terials. Examples of applications include cellular membrane dynamics [Saxton and Jacob-

son, 1997], drug delivery mechanisms [Suh et al., 2005], properties of colloidal particles [Lee

et al., 2007], mechanisms of virus infection [van der Schaar et al., 2008], microrheology of

complex fluids and living cells [Mason et al., 1997, Wirtz, 2009] and functional analyses of

the cytoskeleton [Gal et al., 2013].

Passive single-particle tracking refers to experiments in which microscale probes and/or

pathogens (e.g., viruses) are recorded without external forcing, producing high-resolution

time series of particle positions from which dynamical properties of the transport medium

are inferred. In many of these experiments, the resulting analysis hinges pivotally on the

measurement of particles’ mean square displacement (MSD), which for a k-dimensional

particle trajectory Xptq “
`

X1ptq, . . . , Xkptq
˘

(with k P t1, 2, 3u depending on the experi-
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ment) is given by

msdXptq “
1

k
ˆ E

“

‖Xptq ´Xp0q‖2
‰

“
1

k
ˆ

k
ÿ

j“1

E
“

|Xjptq ´Xjp0q|2
‰

. (3.1.1)

For particles diffusing in viscous media, empirical evidence suggests that dynamics are

accurately modeled by Brownian motion [Einstein, 1956]. The MSD is then linear in time,

msdXptq “ 2Dt,

and the diffusion coefficient D is determined by the Stokes-Einstein relation [Einstein,

1956, Edward, 1970]

D “
kBT

6πηr
, (3.1.2)

where r is the particle radius, T is temperature, η is the viscosity of the medium, and kB

is the Boltzmann constant.

However, due to the microstructure of large molecular weight biopolymers (e.g., mucins

in mucosal layers), most biological fluids are viscoelastic. Unlike viscous fluids that have

constant resistance to deformation, viscoelastic fluids exhibit time-dependent strain. In

such fluids, a nearly ubiquitous experimental finding has been that the MSD has sublinear

power-law scaling over a given range of timescales,

msdXptq „ 2Dtα, tmin ă t ă tmax, 0 ă α ă 1. (3.1.3)

which is referred to as subdiffusion. Due to its pervasiveness, interpretation of the subdiffu-

sion parameters pα,Dq has far-reaching consequences for numerous biological applications,

for example: distinguishing signatures of healthy versus pathological human bronchial ep-

ithelial mucus [Hill et al., 2014]; cytoplasmic crowding [Weiss et al., 2004]; local viscoelas-

ticity in protein networks [Amblard et al., 1996]; dynamics of telomeres in the nucleus

of mammalian cells [Bronstein et al., 2009]; and microstructure dynamics of entangled

F-Actin networks [Wong et al., 2004].

Unlike for viscous fluids exhibiting ordinary (linear) diffusion, the precise manner in
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which the properties of a viscoelastic fluid determine its subdiffusion parameters pα,Dq is

unknown, such that pα,Dq must be estimated from particle tracking data. To this end,

a widely-used approach is to apply ordinary least-squares to a non-parametric estimate

of the MSD against time on the log-log scale [e.g., Qian et al., 1991]. While minimal

modeling assumptions suffice to make this estimator consistent [Michalet, 2010] for finite-

length trajectories, the non-parametric MSD estimator at longer timescales is severely

biased [Mellnik et al., 2016]. Thus, in practice the information about longer timescales is

typically discarded, at the expense of considerable loss in statistical efficiency. In contrast,

fully parametric subdiffusion estimators specify a complete stochastic process for Xptq as

a function of pα,Dq [e.g., Berglund, 2010, Lysy et al., 2016, Mellnik et al., 2016], whereby

optimal statistical efficiency is achieved via likelihood-based inference. However, the accu-

racy of these parametric estimators critically depends on the adequacy of the parametric

model, and particle tracking measurements are well known to be corrupted by various

sources of experimental noise.

Noise in single-particle tracking experiments can be categorized roughly into two types.

Low-frequency noise, originating primarily from slow drift currents in the fluid itself, is

typically removed from particle trajectories by way of various linear detrending meth-

ods [e.g., Fong et al., 2013, Rowlands and So, 2013, Koslover et al., 2016, Mellnik et al.,

2016]. In contrast, high-frequency noise can be due to a variety of reasons: mechanical

vibrations of the instrumental setup; particle displacement while the camera shutter is

open; noisy estimation of true position from the pixelated microscopy image; error-prone

tracking of particle positions when they are out of the camera focal plane. A systematic re-

view of high-frequency or localization errors in single-particle tracking is given by Deschout

et al. [2014]. The effect of such noise is to distort the MSD at the shortest observation

timescales. Since fully-parametric models extract far more information about pα,Dq from

short timescales than long ones, their accuracy in the presence of high-frequency noise can

suffer considerably.

In a seminal work, Savin and Doyle [2005] present a theoretical model for localization

error, encompassing most of the approaches reviewed by Deschout et al. [2014]. The pa-

rameters of the Savin-Doyle model can be derived either from first-principles [for instance,

by analyzing uncertainty in position-extraction algorithms, e.g., Mortensen et al., 2010,
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Chenouard et al., 2014, Kowalczyk et al., 2014, Burov et al., 2017], or empirically [via

signal-free control experiments, e.g., Savin and Doyle, 2005, Deschout et al., 2014]. Model-

based methods for estimating localization error have also been proposed, under the as-

sumption of ordinary diffusion α “ 1 [e.g., Michalet, 2010, Berglund, 2010, Michalet and

Berglund, 2012, Vestergaard et al., 2014, Ashley and Andersson, 2015, Calderon, 2016].

The Savin-Doyle theoretical framework accounts for a wide range of experimental errors.

However, due to the extreme complexity and inter-dependence between various sources of

localization error, the Savin-Doyle model cannot account for them all. This is illustrated

in the control experiment of Figure 3.1(a), where trajectories of 1 µm diameter tracer

particles are recorded in water, for which it is known that α “ 1, and for which D may be

determined theoretically by the Stokes-Einstein relation (3.1.2). However, the Savin-Doyle

model estimates both of these parameters with considerable bias (Figure 3.1(b)).
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Figure 3.1: (a) Pathwise empirical MSD for 1931 particles of diameter 1 µm recorded at
∆t “ 1{60 s, and fitted MSD for three parametric models: fractional Brownian Motion
(fBM); fBM with Savin-Doyle noise correction (fSD), and fBM with the noise correction
proposed in this chapter (fMA). (b-c) Estimated values of α and D for each particle and
parametric model. The predicted values from Stokes-Einstein theory are given by the
horizontal dashed lines.

In this chapter, we propose a likelihood-based method for correcting localization er-

rors, complementing the theoretical Savin-Doyle approach. We consider a family of high-

frequency filters that can readily be applied to a wide range of parametric particle position
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models. We show how to combine the high-frequency filter with parametric approaches

to correct for low-frequency drift, and estimate all model parameters in a computationally

efficient manner. Extensive simulations and analyses of experimental data suggest that

a one-parameter version of our filter performs remarkably well, both for estimating the

true values of pα,Dq, and compared to the state-of-the-art in denoising procedures (e.g.,

Figure 3.1(c)).

The remainder of the chapter is organized as follows. In Section 3.2 we review a

number of existing subdiffusion estimators and high-frequency error-correction techniques.

In Section 3.3 we present our family of high-frequency filters, along with some theoretical

justification for the proposed construction. Sections 3.4-3.5 contain simulation results and

analyses of numerous viscous and viscoelastic particle tracking experiments comparing our

estimator with existing alternatives. Section 3.6 offers concluding remarks and directions

for further work.

3.2 Existing Subdiffusion Estimators

3.2.1 Semiparametric Least-Squares Estimator

Let X “ pX0, . . . ,XNq, Xn “
`

X1pn ¨ ∆tq, . . . , Xkpn ¨ ∆tq
˘

denote the discrete-time

observations of a given particle recorded at frequency 1{∆t. Assuming that the position

process Xptq has second order stationary increments

E
“

‖Xps` tq ´Xpsq‖2
‰

“ E
“

‖Xptq ´Xp0q‖2
‰

, (3.2.1)

a standard nonparametric estimator for the particle MSD is given by

ymsdXpn ¨∆tq “
1

k ¨ pN ´ n` 1q

N´n
ÿ

i“0

‖Xn`i ´Xi‖2. (3.2.2)

Based on the linear relation (3.1.3)

logmsdXptq “ log 2D ` α log t (3.2.3)
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over the subdiffusion timescale t P ptmin, tmaxq, perhaps the most commonly-used subd-

iffusion estimator is the least-squares solution regressing yn “ log
`

ymsdXpn ¨ ∆tq
˘

onto

xn “ logpn ¨∆tq, namely

α̂ “

řN
n“0pyn ´ ȳqpxn ´ x̄q
řN
n“0pxn ´ x̄q

2
, D̂ “ 1

2
exppȳ ´ α̂x̄q. (3.2.4)

The least-squares subdiffusion estimator is easy to implement and consistent under

the minimal assumption of (3.2.1) and tmax “ 8 [Sikora et al., 2017]. However, it also

presents two major drawbacks. First, the errors underlying the regression (3.2.3) are

neither homoscedastic nor uncorrelated [Sikora et al., 2017], such that (3.2.4) is statistically

inefficient. Second, it is common practice to account for low-frequency noise by calculating

the empirical MSD (3.2.2) from the drift-subtracted positions

X̃n “ pXn ´X0q ´ n ¨∆X,

where ∆X “ 1
N

řN
n“1pXn ´Xn´1q is the average displacement over the interobservation

time ∆t. However, a straightforward calculation [Mellnik et al., 2016] shows that X̃N “ 0,

such that ymsdXpn ¨ ∆tq becomes increasingly biased towards zero as n approaches N .

Consequently, a widely-reported figure [e.g., Weihs et al., 2007] suggests that, prior to

fitting (3.2.4), the largest 30% of MSD lag times are discarded, thus severely compound-

ing the inefficiency of the least-squares subdiffusion estimator when low-frequency noise

correction is applied.

3.2.2 Fully-Parametric Subdiffusion Estimators

While the semiparametric estimator (3.2.4) operates under minimal modeling assumptions,

complete specification of the stochastic process Xptq provides not only a considerable

increase in statistical efficiency [e.g., Mellnik et al., 2016], but in fact is necessary to

establish dynamical properties of particle-fluid interactions which cannot be determined

from second-order moments (such as the MSD) alone [Gal et al., 2013, Lysy et al., 2016].

A convenient framework for stochastic subdiffusion modeling is the location-scale model
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of Lysy et al. [2016],

Xptq “
d
ÿ

j“1

βjfjptq `Σ1{2Zptq, (3.2.5)

where f1ptq, . . . fdptq are known functions accounting for low-frequency drift (typically lin-

ear, f1ptq “ t, and occasionally quadratic, f2ptq “ t2), β1, . . . ,βd P Rk are regression

coefficients, Σkˆk is a variance matrix, and Zptq “
`

Z1ptq, . . . , Zkptq
˘

are iid continuous

stationary-increments (CSI) Gaussian processes with mean zero and MSD parametrized

by ϕ,

msdZptq “ E
“

‖Zjptq ´ Zjp0q‖2
‰

“ ηpt | ϕq,

such that the MSD of the drift-subtracted process X̃ptq “Xptq´
řd
j“1 βjfjptq is given by

msdX̃ptq “
1
k
trpΣq ¨ ηpt | ϕq.

Perhaps the simplest parametric subdiffusion model sets Zjptq “ Bαptq to be fractional

Brownian Motion (fBM) [e.g., Szymanski and Weiss, 2009, Weiss, 2013], a mean-zero CSI

Gaussian process with covariance function

cov
`

Bαptq, Bαpsq
˘

“ 1
2
p|t|α ` |s|α ´ |t´ s|αq, 0 ă α ă 2.

Indeed, as the covariance function of a CSI process is completely determined by its MSD,

fBM is the only (mean-zero) CSI Gaussian process exhibiting uniform subdiffusion,

msdBαptq “ tα, 0 ă t ă 8,

in which case the diffusivity coefficient is given by

D “
1

2k
ˆ trpΣq.

Other examples of driving CSI processes are the confined diffusion model of Ernst et al.

[2017] and the viscoelastic Generalized Langevin Equation (GLE) of McKinley et al. [2009],
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both of which exhibit transient (anomalous) subdiffusion, i.e., power-law scaling only on

a given timescale t P ptmin, tmaxq. In this case, the subdiffusion parameters pα,Dq become

functions of the other parameters, namely α “ αpϕq and D “ Dpϕ,Σq. We shall revisit

these transient subdiffusion models in Section 3.4.

Parameter estimation for the location-scale model (3.2.5) can be done by maximum

likelihood. Let ∆Xn “ Xn`1 ´ Xn denote the nth trajectory increment, and ∆X “

p∆X0, . . . ,∆XN´1q. Then ∆X are consecutive observations of a stationary Gaussian

time series with autocorrelation function

acf∆Xphq “ covp∆Xn,∆Xn`hq “ Σˆ γph | ϕq,

where

γpn | ϕq “ 1
2
ˆ

!

ηp|n´ 1| ¨∆t | ϕq ` ηp|n` 1| ¨∆t | ϕq ´ 2ηp|n| ¨∆t | ϕq
)

,

such that the increments follow a matrix-normal distribution,

∆XNˆk „ MatNormpFβ,Vϕ,Σq,

where βdˆk “ rβ1 | ¨ ¨ ¨ | βds
1, FNˆd is a matrix with elements Fnm “ fmppn ` 1q ¨

∆tq ´ fmpn ¨ ∆tq, and Vϕ is an N ˆ N Toeplitz matrix with element pn,mq given by

V
pn,mq
ϕ “ γpn´m | ϕq, such that the log-likelihood function is given by

`pϕ,β,Σ | ∆Xq “ ´
1

2
tr
 

Σ´1
p∆X ´ Fβq1V ´1

ϕ p∆X ´ Fβq
(

´
N

2
log |Σ| ´

k

2
log |Vϕ|.

In order to calculate the MLE of θ “ pϕ,β,Σq, model (3.2.5) has two appealing

properties. First, for given ϕ, the conditional MLEs of β and Σ can be obtained an-

alytically using the profile likelihood described in Section 2.3.4, such that the optimiza-

tion problem can be reduced by 2k `
`

k
2

˘

dimensions by calculating the profile likelihood

`profpϕ | ∆Xq “ maxβ,Σ `pϕ,β,Σ | ∆Xq. Second, we show in Chapter 2 that the computa-
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tional bottleneck in `profpϕ | ∆Xq involves the calculation of V ´1
ϕ and its log-determinant.

While the computational cost of these operations is OpN3q for general variance matrices,

for Toeplitz matrices it is only OpN2q using the Durbin-Levinson algorithm [Levinson,

1947, Durbin, 1960], or more recently, only OpN log2Nq using the Generalized Schur algo-

rithm [Kailath et al., 1979, Ammar and Gragg, 1988, Ling and Lysy, 2017].

3.2.3 Savin-Doyle Noise Model

In order to characterize high-frequency noise in particle tracking experiments, Savin and

Doyle [2005] decompose it into so-called static and dynamic sources. Static noise is due to

measurement error in the recording of the position of the particle at a given time. Thus,

if Xn denotes the true particle position at time t “ n ¨ ∆t, and Yn is its recorded value,

then Savin and Doyle suggest the additive error model

Yn “Xn ` εn, (3.2.6)

where εn is a k-dimensional stationary process independent of Xptq. Thus, if the autocor-

relation of the static noise is denoted as

acfεpnq “ covpεm, εm`nq,

the MSD of the observations becomes

msdY pnq “
1
k
ˆ E

“

‖Yn ´ Y0‖2
‰

“ msdXpnq `
1
k
ˆ 2 ¨ tr

`

acfεp0q ´ acfεpnq
˘

.

Savin and Doyle describe how to estimate the temporal dynamics of εn by recording im-

mobilized particles, i.e., for which it is known that Xn ” 0. Over a wide range of signal-

to-noise ratios, they report that εn is effectively white noise,

acfεpnq “ Σε ¨ 1pn “ 0q,
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a result corroborated by many other experiments [Deschout et al., 2014]. For the canonical

trajectory model of fractional Brownian motion, msdXptq “ 2Dtα, white static noise has

the effect of inflating the MSD at the shortest timescales, as seen in Figure 3.2(b).
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Figure 3.2: Effect of localization error on the MSD of an fBM process Xptq “ Bα
t with

α “ 0.8 and ∆t “ 1{60. (a) Dynamic error, as a function of exposure time τ . (b) Static
error, as a function of the signal-to-noise ratio, SNR “ varp∆Bα

n q{ varpεnq.

In contrast to static noise, Savin and Doyle define dynamic noise as originating from

movement of the particle during the camera frame exposure time. Thus, if the camera

exposure time is τ ă ∆t (as it must be less than the framerate), the recorded position of

the particle at time t “ n ¨∆t is

Yn “
1

τ

ż τ

0

Xpn ¨∆t´ sq ds.

The dynamic-error MSD for an fBM process Xptq “ Bα
t is given in Appendix C. Larger

values of τ have the effect of depressing the MSD at the shortest timescales, as seen in

Figure 3.2(a).

