
Robustly Complete Temporal Logic
Control Synthesis for Nonlinear Systems

by

Yinan Li

A thesis

presented to the University of Waterloo

in ful�llment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Applied Mathematics

Waterloo, Ontario, Canada, 2019

© Yinan Li 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Exam-

ining Committee is by majority vote.

External Examiner Mireille E. Broucke

Professor, Department of Electrical and Computer Engineering

University of Toronto

Supervisor(s) Jun Liu

Associate Professor, Department of Applied Mathematics

Xinzhi Liu

Professor, Department of Applied Mathematics

Internal Member(s) Sue Ann Campbell

Professor, Department of Applied Mathematics

Sander Rhebergen

Assistant Professor, Department of Applied Mathematics

Internal-external Member Sherman Shen

Professor, Department of Electrical and Computer Engineering

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Modern systems such as spacecrafts and autonomous vehicles are complex yet safety-critical,

and therefore the control methods that can deal with di�erent dynamics and constraints while

being provably correct are sought after. Formal methods are rigorous techniques originally used

for developing and verifying �nite-state systems with respect to speci�cations in formal lan-

guages. This thesis is concerned with using formal methods in control synthesis for nonlinear

systems, which can guarantee the correctness of the resulting control strategies.

For nonlinear continuous-state dynamical systems, formal control synthesis relies on �nite

abstractions of the original system by discretizing the system state space and over approximat-

ing system transitions. Without further assumptions, control synthesis is usually not complete

in the way that no control strategies can be found even if there exists one. To deal with this

problem, this thesis proposes a formal control synthesis approach that is sound and robustly
complete in the sense that correct control strategies can be found whenever the speci�cations

can be realized for the system with additional disturbance.

Fundamental to the soundness and robust completeness is a �xed-point characterization of

the winning set of the system with respect to a given speci�cation, which is the set of initial

conditions that can be controlled to satisfy the speci�cation. Regarding discrete-time systems,

such characterizations are �rst presented by using iterative computation of predecessors for

basic linear temporal logic (LTL) speci�cations, including invariance, reachability and reach-

and-stay. A more general class of LTL formulas, which can be translated into deterministic

Büchi automata (DBA), is also considered, and an algorithm guided by the graph structure of

the LTL-equivalent DBA is proposed for characterizing the winning set in this situation. It

is then shown that the computational complexity of the algorithm can be reduced by using a

pre-processing procedure to the graphs of the DBA.

Because of the general nonlinearity, exact computation of winning sets is currently almost

impossible. In this work, the conditions for set approximations are derived so that control

synthesis is robustly complete. To meet such conditions, the proposed approach adopts inter-

val arithmetic and a subdivision scheme in the approximation of predecessors. Under such a

scheme, the system state space is adaptively partitioned with respect to both the given dynam-

ics and speci�cation and set approximation can be made arbitrarily precise to satisfy the robust

completeness conditions. The proposed method is also shown applicable to sampled-data sys-

tems by computing validated solutions over one sampling period based on high-order Taylor

expansion.

Applications such as converter voltage regulation, parallel parking, and reactive locomo-

tion planning problems are studied to show the e�ectiveness and e�ciency of the proposed

approach.

iv

Acknowledgements

I would not have made this thesis possible without the unreserved support from my super-

visor Prof. Jun Liu. I cannot forget how you commented and revised my �rst technical paper

word by word, how you showed me what a real mathematical proof is, how you helped me

formulate my ideas mathematically, and how you made our every individual meeting a friend

chat. You always encourage me to present my research at various conferences. You provide me

with as many opportunities as you can to build up my future career path and have written for

me in your every reference letter with strong support. Many thanks also to my co-supervisor

Prof. Xinzhi Liu. I learned from your classes the systematic method for analyzing dynamical

systems. Even short conversations with you sparkled in wisdom of life. I want to say more to

express my gratitude to both of you but just feel wordless.

I would also like to thank my other examining committee members Prof. Sue Ann Campbell

and Prof. Sander Rhebergen, my internal/external examiner Prof. Sherman Shen, and my exter-

nal examiner Prof. Mireille Broucke for taking your time reading my thesis and tolerating my

wordy statements and proofs. I am very grateful for your comments on improving this work.

Many thanks to my friends and group mates in Waterloo – Chuanzheng, Milad, Luc, Riley,

Kevin, Yiming, Mengyao, Jiamu and Zhibing. I spent so much time with you and enjoyed every

moment of it. Special thanks to Minxin, my close pal from the same hometown, for accompany-

ing me throughout my �rst year in Waterloo and o�ering me help when I was struggling with

math. To Ruowei and Tingli, you made my life in She�eld memorable. Also to my landlady, I

cannot count how many times you saved my life by giving me food when I came home starving.

Thank you.

The process to earn this title of “doctor of philosophy” turns out to make me think like a

philosopher. I started to think about the meaning of my life, which, I �nally realized, was to

deserve the love of my parents and how they made me the person I am now.

v

To Mom, Dad, and my childlike curiosity

Table of Contents

List of Figures xi

List of Tables xv

Acronyms xvi

List of Symbols xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview . 3

2 Problem Formulation 5

2.1 Control System . 5

2.1.1 Transition System . 6

2.1.2 Control System as Transition System . 7

2.2 Linear Temporal Logic . 9

2.3 Control Synthesis Problem . 13

2.4 Overview of Control Synthesis Approach . 15

2.4.1 Abstraction-Based Control . 15

2.4.2 Speci�cation-guided control . 17

vii

3 Preliminaries for Set-Theoretic Control Synthesis 20

3.1 The Pontryagin Di�erence . 20

3.2 Set Convergence . 21

3.3 Predecessor . 23

4 Robustly Complete Invariance and Reachability Control 29

4.1 Invariance Control . 31

4.1.1 Maximal Controlled Invariant Set . 31

4.1.2 Robust Completeness . 36

4.2 Reachability Control . 39

4.2.1 Robustly Backward Reachable Set . 39

4.2.2 Robust Completeness . 44

4.3 Reach-and-Stay Control . 46

4.4 Summary . 52

5 Robust Completeness via Interval Analysis 55

5.1 Interval Analysis . 56

5.2 Bounded Approximation of Predecessors . 59

5.2.1 Finite Control Values . 61

5.2.2 In�nite Control Values . 62

5.3 Finite Termination and Robust Completeness . 64

5.3.1 Finite Termination . 64

5.3.2 Robust Completeness Based on Interval Partitions 65

5.4 Complexity Analysis . 69

5.5 Experiments on Benchmarking Examples . 73

5.5.1 Boost DC-DC Converter . 73

5.5.2 Parallel Parking . 77

5.5.3 Motion Planning . 81

viii

5.5.4 Comparison on Performance . 81

5.6 Convergence in Set Approximations . 84

5.7 Summary . 86

6 Robustly Complete Control Synthesis with LTL Formulas 89

6.1 From LTL To Büchi Automata . 90

6.2 Control Structure with Finite Memory . 93

6.2.1 S-Domains of Automaton States . 94

6.2.2 Fixed-Point Characterization of S-Domains 95

6.2.3 Automata-Embedded Control Structure 103

6.3 Robust Completeness of LTL Control Synthesis 104

6.4 Control Synthesis with Pre-processing . 108

6.5 Application to Motion Planning Problems . 113

6.6 Summary . 117

7 Control Synthesis for Sampled-Data Systems 121

7.1 Reachable Set Approximation Using Interval Analysis 122

7.2 Robust Completeness . 125

7.3 Examples . 129

7.3.1 Estimation of Regions-of-Attraction . 129

7.3.2 Stabilization of Inverted Pendulum . 131

7.4 Summary . 134

8 Application to Reactive Locomotion Planning 135

8.1 Reactive Locomotion Planning Problem . 136

8.1.1 Hybrid System Model of Bipedal Locomotion 136

8.1.2 Reactive Locomotion Planning via Hierarchical Strategy 141

8.2 Robust Switching Between Locomotion Modes 145

ix

8.2.1 Robustness Margin Sets in One Walking Step 145

8.2.2 Mode-Transition Control Synthesis for One Walking Step 148

8.3 Simulation Results . 149

8.3.1 Evaluation of Mode-Transition Control Strategy 149

8.3.2 Multi-Step Locomotion Transition . 152

9 Conclusions and Future Work 154

Bibliography 158

APPENDICES 171

A ROCS: A Tool for Robustly Complete Control Synthesis 172

A.1 Design and Structure . 173

A.2 Usage . 174

B Euclidean-to-Riemmannian Mapping for Locomotion Modes 179

x

List of Figures

2.1 Illustration of the semantics of temporal operators. The formula ϕ, ϕ1 or ϕ2

showing at a certain time instance i ∈ N means that ϕ, ϕ1 or ϕ2 is true at i.
The star marker denotes any formula or proposition. For �♦ϕ, the formula ϕ
is true for in�nitely many times. 11

2.2 Example words speci�ed by formulas ϕ1, ϕ2, and ϕ3 in Example 2.2. Whether

formulas ϕ2 and ϕ3 hold or not can not be told by �nite parts of a word. 12

2.3 Abstraction-based control framework. 16

2.4 Speci�cation-guided control synthesis framework. 18

4.1 The set Invi(Ω) for i = 0, 1, 2, 3, 4. The outermost black box represents the

initial set Inv0(Ω) = Ω. The red lines are the real boundaries of the maximal

(controlled) invariant set inside Ω. 36

4.2 The 4-step δ-robustly backward reachable set. The yellow rectangle region in

the center is the target set Ω. 42

4.3 The evolution of the state of system (4.23) without disturbance term. 47

5.1 The circuit of a boost DC-DC converter. 73

5.2 The phase portrait of a closed-loop trajectory that satis�es the invariance spec-

i�cation ϕs. The area marked by the outermost green rectangle is the target set

Ω1. 75

5.3 The corresponding time history of closed-loop states and control variables in

Figure 5.2. 76

5.4 A closed-loop trajectory of the converter using the control strategy that realizes

the reach-and-stay speci�cation ϕrs. The target set Ω2 is marked as the green

rectangle. 77

xi

5.5 The vehicle structure [5]. 78

5.6 Collision area when ∆ = 0.5. In (b), the gray area is the x− y plane projection

of the 3D collision area, and the two black rectangles represent the bodies of

rear and front vehicle. 79

5.7 Controlled parking trajectories from an initial condition (x0, y0) with wide and

narrow marginal parking spaces. 80

5.8 Motion planning in a planar area with obstacles: a controlled 2-D trajectory of

the vehicle that leads from the initial condition x0 = 0.6, y0 = 0.6, θ0 = π/2.

The obstacles are represented by black areas. 82

5.9 Changes of run time under di�erent precisions. 84

5.10 Outer approximations of I∞(Ω) with di�erent precision parameters. 86

6.1 Graph representation of an NBA with the alphabet Σ = {a, b, c, d}. The node

q2 is a unique accepting state. The edge from q2 to q3 will incur an unsuccessful

run of the NBA. 92

6.2 The equivalent NBA of ϕrs with Σ = {G,Fr}. The nondeterminism exists in

the out edges of q0: after reading an input letter G, the state of the NBA can

either stay at q0 or transit to q1. 93

6.3 The DBA translations for the invariance and reachability formulas. The input

alphabet is Σ = {G,Fr}. 93

6.4 The connection between system S and the equivalent DBA Aϕ of a given LTL

formula ϕ. Assume that at some time t − 1 ∈ N, the state of Aϕ is at q0 and

the label of xt−1 is b ∈ Σ, i.e., vt−1 = q0 and L(xt−1) = b. Part (b) shows how

the partial sequence vt−1vtvt+1vt+2 is driven by xt−1xtxt+1xt+2 according to the

relevant part of Aϕ shown in part (a). 95

6.5 Transitions in a DBA. 96

6.6 The structure of the automaton-embedded control strategy for S with respect

to ϕ. 104

6.7 The translated DBA using Spot [37]. 112

6.8 The top view of the motion planning workspace. The shaded area is marked as

an obstacle. The target area L−1(a1) = [1, 2] × [0.5, 2] × [−π, π], L−1(a1) =
[0.5, 2.5]× [7.5, 8.5]× [−π, π], and L−1(a1) = [7.1, 9.1]× [4.6, 6.4]× [−π, π]. . 114

6.9 The simulation result for Example 6.4 with the initial condition x0 = (3, 2, 90◦). 115

xii

6.10 Closed-loop trajectories of the vehicle from 4 di�erent initial conditions. 116

6.11 The DBA translated from (6.23) using Spot [37]. 117

6.12 The simulation result for Example 6.5 with the initial condition x0 = (6, 1, 90◦). 118

7.1 Comparison of inner-approximations of the ROA for reversed Van der Pol sampled-

data system with three di�erent precisions. 131

7.2 Inverted pendulum on cart [90]. 132

7.3 Closed-loop simulation with the initial condition (θ0, θ̇0) = (1, 1) for system

(7.17). 133

8.1 Contact-based planning strategies for locomotion in rough terrains [141]. Events

motivated by ordinary accidents in human daily lives, such as a crack on the ter-

rain and the sudden appearance of a human, are treated as emergency events,

and incorporated into the allowable environment. 137

8.2 Hierarchical locomotion planner structure [141]. 142

8.3 One walking step with robustness margin sets. The horse shoe shape of the

robustness margin sets is the result of mapping from phase space to Euclidean

space. The robustness margins are shown in the upper right box. The green dot

in a state trajectory is the point where mode switching takes place. 146

8.4 Construction of a library of possible robust keyframe transitions. The set Q of

keyframe states is obtained by discritizing some neighborhood in the state space

Ξ around nominal setpoints. The mode-transition control synthesis veri�es the

possibility of the transitions between these keyframe states and generate cor-

responding mode-transition control strategy. 147

8.5 Control synthesis results for the walking step from PIPM to PPM. (a) The shaded

yellow region represents the winning set of this walking step and the orange

region is the intermediate robustness margin set. The black trajectories are 5

simulated closed-loop trajectories. (b) Comparison of winning sets under dif-

ferent levels of disturbance. 151

8.6 Performance evaluation result for PIPM to PPM walking step. (a) All the 50

simulation trails can reach the goal robustness margin set successfully. (b) 1000

trials are run for each case with a speci�c precision and a bounded disturbance

Dr = (0.1m, 0.2m/s). 152

8.7 The state trajectories of multi-step mode transition under bounded disturbances. 153

xiii

A.1 The architecture of ROCS. 173

A.2 A sample main function for the invariance control synthesis of a boost DC-

DC converter. A partition precision of 0.001 and the relative bisection type

RELMAXG are used when calling invariance_control, which is a member

function of CSolver. 175

A.3 The header �le dcdc.hpp containing the dynamics of a boost DC-DC converter. 177

xiv

List of Tables

5.1 The parameters in (5.27), and “p.u.”= per unit. 74

5.2 Control synthesis of the parallel parking problem with di�erent precisions. . . . 80

5.3 Comparison of run times of invariance control synthesis for the boost DC-DC

converter. “tabs”=the time for computing abstractions, and “tsyn”=the time for
control synthesis. 83

5.4 Performance comparison tests. TO=time out (> 86400s) and “–” = control syn-
thesis fails. 83

7.1 Local parameters for reachable set computation. 128

8.1 Parameters of the PIPM-PIPM mode transition. q1 and q2 are the initial and �nal

keyframe states, respectively. 150

8.2 Parameters of the PIPM-PPM mode transition. q1 and q2 are the initial and �nal

keyframe states, respectively. 150

xv

Acronyms

BA Büchi Automaton , 89–92, 94

CoM center of mass , 136–141, 145

CSP Constraint-Satisfaction Problem , 55, 56

DAG Directed Acyclic Graph , 92, 111, 119

DBA Deterministic Büchi Automaton , 91–95, 98–104, 107, 108, 111, 112, 114, 117, 119, 120,

125, 128, 155, 156

DE Di�erence Equation , 5, 24

DT Discrete-Time

FA Finite Automaton , 90, 91

HM hopping mode , 139

i� if and only if

LT Linear Time , 9

LTI Linear Time Invariant , 34, 35, 41

LTL Linear Temporal Logic , 9–15, 17, 19, 20, 28, 30, 31, 39, 45, 46, 48, 50, 52, 64, 65, 69, 73, 89,

90, 92–94, 102–104, 107, 108, 111–113, 117, 119, 120, 125, 129, 132, 134, 135, 141, 143, 144,

154–157, 172

MCIS Maximal controlled invariant set

xvi

MCM multi-contact mode , 139, 153, 180

MPC Model Predictive Control , 1, 30

NBA Non-deterministic Büchi Automaton , 91, 92, 155

o.w. Otherwise

ODE Ordinary Di�erential Equation , 8, 41, 74, 121, 132, 174

PID Proportional-Integral-Derivative , 1

PIPM prismatic inverted pendulum mode , 136, 138, 149–152, 179, 180

PNF Positive Normal Form , 10

PPM prismatic pendulum mode , 138, 150–152, 180

ROA Region of Attraction , 129–131, 157, 178

s.t. such that

SCC Strongly Connected Component , 92, 111, 112, 117

SIVIA Set Inversion Via Interval Analysis , 56, 59

SLM stop-launch mode , 138, 139

SM sliding mode , 140

WBDL whole-body dynamic locomotion , 135, 136, 140, 144, 145

ZOH Zero Order Hold , 121

xvii

List of Symbols

0n The n-dimensional zero vector.

1n The n-dimensional vector with all its elements being 1.

A∗ The set of all �nite sequences taking values in set A

A∞ The set of all in�nite and �nite sequences taking values in set A, i.e., A∗ ∪ Aω

Aω The set of all in�nite sequences taking values in set A

D A set of disturbances, a subset of Rn

IRn
A set of n-dimensional interval vectors

N A set of non-negative integers or natural numbers

R>0 A set of positive real numbers

Rn
A set of n-dimensional real vectors

R A set of real numbers

U System input space, a subset of Rm

X System state space, a subset of Rn

Z+
A set of positive integers

Zm A set of integers

Z A set of m-dimensional integers

�♦ The temporal operator denoting “always eventually” (or Büchi).

xviii

� The derived temporal operator denoting “always”, i.e., �ϕ , ¬♦¬ϕ.

Bδ An n-dimensional ball with radius δ, i.e., Bδ = {x ∈ Rn : |x| ≤ δ}

∂A The boundary of the set A

|A| The cardinal number of set A

cl(A) The closure of the set A

Ac The complement of the set A ⊆ Rn
, i.e., Ac = Rn \ A

g ◦ f The composition function of functions g and f , which are consistent.

♦� The temporal operator denoting “eventually always” (reach-and-stay or co-Büchi).

♦ The derived temporal operator denoting “eventually”, i.e., ♦ϕ , >Uϕ.

⊥ A false statement.

◦
A The interior of the set A

A⊕B Minkowski sum, i.e., A⊕B , {a+ b | a ∈ A, b ∈ B}

© The temporal operator denoting “next”.

‖·‖2 The Euclidean norm in Rn
space

‖·‖∞ The in�nity norm in Rn
space

A	B Pontryagin di�erence, i.e., A	B , {c ∈ Rn | c+ b ∈ A, ∀b ∈ B}

2A The power set of set A

A \B The subtraction between set A and B, i.e., A \B , {x ∈ A : x /∈ B}

> A true statement.

U The temporal operator denoting “until”.

|= Satisfaction relation, s |= ϕ means the formula ϕ is true at s

xix

Chapter 1

Introduction

1.1 Motivation

Nonlinearity, constraints, and uncertainties are among the critical factors that increase the dif-

�culty of solving practical control problems, which are ubiquitous in this modern world. Most

of dynamical systems are nonlinear, and a control system can be as simple as a water heater

controller or as sophisticated as a spacecraft control system or the control system for a network

of autonomous vehicles.

Because of the various behaviors in di�erent operating domains, nonlinear systems are more

di�cult to deal with than linear systems, for which control theory is well developed even with

the consideration of exogenous disturbances (see [129]). Linear control methods are still appli-

cable to nonlinear systems via linearization, only limited to an unknown neighborhood around

a desired state of the nonlinear system. In industry, Proportional-Integral-Derivative (PID) con-

trol is the most frequently used nonlinear control method but the problem is that it relies on

repetitive and empirical tuning of parameters. One of the systematic nonlinear control methods

is Lyapunov-based method such as using control Lyapunov functions, sliding mode control, and

passitivity-based control [69]. The design of a proper Lyapunov function is rather technical,

and state or control constraints are usually not considered in these settings. A renowned con-

trol framework of handling constraints is Model Predictive Control (MPC) [88], which has been

widely used in process industries [107]. Using MPC, a nonlinear constrained control problem

is typically tackled by attempting to solve a series of �nite-horizon optimal control problems,

to which solutions may not exist. Since these aforementioned control methods in the control

literature do not provide correctness guarantee of a controller designed for nonlinear systems

1

under constraints and uncertainties, an a posteriori veri�cation is often required to ensure that

the control speci�cations are satis�ed.

More recently, there is a rising demand of understanding and control of cyber-physical sys-

tems (CPS), which is a new generation of systems with integrated computational and physical

capabilities that can interact with humans through many new modalities, such as interoperable

medical systems, intelligent transportation systems equipped with autonomous vehicles, and

smart grid that are energy e�cient. Such systems exhibit both discrete and continuous behav-

iors. Even for continuous-time dynamical systems, under digital control scheme, continuous

time-varying states are sampled and quantized to strings of discrete-time data. For example,

programmable logic controllers are used for controlling industrial production such as chemi-

cal reaction processes. The complexity of control problems for such systems further increases

as richer classes of control objectives (or speci�cations) are required, not restricted to stabi-

lization or tracking as in the traditional control design. A typical example is the robot motion

planning problem [44, 41]. While being subject to mechanical constraints and dynamics, robots

are designed to ful�ll tasks such as pickup-delivery, parts assembly, surveillance and persistent

monitoring. Usually, these tasks have to be completed in speci�c orders, and robots are required

to be reactive to the change of environment.

To reduce the cost of a posteriori veri�cation for complex systems as such, we wonder if it

is possible to design a correct-by-construction approach for control purposes. The idea of model
checking [30, 8] inspires the use of formal methods in control. Formal methods are rigorous

techniques and tools for specifying properties, designing and verifying software and hardware

systems, and model checking techniques are used to automatically and systematically check

whether a given formal property holds for (a given state in) a �nite-state model of a system.

Such techniques have been used successfully in practice to verify complex sequential circuit de-

signs and communication protocols. In model checking, temporal logic such as linear temporal

logic and computational tree logic [8] is often used as a formal description of speci�cations, and

it is shown to be expressive enough to capture control speci�cations that are used for various

control settings such as robot motion planning [76, 41, 136] and automatic cruise control [96].

Under this background, this thesis is concerned with control synthesis for nonlinear systems

using formal methods. Particularly, the speci�cations are given in the form of linear temporal

logic formulas. As formal methods originally apply to �nite-state systems, dynamical systems

need to be discretized so that the existing computer algorithms can be used directly. The chal-

lenge lies in the connection of discrete methods to continuous state control and the conditions

that algorithmic control synthesis methods can realize control speci�cations correctly when-

ever it is possible.

2

1.2 Thesis Overview

In order to guarantee the correctness of control synthesis for nonlinear systems with respect to

temporal logic speci�cations, most of the methods in the literature work on over approxima-

tions of system dynamics, which are the types of system discretizations that cover all the pos-

sible behaviors of the original continuous-state systems and probably includes spurious transi-

tions as well, if no discretization that accurately represents the original dynamics can be found.

As a result, these methods are conservative in the way that it may not be able to �nd a control

strategy even if there exists one, or in other words, not complete. Without any assumptions

on the system dynamics or stability properties, making control synthesis for general nonlinear

systems with respect to temporal logic formulas sound and complete is nontrivial.

As a main contribution, this thesis proposes sound and robustly complete control synthesis

algorithms with respect to general classes of linear temporal logic speci�cations, which are

guaranteed to �nd correct control strategies provided the speci�cations can be realized for

the system with additional disturbances. Furthermore, the proposed algorithms, which are

implemented via an interval subdivision scheme, are shown to be more e�cient in practice

than the abstraction-based methods, which often require a uniform discretization of the system

state space.

To illustrate the proposed algorithms with respect to di�erent linear temporal logic formulas

and how the robust completeness takes e�ects in these algorithms, the thesis is organized as

follows.

Chapter 2 presents a formal de�nition of the control synthesis problem under considera-

tion. Transition systems are used to connect the linear temporal logic speci�cations with the

behaviors of dynamical systems. As opposed to conventional control problems where the ini-

tial conditions are usually given, this research is concerned with �nding the set of initial con-

ditions from which a given speci�cation can be satis�ed by using some control strategy, which

is termed as the winning set. We de�ne robust completeness for control synthesis algorithms in

this chapter since it is a key concept for dealing with nonlinear dynamics and goes through the

remaining chapters in the thesis.

In Chapter 3, we provide preliminaries for set-theoretic analysis: the Pontryagin di�erence

and set convergence. For the purpose of winning set computation, we focus on discussing the

properties of the predecessor map, which is de�ned as the set of states that can be controlled

into a given set in the system state space in one step. These properties are crucial for developing

the completeness results for invariance and reachability speci�cations.

Chapter 4 is devoted to solving control synthesis problems with respect to the most funda-

mental linear temporal logic speci�cations, including invariance, reachability and reach-and-

3

stay formulas. We show that these control problems are essentially regulation problems in the

control literature and can be solved by sound and complete �xed-point algorithms based on the

computation of predecessors. Considering numerical di�culties in computing predecessors

under nonlinear dynamics, we propose to use approximations of predecessors under certain

conditions so that the algorithms can be made robustly complete.

To make the proposed control synthesis methods in Chapter 4 solid, Chapter 5 focuses on

the interval implementation of the proposed control synthesis algorithms, in which predeces-

sors are approximated by unions of intervals. The approximation procedure is carried out by

integrating interval arithmetic in a bisection scheme. We will discuss su�cient conditions for

the proposed interval implementation to be sound and robustly complete as well as �nitely

terminating.

Chapter 6 is concerned with a general class of linear temporal logic formulas: the formulas

that can be translated into deterministic Büchi automata. The idea of solving such control

problems is inline with the proposed method in Chapter 4 and 5. To deal with the generality in

the form of the speci�cations, we perform control synthesis under the guidance of the graph

structure of the deterministic Büchi automaton representation of the control speci�cation.

The above results also hold for sampled-data systems, which is the topic of Chapter 7. The

behaviors of sampled-data systems are determined by ordinary di�erential equations but the

system state is measured and controlled only at discrete time instances. For sampled-data sys-

tems, the reachable set from an initial set of states after a sampling time step needs to be eval-

uated to determine whether a transition between two states is valid. In this chapter, we ap-

proximate the reachable set by computing Taylor expansion of the system solution over one

sampling period by using interval arithmetic.

In Chapter 8, we demonstrate how the proposed control synthesis method can be applied

to solving the reactive locomotion planning problem, where the bipedal robot is required to

perform di�erent types of locomotion in response to the changing environment. Because of

the complexity in both speci�cations and dynamics, a hierarchical control design is usually

used. The proposed control method will be used to verify the correctness of high-level plan

as well as to generate a middle-level strategy that synergizes the high-level plan and low-level

controllers.

Furthermore, we introduce a self-developed tool ROCS in the appendix, which is used to

conduct all the numerical experiments in this thesis.

4

Chapter 2

Problem Formulation

Applying formal methods in control requires proper system models and control speci�cations

that can be understood by computer algorithms. Discrete-time discrete-state systems, which

can be modeled by �nite state-transition graphs, such as Markov decision process [12] that are

used in dynamic programming for optimal control problems and Kripke structure for model

checking [30] are favorable, because graph searching algorithms on such systems are more

likely to terminate in a �nite number of iterations. Limited by the nature of digital computers,

real-world continuous-time dynamical systems are only observed at certain discrete time in-

stances, which motivates the study of sampled-data systems. However, the state space of most

of the physical systems is continuous and thus contains an in�nite number of states.

This chapter is devoted to a formal statement of the control synthesis problem, in which

the control objective is given as linear temporal logic formulas and dynamical systems are for-

mulated as transition systems that incorporate basic elements of temporal logic.

As opposed to conventional control problems where the possibility of the ful�llment of the

given control objectives is not considered or discussed, the control synthesis problem formu-

lated in this chapter also explores all the initial conditions from which the control speci�cation

can be achieved by proper control strategies. Based on such a formulation, two provably-correct

control synthesis approaches are brie�y introduced.

2.1 Control System

Consider the following discrete-time nonlinear system given by Di�erence Equations (DEs):

xt+1 = f(xt, ut), (2.1)

5

where t ∈ N is the time instance, xt ∈ X ⊆ Rn
is the state, ut ∈ U ⊆ Rm

is the control input,

and f : Rn × Rm → Rn
is a function that determines the system state evolution. The sets X

and U are the state and control spaces of (2.1), respectively.

Practical feedback control systems are often subject to imperfections in multiple aspects of

the control structure. Measurements are corrupted by noise. Delay happens in transferring

measured data from sensors to controllers and also from controllers to plants. In sampled-data

systems, numerical errors are inevitable during quantization. From a robust control perspective,

we hope that the controller designed for the nominal system (2.1) still functions in the presence

of uncertainties. In the following, we assume additive bounded disturbances:

xt+1 = f(xt, ut) + dt, (2.2)

where dt ∈ D ⊆ Rn
is a unknown but bounded disturbance, and

D , {d ∈ Rn : ‖d‖∞ ≤ δ, δ ≥ 0} . (2.3)

This is without loss of generality since most of the physical systems evolve continuously

over a bounded domain so that the uncertainty of the state change is still within some bound

around the nominal value. Clearly, the disturbed form (2.2) reduces to the nominal form (2.1)

when δ = 0. For the sake of simplicity, we refer to (2.2) in the rest of the thesis.

2.1.1 Transition System

Transition systems, whose behaviors are determined by state transition relations, are usually

used for modeling software and hardware systems. Typically in computer science, transition

systems contain �nite numbers of states and inputs so that desired properties can be veri�ed

or synthesized by running computer programs.

De�nition 2.1 ([8]). A transition system is de�ned as a tuple T : 〈S, Act, R, AP, L〉, where

• S is a set of states;

• Act is a set of actions;

• R : S × Act→ 2S is a transition function;

• AP is a set of atomic propositions;

• L : S → 2AP is a labeling function.

6

Atomic propositions are true or false statements about system state properties. For example,

statements such as “s is between 7 and 20”(s is a variable) and “all birds can �y” can be consid-

ered as atomic propositions. If 7 < s < 20, then the �rst atomic proposition is true; otherwise

it is false. The labeling function L assigns each state s ∈ S a set of atomic propositions, i.e.,

L(s) ∈ 2AP .

A transition system is said to be �nite if the set S, Act, and AP are all �nite. Given any

state s ∈ S and any control action a ∈ Act, if there is only one state inR(s, a), then the system

is deterministic, otherwise it is non-deterministic.

2.1.2 Control System as Transition System

System (2.2) can be translated to an equivalent transition system

S : 〈X, U, R, AP, L〉, (2.4)

where X and U are the set of states and inputs, respectively, and the transition relation R is

de�ned by R(x, u) , {f(x, u) + d : d ∈ D} for all x ∈ X and u ∈ U.

For discrete-time dynamical systems over continuous state and input spaces, the sets X
and U are in�nite. There is a transition from x to x′ whenever there exists u ∈ U such that

x′ ∈ R(x, u). Therefore, system S is in�nite and non-deterministic if δ 6= 0. Speci�cally, we

refer to S0
as the nominal control system (2.1) since S reduces to (2.1) when δ = 0, which is

deterministic.

An in�nite sequence of control inputs u = {ut}∞t=0 (ut ∈ U for all t ∈ N) is called a control
signal, and a sequence of disturbance, is denoted by d = {dt}∞t=0.

De�nition 2.2. Given an initial condition x ∈ X and a control signal u, a solution of S is an

in�nite sequence of states x = {xt}∞t=0 generated by the transition relation R, i.e., x0 = x and

xt+1 ∈ R(xt, ut) for all t ∈ N.

Let Σ be an alphabet, and each element of Σ is called a letter. A sequence of letters from an

alphabet Σ is called a word. The word w is in�nite if it is an in�nite sequence. Given an in�nite

word w = σ0σ1 · · · , a �nite sequence composed of the �rst i elements of w, i.e., σ0 · · ·σi (i ∈ N)

is called a pre�x of w, and an in�nite sequence σiσi+1 · · · (i ∈ N) is called a su�x of w.

De�nition 2.3. The trace of a solution x = {xt}∞t=0 of system S is an in�nite word Trace(x) =
{L(xt)}∞t=0 over the power set 2AP of the set AP of atomic propositions.

7

Interpreting system solutions by their traces, a property expressed by atomic propositions

can be veri�ed for system S or used to guide the synthesis of a controller.