Combining static and dynamic models, the Savin-Doyle localization error model is

Yn “
1

τ

ż τ

0

Xpn ¨∆t´ sq ds` εn. (3.2.7)
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When Xptq “
řd
m“1 βmfmptq `Σ1{2Zptq follows the location-scale model (3.2.5), and the

static noise has the simplified form Σε “ σ2 ¨ Σ, parametric inference can be conducted

using the computationally efficient methods of Section 3.2.2. Explicit calculations for the

fBM process with msdZptq “ tα are given in Appendix C.

Thus, the fBM + Savin-Doyle (fSD) model has three MSD parameters: ϕ “ pα, τ, σq.

Its maximum likelihood estimates of the subdiffusion parameters pα,Dq are α̂ and D̂ “

p1{2kq ¨ trpΣ̂q. While these estimates successfully correct for many types of high-frequency

measurement errors, the fSD model has two important limitations. First, Figure 3.2(a)

shows that the Savin-Doyle model has little ability to correct negatively biased MSDs

at the shortest timescales. Indeed, the camera aperture time τ is typically at least an

order of magnitude smaller than ∆t, in which case the effect of the dynamic error in

Figure 3.2(a) is extremely small, and insufficient to explain larger negative MSD biases as

in Figure 3.1(a). Second, the Savin-Doyle model uses one parameter (τ) to depress the

MSD, and a different parameter (σ) to inflate it. This leads to an identifiability issue which

adversely affects the subdiffusion estimator, as we shall see in Section 3.4. Complementing

the theoretically derived Savin-Doyle approach, we present a general high-frequency noise

filtering framework in the following section.

3.3 Proposed Method

In order to formulate our proposed method of filtering the localization errors in single

particle tracking experiments, we begin with the following definition of high frequency

noise. Let us first focus on a one-dimensional zero-drift CSI process Xptq with ErXptqs “ 0,

and let X “ tXn : n ě 0u and Y “ tYn : n ě 0u denote the true and recorded particle

position process at times t “ n ¨ ∆t. Then we shall say that the observation process Y
contains only high frequency noise if the low-frequency second-order dynamics of the true

and recorded particle positions are the same, namely

lim
nÑ8

msdY pnq

msdXpnq
“ 1. (3.3.1)
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Given the true position process X , our noise model sets the observed position process to

be of autoregressive/moving-average ARMApp, qq type:

Yn “
p
ÿ

i“1

θiYn´i `
q
ÿ

j“0

ρjXn´j, n ě r “ maxtp, qu. (3.3.2)

For 0 ď n ă r, Yn is defined via the stationary increment process ∆X “ t∆Xn : n P Zu.
That is, with the usual parameter restrictions

min
tzPC:|z|ď1u

ˇ

ˇ1´
řp
i“1 θiz

i
ˇ

ˇ ą 0, min
tzPC:|z|ď1u

ˇ

ˇρ0 ´
řq
j“1 ρjz

j
ˇ

ˇ ą 0, (3.3.3)

[e.g. Brockwell and Davis, 1991], the increment process ∆Y “ t∆Yn : n P Zu defined by

∆Yn “
p
ÿ

i“1

θi∆Yn´i `
q
ÿ

j“0

ρj∆Xn´j (3.3.4)

is a well-defined stationary process which can be causally derived from ∆X , and vice-versa.

Moreover, setting Yn “
řn´1
i“0 ∆Yi one obtains the ARMA relation (3.3.2) on the position

scale for n ě r.

One may note in model (3.3.2) that ρ “ pρ0, . . . , ρqq and varp∆Xnq cannot be identified

simultaneously. This issue is typically resolved in the time-series literature by imposing

the restriction ρ0 “ 1. However, in order for the recorded positions to adhere to a high-

frequency error model as defined by (3.3.1), a different restriction must be imposed:

Theorem 1. Let X and Y denote the true and recorded position processes, with the

latter defined by an ARMApp, qq representation of the former as in (3.3.4). Then Y is a

high-frequency error model for X as defined by (3.3.1) if and only if

ρ0 “ 1´
p
ÿ

i“1

θi ´
q
ÿ

j“1

ρj.

The proof is given in Appendix D.3. Indeed, the following result (also proved in Ap-

pendix D.4) shows that the family of ARMApp, qq noise models (3.3.2) is sufficient to
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describe any high-frequency noise model to arbitrary accuracy:

Theorem 2. Let Y be a stochastic process of recorded positions defined as a high-

frequency noise model via (3.3.1). When Y satisfies specific requirement (illustrated in

Appendix D.4), for any ε ą 0, we may find an ARMApp, qq noise model Y‹ “ tY ‹n : n ě 0u

satisfying (3.3.2) such that for all n ě 0 we have

ˇ

ˇ

ˇ

ˇ

msdY ‹pnq

msdY pnq
´ 1

ˇ

ˇ

ˇ

ˇ

ă ε.

3.3.1 Efficient Computations for the Location-Scale Model

Let us now consider a k-dimensional position process Xptq “
řd
j“1 βjfjptq ` Σ1{2Zptq

following the location-scale model (3.2.5). Then we may construct an ARMApp, qq high-

frequency model for the measured positions as follows. Starting from the drift-free station-

ary increment process ∆X̃ “ t∆X̃n “ Σ1{2∆Zn : n P Zu, define the increment process

∆Ỹ “ t∆Yn : n P Zu via

∆Ỹn “
p
ÿ

i“1

θi∆Ỹn´i `
q
ÿ

j“0

ρj∆X̃n´j. (3.3.5)

Then under parameter restrictions (3.3.3), ∆Ỹ is a well-defined stationary process with

Er∆Ỹns “ 0. In order to add a drift to the high-frequency noise model (3.3.5), let

∆Xn “

$

&

%

∆X̃n, n ă 0,

∆X̃n `
řd
m“1 βj∆fnj, n ě 0,

∆Yn “

$

&

%

∆Ỹn, n ă 0
řp
i“1 θi∆Yn´i `

řq
j“0 ρj∆Xn´j, n ě 0,

(3.3.6)

where ∆fnj “ fjppn` 1q ¨∆tq ´ fmpn ¨∆tq. Then for n ě 0, Xn “
řn´1
i“0 ∆Xi corresponds

to discrete-time observations of Xptq from the location-scale model (3.2.5), and Yn “
řn´1
i“0 ∆Yi satisfies the ARMApp, qq relation (3.3.2). Moreover, the observed increments
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∆Y “ p∆Y0, . . . ,∆YN´1q follow a matrix-normal distribution

∆Y „ MatNormpFϕβ,Vϕ,Σq,

where Fϕ is an N ˆ k matrix with elements

Fnm “ ´

mintn,pu
ÿ

i“1

θiFn´i,m `

mintn,qu
ÿ

j“0

ρj∆fn´j,m,

and Vϕ is an NˆN Toeplitz matrix with element pn,mq given by V
pn,mq
ϕ “ acf∆Y p|n´m|q.

Thus, we may use the computationally efficient methods of Section 3.2.2 for parameter in-

ference, given the autocorrelation function acf∆Y pnq defined by (3.3.4). For pure moving-

average processes (p “ 0), this function is available in closed-form given an arbitrary true

increment autocorrelation function acf∆Zpnq. For p ą 0, an accurate and computationally

efficient approximation is provided in Appendix D.2.

3.3.2 The Fractional MAp1q Noise Model

Perhaps the simplest ARMApp, qq noise model is that with p “ 0 and q “ 1, i.e., the

first-order moving-average MAp1q model given by

Yn “ p1´ ρqXn ` ρXn´1, (3.3.7)

where ρ ă 1
2

is required to satisfy (3.3.1). The autocorrelation of the observed increments

becomes

acf∆Y pnq “ acf∆Xpnq ` p1´ ρqρ
“

acf∆Xp|n´ 1|q ` acf∆Xpn` 1q ´ 2acf∆Xpnq
‰

,

where acf∆Xpnq is the autocorrelation of the true increment process. Of particular interest

is whenXptq is fractional Brownian motion, for which we refer to the corresponding MAp1q

noise model as fMA. The MSD of such a model is plotted in Figure 3.3(a) for a range of

values ρ P r´1, 1
2
q. As with the fractional Savin-Doyle (fSD) model (3.2.7) ρ ą 0 inflates

the high-frequency correlations in the observation process, whereas ρ ă 0 depresses them.
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A similar MSD plot for the fSD model is given in Figure 3.3(b). While both high-frequency

noise models can similarly inflate the MSD at short timescales, the fMA model has much

higher capacity to depress it.
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Figure 3.3: (a) MSD of the fMA model with α “ 0.8 and different values of ρ. (b)
MSD of the fSD model with α “ 0.8 and different values of τ and signal-to-noise ratio
SNR “ varp∆Bαq{σ2.

In order to examine this difference more carefully, the following experiment is proposed.

Suppose that observed increments ∆Y “ p∆Y0, . . . ,∆YN´1q are generated from a drift-

free location-scale fSD model ∆Y „ pp∆Y | α,Σ, τ, σq. Then for fixed N and ∆t, we may

calculate the parameters of the (drift-free) fMA model pp∆Y | α‹,Σ‹, ρq which minimize

the Kullback-Liebler divergence from the true model,

pα̂‹, Σ̂‹, ρ̂q “ arg min
pα‹,Σ‹,ρq

KL
 

pp∆Y | α,Σ, τ, σq } pp∆Y | α‹,Σ‹, ρq
(

“ arg min
pα‹,Σ‹,ρq

1

2
ˆ

ˆ

trpΣ´1
‹ ΣqtrpV ´1

‹ V q ` log

ˆ

|Σ‹|
N |V‹|

k

|Σ|N |V |k

˙

´Nk

˙

,

where V and V‹ are N ˆ N Toeplitz variance matrices with first row given by the auto-

correlation function of the fSD and fMA models, respectively. Figure 3.4(a) displays the
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Figure 3.4: Model misspecification bias in α and D. (a) Best-fitting fMA model to true
fSD models with different values of α, τ , and signal-to-noise ratio SNR “ varp∆Bα

n q{σ
2.

(b) Best-fitting fSD model to true fMA models with different values of α and ρ.
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difference between true and best-fitting subdiffusion parameters α̂‹´α and log D̂‹´ logD,

for k “ 2, Σ “ r 1 0
0 1 s, N “ 1800, ∆t “ 1{60, and over a range of parameter values

pα, τ, σq. Figure 3.4(b) does the same, but with the best-fitting fSD model to data gener-

ated from fMA. For all but very high static error σ (corresponding to low signal-to-noise

ratio SNR “ varp∆Xnq{σ
2), the fMA model can recover the true subdiffusion parame-

ters pα,Dq with little bias due to model misspecification. There is obviously more bias

when fSD is used on data generated from fMA, particularly when ρ ą 0 as suggested by

Figure 3.3.

3.4 Simulation Study

In this section, we evaluate the performance of the proposed ARMApp, qq high-frequency

noise filters in various simulation settings. In each setting, we simulate B “ 500 observed

data trajectories Y pbq “ pY
pbq

0 , . . . ,Y
pbq
N q, b “ 1, . . . , B, each consisting of N “ 1800 two-

dimensional observations (k “ 2) recorded at intervals of ∆t “ 1{60 s.

3.4.1 Empirical Localization Error

Consider the following simulation setting designed to reflect the localization errors in our

own experimental setup. Let Yv denote the trajectory measurements for a particle un-

dergoing ordinary diffusion in a viscous environment. Then we may estimate the MSD

ratio

gpnq “
msdỸv

pnq

msdXvpnq
, (3.4.1)

where the MSD of the true position process is msdXvpnq “ 2Dt with D determined by the

Stokes-Einstein relation (3.1.2), and the MSD of the drift-subtracted observation process

Ỹv can be accurately estimated by

ymsdỸv
pnq “

1

M

M
ÿ

i“1

ymsd
Ỹ
piq

v
pnq,
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where ymsd
Ỹ
piq

v
pnq is the empirical MSD (3.2.2) for each (drift-subtracted) particle trajec-

tory Ỹ
p1q

v , . . . , Ỹ
pMq

v recorded in a given experiment (e.g., Figure 3.1(a)). We then suppose

that the true trajectory is a drift-free fBM Xptq “ Σ1{2Bαptq, and simulate the measured

trajectories from

Y pbq iid
„ MatNorm p0,V ,Σq ,

where Σ “ r 1 0
0 1 s and the pN ` 1q ˆ pN ` 1q variance matrix V is that of a CSI process

with MSD given by

msdY pnq “ pγĝpnq ´ γ ` 1q ˆmsdXpnq, (3.4.2)

where ĝpnq is the estimated noise ratio (3.4.1) from a viscous experiment, and the noise

factor γ ą 0 can be used to suppress or amplify the empirical localization error with

γ ă 1 or γ ą 1, respectively. Having constrained our estimator such that ĝpnq “ 1

for n ą N0, (3.4.2) is a high-frequency noise model as defined by (3.3.1). Figure 3.5

displays the observed MSD (3.4.2) for a true fBM trajectory with α “ 0.6, contaminated

by empirical localization errors from two representative viscous experiments described in

Table 3.3, illustrating the effects of high-frequency MSD suppression and amplification,

respectively.

(a) H2O60 Errors
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Figure 3.5: MSD of simulated observations with empirical localization error (3.4.2), where
the true trajectory is an fBM process with α “ 0.6. (a) High-frequency MSD suppression
as observed in H2O60 experiment (see Table 3.3). (b) High-frequency MSD amplification
as observed in GLY60 experiment.
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The following methods are used to estimate the subdiffusion parameters pα,Dq for each

set of simulated particle observations Y pbq, b “ 1, . . . B:

1. LS: The semiparameteric least-squares estimator (3.2.4) applied to the drift-subtracted

empirical MSD (3.2.2).

2. fBM: The MLE of an fBM-driven location-scale model with linear drift,

Xptq “ µt`Σ1{2Bα
ptq, (3.4.3)

for which the model parameters are pα,µ,Σq.

3. fSD: The MLE of the Savin-Doyle error model (3.2.7) applied to (3.4.3), for which

the model parameters are pα, τ, σ,µ,Σq.

4. fMA: The MLE of the proposed MAp1q high-frequency noise filter (3.3.7) applied

to (3.4.3), for which the model parameters are pα, ρ,µ,Σq.

5. fMA2: The MLE of the proposed MAp2q high-frequency noise filter

Yn “ p1´ ρ1 ´ ρ2qXn ` ρ1Xn´1 ` ρ2Xn´2

applied to (3.4.3), for which the model parameters are pα, ρ1, ρ2,µ,Σq.

6. fARMA: The MLE of the proposed ARMAp1, 1q high-frequency noise filter

Yn “ θYn´1 ` p1´ θ ´ ρqXn ` ρXn´1

applied to (3.4.3), for which the model parameters are pα, θ, ρ,µ,Σq.

Remark 1. The fSD exposure time parameter τ is typically known and therefore need not

be estimated from the data. However, we have opted here to estimate it regardless, as this

gives far greater ability to account for high-frequency MSD suppression (e.g., Figure 3.2(a)).

We return to this point in Section 3.5.
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Figure 3.6: Estimates of pα,Dq for true fBM trajectories with various types and degrees
of empirical localization errors.
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Table 3.1: Actual coverage by 95% confidence intervals with various types and degrees of
empirical localization errors.

P95pαq
H2O60 Errors GLY80 Errors

γ “ 0.5 γ “ 1 γ “ 2 γ “ 0.5 γ “ 1 γ “ 2

α “ 0.6

fBM 5 0 0 0 0 0
fSD 90 87 11 93 84 59

fMA 96 96 90 91 88 88
fMA2 91 91 84 94 95 94

fARMA 92 93 87 89 93 93

α “ 0.8

fBM 4 0 0 0 0 0
fSD 91 93 0 92 94 94

fMA 93 94 93 87 84 81
fMA2 93 91 87 92 91 93

fARMA 92 91 88 89 90 93

α “ 1

fBM 1 0 0 0 0 0
fSD 13 6 0 23 34 36

fMA 95 94 93 87 81 70
fMA2 92 92 94 90 88 84

fARMA 91 92 92 87 86 85

P95plogDq
H2O60 Errors GLY80 Errors

γ “ 0.5 γ “ 1 γ “ 2 γ “ 0.5 γ “ 1 γ “ 2

α “ 0.6

fBM 57 1 0 20 1 0
fSD 94 96 10 88 80 72

fMA 96 95 88 86 73 85
fMA2 94 95 95 86 79 66

fARMA 94 95 95 87 79 65

α “ 0.8

fBM 48 0 0 18 2 0
fSD 92 94 1 90 89 82

fMA 95 94 94 89 82 76
fMA2 93 94 94 89 86 83

fARMA 91 93 93 89 88 84

α “ 1

fBM 42 0 0 16 1 0
fSD 63 61 0 69 74 67

fMA 95 94 95 90 88 80
fMA2 92 92 94 91 90 85

fARMA 90 91 93 91 89 85
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The point estimates for pα,Dq for true fBM trajectories with α P t.6, .8, 1u and empirical

error factor γ P t.5, 1, 2u are displayed in Figure 3.6. As expected, the semiparametric

LS estimator is substantially more variable than any of the fully parametric estimators,

and the error-unadjusted fBM estimator incurs considerable bias, even with the smallest

noise factor γ “ 0.5. The high-frequency estimators (fMA, fMA2, and fARMA) are fairly

similar to each other, with the additional parameters of fMA2 and fARMA giving them

slightly lower bias and higher variance. The high-frequency estimators are slightly more

biased than fSD in the GLY80 simulation with α “ 0.8. In contrast, they are somewhat less

biased than fSD for GLY80 with the stronger subdiffusive signal α “ 0.6, and considerably

less so for H2O60 with the largest noise factor γ “ 2.