There are usually a �nite number of atomic propositions while the number of states in the

state space X is in�nite. Now the question comes to the design of the labeling function so that

the set AP and X are properly mapped to each other.

De�nition 2.4. Given a set Ω ⊆ Rn
and a positive integer N , a �nite collection of sets P =

{P1, P2, · · · , PN} is said to be a partition of Ω if

(i) Pi ⊆ Ω, for all i ∈ {1, · · · , N};

(ii)

◦
Pi ∩

◦
Pj = ∅ for all i, j ∈ {1, · · · , N} where

◦
Pi denotes the interior of set Pi;

(iii) Ω ⊆ ⋃N
i=1 Pi.

Each element Pi of the partition P is called a cell.

Let {γ1, · · · , γN}, where γi ∈ 2AP is a subset of the set AP of atomic propositions and

N∨

i=1

γi = >, γi ∧ γj = ⊥, i 6= j, (2.5)

where > and ⊥ means true and false, respectively. Then we can obtain a partition P0 =
{P1, P2, · · · , PN} of the state space X, where

Pi , L−1(γi) = {x ∈ X : L(x) = γi} . (2.6)

This is to say that all the states inside a cell are assigned the same atomic proposition. Addi-

tionally, L−1(>) = X.

Let us illustrate by the following example how the set of atomic propositions to be designed

and equipped to system S for specifying desired properties.

Example 2.1. The adaptive cruise control system for a single vehicle is modeled by the follow-

ing Ordinary Di�erential Equations (ODEs) [96]:

v̇ = Fw/m− f0 − f1v − f2v
2,

ḣ = vL − v,

8

where Fw is the control input, h is the headway, vL and v are the velocity of the leading and

following vehicle, respectively, f0, f1, and f2 are real constants.

There are two modes determined by the time headway w , h/v: the set speed mode M1 =
{(v, h) : v ≤ h/wd} and the time gap mode M2 = {(v, h) : v > h/wd}, where wd denotes

the desired time headway. Then the (h, v) space is partitioned into two cells by using AP =
{set, gap} and the labeling function

L(h, v) =

{
set (v, h) ∈M1,

gap (v, h) ∈M2.

2.2 Linear Temporal Logic

Properties of a transition system are usually evaluated over its traces, which, as de�ned in

De�nition 2.3, evolve over time. In this sense, such properties are called Linear Time (LT)

properties. To verify or synthesize an LT property for a transition system through algorithmic

computation, it is crucial to describe LT properties in a way that can be operated by computer

programs.

Linear Temporal Logic (LTL) is a logical formalism de�ned over an alphabet 2AP , which can

specify LT properties. An LTL formula consists of propositional logic operators (e.g., true (>),

negation (¬), and conjunction (∧)), and temporal operators (e.g., next (©) and until (U)). The

syntax of LTL over AP is de�ned in the Backus Naur Form (p ∈ AP):

ϕ ::= > | p | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | Uϕ,

which reads inductively as

• ϕ = > is an LTL formula;

• ϕ = p ∈ AP is an LTL formula;

• if ϕ, ϕ1, and ϕ2 are LTL formulas, then ¬ϕ, ϕ1 ∧ ϕ2,©ϕ, and ϕ1Uϕ2 are LTL formulas.

Based on these basic operators, several other important temporal operators can also be

de�ned. For example,

ϕ1 ∨ ϕ2 , ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 , ¬ϕ1 ∨ ϕ2,

♦ϕ , >Uϕ, �ϕ , ¬♦¬ϕ.

9

If negations are only allowed to appear adjacent to atomic propositions, which is the so-called

Positive Normal Form (PNF), false (⊥), an additional temporal operator release (R), and a propo-

sitional operator disjunction (∨) need to be used to transform any LTL formula into PNF:

ϕ ::= > | ⊥ | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ©ϕ | Uϕ | ϕ1Rϕ2

The semantics of LTL is de�ned with respect to a transition system. Given a word σ =
σ0σ1σ2 · · · over 2AP , let σ[i] , σi, σ[i, j] , σi · · ·σj , and σ[i, · · ·] , σi · · · . We de�ne σ, i |= ϕ,

meaning that σ satis�es an LTL formula ϕ at position i, inductively as follows:

• σ, i |= > i� σi = >;

• σ, i |= p i� σi |= a;

• σ, i |= ¬ϕ i� σ, i 6|= ϕ;

• σ, i |= ϕ1 ∧ ϕ2 i� σ, i |= ϕ1 and σ, i |= ϕ2;

• σ, i |= ϕ1 ∨ ϕ2 i� σ, i |= ϕ1 or σ, i |= ϕ2;

• σ, i |=©ϕ i� σ, i+ 1 |= ϕ;

• σ, i |= ϕ1Uϕ2 i� there exists j ≥ i ≥ 0 such that σ, j |= ϕ2 and σ, k |= ϕ1 for all

i ≤ k < j;

• ρ, i |= ϕ1Rϕ2 i�, for all j ≥ i, at least one of the following holds: σ, j |= ϕ2 or there

exists i ≤ k < j such that σ, k |= ϕ1.

We write σ |= ϕ if σ, 0 |= ϕ and say σ satis�es ϕ. The set of words satisfying an LTL formula

ϕ is called the language of ϕ, denoted by L(ϕ).

The semantics for the derived operators ♦ and �, the followings can be derived:

• σ |= ♦ϕ i� ∃i ≥ 0 s.t. σ[i · · ·] |= ϕ.

• σ |= �ϕ i� ∀i ≥ 0 s.t. σ[i · · ·] |= ϕ.

• σ |= ♦�ϕ i� ∃i ≥ 0 s.t. σ[j · · ·] |= ϕ, ∀j ≥ i.

• σ |= �♦ϕ i� ∀i ≥ 0 s.t. σ[j · · ·] |= ϕ, ∃j ≥ i.

10

time 0 1 2 3 · · ·
©ϕ * ϕ * * · · ·

ϕ1Uϕ2 ϕ1 ϕ1 ϕ2 * · · ·
ϕ1Rϕ2 ϕ2 ϕ2 ϕ1 * · · ·
ϕ1Rϕ2 ϕ2 ϕ2 ϕ2 ϕ2 · · ·
�ϕ ϕ ϕ ϕ ϕ · · ·
♦ϕ * * ϕ * · · ·
♦�ϕ * * ϕ ϕ · · ·
�♦ϕ * ϕ * ϕ · · ·

Figure 2.1: Illustration of the semantics of temporal operators. The formulaϕ, ϕ1 orϕ2 showing

at a certain time instance i ∈ N means that ϕ, ϕ1 or ϕ2 is true at i. The star marker denotes

any formula or proposition. For �♦ϕ, the formula ϕ is true for in�nitely many times.

As interpreted above, the temporal operators�♦ and ♦� intuitively express the properties

“in�nitely often” and “eventually forever”. The LTL formula �♦ϕ means that ϕ hold true for

in�nitely many times, and ♦�ϕ means that ϕ will be always true from some time instance. An

intuitive illustration of the above semantics is given in Figure 2.1.

Example 2.2. Suppose that AP = {a, b, c}. Then

ϕ1 = (©a)U(a ∧ ¬b),
ϕ2 = �(¬a ∨ ¬c),
ϕ3 = �♦b→ �♦c

are all LTL formulas. Even for a speci�c LTL formula ϕ, the words that match ϕ can be dif-

ferent. Figure 2.2 shows the words described by ϕ1, ϕ2, and ϕ3. The formula ϕ3 expresses a

fairness property, which pictures that “in�nitely often requests must be responded in�nitely

many times”.

LTL formulas are expressive enough to capture safety, liveness, and fairness properties.

Safety properties rule out forbidden behaviors which would cause damage to the system. live-

ness properties focus on in�nite behaviors and impose no con�nement to any �nite behaviors.

Fairness properties restrict the system behaviors in response to environment changes. In a

strong sense, we hope that any request to a system constantly should be answered in�nitely

often, which often help distribute the resources.

11

time: 0 1 2 3 · · ·
ϕ1: * a * a ∧ ¬b · · ·
ϕ1: * a a ∧ ¬b * · · ·
ϕ1: a ∧ ¬b * * * · · ·
ϕ2: ¬a ¬a ¬c ¬a · · ·
ϕ2: ¬c ¬c ¬c ¬c · · ·
ϕ3: b b ¬c c · · ·

Figure 2.2: Example words speci�ed by formulas ϕ1, ϕ2, and ϕ3 in Example 2.2. Whether for-

mulas ϕ2 and ϕ3 hold or not can not be told by �nite parts of a word.

Here are some of the real-world speci�cations that can be expressed by LTL formulas [8, 38].

Example 2.3. The control logic for an elevator must satisfy the safety property: the door must

only open when the elevator is at some �oor and the liveness property: any �oor can be reached

eventually if there is a request.

Let {fi}li=1 and {bi}li=1 be the set of atomic propositions indicating the position of the el-

evator and the activation status of �oor buttons, respectively. The elevator is at ith �oor i�

fi = > and bi = > i� the button of ith �oor is pressed down (i = 1, · · · , l). Then the safety

and liveness properties can be expressed by

ϕsafety = ¬open ∧
l∧

i=1

¬fi,

ϕliveness =
l∧

i=1

�(bi → ♦fi).

Example 2.4. The interpretation of the desired behavior of tra�c lights can be from di�erent

perspectives. The order of activating lights of di�erent colors can be expressed by

�(green→©yellow) ∧�((yellow→©red) ∧�(red→©green).

The long-term behavior of a single light, e.g. the red light should be on in�nitely often, can be

expressed by an LTL formula:

�♦red ∧�♦yellow ∧�♦green.

The requirement that the yellow light must be lit after the red light and before the green light

is expressed by

redU(yellow ∧©(yellowU green)).

12

2.3 Control Synthesis Problem

The goal is to �nd a control strategy such that the traces of resulting sequences of system

states satis�es a given LTL formula. Prior to presenting the formal de�nition of the LTL control

synthesis problem, we rely on the following de�nitions.

De�nition 2.5. A control strategy of systemS is a partial function that maps a history of system

state to a set of control inputs:

κ : X∗ → 2U, (2.7)

where X∗ denotes the set of all �nite sequences taking values from the set X. A control signal

u is said to conform to a control strategy κ, if

ut ∈ κ({x0, · · · , xt}), ∀t ∈ N.

For many of the control problems for system S , however, remembering past system state is

not necessary. The control strategy can be simpli�ed to a function with the state space X as its

domain.

De�nition 2.6. A control strategy κ is called memoryless if it only takes in the current state as

the input, i.e.,

κ : X→ 2U. (2.8)

De�nition 2.7. An LTL formula ϕ is said to be realizable for system S if there exists an initial

condition x ∈ X and a control strategy κ such that the trace of any solution for system S under

any control signal u that conforms to κ is guaranteed to satisfy ϕ, i.e., Trace(x) |= ϕ for all

x = {xt}∞t=0 with x0 = x. We say κ realizes ϕ for system S at x.

Now we are in the position to present the control synthesis problem with respect to LTL

speci�cations:

Problem 2.1 (LTL Control Synthesis Problem). Consider system S and an LTL formula ϕ.

(i) Determine whether ϕ is realizable for S ;

(ii) Synthesize a control strategy κ such that the closed-loop system satis�es ϕ if possible.

To check the realizability of the LTL formula ϕ, we need the following de�nition.

13

De�nition 2.8. The set of initial conditions of all the solutions of systemS whose trace satis�es

ϕ is called the winning set of system S with respect to ϕ, written as Win
δ
S(ϕ). Speci�cally, the

winning set for S0
is denoted by WinS(ϕ).

If Win
δ
S(ϕ) 6= ∅, then ϕ can be realized for system S . Ideally, we hope to construct a

control strategy that correctly realizes the given speci�cation as long as there exists one. In

other words, the control strategy we aim at should be well de�ned on the winning set Win
δ
S(ϕ)

in the �rst place. This naturally motivates our intention of seeking sound and complete control

synthesis methods, which is de�ned below.

De�nition 2.9. Control synthesis for system S with respect to a given LTL formula ϕ is said

to be sound if the resulting control strategies realize ϕ. It is complete if a control strategy can

be found for all initial state x0 ∈WinS(ϕ).

Determination of the winning set Win
δ
S(ϕ) for nonlinear systems by analytical analysis is

challenging as the controllability analysis of nonlinear systems is nontrivial and often relies on

additional assumptions such as the function f in (2.2) being invertible [63]. A more feasible

solution is to algorithmically compute Win
δ
S(ϕ). The accurate computation, however, is usu-

ally impossible because of the inevitable numerical error and quantization of measurements.

Hence, it is more practical to relax the control synthesis problem. Our relaxation is based on

the following de�nition of robust realizability of a speci�cation.

De�nition 2.10. An LTL speci�cation ϕ is said to be δ-robustly realizable for system S0
if it is

realizable for Sδ . If δ > 0, then ϕ is called robustly realizable for S0
.

Problem 2.2 (Relaxed LTL Control Synthesis Problem). Consider system S0
and an LTL

formula ϕ. Solve one of the two following problems:

(i) Construct a control strategy if ϕ is robustly realizable for S0
.

(ii) Verify that ϕ is not realizable for Sδ with some δ > 0.

For a numerical method that solves Problem 2.2, it is foremost that computation (or approx-

imation) of the winning set is guaranteed to stop in �nite time.

De�nition 2.11. An algorithm is said to be �nitely terminating if it terminates in a �nite num-

ber of steps.

The possibility of �nding sound and complete control synthesis methods is also questioned

on account of the situations where approximations of winning sets and numerical errors are

inevitable. Therefore, for the relaxed Problem 2.2, we propose the following concept to relax

the completeness requirement to a control synthesis method.

14

De�nition 2.12 (Robust Completeness). Control synthesis for system S with respect to a given

LTL formula ϕ is said to be robustly complete if a control strategy that realizes ϕ can be con-

structed whenever ϕ is robustly realizable for system S .

The conditions that guarantee the robust completeness of control synthesis algorithms for

di�erent LTL speci�cations will be derived in the following chapters. Before we dive into de-

tails, let us review the common approaches to such a control synthesis problem.

2.4 Overview of Control Synthesis Approach

The LTL control synthesis problem is hybrid by de�nition: the control speci�cation is expressed

in a logical language while the system evolves on a continuous state space. As we have men-

tioned before, a systematic and analytical approach is di�cult, and the approach for handling

both continuous dynamics and discrete speci�cations for LTL control synthesis in the literature

is built up on discretizing system dynamics. In this way, the control problem can be solved in

a discrete domain by automated algorithmic computation.

2.4.1 Abstraction-Based Control

Abstraction-based control, which is also termed as symbolic control [121], relies on discrete

abstractions of the original systems. The continuous state space is often partitioned into a �-

nite number of regions. All states that belong to such a region are represented by one abstract

state. Based on this �nite partition, the continuous system evolution is also replaced by transi-

tions between the �nite states of a discrete abstraction. Owing to such discrete representation,

abstraction-based control is named symbolic control in some of the works in the literature.

Abstraction-based control procedure primarily consists of three steps (see Figure 2.3) [10]:

S1 Construct a �nite abstraction for a dynamical system by abstracting state and control

space as well as transitions.

S2 Synthesize a discrete controller that satis�es the given speci�cations over the �nite ab-

straction if there exists one, otherwise returns empty. Such a discrete control synthesis

is usually carried out by graph searching algorithms (e.g., Dijkstra algorithm) [33] or the

algorithms for solving two-player in�nite games [124] over a product system of the ab-

straction and the speci�cation. Depending on di�erent speci�cations, the algorithms can

be simpli�ed. Details about control synthesis with respect to general LTL formulas will

be discussed in Chapter 6.

15

S3 Translate the discrete controller into a continuous one that solves the original control

synthesis problem.

LTL Spec-

i�cations

Dynamics

Discrete

Abstraction

Searching

Algorithms

Winning Set Control Strategy

x(t)u(t) Discrete
Control

Synthesis

Feedback Controller

Figure 2.3: Abstraction-based control framework.

The notion of abstractions of continuous-state systems �rst appears in [101] to reduce the

complexity of analyzing properties of complex dynamical systems. Such abstractions are bisim-
ulations [2, 1, 60] of the original systems, which have coarser state partitions while maintaining

equivalence in terms of the properties being concerned [60]. The approximate bisimulation is

later proposed in [20] for reachability veri�cation of a class of hybrid systems, which extends the

class of the systems that have (approximate) bisimulations. To reduce the complexity in control

synthesis, the design of a discrete controller based on a dynamically consistent (DC) partition
machine of a nonlinear continuous-state system is proposed in [24, 25]. Similar to an abstrac-

tion, a DC partition machine of a dynamical system is a �nite input-state machine de�ned on

a �nite partition of the continuous state space, and the transitions between partition cells are

consistent with the original dynamics. The idea of using abstractions introduces algorithmic

procedures for the veri�cation and synthesis of pure discrete-state systems to continuous-state

systems.

As shown in [100, 57], a bisimilar transition system can be constructed by using a linear

quotient map that preserves the observation of the linear control system if the kernel of the

16

quotient map is a controlled invariant subspace inside the kernel of the observation map. Such

a quotient map can be found for any discrete-time controllable linear systems [122]. Based

on bisimilar transition systems of linear systems, the symbolic control approach is then pro-

posed to solve LTL control synthesis problems for linear systems [123, 120, 121]. Speci�cally,

a type of abstractions based on simplices is studied to solve reach control [56, 21, 22] and LTL

control [72] problems for linear a�ne systems. A bisimilar abstraction for nonlinear systems

might require the properties of hybrid between-block controllable (HHBC) and hybrid in-block
controllable (HIBC). If HHBC or HIBC are not satis�ed, one way to extend the symbolic control

approach to nonlinear systems is via the approximate bisimulation relation, which is introduced

in [52, 51, 50] and applied to the nonlinear [105, 106] and switched systems [53] that are in-

crementally stable [4]. To further relax the stability constraints posed to the system dynamics,

approximate simulation relation is then used in [119, 139] to construct �nite abstractions.

In order to be sound and complete in control synthesis, abstractions that are (approximately)

equivalent to the original systems is usually needed, which is shown feasible for incremen-

tally stable systems [105, 53]. Without such a stability assumption, we can still construct over-

approximations [139, 86, 87, 113], but it does not always guarantee a feasible control strategy,

even if one exists, because spurious transitions are introduced and control synthesis is sepa-

rated from abstraction. Using su�ciently small granularities, approximately complete control

synthesis can be achieved without stability assumptions [85] but it is at the cost of intractable

computation.

As a summary, the current stage of abstraction-based control synthesis su�ers from expen-

sive computation in order to be (robustly) complete.

2.4.2 Specification-guided control

In contrast with the abstraction-based approach, a speci�cation-guided approach performs con-

trol synthesis directly on the original system with respect to a given linear temporal logic spec-

i�cation. Construction of discrete abstractions is avoided as it is often unnecessary to explore

the entire state space for a speci�c control objective. As a result of direct control synthesis, a

speci�cation-guided approach is more e�cient in comparison with the abstraction-based ap-

proach when it comes down to a speci�c control problem. The framework of this approach is

given in Figure 2.4.

Central to a speci�cation-guided approach are the translations of LTL speci�cations to �xed-

point forms and computational mechanisms performing �xed-point iterations. Treating distur-

bances or the nondeterminism in a control system as an adversary player, an LTL control syn-

thesis problem can be formulated in the two-player game setting, where the winning strategies

17

LTL Spec-

i�cations

Dynamics

Fixed-point

Computation

Winning Set Control Strategy

x(t)u(t)
Direct Control

Synthesis

Feedback Controller

Figure 2.4: Speci�cation-guided control synthesis framework.

for the players can be solved by �xed-point algorithms [23, 40, 89]. For transition systems, some

of the properties can be expressed by modal µ-calculus formulas, which are based on least and

greatest �xed-point operators [75, 39]. Many of the �xed-point schemes for two-player games,

such as reachability and Büchi games, have their equivalent µ-calculus versions, and every

ω-regular objective can be formulated by a µ-calculus formula [35].

In this thesis, the �xed-point algorithms in the speci�cation-guided framework is an ex-

tension of the ones for transition systems to the control systems de�ned on continuous state

spaces. In this context, a �xed point refers to a set of states of the given system S , which is

mapped to itself by a set operator. The control synthesis procedure for most of the important

control objectives can be viewed as iterative �xed-point computation. For example, to realize

controlled invariance, i.e., to control the system states inside a given target set for all future

time, the �rst and foremost step is to determine the maximal controlled invariant set within the

target set. A set operation, which takes in a set Ω and computes the set of states inside Ω that

can also be controlled inside Ω for one step of time, is performed repeatedly until a �xed point

is reached. This �xed point is the maximal controlled invariant set, and also the winning set

of the invariance control speci�cation for system S . The way to compute �xed points depends

heavily on set representation and system dynamics. Polyhedral and ellipsoidal representations

are most studied because they are either natural descriptions of physical constraints or e�cient

for set computation.

18

In the scope of a speci�cation-guided approach, most of the research progress is found in

safety speci�cation synthesis for discrete-time linear systems [7, 116, 97]. Very few attention

has been paid to more general LTL formulas. Besides, the systems under investigation are often

linear since computing exact �xed points is nontrivial even for linear systems. This is primarily

because of the lack of �nite termination guarantee in the �xed-point algorithm. For nonlinear

systems, another challenge rises in �xed-point set computation according to nonlinear dynam-

ics.

The speci�cation-guided framework is the one we take to tackle the LTL control synthesis

problem throughout the thesis for the purpose of lower computational expense. We will discuss

in detail in the following chapters how this framework can be carried out for di�erent levels of

LTL speci�cations and how the control synthesis can be made sound and robustly complete for

general nonlinear systems.

19

Chapter 3

Preliminaries for Set-Theoretic Control
Synthesis

Checking the emptiness of a winning set of system S with respect to an LTL formula is the

key to solving the LTL control synthesis problem. This chapter provides the preliminaries for

set-theoretic analysis used in the rest of the thesis, especially the predecessor map and its related

properties.

3.1 The Pontryagin Di�erence

The Minkowski sum and Pontryagin di�erence are often used in set relationships. Given two

sets A,B ⊆ Rn
, the Minkowski sum A⊕B and Pontryagin di�erence A	B are de�ned by

A⊕B , {a+ b | a ∈ A, b ∈ B}. (3.1)

A	B , {c ∈ Rn | c+ b ∈ A, ∀b ∈ B}. (3.2)

The following properties are important for solving LTL control synthesis, and we provide

the complete proof of these properties below in order to be self-contained, although part of the

proof can be found in [73].

Proposition 3.1. Let A,B ⊆ Rn
and assume that A 	 B 6= ∅. Then the following properties

hold.

(i) A	B ⊆ A if 0n ∈ B.

20

(ii) A	B ⊕B ⊆ A ⊆ A⊕B 	B.

(iii) A	B = (A1 	B) ∩ (A2 	B), A = A1 ∩ A2, A1, A2 ⊆ Rn
.

(iv) A	B =
⋂∞
i=1(Ai 	B), where A =

⋂∞
i=1Ai.

(v) A	B is closed (compact) if A is closed (compact).

Proof. Property (i) is straightforward since for all a ∈ A	B, 0n ∈ B implies that a+ 0n ∈ A.

To show property (ii), let z ∈ A 	 B ⊕ B. Then we can �nd y ∈ A 	 B and b ∈ B such

that z = y+ b by (3.1). By (3.2), y+ b ∈ A, which gives that z ∈ A. Hence A	B⊕B ⊆ A. Let

a ∈ A be arbitrary. Then a+ b ∈ A⊕B for all b ∈ B. It follows that a ∈ A⊕B 	B by (3.2).

We now show (iii). By (3.2), we have

A	B = (A1 ∩ A2)	B = {x ∈ A1 ∩ A2 : x+ b ∈ A1 ∩ A2,∀b ∈ B}
= {x ∈ A1 ∩ A2 : (x+ b ∈ A1) ∧ (x+ b ∈ A2),∀b ∈ B} ,

(A1 	B) ∩ (A2 	B) = {y ∈ A1 ∩ A2 : (y + b1 ∈ A1) ∧ (y + b2 ∈ A2),∀b1, b2 ∈ B} .

Then (A1 	 B) ∩ (A2 	 B) ⊆ A 	 B clearly. For any y 6∈ (A1 	 B) ∩ (A2 	 B), there

exists b′ ∈ B so that (y + b′ 6∈ A1) ∨ (y + b′ 6∈ A2), which indicates that y 6∈ A 	 B. Hence

A	B ⊆ (A1 	B) ∩ (A2 	B), and (iii) holds.

To show (iv), we prove both (
⋂∞
i=1Ai)	B ⊆

⋂∞
i=1(Ai	B) and

⋂∞
i=1(Ai∩B) ⊆ (

⋂∞
i=1Ai)	

B. Let x ∈ (
⋂∞
i=1 Ai)	B. Then x+ b ∈ ⋂∞i=1Ai for all b ∈ B. That is to say x+ b ∈ Ai for all

b ∈ B and i ∈ Z+
. It then implies that x ∈ Ai 	 B for all i ∈ Z+

, i.e., x ∈ ⋂∞i=1(Ai 	 B). For

the other direction, let x 6∈ ⋂∞i=1Ai	B. Then there exists b ∈ B such that x+b 6∈ ⋂∞i=1Ai, i.e.,

there exists j ∈ Z+
such that x+b 6∈ Aj . It follows that x 6∈ Aj	B and hence x 6∈ ⋂∞i=1(Ai	B).

For (v), we �rst show the closedness property. By (3.2), A 	 B =
⋂
b∈B (A \ {b}). If A is

closed, then A \ {b} is closed for all b ∈ B. It follows that

⋂
b∈B (A \ {b}) is also closed. By (ii),

we have A	B ⊕B ⊆ A. If additionally A is bounded, then A	B is also bounded.

3.2 Set Convergence

In approximating winning sets, we rely on the following de�nitions and results on set limits

and convergence.

21

De�nition 3.1. The limit inferior of a sequence {xi} is de�ned by

lim inf
i→∞

xi = lim
i→∞

(
inf
j≥i

xj

)
.

Similarly, the limit superior of {xn} is de�ned by

lim sup
i→∞

xi = lim
i→∞

(
sup
j≥i

xj

)
.

Let dA(x) , infy∈A |x − y| denote the distance from a point x to a set A. Based on the

de�nition of the distance between a point and a set, we provide the following set limits.

De�nition 3.2 (Painlevé-Kuratowski Convergence). For a sequence {Ai}∞i=1 of subsets of Rn
.

The outer limit of {Ai}∞i=1 is de�ned by

lim sup
i→∞

Ai =
{
x ∈ Rn : lim inf

i→∞
dAi(x) = 0

}
.

The inner limit of {Ai}∞i=1 is de�ned by

lim inf
i→∞

Ai =

{
x ∈ Rn : lim sup

i→∞
dAi(x) = 0

}
.

The (set) limit of {Ai}∞i=1 exists i� the outer and inner limit sets are equal:

lim
i→∞

Ai = lim sup
i→∞

Ai = lim inf
i→∞

Ai.

Both inner and outer limits of any sequence of subsets on Rn
by de�nition are closed [115].

Speci�cally for any monotone sequence {Ai}∞i=1, i.e., either Ai ⊆ Ai+1 or Ai ⊇ Ai+1 for all

i ∈ Z+
, the set limit always exists.

Proposition 3.2 ([115]). Consider a sequence of sets {Ai}∞i=1. Then

(i) limi→∞Ai = cl (
⋃∞
i=1 Ai) whenever Ai ⊆ Ai+1 for all i ∈ Z+

.

(ii) limi→∞Ai =
⋂∞
i=1 cl (Ai) whenever Ai ⊇ Ai+1 for all i ∈ Z+

.

22

3.3 Predecessor

A fundamental concept for the analysis of nonlinear control systems is called predecessor,

which is the preimage of a given set under system dynamics.

De�nition 3.3. Given a set B ⊆ X, the predecessor of B with respect to system S is a set of

states de�ned by

Pre
δ(B) = {x ∈ X : ∃u ∈ U, s.t. f(x, u) + d ∈ B, ∀d ∈ D}. (3.3)

The set of valid control values that lead to one-step transition to B for an x ∈ Pre
δ(B) is

Πδ
B(x) = {u ∈ U : f(x, u) + d ∈ B, ∀d ∈ D}. (3.4)

We denote by Pre(B) the predecessor of set B for system (2.1), and it is straightforward

that Pre
0(B) = Pre(B) for any B ⊆ Rn

. Likewise, we let ΠB , Π0
B .

ForA,B ⊆ X, the predecessor ofB that resides in a setA is the setA∩Pre
δ(B). To simplify

the notation, we let

Pre
δ(B|A) , A ∩ Pre

δ(B). (3.5)

The map Pre
δ

satis�es the following properties since they are true for any function between

subsets of states in Rn
.

Proposition 3.3. Let A,B ⊆ Y ⊆ Rn
. Given a function h : Y → Y , then

(i) h(A ∩B) ⊆ h(A) ∩ h(B);

(ii) h(A) ∪ h(B) ⊆ h(A ∪B);

Without further assumptions on (2.2), we can additionally derive the following properties

of the map Pre
δ
.

Proposition 3.4. Let A,B ⊆ X and δ ≥ 0. Then

(i) Pre
δ(A) ⊆ Pre

δ(B) if A ⊆ B,

(ii) Pre
δ2(A) ⊆ Pre

δ1(A) if 0 ≤ δ1 ≤ δ2,

(iii) Pre
δ(A) = Pre(A	 Bδ).

23

Proof. The �rst two properties are straightforward by (3.3). For (iii),

Pre(A	 Bδ) = {x ∈ X : f(x, u) ∈ A	 Bδ}
= {x ∈ X : f(x, u) + y ∈ A,∀y ∈ Bδ} Expand A	 Bδ
= Pre

δ(A).

Hence, (iii) is proved.

Proposition 3.4 (i) indicates that the map Pre
δ

is increasing, and (iii) implies that prede-

cessors for non-deterministic system Sδ can be constructed by using Pontryagin di�erence in

computing the ones for nominal system S0
.

If continuity is imposed to (2.2), then Pre
δ(·) will have more favorable properties for the

control synthesis problems we considered in this thesis.

Assumption 3.1. The function f : Rn ×Rm → Rn
in (2.2) is continuous with respect to both

arguments, and the state space X and the input space U are compact.

In many real-world applications such as electrical power converters [45] and DISC engines

[114], system state is controlled by switching between di�erent operating modes, and system

evolution under each mode may be determined by di�erent functions. Control synthesis for

systems with complex dynamics or speci�cations, e.g., robot motion planning [76] and �ight

management [44], is usually simpli�ed to switching control between di�erent operating modes

and motion primitives. Such systems can be described by the following DEs:

xt+1 = fut(xt), (3.6)

where ut ∈ U indicates the active mode at time t ∈ Z≥0, and the input space U is �nite.

A form as (3.6) can be represented by (2.2), but the function f is mostly not continuous with

respect to the second argument. Hence, we make the following assumption.

Assumption 3.2. The function f : Rn × Rm → Rn
in (2.2) is continuous with respect to the

�rst argument. The state space X is compact and the input space U is �nite.

We now show in the following propositions that, under Assumption 3.1 or 3.2, the map Pre
δ

preserves open and closedness property of a set.

Proposition 3.5. Suppose that Assumption 3.1 or 3.2 holds.

(i) If Ω ⊆ X is closed (compact), then Pre
δ(Ω) is closed (compact).

24

(ii) If Ω ⊆ X is open, then Pre
δ(Ω) is open.

Proof. Given that Ω is closed (compact), Ω	D = Ω	Bδ is also closed (compact) by Proposition

3.1 (v). The conclusion trivially hold if Ω 	 D = ∅, because Pre
δ(Ω) = ∅, which is compact.

Hence we assume that Ω 	 D 6= ∅. By Proposition 3.4 (iii), we can simplify the proof by

considering Pre only.

Let {xk}∞k=0 be a convergent sequence in the set Pre(Ω) with the limit x∗, i.e., limk→∞ xk =
x∗. By (3.3), for all k, there exists uk ∈ U such that f(xk, uk) = x̃k ∈ Ω. We aim to show that

x∗ ∈ Ω.

Under Assumption 3.1, the input space U is closed (compact). Then there exists a subse-

quence {uki}∞i=0 of {uk}∞k=0 (0 ≤ ki ≤ k) that converges to a point u∗ ∈ U. Let {xki}∞i=0 be the

corresponding subsequence of {xk}∞k=0. By the continuity of f with respect to both arguments,

we have

lim
i→∞

x̃ki = lim
i→∞

f(xki , uki) = f(lim
i→∞

xki , lim
i→∞

uki) = f(x∗, u∗),

which means that {x̃ki}∞i=0 converges to some point x̃∗ = f(x∗, u∗). Since Ω is closed (compact),

f(x∗, u∗) = x̃∗ ∈ Ω, which implies x∗ ∈ Pre(Ω).