Table 3.1 displays the true coverage of the 95% confidence intervals for each parametric

estimator, calculated as

P95pψq “
1

B

B
ÿ

b“1

1tθ P ψ̂b ˘ 1.96 sepψ̂bqu,

where ψ P tα, logDu, ψ̂b is the MLE for dataset b, and sepψ̂bq is the square root of the

corresponding diagonal element of the variance estimator xvarpθ̂bq “ ´
”

B2`pY pbq|θ̂bq
BθBθ1

ı´1

, where

θ̂b is the MLE of all model parameters. The true coverage of the fMA, fMA2, and fARMA

confidence intervals is close to 95% when the bias is negligible and typically above 85%.

This is also true for fSD, with the notable exception of either empirical error model and true

α “ 1. Upon closer inspection, we found that the fSD model suffers from an identifiability

issue in the diffusive (viscous) regime, wherein the MSD suppression by τ and amplification

by σ achieve the same net effect over a range of values. This does not affect the estimate

of pα,Dq, but significantly decreases the curvature of `pY | θ̂q, thus artifically inflating the

observed Fisher information xvarpθ̂bq
´1.

Remark 2. Since the subdiffusion equation msdXptq “ 2Dtα dictates that D be measured

in units of µmp2q s
´α

, in order to compare estimates of D for different values of α as in

Figure 3.6, we follow the convention of interpreting D as half the MSD at time t “ 1 s [e.g.,

Lai et al., 2007, Wang et al., 2008], which for any α is measured uniformly in units of

µmp2q.
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3.4.2 Modeling Transient Subdiffusion

In this section, we show how the proposed high-frequency filter can be used not only

for measurement error correction, but also to estimate subdiffusion in models where the

power-law relation msdXptq „ tα holds only for t ą tmin. For this purpose, here we

shall generate particle trajectories from a so-called Generalized Langevin Equation (GLE),

a physical model derived from the fundamental laws of thermodynamics for interacting-

particle systems [e.g., Kubo, 1966, Zwanzig, 2001, Kou, 2008]. For a one-dimensional

particle with negligible mass, the GLE for its trajectory Xptq is a stochastic integro-

differential equation of the form

ż t

´8

φpt´ sqV psq ds “ F ptq, (3.4.4)

where V ptq “ d
dt
Xptq is the particle velocity, φptq is a memory kernel, and F ptq is a station-

ary mean-zero Gaussian force process with acfF ptq “ kBT ¨ φptq, where T is temperature

and kB is Boltzmann’s constant. The memory of the process is modeled as a generalized

Rouse kernel [McKinley et al., 2009]:

φptq “
ν

K

K
ÿ

k“1

expp´|t|{τkq, τk “ τ ¨ pK{kqγ. (3.4.5)

The sum-of-exponentials form of (3.4.5) is a longstanding linear model for viscoelastic

relaxation [e.g., Soussou et al., 1970, Ferry, 1980, Mason and Weitz, 1995], whereas the

specific parametrization of the relaxation modes τk has been shown for sufficiently large K

to exhibit transient subdiffusion [McKinley et al., 2009],

msdXptq “

$

’

’

’

&

’

’

’

%

2Deff ¨ t
αeff tmin ă t ă tmax

Cmin ¨ t t ă tmin

Cmax ¨ t t ą tmax,

(3.4.6)

where the subdiffusive range parameters ptmin, tmaxq and the effective subdiffusion parame-

ters pαeff, Deffq are implicit functions of K, γ, τ , and ν. Details of the parameter conversions
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and the exact form of (3.4.6) are provided in Appendix E.

Figure 3.7 displays the MSD of various GLE processes with fixed K “ 300, and tγ, τ, νu

tuned to have αeff “ 0.63, Deff “ 0.58, and values of tmin{∆t “ t5, 10, 20, 50, 100u. In all

cases the value of tmax was several times larger than the experimental timeframe N∆t “

30 s, such that the observable MSD could potentially be matched by the fBM-driven high-

frequency models of Section 3.3. The trajectories for this experiment were simulated from

Y pbq iid
„ MatNormp0,V ,Σq,

where Σ “ r 1 0
0 1 s and V is the pN`1qˆpN`1q variance matrix of the GLE process (3.4.4)

with MSDs displayed in Figure 3.7.
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Figure 3.7: MSD of GLE processes with αeff “ 0.63, Deff “ 0.58, and tmin{∆t “
t5, 10, 20, 50, 100u. The horizontal dashed lines indicated tmin, and the diagonal dashed
line corresponds to an fBM process with the same subdiffusive parameters pαeff, Deffq. The
dotted vertical lines indicate the beginning and end of experiment, at ∆t “ 1{60 s and
N∆t “ 30 s, respectively.

Figure 3.8 displays the parameter estimates of αeff and Deff for the six estimators de-

scribed in Section 3.4.1, and Table 3.2 displays the true coverage probabilities of the cor-

responding 95% confidence intervals. As in Figure 3.6, the LS estimator has the highest
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Figure 3.8: Estimates of αeff and Deff for simulated GLE trajectories with true parameters
αeff “ 0.63, Deff “ 0.58, K “ 300, and tmin{∆t “ t5, 10, 20, 50, 100u.

Table 3.2: Actual coverage by 95% confidence intervals with different GLE processes.

P95pαq GLE-5 GLE-10 GLE-20 GLE-50 GLE-100

fBM 0 0 0 0 0
fSD 96 96 64 0 0
fMA 95 84 25 0 0
fMA2 92 95 89 15 0
fARMA 92 92 95 85 53

P95plogDq GLE-5 GLE-10 GLE-20 GLE-50 GLE-100

fBM 31 8 1 1 11
fSD 94 95 87 78 74
fMA 93 92 78 68 81
fMA2 94 95 93 93 92
fARMA 93 94 93 95 91
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variance and fBM the largest bias. In this case however the fSD and fMA parameteric es-

timators exhibit considerable bias in estimating α, especially when tmin " ∆t. In contrast,

the fARMA estimator displays good accuracy and reasonable coverage even when tmin is

50ˆ the interobservation time ∆t.

3.5 Analysis of Experimental Data

We now investigate the performance of our high-frequency filters on a variety of real single-

particle tracking experiments described in Table 3.3. For each experiment, Table 3.3 reports

the interobservation time ∆t, the number of observations per trajectory N , and the type

of camera and particle tracking software. All tracked particles are inert polystyrene beads

of diameter d “ 1 µm.

3.5.1 Viscous Fluids

The first six experiments are conducted in viscous fluids (water and glycerol), for which

α “ 1 and the diffusivity constant D is derived from the Stokes-Einstein relation (3.1.2).

For the six estimators described in Section 3.4.1, estimates of pα,Dq and true coverage

probabilities of the associated 95% confidence intervals are displayed in Figure 3.9 and Ta-

ble 3.4, respectively. Both the fSD and proposed high-frequency estimators remove most

of the bias of fBM without camera error correction. However, the fSD 95% confidence

intervals suffer from severe under-coverage, due to the parameter identifiability issue noted

in Section 3.4.1. Indeed, Table 3.5 shows that τ̂ is significantly larger than its true value

τ , which is necessary in the H2O experiments to capture high-frequency MSD suppres-

sion. When τ is fixed at its true value, fSD estimation results are obviously biased, as in

Figure 3.1.

3.5.2 Viscoelastic Fluids

The remaining 12 experiments from Table 3.3 are conducted in two kinds of viscoelastic me-

dia. The first consists of mucus harvested from primary human bronchial epithelial (HBE)
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Table 3.3: Summary of experimental conditions for various single-particle tracking experi-
ments. The different types of fluids are water (H2O), glycerol (GLY), mucus from human
bronchial ephithelia cell cultures (HBE), and polyethilene oxide (PEO). The subscripts
correspond to sampling frequency for H2O, percent concentration for GLY, and percent
weight (wt%) for HBE and PEO. The two types of cameras are Flea3 USB 3.0 [Flea3:
FLIR, 2019] and Panoptes [Pan: CISMM, 2019a]. The particle tracking software employed
is either Video Spot Tracker [VS: CISMM, 2019b] or Net Tracker [Net: Newby et al., 2018].

Medium Name D ∆t (s) N Camera Software

Viscous

H2O15 0.43 1/15 1800 Flea3 Net

(α “ 1)

H2O30 0.43 1/30 1800 Flea3 Net
H2O60 0.43 1/60 1800 Flea3 Net
H2O60b 0.43 1/60 1800 Flea3 VS
GLY60 0.09 1/60 1800 Flea3 VS
GLY80 0.022 1/60 1800 Flea3 VS

Viscoelastic

HBE1.5 - 1/60 1800 Flea3 VS

(α unknown)

HBE2 - 1/60 1800 Flea3 VS
HBE2.5 - 1/60 1800 Flea3 VS
HBE3 - 1/60 1800 Flea3 VS
HBE4 - 1/60 1800 Flea3 VS
HBE5 - 1/60 1800 Flea3 VS

PEO0.22 - 1/38.17 1145 Pan VS
PEO0.45 - 1/38.17 1145 Pan VS
PEO0.6 - 1/38.17 1145 Pan VS
PEO0.75 - 1/38.17 1145 Pan VS
PEO0.9 - 1/38.17 1145 Pan VS
PEO1.22 - 1/38.17 1145 Pan VS

Table 3.4: Actual coverage by 95% confidence intervals in viscous fluid study.

H2O15 H2O30 H2O60 H2O60b GLY60 GLY80

fBM 0 0 0 0 4 16
fSD 47 42 47 11 14 44
fMA 94 90 93 85 90 71
fMA2 95 91 92 87 91 75
fARMA 95 92 94 88 92 82
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Figure 3.9: Estimated subdiffusive parameters pα,Dq, viscous fluids study.

Table 3.5: Ratio of true and estimated exposure time to interobservation time for fSD
model.

H2O15 H2O30 H2O60 H2O60b GLY60 GLY80

True τ{∆t 0.3 0.3 0.3 0.3 0.3 0.3
Estimated τ̂{∆t 0.93 0.91 0.89 0.91 0.85 0.54
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cell cultures [Hill et al., 2014]. Washings from cultures were pooled and concentrated to

desired weight percent solids (wt%). Higher concentrations of solids in lung mucus have

been associated with disease states, so an accurate recovery of biophysical properties is

critical in samples with volumes too small to directly measure wt% [Hill et al., 2014]. The

second medium, polyethylene oxide (PEO), is a synthetic polyether compound with ap-

plications in diverse fields ranging from biomedicine to industrial manufacturing [Working

et al., 1997]. The present data consists of trajectories in 5 megadalton (MDa) PEO at

a range of wt% values. In all 12 viscoelastic experiments, subdiffusive motion α ă 1 is

expected, but the true values of pα,Dq are unknown.

Figure 3.10 displays the pα,Dq estimates of the six subdiffusion estimators for the vis-

coelastic experiments. For viscoelastic fluids, the movement of particles is not predictable

and the true value of subdiffusive parameters pα,Dq remains unknown. In order to iden-

tify the most reliable model in extracting pα,Dq for PEO and HBE experiments, we relate

the accuracy in estimating subdiffusive parameters with the overall deviation of estimated

MSDs from observed MSDs. For two particle trajectories Xptq and Y ptq, we can quantify

the “gap” between their MSDs using the following measurement:

dpX,Y q “
1

T

ż T

t“0

| log
msdXptq

msdY ptq
| dt

As is demonstrated in Figure 3.11, dpX,Y q can be interpreted as the area of the gap

between msdX and msdY during r0, T s in logarithmic scale.

To estimate the deviation between the MSD of experimental trajectories Xi and its

estimated MSD using model Mj, we have

d̂
piq
Mj
“

1

T

T
ÿ

n“1

| log
ymsdXi

pn ¨∆tq

ymsd
pMjq

Xi
pn ¨∆tq

|

where ymsdXi
is computed using Equation (3.1.1) and ymsd

pMjq

Xi
is computed using Equa-

tion (D.1.1), Mj P tfBM, fSD, fMA, fMA2, fARMAu. Because of the increasing bias

in non-parametric estimated ymsdXi
pn ¨∆tq as n increases [Mellnik et al., 2016], length of

range T is selected to be 40% of total trajectory length N .
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Figure 3.10: Estimated subdiffusive parameters pα,Dq, viscoelastic fluids study.
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Figure 3.11: The area of the gap between two MSDs.

Table 3.6 demonstrates the average deviation d̂Mj
“ 1

M

řM
i“1 d̂

piq
Mj

for different methods,

and shows that model fARMA provides best fitting for almost all experiments.

After having a closer look at the viscoelastic data, we find that the recorded trajectories

are always multiples of a specific constant c “ 0.00703125, which suggests that recorded

coordinates of particles Yi, i “ 0, 1, . . . , N are results of grid-fitting of true particle positions

Xi: Yi “ tXi

c
s ¨ c, and suffer from the following round-off error

Yi “Xi ` εi, εi
iid
„ Unifp´c{2, c{2q

which is within the framework of the static error (3.2.6). Since the size of static error

σ2 « c2

12
is constant across experiments while the variance of trajectory increments varp∆Xq

(proportional to D in Figure 3.10) decreases as concentration increases, the overall signal-

to-noise ratio SNR “
varp∆Xq

σ2 is negatively-correlated with the medium concentration.

Taking this into consideration, the fact that fSD outperforms fMA when concentration

grows in Table 3.6 is consistent with the cost of model misspecification of fMA model

demonstrated in Figure 3.4(a).

Generally speaking, fARMA has the best performance with respect to heavy experi-

mental noises, but the “sensitivity” in AR parameter estimation sometimes translates to

the increased variability in estimates of pα,Dq. On the contrary, fMA model is fastest (with

minimal number of parameters) and has smallest variance (the least spread of whiskers in
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Table 3.6: Measured deviation in the estimated MSD, viscoelastic fluid study.
For each experiment, the estimator with the smallest deviation is highlighted in bold.

HBE1.5 HBE2 HBE2.5 HBE3 HBE4 HBE5

fBM 0.160 0.230 0.200 0.190 0.210 0.110
fSD 0.097 0.065 0.085 0.087 0.070 0.080
fMA 0.094 0.071 0.091 0.092 0.076 0.089
fMA2 0.088 0.066 0.075 0.078 0.061 0.073
fARMA 0.093 0.060 0.067 0.063 0.056 0.070

PEO0.22 PEO0.45 PEO0.6 PEO0.75 PEO0.9 PEO1.22

fBM 0.130 0.160 0.180 0.170 0.150 0.210
fSD 0.100 0.110 0.130 0.100 0.120 0.093
fMA 0.100 0.120 0.140 0.120 0.120 0.110
fMA2 0.098 0.095 0.100 0.092 0.097 0.087
fARMA 0.088 0.095 0.094 0.084 0.086 0.081

Figure 3.10), but can be more biased when heavy noises exist.

3.6 Discussion

In this chapter we present a ARMApp, qq filter that theoretically accounts for all currently

known high-frequency noise sources in particle tracking experiments. We also study its

most simplified version: the fMA model, that can be conveniently modified and applied in

real experiments. Under the framework of location-scale model, parameter estimation and

further statistical inference can be efficiently obtained. In order to evaluate the performance

of fMA model, rigorous comparison between fMA and fSD model is conducted, where fSD

model is a parametric model that depends on the state-of-art theory for experimental

noises. Comparison results show that even with only one parameter controlling the whole

dynamic in noise filtering, fMA has comparable performance with the complicated fSD

model for parameter estimation.

The validity of fMA model is further proven in simulation and the viscous fluid study,

where the ground true about particle trajectories are given. It turns out that Savin and
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Doyle’s localization errors are not sufficient for the full spectrum of high-frequency noise

sources, not only for its instability in diffusive environments (α “ 1) but also estimated

exposure time τ is unrealistically high. In viscoelastic fluid experiments where the detailed

mechanistic principles and precise underlying stochastic processes driving the “pure” par-

ticle motion remain unknown, we applied the fMA model to recorded positions to help

understand the properties of particles in biological fluids.