Under Assumption 3.2, U is �nite. Let {xki}∞i=0 be the subsequence of {xk}∞k=0 that belong

to Pre by using a common u ∈ U, and limi→∞ xki = x∗. By the continuity of f(x, u) with

respect to x for a �xed u, we have

x̃∗ = lim
i→∞

x̃ki = lim
i→∞

f(xki , u) = f(lim
i→∞

xki , u) = f(x∗, u). (3.7)

Similarly, (3.7) implies x∗ ∈ Ω.

To show (ii), we consider the complement

(
Pre

δ(Ω)
)c

of Pre
δ(Ω):

(
Pre

δ(Ω)
)c

= {x ∈ X : ∀u ∈ U,∃d ∈ D, s.t. f(x, u) + d ∈ Ωc} ,
where Ωc = X \ Ω is closed with respect to X since Ω ⊆ X is open.

Let {xi}∞i=0 be a convergent sequence in

(
Pre

δ(Ω)
)c

with x = limi→∞ xi. Then for any

given u ∈ U, there exists di ∈ D such that f(xi, u) + di = yi ∈ Ωc
for all i ∈ N. Since D is

compact, there exists a convergent subsequence {dij}∞j=0 of {di}∞i=0 with d = limj→∞ dij ∈ D.

Then with the continuity of f with respect to x under Assumption 3.1 or 3.2 we have

lim
j→∞

(f(xij , u) + dij) = f(lim
j→∞

xij , u) + lim
j→∞

dij = f(x, u) + d = lim
j→∞

yij = y ∈ Ωc

if Ω is open. It follows that x ∈
(
Pre

δ(Ω)
)c

(i.e., for any u ∈ U there exists d ∈ D such that

f(x, u)+d ∈ Ωc
). Hence, Pre

δ(Ω) is open with respect to X since x ∈
(
Pre

δ(Ω)
)c

is closed.

25

The proofs of Proposition 3.5 (i) for nonlinear disturbed systems under similar assumptions

to Assumption 3.1 can also be found in [108, Theorem 2], and [17, Theorem 5.2].

Similarly, the set of valid control values for each state in the predecessor of a given subset

in the state space is compact.

Proposition 3.6. Suppose that Assumption 3.1 or 3.2 holds. The set Πδ
Ω(x) is compact for all

x ∈ Pre
δ(Ω), where Ω ⊆ X is compact.

Proof. The set Πδ
Ω(x) is trivially compact if U is �nite under Assumption 3.2. Suppose that

Assumption 3.1 holds. Let x ∈ Pre
δ(Ω) and {ui}∞i=0 ⊆ Πδ

Ω(x) be a convergent sequence with

u = limi→∞ ui. Then f(x, ui) ∈ Ω 	 D for all i ∈ N. Since Ω 	 D is compact, we can �nd a

convergent subsequence {f(x, uik)}∞k=0 with limk→∞ f(x, uik) ∈ Ω 	 D. By the continuity of

f with respect to u, we have

lim
k→∞

f(x, uik) = f(x, lim
k→∞

uik) = f(x, u) ∈ Ω	 D,

which means u ∈ Πδ
Ω(x). Therefore, the set Πδ

Ω(x) is closed and hence compact for all x ∈
Pre

δ(x).

If we consider a decreasing sequence of compact subsets of the state space X of system S ,

the following distributive property of map Pre
δ

under countable intersections can be shown.

Proposition 3.7. Suppose that Assumption 3.1 or 3.2 holds. Let {Ai}∞i=0 be a decreasing se-

quence of compact subsets of X. Then

∞⋂

i=0

Pre
δ(Ai) = Pre

δ

(
∞⋂

i=0

Ai

)
. (3.8)

Proof. We prove (3.8) by showing

∞⋂

i=0

Pre
δ(Ai) ⊆ Pre

δ

(
∞⋂

i=0

Ai

)
, (3.9)

Pre
δ

(
∞⋂

i=0

Ai

)
⊆
∞⋂

i=0

Pre
δ(Ai). (3.10)

We show (3.10) �rst. For any x ∈ Pre
δ(
⋂∞
i=0Ai) there exists u ∈ U such that f(x, u)+d ∈ Ai

for all d ∈ D and i ∈ Z+
. By de�nition we also have x ∈ ⋂∞i=0 Pre

δ(Ai), which means that

Pre
δ(
⋂∞
i=0Ai) ⊆

⋂∞
i=0 Pre

δ(Ai).

26

To see (3.9), we aim to show that x ∈ Pre
δ(
⋂∞
i=0Ai) for all x ∈ ⋂∞i=0 Pre

δ(Ai). Let x ∈⋂∞
i=0 Pre

δ(Ai) be arbitrary. Then there exists ui ∈ U such that ai = f(x, ui) ∈ (Ai 	 D) for

any �xed i ∈ Z+
. Now consider the sequences {ui}∞i=1 and {ai}∞i=1.

Under Assumption 3.1, there exists a convergent subsequence {uij}∞j=0 with limj→∞ uij =
u ∈ U, and {aij}∞j=1 is the corresponding subsequence of {ai}∞i=1. We can also �nd a convergent

subsequence {aijk}
∞
k=0 of {aij}∞j=1 with the limit point a, i.e.,

lim
k→∞

aijk = a, aijk ∈
(
Aijk 	 D

)
.

Since Ai 	 D is closed for all i ∈ Z+
, we have a ∈ ⋂∞k=0

(
Aijk 	 D

)
=
⋂∞
i=0 (Ai 	 D). Then

a ∈ (
⋂∞
i=0Ai)	 D according to Proposition 3.1 (iv). By the continuity of f(x, ·), we have

a = lim
k→∞

f(x, uijk) = f(x, lim
k→∞

uijk) = f(x, u) ∈
(
∞⋂

i=0

Ai

)
	 D.

Under Assumption 3.2, U is �nite, and thus there exists a constant subsequence {uij}∞j=0 with

uij = u for all j ∈ Z+
such that f(x, u) ∈ Ai 	 D for in�nitely many i. Then f(x, u) ∈

(
⋂∞
i=0 Ai)	 D.

Both assumptions all imply that there exists u ∈ U such that f(x, u) ∈ (
⋂∞
i=0Ai) 	 D for

the arbitrary x ∈ ⋂∞i=0 Pre
δ(Ai). Hence x ∈ Pre

δ(
⋂∞
i=0 Ai). This completes the proof.

Similarly, a distributive property of map Pre
δ

under countable unions of subsets of X can

also be concluded.

Proposition 3.8. Let {Ai}∞i=0 be an increasing sequence of open subsets of X. Then

∞⋃

i=0

Pre
δ(Ai) = Pre

δ

(
∞⋃

i=0

Ai

)
. (3.11)

Proof. It is easy to see that

⋃∞
i=0 Pre

δ(Ai) ⊆ Pre
δ(
⋃∞
i=0Ai) by Proposition 3.3 (ii). Hence we

only need to show that Pre
δ(
⋃∞
i=0Ai) ⊆

⋃∞
i=0 Pre

δ(Ai).

Let x ∈ Pre
δ(
⋃∞
i=0 Ai) be arbitrary. Then by de�nition there exists u ∈ U such that f(x, u)+

d ∈ ⋃∞i=0Ai for all d ∈ D. By the Borel-Lebesgue �nite covering theorem, there exists i ∈ N
such that f(x, u)+d ∈ Ai for all d ∈ D since the set {x ∈ X : f(x, u) + d,∀d ∈ D} is compact

andA0 ⊆ A1 ⊆ · · · . It follows that x ∈ Pre
δ(Ai) ⊆

⋃∞
i=0 Pre

δ(Ai). Therefore, Pre
δ(
⋃∞
i=0Ai) ⊆⋃∞

i=0 Pre
δ(Ai), which completes the proof.

27

Note that Assumption 3.1 or 3.2 is not necessary in Proposition 3.8, but setAi (for all i ∈ N)

has to be open in order that (3.11) holds.

It is nontrivial to exactly compute the predecessor Pre(Y) because of the nonlinear dynam-

ics. Only for some special cases, e.g. predecessors of polyhedral sets with respect to linear

dynamics, which can be characterized by linear inequalities, the exact computation is possi-

ble. Even for linear systems with polyhedral or ellipsoidal constraints, set operations such as

Pontryagin di�erence are likely to introduce irregular shapes, which makes computation of

accurate reachable sets impossible. Therefore, one has to seek approximations of Pre
δ(Y).

For the purpose of control synthesis, inner approximations of predecessors are often used.

Otherwise the set of valid control values for each predecessor is not well de�ned.

Assumption 3.3. Let P̂re : 2X → 2X
be an approximation of the map Pre for system S . Assume

that the map P̂re satis�es:

(i) P̂re is monotone, i.e., P̂re(A) ⊆ P̂re(B) if A ⊆ B ⊆ X,

(ii) P̂re(Y) is closed (compact) for any closed (compact) set Y ⊆ X, and

(iii) P̂re is lower bounded by Pre
δ

for some δ > 0, i.e.,

Pre
δ(Y) ⊆ P̂re(Y) ⊆ Pre(Y) (3.12)

for any set Y ⊆ X.

To derive the robust completeness results, which will be presented in the following chapters,

by using an approximation P̂re of the predecessor map Pre, we rely on the properties for P̂re

given in Assumption 3.3. The monotonicity in (i) can be easily satis�ed for most of the approx-

imations of the predecessor map and is used to guarantee that the sequences of sets generated

from the �xed-point iterations based on P̂re are monotone. If (ii) is additionally satis�ed, those

sequences of sets retain the closedness (compactness) property, which is particularly useful for

Theorem 4.1. And (iii) is crucial in developing the upper and lower bounds for the approximated

the winning sets with respect to di�erent LTL speci�cations in Chapter 4, 5, 6, and 7.

28

Chapter 4

Robustly Complete Invariance and
Reachability Control

How to regulate the state or output of a control system is one of the most commonly stud-

ied problems in the control community, in which the goal is to design a feedback controller

such that the system state or output converges to some given value, which is also termed as a

setpoint. For a dynamical system in the form of (2.2), the regulation condition can be written

mathematically as

lim
t→∞
‖xt − r‖2 = 0, (4.1)

where r ∈ X is the setpoint and ‖·‖2 denotes the Euclidean norm. The importance of such

control problems lies in their wide applications in industry, e.g., voltage regulation of electrical

power converters [45], room temperature stabilization inside a building [98], attitude control in

�ight control systems [42], and the adaptive cruise control [77, 96] and lane-keeping problems

for autonomous vehicles [3].

According to the de�nition of the regulation problem as in (4.1), invariance and reachability

control is another way to phrase this problem. The objective of invariance control is to main-

tain system state inside a given target area of the state space. In the presence of disturbances,

the convergence in (4.1) cannot always be achieved, especially with additive disturbances (see

(2.2)). Hence, it is more practical to consider a small region around the given setpoint. Set in-

variance [17] is also a paramount concept in constrained control where the controlled system

trajectories are ideally inside an invariant set that is consistent with the given constraints so

that the constraints would not be violated for all time.

29

Reachability control deals with the situations where the initial condition x0 is outside a

prescribed target set Ω ⊆ X, and the goal is to steer the system state to Ω at some �nite future

time instance. Such a problem has been investigated since [13] and studied for di�erent types

of systems such as piecewise a�ne systems [56, 21, 22, 59] and quantized control systems [15].

It is usually solved by formulating an optimal control problem [16, 102].

When the target set Ω is controlled invariant, solving the corresponding reachability prob-

lem leads to a control strategy that can drive the state of the system to Ω and maintain it inside

Ω afterwards, which is what is concerned with in reach-and-stay control synthesis. A sound and

complete control synthesis method for solving the reach-and-stay problem under uncertainties,

however, is not addressed clearly in the literature.

Additionally, it is not di�cult to see the importance of considering invariance, reachability

and reach-and-stay control problems because they are intimately related to the MPC frame-

work: the invariant set contained in the safe region under constraints needs to be determined

in order to guarantee the satisfaction of constraints all the time; the control sequence is com-

puted by solving optimal control problems for a �xed time horizon until the system state is

stabilized to origin [88].

In this chapter, we will see how those traditional control problems can be translated to LTL

control synthesis problems, and how the specialized Problem 2.1 can be solved by answering

the following questions speci�cally:

• Can the control synthesis for system S with respect to invariance, reachability or reach-and-
stay objectives be sound and complete?

• Is memoryless control strategy su�cient for solving such problems?

• Is solving the reach-and-stay control problem equivalent to solving a reachability control
problem with respect to a controlled invariant set?

To express the above traditional invariance, reachability, and reach-and-stay control speci-

�cations in LTL formulas, a simple set of atomic propositionAP = {G,Fr} is su�cient, where

G and F stand for “goal area” and “free workspace”, respectively. Suppose Ω ⊆ X is the target

set. Then the state space is initially partitioned into two cells Ω and X \ Ω, and the labeling

function for system S can be de�ned as

L(x) =

{
G x ∈ Ω,

F r x ∈ X \ Ω.
(4.2)

30

As opposed to the indirect optimal control approach for solving regulation problems, we

tackle such problems in a more direct way, which aims to provide �xed-point characterizations

of the winning sets of system S with respect to the LTL formulas for invariance, reachability or

reach-stay objectives. These winning sets are obtained by iterative computation of predeces-

sors, which is mostly nontrivial for general nonlinear systems. Considering the cases in which

the soundness and completeness is unlikely to achieve, we also discuss the conditions for sound

and robustly complete control algorithms for such control speci�cations.

4.1 Invariance Control

First of all, we provide a formal de�nition of the invariance property for system S .

De�nition 4.1. Let Ω be a subset of the state space X of system S with the labeling function

(4.2). A solution x = {xt}∞t=0 of the system S satis�es an invariance property with respect to Ω
if xt ∈ Ω for all t ∈ N. Such a property is written in an LTL formula ϕs = �G.

4.1.1 Maximal Controlled Invariant Set

Design of control strategies that realize the invariance property in De�nition 4.1 is closely

related to the following property of the give target set Ω.

De�nition 4.2. A set Ω ⊆ Rn
is said to be δ-robustly controlled invariant for system S if, for

any initial state x0 ∈ Ω, for all δ-bounded sequences of disturbancesd = {dt}∞t=0, i.e., dt ∈ D for

all t ∈ N, there exists a control signal u = {ut}∞t=0 such that Trace(x) |= ϕs where x = {xt}∞t=0

is the resulting solution of S . If δ = 0, then Ω is called controlled invariant for system S0
.

To check whether a set is (robustly) controlled invariant or not, we can rely on the following

criterion based on predecessors.

Proposition 4.1 ([17, 67]). A set Ω ⊆ X is δ-robustly controlled invariant for system S i�

Ω ⊆ Pre
δ(Ω), where Pre

δ
is de�ned in (3.3).

The given target set Ω in an invariance control problem is not necessarily (robustly) con-

trolled invariant. If Ω is (robustly) controlled invariant itself, then Πδ
Ω(x) 6= ∅ for all x ∈ Ω and

the function Πδ
Ω is a memoryless invariance control strategy. When Ω is not (robustly) con-

trolled invariant, it is still possible to realize the invariance property by identifying subsets of

Ω that are (robustly) controlled invariant. Among all such subsets, it is of interest to determine

the maximal one, which constitutes the domain of the invariance control strategy.

31

De�nition 4.3. Let Ω ⊆ X. The set Iδ∞(Ω) is said to be the maximal δ-robustly controlled
invariant set inside Ω for system S , if it is δ-robustly controlled invariant and contains all δ-
robustly controlled invariant sets inside Ω. Speci�cally for system S0

, such a set is called the

maximal controlled invariant set inside Ω and denoted by I∞(Ω).

Even for a nominal system S0
, �nding the maximal controlled invariant set I∞(Ω) is not

always helpful in practice, because any degree of uncertainties involved in system dynamics

will destroy the invariance property of I∞(Ω). And it is still possible that some part of Ω can be

controlled invariant under disturbances. Therefore, we consider the following robust version

of controlled invariant set for S0
.

De�nition 4.4. A set Ω ⊆ X is said to be a δ-robustly controlled invariant set (δ ≥ 0) for system

S0
if

Ω ⊆ Pre(Ω	 Bδ). (4.3)

We call Ω robustly controlled invariant if δ > 0. The supremum of δ satisfying (4.3) is called

the robust invariance margin of Ω.

By Proposition 3.4 (iii), The δ-robustly controlled invariant set Iδ∞(Ω) is consistent with

Proposition 4.1.

It is interesting to note that by de�nition the maximal controlled invariant set itself is not ro-

bustly controlled invariant. This also indicates that the determination of the maximal invariant

set is numerically nontrivial because of approximation errors.

Proposition 4.2. Let Ω ⊆ Rn
be compact and I∞(Ω) be the maximal controlled invariant set

in Ω. Suppose that Assumption 3.1 or 3.2 holds and I∞(Ω) 6= Ω. Then I∞(Ω) is not robustly

controlled invariant.

Proof. We prove this by showing that some boundary points of I∞(Ω) will be mapped into the

boundary of I∞(Ω). We only consider the case

◦
Ω 6= ∅; otherwise the conclusion trivially holds

by De�nition 4.4 because

◦
I∞(Ω) = ∅, where

◦
I∞(Ω) denotes the interior of set I∞(Ω).

For the purpose of contradiction, we assume that x ∈ (∂I∞(Ω)∩
◦
Ω), and there exists a u ∈ U

such that f(x, u) ∈
◦
I∞(Ω). That implies there exists a r > 0 such that f(x, u)⊕ Br ⊆ I∞(Ω).

By continuity of f(·, u) (from Assumption 3.1 or 3.2), we can �nd a δ(r) > 0 such that any

x′ ∈ x⊕Bδ(r) satis�es f(x′, u) ∈ f(x, u)⊕Br, and thus f(x⊕Bδ(r), u) ⊆ I∞(Ω), which means

x is an interior point of I∞(Ω). This is a contradiction.

32

We now consider the determination of (robustly) controlled invariant sets, which is crucial

in the construction of invariance control strategies.

Let Inv
δ

(δ ≥ 0) be a map between subsets of Rn
de�ned as

Inv
δ(Y) = Pre

δ(Y |Y), Y ⊆ Rn. (4.4)

We show in the next proposition that the maximal δ-robustly controlled invariant set inside

a given compact set Ω ⊆ Rn
can be obtained by using the following algorithm:

{
Inv

δ
0(Ω) = Ω,

Inv
δ
j(Ω) = Inv

δ(Inv
δ
j−1(Ω)),

(4.5)

where Inv
δ
j (j ∈ Z+

) is the jth iterate of the map Inv
δ
.

Proposition 4.3. Let Ω ⊆ X be closed and δ ≥ 0. Given Assumption 3.1 or 3.2,

Iδ∞(Ω) = lim
j→∞

Inv
δ
j(Ω) =

∞⋂

j=0

Inv
δ
j(Ω), (4.6)

where Iδ∞(Ω) is the maximal δ-robustly controlled invariant set in Ω. Furthermore, Iδ∞(Ω) is a

maximal �xed point of Inv
δ
.

Proof. According to Proposition 3.5, if Ω is closed, then Pre(Ω	 Bδ), and hence Inv
δ
j(Ω) (∀j ∈

Z+
), is closed. By (4.4) and (4.5), {Inv

δ
j}∞j=0 is decreasing. Then Proposition 3.2 shows that

limj→∞ I
j(Ω) =

⋂∞
j=1 Inv

δ
j(Ω) is closed and nonempty if Inv

δ
j(Ω) 6= ∅ for all j ∈ N.

First, we claim

⋂∞
j=1 Inv

δ
j(Ω) ⊆ Iδ∞(Ω) by showing that

⋂∞
j=1 Inv

δ
j(Ω) is δ-robustly con-

trolled invariant. For all j ∈ Z+
, we have

Inv
δ
j(Ω) = Inv

δ
j−1(Ω) ∩ Pre

δ(Inv
δ
j−1(Ω)) ⊆ Pre

δ(Inv
δ
j−1(Ω)).

Then

⋂∞
j=0 Inv

δ
j(Ω) ⊆ ⋂∞j=1 Pre

δ(Inv
δ
j−1(Ω)). Since the sequence

{
Inv

δ
j(Ω)

}∞
j=0

is decreasing,

by Proposition 3.7,

∞⋂

j=1

Pre
δ(Inv

δ
j−1(Ω)) = Pre

δ(
∞⋂

j=0

Inv
δ
j(Ω)) = Pre(

∞⋂

j=0

Inv
δ
j(Ω)	 Bδ).

Hence,

⋂∞
j=0 Inv

δ
j(Ω) ⊆ Pre(

⋂∞
j=0 Inv

δ
j(Ω)	 Bδ), which proves the claim.

33

Next, we show that Iδ∞(Ω) ⊆ ⋂∞j=1 Inv
δ
j(Ω). We assume that Iδ∞(Ω) 	 Bδ 6= ∅, otherwise

Iδ∞(Ω) = ∅, which means the conclusion trivially holds. We now use induction. For j = 0, we

have Iδ∞(Ω) ⊆ Inv
δ
0(Ω) = Ω. Suppose that Iδ∞(Ω) ⊆ Inv

δ
j(Ω) for some j ∈ N. By Proposition

4.1, for any x ∈ (Inv
δ
j(Ω)\Inv

δ
j+1(Ω)), f(x, u) /∈ (Inv

δ
j(Ω)	Bδ) for all u ∈ U , which also means

f(x, u) /∈ (Iδ∞(Ω)	Bδ). By de�nition of Iδ∞(Ω), x /∈ Iδ∞(Ω). It follows that Iδ∞(Ω) ⊆ Ij+1
r (Ω).

Hence, Iδ∞(Ω) ⊆ ⋂∞j=1 Inv
δ
j(Ω).

Last, to see that Iδ∞(Ω) is a maximal �xed point of Inv
δ
, it is su�cient to show that a set

Y ⊆ Ω is a �xed point of Inv
δ

i� Y is a δ-robustly controlled invariant set. If Y ⊆ Ω is a

δ-robustly controlled invariant set, i.e., Y ⊆ Pre(Y 	Bδ), then Inv
δ(Y) = Pre(Y 	Bδ|Y) = Y .

On the other side, if Inv
δ(Y) = Pre(Y 	 Bδ|Y) = Y , then we have Y ⊆ Pre(Y 	 Bδ), which

means that Y is a δ-robustly controlled invariant set.

Proposition 4.3 essentially gives a �xed-point algorithm for the determination of the maxi-

mal (robustly) controlled invariant set inside a given target set. The actual computation, how-

ever, relies on how sets are represented and set operations are performed.

Consider Linear Time Invariant (LTI) systems in which (2.1) is of the form

f(xt, ut) + dt = Axt +But + dt,

where A ∈ Rn×n
, B ∈ Rn×m

, and dt ∈ D, which is given in (2.3).

If both the subtracted target set Ω 	 D and the set of control inputs U are polyhedra that

are given by

Ω	 D = {x ∈ Rn : Hx ≤ h} , H ∈ Rl1×n, h ∈ Rl1

U = {u ∈ Rm : Gu ≤ g} , G ∈ Rl2×m, g ∈ Rl2 ,

where l1, l2 ∈ Z+
are the numbers of inequalities determining the polyhedra Ω and U, respec-

tively, then the predecessor of Ω is

Pre
δ(Ω) = Pre(Ω	 D) =

{
x ∈ Rn :

[
HA HB

0 G

] [
x
u

]
≤
[
h
g

]
, u ∈ Rm

}
. (4.7)

The set Pre
δ(Ω) and hence Inv

δ(Ω) is also polyhedral, because the intersection of polyhedra

is still a polyhedron. Then the iterations of (4.5) can go on without losing the polyhedral prop-

erties. However, the maximal (robustly) controlled invariant set is not necessarily polyhedral.

The following example illustrates such a case.

For a general nonlinear form of (2.1), the computation of Pre(Ω) is not as easy as for the LTI

case, let alone the possibility of terminating in a �nite number of iterations.

34

Example 4.1. Consider an LTI system xt+1 = Axt, where

A =

[
1.0810 0.4517
−0.0903 0.7197

]
.

With a pair of complex eigenvalues 0.9003 ± 0.0903i, this LTI system is globally stable.

Hence, there exists a (controlled) invariant set inside Ω = [−1, 1]× [−1, 1]. However, Ω itself is

not (controlled) invariant. This is because the system trajectories are spiral and some of them

will leave Ω provisionally although they will eventually converge to the origin (0, 0).

Represented by a polyhedron, Ω = {x ∈ Rn : Hx ≤ h}, where

H =




1 0
−1 0
0 1
0 −1


 , h =




1
1
1
1


 .

By (4.7), we have

Inv1(Ω) = Pre(Ω|Ω) =

{
x ∈ Rn :

[
HA
H

]
x ≤

[
h
h

]}
,

which is a new polyhedron {x ∈ Rn : H1x ≤ h1}, where

H1 =

[
HA
H

]
=




1.0810 0.4517
−1.0810 −0.4517
−0.0903 0.7197
0.0903 −0.7197

1 0
−1 0
0 1
0 −1




, h1 =

[
h
h

]
=




1
1
1
1
1
1
1
1




.

The polyhedral sets obtained within the �rst 4 iterations are shown in Figure 4.1. It can

be observed that the polyhedral set Invi(Ω) (i ∈ N) keeps shrinking towards the real maximal

(controlled) invariant set I∞(Ω), which is bounded by two red boundary lines. It is also clear

that I∞(Ω) is not a polyhedron, and this implies that we can never achieve I∞(Ω) within a

�nite number of iterations.

35

Figure 4.1: The set Invi(Ω) for i = 0, 1, 2, 3, 4. The outermost black box represents the initial

set Inv0(Ω) = Ω. The red lines are the real boundaries of the maximal (controlled) invariant set

inside Ω.

Example 4.2. Consider a discrete-time version of a second-order nonlinear system taken from

[69, Example 8.6] as follows:

xt+1 = xt + 0.1yt

yt+1 = −0.1xt + 0.033x3
t + 0.9yt.

It has three isolated equilibrium points at (0, 0), (
√

3, 0) and (−
√

3, 0). The region between

the manifolds that pass through (
√

3, 0) and (−
√

3, 0) is the maximal positively invariant set,

which is di�cult to express analytically.

4.1.2 Robust Completeness

Finding the (robustly) maximal controlled invariant set is equivalent to determining the win-

ning set for system S with respect to invariance speci�cation ϕs. If we keep track of the valid

control values during iterations, the corresponding control strategy can be constructed.

36

As we have discussed in Chapter 3, however, predecessors are not easy to compute pre-

cisely under nonlinear dynamics. So a workaround is to use inner approximations of prede-

cessors instead so that the resulting control strategy is well de�ned for all the states inside the

approximated winning set.

A risk of using inner approximations of predecessors is the possible loss of controlled in-

variance of the approximated winning set. The following theorem investigates the type of inner

approximations that preserves the controlled invariance property.

Theorem 4.1 (Soundness and Robust Completeness). Let Ω ⊆ X be compact. De�ne a new

map Înv : 2X → 2X with Înv(Y) = P̂re(Y) ∩ Y for all Y ⊆ X, where P̂re is an approximation

of Pre that satis�es Assumption 3.3 for some δ > 0. Consider the algorithm

{
Înv0(Ω) = Ω,

Învj(Ω) = Înv(Învj−1(Ω)).
(4.8)

Then (4.8) converges, i.e.,

Î∞ , lim
j→∞

Învj(Ω) =
∞⋂

j=0

Învj(Ω). (4.9)

Moreover, if Î∞ 6= ∅, then Î∞ is controlled invariant, i.e., Î∞ ⊆ Pre(Î∞), and it is a �xed point

of Înv that satis�es

Iδ∞(Ω) ⊆ Î∞(Ω) ⊆ I∞(Ω), (4.10)

where I∞(Ω) and Iδ∞(Ω) denote the maximal and δ-robustly maximal controlled invariant set,

respectively.

Proof. Let {Yi}∞i=0, {Ŷi}∞i=0, and

{
Y δ
i

}∞
i=0

be the sequences of sets generated by (4.5) using Pre,

P̂re and Pre
δ
, respectively. The sequences {Yi}∞i=0 and

{
Y δ
i

}∞
i=0

are decreasing by (4.4). Under

Assumption 3.3, P̂re and hence {Ŷi}∞i=0 is also decreasing. Since Ŷi is compact for all i ∈ N
given that Ŷ0 = Ω is compact, the limi→∞ Ŷi exists and is given by (4.9) by Proposition 3.2.

Next we show that Î∞ is a �xed point of Înv and controlled invariant. For any x ∈ Î∞, if

x 6∈ P̂re(Î∞), then there exists some j ∈ N such that x 6∈ P̂re(Învj(Ω)). By the de�nition of

the map Înv, we have x 6∈ Învj+1(Ω), which implies x 6∈ Î∞. Therefore, Î∞ ⊆ P̂re(Î∞), and it

follows that Î∞ ⊆ Pre(Î∞) and Î∞ = Înv(Î∞).

37

We now prove (4.10) by induction. According to (4.5), initially Y0 = Ŷ0 = Y δ
0 = Ω. By

(3.12), we have Pre(Yj 	 Bδ|Yj) ⊆ P̂re(Yj|Yj) ⊆ Pre(Yj|Yj) for all j ∈ Z≥0, which means that

Y δ
1 ⊆ Ŷ1 ⊆ Y1. Assume that Y δ

i ⊆ Ŷi ⊆ Yi for some i ∈ Z+
. Then

Y δ
j+1 = Pre(Y δ

j 	 Bδ|Y δ
j) ⊆ Pre(Ŷj 	 Bδ|Ŷj) ⊆ P̂re(Ŷj|Ŷj) = Ŷj+1

Ŷj+1 = P̂re(Ŷj|Ŷj) ⊆ Pre(Ŷj|Ŷj) ⊆ Pre(Yj|Yj) = Yj+1.

Hence, Y δ
j ⊆ Yj ⊆ Yj for all j ∈ N. If Î∞(Ω) 6= ∅, then (4.10) trivially holds. If Î∞(Ω) =⋂∞

j=0 Yj = ∅, then there exists some integer N > 0 such that YN = ∅. Otherwise Î∞(Ω) is

nonempty since Ω is compact. It follows that Y δ
N = ∅ and (4.10) holds.

Theorem 4.1 additionally suggests that robustly controlled invariance is a su�cient condi-

tion for inner-approximating the maximal controlled invariant set. It can also be inferred that,

for any nonempty controlled invariant set that is not robustly invariant, approximation of pre-

decessors under any precision fails to give a solid approximation. This is because there does

not exist a positive real number as the tolerance for the set approximation error. The following

example is such a scenario.

Example 4.3. Consider a discrete-time system x(t+ 1) = Aθx(t), where

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Every state moves on a circle centered at the origin. The approximated set Î∞(Ω) for any

Ω ⊆ R2
by using any approximation P̂re of Pre will be an empty set, since Ω is not robustly

invariant for this system.

Based on Theorem 4.1, let us now revisit Problem 2.2 with an invariance speci�cation ϕs.

Corollary 4.1. Given system S0
with the labeling function (4.2) where Ω ⊆ X is compact and

an invariance speci�cation ϕs = �G, consider algorithm (4.8) under Assumption 3.3 for some

δ > 0 and Î∞ de�ned in (4.9).

(i) If Î∞(Ω) 6= ∅, then Î∞(Ω) is controlled invariant for system S0
with the control strategy:

κ(x) =
∞⋂

j=1

Π
Învj(Ω)(x), ∀x ∈ Î∞(Ω). (4.11)

38

(ii) If Î∞(Ω) = ∅, then Ω is not δ-robustly controlled invariant for system S0
.

Proof. If Î∞(Ω) = ∅, then Iδ∞(Ω) = ∅ by (4.10), which implies (ii). Now we prove (i). Let

x ∈ Î∞(Ω) be arbitrary. By Proposition 3.6, the set Π
Învj(Ω)(x) is compact for all j ∈ Z+

and x ∈ Î∞(Ω). Thus,

⋂∞
j=1 Π

Învj(Ω)(x) exists and is compact. For any control input u ∈
⋂∞
j=1 Π

Învj(Ω)(x), we have by algorithm (4.8) f(x, u) ∈ Învj−1(Ω) for all j ∈ Z+
, which means

that f(x, u) ∈ ⋂∞j=1 Învj−1(Ω) =
⋂∞
j=0 Învj(Ω) = Î∞(Ω). Hence, Î∞(Ω) a set inside Ω that is

controlled invariant using the control strategy (4.11).

Corollary 4.1 essentially says that the control strategy (4.11) is sound and robustly complete

if the approximations of the predecessors satisfy Assumption 3.3 during iterations.

4.2 Reachability Control

Reachability plays an important role in analysis and control of dynamical systems. For a control

problem, a target set is given and the objective is to steer the system trajectories into the target

set. The following is a formal description of the reachability property.

De�nition 4.5. Let Ω be a subset of the state space X of system S with the labeling function

(4.2). A solution x = {xt}∞t=0 of the system S satis�es a reachability property with respect to

Ω if there exists k ∈ N such that xk ∈ Ω. Such a property can be written in the LTL formula

ϕr = ♦G.

4.2.1 Robustly Backward Reachable Set

For the purpose of control, we wish to determine the winning set of system S with respect to

the reachability speci�cation ϕr = ♦G, which can be specialized as the maximal δ-robustly

backward reachable set de�ned below.

De�nition 4.6. Let Ω be a subset of the state space X of system S with the labeling function

(4.2). A set BRδ
∞(Ω) ⊆ X is said to be the maximal δ-robustly backward reachable set of system

S from Ω if it contains (and only contains) any initial state x0 ∈ X that satis�es: for all δ-
bounded sequences of disturbances d = {dt}∞t=0, i.e., dt ∈ D for all t ∈ N, there exists a control

signal u = {ut}∞t=0 such that Trace(x) |= ϕr where x = {xt}∞t=0 is the resulting solution of S .

39

For nominal system S0
, the winning set with respect to the reachability speci�cation is the

backward reachable set BR∞(Ω).

It is worth noting that the integer k and the control signal u are dependent on the sequence

of disturbances d in De�nition 4.6. In other words, the minimum time step for any initial state

x0 ∈ BRδ
∞(Ω) to be controlled into Ω can be di�erent given di�erent sequences of disturbance.

De�nition 4.7. A set Ω ⊆ X is said to be δ-robustly reachable for system S (or reachable for

system S0
) if BRδ

∞(Ω) 6= ∅.

We now introduce the following de�nition for the characterization of BRδ
∞(Ω).

De�nition 4.8. The N -step δ-robustly backward reachable set of system S from a target set

Ω ⊆ X is a set of initial states from which Ω can be reached within N (N ∈ N) steps for any

possible sequence of disturbance, i.e.,

BRδ
N(Ω) = {x ∈ X :∀ {di}Ni=0 (di ∈ D), ∃ {ui}Ni=0 s.t. {xi}Ni=0 by (2.2) satis�es

x0 = x, xk ∈ Ω, 0 ≤ k ≤ N}. (4.12)

For nominal systemS0
, theN -step and maximal δ-robustly backward reachable setBRδ

N(Ω)
and BRδ

∞(Ω) are reduced to the N -step backward reachable set BRN(Ω) and maximal back-

ward reachable set BR∞(Ω), respectively.

De�ne Rch
δ

as a map between subsets of Rn
:

Rch
δ(Y) = Pre

δ(Y) ∪ Y, Y ⊆ Rn. (4.13)

Let us now consider the algorithm (i ∈ Z+
):

{
Rch

δ
0(Ω) = Ω,

Rch
δ
j(Ω) = Rch

δ(Rch
δ
j−1(Ω)).

(4.14)

It can be seen straightforwardly that the sequence

{
Rch

δ
j(Ω)

}∞
j=0

is increasing and with a

slight use of induction, we can conclude the following result.

Proposition 4.4. Given system S and a subset Ω ⊆ X, we have

BRδ
N(Ω) = Rch

δ
N(Ω), ∀N ∈ N, (4.15)

where Rch
δ

and Rch
δ
N(Ω) are de�ned in (4.13) and (4.14), respectively.

40

Proof. We show it by induction. The basic case holds because by (4.14) Rch
δ
0(Ω) = Ω, which

is the set of states that can be controlled into Ω under any allowable disturbance in 0 steps.

Suppose that Rch
δ
j(Ω) is the j-step δ-robustly backward reachable set. By (4.14) and De�nition

3.3, we have

Rch
δ
j+1(Ω) = Pre

δ(Rch
δ
j(Ω)) ∪ Rch

δ
j(Ω),

which additionally includes all the states that can be controlled inside Rch
δ
j(Ω) in one step under

any allowable disturbance. Hence, we have Rch
δ
j+1(Ω) is the (j + 1)-step δ-robustly backward

reachable set and the claim is proved.

As we have seen in Example 4.1, for LTI systems and a given polyhedral target set Ω, the

set Inv
δ
j(Ω) in each iteration j ∈ N can be computed precisely. Robustly backward reachable

sets Rch
δ
j(Ω), however, are not as easily obtained as the set Inv

δ
j(Ω) (j ∈ N). This is because

the set union in (4.13) for the computation of Rch
δ
j(Ω) does not keep the shape of polyhedra.

Example 4.4. Consider a discrete-time double integrator with disturbance [67]:

xt+1 =

[
1 1
0 1

]
xt +

[
0.5
1

]
ut + dt, (4.16)

where ut ∈ U = {u ∈ R2 : ‖u‖∞ ≤ 1} and dt ∈ D = {d ∈ R2 : ‖d‖∞ ≤ 0.1}. The vector x
represents the position and velocity. System (4.16) is a sampled-data version (with sampling

time τ = 1) of the following ODE that models acceleration of an object:

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u, u ∈ [−1, 1]. (4.17)

We consider a target reach set Ω = [−0.3, 0.3]× [−0.3, 0.3] on the state space X = [−8, 8]×
[−4, 4]. As in Example 4.1, the �rst 4 iterations are plotted in Figure 4.2. The 1-step δ-robustly

backward reachable set Rch
δ
1(Ω) = Pre

δ(Ω) ∪ Ω is the union of the yellow rectangle and the

innermost polytope, which is concave and hence not a polytope. Speci�cally in this case, the

backward reachable sets are not polyhedral until Rch
δ
4(Ω), which includes all the previous sets.

Based on (4.15), we can further characterize the maximal backward reachable set BRδ
∞(Ω)

according to the following proposition.

41

Figure 4.2: The 4-step δ-robustly backward reachable set. The yellow rectangle region in the

center is the target set Ω.

Proposition 4.5. For system S , let Ω ⊆ X be open and δ ≥ 0. Then

BRδ
∞(Ω) =

∞⋃

j=0

Rch
δ
j(Ω), (4.18)

and BRδ
∞(Ω) is a �xed point of the map Rch

δ
.

Proof. The direction BRδ
∞(Ω) ⊇ ⋃∞i=0 Rch

δ
j(Ω) is clear because Rch

δ
j(Ω) ⊆ BRδ

∞(Ω) for all

j ∈ N.

To show that BRδ
∞(Ω) ⊆ ⋃∞j=0 Rch

δ
j(Ω), we �rst claim that

⋃∞
j=0 Rch

δ
j(Ω) is a �xed point

of Rch
δ
. Let Aj = Rch

δ
j(Ω) ⊆ X. Then {Aj}∞j=0 is open and increasing, and by Proposition 3.8,

42

we have

Rch
δ(
∞⋃

j=0

Rch
δ
j(Ω)) = Pre

δ

(
∞⋃

j=0

Aj

)
∪
∞⋃

j=0

Aj =
∞⋃

i=0

Pre
δ(Aj) ∪

∞⋃

j=0

Aj

=
∞⋃

j=0

(
Pre

δ(Aj) ∪ Aj
)

=
∞⋃

j=0

Rch
δ
j+1(Ω) =

∞⋃

j=0

Rch
δ
j(Ω).

We now show x /∈ BRδ
∞(Ω) for all x /∈ ⋃∞j=0 Rch

δ
j(Ω). Let x0 /∈

⋃∞
j=0 Rch

δ
j(Ω) be arbitrary.

Then x0 /∈ Pre
δ(
⋃∞
j=0 Rch

δ
j(Ω)) because

⋃∞
j=0 Rch

δ
j(Ω) is a �xed point of Rch

δ
. This means

that for all u0 ∈ U there exists d0 ∈ D (depending on u0) such that x1 = f(x0, u0) + d0 /∈⋃∞
j=0 Rch

δ
j(Ω) and thus x1 /∈ Ω. Similarly for x1, for all u1 ∈ U we can �nd d1 ∈ D such that

x2 = f(x1, u1) + d1 /∈ Ω. Therefore, we can construct a sequence of disturbance {dt}∞t=0 such

that xt /∈ Ω for all {ut}∞t=0 and all t ∈ N, which implies that x /∈ BRδ
∞(Ω).

Hence (4.18) is proved, and the result that BRδ
∞(Ω) is a �xed point of the map Rch

δ
follows

straightforwardly.

Note that the target set Ω has to be open in order that algorithm (4.18) yields the maximal

robustly backward reachable set, as opposed to Proposition 4.3. This is not surprising because

reachability is the dual of invariance, which requires compactness of the target set. To explain

why (4.15) does not apply to a closed target set in general, we give the following counter ex-

ample.

Example 4.5. Let a1 ≈ 0.1127 and a2 ≈ 0.8873 be the roots of a = a2 + 0.1. We consider a

target set Ω = [0, 0.2] ∪ {a2} for the system

xt+1 =

{
x2
t + dt xt ∈ [0, a2],

a2
2 + dt xt ∈ (a2, 1],

where xt ∈ X = [0, 1], dt ∈ D = [0, 0.1].

Then the trajectories with the initial condition x0 ∈ [0, a2) will enter the region [0, a2]
asymptotically under all possible sequences of disturbance. Hence, we have

∞⋃

j=0

Rch
δ
j(Ω) = [0, a2).

However, the real maximal robustly backward reachable set is the entire state space X since all

x ∈ (a2, 1] is mapped within [0, a2] and a2 is the point backward reachable from Ω.

43

Controlling the system state into an open set is what usually required in the applications

of reachability control. Even if sometimes the target set Ω is given as a closed set, it is always

safer to design the reachability control strategy with respect to the interior part of Ω.

4.2.2 Robust Completeness

As demonstrated in Example 4.4, the exact N -step backward reachable set Rch
δ
N(Ω) are often

di�cult to obtain even for linear systems with polyhedral target set and state, control con-

straints. To deal with such a di�culty, especially for nonlinear dynamics and a general target

set without particular shape, we resort to its approximation R̂ch

δ

N(Ω), which is based on an

approximation P̂re of Pre:

R̂ch(Y) = P̂re(Y) ∪ Y, Y ⊆ X.

Replacing Rch
δ

in (4.14), we obtain the following modi�ed algorithm, which can be proved

to yield a sound and robustly complete reachability control strategy.

{
R̂ch0(Ω) = Ω,

R̂chj(Ω) = R̂ch(R̂chj−1(Ω)).
(4.19)

Similar to invariance control synthesis, we can also achieve sound and robustly complete

control synthesis for reachability problems.

Theorem 4.2 (Soundness and Robust Completeness). Let Ω ⊆ X be an open set. If P̂re(Y) in

(4.19) is an approximation of Pre(Y) that satis�es Assumption 3.3 for some δ > 0. Assume that⋃∞
j=0 R̂chj(Ω) 6= ∅. Then (4.19) gives

BRδ
∞(Ω) ⊆

∞⋃

j=0

R̂chj(Ω) ⊆ BR∞(Ω). (4.20)

Proof. By Proposition 4.5, we have BRδ
∞(Ω) =

⋃∞
j=0 Rch

δ
j(Ω) and BR∞(Ω) =

⋃∞
j=0 Rchj(Ω).

To prove (4.20), we only need to show Rch
δ
j(Ω) ⊆ R̂chj(Ω) ⊆ Rchj(Ω) for all j ∈ N.

For j = 0, we have Rch
δ
0(Ω) = R̂ch0(Ω) = Rch0(Ω) = Ω. For j = 1,

Rch
δ
1(Ω) = Pre

δ(Rch
δ
0(Ω)) ∪ Rch

δ
0(Ω) = Pre

δ(Ω) ∪ Ω,

R̂ch1(Ω) = P̂re(R̂ch0(Ω)) ∪ R̂ch0(Ω) = P̂re(Ω) ∪ Ω,

Rch1(Ω) = Pre(Rch0(Ω)) ∪ Rch0(Ω) = Pre(Ω) ∪ Ω.

44

By (3.12), we can conclude Rch
δ
1(Ω) ⊆ R̂ch1(Ω) ⊆ Rch1(Ω). Assume that Rch

δ
j(Ω) ⊆ R̂chj(Ω) ⊆

Rchj(Ω) for some j ∈ Z+
. Then

Rch
δ
j+1(Ω) = Pre

δ(Rch
δ
j(Ω)) ∪ Rch

δ
j(Ω)

⊆ P̂re(R̂chj(Ω)) ∪ R̂chj(Ω) = R̂chj+1(Ω)

⊆ Pre(Rchj(Ω)) ∪ Rchj(Ω) = Rchj+1(Ω).

Hence, Rch
δ
j+1(Ω) ⊆ R̂chj+1(Ω) ⊆ Rchj+1(Ω). The proof is now complete by induction.

The relation (4.20) indicates that we can obtain an inner approximation of the maximal

backward reachable set with a lower bound of δ-robustly backward reachable set if the approx-

imations of predecessors can be made su�ciently precise so that Assumption 3.12 is satis�ed.

If we consider the reachability control objective as an LTL formula ϕr, the maximal (δ-
robustly) backward reachable set is essentially the winning set of system S with respect to ϕr.

Then we can solve Problem 2.2 by using algorithm (4.19).

Corollary 4.2. Given system S0
with the labeling function (4.2) where Ω ⊆ X is an open target

set and an reachability speci�cation ϕr = ♦G, consider algorithm (4.19) under Assumption 3.3

for some δ > 0.

(i) If

⋃∞
j=0 R̂chj(Ω) 6= ∅, then we have the reachability control strategy for S0

:

κ(x) =

{
Π

R̂chj(Ω)(x) ∀x ∈ R̂chj+1(Ω) \ R̂chj(Ω), j = 0, 1, . . .

U ∀x ∈ Ω = R̂ch0(Ω).
(4.21)

(ii) If

⋃∞
j=0 R̂chj(Ω) = ∅, then Ω is not δ-robustly reachable for system S0

.

Proof. For (ii), if

⋃∞
j=0 R̂chj(Ω) = ∅, then Win

δ
S(ϕr) = ∅ for δ > 0 because Win

δ
S(ϕr) =

BRδ
∞(Ω) ⊆ ⋃∞j=0 R̂chj(Ω). Hence, Ω is not δ-robustly reachable for system S0

.

We now consider (i). For x ∈ R̂ch0(Ω), the formula ϕr is always true and hence κ(x) = U
for all x ∈ Ω. The sequence

{
Rch

δ
j(Ω)

}∞
j=0

is increasing. Assume that κ(x) can successfully

achieve the reachability property eventually for any x ∈ R̂chj(Ω) for some j ∈ N. Then for

x ∈ R̂chj+1(Ω)\R̂chj(Ω), any control value u ∈ Π
R̂chj(Ω)(x) will steer system state into R̂chj(Ω)

under any disturbance in set D. This implies that κ(x) also realizes ϕr for any x ∈ R̂chj+1(Ω).

Therefore, (i) is also proved.

45

4.3 Reach-and-Stay Control

Same as the previous two sections, we give the formal de�nition of the reach-and-stay property

as follows �rst.

De�nition 4.9. Let Ω be a subset of the state space X of system S with the labeling function

(4.2). A reach-and-stay property of a solution x = {xi}∞i=0 of system S with respect to Ω
requires that there exists some j ∈ N such that xk ∈ Ω for all k ≥ j and k ∈ N, written as

ϕrs = ♦�G in form of a LTL formula.

Intuitively, reach-and-stay property is a combination of reachability and invariance. A con-

trol strategy that can control the system state to reach a controlled invariant set would serve

this purpose. Such an idea for solving the reach-and-stay problem was �rst proposed in [16]

and is shown as the following algorithm.





X0 = Ω
Xi+1 = Pre

δ(Xi|Xi)

}
X∞ ,

⋂∞
i=0 Xi

κ(x) = ΠX∞(x),∀x ∈ X∞
Z0 = X∞
Zi+1 = Pre

δ(Zi)
κ(z) = ΠZi+1

(z),∀z ∈ Zi+1 \ Zi



 Z∞ ,

⋃∞
i=0 Zi

(4.22)

Algorithm (4.22) is composed of two sequential �xed-point iterations. The completeness of

(4.22) relies on the assumption that the target set is compact and convex. For general dynamics

and compact target set without this assumption, (4.22) fails to yield the real winning set, which

can be illustrated by the following example.

Example 4.6. Consider a target set Ω = [−0.3, 0.3] ∪ [0.8, 1.1] and the dynamics

xt+1 = −xt(x2
t − 2.05xt + 0.05) + ut + dt, (4.23)

where xt ∈ X = [−0.65, 1.1], ut ∈ U = {0, 10}, and dt ∈ D = [−5, 5] × 10−4
(δ = 5 × 10−4

)

for t ∈ N.

For all state x ∈ X, using the control value 10 will make the state in the next time step out

of domain X. Let ut = 0 for all t. There are 3 �xed points 0, 1, and 1.05. The �xed points 0 and

1.05 are stable while 1 is unstable.

As shown in Figure 4.3, the interval O = [−0.65,−0.6311) cannot be controlled inside the

state space X under arbitrary disturbance, because for all xt ∈ O there exists d ∈ D such that

46

-1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5

−0.3 0.3 0.8
X

Ω1 Ω2
O

Figure 4.3: The evolution of the state of system (4.23) without disturbance term.

the system state at the next time step xt+1 > 1.1. For the nominal system of (4.23), system state

x evolves to 0 for all x ∈ (0, 1).

The target set is a union of two disconnected intervals Ω1 = [−0.3, 0.3] and Ω2 = [0.8, 1.1].
The set Ω1 is δ-robustly controlled invariant since Ω1 ⊆ Pre

δ(Ω1) = [−0.3435, 0.4483]. Since

x = 0.9914 satis�es −x(x2 − 2.05x + 0.05) + d = x and the di�erence xt − xt+1, which is

negative, between two sequential states is decreasing as x increases between 0.3414 and 1.0253,

any state x ∈ [0.3, 0.9914) can be controlled inside Ω1. Because of the overlap between Ω1 and

[0.3, 0.9914), we can see that [−0.3, 1.1] ⊆Win
δ
S(ϕrs). In addition, xt+1 ∈ (0, 1.1] for any state

xt ∈ [−0.6311, 0). Hence, the real winning set is

Win
δ
S(ϕrs) = [−0.6311, 1.1].

However, algorithm (4.22) computes the maximal controlled invariant set inside Ω, i.e.,

X∞ = [−0.3, 0.3] ∪ [1.0370, 1.1] �rstly and �nally

Z∞ = [−0.6311,−0.6082) ∪ (−0.6021, 0.9914) ∪ (1.0135, 1.1].

Because X∞ is a union of two disconnected intervals [−0.3, 0.3] and [1.0370, 1.1] with an un-

stable �xed point 1 in between, the interval [0.9914, 1.0135] is not included in Z∞. The interval

[−0.6082,−0.6021] is also missing because it is mapped to [0.9914, 1.0135] by (4.23).

47

As opposed to (4.22), we now present the following algorithm (4.24) for reach-and-stay

control synthesis, which consists of two nested �xed-point iterations.





Y0 = ∅, X∞0 = ∅
X0
i+1 = Yi ∪ Ω

Xj+1
i+1 = Pre

δ(Xj
i+1|Xj

i+1)

}
X∞i+1 ,

⋂∞
j=0X

j
i+1

κ(x) = ΠX∞i+1
(x),∀x ∈ Ω ∩

(
X∞i+1 \X∞i

)

Yi+1 = Pre
δ(X∞i+1)

κ(y) = ΠX∞i+1
(y),∀y ∈ Yi+1 \ (Yi ∪ Ω)

(4.24)

In the next proposition, we will show that the winning set WinS(ϕrs) can be obtained by

using algorithm (4.24). The memoryless control strategy κ constructed along with the winning

set computation su�ces to realize the reach-and-stay objective.

Proposition 4.6. Consider an LTL formula ϕrs = ♦�G for system S with labeling functions

(4.2). Suppose that Ω ⊆ X is compact and Assumption 3.1 or 3.2 holds. Let Y∞ =
⋃∞
i=0 Yi be a

�xed point of (4.24). Then,

(i) Y∞ = Win
δ
S(ϕrs) where δ ≥ 0 is the bound of disturbances, and

(ii) The strategy κ as de�ned in (4.24) is a memoryless control strategy that realizes ϕrs.

Proof. We only consider Ω 6= ∅. Otherwise the results trivially hold.

We �rst show Y∞ ⊆Win
δ
S(ϕrs) by induction. Trivially Y0 = ∅ ⊆Win

δ
S(ϕrs). The induction

step aims to show that, for all i ∈ Z+
, Yi+1 ⊆ Win

δ
S(ϕrs) if Yi ⊆ Win

δ
S(ϕrs). Assume that X∞i

is compact. Then Yi = Pre
δ(X∞i) and thus X0

i+1 = Ω∪Yi is compact. The sequence {Xj
i+1}∞j=0

is compact and decreasing by induction, using Proposition 3.4 (i) and Proposition 3.5 since

X0
i+1 = Ω ∪ Yi is compact. It is also easy to show that {Yi}∞i=0 is increasing by induction.

Furthermore, by Proposition 3.2, we have

X∞i+1 = lim
j→∞

Xj
i+1 =

∞⋂

j=0

Xj
i+1,

which is the maximal controlled invariant set inside Ω ∪ Yi by Proposition 4.3 and compact.

If Yi ⊆ Win
δ
S(ϕrs), then X∞i+1 ⊆ Win

δ
S(ϕrs) because X∞i+1 is a controlled invariant set inside

Ω ∪ Yi, which gives

Yi+1 = Pre
δ(X∞i+1) ⊆Win

δ
S(ϕrs)

48

by De�nition 3.3. Hence, Y∞ =
⋃∞
i=0 Yi ⊆Win

δ
S(ϕrs).

To see Win
δ
S(ϕrs) ⊆ Y∞, we aim to show that x /∈Win

δ
S(ϕrs) for all x /∈ Y∞. Let x /∈ Y∞ be

arbitrary. Then x /∈ Y∞ = Pre
δ(I∞(Y∞ ∪ Ω)), where I∞(Y∞ ∪ Ω) is the maximal controlled

invariant set inside Y∞ ∪ Ω, since Y∞ is a �xed point of (4.24). This means that for all {ut}∞t=0

there exists k and {dt}kt=0 such that the resulting sequence of S satis�es xk /∈ (Ω ∪ Y∞). Since

xk /∈ Y∞, we can show in the same manner that for all {ut}∞t=k there exists k′ ≥ k and {dt}k
′

t=k

such that the k′th state xk′ of the resulting solution satis�es xk′ /∈ (Ω∪Y∞). In this way, for all

{ut}∞t=0, we can �nd an in�nite sequence {dt}∞t=0 for any x /∈ Y∞ so that the resulting solution

of S goes outside of Ω in�nitely often. Hence, x /∈Win
δ
S(ϕrs), which shows Win

δ
S(ϕrs) ⊆ Y∞.

Now we prove (ii). The control strategy κ is constructed by Πδ
X∞i+1

, which is only dependent

on the current state x of the system S , and thus κ is memoryless. By the de�nition of Πδ
X∞i+1

in

(3.4), for all x ∈ Ω∩
(
X∞i+1 \X∞i

)
and x ∈ Yi+1 \ (Yi∪Ω) (i ∈ N), the state x will be controlled

inside Ω∪ Yi and Yi in one step, respectively. That means any state x ∈ Yi+1 will be controlled

into Yi until it enters X∞1 = I∞(Ω) ⊆ Ω, which is controlled invariant. Hence, we have also

shown that κ realizes ϕrs.

The proof is now complete.

The major di�erence between (4.22) and (4.24) is that the information of the target set Ω
is used for every iteration of Yi in (4.24) while such information is lost after the computation

of the maximal (robustly) controlled invariant set X∞ in (4.22). Hence, some of the system

states inside Ω, which would leave Ω but will be controlled back to X∞ or stay inside Ω under

some disturbance, will be missing if we use (4.22). The real winning set in Example 4.6 can be

obtained by using algorithm (4.24).

Remark 4.1. The completeness result in Proposition 4.6, i.e., Y∞ captures all the states that

can be controlled to stay in Ω (Win
δ
S(ϕrs) ⊆ Y∞), relies on the assumption that Y∞ is a �xed

point of (4.24). To satisfy such an assumption, the following properties regarding Ω and the

predecessor map are required:

Pre
δ

(
∞⋃

i=0

Yi

)
=
∞⋃

i=0

Pre
δ(Yi), (4.25)

(
∞⋃

i=0

Pre
δ(Yi ∪ Ω)

)
∩
(
∞⋃

i=0

(Yi ∪ Ω)

)
=
∞⋃

i=0

(
Pre

δ(Yi ∪ Ω) ∩ (Yi ∪ Ω)
)
. (4.26)

However, the condition (4.25) does not generally hold.

49

There are some computational redundancies in (4.24): the sequence {Yi}∞i=0 is increasing

and so is {Xj
i }∞i=0 for all j ∈ N. Hence, it is only necessary to compute the incremental parts

between two adjacent sets in the sequences. Also, considering that predecessors cannot be

precisely computed, we present the approximated control synthesis algorithm (4.27).





Ŷ0 = X̂∞0 = ∅, V0 = X \ Ω

W 0
i = Ω \ Ŷi

X̂j
i+1 = Ŷi ∪W j

i

W j+1
i = P̂re(X̂j

i+1|W j
i)





W∞
i ,

∞⋂

j=0

W j
i

X̂∞i+1 ,
∞⋂

j=0

X̂j
i+1

κ(x)← ΠX∞i+1
(x),∀x ∈ W∞

i

Zi = P̂re(X̂∞i+1|Vi)
κ(x)← ΠX∞i+1

(x),∀x ∈ Zi
Vi+1 = Vi \ Zi
Ŷi+1 = X∞i+1 ∪ Zi

(4.27)

Theorem 4.3 (Soundness and Robust Completeness). Consider an LTL formula ϕrs = ♦�G
for system S with the labeling function (4.2). Let assumptions in Proposition 4.6 hold. Suppose

that P̂re in algorithm (4.27) satis�es Assumption 3.3 for some δ > 0. Let Ŷ∞ =
⋃∞
i=0 Ŷi. Then

Win
δ
S(ϕrs) ⊆ Ŷ∞ ⊆WinS(ϕrs). (4.28)

Proof. Let {X̃∞i } ({X̃r∞
i }) and {Ỹi} ({Ỹ r

i }) be the sequences of sets generated by algorithm

(4.27) with P̂re = Pre (P̂re = Pre
r
). And also to simplify notation, we denote by Y∞ and Y δ

∞
(δ > 0) the outputs of (4.24) with operator Pre and Pre

δ
, respectively. We prove the theorem

in the following two steps: (i) Show that (4.27) is equivalent to (4.24) when set computation

is accurate, i.e., X̃∞i = X∞i (X̃r∞
i = Xr∞

i) and Ỹi = Yi (Ỹ r
i = Y r

i) for all i ∈ N. (ii) Show

Ỹ r
∞ ⊆ Ŷ∞ ⊆ Ỹ∞ under the given condition.

First of all, we show that Yi ⊆ Pre(Yi) for all i. Since X∞i is a controlled invariant set,

X∞i ⊆ Pre(X∞i). By the de�nition of Yi in (4.24) and monotonicity of Pre, Yi = Pre(X∞i) ⊆
Pre(Pre(X∞i)) = Pre(Yi). We now prove (i) by induction. The base case clearly holds since

50

Ỹ0 = Y0 = X̃∞0 = X∞0 = ∅. Suppose that X̃∞i = X∞i and Ỹi = Yi for some i ∈ Z+
. Then

X̃0
i+1 = Ỹi ∪ (Ω \ Ỹi) = Ỹi ∪ Ω = X0

i+1,

X̃j+1
i+1 = Ỹi ∪W j+1

i = Ỹi ∪ (Pre(X̃j
i+1) ∩W j

i)

= (Ỹi ∪ Pre(X̃j
i+1)) ∩ (Ỹi ∪W j

i)

= (Ỹi ∪ Pre(X̃j
i+1)) ∩ X̃j

i+1.

Also, Pre(X̃j
i+1) = Pre(Ỹi∪W j

i) ⊇ Pre(Ỹi) ⊇ Ỹi, which implies that X̃j+1
i+1 = Pre(X̃j

i+1)∩X̃j
i+1.

This is the same as the iteration step in (4.24), and thus X̃∞i+1 = X∞i+1. Now consider the

sequence {Vi}∞i=0. We have V0 = X \ Ω and

Vi+1 = Vi \ (Pre(X̃∞i) ∩ Vi) = Vi \ Pre(X̃∞i).

Unfolding Vi until V0 and using that Pre(X̃∞i) ⊆ Pre(X̃∞i+1), we can derive

Vi = X \ (Ω ∪ Pre(X̃∞i)) = X \ (Ω ∪ Yi) = X \ X̃0
i+1.

Then

Pre(X̃∞i+1) = Pre(X̃∞i+1) ∩ (X̃0
i+1 ∪ Vi)

=
[
Pre(X̃∞i+1) ∩ X̃0

i+1

]
∪
[
Pre(X̃∞i+1) ∩ Vi

]
(4.29)

= X̃∞i+1 ∪ Pre(X̃∞i+1|Vi) = Ỹi+1.

The equality Pre(X̃∞i+1) ∩ X̃0
i+1 = X̃∞i+1 can be seen by contradiction. If there exists A ⊆

X̃0
i+1 \ X̃∞i+1 such that A ⊆ Pre(X̃∞i+1) then X̃∞i+1 ∪ A ⊆ Pre(X̃∞i+1 ∪ A), which indicates

A∪X̃∞i+1 is a larger controlled invariant set inside X̃0
i+1, but X̃∞i+1 is the maximal one. Therefore

Yi+1 = Ỹi+1. The above argument also applies to prove X̃r∞
i = Xr∞

i and Ỹ r
i = Y r

i .

To prove (ii), we aim to show Xr∞
i ⊆ X̂∞i ⊆ X∞i and Y r

i ⊆ Ŷi ⊆ Yi for all i. Clearly

Xr0
1 = X̂0

1 = X0
1 = Ω, and

Pre
r(Xr0

1 |W 0
1) ⊆ P̂re(X̂0

1 |W 0
1) ⊆ Pre(X0

1 |W 0
1)

by Pre
r(X) ⊆ P̂re(X) ⊆ Pre(X) and Proposition 3.4 (ii). This means Xr1

1 ⊆ X̂1
1 ⊆ X1

1 . By

induction, we can easily achieve Xrj
1 ⊆ X̂j

1 ⊆ Xj
1 for any j ∈ N. Thus Xr∞

1 ⊆ X̂∞1 ⊆ X∞1 . As

shown in (4.29), Ŷi = P̂re(X̂∞i). Then

Y r
1 = Pre

r(Xr∞
1) ⊆ Pre

r(X̂∞1) ⊆ Ŷ1 ⊆ Pre(X̂∞i) ⊆ Pre(X∞i) = Y1.

Therefore, (ii) can also be shown using induction.

51

Similar to the previous two basic LTL formulas, we can arrive at the following robust com-

pleteness result for Problem 2.2.

Corollary 4.3. Given system S0
with the labeling function (4.2) where Ω ⊆ X is compact and

a reach-and-stay speci�cation ϕrs = ♦�G, consider algorithm (4.27) under Assumption 3.3 for

some δ > 0.

(i) If Ŷ∞ =
⋃∞
i=0 Ŷi 6= ∅, then the memoryless control strategy κ given in (4.27) realizes ϕrs

at all x ∈ Ŷ∞.

(ii) If Ŷ∞ =
⋃∞
i=0 Ŷi = ∅, then there is no state within the state space X that is guaranteed

to be controlled to Ω and stay there for all future time for system S0
with δ-bounded

disturbance.

4.4 Summary

In this chapter, we revisited the traditional regulation problem from a set-theoretic point of

view. Without assuming any form of the system dynamics nor stability properties, �xed-point

algorithms for solving invariance, reachability, and reach-and-stay control problems were pre-

sented, which have formal guarantee of the correctness of the resulting control strategies. These

algorithms all construct memoryless control strategies during the computation of winning sets.

For the invariance control problem, we showed that control synthesis can be sound and

complete provided that the target set is compact and the computation of predecessors is precise.

It has been addressed in [11] that the control synthesis is essentially a �xed-point algorithm to

compute the maximal controlled invariant set inside the given target set. Research in this topic

focused on linear discrete-time systems [18, 55, 117] because the numerical determination of

maximal controlled invariant sets is not easy even for linear systems (see also Example 4.1). The

proposed robustness margin is an extension of the λ-contractivity of the linear systems around

a compact and convex set in [18] to general nonlinear systems. Another di�erence between our

result and [18] is that we derived the su�cient condition for the approximation of predecessors

so that the control synthesis can be sound and robustly complete while λ-contractivity is shown

as a requirement for �nite termination in [18]. The results for invariance control in this chapter

have been published in [80, 78, 79]. In Chapter 5, we will illustrate the set approximation

technique that can satisfy such a condition.