There still exists many future work about proposed ARMApp, qq filter. The determi-

nation of the order of autoregressive and moving-average terms remains unsolved. We also

do not have the precise computation of the autocovariance of arbitrary ARMApp, qq filter

and use the numerical approximation instead. In addition, computation cost of maximum

likelihood estimate grows exponentially as number of parameters increases, meaning that

we cannot directly estimate an arbitrary order of ARMApp, qq filter.
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Chapter 4

Heterogeneity Metric for Particle

Tracking

4.1 Introduction

Biological fluids, such as mucus, are considerably heterogeneous on microscopic to macro-

scopic length scales, due to their diverse molecular composition. Heterogeneity describes

the lack of uniformity in the substance of such media and reflects the multiple-functionality

of materials [Mellnik et al., 2014]. It also has a close relationship with other physical prop-

erties including viscoelasticity and may affect the behavior of particles that are diffusing in

this medium [Wirtz, 2009]. For instance, the heterogeneous environment in mucus barriers

of lung airways provides the biological material with the ability to regulate the diffusive

dynamics of a wide range of particles [Lai et al., 2009] and tune viscoelastic moduli across

a wide frequency spectrum [Matsui et al., 2005].

By analyzing the movements of particles within the same fluid, particle tracking mi-

crorheology provides unprecedented information about the heterogeneity of fluids [Valen-

tine et al., 2001], where the resulting analysis hinges pivotally on the measurement of

particles’ MSD. In Figure 4.1 we demonstrate the observed MSD of particles diffusing in

mucus from primary human bronchial epithelial (HBE) cell culture [Hill et al., 2014], and
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compare it with a path-by-path simulation where the medium is assumed to be homoge-

neous.
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Figure 4.1: Estimated and simulated MSD for particles in HBE medium.
(a) Observed MSD computed using Equation (3.2.2).
(b) Simulated MSD, where trajectory coefficients are assumed to be identical for each path, and
are estimated using the mean of parameters.

In addition to biological interests, heterogeneity of the fluid medium is also important

for statistical reasons. In many applications, particle trajectories are analyzed by the

ensemble average over paths [Tseng et al., 2002]. Such an approach is a natural protocol

for scenarios where the arithmetic mean is a sufficient statistic, which does not necessarily

hold for heterogeneous situations.

Considering the scientific and statistical importance of heterogeneity, it is valuable to

have practical tools to detect and quantify material heterogeneity. To this end, several tools

have been designed around the so-called van Hove correlation function [e.g., Yamamoto and

Onuki, 1998], which is the distribution of increments

∆Yi,n “ Yippn` 1q∆tq ´ Yipn∆tq

over particles i “ 1, ...,M in a given medium for a given interobservation time ∆t, where

Y ptq is the process of particle trajectories. If Yiptq is a CSI Gaussian process and the

medium is homogeneous, then the van Hove correlation function is Gaussian. Examples of
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related heterogeneity metrics include the non-Gaussian parameter NGτ [Rahman, 1964],

the excess kurtosis of the van Hove function [Houghton et al., 2008] and application of “bin

partitions” of compliance values Γpτq [Tseng et al., 2002]. In additional cases, heterogeneity

is related to the variability of particle trajectory parameters. For instance, the scatter in

the observed diffusion coefficients D is used as a measure of the heterogeneity of a cell

membrane [Saxton, 1997], and an F-statistic that compares the standard deviation of

individual particle increments relative to a chosen particle [Valentine et al., 2001].

In this chapter, we quantify the heterogeneity of the experimental media through the

dispersion of estimated particle trajectory parameters, especially the subdiffusion parame-

ters pα,Dq. Existing methods following this approach compare the variability of parameters

against some baselines [Saxton, 1997, Valentine et al., 2001], where accuracy is greatly in-

fluenced by the selection of benchmarks. On the contrary, our proposed metric, which

is constructed from the coefficient of variation (CV) of estimated trajectory parameters,

comes with a computationally efficient estimator, which greatly stabilizes the whole mech-

anism. In addition, we propose a parametric bootstrap method to statistically test against

the hypothesis that the fluid is homogeneous. This homogeneity test is shown to be consis-

tent with a likelihood ratio test for homogeneity in further simulation studies and analyses

of experimental data, where the proposed metric successfully quantifies the heterogeneity

of fluids in different experiments.

The remainder of this chapter is organized as follows. In Section 4.2 we present a hier-

archical model to describe the heterogeneity phenomena in particle tracking experiments,

and propose a metric based on this model. Then we provide a computationally efficient

estimator for the metric and present a homogeneity test based on the proposed metric,

with a likelihood ratio test that serves a similar purpose. In Section 4.3 we categorize

“heterogeneity” into two kinds: large variance and clusters, and propose an EM algorithm

for identifying different clusters. In Section 4.4 we numerically examine the validity of the

proposed metric and tests. In Section 4.5 we apply the heterogeneity metric to particle

tracking data. Concluding remarks are offered in Section 4.6.
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4.2 Our Approach

4.2.1 Hierarchical Model Structure

For the M different particle trajectories Y1, . . . ,YM observed in the same fluid, the hier-

archical model on all M datasets is

Yi | θi
ind
„ fpYi | θiq

θi
iid
„ qpθ | ηq,

(4.2.1)

where fpYi | θiq is the density function of the particle trajectory Yi, θi is the vector of

particle trajectory parameters, and η are the hyper-parameters of the hierarchical model.

Such a model naturally induces the between-path particle heterogeneity.

Bayesian inference for this hierarchical model requires a prior on η „ πpηq and produces

a posterior distribution

ppη,θ | Y q “ πpηq ¨
M
ź

i“1

fpYi | θiqqpθi | ηq,

where θ “ pθ1, ...,θMq and Y “ pY1, ...,YMq.

While this construction is conceptually appealing, exact parameter inference must typ-

ically be conducted by Markov chain Monte Carlo (MCMC) sampling of the joint posterior

distribution, which requires numerous evaluations of the likelihood functions fpYi|θiq. Here

we model Yiptq using the location-scale model (3.2.5) of Chapter 3. Thus, even using the

superfast inference algorithms of Chapter 2, each step of an exact MCMC algorithm scales

as OpMN log2Nq, which quickly becomes prohibitively expensive when M is moderate to

large. As an alternative, we conduct approximate Bayesian inference using the following

approach of Lysy et al. [2016]

The approximation stems from the fact that the path-wise likelihood Lpθi|Yiq, which

is proportional to the density function

Lpθi|Yiq 9 fpYi|θiq,
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is asymptotically equivalent to

φppθi ´ θi | F
´1
i q,

where pθi is the MLE estimate of θi, Fi is the observed Fisher information, and φpz | Σq

is the PDF of a multivariate normal with mean zero and variance Σ evaluated at z. Thus

by setting

θi
iid
„ qpθ|ηq ” θi

iid
„ Npθ0,Ω0q, (4.2.2)

the approximate distribution on η “ pλ0,Ω0q and Θ “ pθ1, ...,θMq is that of the normal-

normal hierarchical model

pθi | θi
ind
„ N pθi,F´1

i q

θi
iid
„ N pθ0,Ω0q.

(4.2.3)
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Figure 4.2: The approximated normal-normal hierarchical model.

This approximation procedure (illustrated in Figure 4.2) converts the original hier-

archical model (4.2.1) into a highly tractable one. For one, calculating the MLEs and

Fisher informations pθi and Fi for each particle can be done in parallel. Moreover, for the

scale-invariant hyper-parameter prior

πpθ0,Ω0q 9 |Ω0|
´pω`L`1q{2,

where L is the dimension of θ, and ω is the degree of freedom of the Inverse-Wishart prior

for Ω0, the approximate posterior (4.2.3) has precisely the form of a multivariate normal

distribution and can be analyzed in a Bayesian approach using a Gibbs sampler [Lysy
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et al., 2016].

4.2.2 Single-Parameter Heterogeneity Metric

In order to quantify the heterogeneity from the distribution of one parameter τ P θ, we

propose to defining a heterogeneity metric B as the fraction of the variance of the MLE

estimate τ̂ that is “unexplained” by the underlying variance of the parameter τ :

Bpτq “ 1´
varpErτ̂i|θisq

varpτ̂iq
“
Ervarpτ̂i|θiqs

varpτ̂iq
.

If θi is the same for all i, we have that varpτ̂i | θiq “ varpτ̂iq, a number equal to its

expectation, meaning that B “ 1. Otherwise for heterogeneous situations we have that

B ă 1. Without loss of generality, we assume that the parameter τ is the first element

of θ “ tθp1q, . . . , θpLqu, i.e. τ “ θp1q. This metric can also be interpreted as the shrinkage

factor for the multilevel model (4.2.3) [Morris et al., 2012].

In the following, we are going to propose an estimator for B. The estimation step starts

from a normal approximation of the distribution of the MLE estimate τ̂i that

τ̂i „ N pτi, σ2
i q,

where σ2
i is the first diagonal element of the inverse Fisher information Σi “ F

´1
i . This

approximation stems from the hierarchical model pθi | θi
ind
„ N pθi,F´1

i q, and reveals that

varpτ̂i | θiq “ σ2
i .

As a result, the expected variance of τ̂i | θi can be approximated by the average variance

Ervarpτ̂i|θiqs «
1

M

M
ÿ

i“1

varpτ̂i | θiq “
1

M

M
ÿ

i“1

σ2
i .

In general the variance σ2
i is incalculable. However, if the MLE pθi is computed using the
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location-scale model for particle trajectories (3.2.5)

∆Yi „ MatNormpGβ,Vϕ,Σq, (4.2.4)

where G is the drift process for particle trajectory increments ∆Yi and θ “ tβ,ϕ,Σu,

we can compute the expected Fisher information efficiently and analytically using Equa-

tion (2.3.6)

Fi “ E

«

´
B2

BθBθ1
`pθ | Yiq

∣∣∣∣
θ“θi

ff

,

where `pθ | Yiq is the log-likelihood of the location-scale model (4.2.4). The detailed

computation of Fi is described in Appendix F.

Because of the lack of the true value θi, we can plug in the MLE estimate pθi and

estimate the inverse Fisher information F´1 using

pΣi “ E

«

´
B2

BθBθ1
`pθ | Yiq

∣∣∣∣
θ“pθi

ff´1

. (4.2.5)

The first diagonal element of pΣi is denoted as σ̂2
i , which is an estimate for σ2

i “ varpτ̂i | θiq.

In addition, some particles will move far enough in the direction perpendicular to the

focal plane so as to no longer be detectable, therefore their trajectories have different

lengths and are shorter than the experimental duration N . However, the current estimate

of the numerator does not account for this fact. Considering that the Fisher information in

trajectory Yi is proportional to its length Ni, we introduce a weight wi “
Ni
N

to resolve the

bias induced by particles randomly exiting the camera focal plane, and have the following

weighted average to estimate the expected conditional variance

Ervarpτ̂i|θiqs «
1

M

M
ÿ

i“1

wi ¨ σ̂
2
i . (4.2.6)

The denominator varpτ̂q is estimated using the traditional method, where the sample

variance s2pτ̂q “ 1
M´1

řM
i“1pτ̂i´

1
M

řM
j“1 τ̂jq

2 is applied. In conclusion, for a single parameter
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τ , the estimator for its heterogeneity metric Bpτq has the following form

B̂pτq “

řM
i“1wi ¨ σ̂

2
i

M ¨ s2pτ̂q
. (4.2.7)

4.2.3 Multiple-Parameter Heterogeneity Metric

When multiple parameters are included to measure the heterogeneity of the fluid, both

Ervarppθi | θiqs and varppθiq are matrices instead of numbers. To define a multi-parameter

heterogeneity metric that still reflects the fraction of the variance of the MLE estimated
pθi that is “unexplained” by the covariance of the parameter θ, we use the matrix trace to

quantify the variance in pθi | θi and θi, i.e. the multi-parameter metric is defined as

Bpθq “
trtErvarppθi|θiqsu

trtvarppθiqu
.

The estimation of Bpθq starts from the multi-variate normal approximation of the

distribution of pθi in the normal-normal hierarchical model (4.2.3), where

pθi „ N pθi,Σiq, Σi “ E

«

´
B2

BθBθ1
`pθ | Yiq

∣∣∣∣
θ“θi

ff´1

. (4.2.8)

Following the same logic in (4.2.6), we estimate the expected covariance of pθi | θi with

Ervarppθi | θiqs «
1

M

M
ÿ

i“1

wi pΣi,

where pΣi is defined in (4.2.5). In addition, the denominator varppθiq can be computed

following the traditional method

varppθiq “
1

M ´ 1

M
ÿ

i“1

ppθi ´ pθ0qp
pθi ´ pθ0q

1,
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where pθ0 “
1
M

řM
i“1

pθi. In conclusion, the multi-parameter heterogeneity metric B̂pθq can

be estimated using

B̂pθq “
trt 1

M

řM
i“1wi

pΣiu

trtvarppθiqu
. (4.2.9)

In addition to the point estimate of the single-parameter metric (4.2.7) and multi-

parameter metric (4.2.9), we provide a bootstrap sampling approach to approximate the

unconditional distribution of B̂:

1. Sample M parameters from original MLE estimates tpθ1, . . . , pθMu with replacement

and obtain a new dataset tpθ‹1, . . . ,
pθ‹Mu.

2. For each sample, compute its heterogeneity metric B̂pθ‹q using Equation (4.2.9). For

the single parameter metric, we extract τ̂ ‹i from pθ‹i and compute the metric B̂pτ ‹q

using Equation (4.2.7).

3. Repeat step (1) - (2) K times to obtain a size K sample of B̂ : tB̂1, ¨ ¨ ¨ , B̂Ku.

With the non-parametric bootstrap sample tB̂1, ¨ ¨ ¨ , B̂Ku, we can obtain the numerical

approximation of the variance of B̂ using the sample variance s2pB̂q and further construct

the its 95% confidence interval with the empirical quantiles.

4.2.4 Hypothesis Test

In addition to the estimator for the heterogeneity metric B̂pθq, we propose a test for the

null hypothesis of homogeneity, which has two equivalent representations

H0 : Bpθq “ 1, HA : Bpθq ă 1

H0 : Ω0 “ 0, HA : Ω0 is a positive definite matrix,

where Ω0 is the covariance of θi in the prior (4.2.2). Under H0, pθi approximately follows

a multivariate normal distribution

pθi
ind
„ N

ˆ

θ0,
1

wi
¨Σ0

˙

, (4.2.10)

82



where θ0 ” θi is the true value of model parameters, Σ0 “ E

„

´ B2

BθBθ1
`pθ | Yiq

∣∣∣
θ“θ0

´1

is

the inverse Fisher information at θ0 and the weight 1
wi

is used to adjust the size of the

variance according to particle trajectory lengths Ni. To estimate the value of θ0 under H0,

we maximize the log-likelihood of (4.2.10)

`pθ0 |
pθiq “

M
ÿ

i“1

t´
1

2
wippθi ´ θ0q

1Σ´1
0 p

pθi ´ θ0q ´
1

2
log |Σ0|u

where the matrix

Σ0 “ E

«

´
B2

BθBθ1
`pθ | Yiq

∣∣∣∣
θ“θ0

ff´1

is a function of θ0.

With the MLE estimate pθ0 “ arg maxθ0
`pθ0 |

pθiq and pΣ0 “ E

„

´ B2

BθBθ1
`pθ | Yiq

∣∣∣
θ“pθ0

´1

,

we propose a parametric bootstrap procedure to estimate the distribution of B̂pθq under

H0:

1. Sample pθ‹i from the multivariate normal distribution

pθ‹i „ N ppθ0, pΣ0q.

For each simulated pθ‹i , pair it with a covariance matrix pΣ‹
i , where

pΣ‹
i “ E

«

´
B2

BθBθ1
`pθ | Yiq

∣∣∣∣
θ“pθ‹i

ff´1

and obtain
´

pθ‹i ,
1
wi
pΣ‹
i

¯

.

2. Iterate step (1) from i “ 1, . . . ,M , where M is the number of trajectories in the

experiment. Then we have a size M sample of
´

pθ‹i ,
1
wi
pΣ‹
i

¯

under H0.

3. With the sample t
´

pθ‹i ,
1
wi
pΣ‹
i

¯

uMi“1 we can compute the corresponding heterogeneity
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metric B̂‹pθq from simulated data set t
´

pθ‹j ,
pΣ‹
j

¯

uMj“1 using Equation (4.2.9). If we

wish to test the homogeneity of a single parameter τ , we can extract
´

τ̂ ‹i ,
1
wi
σ̂2‹
i

¯

from the parametric samples where τ̂ ‹i is the first element of pθ‹i and σ̂2‹
i is the first

diagonal element of pΣ‹
i , then compute the metric B̂‹pτq using Equation (4.2.7).

4. Repeat step (3) K times to obtain the size K simulation of B̂‹ under null hypothesis

H0.

Based on the samples tB̂‹1 , B̂
‹
2 , . . . , B̂

‹
Ku we can obtain the empirical distribution of

metric B under H0

π̂Bptq “
1

M

M
ÿ

i“1

IB̂‹iďt
,

and construct the hypothesis test based on πBptq. We will reject the null hypothesis when

the original metric B̂ ă qπpaq for significance level a, where qπpaq is the a quantile of

empirical distribution π̂Bptq.

4.2.5 Likelihood Ratio Test for Homogeneity

In addition to the hypothesis test based on the proposed metric, we also introduce a

likelihood ratio test for homogeneity, where the null hypothesis is

H0 : Ω0 “ 0 HA : Ω0 is a positive definite matrix.