Similar to the invariance control problem, reachability control has been studied using set

theory since 70’s with �xed time horizon [13]. The domain of attraction to a target set is studied

52

in [16] in terms of in�nite horizon while [67] focuses on �nite-time reachability. In this thesis,

we do not �x a maximum reach time. For uncertain nonlinear systems, we proposed a sound and

complete control synthesis algorithm (4.14) with respect to an open target set, which implies

that reachability control is actually a dual of the invariance control. Closely related to our work

is the research in [16, 102], where the reach time is also not given but to be minimized by solving

minimum-time optimal control problems. Particularly in [16], a recursion that similar to our

algorithm (4.14) is given as

Y0 = Ω, Yi+1 = Pre
δ(Yi). (4.30)

The slight di�erence between (4.14) and (4.30) is that the set Yi+1 in (4.30) is computed only

based on the previous set Yi without considering the given initial set Y0 = Ω for any i ∈ Z+
.

Hence, the set YN , which is called the controllability set in N -steps in [16] (or similar names

as in [67, De�nition 2.9] and [102, De�nition 2.1]) is the set of states that are guaranteed to be

controlled into a given target set in exactly N steps. Our N -step robustly backward reachable

set (see De�nition 4.8) obtained by (4.14) allows the uncertainty in the actual reach time and

hence captures a larger set by considering the uncertainty of reach time.

Given that Ω is any subset of X, Proposition 4.5 shows that the set

⋃∞
i=0 Rch

δ
N(Ω), where

Rch
δ
N(Ω) (i ∈ N) is obtained by (4.14), is equal to the real winning set with respect to the

reachability speci�cation for disturbed system S if Ω is open. We consider this result as one of

our contributions since it has not been proved in the literature.

As an answer to the third question raised at the beginning of this chapter, we also showed

that performing reachability control to a controlled invariant set inside the given target set,

which is �rst proposed in [16] and presented as algorithm (4.22) in Section 4.3, is sound but not

complete for solving reach-and-stay problems for systems with uncertainties. To improve on

the work [16], we provided algorithm (4.24) and showed its completeness under the assumption

that algorithm (4.24) returns a �xed point of (4.24). Related results on reach-and-stay control

synthesis for switched systems is published in [81] and an improved version can be found in

[82].

Considering that predecessors are usually di�cult to compute precisely, we also analyzed

the e�ects to the determination of winning sets by using inner approximations. Compactness

and convexity are strong properties that make set computation practical [18, 16, 67, 56, 117].

In this chapter, we relaxed these assumptions and showed that if the approximation of prede-

cessors can satisfy Assumption 3.3 in Chapter 3, then the control synthesis with respect to all

three basic speci�cations is at least robustly complete.

A problem with (4.8), (4.19), and (4.27) is that they are not guaranteed to terminate in a

�nite number of steps under current assumptions. Suppose that {Yi}∞i=0 is the sequence of sets

53

generated by (4.5). It is not necessary that we can always �nd anN ∈ Z+
so that P̂re(YN |YN) =

YN , even if a proper approximation P̂re of Pre can be implemented to satisfy Assumption

3.3. We will answer this question in Chapter 5 by giving a �nitely terminating algorithm that

proceeds by set approximations.

54

Chapter 5

Robust Completeness via Interval
Analysis

We have discussed in Chapter 4 the robustly complete control synthesis algorithms for control

problems with respect to invariance, reachability and reach-and-stay speci�cations. Implemen-

tation of these algorithms relies on a concrete method for the approximation of predecessors

that satis�es Assumption 3.3, which requires the approximation error to be bounded from both

below and above.

The questions left open in Chapter 4 are:

• What is an e�cient approximation P̂re of the predecessor Pre that satis�es Assumption 3.3?

• Does the use of P̂re guarantee the control synthesis algorithms with respect to invariance and
reachability speci�cations �nitely terminating?

In this chapter, we present an interval implementation of the control synthesis algorithms

with respect to the speci�cations discussed in Chapter 4. We use unions of interval vectors (or

intervals) in the Rn
space to approximate any compact set A in the state space of the system.

The approximation of the predecessor Pre
δ(A) of the set A is also a union of intervals, which

can be obtained by solving a Constraint-Satisfaction Problem (CSP) with interval computation.

In this way, the in�nite state space X of system S is discretized into a �nite union of intervals,

and hence the winning sets can be approximated by intervals.

The complexity is a major concern for veri�cation and control synthesis algorithms that

run on a discrete state space S. The computational time increases as the cardinal number

55

|S| increases. The bottleneck of the abstraction-based approach for the control synthesis of

continuous-state systems is that a uniform discretization of the continuous state space often

leads to an exceptionally large �nite abstraction in order that the control synthesis is sound

and robustly complete for the original system. To improve on this aspect, we apply an adaptive
partitioning scheme that incorporates interval approximation of predecessors in each iteration,

under which the state space are �nely discretized only in the region where necessary.

We call the proposed control synthesis method the speci�cation-guided method via interval
computation. To show the e�ectiveness and e�ciency of the proposed method in this chap-

ter, we analyze its computational time complexity and test the algorithms implemented with

intervals on several benchmarking examples.

5.1 Interval Analysis

Interval analysis, or interval computation, refers to the computational methods that use interval

arithmetic with the aim to yield rigorous and reliable results. Such methods have been devel-

oped since the 1960s [92] and successfully applied in solving di�erent problems [65], including

computing reachable sets for continuous-time systems [28] by way of validated numerical so-

lutions to initial value problems for ordinary di�erential equations [95].

A major advantage of using interval methods for the computation of predecessors is the

�exibility to represent any compact set involved in the computation as unions of intervals.

Computation of predecessors is essentially a CSP.

De�nition 5.1 (CSP). Let function f : Rn → Rm
. Given a set B ⊆ Rm

, �nd the set of states

A ⊆ Rn
such that f(A) ⊆ B.

The essence of interval methods lies in its ability to solve CSPs. A branch-and-bound tech-

nique is used to solve CSPs [54, 110] and, more recently, to enclose set boundaries [138]. It also

applies in computing preimages under nonlinear maps. The corresponding algorithm is known

as Set Inversion Via Interval Analysis (SIVIA) [65].

De�nition 5.2. An interval [a] is a set of real numbers, where

[a] , [a, a] = {x : a ≤ x ≤ a, a, a ∈ R} ,

where a and a represent the in�mum and supremum of [a], respectively. The space that contains

any intervals is called the interval space, denoted by IR.

56

By De�nition 5.2, it is natural to consider the following qualities of intervals:

• width: wid([a]) = a− a;

• center: mid([a]) = (a+ a)/2;

• magnitude: |[a]| = max {|a| , |a|}.

Similar to real numbers, for any intervals [a] and [b], we can also de�ne the binary arithmetic

operations ∗ ∈ {+,−,×, /} by

[a] ∗ [b] , {x ∗ y : x ∈ [a], y ∈ [b]} .

A more speci�c de�nition for each operation are given as follows:

[a] + [b] = [a+ b, a+ b];

[a]− [b] = [a− b; a− b];
[a]× [b] = [min

{
ab, ab, ab, ab

}
,max

{
ab, ab, ab, ab

}
];

[a]/[b] = [a, a][1/b, 1/b];

An interval represents a set over reals in a speci�c form, and hence it inherits the set inclu-

sion relation, which is de�ned speci�cally by

[a] ⊆ [b]⇔ a ≥ b, and a ≤ b.

The interval-arithmetic operations are inclusion monotone, i.e.,

[a1] ⊆ [a2], [b1] ⊆ [b2]⇒ [a1] ∗ [b1] ⊆ [a2] ∗ [b2].

Interval vectors and matrices can also be de�ned by replacing each element with an interval.

An interval vector (or box) in Rn
is denoted by

[x] , [x1]× · · · × [xn] ⊆ Rn,

where [xi] = [xi, xi] ∈ IR for i = 1, · · · , n.

The width of the interval [x] is de�ned as w([x]) , max1≤i≤n{xi − xi}. Any matrix [A] ∈
IRn×n

, [aij] ∈ IR, 1 ≤ i, j ≤ n. The inclusion relation also applies to interval vectors:

[x] ⊆ [y]⇔ [xi] ⊆ [yi], 1 ≤ i ≤ n,

57

The arithmetic operations involving interval vectors and matrices follow the same rules as

for real numbers except that elementwise operations are between intervals, e.g.,

[c] = [A][b] : [ci] =
n∑

j=1

[aij][bj].

This above operation is important for computation involve linear systems or operations.

To evaluate the system evolution using intervals, we need to de�ne maps between intervals.

De�nition 5.3. [65] Consider a function f : Rn → Rm
and an interval function [f] : IRn →

IRm
. The function [f] is called a convergent inclusion function of f if the following two condi-

tions hold:

(i) f([x]) ⊆ [f]([x]) for all [x] ∈ IRn
;

(ii) limw([x])→0w([f]([x])) = 0.

For a vector-valued function f , its convergent inclusion function counterpart is not unique.

Methods varies in obtaining such inclusion functions. One can compute the in�mum and supre-

mum of f([x]) by performing optimizations on the interval [x] if they are trivial. One of the

straightforward inclusion function is called natural inclusion function, which is the result by

replacing variables by interval variables and each operation by its interval counterpart. For

higher precision, centered-form

[f]([x]) = f(mid([x])) + g([x]−mid([x])), g(x) = f(x)− f(mid([x]))

and mean-value form

[f]([x]) = f(mid([x])) +∇f([x])([x]−mid([x]))

with more precise expressions can be used according to the approximation accuracy require-

ments [65].

Example 5.1 (Example of Convergent Inclusion Functions). Evaluate

f(x) = x2 − x
on [x] = [0, 1], x̄ = 0.5 using di�erent convergent inclusion functions:

• f([x]) = [−0.25, 0],

• [f]1([x]) = [x]2 − [x] = [0, 1]× [0, 1]− [0, 1] = [−1, 1],

• [f]2([x]) = x̄2−x̄+(2[x]−1)([x]−x̄) = −0.25+(2[0, 1]−1)×[−0.5, 0.5] = [−0.75, 0.25],

• [f]3([x]) = f([x]).

58

5.2 Bounded Approximation of Predecessors

To implement the map P̂re in control synthesis algorithms (4.8), (4.19), and (4.27), we use in-

terval arithmetic. This is because interval operations are simple, and any compact set can be

approximated by intervals with convergence guarantee under mild assumptions.

In order to evaluate the transition relationR in S over IRn
, we introduce an interval-valued

system

[S] : 〈X,U, [R], AP, L〉, (5.1)

where the set of states X, the set of inputs U, the set of atomic propositionsAP , and the labeling

function L are de�ned as in (2.4). The inclusion transition relation is de�ned as [R]([x], u) ,
[f]([x], u) for all [x] ⊆ X and u ∈ U, and [f] is a convergent inclusion function of f .

Inspired by SIVIA algorithm, now we present Algorithm 5.1, which provides an interval

approximation of Pre(B|A) for any A,B ⊆ X.

Algorithm 5.1 [A,∆A,Ac] = Pre([S], B,A, ε)

1: A← ∅,∆A← ∅, Ac ← ∅
2: List← A
3: while List 6= ∅ do
4: [x]← List.first
5: if [R]([x], u) ∩B = ∅ for all u ∈ U then
6: Ac ← Ac ∪ [x]
7: else if [R]([x], u) ⊆ Y for some u ∈ U then
8: A← A ∪ [x]
9: else

10: if wid([x]) < ε then
11: ∆A← ∆A ∪ [x]
12: else
13: {Left[x], Right[x]} = Bisect([x]) . Perform bisection to [x].
14: List.add({Left[x], Right[x]})
15: end if
16: end if
17: end while

Algorithm 5.1 takes as input compact setsA,B, which are assumed to be intervals or unions

of a �nite number of intervals. This is without loss of generality, because any compact set can

59

be arbitrarily approximated by a �nite union of intervals because of the Borel-Lebesgue �nite

covering theorem.

During each iteration, Algorithm 5.1 checks if the image [f]([x]) of a particular box [x]
is contained in B, the outer approximation obtained in the previous iteration, or completely

outside of Y . If neither, and the box size is greater than ε, then [x] is deemed to be undetermined

and divided into two subintervals Left[x] and Right[x] by bisection, which are given by

Left[x] = [x1, x1]× · · · × [xj, (xj + xj)/2]× · · · × [xn, xn],

Right[x] = [x1, x1]× · · · × [(xj + xj)/2, xj]× · · · × [xn, xn],

where j is the dimension in which the box x attains its width. A box will go through subdivision

if necessary until its size is less than the precision parameter ε.

In the outputs of Algorithm 5.1, A denotes the set of intervals that absolutely belong to

Pre(B|A), Ac is the set of intervals that does not, and those intervals that partially intersect

with Pre(B|A), i.e., undetermined intervals, are collected in ∆A. The parameter ε controls the

minimum width of intervals for approximating Pre(B|A).

It is easy to see that any intervals inA is a subset of Pre(B|A) and Pre(B|A) can be covered

by the union of intervals contained in A and ∆A. Let

[Pre]ε(B|A) ,
⋃

[x]∈A

[x], (5.2)

[Pre]ε(B|A) ,
⋃

[x]∈A,or

[x]∈∆A

[x], (5.3)

where A and ∆A are obtained by Pre([S], B,A, ε). Then [Pre]ε(B|A) and [Pre]ε(B|A) repre-

sent an inner and outer approximations of Pre(B|A), respectively, i.e.,

[Pre]ε(B|A) ⊆ Pre(B|A), Pre(B|A) ⊆ [Pre]ε(B|A).

Remark 5.1. More generally, the input set B can also be de�ned by equations or inequalities,

i.e.,

B , {y ∈ Rn : g(y) ≤ 0} , g : Rn → Rl.

In this case, the condition [f]([x], u) ∩B = ∅ and [f]([x], u) ⊆ B can be respectively tested by

[g ◦ f]([x], u) ⊆ [0,∞]l,

[g ◦ f]([x], u) ⊆ [−∞, 0]l,

respectively, where [g ◦ f]([x], u) denotes the convergent inclusion function of the composite

function g(f([x], u)).

60

By using Algorithm 5.1 to approximate the exact predecessor Pre(B|A) (A,B ⊆ X), it is

often of great interest to know how close the returned approximations are to the real one and

in which way the precision parameter ε a�ects the approximations. To this end, in the follow-

ing two sections, we evaluate the bounds of approximation errors of the inner approximation

[Pre]ε(B|A) and the outer approximation [Pre]ε(B|A) to Pre(B|A) in terms of the precision

parameter ε.

5.2.1 Finite Control Values

Let us consider a �nite input space U �rst, i.e., Assumption 3.2 holds. Then system S can be

treated as switched system (3.6), which has been discussed in Chapter 2.

Assumption 5.1 (Lipschitz inX). There exists a constant ρ > 0 for the function f : Rn×Rm →
Rn

in (2.2) such that for all u ∈ U

‖f(x, u)− f(y, u)‖∞ ≤ ρ ‖x− y‖∞ , ∀x, y ∈ A ⊆ Rn. (5.4)

By Assumption 5.1, we can always construct the mean-value form convergent inclusion

function for all [x] ⊆ A ⊆ Rn
:

[f]([x], u) = f(mid([x]), u) + ρ([x]−mid([x]))1n, (5.5)

where 1n denotes the n-dimensional vector with all its elements 1.

The following lemma gives the error bounds of the inner and outer approximations of

Pre(B|A) under Assumption 5.1.

Lemma 5.1. Consider system S . Let B,A ⊆ X be compact. If Assumption 5.1 holds in an

neighborhood of A, then

Pre(B|A) ⊆ [Pre]ε(B|A) ⊆ Pre(B ⊕ Bρε|A), (5.6)

Pre(B 	 Bρε|A) ⊆ [Pre]ε(B|A) ⊆ Pre(B|A). (5.7)

Proof. It follows straightforwardly from Algorithm 5.1 that wid([x]) < ε for all [x] ∈ ∆A, and

[Pre]ε(B|A) ⊆ Pre(B|A) ⊆ [Pre]ε(B|A) ⊆ A.

By (5.4), we have wid([f]([x], u)) ≤ ρwid([x]) < ρε for all [x] ∈ ∆A and u ∈ U, where the

inclusion function [f] is given in (5.5). Then for any [x] ∈ ∆A, there exists a u ∈ U such that

61

[f]([x], u) ∩ B 6= ∅ and [f]([x], u) ⊆ B ⊕ Bρε by the de�nition of the Minkowski sum. Also,

A ⊆ Pre(B|A). Hence,

A = (A ∪∆A) ⊆ Pre(B ⊕ Bρε|A) ⊆ Pre(B ⊕ Bρε|A),

which shows (5.6).

We now show that Pre(B	Bρε|A) ⊆ [Pre]ε(B|A). If not, there exists an x ∈ Pre(B	Bρε|A),

but x /∈ [Pre]ε(B|A). Then x has to be in

⋃
[x]∈∆A[x], since x ∈ ⋃[x]∈Ac [x] implies that x /∈

Pre(B	Bρε|A), which is contradictory to the fact that x ∈ Pre(B	Bρε|A). Let x ∈ [x] ∈ ∆A.

By Proposition 3.1 (ii), there exists u ∈ U such that

f(x, u) ∈ [f]([x], u) ⊆ B 	 Bρε ⊕ Bρε ⊆ B.

It implies that [x] ⊆ [Pre]ε(B|A), which is a contradiction. Hence, (5.7) holds.

5.2.2 Infinite Control Values

Under Assumption 3.1, the compact set U ⊆ Rm
might contain an in�nite number of elements

in U. In this case, Algorithm 5.1 becomes impractical because we cannot enumerate all the

elements in U.

To inner approximate Pre(B|A), a straightforward way is to use an under-sampled set of

controls, e.g., a set of uniformly sample points within U de�ned as

[U]µ , µZm ∩ U, (5.8)

where µZm , {µz : z ∈ Zm, µ > 0}.
We de�ne another system by replacing U in (5.1) by [U]µ

[S]µ : 〈X, [U]µ, [R], AP, L〉. (5.9)

Denote by [Preµ]ε(B|A) the set of intervals given in (5.2) withA returned by Pre([S]µ, B,A, ε).

To achieve a similar result to (5.7) in Lemma 5.1, we additionally require the following assump-

tion.

Assumption 5.2 (Lipschitz in U). Consider system S . There exists a Lipschitz constant ρ > 0
for the function f : Rn × Rm → Rn

in (2.2) such that for all x ∈ A ⊆ Rn

‖f(x, u)− f(x, v)‖∞ ≤ ρ ‖u− v‖∞ , ∀u, v ∈ U. (5.10)

62

Lemma 5.2. Consider system [S]µ where µ is a parameter given in (5.8). Let B,A ⊆ X be

compact. If Assumption 5.1 and 5.2 hold in a neighborhood ofAwith Lipschitz constant ρ1 > 0
and ρ2 > 0, respectively, then

Pre(B 	 Bρ1ε+ρ2µ|A) ⊆ [Preµ]ε(B|A) ⊆ Pre(B|A). (5.11)

Proof. We de�ne a new predecessor map

Preµ(B) , {x ∈ X : ∃u ∈ [U]µ, s.t. f(x, u) + d ∈ B, ∀d ∈ D} .

Let Z = Pre(B|A), Zµ = Preµ(B|A), Z = [Preµ]ε(B|A), and B̃ = B 	 Bρ2 µ2 .

We �rst claim that Pre(B̃|A) ⊆ Zµ ⊆ Z . Trivially Zµ ⊆ Z because [U]µ is a subset of U. By

De�nition 3.3, for all z ∈ Pre(B̃|A), there exists a u ∈ U such that f(z, u)+d ∈ B̃ for all d ∈ D.

With Assumption 5.2, for all u ∈ U, there exists a v ∈ [U]µ such that f(z, v) ∈ f(z, u)⊕ Bρ2 µ2 .

Then by Proposition 3.1 (ii),

f(z, v) + d ∈ f(z, u)⊕ Bρ2 µ2 + d = (f(z, u) + d)⊕ Bρ2 µ2
∈ B̃ ⊕ Bρ2 µ2 = B 	 Bρ2 µ2 ⊕ Bρ2 µ2 ⊆ B,

which means that z ∈ Zµ. Hence the claim holds.

By (5.7) in Lemma 5.1, Preµ(B̃ 	 Bρ1ε|A) ⊆ Z ⊆ Zµ. Applying the claim above, we have

Pre(B 	 Bρ1ε+ρ2µ|A) = Pre(B̃ 	 Bρ1ε 	 Bρ2 µ2 |A) ⊆ Preµ(B̃ 	 Bρ1ε|A).

Therefore, Pre(B 	 Bρ1ε+ρ2µ|A) ⊆ Z ⊆ Zµ ⊆ Pre(B|A), which is (5.11).

The outer approximation obtained from Pre([S]µ, B,A, ε) does not necessarily satisfy a

relationship similar to (5.6) in Lemma 5.1, because the set of control values [U]µ in system [S]µ
is only a �nite subset of U in S . Any evaluation of [R] is only an inner approximation in terms

of control input.

Remark 5.2. In most cases, we use a common Lipschitz constant ρ = max{ρ1, ρ2} for the

purpose of simplicity. Then (5.11) becomes

Pre(B 	 Bρ(ε+µ)|A) ⊆ [Preµ]ε(B|A) ⊆ Pre(B|A), (5.12)

For control purposes, interval-valued outer approximation of predecessors cannot give in-

formation for constructing provably correct control strategies, but they are helpful in showing

the convergence results, which will be discussed later.

63

5.3 Finite Termination and Robust Completeness

As have been discussed in previous chapters, a condition for robustly complete control synthesis

with respect to a fundamental LTL speci�cation ϕ, which indicates that a control strategy can

be found by formal algorithms as long as ϕ is robustly realizable for system S , is that the

approximation of the predecessor map is both lower and upper bounded (Assumption 3.3).

Based on Lemmas 5.1 and 5.2, the interval-valued set [Pre]ε or [Preµ]ε can be used as an inner

approximation of Pre for robustly complete control synthesis, provided the precision parameter

ε is properly chosen.

Before we advance to the criteria for choosing ε, let us �rst discuss the �nite termination

problem that is unsolved in Chapter 4.

5.3.1 Finite Termination

Without any requirement other than Assumption 3.3, the aforementioned algorithms do not

necessarily terminate in a �nite number of steps, although the approximated winning set is

compact. This is because the predecessor is de�ned over the continuous state space, and the

di�erence between two sets can be in�nitesimal.

The inner approximation [Pre]ε(B|A) of the predecessor Pre(B|A) using Algorithm 5.1 for

any compact setB,A ⊆ X is a union of intervals with minimum width greater than ε/2, where

ε > 0 is the precision parameter of Algorithm 5.1.

We now formalize the �nite termination conclusion in the following theorems.

Theorem 5.1 (Finite Termination). Consider system S with the labeling function (4.2) where

Ω is a compact subset of the state space X. Let ϕ be an LTL formula from one of the classes:

• invariance (ϕs = �G),

• reachability (ϕr = ♦G), and

• reach-and-stay (ϕrs = ♦�G).

Let P̂re = [Pre]ε or P̂re = [Preµ]ε in the corresponding control synthesis algorithm with respect

to ϕ, i.e., (4.8) for ϕs, (4.19) for ϕr, and (4.27) for ϕrs. Then control synthesis with respect to ϕ
terminate in a �nite number of steps.

64

Proof. First of all, let ϕ = ϕs. Suppose that Învi(Ω) 6= Învi+1(Ω) for any i ∈ N. As have shown

in the proof of Theorem 4.1, the sequence of sets {Învi(Ω)}∞i=0 is strictly decreasing. Under

a given precision ε and the compactness of Ω, Învi(Ω) contains a �nite number of intervals.

Then there must exists an N ∈ Z+
such that ÎnvN(Ω) = ∅, which results in Învi(Ω) = ∅ for all

i ≥ N . Hence, algorithm (4.8) terminate in a �nite number of iterations.

Next, consider that ϕ = ϕr. Since we assume that X is compact, BRδ
∞(Ω) and BR∞(Ω) are

all bounded. It follows that

⋃∞
i=0 R̂chi(Ω) is also bounded by (4.20). Suppose that R̂chi(Ω) 6=

R̂chi+1(Ω) for every i ∈ N. Then the sequence of sets {R̂chi(Ω)}∞i=0 is strictly increasing. Given

that the minimum width of every interval in R̂chi(Ω) for all i ∈ N is greater than ε/2, there

must exist N ∈ N such that R̂chN(Ω) ⊇ X, but all sets are bounded in X. Hence, the sequence

{R̂chi(Ω)}∞i=0 will become stationary after a �nite number of iterations, and algorithm (4.19)

terminates.

Last, let ϕ = ϕrs. Under a given precision ε > 0, the elements in of sequence {Wi}∞i=0

generated in the inner loop in (4.27) must stay unchanged after some positive integer N ∈ N
by the result for ϕ = ϕs. Thus, the inner loop terminates within each outer loop. Likewise, the

outer loop is also terminating as shown for ϕ = ϕr. Hence, algorithm (4.27) also terminates in

a �nite number of steps.

5.3.2 Robust Completeness Based on Interval Partitions

In Lemmas 5.1 and 5.2, we have established lower and upper bounds for [Pre]ε(B|A) ([Preµ]ε),
which is the interval-valued inner approximation of Pre(B|A). This implies that control syn-

thesis with respect to LTL speci�cations can be made sound and robustly complete by choosing

a proper precision parameter so that Assumption 3.3 is satis�ed.

In this section, we study the condition of being robustly complete for the control synthesis

algorithms that use [Pre]ε ([Preµ]ε) as an inner approximation of Pre as well as partition-based

control strategies that realize the corresponding speci�cations.

As a result of using Algorithm 5.1, the state space X of the system will be partitioned into

a �nite number of intervals, which can be treated as a partition P of X by De�nition 2.4 and

each interval is a cell in P . So is the inner approximation of the winning set with respect to a

given speci�cation. The extracted control strategies are de�ned on intervals, since computation

of every approximated predecessor is performed over intervals instead of single points in the

continuous state space. In other words, we can use the same set of valid control values at any

state inside the same interval (or cell) so that the given speci�cation can be realized.

65

We �rst investigate in the following theorem the existence of partition-based control strate-

gies provided that the given speci�cation is robustly realizable for system S . Concrete control

strategies are given in the constructive proof of the theorem.

Lemma 5.3. Consider system S0
with the labeling function (4.2) where Ω is a compact subset

of the state space X. Let ϕ be one of the classes considered in Theorem 5.1. Additionally assume

that ε can be chosen so that [Pre]ε given in (5.2) satis�es Assumption 3.3 for some δ > 0. If ϕ
is δ-robustly realizable for S0

, then there exists a partition P = {P1, P2, · · · , PN} of X and a

memoryless control strategy κ : X→ 2U
with

κ(x) =
N⋃

i=1

ψPi(x), x ∈ X, (5.13)

that realizes ϕ for system S0
at any state in its domain.

The map ψPi in (5.13) is given by

ψPi(x) =

{
∅ x /∈ Pi,
πi x ∈ Pi,

(5.14)

where πi ⊆ U for i ∈ {1, · · · , N}.

Proof. Since [Pre]ε satis�es Assumption 3.3 for some ε, algorithms (4.8), (4.19), and (4.27) with

P̂re = [Pre]ε all return a nonempty subset of the corresponding winning set by Theorems 4.1,

4.2, and 4.3.

Let Yi (i ∈ N) denote the set obtained by the ith iteration of (4.8), (4.19), or (4.27). By the

�nite termination property given in Theorem 5.1, there exists a positive integer J such that

YJ = YJ+1. By using Algorithm 5.1 for the approximation of predecessors, the state space X is

represented by a partition P = {P1, P2, · · · , PN}, where N ∈ Z+
is the number of intervals,

i.e., X =
⋃N
i=1 Pi. The inner approximation YJ of the exact winning set can be characterized by

YJ =
⋃

[x]∈P ′
[x], P ′ =

{
Pi1 , · · · , PiN′

}
⊆ P ,

where N ′ denotes the number of intervals in P ′.
Recall that every member [x] in the output set A of Pre([S], B,A, ε) in Algorithm 5.1 can

be controlled to setB ⊆ X under some control inputs. We writeA =
{

[x]1, · · · , [x]|A|
}

. De�ne

[Π]B([x]) , {u ∈ U : [f]([x], u) ⊆ B} . (5.15)

66

Then the valid control values for any state inside the same interval is the same.

For invariance formula ϕs, we have YJ = ÎnvJ(Ω) = [Pre]ε(YJ |YJ) ⊆ Pre(YJ |YJ). De�ne

the subset of control values πi given in (5.14) by

πi =

{
[Π]YJ (Pi), Pi ∈ P ′,
∅ Pi /∈ P ′.

(5.16)

Then [Π]YJ (x) = [Π]YJ (Pi) 6= ∅ for all x ∈ Pi ∈ P ′ and

κ(x) =

{
[Π]YJ (x) x ∈ YJ ,
∅ x ∈ X \ YJ ,

which is consistent with the invariance control strategy (4.11). Any state x ∈ YJ can be con-

trolled inside YJ ⊆ Ω for all future time using the control strategy in the form of (5.13).

For reachability formula ϕr, we use R̂ch(Y) = [Pre]ε(Y |X) ∪ Y . The resulting sequence of

sets {R̂chj(Ω)} is increasing and YJ = R̂chJ(Ω). LetPj =
{
Pj⊕1, · · · , Pj⊕Nj

}
(j ∈ {1, · · · , J})

be the set of intervals inside R̂chj(Ω) but outside R̂chj−1(Ω), whereNj is the number of intervals

in Pj and j ⊕ i =
∑j

l=1Nl + i for i ∈ {1, · · · , Nj} is the index used for sorting intervals in P ′.
Then

∑J
j=1Nj = N ′. Replace πi in (5.14) by

πj⊕i =

{
[Π]

R̂chj−1(Ω)(Pj⊕i) Pj⊕i ∈ Pj
∅ o.w.

(5.17)

Then the control strategy in (5.13) becomes

κ(x) =

{
[Π]

R̂chj−1(Ω)(x) x ∈ Pj⊕i,
∅ x ∈ X \ YJ .

By algorithm (4.19) and de�nition (5.15) for valid control values based on Algorithm 5.1, any

state x ∈ Pj⊕i will be controlled to R̂chj−1(Ω) for one step. This is consistent with (4.21).

For reach-and-stay formula ϕrs, control strategies are de�ned separately on W∞
j ⊆ Ω and

Zj ⊆ X \ Ω for j ∈ {0, · · · , J − 1}. By (4.27), we have W∞
j ∩W∞

j′ = ∅ and Zj ∩ Zj′ = ∅ for

j 6= j′. Let Pw,j and Pz,j be the set of intervals returned by Algorithm 5.1 as the approximation

of W∞
j and Zj , respectively. We concatenate the intervals in Pw,j and Pz,j in a way that the

intervals belong to Pw,j always goes before the ones in Pz,j , and denote by Nj and NJ+j the

67

number of intervals in Pw,j and Pz,j , respectively. Same as for the reachability formula ϕr, we

assign indices of intervals so that

Pw,j =
{
Pj⊕1, · · · , Pj⊕Nj

}
, Pz,j =

{
P(J+j)⊕1, · · · , P(J+j)⊕NJ+j

}
,

and P = {Pw,0, · · · ,Pw,J−1,Pz,0, · · · ,Pz,J−1}.
Let j ∈ {0, · · · , 2J − 1} and

πj⊕i =

{
[Π]X̂∞j+1

(Pj⊕i) Pj⊕i ∈ P ,
∅ o.w. .

(5.18)

Then the control strategy (5.13) realizes ϕrs.

Based on Lemma 5.3, we present the following robust completeness results for control syn-

thesis using interval computation.

Theorem 5.2 (Robust Completeness via Interval Analysis). Consider system S0
with the la-

beling function (4.2) where Ω is a compact subset of the state space X. The set of control inputs

U is �nite. Suppose that Assumption 5.1 holds with the Lipschitz constant ρ1 > 0. Let ϕ be

a speci�cation considered in Theorem 5.1 and [Y]ε denote the approximated winning set with

respect to ϕ by letting P̂re = [Pre]ε. If

ρ1ε ≤ δ (5.19)

for some δ > 0, then the following conclusions hold:

(i) If [Y]ε 6= ∅, then a control strategy in the form of (5.13) can be constructed to realize ϕ at

any state x ∈ [Y]ε, which is a �nite union of intervals.

(ii) If [Y]ε = ∅, then ϕ is not δ-robustly realizable for system S0
.

Proof. If ρ1ε ≤ δ, then by Lemma 5.1, for all B,A ⊆ X

Pre(B 	 Bδ|A) ⊆ Pre(B 	 Bρ1ε|A) ⊆ [Pre]ε(B|A) ⊆ Pre(B|A),

which means that [Pre]ε satis�es Assumption 3.3. If [Y]ε 6= ∅, then we have

Win
δ
S(ϕ) ⊆ [Y]ε ⊆WinS(ϕ) (5.20)

by Theorems 4.1, 4.2, and 4.3. By Lemma 5.3, there exists a control strategy in the form of (5.13)

to realize ϕ.

If [Y]ε = ∅, then Win
δ
S(ϕ) = ∅ by (5.20), which implies that ϕ is not δ-robustly realizable

for system S0
.

68

For system with in�nitely many available control inputs, a similar result can be established

as follows.

Theorem 5.3. Consider system S0
with the labeling function (4.2) where Ω is a compact subset

of the state spaceX. The set of control inputsU is compact. Suppose that Assumption 5.1 and 5.2

are satis�ed with the Lipschitz constant ρ1 > 0 and ρ2 > 0, respectively. Letϕ be a speci�cation

considered in Theorem 5.1 and [Y]ε denote the approximated winning set with respect to ϕ by

letting P̂re = [Preµ]ε, where µ is the granularity of the input space U de�ned in (5.8). Then we

have the same results as in Theorem 5.2 if

ρ1ε+ ρ2µ ≤ δ (5.21)

for some δ > 0.

Proof. The proof is the same as the one for Theorem 5.2 except that (5.20) is achieved by Lemma

5.2 instead of Lemma 5.1.

Theorems 5.2 and 5.3 essentially reveal that using Algorithm 5.1, which is based on interval

arithmetic and a branch-and-bound scheme, as an implementation of P̂re solves Problem 2.2 at

least for fundamental LTL control synthesis problems. The conditions (5.19) and (5.21) serve as

criteria for choosing the precision parameter ε if the bound of disturbance δ and the Lipschitz

constant ρ1 and ρ2 over the state space can be trivially determined. Using such a criterion in

actual computation is usually too conservative due to the evaluation of the Lipschitz constants

over the entire state space.

A practical bene�t of Theorems 5.2 and 5.3 is the guarantee that the winning set can be

approximated more precisely by using a su�ciently precision parameter. On the other hand, if

we start computation with a large ε and iteratively reducing it until the algorithm achieves a

nonempty result, algorithms (4.8), (4.19), and (4.27) can also estimate the bound of the distur-

bances that can be tolerated without breaking the realizability of the given speci�cation.

To show how well the proposed speci�cation-guided method performs in terms of compu-

tational time, in the following sections of this chapter, we compare it with abstraction-based

methods, which are commonly used for control synthesis with respect to LTL speci�cations.

5.4 Complexity Analysis

As we have seen in Chapter 1, by using abstraction-based methods, a �nite abstraction (tran-

sition system) that bisimulates or over approximates the original dynamical system on a con-

tinuous state space is �rst constructed, then computer algorithms that have been developed for

69

discrete state systems are adopted for control synthesis. Therefore, the overall computational

time for an abstraction-based method includes the time for both abstraction construction and

discrete control synthesis.

Let ε and η (ε, η > 0) be the grid sizes of the state spaceX and the input spaceU, respectively.

Assume that c1, c2 > 0 are some constants related to the width of the state and input spaces,

respectively, and the cost in terms of running time for each computation of the reachable set of

a cell in the discretized state space is some constant c > 0. The integers n and m represent the

dimension of the state and input spaces of system S , respectively.

To deal with general nonlinear dynamics without any stability assumptions, a �nite ab-

straction that over approximates the behaviors of the original system is often constructed over

a uniformly discretized state space. For such cases, the number of discrete statesNS and inputs

NU are

NS =
⌈c1

ε

⌉n
, NU =

⌈
c2

η

⌉m
,

where d·e is the ceiling function. Hence, the time complexity for computing abstractions is

O(cNSNU).

Since �nite abstractions can be viewed as �nite graphs or a two-player game arena [10],

the time complexity of discrete control synthesis for abstraction-based methods can be easily

concluded by using the related results from the area of two-player games and model checking.

Let NT be the number of transitions in the �nite abstraction, which is also the number of

edges of the graph that is equivalent to the abstraction. Under Assumption 5.1, the number of

transitions NT can be estimated by

NT = (dρe+ 1)nNSNU ,

where ρ is the Lipschitz constant.

As reported in the literature, the time complexity for achieving reachability objective ϕr =
♦G is O(NT). Since invariance objective ϕs = �G is a dual to ϕr, the time complexity is also

O(NT). For reach-and-stay control objective ϕrs = ♦�G, the time complexity is O(NSNT).

Hence, the overall time complexity of abstraction-based control synthesis with respect to in-

variance or reachability is

O(cNSNU + (dρe+ 1)nNSNU), (5.22)

and the complexity with respect to reach-and-stay speci�cations is

O(cNSNU + (dρe+ 1)nN2
SNU). (5.23)

70

We now analyze the time complexity of the proposed control synthesis algorithms (4.8),

(4.19), and (4.27) with interval approximation of the map Pre, which is given in Algorithm 5.1.

Using the branch-and-bound technique in Algorithm 5.1, the state space is adaptively parti-

tioned with respect to system dynamics and the satisfaction of the speci�cation. As a result, a

non-uniform partition of the state space will be generated, which can be implemented by using

the binary tree data structure
1
.

If the minimum width of an interval is still ε, then we need to set the precision parameter

2ε in Algorithm 5.1. This is due to the subdivision scheme that any interval with width larger

than the precision parameter will be bisected if it can not be fully controlled inside a given set

in the next time step. Then the greatest depth of the binary tree is

hmax =
⌈
n log

(c1

ε

)⌉
≈ logNS

2.

The operations [f]([x], u) ∩ B = ∅ and [f]([x], u) ⊆ Y in Algorithm 5.1 involves the com-

putation of interval inclusion function [f] (i.e., the computation of reachable set for interval [x])
and set membership test, which is performed by searching the binary tree. Assume that the set

membership test for intervals costs one operational time compared to c. Then in the worst case

where the state space of the tree is of depth hmax, determining whether an interval [x] ⊆ A
belongs to the predecessor Pre(B|A) takes approximately (logNS + c)NU operational time.

Let NG be the number of the set of intervals that represents the target set Ω. Then the

number of intervals outside of Ω is NS − NG. Normally for a regulation problem, the target

area Ω is rather small compared to the state space X, which means that NG << NS .

For invariance control algorithm (4.8), computation is con�ned to the target set. Assuming

that Învj(Ω) and Învj−1(Ω) (j ∈ Z+
) only di�er by one interval and NG >> 1, the overall

computational complexity is

O
(
c

2
NUN

2
G +

1

2
NUN

2
G logNS

)
. (5.24)

If the target set is small enough so that N2
G logNS < NS , the worst case complexity of the in-

variance control algorithm with interval implementation is lower than the one for abstraction-

based methods (5.22).

1
A tree is an abstract data structure that has a root node which is linked by children nodes. A binary tree is a

tree data structure in which each node has at most two children.

2
The logarithm is with base 2.

71

For reachability algorithm (4.19), we consider the worst case in which only one more interval

is included in R̂chj than R̂chj−1 andNG, 1 << NS . Then we have the computational complexity

O
(
c

2
NUN

2
S +

1

2
NUN

2
S logNS

)
, (5.25)

which is higher than (5.22).

Similarly, in the worst case for algorithm (4.27), the set elements in the sequences {Yi}∞i=0

and {Xj
i }∞j=0 di�er by one interval. Then the number of iterations NI is

NI =
1

2

NG∑

i=1

(i2 + i) +

NS−NG∑

i=1

i =
N3
G + 3N2

G + 8NG

12
+

(NS −NG)2 + (NS −NG)

2
.

If NG << NS , then NI ≈ (N2
S +NS)/2. Hence, the time complexity of the algorithm (4.27) is

O
(

logNS + c

2
(NSNU +N2

SNU)

)
. (5.26)

By comparing (5.26) with (5.23) , the time complexity of algorithm (4.27) is ofO(NUN
2
S logNS)

while the abstraction-based methods is quadratic inNS . The term logNS in (5.26) is contributed

by the overhead of using Algorithm 5.1, which primarily comes from the set inclusion tests by

searching the binary tree, i.e., the part induced by hmax.

For both reachability and reach-and-stay control objectives, the abstraction-based meth-

ods have better e�ciency than the proposed speci�cation-guided method in the worst case, in

which the state space X is assume to be partitioned to intervals of the smallest size (determined

by the precision parameter) and the sets, or unions of intervals to be more precise, computed

in each iteration varies by only one interval. In such worst cases, the overhead run time of

Algorithm 5.1 is relatively large.

The worst case, however, rarely exists in practical control problems. On the other hand,

the use of a non-uniform partitioning scheme avoids partitioning the region in the state space

without helping in control synthesis. This usually leads to fewer discrete states for a given

precision. In this sense, the proposed speci�cation-guided method is less sensitive to the state

discretization precisions than abstraction-based control synthesis methods. We will show by

some practical control examples in the following section that the experimental run time is far

better than ones predicted by (5.24), (5.25) and (5.26).

From the relationship between system dimension and the time complexity as discussed

above, the main limitation of the proposed method, which also exists in abstraction-based meth-

ods, is that it still su�ers from the curse of dimensionality.

72

5.5 Experiments on Benchmarking Examples

In this section, we illustrate the e�ectiveness of the interval-based control synthesis algorithms

on several benchmarking examples that have been used in the literature.

We also compare the run time of solving invariance, reachability and reach-and-stay control

synthesis scenarios for di�erent systems by using the proposed speci�cation-guided method

and abstraction-based methods. Although theoretical complexity analysis shows that the pro-

posed method takes more time in the worst case because of the overhead for managing non-

uniform partitions, the proposed method outperforms abstraction-based methods in those em-

pirical experiments.

Control synthesis in all the examples are performed on a 3.6 GHz processor (Intel Core i3)

using ROCS [83], which is a self-developed toolbox for nonlinear system LTL control synthesis.

We include in this thesis a detailed presentation of ROCS in Appendix A.

5.5.1 Boost DC-DC Converter

Vs

rl

Vo

T1
T2

xl

rc

xc

ro

il

Vc

Figure 5.1: The circuit of a boost DC-DC converter.

Consider a boost DC-DC converter [53], which operates in two modes, as shown in Fig-

ure 5.1. Let the state x of the converter be a vector of the inductor current il and the capacitor

73

voltage Vc. Then the state space model of the boost DC-DC converter is linear a�ne:

ẋ = Apx+ b, p = 1, 2,

x =

[
il
Vc

]
, b =

[
Vs
Vl

0

]
,

A1 =

[
− rl
xl

0

0 − 1
xc(rc+ro)

]
, A2 =

[
− 1
xl

(rl + rorc
ro+rc

) − ro
xl(ro+rc)

ro
xc(ro+rc)

− 1
xc(ro+rc)

]
.

(5.27)

The parameters in (5.27) is provided in Table 5.1.

Table 5.1: The parameters in (5.27), and “p.u.”= per unit.

Parameters Value (p.u.) Physical meaning

xc 70 The capacity of the capacitor

rc 0.005 The resistance of the capacitor

xl 3 The inductance of the inductor

rl 0.05 The resistance of the inductor

ro 1 The load resistance

Vs 1 The source voltage

Although the physical model is ODEs, the following exact discrete-time model of (5.27) can

be derived via integrating 5.27 according to xt+1 = eApτsxt +
∫ τs

0
eτs−sb ds by a sampling time

τs > 0.

Mode 1: xt+1 =

[
0.9917 0

0 0.9929

]
xt +

[
0.1660

0

]
,

Mode 2: xt+1 =

[
0.9903 −0.1645
0.0070 0.9923

]
xt +

[
0.1659
0.0006

]
.

(5.28)

A typical function of a boost DC-DC converter is to regulate the output voltage Vo within

a certain range. Depending on whether the initial state x0 of the system falls inside this range

or not, such a control objective can be described as an invariance speci�cation ϕs = �G or a

reach-and-stay speci�cation ϕrs = ♦�G for system S with transition relation determined by

(5.27) and labeling function (4.2).

Hence, we consider two scenarios for both of the speci�cations in our simulation. The state

space for this example is X = [0.6490, 1.6500] × [0.9898, 1.1900]. In the �rst scenario, we

aim to maintain system state inside a target region Ω1 = [1.15, 1.55] × [1.09, 1.17] (labeled

74

as G), and the second case is to control a state in the state space X to reach an target set

Ω2 = [1.10, 1.6]× [1.08, 1.18] (labeled as G) and stay there for all future time.

A sampling time τs = 0.5 s is used for constructing the discrete-time model (5.28). The

precision parameter ε = 0.001 is used for the interval version [Pre]ε of P̂re in both invariance

control synthesis algorithm (4.8) and reach-and-stay algorithm (4.27).

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

Figure 5.2: The phase portrait of a closed-loop trajectory that satis�es the invariance speci�ca-

tion ϕs. The area marked by the outermost green rectangle is the target set Ω1.

In the �rst case, we approximate the maximal controlled invariant set inside Ω1, which

is the winning set WinS(ϕs) for system S with respect to the invariance speci�cation ϕs, by

the union of intervals marked as the shaded area in Figure 5.2. The Lipschitz constant ρ1 =
max{0.9929, 1.0737} = 1.0737. Implied by Theorem 5.2, the target set Ω1 is not δ-robustly

controlled invariant for any δ > ρ1ε = 0.0010737, because the approximated winning set does

not cover Ω1.

Applying the constructed partition-based memoryless control strategy in the form of (5.13)

and (5.14), a closed-loop system trajectory from the initial state x0 = (1.2, 1.12) is shown in

Figure 5.3. Such a control strategy returns (possibly) multiple valid control values for a state in

the winning set and any one of the control values realizes the invariance speci�cation. In this

75

0 5 10 15 20 25 30 35 40 45 50

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

Figure 5.3: The corresponding time history of closed-loop states and control variables in Fig-

ure 5.2.

example, the valid control values can be both mode 1 and 2. The only one of the control values

that we select in our closed-loop control simulation is the one closest to the last used control

value, which results in less mode switching.

It can be seen that the whole trajectory is con�ned to the controlled invariant set inside Ω1

as required. Figure 5.3 displays the time history of system states and control inputs. Since we

perform control synthesis automatically by formal algorithms on discretized state and input

spaces, the curves in Figure 5.3 show discontinuity.

In the second case, we run the reach-and-stay control synthesis algorithm (4.27), and the

winning set WinS(ϕrs) is approximated by the shaded area in Figure 5.4, which also shows a

closed-loop trajectory from with initial condition x0 = (0.7, 1.08). Similar to the �rst case, the

target set is not δ-robustly controlled invariant itself as Ω2 * WinS(ϕrs).

76

Figure 5.4: A closed-loop trajectory of the converter using the control strategy that realizes the

reach-and-stay speci�cation ϕrs. The target set Ω2 is marked as the green rectangle.

5.5.2 Parallel Parking

We now consider an automatic parallel parking problem in which the goal is to control a vehicle

to park along the curb between two other vehicles. Such an objective can be expressed by a

reach-and-stay speci�cation. The following vehicle model [5] is used:



ẋ
ẏ

θ̇


 =



v cos(γ + θ) cos(γ)−1

v sin(γ + θ) cos(γ)−1

v tan(φ)


 , (5.29)

where (x, y) is the planar position of center of the vehicle, θ is its orientation, the control

variable v represents the velocity, and φ is the steering angle command.

The vehicle structure is shown in Figure 5.5, and the variable γ = arctan(a tan(φ)/b), where

a is the distance from the gravity center to the rear wheels of the vehicle, and b is the distance

between its front and rear wheels. We use a/b = 1/2 in the simulation.

Considering constant control inputs during each sampling period, we can obtain the exact

77

�
<latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit>

�
<latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit>

�
<latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit>

γ

γ
γ

Figure 5.5: The vehicle structure [5].

discrete-time model for φ 6= 0:





xt+1 = sin(γt+τsvt tanφt+θt)−sin(γt+θt)
cos(γt) tanφt

+ xt,

yt+1 = − cos(γt+τsvt tanφt+θt)+cos(γt+θt)
cos(γt) tanφt

+ yt,

θt+1 = τsvt tanφt + θt.

(5.30)

For φ = 0, the discrete-time model becomes





xt+1 = vt cos θtτs + xt,

yt+1 = vt sin θtτs + yt,

θt+1 = θt.

(5.31)

In our simulation, the state space is X = [0, 8] × [0, 4] × [−72◦, 72◦], sampling time is

τs = 0.3s, and the set of control values is U = {±0.9,±0.6,±0.3, 0}, which is sampled by

uniform discretization of the space [−1, 1]× [−1, 1] with grid width η = 0.3.

The discrete-time model can be readily veri�ed Lipschitz continuous over the state space X
and the input space U: For (5.31) when the steering angle φ = 0, ρ1 = 1.3 and ρ2 = 0.3 are

the Lipschitz constants with respect to state and input, respectively. Letting φ → 0, (5.30) and

(5.31) will be almost equivalent.

Suppose that the length and width of the vehicle be L = 2 and H = 1, respectively. For

the purpose of analysis, we consider two problem settings: parking with a wide marginal space

∆ = L = 2 and a narrow marginal space ∆ = 0.5. The marginal space is the distance between

the front and rear vehicles in addition to L. For both cases, the rear vehicle center is at (1, 0.5),

78

and thus the front vehicle center is at (1 + 3L/2 + ∆, 0.5). The target area is

Ω = [1 + L, 1 + L+ ∆]× [0.5, 0.6]× [−3◦, 3◦].

The collision area (the center position and orientation of the vehicle that causes collision

with the parked vehicles and the curb) needs to be determined before control synthesis. We

assume that vehicles and the curb are rectangles. Then the collision area can be interpreted by

inequalities of the form g(x) ≤ 0, which is derived by checking if two polyhedra intersect. It is

clear that the center of the vehicle has di�erent admissible regions with di�erent orientations.

Hence, the collision area is not simply a hyper-rectangle in R3
, as shown in Figure 5.6 (a).

The free workspace (the admissible position of the vehicle center in R3
) determined by such a

constraint can be handled by algorithm (4.27).

(a) The x− y − θ view. (b) The x− y view.

Figure 5.6: Collision area when ∆ = 0.5. In (b), the gray area is the x−y plane projection of the

3D collision area, and the two black rectangles represent the bodies of rear and front vehicle.

By Theorem 5.3, if parallel parking is robustly realizable with the given marginal space, we

can always synthesize a control strategy using a su�ciently small precision without calculating

the Lipschitz constant. To see if the speci�cations in these two parking scenarios are realizable,

we use di�erent precision control parameters. The corresponding control synthesis results

regarding the number of partitions (#P1,2) and the run time (t1,2) are summarized in Table 5.2.

For both scenarios, the vehicle can be successfully parked into the target spot from any

point of the free workspace. The controlled parking trajectories with the resulting memoryless

control strategies are presented in Figure 5.7, which all meet the parallel parking speci�cation.

79

Table 5.2: Control synthesis of the parallel parking problem with di�erent precisions.

ε #P1 t1 (s) #P2 t2 (s)

0.07 176786 102.93 – –

0.06 176666 103.19 1,797,027 295.68

0.02 203166 127.44 1,832,589 327.50

0.01 274694 176.20 1,920,929 427.48

0 1 2 3 4 5 6 7 8

x position

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

y
p
o
si
ti
o
n

(a) ∆ = 2, (x0, y0) = (2, 2.5).

0 1 2 3 4 5 6 7 8

x position

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

y
p
o
si
ti
o
n

(b) ∆ = 0.5, (x0, y0) = (2, 2.5).

0 1 2 3 4 5 6 7 8

x position

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

y
p
o
si
ti
o
n

(c) ∆ = 2, (x0, y0) = (5, 2.5).

0 1 2 3 4 5 6 7 8

x position

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

y
p
o
si
ti
o
n

(d) ∆ = 0.5, (x0, y0) = (5, 2.5).

Figure 5.7: Controlled parking trajectories from an initial condition (x0, y0) with wide and

narrow marginal parking spaces.

80

When the marginal parking space ∆ is 0.5, we need a control synthesis precision no greater

than 0.06 so that a memoryless control strategy can be generated. Additionally for this spe-

ci�c example, using a smaller ε only increases the winning set by adding intervals close to the

boundary of the free workspace.

Such a parallel parking task can also be solved by using a piecewise-a�ne controller de�ned

on a pre-designed triangular partition of the con�guration space [99], which contains the initial

states of the car. The main advantage of using the proposed method is that the partition of the

state space is performed automatically. As a result, we do not need to re-design the partition

for a di�erent parking scenario. In addition, the control design is based on the nonlinear model

as opposed to di�erent linearizations of the nonlinear model on di�erent polytopes in the state

space.

5.5.3 Motion Planning

For the same vehicle model (5.29), we now consider a motion planning problem: steer the ve-

hicle to the target set while avoiding obstacles in a maze.

Let the workspace X of the maze be X = [0, 10] × [0, 10] × [−3.4, 3.4] and the range of

input controls be U = [−1, 1] × [−1, 1]. There are static obstacles distributed over the entire

workspace X. The 2-D view of the maze is shown in Figure 5.8. The exit of the maze is the

area at the bottom right corner, which is given as Ω = [9, 9.5] × [0, 0.5] × [−3.4, 3.4]. Then

this motion planning problem can be considered as a control synthesis problem with respect

to ϕ = ♦G for the system S with transition relation R determined by (5.30) and (5.31) and

labeling function (4.2).

Same as in the parallel parking example, we use a sampling time τs = 0.3s and a grid size

η = 0.3 for the control space U. The precision parameter ε of Algorithm 5.1 is set to be 0.2 in

executing the proposed algorithm (4.19), and a closed-loop path of the vehicle with the resulting

memoryless control strategy in the form of (5.13) is shown in Figure 5.8.

5.5.4 Comparison on Performance

We may �nd the proposed speci�cation-guided method less e�cient than abstraction-based

methods from the complexity analysis for worst cases. In this section, we will show how well

the proposed method performs in practice.

First of all, we compare in Table 5.3 the run time of invariance control synthesis for the

boost DC-DC converter using our algorithm with the ones by using abstraction-based methods

(reported in [118]). In terms of e�ciency, our algorithm outperforms other existing methods.

81

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 5.8: Motion planning in a planar area with obstacles: a controlled 2-D trajectory of the

vehicle that leads from the initial condition x0 = 0.6, y0 = 0.6, θ0 = π/2. The obstacles are

represented by black areas.

82

Table 5.3: Comparison of run times of invariance control synthesis for the boost DC-DC con-

verter. “tabs”=the time for computing abstractions, and “tsyn”=the time for control synthesis.

CPU [GHz] tabs(s) tsyn(s)

Pessoa[66] i7 3.5 478.7 65.2

SCOTS[118] i7 3.5 18.1 75.4

CoSyMA[93] N/A N/A 8.32

ROCS[83] i3 3.6 0 0.077

We also compare the performance of solving reachability and reach-and-stay problems us-

ing our proposed method with abstraction-based methods (implemented in SCOTS [118]) on

solving di�erent benchmarking examples. The results are shown in Table 5.4. The column of

#Iter indicates the number of outer loops and the total number of inner loops (in the bracket)

running (4.24). The time for abstraction-based control methods is split into the part for abstrac-

tion (indicated as Abst) and the one for synthesis (as Syn).

Table 5.4: Performance comparison tests. TO=time out (> 86400s) and “–” = control synthesis
fails.

Examples Parameters ROCS SCOTS

n NU ε NS #Iter time(s) NS NT #Iter

time(s)

Abst Syn

DC-DC converter 2 2

0.005 22433 76(529) 0.53 40401 291068 84(671) 0.69 15.90

0.001 162261 76(272) 3.48 1002001 7243320 77(431) 29.83 481.97

Motion planning 3 49

0.2 280291 381(1) 151.01 91035 3.73× 107
– 82.80 –

0.1 1850830 297(1) 1062.97 724271 2.95× 108
313(2266) 2004.66 17568.2

Parallel

parking

∆ = 0.5
3 49

0.02 1832589 133(1) 327.50 10075125 TO TO TO TO

∆ = 2 0.07 167155 123(8) 94.32 83025 3.277× 107
– 73.14 –

Our proposed method outperforms abstraction-based methods in those examples. In the

motion planning example, using a grid size of 0.1 succeeds in synthesis while using 0.2 fails

for abstraction-based methods because abstractions are more over-approximated for larger grid

size. In contrast, our proposed method solves the problem in 151 seconds by using ε = 0.2. This

is because the minimum width of the partitions can be less than 0.2 by the subdivision scheme

of Algorithm 5.1. As opposed to themotion planning case where obstacles are distributed evenly

across the state space, the constraints for parallel parking are highly nonlinear and only posed

to a corner of the state space, and varying the discretization precision of the state space will

save computational time in a great deal. Such a di�erence in those two case settings explains

why the gain in time e�ciency by using our method is more profound in the parallel parking

cases.

83

0 0.02 0.04 0.06 0.08 0.1

90

100

110

120

130

140

150

160

170

180

Parallel parking

Boost DC-DC converter

0 0.002 0.004 0.006 0.008 0.01

0

2

4

6

8

10

12

0 0.002 0.004 0.006 0.008 0.01

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Boost DC-DC converter

ROCS

SCOTS

Figure 5.9: Changes of run time under di�erent precisions.

As seen in (5.23) and (5.26), both methods are equivalently sensitive to the size of the dis-

cretized systems. The experimental results shows that the worst case as in (5.26) is rather

pessimistic in practice and our proposed method is more scalable to the discretization preci-

sion than abstraction-based methods. Analyzing the example of boost DC-DC converter, we can

observe in the right-hand side of Figure 5.9 that the run time of the proposed method changes

slowly while the one for abstraction-based method explodes as precision ε decreases. The left-

hand side of Figure 5.9 compares the run time of the proposed method for two cases of di�erent

sizes, which indicates the dimensionality problem of the proposed method.

5.6 Convergence in Set Approximations

Previous sections in this chapter focus on robust completeness in control synthesis, which is

guaranteed to �nd a memoryless control strategy if the given speci�cation is robustly realizable

for system S . It is a relaxation concerned with di�culty of approximation error of predeces-

sors under nonlinear dynamics. In this section, we discuss the convergence of using the outer

interval approximation (5.3) in computing maximal controlled invariant set. We can show that

84

the maximal controlled invariant set can be outer approximated with arbitrary precision.

Theorem 5.4. Let Ω ⊆ X be compact and Assumption 3.1 or 3.2 holds. Then (4.8) with P̂re =

[Pre]ε (or P̂re = [Preµ]ε), which is given in (5.3), terminates in a �nite number of steps with

an output [I]ε∞. Furthermore, the output [I]ε∞ is an union of intervals satisfying the following

properties:

(i) If 0 < ε1 < ε2, I∞(Ω) ⊆ [I]ε1∞ ⊆ [I]ε2∞;

(ii) I∞(Ω) = limε→0[I]ε∞.

Proof. We use subscript j to denote the jth iteration (j ∈ N) of algorithm (4.8). The correspond-

ing sets of Algorithm 5.1 in the jth iteration are denoted by Aj Ac,j , ∆Aj , and Bj , respectively.

To see (i), we �rst prove I∞(Ω) ⊆ [I]ε∞ for all ε > 0. For the sake of contradiction, let

y ∈ I∞(Ω) but y /∈ BN for a N ∈ Z+
. Then y ∈ Ω \ BN . According to the algorithm,

∀z ∈ Ω \ BN , there must be a step 0 < j ≤ N such that [f](z, u) ∩ Ω = ∅ for all u ∈ U.

This indicates that z /∈ I∞(Ω), which is a contradiction. Thus I∞(Ω) ⊆ [I]ε∞. Next we prove

[I]ε1∞ ⊆ [I]ε2∞ by induction. Consider the �rst two steps: Bε1
0 = Bε2

0 = Ω. Since 0 < ε1 < ε2,

some intervals in ∆Aε21 will be divided into �ner boxes and are possible to be included in Aε1c,1,

and thusAε2c,1 ⊆ Aε1c,1. Together withBε1
1 = Bε1

0 \Aε1c,1, andBε2
1 = Bε2

0 \Aε2c,1, we haveBε1
1 ⊆ Bε2

1 .

Assume Bε1
j ⊆ Bε2

j for any step 1 ≤ j < N . Then Aε2c,j ⊆ Aε1c,j , which gives Bε1
j+1 ⊆ Bε2

j+1.

Hence (i) is proved.

To show (ii), we consider a decreasing sequence {εj}∞j=1 with εj > 0 and limj→∞ εj = 0.

Since [I]εj is compact, limεj→0[I]εj exists and is given by the compact set

⋂∞
j=1[I]εj . Let [I] =⋂∞

j=1[I]εj . If every [I]εj is nonempty, then [I] is nonempty. By (i), I∞(Ω) ⊆ [I]εj for all j ≥ 1.

Then it is clear that I∞(Ω) ⊆ [I].

We claim that [I] ⊆ I∞(Ω). If this is not true, then there exists y ∈ [I] such that f(y, u) /∈
[I] for all u ∈ U, i.e., f(y, u) ∈ [I]c, which is the complement of [I] and is open. Then it

follows that there exists r > 0 such that Br(f(y, u)) ⊆ [I]c for all u ∈ U. Furthermore, by

De�nition 3.2, there exists a J1 su�ciently large such that Br(f(y, u))∩ [I]εj = ∅ for all u ∈ U
and j ≥ J1. Then it is only possible that y ∈ [x] ∈ ∆Aj, j ≥ J1. Since f(·, u) is a continuous

function (under Assumption 3.1 or 3.2), there exists a J2 such that [f]([x], u) ⊆ Br(f(y, u)) for

all u ∈ U and [x] ∈ ∆Aj, j ≥ J2. Then for all j ≥ max{J1, J2}, we have [f]([x], u)∩BN = ∅,

which is contradictory with the fact that y ∈ ∆Aj . Hence, (ii) is true.

Theorem 5.4 indicates that the exact maximal invariant sets can be outer approximated in

an arbitrary precision, as illustrated in the following example.

85

Example 5.2. Consider again the system in Example 4.1. The maximal positively invariant set

within Ω is bounded by two trajectories, which is marked by the two red curves. Figure 5.10

shows the approximation results with di�erent choices of precision ε (ε =0.05, 0.01, 0.0063,

0.001, respectively). It can be observed that the approximation error decreases as ε becomes

smaller.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
ε = 0.05

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
ε = 0.01

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
ε = 0.0063

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
ε = 0.001

Figure 5.10: Outer approximations of I∞(Ω) with di�erent precision parameters.

5.7 Summary

We presented in this chapter an adaptive state space partition scheme integrating interval im-

plementation of the predecessor map so that the control synthesis algorithms (4.8), (4.19) and

(4.27) in Chapter 4 can terminate in �nite numbers of iterations and are guaranteed to be sound

and robustly complete.

Due to the generality of set representation using intervals, assumptions on the form of the

nonlinear dynamics (e.g. polynomial or linear a�ne f(x, u) = Ax + g(x)u) and the stability

86

properties (e.g. incremental stability [4]) are not necessary for the approximation of predeces-

sors in the proposed control synthesis algorithms. Similar to our work in control synthesis, in

the veri�cation of dynamical system properties, interval arithmetic has been used to prove the

quasi-decidability of safety properties [112, 111] and δ-complete analysis for bounded reacha-

bility [46] of hybrid systems.

Speci�cally in invariance control, computation of maximal controlled invariant sets is not

easy even for linear systems because maximal controlled invariant sets are not guaranteed to

be �nitely determined, except for the special cases where the linear system is λ-contractive in a

compact and convex set around the origin [18]. For control purposes, invariant inner approx-

imations are more desirable, because, di�erent from outer approximations, they are subsets of

states that can be controlled invariant, for which an invariance controller exists. Finitely deter-

mined invariant inner approximations can be obtained by computing the null-controllable sets
(i.e., the set of states that can be controlled to the origin in �nite time) [55]. The δ-complete in-

ner approximation of the maximal controlled invariant set I∞(Ω) inside a given set Ω for linear

disturbed systems proposed in [117] relaxes the requirement that Ω must surround the origin.

The idea in [117] is similar to our proposed robustly complete method, but it only applies to

linear systems. For nonlinear systems, invariance control via analytical methods include con-

structing barrier certi�cates [134] by sum-of-squares (SOS) techniques [64]. These methods

usually work for polynomial dynamics or particular forms of feedback control functions.

For reachability and reach-and-stay control problems, integrating constraints and bounded

perturbations in the stage of controller design was studied in [16] for linear systems and ex-

tended to nonlinear systems [102] where the reach-and-stay requirement is relaxed to reach a

robustly controllable super set containing the target set when the target set is not controlled

invariant. As a result, the guarantee of the reach-and-stay property is lost in [102], which is

di�erent from the reach-and-stay problem considered in this thesis. Most of works in this topic

are dependent on the assumption that the target set is controlled invariant [32, 133].