Within the framework of the previously proposed distribution of pθi (4.2.8) and the mul-

tivariate normal prior (4.2.2), we have the distribution of pθi for given parameters tθ0,Ω0u

pθi | θ0,Ω „ N pθ0,Σi `Ω0q. (4.2.11)

To test the null hypothesis, we can construct a likelihood ratio test by maximizing
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following two likelihoods:

`0pθ0 |
pθiq “ ´

1

2

M
ÿ

i“1

tlog |pΣi| ` p
pθi ´ θ0q

1
pΣ´1
i p

pθi ´ θ0qu

`Apθ0,Ω0 |
pθiq “ ´

1

2

M
ÿ

i“1

tlog |pΣi `Ω0| ` p
pθi ´ θ0q

1
rpΣi `Ω0s

´1
ppθi ´ θ0qu,

where `0pθ0 |
pθiq is the likelihood of model (4.2.11) under H0 and `Apθ0,Ω0 |

pθiq is the

likelihood of model (4.2.11) under H0 YHA. Their MLE estimates are respectively

pθ
p0q
0 “ arg max

θ0

`0pθ0 |
pθiq

ppθ
pAq
0 , pΩ

pAq
0 q “ arg max

θ0,Σ0

`Apθ0,Ω0 |
pθiq,

which can be obtained through numerical optimization in particle tracking experiments.

As the number of particle trajectories M goes to infinity, we have that

tppθiq “ ´2
´

`0p
pθ
p0q
0 | pθiq ´ `Appθ

pAq
0 , pΩ

pAq
0 | pθiq

¯

d
Ñ χ2

LpL´1q{2.

where LpL´ 1q{2 is the difference between the number of parameters in `0 and `A

In the likelihood ratio test, H0 will be rejected when the test statistic tppθiq ą qχ2
LpL´1q{2

paq

for significance level a, where qχ2
LpL´1q{2

paq is the a-th quantile of χ2
LpL´1q{2 distribution.

4.3 Heterogeneity: Large Variance and Clusters

The definition of heterogeneity refers to the “over-dispense” in the distribution of particle

trajectories. However the over-dispersion caused by a large variance and the over-dispersion

caused by the presence of multiple clusters have distinct interpretations in particle tracking

experiments. The former case is the indication of ergodicity breaking, while the latter case

is more likely to be caused by unaccounted experimental or instrumental errors.

When multiple clusters exist in the particle tracking data, the whole experimental
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results will definitely look heterogeneous and have a low value of the heterogeneity metric.

However, the trajectories within the same cluster can still be homogeneous. In order

to examine the homogeneity of trajectories within a cluster, we need an algorithm to

identify different clusters in particle tracking data and label their members. In the following

we introduce a mixture model with K components for M estimated parameters pθi, i “

1, . . . ,M

zi „ Multinomialpπq

pθi | zi “ k „ N pµk,Φkq,

where π “ tπ1, . . . , πKu is a vector of length K and its elements πk “ P pzi “ kq are

the weights of different clusters which sum up to 1. The members in the k-th cluster

are assumed to follow a multivariate normal distribution with mean µk and variance Φk.

The parameters of the Gaussian mixture model are not estimated by maximizing the log-

likelihood

`pπ,µk,Φk |
pθiq “

M
ÿ

i“1

˜

log
K
ÿ

k“1

πkpkppθi | µk,Φkq

¸

,

because of its unbounded likelihood function, infinite Fisher information and other unde-

sirable properties [Hartigan, 1985, Chen et al., 2009]. An EM algorithm of the following

updating steps can be applied for a consistent parameter estimation of the multivariate

Gaussian mixture model.

For the pn ´ 1qth guess of parameters Θpn´1q “ tπpn´1q,µ
pn´1q
k ,Φ

pn´1q
k u, k “ 1, . . . , K,

we first compute the “membership weight” for data pθi in cluster k

w
pnq
i,k “ ppzi “ k | pθi,Θ

pn´1q
q “

π
pn´1q
k ¨ pkppθi | zi “ k,µ

pn´1q
k ,Φ

pn´1q
k q

řK
j“1 π

pn´1q
j ¨ pjppθi | zi “ j,µ

pn´1q
j ,Φ

pn´1q
j q

,

where pk is the density of a D-dimensional multivariate Gaussian

pkpx | µk,Φkq “
1

p2πqD{2|Φk|
1{2

expt´
1

2
px´ µkq

1Φ´1
k px´ µkqu.

Let M
pnq
k “

řM
i“1w

pnq
ik be the sum of the membership weights for the k-th component,
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we update Θpnq with

π
pnq
k “

Mk

M

pnq

µ
pnq
k “

1

M
pnq
k

M
ÿ

i“1

w
pnq
i,k ¨

pθi

Σ
pnq
k “

1

M
pnq
k

M
ÿ

i“1

w
pnq
i,k ¨ p

pθi ´ µ
pnq
k qp

pθi ´ µ
pnq
k q

1.

The iteration will stop when the improvement in the likelihood εn “ `pπpnq,µ
pnq
k ,Φ

pnq
k |

pθiq ´ `pπpn´1q,µ
pn´1q
k ,Φ

pn´1q
k | pθiq is too small, and the algorithm finally returns the es-

timated parameters Θ̂ “ tπ̂, µ̂k, Σ̂ku. We can further identify the members of different

clusters by checking their membership weight, where data pθi belongs to the cluster k such

that wi,k is the largest.

4.4 Simulation Study

In this section, we evaluate the performance of the heterogeneity metric B in various

simulation settings. In each setting, we simulate M “ 500 observed data trajectories

Y pmq “ rY
pmq

1 , . . . ,Y
pmq
N s, m “ 1, . . . ,M , each consisting of N “ 1800 two-dimensional

observations recorded at time intervals ∆t “ 1{60.

To better fit the assumption of a multivariate Gaussian prior (4.2.2), model parameters

are generated and estimated in transformed scales such that their distribution is more

“Gaussian”. For instance the diffusivity D ą 0 is transformed into the log scale λ “ logD

and the subdiffusive parameter α P p0, 2q is transformed into a boundless form γ “ log α
2´α

.

Since the sub-linear power law of MSD

msdptq „ 2D ¨ tα

is determined by the subdiffusive parameters pα,Dq, we can investigate the heterogeneity

of fluids by examining the heterogeneity metric on pα,Dq . In the following analyses of
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simulated and experimental data, we look into the heterogeneity metrics Bpαq, BpDq and

Bpα,Dq to study the features of the proposed metric and properties of the media.

4.4.1 fBM Simulation

Consider the following simulation setting designed to reveal how the metric B can quantify

the heterogeneity, where various levels of dispersion of parameters are manually included

in the simulated fBM processes. The particle trajectories are simulated from

Y pmq iid
„ MatNormp0,V‹,Ψ‹q, (4.4.1)

where Ψ‹ “
“

D‹ 0
0 D‹

‰

is a diagonal matrix and the size N ˆN covariance matrix V‹ is that

of a length-N fBM process with coefficient α‹. The subdiffusive coefficients pα‹, D‹q are

simulated independently from normal distributions

α‹
iid
„ N pα0, d ¨ σ

2
α0
q

D‹
iid
„ N pD0, d ¨ σ

2
D0
q,

where α0 “ 0.8, D0 “ 1, σ2
α0

and σ2
D0

are the first and second diagonal elements of the

inverse of observed Fisher matrix

«

´
B2

BaBa1
`pa | Y pmq

q

∣∣∣∣
a“a0

ff´1

where a “ pα,Dq, a0 “ pα0, D0q and `pa | Y pmqq is the likelihood of (4.4.1). The het-

erogeneity factor d ě 0 can be used to control the degree of heterogeneity in simulated

coefficients pα‹, D‹q. In this section we generate 6 groups of particle trajectories Y pmq with

different levels of d “ t0, 1{100, 1{10, 1{2, 1{5, 1u, and estimate the parameters using the

fBM method described in (3.4.3) in the transformed scale. Figure 4.3 displays the estima-

tion from the generated data sets, where the dispersion in estimated parameters grows as

d increases.

In Table 4.1 we demonstrate the estimated metric B for α, D and pα,Dq together.
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Figure 4.3: Estimated subdiffusive parameters pα,Dq, simulated fBM process.

For each estimated metric we test them against the heterogeneity using the parametric

Bootstrap method. From the metric and its hypothesis test, we find that metric B remains

a high value for the “absolute homogeneous” (d “ 0) case and “almost homogeneous”

(d “ 0.01) case. When the variety in true parameters pα,Dq is relatively high (d ě 0.1),

the heterogeneity metric will drop below 0.9 and tested to be heterogeneous. In addition,

we run the likelihood ratio test on pα,Dq to examine their homogeneity, and the result is

consistent with the heterogeneity metric.

Table 4.1: Estimated heterogeneity metric, fBM simulation.
For each experiment, the metric that passes the homogeneity test is marked with ‹.

d Bpαq BpDq Bpα,Dq pLRT

0 1‹ 1‹ 1‹ 0.91
0.01 0.99‹ 0.95‹ 0.96‹ 0.39
0.1 0.85 0.77 0.79 0
0.2 0.73 0.51 0.55 0
0.5 0.62 0.28 0.32 0

1 0.53 0.15 0.18 0
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4.4.2 fBM Simulation, fixed α

For simulated particle trajectories using fBM model (4.4.1), even when the subdiffusive

parameters pα,Dq are independently generated, their MLE estimate pα̂, D̂q are still corre-

lated through the Fisher information under location-scale framework. Since covpα̂, D̂q ‰ 0,

the heterogeneity in D will not only influence its MLE D̂, but also affect the distribution of

α̂. In order to examine whether the heterogeneity in one parameter “infects” the estimates

of other homogeneous parameters, we consider the following simulation procedure where

fBM processes with the same α but different D are simulated. The particle trajectories

are simulated from

Y pmq iid
„ MatNormp0,V0,Ψ‹q, (4.4.2)

where Ψ‹ “
“

D‹ 0
0 D‹

‰

is a diagonal matrix and the size N ˆN covariance matrix V0 is that

of an fBM process with coefficient α0 “ 0.8. The diffusivity D‹ is simulated from a normal

distribution

D‹
iid
„ N pD0, d ¨ σ

2
D0
q,

where D0 “ 1 and σ2
D0

is the second diagonal element of the inverse of observed Fisher

matrix
«

´
B2

BaBa1
`pa | Y pmq

q

∣∣∣∣
a“a0

ff´1

where a “ pα,Dq, a0 “ pα0, D0q and `pa | Y pmqq is the likelihood of (4.4.2). The hetero-

geneity factor has values d “ t0, 1{100, 1{10, 1{2, 1{5, 1u in different simulation scenarios.

The particle trajectories are estimated using the same fBM method in transformed scales.

Figure 4.4 displays the estimated pα,Dq from the generated data sets.

In Table 4.2 we demonstrate the estimated metric for α, D and pα,Dq, together with

their test result against heterogeneity using the parametric bootstrap method. We find

that in all scenarios Bpαq is very high and passes the homogeneity test, while for BpDq it

is essentially equal to one for the d “ 0 and d “ 0.01 cases, which is similar to the result

in the previous simulation. In addition, we find that Bpα,Dq is closer to the minimal

value among tBpαq, BpDqu, suggesting that when more than one parameter is applied to
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Figure 4.4: Estimated subdiffusive parameters pα,Dq, simulated fBM processes with fixed
α.

measure the heterogeneity, the overall performance is dominated by the most heteroge-

neous parameter. From this simulation we learn that the heterogeneity metric of different

parameters are almost independent, and homogeneous parameters remain homogeneous,

despite the heterogeneity in other dependent parameters.

Table 4.2: Estimated heterogeneity metric, fBM simulation with fixed α.
For each experiment, the metric that passes the homogeneity test is marked with ‹.

d Bpαq BpDq Bpα,Dq pLRT

0 1‹ 0.99‹ 1‹ 0.89
0.01 0.93‹ 0.92‹ 0.92‹ 0.44
0.1 0.93‹ 0.68 0.71 0
0.2 0.95‹ 0.55 0.60 0
0.5 1‹ 0.32 0.39 0

1 0.97‹ 0.25 0.30 0
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4.4.3 Model Misspecification Simulation

In this section, we show how the misspecified model will jeopardize the proposed metric and

influence the power of the homogeneity test. For this purpose, here we generate particle

trajectories using the fMA model proposed in Section 3.3.2, where the particle trajectories

are simulated from

Y pmq iid
„ MatNormp0,V‹,Ψ0q, (4.4.3)

where Ψ0 “
“

D0 0
0 D0

‰

, D0 “ 1 is a diagonal matrix and the size NˆN covariance matrix V‹

is that of an fMA model (3.3.7) with coefficients α0 “ 0.8 and ρ‹ generated from a normal

distribution

ρ‹
iid
„ N pρ0, d ¨ σ

2
ρ0
q,

where ρ0 “ 0.2, and σ2
ρ0

is the second diagonal element of the inverse Fisher matrix

E

«

´
B2

BaBa1
`pa | Y pmq

q

∣∣∣∣
a“a0

ff´1

where a “ pα, ρ,Dq a0 “ pα0, ρ0, D0q and `pa | Y pmqq is the likelihood of (4.4.3). The

generated Y pmq simulates the movement of a particle that is affected by a certain degree

of high-frequency noises.

In this section we generate 6 groups of particle trajectories Y pmq with identical subd-

iffusive parameters pα0, D0q and different levels of heterogeneity in high-frequency noises

by putting d “ t0, 1{100, 1{10, 1{2, 1{5, 1u. To investigate the aftermath of applying wrong

models in particle tracking experiments and the further influence on heterogeneity metric,

we estimate the subdiffusive parameters pα,Dq using fBM and fMA separately. Fig-

ure 4.5(a) shows the estimated pα,Dq using the fMA method, where estimations for all

cases look almost identical. Figure 4.5(b) displays the estimated pα,Dq using the fBM

method, where estimations are systematically biased because of the unaccounted high-

frequency noises. The increasing dispersion in the estimation implies that the heterogene-

ity in parameters will contaminate the homogeneous parameters pα,Dq when the wrong

parametric model is applied.

92



0.
9

0.
95

1
1.

05
1.

1

d = 0 d = 0.01 d = 0.1

0.
9

0.
95

1
1.

05
1.

1

0.75 0.8 0.85

d = 0.2

0.75 0.8 0.85

d = 0.5

0.75 0.8 0.85

d = 1

α

D

(4.5(a)) Estimated subdiffusive parameters in transformed scale pλ, γq where the correct fMA
model is applied.
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In Table 4.3 we show the heterogeneity metric of α, D and pα,Dq for fMA and fBM

estimates. Both subdiffusive parameters from the fMA model come with a high value in

metric B, and are tested to be homogeneous for all d value. This finding is consistent

with the conclusion in the previous simulation study that homogeneity of parameters α,D

will not be affected by the heterogeneous parameter ρ. As for the fBM cases, the het-

erogeneity metrics Bpαq, BpDq, Bpα,Dq are obviously inflated and greater than 1. The

metric B are defined to be a value between 0 and 1, but its estimate is not necessar-

ily bounded by 1, especially when incorrect models are applied. Despite the high metric

value, none of them passes the homogeneity test, even for the homogeneous (d “ 0) case

and “almost-homogeneous” (d “ 1{100) case. This finding suggests that our metric and

homogeneity test will completely fail when wrong models are used. Considering the es-

timator of heterogeneity metric (4.2.7) (4.2.9) where the Fisher information is involved,

the poor performance of the heterogeneity metric under model misspecification is under-

standable, because the Fisher information can change considerably for different models.

Table 4.3: Estimated heterogeneity metric, model misspecification simulation.
For each experiment, the metric that passes the homogeneity test is marked with ‹.

d
fMA fBM

Bpαq BpDq Bpα,Dq pLRT Bpαq BpDq Bpα,Dq pLRT

0 1‹ 0.97‹ 0.98‹ 0.87 1.2 1.1 1.1 0.77
0.01 0.98‹ 0.95‹ 0.95‹ 0.67 1.1 1.1 1.1 0.29
0.1 0.96‹ 0.97‹ 0.96‹ 0.43 1 1.1 1.1 0
0.2 0.99‹ 0.93‹ 0.94‹ 0.32 0.84 0.97 0.95 0
0.5 0.94‹ 0.96‹ 0.95‹ 0.40 0.74 0.87 0.82 0

1 0.97‹ 0.93‹ 0.94‹ 0.36 0.44 0.63 0.58 0

4.5 Experimental Study

We now investigate the performance of our heterogeneity metric on a variety of real single-

particle tracking experiments described in Table 4.4. For each experiment, Table 4.4 reports
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the theoretical diffusivity D, the interobservation time ∆t, the number of observations per

trajectory N , the type of camera and particle tracking software. All tracked particles are

inert polystyrene beads of diameter d “ 1 µm.