As explained in Section 2.4, abstraction-based methods are applicable in the control syn-

thesis problems discussed so far. These methods are systematic and usually rely on milder

assumptions than analytical methods. Similar to abstraction-based methods, our method based

on interval computation also work on �nite partitions of the continuous state space. The major

di�erence between abstraction-based methods and our method is that the partition is adap-

tively performed with respect to both dynamics and speci�cation under the proposed scheme.

Compared with the works with abstraction re�nement mechanisms [49, 61, 98], in which pa-

rameters need to be chosen empirically or synthesis does not always terminate in �nite time, we

devise a scheme for adaptive tuning of discretization precision under a given threshold related

to system robustness level.

87

With the numerical experiments shown in this chapter, the advantages of the proposed

method can be concluded as:

(i) Compared with the existing abstraction-based methods, it has better practical time e�-

ciency because of the adaptive partitioning scheme.

(ii) Easy operation on set unions and intersections for the approximation of predecessors.

Many of the geometric representations such as polyhedra, and ellipsoids can not be pre-

served under set union and/or intersection operation.

Convergence of outer approximations of maximal controlled invariant sets is shown based

on interval computation, which is consistent with the general conclusion given in [31] that max-

imal controlled invariant sets are outer computable and reachable sets are inner computable.

88

Chapter 6

Robustly Complete Control Synthesis
with LTL Formulas

In many situations, control speci�cations beyond simply invariance and reachability need to be

considered. For example, speci�cations such as “visiting di�erent work areas in order in�nitely

often and avoid obstacles” are frequently considered in motion planning. Control of an elevator

or a network of distributed resources involves a request-response pattern. This motivates the

study of control synthesis for dynamical systems to realize the properties that require ordering,

liveness or reactivity. Such properties can be well captured by general LTL formulas [8].

Current solution to a general LTL control synthesis problem is based on abstractions: a �-

nite transition system (or abstraction) that approximates the continuous-state dynamics is often

constructed �rst. Discrete control synthesis algorithms, which are rooted in graph or game the-

ory [89, 142], are applied to the product system of the abstraction and the Büchi Automaton (BA)

(see [131]) translated from the LTL speci�cation afterwards [10]. A control synthesis algorithm

is sound and complete if it �awlessly determines the winning set. Soundness and completeness

can be achieved at the abstraction level as discrete control synthesis is a direct application of

in�nite game problems. The gap between the real in�nite-state dynamical systems and their

�nite abstractions leaves the following question open:

Is it possible to make LTL control synthesis sound and complete based on nonlinear dynamics?

As we have shown in Chapter 4, memoryless control strategies are su�cient for control

synthesis with respect to the speci�cations that are restricted to invariance or reachability, but

general LTL control synthesis requires �nite memories [104, 19]. It is then natural to ask

What is the controller structure for a general LTL formula? How do the memories re�ected in
the structure?

89

Time complexity is a major concern in LTL control synthesis. A promising �nite abstrac-

tion of nonlinear dynamics is usually huge in size, and control synthesis on a product system

would be intractable because the number of states is the multiplication of the sizes of both the

abstraction and the BA. On the other hand, the reduction in the size of a speci�cation can also

reduce the complexity. Research has been focusing on system decomposition [91, 70], hierar-

chical abstractions [62] and parallel computation [68, 34], but not at the speci�cation level. This

motivates us to raise another question:

Can we reduce the complexity by exploring the hierarchy in the speci�cation if the system
cannot be further decomposed?

The goal of this chapter is to answer these questions for the control synthesis with respect to

a general class of LTL formulas. As opposed to using the product system of a �nite abstraction

of the original system and the automaton translated from the given LTL formula, we look at

this control synthesis problem more directly: characterize the winning set by a �xed-point

algorithm based on the automata structure of the given formula. We also show that such an

algorithm leads to a similar controller structure to the feedback control automaton in [71, 10]

and the LTL control synthesis can be made sound and robustly complete for the situations

where accurate computation of predecessors is nontrivial.

6.1 From LTL To Büchi Automata

As we have seen in Chapter 2, LTL is a formalism describing sets of words over an alphabet

Σ that share common properties (e.g. invariance, and liveness). An automaton is a machine

that accepts words with certain patterns. In this sense, LTL formulas can be represented by

automata.

De�nition 6.1. A Finite Automaton (FA) is a quintuple A = (Q,Σ, r, q0, F), where

• Q is a �nite set of states,

• Σ is a �nite alphabet,

• r : Q× Σ→ 2Q is the state transition function,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of accepting states.

90

An automaton always proceeds from the initial state q0 by reading an input word over Σ. A

run of an automaton A under an input word w = σ0 · · · σl (l ∈ N) is a sequence of states in Q,

denoted by % = v0 · · · vl, that satis�es vi+1 ∈ r(vi, σ0) and vi ∈ Q for all i ∈ {1, · · · , l}. Denote

%[i] , vi, %[i, j] , vi . . . vj, 0 < i < j.

If r(q, σ) is a singleton for all q ∈ Q and σ ∈ Σ, thenA is deterministic. OtherwiseA is said

to be nondeterministic.

Although an FA contains only a �nite number of states, it can run over �nite or in�nite

words. Speci�cally if an automatonA runs over in�nite words, thenA is called anω-automaton.

An input word w is said to be accepted by A if the resulting run % = v0v1 · · · satis�es the

accepting condition of A, and the run % is said to be successful for A.

De�nition 6.2 (Büchi Automaton). An ω-automaton A is a BA if the accepting condition is:

A run % is successful for A if and only if % visits at least one of the states in F in�nitely many

times, i.e.,

Inf(%) ∩ F 6= ∅, (6.1)

where Inf(%) = {v ∈ Q : ∀i,∃j > i, s.t. v = %[j]} represents the set of states occurring in-

�nitely many times during the run %.

The set of all accepted words of a BA A forms the language of A, denoted by L(A). By the

accepting condition, termination of a BA is considered a failure.

A BA A is called a Deterministic Büchi Automaton (DBA) if A is deterministic and Non-

deterministic Büchi Automaton (NBA) if A is nondeterministic. The language of an NBA AD

is a super class of the one of an DBA AN, i.e., L(AD) ⊆ L(AN). Therefore, NBA are more

expressive than DBA.

An automaton A = (Q,Σ, r, q0, F) can be presented as a directed graph G = (V,E), where

• V = Q is a set of nodes, and

• E = {(v, σ, v′) : ∃σ ∈ Σ, v′ ∈ r(v, σ), v, v′ ∈ V } is a set of directed edges.

The direction of an edge (v, σ, v′) is determined by the transition relation r, and the node v
should proceed before v′ because v′ ∈ r(v, σ). The input letter σ is considered as the label of

the edge (v, σ, v′). The set of the labels of outgoing edges of a node v is de�ned as Out(v) =
{σ ∈ Σ : r(v, σ) 6= ∅}.

91

Let V ′ be a subset of V . The new graph G ′ = (V ′, E ′) is called a subgraph of G, where

E ′ ⊆ E is the set of edges between nodes in V ′. A sequence of nodes connected by directed

edges is called a path in a directed graph. The graph is said to be strongly connected if there

exists a path between any two nodes of the graph. When the graph G itself is not strongly

connected, it is still possible that there exists a strongly connected subgraph. Such a subgraph

is called a Strongly Connected Component (SCC) of G. A single node with a self loop can be

considered as a trivial SCC. If the graph G has no directed cycles, then we call G a Directed

Acyclic Graph (DAG).

Figure 6.1 demonstrates the graph representation of a BA. The nodes (or states) are pictured

as circles and the accepting states are speci�cally marked by double circles. Directed edges are

represented by arrowed lines pointing from a node v to v′ that satisfy the transition function.

The state evolution of an automaton always start from the initial state q0.

q0start

q1

q2 q3

a

a ∨ b

a ∨ b

c

c ∨ b

d

d

b

a ∨ c
1

Figure 6.1: Graph representation of an NBA with the alphabet Σ = {a, b, c, d}. The node q2 is

a unique accepting state. The edge from q2 to q3 will incur an unsuccessful run of the NBA.

Every LTL formula ϕ built on a set AP of atomic propositions has an equivalent BA with

an input alphabet Σ = 2AP , which only accepts the words speci�ed by ϕ, i.e., L(ϕ) ⊆ L(A).

Methods such as tableau construction [48] and the algorithm based on the conversion to gen-

eralized Büchi automata [47] have been developed to translate an LTL formula into a BA. Not

all LTL formulas can be translated into DBA.

Example 6.1. The reach-and-stay objective ϕrs = ♦�G is also called co-Büchi in the �eld

of two player in�nite games. It is a dual of Büchi objective ϕ = �♦G, which requires that

G holds in�nitely often. Reach-and-stay formulas can not translated into a DBA, but only an

NBA. Figure 6.2 shows the equivalent NBA of the formula ϕrs.

92

q0start q1
G

1 G

Figure 6.2: The equivalent NBA of ϕrs with Σ = {G,Fr}. The nondeterminism exists in the

out edges of q0: after reading an input letter G, the state of the NBA can either stay at q0 or

transit to q1.

Even though DBA is insu�cient in characterizing a general LTL formula, among 55 most

expressive LTL patterns identi�ed in [38], there are 52 of them belong to the language of DBA.

Example 6.2. The invariance and reachability formulas ϕs = �G and ϕr = ♦G can be trans-

lated into DBA, which is shown in Figure 6.3.

q0start q1

G

Fr

>

(a) The equivalent DBA for ϕs.

q0start q1

Fr

G

>

(b) The equivalent DBA for ϕr.

Figure 6.3: The DBA translations for the invariance and reachability formulas. The input al-

phabet is Σ = {G,Fr}.

6.2 Control Structure with Finite Memory

In this chapter, we limit our scope to the LTL formulas that can be translated into DBA, which

are called DBA-recognizable, and denote byAϕ = (Q,Σ, r, q0, F) the equivalent DBA of an LTL

speci�cation ϕ, where especially

• Q =
{
q0, · · · , q|Q|−1

}
and |Q| is the number of states in Aϕ,

• Σ = 2AP is the input alphabet. An input symbol σ ∈ Σ is usually represented by a

propositional formula over the set AP of atomic propositions for ϕ.

93

As opposed to the conventional invariance and reachability control problems, we will see

in this section that a winning control strategy for a DBA-recognizable LTL formula ϕ requires

�nite memories, which is induced by the ordering property speci�ed by ϕ.

Without loss of generality, we assume thatAϕ is nonblocking, i.e., Out(q) 6= ∅ for all q ∈ Q,

since we can always construct a nonblocking one for any BA [8].

6.2.1 S-Domains of Automaton States

LetAϕ be the equivalent DBA of an LTL formula ϕ and q ∈ Q be an arbitrary state ofAϕ. Then

by the determinism of Aϕ and the nonblocking property, every state has at least one outgoing

edge and

σ ∧ σ′ = ⊥, ∀σ, σ′ ∈ Out(q),
∨

σ∈Out(q)

σ = >. (6.2)

We consider traces of system S as input words to Aϕ. Hence, given a control signal u =
{ut}∞t=0 and a sequence of disturbance d = {dt}∞t=0, the resulting run % = {vt}∞t=0 of Aϕ is

obtained explicitly by (for all t ∈ Z+
)

{
v0 = q0, vt = r(vt−1, L(xt−1)), vt ∈ Q
xt = f(xt−1, ut−1) + dt−1, xi ∈ X.

(6.3)

Note that if L(x0) = σ, the state v of Aϕ changes from q0 to r(q0, σ) immediately, and v =
r(q0, σ) until the next time step where the state v changes instantly according to the input

symbol, which is the label of the system state x. An intuitive illustration of (6.3) is given in

Figure 6.4.

In order to control system S so that the resulting traces are accepted byAϕ, each transition

along the successful runs of Aϕ needs to be executed sequentially. Those transitions, however,

cannot be assigned deliberately as they have to satisfy the transition relation R of system S .

This also implies that, for each q ∈ Q, the corresponding system state x is restricted to a certain

subset of the state space X. To capture such a set, we introduce the following de�nition.

De�nition 6.3. Let q ∈ Q and x ∈ X be a state of DBAAϕ and system S at some time instance

j ≥ 0, respectively. Then x belongs to the S-domain of q, written as WS(q), i� there exists a

control strategy κ in the form of (2.7) such that any run % = {qt}∞t=0 ofAϕ with qj = q generated

by (6.3) under a control signal conform to κ satis�es that Inf(%) ∩ F 6= ∅.
The winning set of an LTL formula ϕ is, by de�nition, the S-domain of the initial state q0

of Aϕ, i.e., WinS(ϕ) = WS(q0). Therefore, the problem of computing WinS(ϕ) can be reduced

to computing WS(q0).

94

q0 q1

b

c

a

(a) Part of a DBA Aϕ.

%: vt−1 vt vt+1 vt+2

q0 q0 q2 q2

q0 q2 q2

x: xt−1 xt xt+1 xt+2

w: L(xt−1) = b L(xt) = c L(xt+1) = a

b c a

b c a

(b) The relationship between a run % of Aϕ and a solution x of system S .

Figure 6.4: The connection between system S and the equivalent DBA Aϕ of a given LTL

formula ϕ. Assume that at some time t− 1 ∈ N, the state of Aϕ is at q0 and the label of xt−1 is

b ∈ Σ, i.e., vt−1 = q0 and L(xt−1) = b. Part (b) shows how the partial sequence vt−1vtvt+1vt+2

is driven by xt−1xtxt+1xt+2 according to the relevant part of Aϕ shown in part (a).

6.2.2 Fixed-Point Characterization of S-Domains

It is easy to see from (6.3) that the connection between dynamical system S and the targeted

DBAAϕ is through the labeling function L. Since the outgoing edges satisfy (6.2), which is the

same as (2.5), the set Out(q) of every state q ∈ Q forms a partition P(q) = {L−1(σ)}σ∈Out(q) of

the state space X through the labeling function L as de�ned in (2.6).

Because of the graph structure of a DBA Aϕ, S-domains of di�erent automaton states are

related with one another by the transitions among them. Any state x ∈ WS(q) can be controlled

to the S-domain of one of the succeeding states of q in Aϕ. Suppose that a state q of a DBA

Aϕ has three outgoing edges σ1, σ2 and σ3 as shown in Figure. 6.5. Any state x ∈ X belongs to

WS(q) if it can be controlled to any one of the following regions in the next time step:

L−1(σ2) ∩WS(q′), L−1(σ3) ∩WS(q′′), L−1(σ1) ∩WS(q).

95

q q′

q′′σ1

σ2

σ3

σ0

Figure 6.5: Transitions in a DBA.

Let M be an n1 by n2 (n1, n2 > 0) matrix of symbols from Σ and

V =



V1
.
.
.

Vn2


 , W =



W1

.

.

.

Wn2




be two vectors of subsets of X. Denote by mij the element at the ith row and jthe column of

M. De�ne

W + V ,



W1 ∪ V1

.

.

.

Wn2 ∪ Vn2


 , (6.4)

W − V ,



W1 \ V1

.

.

.

Wn2 \ Vn2


 , (6.5)

V � W , Vi ⊆ Wi, i = 1, . . . , n2, (6.6)

W = V , Wi = Vi, i = 1, . . . , n2, (6.7)

W ′ =



W ′

1
.
.
.

W ′
n1


 = T δ(M,W), (6.8)

where

W ′
i = Pre

δ

(
n2⋃

j=1

L−1(mij) ∩Wj

)
, i = 1, . . . , n1.

96

For nominal system S where δ = 0, we use T in replacement of T 0
. In the remaining of the

section, we denote by V [i] the ith element of a vector V of size |V | (i ∈ {1, · · · , |V |}).
Based on the properties of predecessor maps given in Proposition 3.4, the operator T δ sat-

is�es the following properties.

Proposition 6.1. Given a matrix M of symbols and vectors V,W of subsets of X that match

in dimension for operator T δ de�ned in (6.8) with δ ≥ 0,

(i) T δ(M, V) � T δ(M,W) if V � W ,

(ii) T δ(M, V) + T δ(M,W) � T δ(M,W + V),

(iii) T δ(M1, V) + T δ(M2,W) � T δ(
[
M1 M2

]
,

[
V
W

]
), and

(iv) T δ2(M,W) � T δ1(M,W) � T (M,W) for 0 ≤ δ1 ≤ δ2.

Proof. To show (i), assume that M is of size n1×n2 andW , V of size n2×1. As de�ned in (6.6),

V � W means V [j] ⊆ W [j] and hence (L−1(mij) ∩ V [j]) ⊆ (L−1(mij) ∩W [j]) for all i, j ∈
{1, · · · , n2}. By the monotonicity of Pre

δ
, Pre

δ(
⋃n1

i=1 L
−1(mij)∩V [j]) ⊆ Pre

δ(
⋃n1

i=1 L
−1(mij)∩

W [j]), which gives T δ(M, V) � T δ(M,W).

We now prove (ii). Let i ∈ {1, . . . , n1} be arbitrary. Then by (6.8) and Proposition 3.3, we

have

Pre
δ

(
n2⋃

j=1

L−1(mij) ∩ (W [j] ∪ V [j])

)
= Pre

δ

(
n2⋃

j=1

(L−1(mij) ∩W [j]) ∪ (L−1(mij) ∩ V [j])

)

⊇ Pre
δ

(
n2⋃

j=1

L−1(mij) ∩W [j]

)
∪ Pre

δ

(
n2⋃

j=1

L−1(mij) ∩ V [j]

)
.

Hence, T δ(M, V) + T δ(M,W) � T δ(M,W + V).

For (iii), let M =
[
M1 M2

]
with M1 and M2 of size n1 × n2 and n1 × n3, respectively.

The element at the ith row and jthe column of M is denoted by mij , and the ith element of

T δ(M1, V) and T δ(M2,W) are denoted by V ′i and W ′
i , respectively. Then

V ′i ∪W ′
i = Pre

δ

(
n2⋃

j=1

L−1(mij) ∩ V [j]

)
∪ Pre

δ

(
n3⋃

j=1

L−1(mi(n2+j)) ∩W [j]

)

⊆ Pre
δ

((
n2⋃

j=1

L−1(mij) ∩ V [j]

)
∪
(

n3⋃

j=1

L−1(mi(n2+j)) ∩W [j]

))
,

97

which is the ith element of T δ(
[
M1 M2

]
,

[
V
W

]
). Hence, (iii) is proved.

Property (iv) is straightforward by the fact that Pre
δ(A	Bδ2) ⊆ Pre

δ(A	Bδ1) ⊆ Pre
δ(A)

for all A ⊆ X.

The graph representation of a DBA can be coded into a matrix of symbols, which is given

in the following de�nition.

De�nition 6.4. Given a DBA Aϕ with the set of states Q, the transition matrix Mϕ of Aϕ
is a |Q| by |Q| matrix of symbols from Σ. The element mij in the ith row and jth column

(i, j ∈ {1, · · · , |Q|}) of Mϕ is given by

mij =

{
σ Q[j] = r(Q[i], σ), σ ∈ Σ,

e o.w.,
(6.9)

where e ∈ Σ denotes an empty symbol with L−1(e) = ∅.

Intuitively, if the symbolmij at ith row and jth column is σ, then the automaton state jumps

from Q[i] to Q[j] under the input symbol σ.

Remark 6.1. The transition matrix formulation in De�nition 6.4 not only applies to DBA but

also to any automaton.

As de�ned in (6.8), the operator T δ computes predecessors according to the transition rela-

tion provided in Mϕ.

To track the control values that can activate the transitions, we further de�ne a vector

K =
[
κ1 . . . κn1

]
of maps (2.8), where (i = 1, . . . , n1)

κi(x) = ΠSi(x), ∀x ∈ W ′[i], (6.10)

where Si =
⋃n2

j=1 L
−1(mij) ∩W [j].

For a DBAAϕ, the dependencies among the S-domains can be captured by using the oper-

ator T δ and the transition matrix Mϕ.

Proposition 6.2. Let Mϕ be the transition matrix of a DBA Aϕ and WS be a vector of S-

domains of all the states in Aϕ, where S is of the form (2.4). Then WS = T δ(Mϕ,WS).

98

Proof. Let V = T δ(Mϕ,WS), i ∈ {1, · · · , |Q|} be arbitrary, and B be a vector with

B[i] =

|Q|⋃

j=1

L−1(mij) ∩WS [j].

We �rst show that V �WS . Any state x ∈ V [i] = Pre
δ(B[i]) can be controlled under some

u ∈ U into B[i] in one step under any bounded disturbance d ∈ D. By De�nition 6.3, for any

state x ∈ WS [j] (any j ∈ {1, · · · , |Q|}), there exists a run % with %[t] = Q[j] at some t ∈ Z+
,

which is generated according to (6.3), such that % visits F in�nitely often. Hence, x ∈ WS(Q[i])
by De�nition 6.3, and V [i] ⊆ WS(Q[i]). Since i is arbitrary, V �WS .

Next we show that WS � V . Suppose that there is an x ∈ WS(Q[i]) but x /∈ V [i] =
Pre

δ(B[i]). Then by De�nition 3.3, for all u ∈ U there exists d ∈ D such that x′ = f(x, u)+d /∈
L−1(mij) ∩ WS(Q[j]) for all j ∈ {1, . . . , |Q|}. It implies that there is no solution of S that

passes through x and x′ with its trace visiting F in�nitely many times under all disturbances,

and hence, x /∈ WS(Q[i]), which contradicts the assumption.

Therefore, by (6.6) and (6.7), V �WS and WS � V gives WS = V .

Remark 6.2. Proposition 6.2 is a necessary condition for a vector W to be WS , and WS may

not be the unique �xed point of T δ with respect to a transition matrix Mϕ.

Without loss of generality, we assume that the indices of DBA states are rearranged so that

the indices of accepting states are greater than non-accepting ones. The transition matrix is

also rearranged correspondingly.

Based on the transition matrix form of a DBA Aϕ, we now present a �xed-point algorithm

(6.11) to characterizeS-domains ofAϕ and show that a memoryless control strategy is su�cient

to activate a transition in Aϕ.

n1 = |Q| − |F | , n2 = |F |

Mϕ =

[
(M1)n1×|Q|
(M2)n2×|Q|

]
, K =



κ1
.
.
.

κ|Q|


 , Z0 =



X
.
.
.

X



n2×1

99





Y 0
ν =




⋃n2

j=1 L
−1(m1(j+n1)) ∩ Zν [j]

.

.

.⋃n2

j=1 L
−1(mn1(j+n1)) ∩ Zν [j]



n1×1

(6.11a)

Y l+1
ν = Y l

ν + T δ
(
M1,

[
Y l
ν

Zν

])
(6.11b)

κi(x) by (6.10) ∀x ∈ Y l+1
ν [i] \ Y l

ν [i], i ∈ {1, · · · , n1} (6.11c)

Zν+1 = T δ
(
M2,

[
Yν
Zν

])
Yν ,

∞⋃

l=0

Y l
ν (6.11d)

κn1+i(x) by (6.10) ∀x ∈ Zν [i], i ∈ {1, · · · , n2} (6.11e)

The input arguments of algorithm (6.11) are the transition matrix Mϕ ofAϕ and an operator

T δ that re�ects the transition relation of system S . We assume that the nodes of Aϕ are sorted

so that accepting nodes rank after nonaccepting ones, and the transition matrix Mϕ is divided

into 2 matrix blocks M1, M2 which represent the transitions from nonaccepting and accepting

nodes, respectively.

The major iterations of (6.11) are (6.11b) and (6.11d), in which sequences of vectors

{
Y l
ν

}∞
l=0

and {Zν}∞ν=0 are generated, respectively. Let Zν [i] be the ith element of the vector Zν . For any

�xed ν, let Y l
ν [i] denote the ith element of Y l

ν .

The initial condition Z0 is a vector of Xs with size n2 and Zν is computed by applying

operator T δ with respect to the prior Yν−1 andZν−1. The vector Yν (for any �xed ν) of subsets of

X is obtained as the in�nite unions of

{
Y l
ν

}∞
l=0

by iteration (6.11b) and it is trivial that Y l
ν � Y l+1

ν

by (6.4) for all l ∈ N.

Intuitively, the sequences {Zν}∞ν=0 and {Yν}∞ν=0 approach the S-domains of the accepting

and nonaccepting nodes, respectively. De�ne a vector of subsets of X:

W =

[
Y
Z

]
=
∞⋂

ν=0

[
Yν
Zν

]
=
∞⋂

ν=0

Wν , (6.12)

where Wν =

[
Yν
Zν

]
. We then show as follows that Y is a vector of the S-domains of nonaccept-

ing nodes while Z is a vector of S-domains of accepting nodes.

Theorem 6.1 (Conditional Soundness and Completeness). Consider system S and a DBA Aϕ.

Denote by Mϕ the transition matrix of Aϕ. Let WS be a vector of S-domains of Aϕ. Assume

100

that

Yν = Yν + T δ (M1,Wν) ∀ν ∈ N, (6.13)

Z = T δ (M2,W) , (6.14)

where Wν and W are de�ned in (6.12). Then W = WS and each element K[i] of K is a

memoryless control strategy de�ned on W .

Proof. We �rst show that both {Zν} and {Yν} are decreasing by induction. The initial condition

is Z1 � Z0 (Z0[i] = X for i = 1, . . . , n2). Suppose that Zν � Zν−1 and Yν � Yν−1 for some ν ∈
Z+

. Then Y 0
ν+1 � Y 0

ν because Y 0
ν+1[i] =

⋃n2

j=1 L
−1(mi(j+n1)) ∩ Zν+1 ⊆

⋃n2

j=1 L
−1(mi(j+n1)) ∩

Zν [j][j] = Y 0
ν [i] for all i. According to the algorithm and the monotonicity of T δ ,

Zν+1 = T δ (M2,Wν) � T δ (M2,Wν−1) = Zν ,

Y 0
ν+1 � Y 0

ν , Assume Y l
ν+1 � Y l

ν :

Y l+1
ν+1 = Y l

ν + T δ (M1,Wν) � Y l
ν−1 + T δ (M1,Wν−1) = Y l+1

ν .

Hence, Yν+1 =
⋃∞
l=0 Y

l
ν+1 �

⋃∞
l=0 Y

l
ν = Yν , and we can conclude that {Zν} and {Yν} are

decreasing.

We next claim that Yν [i] =
⋃∞
l=0 Y

l
ν [i] = BRδ

∞(Y 0
ν [i]) for all i = 1, · · · , n1 and ν ∈ N.

Expanding the operator T δ , we have

Y 0
ν [i] =

n2⋃

j=1

L−1(mi(j+n1)) ∩ Zν [j],

Y l+1
ν [i] = Y l

ν [i] ∪ Pre
δ

((
n1⋃

j=1

L−1(mij) ∩ Y l
ν [j]

)
∪
(

n2⋃

j=1

L−1(mi(j+n1)) ∩ Zν [j]
))

.

Based on Proposition 4.4 in Chapter 4, we have Y l
ν [i] = BRδ

l (Y
0
ν [i]), which is the l-step δ-

robustly reachable set to any of theS-domains of the accepting nodes, i.e.,

⋃n2

j=1 L
−1(mi(j+n1))∩

Zν [j]. Hence, Yν [i] =
⋃∞
l=0 Y

l
ν [i] ⊆ BRδ

∞(Y 0
ν [i]) for all i = 1, · · · , n1. Under condition (6.13),

we can show the other direction, i.e., Y l
ν [i] ⊇ BRδ

∞(Y 0
ν [i]). Suppose that q0, q

′ ∈ Q in the asso-

ciated DBA Aϕ correspond to the kth and k′th row of Mϕ, respectively, and q′ = r(q0, L(x0)).

For any x0 /∈ Yν [k], we have by (6.13)

x0 /∈ Pre
δ

((
n1⋃

j=1

L−1(mkj) ∩ Yν [j]
)
∪
(

n2⋃

j=1

L−1(mk(j+n1)) ∩ Zν [j]
))

,

101

which means that for all u0 ∈ U there exists d0 ∈ D such that x1 = f(x0, u0) + d0 /∈ Yν [k1] or

Zν [k2] for all k1 = 1, · · · , n1 and k2 = 1, · · · , n2. Since x1 /∈ Yν [k′] (the current DBA state is

qi), we can use the same argument as for x0, i.e., for all u1 ∈ U there exists d1 ∈ D such that

x2 = f(x1, u1) + d1 /∈ Yν [k1] or Zν [k2] for all k1 = 1, · · · , n1 and k2 = 1, · · · , n2. In this way,

we can construct a sequence of disturbances {dt}∞t=0 such that xt /∈
⋃n2

j=1 L
−1(mi(j+n1))∩Zν [j]

for all t ∈ N and i = 1, · · · , |Q|. Hence, x /∈ BRδ
∞(Y 0

ν [i]) and the claim is proved.

We now prove the theorem by showing both WS � W and W �WS .

To see WS � W , we only need to prove that WS � Wν for an arbitrary ν ∈ N. As

the initial condition, Z0[i] = X, and thus WS [n1 + i] � Z0[i] for all i = 1, · · · , n2. As we

have shown in the claim above, Yν [i] are the maximal δ-robustly backward reachable set to⋃n2

j=1 Zν [j]. And by De�nition 6.3, for all i = 1, · · · , n1, WS [i] ⊆ BRδ
∞(
⋃|Q|
j=1+n1

WS [j]), we

have WS [i] ⊆ BRδ
∞(
⋃|Q|
j=1+n1

Z0[j]) = Y0[i]. Therefore, WS � W0. Assume that WS � Wν

for some ν ∈ N. By Proposition 6.2 and 6.1 (i), we have WS = T δ(M,WS) � T δ(M,Wν).

Then WS [n1 + 1, · · · , |Q|] � T δ(M2,Wν) = Zν+1. Since the above derivation of WS [i] ⊆
BRδ

∞(
⋃|Q|
j=1+n1

Z0[j]) = Y0[i] holds for ν + 1, we have WS [1, · · · , n1] � Yν+1, and hence

WS � Wν+1, which shows that WS � W .

To show W � WS , we aim to prove that W [i] ⊆ WS [i] for any i = 1, . . . , |Q|. Suppose

that the current DBA state is qi+n1−1 (i ∈ {1, · · · , n2}) with which Z[i] is associated. Given

(6.14), i.e.,

Z[i] = Pre
δ

((
n1⋃

j=1

L−1(m(i+n1)j) ∩ Y [j]

)
∪
(

n2⋃

j=1

L−1(m(i+n1)(j+n1)) ∩ Z[j]

))

for all i = 1, · · · , n2, for any state x0 ∈ Z[i] there exists u0 ∈ U such that x1 = f(x0, u0)+d0 ∈
Z[j] if L(x0) = m(i+n1)(j+n1) or x1 ∈ Y [k] if L(x0) = m(i+n1)k under any possible disturbance

d0 ∈ D. If x1 ∈ Z[j], then x2 at t = 2 can be still kept inside Z[j] or Y [k]. If x1 ∈ Y [k], then

for all sequences of disturbances {dt}∞t=1 with dt ∈ D there exists t′ ∈ Z+
and a control signal

{ut}t
′

t=1 such that xt′ ∈ Z[j] for some j ∈ {1, · · · , n2}, since Y [k] is the maximal δ-robustly

backward reachable set to

⋃n2

j=1 Z[j] by (6.13). In this sense, for any sequence of disturbances

{dt}∞t=0, we can always �nd a control signal {ut}∞t=0 such that the run of the automaton Aϕ
under the trace of resulting solution of system S with initial condition x0 ∈

⋃|Q|
i=1W [i] satis�es

the Büchi accepting condition. Therefore, W �WS and the proof is complete.

Theorem 6.1 essentially says that LTL control synthesis for general dynamical system can

be sound and complete under conditions (6.13) and (6.14). It also implies that we only need �nite

memories to realize control synthesis with respect to the LTL formulas that can be translated

102

into DBA. At each state of an LTL equivalent DBA Aϕ, a memoryless control strategy is su�-

cient to maintain the state of system S inside S-domains ofAϕ, which by de�nition are subsets

of the state space X that system S can be controlled to satisfy the Büchi accepting condition

(6.1). The current DBA state needs to be recorded in a variable so that a proper memoryless

control strategy κ from K can be chosen. Such a variable is considered as the memory of the

control strategy and is updated according to the transitions of Aϕ. Detailed control strategy

structure will be discussed in the next section.

6.2.3 Automata-Embedded Control Structure

As a result of Theorem 6.1, we can design a �nite-memory control strategy that is embedded

with the given DBA.