Table 4.4: Summary of experimental conditions for various single-particle tracking exper-
iments. The different types of fluids are water (H2O), glycerol (GLY), polyethilene oxide
(PEO) and mucus from human bronchial ephithelia cell cultures (HBE). The subscripts
correspond to sampling frequency for H2O, percent concentration for GLY, and percent
weight (wt%) for HBE and PEO. The two types of cameras are Flea3 USB 3.0 [Flea3:
FLIR, 2019] and Panoptes [Pan: CISMM, 2019a]. The particle tracking software employed
is either Video Spot Tracker [VS: CISMM, 2019b] or Net Tracker [Net: Newby et al., 2018]

Medium Name D ∆t (s) N Camera Software

Homogeneous

H2O15 0.43 1/15 1800 Flea3 Net
H2O30 0.43 1/30 1800 Flea3 Net
H2O60 0.43 1/60 1800 Flea3 Net
H2O60b 0.43 1/60 1800 Flea3 VS
GLY60 0.09 1/60 1800 Flea3 VS
GLY80 0.022 1/60 1800 Flea3 VS

PEO0.22 - 1/38.17 1145 Flea3 VS
PEO0.3 - 1/38.17 1145 Flea3 VS
PEO0.45 - 1/38.17 1145 Flea3 VS
PEO0.6 - 1/38.17 1145 Flea3 VS
PEO0.75 - 1/38.17 1145 Flea3 VS
PEO0.9 - 1/38.17 1145 Flea3 VS
PEO1.22 - 1/38.17 1145 Flea3 VS

Heterogeneous

HBE1.5 - 1/60 1800 Pan VS
HBE2 - 1/60 1800 Pan VS

HBE2.5 - 1/60 1800 Pan VS
HBE3 - 1/60 1800 Pan VS
HBE4 - 1/60 1800 Pan VS
HBE5 - 1/60 1800 Pan VS
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4.5.1 Particle Trajectories in Water

The first three experiments are conducted in water, for which the medium is theoretically

homogeneous. However the scatter plot of estimated pα,Dq in Figure 4.6 suggests that

there exists more than one cluster, where the estimated parameters in “majority cluster”

is unbiased and the members of “minority cluster” significantly underestimate the diffu-

sivity D. With the EM algorithm in Section 4.3, we successfully separate the clusters and

mark their members with different colors in Figure 4.6. Due to the lack of some critical

information including the signal-to-noise ratio (SNR), we fail to find a valid explanation

for these universal existence of the low-diffusivity cluster in Net-Tracker data. By marking

the trajectories in the minor cluster as “polluted by unknown noises” and excluding them

from further analyses, we can investigate the degree of heterogeneity in water data by

computing the metric B based on the majority cluster trajectories, which is demonstrated

in Table 4.5.
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Figure 4.6: Estimated subdiffusive parameters pα,Dq, water data.
(a) H2O15 medium (b) H2O30 medium (c) H2O60 medium

The heterogeneity metrics for Net-Tracker data are all of high value, and all pass the

homogeneity test. From the metric we can see that H2O60 data is less homogeneous than
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the lower-frequency cases because of some outliers in the estimated pα,Dq in H2O60 data.

Table 4.5: Estimated heterogeneity metric, particles in water.
For each experiment, the metric that passes the homogeneity test is marked with ‹

Bpαq BpDq Bpα,Dq pLRT

H2O15 0.98‹ 0.97‹ 0.97‹ 0.87
H2O30 1‹ 0.96‹ 0.97‹ 0.75
H2O60 0.92‹ 0.94‹ 0.93‹ 0.67

4.5.2 Particle Trajectories in Viscous Media

The following ten experiments in Table 4.4 are tracked with the VS algorithm, and they are

conducted in three homogeneous media. The first three data (H2O60b, GLY60 and GLY80)

record particle trajectories in water and glycerol solutions of different concentrations, with

their estimated subdiffusive parameters pα,Dq demonstrated in Figure 4.7, where the dis-

persion in estimation is most obvious for GLY80 data.

The computed metric B in Table 4.6 is consistent with the information in Figure 4.7,

that H2O60b and GLY60 data are more homogeneous than GLY80. For H2O60b and GLY60

their Bpαq is of high value, while the BpDq is too low to pass the homogeneity test. And

theirBpα,Dq is dominated by the heterogeneity inD and therefore rejects the homogeneous

hypothesis. For GLY80 data, both estimated subdiffusive parameters pα̂, D̂q contain huge

amount of dispersion and thus have a heterogeneity metric lower than 0.7. Considering

that the medium of the experiment (glycerol solution) is theoretically homogeneous, there

must exist some instrumental or experimental errors for the unexpected heterogeneity.

PEO is a synthetic polymer solution which should also be homogeneous. In Figure 4.8

we demonstrate the estimated pα,Dq from the fMA model and color them separately

according to the weight percentage of solution, where the dispersion in estimated pα,Dq is

almost consistent for all data concentrations. In Table 4.7 we show the heterogeneity metric

for PEO experiments, where data of all concentrations are tested to be heterogeneous.
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Figure 4.7: Estimated subdiffusive parameters pα,Dq, VS-Trackers water and glycerol
solution data.
(a) H2O60b medium (b) GLY60 medium (c) GLY80 medium

Table 4.6: Estimated heterogeneity metric, particles in water and glycerol solution.
For each experiment, the metric that passes the homogeneity test is marked with ‹

Bpαq BpDq Bpα,Dq pLRT

H2O60b 1‹ 0.80 0.85 0.02
GLY60 0.91‹ 0.85 0.86 0.01
GLY80 0.56 0.62 0.60 0
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The heterogeneity metric for different concentrations are similar, except for the PEO0.9

case where some outliers exist. In addition, we find that the diffusivity D is much more

heterogeneous than α.
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Figure 4.8: Estimated subdiffusive parameters pα,Dq, PEO data.

Table 4.7: Estimated heterogeneity metric, particles in PEO media.
For each experiment, the metric that passes the homogeneity test is marked with ‹

Bpαq BpDq Bpα,Dq pLRT

PEO0.22 0.71 0.39 0.49 0
PEO0.3 0.81 0.35 0.47 0
PEO0.45 0.71 0.29 0.41 0
PEO0.6 0.71 0.29 0.42 0
PEO0.75 0.68 0.29 0.42 0
PEO0.9 0.75 0.34 0.48 0
PEO1.22 0.82 0.23 0.44 0

Generally speaking, for all the homogeneous experiments with particle trajectories

tracked by the VS algorithm, the experimental data are somehow heterogeneous, and
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the PEO media turn out to be more heterogeneous than water or glycerol solution. The

universal existence of impurities and errors in experimental procedures can be the reason

for the unexpected heterogeneity in all media. However, considering that all these ex-

periments, together with the water data tracked by Net Tracker in the previous section

that turns out to be homogeneous, are conducted in similar environments (from the same

laboratory) and are recorded with the same camera (Flea3), we here make a conjecture

about the performance of the VS-tracker algorithm, that this algorithm may introduce

extra heterogeneity in observed particle trajectories, especially in diffusivity D.

4.5.3 Particle Trajectories in Biological Fluids

The HBE data contains the trajectories of particles diffusing in the mucus harvested from

primary human bronchial epithelial cell cultures [Hill et al., 2014]. The media contains

washings from cultures which are concentrated to desired weight percent solids (wt%).

As biological fluids, HBE environment is expected to be heterogeneous. In Figure 4.9

we demonstrate the estimated subdiffusive parameters pα,Dq in transformed scale, where

their distribution and dispersion vary significantly across the concentrations of media.
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Figure 4.9: Estimated subdiffusive parameters pα,Dq, HBE data.
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In Table 4.8 we show the heterogeneity metric of HBE experiment results. For the

1.5 wt% case where the concentration of solids in lung mucus is smallest, its α has a

metric over 0.9 and is tested to be homogeneous. In addition, its diffusivity D also comes

with the highest BpDq. As the weight percent solids increases from 2 wt% to 5 wt%, the

heterogeneity metric drops rapidly to a very small value. Such a level of heterogeneity

metric almost implies that the estimated parameters are evenly distributed around some

areas, instead of clustering around a certain point. Since lower concentrations of solids in

lung mucus have been associated with health states and high concentrations are related to

disease conditions, the negative relation between the concentration and the heterogeneity

metric indicates that healthy people’s HBE mucus is more homogeneous than that of ill

people.

Table 4.8: Estimated heterogeneity metric, particles in HBE media.
For each experiment, the metric that passes the homogeneity test is marked with ‹

Bpαq BpDq Bpα,Dq pLRT

HBE1.5 0.91‹ 0.30 0.40 0
HBE2 0.43 0.06 0.10 0
HBE2.5 0.15 0.02 0.04 0
HBE3 0.13 0.01 0.05 0
HBE4 0.14 0.01 0.04 0
HBE5 0.10 0.01 0.02 0

4.6 Discussion

In this chapter we present a metric B that quantifies the heterogeneity of the media in

particle tracking experiments. This metric B is based on a hierarchical model that naturally

induces the between-path particle heterogeneity. We also propose an estimator for particle

trajectory parameters estimated using the location-scale model. In addition, we present a

hypothesis test based on the metric B for the null hypothesis of homogeneity, together with

a likelihood ratio test that serves a similar purpose. With extensive numerical simulations,

101



we can see the relation between the estimated metric and the degree of heterogeneity.

Empirically a homogeneous parameter will have a metric over 0.9, and parameters with

lower metric are most likely to be heterogeneous. In the analyses of particles diffusing

in the mucus from human lungs, we find a possible relation between the heterogeneity

of mucus and their disease states, which deserves further investigation. In addition, we

categorize the general idea of “heterogeneity” into two kinds: large variance and multiple

clusters. With an EM algorithm, we figure out that the original Net Tracker data looks

heterogeneous because of the existence of multiple clusters.

There still exist some limitations in the proposed metric. For ML estimates, the nu-

merator of the metric B is the weighted average of the inverse Fisher information F´1
i ,

which is proportional to 1
N

where N is the maximum length of particle trajectories. As N

goes to infinity, the Fisher information also goes to infinity and the heterogeneity metric

B will inevitably converge to 0 while the actual degree of heterogeneity in the experimen-

tal medium remains unchanged. To better understand this problem, we here modify the

simulation study in Section 4.4.1 by generating particle trajectories of different lengths

and estimating their metric B. In Figure 4.10 we demonstrate the change of estimated

B as the experimental time increases from 1s (N “ 60) to 1000s (N “ 6 ˆ 104). One

possible solution is to determine a fixed trajectory length, say N‹, and adjust the Fisher

information Fi with factor N‹

N
such that the estimated metric B scales similarly for the

same medium.

As is revealed in the model misspecification simulations, the proposed metric is sen-

sitive to the applied model, and will return untrustworthy results when incorrect models

are used to estimate subdiffusive parameters pα,Dq. As a result we must ensure the cor-

rectness of particle trajectory models before using the metric to quantify the heterogeneity

in the fluids. In addition, the model that returns unbiased estimates but incorrect Fisher

information (for example the fSD model (3.2.7) when α is around 1) can be unsuitable for

this heterogeneity metric.
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Figure 4.10: Estimated heterogeneity metric B for different particle trajectory lengths,
simulated fBM processes.
For different particle trajectory lengths and different d, we simulated M “ 1000 trajectories from
model (4.4.1) and compute the corresponding metric B.
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Chapter 5

Future Work

This thesis provides a superfast toolkit for the analyses of passive particle tracking data,

which consists of three components, namely the superfast inference for stationary Gaussian

processes, the parametric method that filters out the high-frequency noises in experimental

data and the heterogeneity metric based on unbiased parametric estimates. This chapter

discusses some future work on each component.

5.1 Future Work of Chapter 2

In Chapter 2 we provide the superfast inference for stationary Gaussian processes, where

the term “stationary” only applies to the 1-dimensional time series. In order to generalize

the proposed method to multi-dimensional cases we actually define a time series with prop-

erties “stationary” and “separable” (2.3.1). In a more general setup for multi-dimensional

time series, they have an isotropic correlation function and a covariance matrix in forms of

block Toeplitz with Toeplitz blocks, which is much more complex than the Toeplitz matrix

we look into in this chapter. If we are able extend the superfast algorithm to isotropic

Gaussian processes, we will greatly boost the computational efficiency for relative analy-

ses, including the study of spatial lattice data [Stroud et al., 2016, Guinness and Fuentes,

2017].
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In addition, for a one-dimensional mean-zero time series x „ N p0,V q, its residuals can

be generated through the inverse of the Cholesky decomposition of its Toeplitz covariance

matrix V

z “ L´1x

where L is the Cholesky decomposition of V “ L1L. Currently this step does not follow

immediately from Ammar-Gragg’s superfast algorithm, because we need the inverse of the

Cholesky factor L´1 to compute the residuals z while the generalized Schur algorithm

only provides the inverse of the Toeplitz matrix V ´1. So far we are using the OpN2q

Levinson’s algorithm for the inverse Cholesky decomposition, and a superfast algorithm

that achieves this purpose will greatly improve the computational efficiency of relative

statistical inferences.

5.2 Future Work of Chapter 3

In Chapter 3 we propose an ARMA filter to correct the high-frequency noises in particle

tracking data. For given filter order p and q, the model coefficients of the ARMApp, qq filter

can be estimated efficiently. However, when multiple combinations of filter orders pp, qq are

applied, it is still unclear which model has the best performance in estimating subdiffusive

parameters pα,Dq. The common methods in model comparison are usually based on the

likelihood, which places too much weight on the high-frequency domain and overrates the

models that are distorted by high-frequency errors and departs from empirical observation

in the long term. So far we tried a non-parametric measurement that quantifies the overall

departure of model-estimated MSD from empirical observations in Section 3.5.2, while a

parametric comparison method that serves a similar purpose will be of great help.

For a given time series where an ARMApp, qqmodel applies, the order of the ARMApp, qq

model can be determined conveniently by checking the ACF and PACF [McLeod and Li,

1983]. For a given particle trajectory, we do not have a reliable procedure to determine

the order of autoregressive and moving-average terms. One possible solution is related

to the “model comparison” problem mentioned previously. With the model comparison

method provided, we can at least try some different ARMA filters and use the best. In
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conclusion, a working diagnosis procedure will greatly improve the validity of the proposed

ARMApp, qq filter.

5.3 Future Work of Chapter 4

In Chapter 4 we propose a simple metric that quantifies the degree of heterogeneity in

experimental fluids. This metric basically measures the fraction of the variance that is

unexplained by the Fisher information. As is described in Section 4.6, such metric will

inevitable diminish as experimental duration increases. To avoid this, the coefficient of

variation (CV) can be applied instead, which is the ratio between standard deviation and

mean of estimated parameters. Although CV is conceptually appealing, it is not applicable

for mean-zero coefficients (e.g. drift parameters in some experiments).

Consider the sub-linear power law of MSD

msdpt | α,Dq “ τptq “ 2D ¨ tα

where the MSDs τptq is a function of time t. We may characterize the heterogeneity of the

experimental medium via the CV of τptq. For a fixed time t, we have that τptq follows a

log normal distribution where the mean and variance terms are all functions of pα,Dq. It

is unclear how to construct a homogeneity test with null hypothesis H0 : CVpτq “ 0, while

one possible solution is the parametric Bootstrap sampling similar to the one applied in

the homogeneity test for multiple parameters Bpθq.

In addition, the estimator of the metric B involves the variance of estimated parameters.

However variance itself is quite sensitive to the existence of outliers, and an “unexpected”

estimation can totally destroy the heterogeneity result of an experiment. As a result, a

more robust version of a heterogeneity metric will be of great importance.
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Appendix A

Multiplication of Toeplitz Matrix and

Vector

Assuming that V is a Toeplitz matrix of the following form

V “

»

—

—

—

—

–

γ1 γ2 γ3 ¨ ¨ ¨ γN

γ´2 γ1 γ2 ¨ ¨ ¨ γN´1

...
. . . . . . . . .

...

γ´N γ1´N γ2´N ¨ ¨ ¨ γ1

fi

ffi

ffi

ffi

ffi

fl

,

and x “ rx1, x2, ¨ ¨ ¨ , xN s is a length-N vector. The normal computation of V ˆx requires

OpN2q steps, but with the Fast Fourier Transformation (FFT) [Kailath and Sayed, 1999b]

we can achieve this in OpN logNq steps.
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We first generate a circulant embedding form of the Toeplitz matrix V

V0 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

γ1 γ2 γ3 ¨ ¨ ¨ γN 0 γ´N γ1´N ¨ ¨ ¨ γ´2

γ´2 γ1 γ2 ¨ ¨ ¨ γN´1 γN 0 γ´N ¨ ¨ ¨ γ´3

...
. . . . . . . . .

...
...

...
... ¨ ¨ ¨

. . .

γ´N γ1´N γ2´N ¨ ¨ ¨ γ1 γ2 γ3 γ4 ¨ ¨ ¨ 0

0 γ´N γ1´N ¨ ¨ ¨ γ´2 γ1 γ2 γ3 ¨ ¨ ¨ γN

γN 0 γ´N ¨ ¨ ¨ γ´3 γ´2 γ1 γ2 ¨ ¨ ¨ γN´1

...
...

... ¨ ¨ ¨
. . .

...
. . . . . . . . .

...

γ2 γ3 γ4 ¨ ¨ ¨ 0 γ´N γ1´N γ2´N ¨ ¨ ¨ γ1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

«

V M

M V

ff

,

and set x0 “ rx,0s
1 such that x0 is a length 2N vector. Then we have that

V0 ˆ x0 “ rV ˆ x,M ˆ xs1,

where the first half is exactly what we want. Since circulant matrix can be diagonalized

by the Fourier matrix

V0 “ F
˚
N ˆ diagpFN ˆ γq ˆ FN ,

where FN is a size N Fourier matrix and F ˚N is its conmugate transpose, γ is the first

column of matrix V0 and the result of FN ˆ γ equals Fγ, the fast Fourier transformation

on γ. Here we present a OpN logNq complexity procedure in computing y0 “ V0 ˆ x0

• compute f “ Fγ,

• compute g “ Fx0,

• compute h “ f ¨ g (element-wise product for vectors),

• compute y0 “ F´1h.

By extracting the first N elements of y0 we can obtain the result of V ˆ x.
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Appendix B

Superfast Computation of the

Gradient and Hessian matrix of

Profile Likelihoood

For the profile likelihood

`profpθ|X,Gq “ ´
Nd

2
logp2πq ´

d

2
log |Vθ| ´

N

2
log |pΣθ| ´

N

2
,

where
pβθ “ pG

1V ´1
θ Gq´1G1V ´1

θ X, pΣθ “
1

N
pX ´Gpβ1θV

´1
θ pX ´Gpβθq,

its first derivative with respect to parameter θi P θ is

B

Bθi
`profpθ|X,Gq “ ´

d

2
trtV ´1

θ Viu ´
N

2
trtpΣθ

pΣiu

where

pΣi “
BpΣθ

Bθi
“´ pβ1iV

´1
θ pX ´Gpβθq ´ pX ´Gpβθq

1V ´1
θ

pβi´

pX ´Gpβθq
1V ´1
θ ViV

´1
θ pX ´Gpβθq,
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and

pβi “
B pβθ
Bθi

“
`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ X´

`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ X.

Since the computation of pΣi and pβi is OpN logNq, and pΣi is a size d ˆ d matrix whose

computation of trtpΣθ
pΣiu is Opd3q, the total computation of B

Bθi
`θpθ|X,Gq is superfast.

For the second derivative of the profile likelihood (2.3.8) with respect to θi, θm P θ, we

have

B2

BθiBθm
`θpθ|X,Gq “ ´

d

2
trtV ´1

θ Vim ´ V
´1
θ VmV

´1
θ Viu ´

N

2
trtpΣθ

pΣim ´ pΣθ
pΣm

pΣθ
pΣiu,

where

pΣim “
B2
pΣθ

BθiBθm
“´ pβ1imV

´1
θ pX ´Gpβθq ` 2 ¨ pβ1iV

´1
θ VmV

´1
pX ´Gpβθq ` pβ1iV

´1
θ

pβm`

pβ1mV
´1
θ

pβi ` 2 ¨ pX ´Gpβθq
1V ´1
θ VmV

´1
θ

pβi ´ pX ´Gpβθq
1V ´1
θ

pβim`

pX ´Gpβθq
1V ´1
θ VmV

´1
θ ViV

´1
θ pX ´Gpβθq´

pX ´Gpβθq
1V ´1
θ VimV

´1
θ pX ´Gpβθq`

pX ´Gpβθq
1V ´1
θ ViV

´1
θ VmV

´1
θ pX ´Gpβθq,
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and

pβim “
B2

pβθ
BθiBθm

“
`

G1V ´1
θ G

˘´1
G1V ´1

θ VmV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ X´

`

G1V ´1
θ G

˘´1
G1V ´1

θ VmV
´1
θ ViV

´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ X`
`

G1V ´1
θ G

˘´1
G1V ´1

θ VimV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ X´
`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ VmV

´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ X`
`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ VmV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ X´
`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ VmV
´1
θ X`

`

G1V ´1
θ G

˘´1
G1V ´1

θ VmV
´1
θ G

`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ X´

`

G1V ´1
θ G

˘´1
G1V ´1

θ VmV
´1
θ ViV

´1
θ X`

`

G1V ´1
θ G

˘´1
G1V ´1

θ VimV
´1
θ X`

`

G1V ´1
θ G

˘´1
G1V ´1

θ ViV
´1
θ VmV

´1
θ X.

Despite the complex expression of pβim and pΣim, their computation is still OpN logNq.

Since part trtV ´1
θ Vim´V

´1
θ VmV

´1
θ Viu is proved to be superfast and trtpΣθ

pΣim´pΣθ
pΣm

pΣθ
pΣiu

only involves some dˆdmatrices, the total computation of the Hessian term B2

BθiBθm
`profpθ|X,Gq

is also superfast.
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Appendix C

Inference for the fSD Model

The k-dimensional fSD model (3.2.7) takes the form

Xptq “
d
ÿ

j“1

βjfjptq `Σ1{2Zptq,

Yn “
1

τ

ż τ

0

Xptn ´ sq ds` εn,

(C.0.1)

where tn “ n ¨∆t, Zptq “
`

Z1ptq, . . . , Zkptq
˘

with Ziptq
iid
„ Bαptq, and εn

iid
„ N p0, σ2 ¨Σq are

independent of Zptq. Letting ∆Yn “ Yn`1 ´ Yn, we can rewrite (C.0.1) to obtain

∆Yn “
d
ÿ

j“1

βj∆f
‹
nj `Σ1{2

p∆Z‹n ´∆ηnq,

where

f ‹nj “
1

τ

ż τ

0

fjptn ´ sq ds, Z‹ni “
1

τ

ż τ

0

Ziptn ´ sq ds,

and ηn “ Σ´1{2εn
iid
„ N p0, σ2Idq. Thus we have f ‹nj “

1
τ

şτ

0
fjptn´sq ds, Z‹n “ pZ

‹
n1, . . . Z

‹
nkq

with Z‹ni “
1
τ

şτ

0
Ziptn ´ sq ds, and ηn “ Σ´1{2εn

iid
„ N p0, σ2Idq. Thus, we have

∆YNˆk „ MatNormpFβ,Vϕ,Σq,
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where FNˆd has elements Fnj “ ∆f ‹nj, Vϕ is a variance matrix parametrized by ϕ “

pα, τ, σq with elements

V pn,mq
ϕ “ covp∆Z‹ni `∆ηni,∆Z

‹
mi `∆ηmiq

“ covp∆Z‹ni,∆Z
‹
miq ` covp∆ηni,∆ηmiq.

To finish the calculations, without loss of generality we may focus on the one-dimensional

case Ziptq “ Zptq “ Bαptq and ηin “ ηn
iid
„ N p0, σ2q. Thus we have

covpZ‹n, Z
‹
mq “ ErZ‹nZ

‹
ms

“
1

τ 2
E

„
ż τ

0

Zptn ´ sq ds ¨

ż τ

0

Zptm ´ uq du



“
1

τ 2
E

„
ż τ

0

ż τ

0

Zptn ´ sqZptm ´ uq ds du



“
1

τ 2

ż τ

0

ż τ

0

E rZptn ´ sqZptm ´ uqs ds du,

where the last line is obtained from the Fubini-Tonelli theorem, since by Cauchy-Schwarz

we have

ż τ

0

ż τ

0

E
”

|Zptn ´ sqZptm ´ uq|
ı

ds du ď

d

ż τ

0

ErZptn ´ sq2s ds ¨

ż τ

0

ErZptm ´ uq2s du

“

d

ż τ

0

msdZptn ´ sq ds ¨

ż τ

0

msdZptm ´ uq du,

and the right-hand side is finite as long as msdZptq is continuous for t ě 0. Thus, for the

fBM process Zptq “ Bαptq we have

covpZ‹n, Z
‹
mq “

1

2τ 2

ż τ

0

ż τ

0

ptn ´ sq
α
` ptm ´ uq

α
´ |ptn ´ tmq ´ ps´ uq|

α ds du

“ hτ ptnq ` hτ ptmq ´ gτ ptn ´ tmq,
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where

gτ ptq “
|t` τ |α`2 ` |t´ τ |α`2 ´ 2|t|α`2

2τ 2pα ` 1qpα ` 2q
, hτ ptq “

pt´ τqα ´ tα

2τpα ` 1q
.

Finally, since for any increment process ∆Xn we have

covp∆Xn,∆Xmq “ E rXn`1Xm`1s ´ E rXn`1Xms ´ E rXnXm`1s ` E rXnXms ,

we may calculate that

acf∆Z‹pnq “ covp∆Z‹n,∆Z
‹
m`nq “ gτ p|n` 1|∆tq ` gτ p|n´ 1|∆tq ´ 2gτ p|n|∆tq.

Similarly, we obtain

acf∆ηpnq “ σ2
ˆ
 

2 ¨ 1pn “ 0q ´ 1pn “ 1q
(

,

such that Vϕ is a Toeplitz matrix with elements

V pn,mq
ϕ “ acf∆Z‹pn´mq ` acf∆ηpn´mq.
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Appendix D

Calculations for ARMA Noise

Models

D.1 Relationship Between ACF and MSD

Let Xptq be a one-dimensional CSI process with evenly-spaced observations Xn “ Xpn∆tq,

such that

msdXpnq “ ErpXn ´X0q
2
s.

If ∆Xn “ Xn`1 ´Xn is the corresponding increment process, then we have

acf∆Xpnq “ ErXn`1X1s ` ErXnX0s ´ ErXn`1X0s ´ ErXnX1s.

Combined with the fact that

msdXpnq “ ErX2
ns ` ErX

2
0 s ´ 2ErXnX0s,

we find that

acf∆Xpnq “
1

2
tmsdXp|n´ 1|q `msdXp|n` 1|q ´ 2msdXp|n|qu.
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Conversely, we have

msdXpnq “ msdXpn´ 1q ` acf∆Xp0q ` 2
n´1
ÿ

h“1

acf∆Xphq,

such that

msdXpnq “ pn` 1qacf∆Xp0q ` 2
n
ÿ

h“1

pn` 1´ hqacf∆Xphq. (D.1.1)

D.2 Autocorrelation Function of the ARMApp, qq Filter

Consider a one-dimensional stationary increments process determined by the ARMApp, qq

filter (3.3.6),

∆Yn “
p
ÿ

i“1

θi∆Yn´i `
q
ÿ

j“0

ρj∆Xn´j,

for which the driving process ∆Xn is assumed to have mean zero. In the following

subsections we shall calculate the autocorrelation function acf∆Y pnq as a function of

acf∆Xpnq “ covp∆Xm,∆Xm`nq.

D.2.1 Autocorrelation of the MApqq Filter

For a purely moving-average process

∆Yn “
q
ÿ

i“0

ρi∆Xn´i,

we have

acf∆Y pnq “
q
ÿ

i“0

q
ÿ

j“0

ρiρj acf∆Xpn` i´ jq. (D.2.1)

This can be computed efficiently for all values of γ “ pγ0, . . . , γN´1q, γn “ acf∆Y pnq,

using the following method. Let ηn “ acf∆Xpnq, 0N denote the vector of N zeros, and

for vectors a “ pa1, . . . , aNq and b “ pa1, b2, . . . , bMq, let Toeppa, bq denote the M ˆ N
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Toeplitz matrix with first row being a and first column b:

Toeppa, bq “

»

—

—

—

—

—

—

—

—

—

—

–

a1 a2 a3 ¨ ¨ ¨ ¨ ¨ ¨ aN

b2 a1 a2
. . .

...

b3 b2
. . . . . . . . .

...
...

. . . . . . . . . a2 a3

...
. . . b2 a1 a2

bM ¨ ¨ ¨ ¨ ¨ ¨ b3 b2 a1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then γ can be computed by the matrix multiplication

γ “ Toeppρ1,ρ2q ¨ Toeppη1,η2q ¨ ρ0,

where

η1 “ pη0, . . . , ηqq, η2 “ pη0, . . . , ηN`qq,

ρ0 “ pρ0, . . . , ρqq, ρ1 “ pρ0,0N`1q, ρ2 “ pρ0,0N´1q.

Moreover, Toeplitz matrix-vector multiplication can be computed efficiently using the fast

Fourier transform (FFT) [e.g., Kailath and Sayed, 1999a]. That is, let F denote FFT the

matrix of the appropriate dimension. In order to compute γ, we perform the following

steps:

1. Let v3 “ F´1
pFv1 dFv2q, where v1 “ pη2, 0, ηq, . . . , η1q, v2 “ pρ0,0N`q`1q, and d

denotes the elementwise product between vectors.

2. Let v4 denote the first N ` q ` 1 elements of v3.

3. Let v7 “ F´1
pFv5 dFv6q, where v5 “ pρ0,02N , ρq, . . . , ρ1q and v6 “ pv4,0Nq.

4. γ is given by the first N elements of v7.
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D.2.2 Autocorrelation of the ARppq Filter

For a purely autoregressive process

∆Yn “
p
ÿ

i“1

θi∆Yn´i `∆Xn,

the autocorrelation acf∆Y pnq involves an infinite summation which generally cannot be

simplified further. Instead, we approximate the ARppq filter with an MApqq filter and use

the result of Section D.2.1. To do this, we rewrite ∆Yn in terms of the lag operator B,

such that

∆Yn “ θpBq∆Yn `∆Xn,

where θpxq “ θ1x ` ¨ ¨ ¨ ` θpx
p, and Bk∆Yn “ ∆Yn´k. Rearranging terms and expanding

into a power series, we find that

∆Yn “ r1´ θpBqs
´1∆Xn

“
“

1`
ř8

i“1rθpBqs
i
‰

∆Xn “
“

1`
ř8

i“1 ρiB
i
‰

∆Xn,

such that ∆Yn may be expressed as an MAp8q series. Truncating to order q, the true auto-

correlation acf∆Y pnq is approximated by the autocorrelation (D.2.1) of the corresponding

MApqq process ∆Yn «
řq
i“1 ρi∆Xn´i. The following lemma can be used to efficiently

calculate the coefficients ρi.

Lemma 3. Consider a polynomial gpxq “
řp
k“0 akx

k and its n-th power, Gpxq “ rgpxqsn “
řm
k“0 b

pnq
k xk, where m “ n ¨ p. Then we have

“

d
dx
Gpxq

‰

gpxq “ n
“

d
dx
gpxq

‰

Gpxq.

As a result, when a0 ‰ 0 we can derive the coefficients of Gpxq recursively, with b
pnq
0 “ an0

and

b
pnq
k “

1

ka0

ˆ

«

nkb
pnq
0 ak `

k´1
ÿ

i“1

pk ´ iqpnb
pnq
i ak´i ´ aib

pnq
k´iq

ff

. (D.2.2)

Using Lemma 3 with gpxq “ θpxq{x “ θ1 ` ¨ ¨ ¨ ` θpx
p´1, we find that ρi “

ři
j“1 b

pjq
i´j,
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where b
pjq
i´j is given by (D.2.2) for i´j ď j ¨p, and b

pjq
i´j “ 0 otherwise. In the simulations and

data analyses of sections 3.4 and 3.5, we approximate all ARppq filters by MAp50q filters.

Numerical experiments indicate that changing the order to MAp500q does not change the

approximated autocorrelations by more than 10´14.

D.2.3 Autocorrelation of the ARMApp, qq Filter

For the general ARMApp, qq filter, we obtain the autocorrelation in two steps:

1. Let ∆Zn “
řq
j“0 ρj∆Xn´j, and calculate the autocorrelation of this MApqq process

using (D.2.1).

2. Now we rewrite the original ARMApp, qq process as

∆Yn “
p
ÿ

i“1

θi∆Yn´i `∆Zn,

and we may approximate the autocorrelation of this ARppq process by applying the

technique of Appendix D.2.2 to acf∆Zpnq obtained in Step 1.

D.3 Proof of Theorem 1

In order to parametrize the ARMApp, qq filter such that it satisfies the high-frequency error

hypothesis (3.3.1), we begin by studying the relation between the MSD of a discrete-time

univariate CSI process tXn : n ě 0u, and the power spectral density (PSD) of its stationary

increment process, ∆Xn “ Xn`1 ´Xn.

For a stationary time series t∆Xn : n P Zu which is purely non-deterministic in the sense

of the Wold decomposition [e.g., Brockwell and Davis, 1991], the PSD S∆Xpωq is defined

as the unique nonnegative symmetric integrable function for which the autocorrelation of

∆Xn is given by

acf∆Xpnq “

ż π

´π

e´inωS∆Xpωq dω. (D.3.1)
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In order to prove Theorem 1 we begin by proving the following lemma:

Lemma 4. For two CSI process X and Y with corresponding increment processes ∆X

and ∆Y , if S∆Y pωq is positive in a neighborhood of ω “ 0, and the PSD ratio satisfies

lim
ωÑ0

S∆Xpωq

S∆Y pωq
“ 1,

then X and Y satisfy the high-frequency error definition (3.3.1), namely

lim
nÑ8

msdXpnq

msdY pnq
“ 1.

Proof. Using (D.1.1) and (D.3.1) we can relate msdXpnq to S∆Xpωq, such that

msdXpn` 1q ´msdXpnq “

ż π

´π

n
ÿ

j“´n

e´ijωS∆Xpωq dω “

ż π

´π

DnpωqS∆Xpωq dω,

where Dnpωq “
řn
j“´n e

´ijω is the n-th order Dirichlet kernel. Thus we have

msdXpnq “

ż π

´π

n´1
ÿ

k“0

DkpωqS∆Xpωq dω “ n

ż π

´π

FnpωqS∆Xpωq dω, (D.3.2)

where Fnpωq “
1
n

řn´1
k“0 Dkpωq is the n-th order Fejér kernel. Since Fnpωq is symmetric

about 0, we may rewrite msdXpnq as a convolution integral

msdXpnq “ n2π ˆ
1

2π

ż π

´π

S∆XpωqFnp´ωq dω “ n2π ˆ tS∆X ˚ Fnup0q.

By the Fejér kernel’s summability property, we have

tS∆X ˚ Fnupωq Ñ S∆Xpωq a.e.,

tS∆Y ˚ Fnupωq Ñ S∆Y pωq a.e..

Since S∆Y pωq ą 0 in a neighborhood of ω “ 0, we may thus find ε ą 0 such that both

tS∆Y ˚ Fnup0q Ñ S∆Y p0q ą 0 and tS∆Y ˚ Fnupω0q Ñ S∆Y pω0q ą 0 for |ω0| ă ε. Given this,
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we can express the MSD ratio as

msdXpnq

msdY pnq
“
tS∆X ˚ Fnup0q

tS∆Y ˚ Fnup0q

“
tS∆X ˚ Fnup0q

tS∆Y ˚ Fnup0q
´
tS∆X ˚ Fnupω0q

tS∆Y ˚ Fnupω0q

`
tS∆X ˚ Fnupω0q

tS∆Y ˚ Fnupω0q
´
S∆Xpω0q

S∆Y pω0q
`
S∆Xpω0q

S∆Y pω0q
.

Since S∆Xpωq and Fnpωq are both integrable and
ş

Fnpωqdω “ 1, the convolution tS∆X ˚

Fnupωq is a uniformly continuous function. The same argument applies to tS∆Y ˚ Fnupωq.

Since fnpωq “
tS∆X˚Fnupωq
tS∆Y ˚Fnupωq

is a ratio between two continuous functions, it is also a continuous

function, which means that we can find ω1 ą 0 such that for |ω| ă ω1 we have |fnp0q ´

fnpωq| ă
ε
3
. Moreover, by Fejér summability we have

fnpωq “
tS∆X ˚ Fnupωq

tS∆Y ˚ Fnupωq
Ñ

S∆Xpωq

S∆Y pωq
“ fpωq a.e.,

such that we may find N1 such that |fnpωq ´ fpωq| ă ε
3

uniformly in ω for n ą N1. Thus,

if

lim
ωÑ0

S∆Xpωq

S∆Y pωq
“ 1,

we may find ω2 ą 0 such that |fpωq ´ 1| ă ε
3

for |ω| ă ω2, and thus for n ą N1 and any ω

such that |ω| ă mintω1, ω2u, we have

|
msdXpnq

msdY pnq
´ 1| ď |fnp0q ´ fnpωq| ` |fnpωq ´ fpωq| ` |fpωq ´ 1|

ď
ε

3
`
ε

3
`
ε

3
“ ε,

such that

lim
nÑ8

msdXpnq

msdY pnq
“ 1.

To complete the proof of Theorem 1, we apply Lemma 4 to the CSI process Xn and its
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ARMApp, qq filter Yn as defined by (3.3.2). That is, for the increment processes ∆Xn and

∆Yn “
řp
i“1 θi∆Yn´i `

řq
j“0 ρj∆Xn´i,

lim
ωÑ0

S∆Xpωq

S∆Y pωq
“ lim

ωÑ0

|1´
řp
k“1 θk ¨ e

´ikω|2

|
řq
j“0 ρje

´ijω|2
“

ˇ

ˇ

ˇ

ˇ

ˇ

1´
řp
i“1 θi

řq
j“0 ρj

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Thus by setting ρ0 “ 1´
řp
i“1 θi ´

řq
j“1 ρj, we have

lim
ωÑ0

S∆Xpωq

S∆Y pωq
“

˜

1´
řp
i“1 θi

řq
j“0 ρj

¸2

“ 1 ùñ lim
nÑ8

msdXpnq

msdY pnq
“ 1,

which completes the proof of Theorem 1.

D.4 Proof of Theorem 2

The complete statement of Theorem 2 is as follows.

Let X “ tXn : n ě 0u denote the true positions of a CSI process, for which Y “ tYn :

n ě 0u is the measurement process satisfying the high-frequency error definition (3.3.1).

For the corresponding increment processes ∆X “ t∆Xn : n P Zu and ∆Y “ t∆Yn : n P Zu,
suppose the PSD ratio

gpωq “
S∆Y pωq

S∆Xpωq

is continuous on the interval ω P r´π, πs. Then there exists an ARMApp, qq noise model

Y‹
“ tY ‹n : n ě 0u satisfying (3.3.2) such that for all n ě 0 we have

ˇ

ˇ

ˇ

ˇ

msdY ‹pnq

msdY pnq
´ 1

ˇ

ˇ

ˇ

ˇ

ă ε. (D.4.1)

.
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Proof. In order to show that there exits an ARMApp, qq process

Y ‹n “
p
ÿ

i“1

θiY
‹
n´i `

q
ÿ

j“0

ρjXn´j,

satisfying (D.4.1), we use (D.3.2) to write

ˇ

ˇ

ˇ

ˇ

msdY ‹pnq

msdY pnq
´ 1

ˇ

ˇ

ˇ

ˇ

“
|msdY ‹pnq ´msdY pnq|

msdY pnq

ď

şπ

´π
Fnpωq ¨ |S∆Y ‹pωq ´ S∆Y pωq| dω

şπ

´π
FnpωqS∆Y pωq dω

“

şπ

´π
|rpωq ´ gpωq| ¨ FnpωqS∆Xpωq dω

şπ

´π
FnpωqS∆Y pωq dω

,

where gpωq “ S∆Y pωq{S∆Xpωq and

rpωq “
S∆Y ‹pωq

S∆Xpωq
“

ˇ

ˇ

ˇ

ˇ

ˇ

řq
j“0 ρje

´ijω

1´
řp
k“1 θk ¨ e

´ikω

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Because gpωq is a ratio of nonnegative symmetric functions, it is also nonnegative symmet-

ric, and since it is continuous, it satisfies the definition of a continuous PSD. Therefore, by

Corollary 4.4.1 of Brockwell and Davis [1991], we can find a stationary MApqq process

Zn “
q
ÿ

j“0

ρjηn´j, ηn
iid
„ N p0, 1q

satisfying parameter restrictions (3.3.3), such that if SZpωq “ |
řq
j“0 ρje

´ijω|2 is the PSD

of this process,

|SZpωq ´ gpωq| ă ε0 for ω P r´π, πs.

Therefore, let ∆Y ‹n “
řq
j“0 ρj∆Xn, such that rpωq “ S∆Y ‹pωq{S∆Xpωq “ SZpωq “
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|
řq
j“0 ρje

´ijω|2. Then we have

ˇ

ˇ

ˇ

ˇ

msdY ‹pnq

msdY pnq
´ 1

ˇ

ˇ

ˇ

ˇ

ď

şπ

´π
|rpωq ´ gpωq| ¨ FnpωqS∆Xpωq dω

şπ

´π
FnpωqS∆Y pωq dω

ď ε0 ¨

şπ

´π
FnpωqS∆Xpωq dω

şπ

´π
FnpωqS∆Y pωq dω

“ ε0 ¨
msdXpnq

msdY pnq
.

Since limnÑ8msdXpnq{msdY pnq exists, there exists L ą 0 such that for every n we have

0 ď
msdXpnq

msdY pnq
ď L.

Thus by letting ε0 “ ε{L, for every n we have

ˇ

ˇ

ˇ

ˇ

msdY ‹pnq

msdY pnq
´ 1

ˇ

ˇ

ˇ

ˇ

ă ε.
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Appendix E

Calculations for the GLE Process

For the GLE process Xptq defined by (3.4.4) with sum-of-exponentials memory kernel

φptq “
ν

K

K
ÿ

k“1

expp´|t|αkq,

McKinley et al. [2009] derive its MSD to be

msdXptq “
2kBT

ν{K

˜

C2
0 t`

K´1
ÿ

j“1

C2
j

rj
p1´ e´rjtq

¸

,

where r1, . . . , rK´1 are the roots of qpyq “
śK

k“1py ´ αkq, and

C0 “

˜

K
ÿ

k“1

1

αk

¸1{2

, Cj “
1

rj
ˆ

b

řK
k“1

1
p1´rjαkq2

p
řK
k“1

αk
1´rjαk

q2 ´
řK
k“1

αk
1´rjαk

.

For the particular case of the Rouse memory kernel

φptq “
ν

K

K
ÿ

k“1

expp´|t|{τkq, τk “ τ ¨ pK{kqγ,
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McKinley et al. [2009] show that for sufficiently large K, the MSD exhibits (anomalous)

transient subdiffusion,

msdXptq “

$

’

’

’

&

’

’

’

%

2 ¨Deff ¨ t
αeff tmin ă t ă tmax

2 ¨Dmin ¨ t t ă tmin

2 ¨Dmax ¨ t t ą tmax.

This is illustrated in Figure E.1 with K “ 300 and GLE parameters γ “ 1.67, τ “ 0.01,

ν “ 1. Figure E.1 also displays the subdiffusion timescale ptmin, tmaxq along with the power

MSD of Rouse GLE

10−2 10−1 100 101 102
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10
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D
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Figure E.1: MSD of a Rouse GLE with K “ 300 and γ “ 1.67, τ “ 0.01, ν “ 1 (solid
blue line). Also displayed is the subdiffusion timescale ptmin, tmaxq along with the power
law msdXptq “ 2Deff ¨ t

αeff on that range (red dotted lines).

law msdXptq “ 2Deff ¨ t
αeff on that range. The values of ptmin, tmax, αeff, Deffq are determined

from the GLE parameters K and ϕ “ pγ, τ, νq via the following method.

1. Calculate xn “ logptnq and yn “ logmsdXptn | ϕ, Kq on a range of time points

t0, . . . , tN . These should be picked on a fine grid such that t0 ! tmin and tN " tmax.

2. Let Υ “ ptmin, tmaxq, and let IΥ “ tn : tmin ă tn ă tmaxu. Then for any Υ we

144



calculate α
pΥq
eff and D

pΥq
eff via least-squares:

α
pΥq
eff “

ř

nPIΥ
pyn ´ ȳqpxn ´ x̄q

ř

nPIΥ
pxn ´ x̄q2

, D
pΥq
eff “ 1

2
exppȳ ´ α

pΥq
eff x̄q,

where x̄ “ 1
|IΥ|

ř

nPIΥ
xn and ȳ “ 1

|IΥ|

ř

nPIΥ
yn are the corresponding averages over

the indices in IΥ.

3. The subdiffusion timescale Υ is determined by solving the constrained optimization

problem

arg max
Υ

| logptmaxq ´ logptminq|

subject to max
nPIΥ

ˇ

ˇ

ˇ

ˇ

ˇ

α
pΥq
eff ¨ xn ` logp2D

pΥq
eff q ´ yn

yn

ˇ

ˇ

ˇ

ˇ

ˇ

ă κ,

where κ is a tolerance for departure from a perfect power law over the subdiffusive

range. In Figure E.1 and the calculations of Section 3.4.2 we have used κ “ 1%.

This optimization problem can be solved in OpN2q steps by trying all combinations

of tmin and tmax in the set tt0, . . . , tNu.
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Appendix F

Superfast Computation of the Fisher

Information

In order to compute the Fisher information

Fi “ E

«

´
B2

BθBθ1
`pθ | Yiq

∣∣∣∣
θ“θi

ff

,

where `pθ | Yiq is the likelihood of the location-scale model (4.2.4)

`pθ | Yiq “ ´
1

2
tr
 

Σ´1
p∆Yi ´Gβq

1V ´1
ϕ p∆Yi ´Gβq

(

´ log |Vϕ| ´
N

2
log |Σ|,

we look into the element of the Hessian matrix

„

B2

BθBθ1
`pθ | Yiq



nm

“
B2

BθnBθm
`pθ | Yiq,
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whose computation is exactly presented in Equation (2.3.6), where

B2

BθnBθm
`pθ |Xq “ ´ tr

$

’

&

’

%

ΩmZ
1
nζϕZ

looooomooooon

H1

`ΩZ 1nmζϕZ
looooomooooon

H2

`ΩZ 1nζmZ
loooomoooon

H3

`ΩZ 1nζϕZm
looooomooooon

H4

,

/

.

/

-

´
1

2
tr

$

’

&

’

%

ΩmZ
1ζnZ

loooomoooon

H5

`ΩZ 1mζnZ
loooomoooon

H6

`ΩZ 1ζnmZ
loooomoooon

H7

`ΩZ 1ζnZm
loooomoooon

H8

,

/

.

/

-

´
1

2
tr

$

’

&

’

%

ΩnmZ
1ζϕZ

looooomooooon

H9

`ΩnZ
1
mζϕZ

looooomooooon

H10

`ΩnZ
1ζmZ

loooomoooon

H11

`ΩnZ
1ζϕZm

looooomooooon

H12

,

/

.

/

-

´
N

2
tr tΩΣnm ´ΩΣmΩΣnu ´ tr tζϕVnm ´ ζϕVmζϕVnu ,

and

Z “ ∆Yi ´Gβ, Zn “ ´G
Bβ

Bθn
, Znm “ ´G

B2β

BθnBθm

Vn “
B

Bθn
Vϕ, Vnm “

B2

BθnBθm
Vϕ, Σn “

B

Bθn
Σ, Σnm “

B2

BθnBθm
Σ,

Ω “ Σ´1, Ωn “
B

Bθn
Ω “ ´Σ´1ΣnΣ

´1, ζϕ “ V
´1
ϕ , ζn “

B

Bθn
ζ “ ´V ´1

ϕ VnV
´1
ϕ

Ωnm “
B2

BθnBθm
Ω “ Σ´1ΣmΣ´1ΣnΣ

´1
`Σ´1ΣnΣ

´1ΣmΣ´1
´Σ´1ΣnmΣ´1

ζnm “
B2

BθnBθm
ζϕ “ V

´1
ϕ VmV

´1
ϕ VnV

´1
ϕ ` V ´1

ϕ VnV
´1
ϕ VmV

´1
ϕ ´ V ´1

ϕ VnmV
´1
ϕ .

The 12 marked components (H1, . . . , H12) in B2

BθnBθm
`pθ | Xq can be divided into 3

categories:

p1q AZ 1BZ, p2q AZ 1nBZ, p3q AZ 1nBZm,

where H5, H7, H9, H11 P p1q, H1, H2, H3, H6, H8, H10, H12 P p2q and H4 P p3q.

For type p1q, to compute E rtrtAZ 1BZus, we notice that A can be tΩ,Ωn,Ωn,Ωnmu,

meaning that A “
“

A1 A2
A2 A3

‰

is a 2ˆ2 symmetric matrix. Similarly we notice that matrix B
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can be tζ, ζn, ζn, ζnmu and Z “ r Z1 Z2 s is a Nˆ2 matrix with columns Z1,Z2
ind
„ N p0,Vϕq.

As a result, we have

E rtrtAZ 1BZus “ E
”

trt
“

A1 A2
A2 A3

‰

”

Z11
Z12

ı

B r Z1 Z2 su

ı

“ E

«

trt

«

A1 ¨Z
1
1BZ1 ` A2 ¨Z

1
2BZ1 A2 ¨Z

1
2BZ2 ` A1 ¨Z

1
1BZ2

A2 ¨Z
1
1BZ1 ` A3 ¨Z

1
2BZ1 A3 ¨Z

1
2BZ2 ` A2 ¨Z

1
1BZ2

ff

u

ff

“ E rA1 ¨Z
1
1BZ1 ` A2 ¨Z

1
2BZ1 ` A3 ¨Z

1
2BZ2 ` A2 ¨Z

1
1BZ2s

“ E rA1 ¨Z
1
1BZ1 ` A3 ¨Z

1
2BZ2s

“ E rA1 ¨ trtBZ1Z
1
1u ` A3 ¨ trtBZ2Z

1
2us

“ A1 ¨ trtB ˆ E rZ1Z
1
1su ` A3 ¨ trtB ˆ E rZ2Z

1
2su

“ pA1 ` A3q ¨ trtBVϕu,

where the computation of trtBVϕu “ N or trtζVnu or trtζVnζVmu is shown to be superfast

in Section 2.3.3.

For type (2), we find that

E rtrtAZ 1nBZus “ trtAZ 1nB ˆ E rZsu “ 0.

For type (3), we have that

E rtrtAZ 1nBZmus “ trtAZ 1nBZmu,

which can be analytically computed.

Generally, the 12 marked parts (H1, . . . , H12) can all be computed in OpN logNq steps

with V ´1
ϕ provided. As is demonstrated in Section 2.3.3, the computation of the remaining

parts tr tΩΣnm ´ΩΣmΩΣnu and tr tζϕVnm ´ ζϕVmζϕVnu are also superfast. In conclu-

sion, the elements of the Fisher information Fi can be computed in superfast speed.
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