De�nition 6.5. Let Aϕ = (Q,Σ, r, q0, F) be the equivalent DBA of an LTL formula ϕ. For

system S = 〈X,U,D, R,AP, L〉, an automaton-embedded control strategy is de�ned as

Cϕ = 〈Xc,Uc, Qc,Σc, rc, q0, H〉 :

• Xc ⊆ X is a set of inputs;

• Qc = Q is a �nite set of states;

• Σc = Σ = 2AP is an alphabet;

• rc = r ⊆ Qc × Σc ×Qc is a transition relation that updates the controller state;

• q0 is the initial state;

• Uc ⊆ 2U
is a set of outputs;

• H : Qc × Xc → Uc is an output function de�ned by

H(q, x) = κId(q)+1(x), x ∈ Xc, q ∈ Qc,

where κId(q)(x) belongs to the set of memoryless control strategies {κi}|Qc|i=1 returned by

(6.11) and Id(q) is the index of the state q. The index Id(q) determines which memoryless

control mapping to be activated.

103

The components Qc,Σc, rc, q0 originally given in Aϕ are embedded into Cϕ. One can use

a single variable that takes values in a subset of N to represent Q. Such a variable is called

a memory variable. A memoryless control strategy κ from K is activated by the function H ,

which outputs the index of current state q ofAϕ by the transition relation r ofAϕ according to

the previous automaton state and the labels L(x) of the current system state x. Therefore, the

embedded Aϕ manages the control memory, and the structure in De�nition 6.5 is visualized in

Figure 6.6.

S

κ|Qc|

.

.

.

κ1

Id Aϕ

x

σ = L(x)

u

qi

K

Cϕ

Figure 6.6: The structure of the automaton-embedded control strategy for S with respect to ϕ.

Corollary 6.1. Let Aϕ be the equivalent DBA for an LTL speci�cation ϕ for system S . If ϕ is

realizable for S , then a �nite-memory control strategy in De�nition 6.5 can realize ϕ.

Proof. It is a direct result of Theorem 6.1.

6.3 Robust Completeness of LTL Control Synthesis

The operator T de�ned in (6.8) is essentially a predecessor map of unions of sets, which is di�-

cult to be exactly computed for nonlinear systems. Same as the control synthesis for basic LTL

formulas such as invariance and reachability, we can also inner approximate W ′ = T (M,W)

104

by using Algorithm 5.1, denoted by W ′ε = [T]ε(M,W), with

W ′ε[i] = [Pre]ε

(
n2⋃

j=1

L−1(mi,j) ∩W [j]

∣∣∣∣∣X
)
, or (6.15)

W ′ε[i] = [Preµ]ε

(
n2⋃

j=1

L−1(mi,j) ∩W [j]

∣∣∣∣∣X
)

(6.16)

where [Pre]δ is given in (5.2) for system S with �nite control values, and [Preµ]ε is the one for

system [S]µ de�ned in (5.9).

Hence, the sequences {Yν} and {Zν} in algorithm (6.11) can be inner approximated by using

[T]ε, which gives Algorithm 6.1 as the approximated version of algorithm (6.11).

In the following, we focus on the approximation (6.16) since (6.15) can be seen as a special

case of (6.16).

Lemma 6.1. Consider system [S]µ where µ is a parameter given in (5.8). Let M be a matrix

of symbols from Σ and W be a vector of subsets of X, and M and W match in dimension. If

Assumption 5.1 and 5.2 hold in X, then

T (ρ1ε+ρ2µ)(M,W) � [T]ε(M,W) � T (M,W). (6.17)

Proof. Let V = T (M,W), V ′ = [T]ε(M,W) and V ′′ = T (ρ1ε+ρ2µ)(M,W). Assume that M is

of size n1 × n2 and W is of size n2 × 1. Then V , V ′ and V ′′ are n1 × 1.

Consider an arbitrary element Vi of V , i = 1, · · · , n1. Lemma 5.2 gives

Pre
(ρ1ε+ρ2µ)

(
n2⋃

j=1

L−1(mij) ∩W [j]

)
= Pre

(
n2⋃

j=1

(
L−1(mij) ∩W [j]

)
	 Bρ1ε+ρ2µ

)

⊆ [Preµ]ε

(
n2⋃

j=1

L−1(mij) ∩W [j]

)

⊆ Pre

(
n2⋃

j=1

L−1(mij) ∩W [j]

)
.

Then by (6.6), we have V ′′i ⊆ V ′i ⊆ Vi, which shows that V ′′ � V ′ � V .

105

Algorithm 6.1W ε,Kε = Sdom(Mϕ, [T]ε)

1: n1 = |Q| − |F |, n2 = |F |
2: Mϕ =

[
M1

M2

]
, M1, M2 are of n1 × (n1 + n2), n2 × (n1 + n2), respectively.

3: Z̃[1, · · · , n2], Z̃[i]← X, i = 1, . . . , n2

4: Z[1, · · · , n2], Z[i]← ∅
5: Ỹ [1, · · · , n1], Y [1, · · · , n1]
6: K[1, . . . , |Q|] is a vector of memoryless control strategies. . (2.8)

7: while Z 6= Z̃ do . (6.7)

8: Z ← Z̃
9: Ỹ [i]← ⋃n2

j=1 L
−1(mi(j+n1)) ∩ Z[j], Y [i]← ∅, i = 1, . . . , n1

10: while Y 6= Ỹ do
11: Y ← Ỹ

12: Ỹ ← Y + [T]ε(M1,

[
Y
Z

]
) . (6.4)

13: assign Kε[i](x) by (6.10) for all x ∈ Ỹ [i] \ Y [i] and i ∈ {1, · · · , n1}
14: end while
15: Z̃ ← [T]ε(M2,

[
Y
Z

]
) . (6.4)

16: assign Kε[n1 + i](x) by (6.10) for all x ∈ Z̃[i] and i ∈ {1, · · · , n2}
17: end while

18: W ε ←
[
Y
Z

]

106

Based on Lemma 6.1, we can show that by using Algorithm 6.1 control synthesis for system

S with respect to DBA-recognizable LTL formulas can be made sound and robustly complete

in the sense that a �nite-memory control strategy de�ned in De�nition 6.5 can be constructed

whenever ϕ is realizable for system S under additional δ bounded disturbances.

Theorem 6.2 (Conditional Soundness and Robust Completeness). Consider system S and a

DBA Aϕ. Denote by Mϕ the transition matrix of Aϕ. Let W ε,Kε = Sdom(Mϕ, [T]ε), where

[T]ε is an interval approximation of T de�ned in (6.16), and W ε(q0) be the element of W ε

corresponding to the initial state q0 of Aε. Suppose that Assumption 5.1 and 5.2 hold in X.

Then Algorithm 6.1 terminates in a �nite number of iterations, and if ρ1ε+ ρ2µ ≤ δ, then

Win
δ
S(ϕ) ⊆ W ε(q0) ⊆WinS(ϕ). (6.18)

Proof. We �rst show the �nite termination. As we have a lower bound, which is determined

by ε, for the width of all the intervals that partition the state space X, each element in vectors

X and Y contains �nitely many intervals. Algorithm 6.1 will terminate in a �nite number of

steps.

Based on Proposition 6.1 (iv), we have T δ(M,W) � T ρ1ε+ρ2µ)(M,W) for all proper M
and W if ρ(ε + µ) ≤ δ. Together with Lemma 6.1, we have T δ(M,W) � [T]ε(M,W) �
T (M,W). Let {[Z]εi} and {[Y]εi} be the monotone sequences by using [T]ε as the input of

the procedure Sdom. The same sequences for the system with disturbances of magnitude δ
are denoted by {Zδ

i } and {Y δ
i }. Then the relationship Zδ

i � [Z]εi � Zi and Y δ
i � [Y]εi � Yi

are maintained because of their monotonicity. Therefore, W δ � W ε � W which implies

Win
δ
S(ϕ) ⊆ W ε(q0) ⊆WinS(ϕ).

Remark 6.3. In Chapters 4 and 5, we have given sound and complete control synthesis algo-

rithm (4.5) and (4.14) for invariance and reachability control objectives, respectively, and the

robust completeness is guaranteed by using interval approximations [Pre]ε or [Preµ]ε of Pre. As

a matter of fact, invariance and reachability formulas are two of the simplest ones that can be

translated into DBA (see Figure 6.3), and the associated transition matrices are

Mϕs
=

[
> e
¬G G

]
, Mϕr

=

[
¬G G
e >

]
. (6.19)

Hence, they are special cases of Algorithm 6.1, in which two nested while loops reduce to

a single while loop: for invariance control, the inner loop (line 10-14) can be omitted, and

Algorithm 6.1 reduces to the iteration

Zν+1 = T δ
([
¬G G

]
,

[
∅
Zν

])
,

107

which matches (4.5); for reachability control, only the inner loop takes e�ect, and Algorithm 6.1

reduces to the iteration

Y l+1
0 = Y l

0 + T δ
([
¬G G

]
,

[
Y l

0

X

])
,

which matches (4.14) as expected.

However, control synthesis with respect to a reach-and-stay LTL formula ϕrs = ♦�G can

not be generalized by Algorithm 6.1 as ϕrs is not DBA-recognizable.

6.4 Control Synthesis with Pre-processing

Another problem about LTL control synthesis that we are concerned with is its computational

complexity. In Algorithm 6.1, the vector Z , which approaches the vector of S-domains of ac-

cepting nodes in Aϕ as the iteration proceeds, updates only after the vector Y (the vector of

subsets of X that approximates the S-domains of the rest of the nodes in Aϕ) remains un-

changed in the inner loop. In addition, at the beginning of each computation in the outer loop,

the value of Y needs to be reinitialized since the value of Z is changed from the last iteration.

In this sense, the use of nested loops for the computation of interdependent Z and Y increases

the computational complexity.

Analyzing the transition matrices Mϕs
and Mϕr

in (6.19), it is not hard to notice their lower

and upper triangular structures, which indicates that the dependency between the S-domains

of accepting and nonaccepting nodes is only in one direction: WS(q1) is not dependent on

WS(q0) in both Figures 6.3a and 6.3b. This is what breaks the nested loops in invariance and

reachability control synthesis, and we can get inspiration from this two special cases for reduc-

ing the complexity of Algorithm 6.1.

Suppose that the transition matrix Mϕ of a DBA Aϕ is an upper triangular block matrix

based on the indexed set of states Q =
{
q1, · · · , q|Q|

}
, i.e.,

Mϕ =

[
MUL MUR

e MLR

]

|Q|×|Q|
, (6.20)

where MUL and MLR are nL by nL and nR by nR matrices, respectively, and nL + nR = |Q|,
nL, nR ∈ Z+

. Let QL be the set of states of Aϕ with the �rst nL indices and QR be the set of

the rest of the states and

FL = {q ∈ Q : q ∈ F ∧ q ∈ QL} , FR = {q ∈ Q : q ∈ F ∧ q ∈ QR} . (6.21)

108

Denote nL2 = |FL|, nR2 = |FR|, nL1 = nL − nL2, and nR1 = nR − nR2. We also assume that

the states in QL and QR are sorted so that the accepting states always rank after nonaccepting

ones.

Let WL and WR be vectors of subsets of the state space X of length nL and nR, respectively.

Then it is straightforward that

W̃R = T δ
([
e MLR

]
,

[
WL

WR

])
= T δ (MLR,WR) ,

W̃L = T δ
([

MUL MUR

]
,

[
WL

WR

])
,

which shows that W̃R does not rely on WL, but W̃L relies on both WL and WR.

IfQR contains accepting nodes, then the block matrixMLR can be treated as a sub-transition

matrix based on which S-domains of the corresponding states in QR, i.e., {WS(q)}q∈QR , can

be approximated �rstly by Algorithm 6.1, independent of other parts ofAϕ. On the other hand,

if QR has no accepting nodes, then computing {WS(q)}q∈QR is pointless because there is no

transition from any q ∈ QR to q′ ∈ QL and any run that contains q does not satisfy the Büchi

accepting condition. The approximation of S-domains of the states in QL, i.e., {WS(q)}q∈QL ,

starts after the computation with respect to MLR completes. In this way, the repetitive initial-

ization and computation of WL caused by the updates in WR when using the operator T δ can

be avoided. We can also use Algorithm 6.1 for the approximation of {WS(q)}q∈QL with a slight

modi�cation, which is presented as Algorithm 6.2.

Therefore, if we can arrange the transition matrix Mϕ into a triangular matrix or triangular

block matrix without changing the original transition relations in Aϕ, then Algorithm 6.1 can

reduce to a single loop or several smaller nested loops. We now compare the complexities of

control synthesis with respect to an upper triangular block matrix in the form of (6.20) and a

general transition matrix by Algorithm 6.1 or 6.2.

Suppose that the numbers of accepting and nonaccepting nodes in Aϕ are n2 and n1 =
|Q| − n2, respectively, and the resulting numbers of outer-loop and inner-loop iterations by

using Algorithm 6.1 directly are K2 and K1. Then the complexity is

O(n2K2n1K1)

for the control synthesis without using its triangular form. Let the numbers of outer and

inner-loop iterations for block MLR be KR2 and KR1, respectively, and the ones for block

[MUL MUR] be KL2 and KL1, respectively. If we perform control synthesis sequentially to

109

Algorithm 6.2W ε
L,KεL = SdomExtra([MUL MUR], [T]ε,WR)

1:

[
MUL MUR

]
=

[
MUL1 MUR1

MUL2 MUR2

]
, where MUL2 corresponds to the FL de�ned in (6.21)

and has nL2 number of rows. The block MUL1 contains nL1 rows. The elements of MUL

and MUR are denoted by mL
ij (i, j = 1, . . . , nL) and mR

ij (i = 1, . . . , nL, j = 1, . . . , nR),

respectively.

2: Z̃[1, · · · , nL2], Z̃[i]← X, i = 1, . . . , nL2

3: Z[1, · · · , nL2], Z[i]← ∅
4: Ỹ [1, · · · , nL1], YL[1, · · · , nL1]
5: KL[1, . . . , nL1 + nL2] is a vector of memoryless control strategies. . (2.8)

6: while Z 6= Z̃ do . (6.7)

7: Z ← Z̃
8: Y [i]← ∅, i = 1, . . . , nL1

9: Ỹ [i]←
(⋃nL2

j=1 L
−1(mL

i(j+nL1)) ∩ Z[j]
)
∪
(⋃nR

j=1 L
−1(mR

ij) ∩WR[j]
)

, i = 1, . . . , nL1

10: while Y 6= Ỹ do
11: Y ← Ỹ

12: Ỹ ← Y + [T]ε


[MUL1 MUR1

]
,



Y
Z
WR




 . (6.4)

13: assign KεL[i](x) by (6.10) for all x ∈ Ỹ [i] \ Y [i] and i ∈ {1, · · · , nL1}
14: end while

15: Z̃ ← [T]ε


[MUL2 MUR2

]
,



Y
Z
WR




 . (6.4)

16: assign KεL[nL1 + i](x) by (6.10) for all x ∈ Z̃[i] and i ∈ {1, · · · , nL2}
17: end while

18: W ε
L ←

[
Y
Z

]

110

blocks MLR and [MUL MUR], the complexity is

O(nR2KR2nR1KR1 + nL2KL2nL1KL1).

The numbers of outer and inner-loop iterations are determined by the row that converges the

slowest, and hence we have K2 = max {KR2, KL2} and K1 = max {KR1, KL1}. As de�ned in

(6.21), n2 = nL2 + nR2 and n1 = nL1 + nR1. Then

nR2KR2nR1KR1 + nL2KL2nL1KL1 ≤ (nR2nR1 + nL2nL1)K2K1

< (nR2 + nL2)(nR1 + nL1)K2K1 = n2n1K2K1,

which shows that we can gain computational e�ciency by using an upper triangular block

matrix.

So the question is how to pre-process Mϕ so that Mϕ is a triangular block matrix. We now

propose the following procedure, called Preprocess, for this purpose:

i) Detect all SCCs in the graph representation of Aϕ. Then Aϕ can be simpli�ed to a DAG

Gdag = (V,E) in which each node is either a single automaton state or an SCC. Hence,

the number of nodes |V | of Gdag is less than or equal to |Q|.

ii) Perform a topological sort on the DAG Gdag, which determines a linear ordering of the

nodes in Gdag such that q precedes q′ for any edge (q, σ, q′) ∈ E. Rather than being inter-

dependent, computation of WS(q) only needs to be performed after WS(q′) is obtained

for any state q that comes before q′.

iii) Let qi1 . . . qik . . . qil (0 < l ≤ |Q|) be the resulting topological sort, where qik is the last

node of Gdag that is or contains an accepting state inAϕ. List the states in Q in the order

of qi1 . . . qik , and no particular order of the states in the same SCC is required except that

the accepting states rank after the nonaccepting ones.

The transition matrix Mϕ based on the order of the automaton states obtained by Prepro-

cess can be formulated as an upper triangular block matrix. Control synthesis, as a result, can

be performed independently for the sub-matrices in the reversed order.

Example 6.3. Consider the LTL formula

ϕ = ♦(a1 ∧ ♦(a2 ∧ ♦(a3 ∧ (¬a2)Ua1))), (6.22)

whose equivalent DBA is shown in Figure 6.7.

111

q0start q1 q2

q3q4

¬a1

a1

¬a2

a2 ¬a3

a3

¬a1 ∧ ¬a2

a2

a1
>

SCC

Figure 6.7: The translated DBA using Spot [37].

The states q2 and q3 constitute an SCC q23, and the rest of the states are trivial SCCs. A

topological sort of Aϕ is q0q1q23q4, and q4 is the unique accepting state. Then the Preprocess

yields an order of the states in Q: q0q1q2q3q4 (or q0q1q2q3q4, because the order between q2 and

q3 does not matter). Based on this order, the transition matrix is

Mϕ =




¬a1 a1 e e e
e ¬a2 a2 e e
e e ¬a3 a3 e
e e a2 ¬a1 ∧ ¬a2 a1

e e e e >




=




M1 M∗1
M2 M∗2

M3 M∗3
M4




Since q4 is the only accepting state and its corresponding block matrix M4 = >, WS(q4) =
X and κ4(x) = U for all x ∈ X. Algorithm 6.2 is then applied to [M3 M∗3], [M2 M∗2], and

[M1 M∗1] sequentially with only the inner loop. It returns WS(q3), WS(q2), and WS(q1)
along with the corresponding memoryless control strategies κ3 κ2, and κ1.

As a summary of this section, we provide the following procedure of control synthesis for

solving the LTL control problem:

S1 Translate ϕ into a DBA Aϕ, and trim Aϕ by removing the invalid labeled transitions if

necessary. Denote by Ãϕ the trimmed automaton.

S2 Perform Preprocess to Ãϕ, which gives a sorted set of automaton states {qi1 , · · · , qil},
where ij ∈ {1, · · · , |Q|} for all j = 1, · · · , l denotes the index of the automaton state.

Note that 1 ≤ l ≤ |Q|. Then the corresponding upper triangular transition matrix Mϕ is

112

in the form



M1 ∗

.
.
. ∗

Mk


 .

S3 Apply Algorithm 6.1 or 6.2 backwardly from Mk until [M1 ∗] to compute the S-domain

of {qi1 , · · · , qil}. The corresponding memoryless control strategies will be generated at

the same time. The S-domain of any automaton state that is not in the sorted list is

considered .

S4 Construct the automata-embedded control strategy according to De�nition 6.5 based on

the memoryless control strategies generated in S3.

6.5 Application to Motion Planning Problems

In most of the motion planning problems, control speci�cations are often given in the form

of LTL formulas that are more complex than simple invariance and reachability objectives. In

this section, we apply the proposed LTL control synthesis algorithm to solve motion planning

problems.

The vehicle model we use for motion planning is (5.29), which is given in Section 5.5.2.

We also adopt the same workspace and simulation parameter setting as in the motion planning
example in Section 5.5.3, i.e., X = [0, 10]× [0, 10]× [−3.4, 3.4], the sampled control values are

{±0.9,±0.6,±0.3, 0}, sampling time τs = 0.3s, and precision parameter ε = 0.2.

Example 6.4. We now study again the control speci�cation in Example 6.3, where a1, a2 and

a3 are three atomic propositions assigned by a labeling function L to three isolated work areas

Ω1, Ω2 and Ω3. Using a0 as the label of the rest of the workspace, then

L(x) =





a1 x ∈ Ω1

a2 x ∈ Ω2

a3 x ∈ Ω3

a0 x /∈ (Ω1 ∪ Ω2 ∪ Ω3)

Hence, we have ai ∧ aj = ⊥ for all i 6= j ∈ {1, 2, 3}.
The workspace setup is shown in Figure 6.8. As the control objective, the order of the areas

that the vehicle has to visit is: Ω1 → Ω2 → Ω3 → ¬Ω2 → Ω1.

113

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 6.8: The top view of the motion planning workspace. The shaded area is marked as an

obstacle. The target area L−1(a1) = [1, 2]× [0.5, 2]× [−π, π], L−1(a1) = [0.5, 2.5]× [7.5, 8.5]×
[−π, π], and L−1(a1) = [7.1, 9.1]× [4.6, 6.4]× [−π, π].

We obtain memoryless control strategies κq for each q ∈ Qc by performing Algorithm 6.1

with pre-processing, which is provided in ROCS. Since κq(x) returns all valid control values

given a memory value q and a state x of system S in the domain of κq, a random value u that

con�rms to κq(x) is used.

Figure 6.9 shows the simulation result from a initial condition x0 = (3, 2, 90◦). It can be

observed that the closed loop trajectory of the vehicle ful�lls the expected visiting order spec-

i�ed by (6.22). Some more simulation results can be found in Figure 6.10 with di�erent initial

conditions.

To see how much the pre-processing procedure can help in saving computational time, we

also perform the control synthesis algorithm without any pre-processing, i.e., Algorithm 6.1

takes inMϕ given in Example 6.3 directly. The time for control synthesis without pre-processing

is 189.152s while it is 162.553s if the DBA is pre-processed.

Example 6.5 (Generalized Büchi Speci�cation). In this example, we use the same workspace

setup as in Example 6.4, but the vehicle is expected to in�nitely often visit Ω1, Ω2, and Ω3, which

114

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(a) The closed-loop 2-D trajectory of the vehicle starting from x0,

which is divided into 4 sections corresponding to 4 di�erent con-

trol strategy memory values. The upward red and downward green

triangles mark the initial and terminal states, respectively.

0 5 10 15 20 25 30

-2

-1

0

1

2

0 5 10 15 20 25 30

0

1

2

3

4

(b) The time histories of control values u1, u2 of system S and the

memory value q, q ∈ {0, 1, 2, 3, 4}.

Figure 6.9: The simulation result for Example 6.4 with the initial condition x0 = (3, 2, 90◦).

115

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(a) x0 = (1.3, 5, 135◦)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(b) x0 = (2, 3, 90◦)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(c) x0 = (6, 1, 90◦)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(d) x0 = (9, 5, 45◦)

Figure 6.10: Closed-loop trajectories of the vehicle from 4 di�erent initial conditions.

116

are labeled by a1, a2 and a3, respectively. This requirement can be written as the following LTL

formula:

ϕ =
3∧

i=1

�♦ai. (6.23)

The corresponding DBA of (6.23) is shown in the following Figure 6.11.

q0start

q1

q3

q2

¬a3
a3

¬a2

a2

¬a1
a1

a3
¬a3

Figure 6.11: The DBA translated from (6.23) using Spot [37].

The DBA itself is an SCC, and thus no further pre-processing or topological sort is needed.

Arranging the states in the order q3q2q1q0, the transition matrix is

Mϕ =




¬a1 e e a1

a2 ¬a2 e e
e a3 ¬a3 e
e a3 ¬a3 e


 .

After overall 165 iterations in running Algorithm 6.1, we obtain the approximatedS-domains

for automaton state q0 to q4 with their corresponding memoryless control strategies κ1 κ4. The

time for control synthesis is 121.121s. The result of closed-loop control simulation with initial

condition x0 = (6, 1, 90◦) is shown in Figure 6.12. The automaton in Figure 6.11 always starts

from the state q0. Hence, the automaton state jumps to q1 immediately since x0 /∈ Ω3 and the

memoryless control strategy κ1 is used until automaton state changes. As opposed to Example

6.4, the satisfaction of the generalized Büchi speci�cation requires in�nite time horizon. In our

simulation, we test the controlled system for 60s, which shows the two whole periods of the

update of the automaton states.

6.6 Summary

In this chapter, we considered a more general class of LTL speci�cations than invariance or

reachability that are discussed in Chapter 4. This class of LTL formulas can be translated into

117

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(a) The closed-loop 2-D trajectory within 60s that satis�es the spec-

i�cation (6.23). The sections of the trajectory related to di�erent

automaton states are marked in di�erent colors: q0-blue, q1-orange,

q2-yellow, and q3-purple.

0 10 20 30 40 50 60

-2

-1

0

1

2

0 10 20 30 40 50 60

0

1

2

3

4

(b) The time histories of control values u1, u2 of system S and the

memory value q, q ∈ {0, 1, 2, 3}.

Figure 6.12: The simulation result for Example 6.5 with the initial condition x0 = (6, 1, 90◦).

118

DBA. Control synthesis for system S with respect to such formulas is more di�cult since the

winning control strategies usually require memories, which leads to the questions raised at the

beginning of this chapter.

To address the �rst question, we discussed the soundness and completeness of algorithm

(6.11), which iteratively computes the exact winning set with respect to a DBA-recognizable

LTL directly over the in�nite state space of a dynamical system, instead of approximating the

original dynamics by a �nite abstraction as in [10]. This is because, without any stability as-

sumptions, the completeness can not be guaranteed if the �nite abstraction is constructed by

over approximating system transitions for general nonlinear systems. To deal with general

temporal properties, algorithm (6.11) applies a monotonic operator T δ , which is based on the

predecessor map, according to the transition matrix that re�ects the graph structure of the DBA.

We show that the soundness and completeness can be achieved under the assumption that the

output of (6.11) is a �xed point. The construction of a �nite abstraction as the �rst step is also

avoided in [135, 7]). The algorithm in [135] is sound but not complete for the purpose of high

computational e�ciency, and [7] assume linear systems.

Close to our control synthesis setting is the discussion in [36] of symbolic algorithms for

in�nite-state games. The condition to make control synthesis algorithm �nitely terminating

is that the in�nite state game structure should have equivalences with �nite index [36]. This

essentially means that there exists a �nite abstraction that can represent the in�nite-state dy-

namics. Since such a condition does not usually hold, we propose a �nitely terminating algo-

rithm (Algorithm 6.1) based on interval approximation of T δ , which is proved to be sound and

robustly complete.

As the answer to the second question about the structure of control strategies de�ned over

the in�nite state space to realize the given DBA-recognizable LTL formula, we proposed a struc-

ture that contains the DBA whose states represent control memories and the transition relation

serves as a mechanism updating control memories. This structure is similar to the Last Vis-

ited Record (LVR) strategy for two-player games [89, 142] and the supervisor for discrete-event

systems [109]. For �nite transition systems, controller automata are also proposed in [71, 10].

Unlike these works, our control strategy is de�ned for dynamical systems, and an extension

from �nite-state systems to in�nite-state systems is not straightforward.

A preprocessing procedure is also proposed to reduce computational cost. Before running

algorithm (6.11), states of the given LTL-equivalent DBA are grouped together to produce a

higher-level DAG. A topological sorting is then performed to determine the dependency among

DAG nodes in terms of S-domain computation. Control synthesis performed in this order can

avoid unnecessary iterations. By complexity analysis in Section 6.4 as well as the empirical re-

sult in a motion planning scenario, we showed that the preprocessing is cost e�ective, because

119

the size of the DBA is usually small compared to the discretized system, so that the preprocess-

ing takes little time, but a little improvement can result in higher e�ciency in control synthesis

that involves nonlinear dynamics.

There is a connection between LTL control synthesis and reference tracking. In reference

tracking, the dynamical system is controlled so that the state or output can track a priori refer-

ence signal:

lim
t→∞
‖xt − rt‖2 = 0.

A controller that realizes the convergence to reference signal contains the reference signal

model (called exosystem in [130]). The DBA-embedded control strategy structure and the tra-

ditional tracking controller are similar in the sense that following the same internal model prin-
ciple [43].

120

Chapter 7

Control Synthesis for Sampled-Data
Systems

Physical systems are often modeled by the ODEs:

ẋ(t) = f(x(t), u(t)) + d(t), (7.1)

where d(t) is a time-varying disturbance, and f : Rn×Rm → Rn
is a smooth function. Similar

to our discussion in Chapter 2, when d(t) = 0, system (7.1) reduces to the nominal form

ẋ(t) = f(x(t), u(t)). (7.2)

Let I be an interval in R. With a slight abuse of notation, we denote by u : I → U and

d : I → D the continuous-time control and disturbance signal u(t) and d(t), respectively. We

also denote by UI
and DI

the set of control and disturbance signals.

De�nition 7.1. Given a control signal u and a disturbance signal d, a solution of (7.1) from an

initial state x0 ∈ X over a time interval I within its maximum interval of existence is a function

ξ(t, x0,u,d) that satis�es

dξ

dt
= f(ξ(t), u(t)) + d(t), ∀t ∈ I.

To apply either digital controller or control synthesis based on formal methods, system

(7.1) is only measured, evaluated, and processed at discrete time instances. A Zero Order Hold

(ZOH) is often used to hold sampled values during inter-sample periods. Such a controlled

121

system with a continuous-time plant and discrete-time control components is typically called

a sampled-data system.

Let τ > 0 be a �xed sampling time for (7.1). The system state is only evaluated at discrete

time instances jτ (j ∈ N), and the control signal u(t) is constant and takes values from a �nite

set U over [0, τ). Then the corresponding sampled-data system of (7.1) can also be translated

into a transition system:

Sτ : 〈X, U, Rτ , AP, L〉, (7.3)

where the set of states X, the set of inputs U, the set of atomic propositionsAP , and the labeling

function L are de�ned as in (2.4). The transition relation Rτ : X× U→ 2X
is given by

Rτ (x, u) , {ξ(τ, x,u,d) : u(t) ≡ u, d(t) ∈ D,∀t ∈ [0, τ)} .

In this sense, continuous-time system (7.1) is scaled over time and treated as a discrete-time

system (7.3).

In this chapter, we aim to show how the proposed speci�cation-guided method via interval

computation can be applied to sampled-data systems.

7.1 Reachable Set Approximation Using Interval Analysis

The construction of inclusion functions for the sampled-data system of (7.1) is more di�cult,

because the post-transition states are not determined by a function explicitly, but related to

reachable sets de�ned below.

De�nition 7.2. The reachable set for system (7.1) after time τ from a set of initial statesX0 ⊆ X
under a control signal u : [0, τ)→ U is de�ned by

Rτ (X0,u) = {ξ(τ, x0,u,d) : d ∈ D[0,τ), ‖d‖∞ ≤ δ, x0 ∈ X0}. (7.4)

To be more speci�c, the reachable set of (7.1) is denoted asR∗τ (X0,u) if d(t) ≡ 0 andRδ
τ (X0,u)

if d(t) is bounded by δ > 0, respectively.

We de�ne a set of maps {Rτ (·, u)}u∈U by using constant control signals in (7.4). An over-

approximation of the mapRτ (·, u) by de�nition serves as an inclusion function for the sampled-

data system (2.2) of (7.1).

122

A standard algorithm for over-approximating the reachable set from an initial interval [x0]
relies on the kth degree of Taylor expansion of the solution at time t = 0 [95]:

Rτ ([x0], u) ⊆
k∑

i=0

f [i]([x0], u)
τ i

i!
+ f [k+1]([̂x0], u)

τ k+1

(k + 1)!
, (7.5)

where [̂x0] is an a priori enclosure for the solution on [0, τ) and the sequence of functions f
[i]
u (x)

(i ≥ 0) are de�ned by

f [0](x, u) = x,

f [i](x, u) =
∂f [i−1](·, u)

∂x
f(x, u), i ≥ 1.

We can over-approximate the function f [i](·, u) in (7.5) by using convergent inclusion func-

tions [f][i](·, u). Then

R̂k
τ ([x0], u) =

k∑

i=0

[f][i]([x0], u)
τ i

i!
+ [f][k+1]([̂x0], u)

τ k+1

(k + 1)!
(7.6)

⊇ Rτ ([x0], u).

Therefore, the computation of [f]([x], u) can be replaced by R̂τ ([x], u) in (7.6) for sampled-

data systems. An interval [̂x0] can function as an a priori enclosure for [x0] if there exists some

k̄ that

[x0] +
k̄−1∑

i=1

[f][i]([x0], u)
[0, τ i]

i!
+ [f][k̄]([̂x0], u)

[0, τ k̄]

k̄!
⊆ [̂x0]. (7.7)

We show that such an a priori enclosure can always be found under the following assump-

tion.

Assumption 7.1. Let X,U be compact and [X] be an interval containing X. For a given order

kmax ≥ 1, there exists a constantK > 0 and inclusion functions [f][i](·, u) of f [i](·, u) such that

for all 1 ≤ i ≤ kmax,

wid([f][i]([x]), u) ≤ Kwid([x]), ∀[x] ⊆ [X], u ∈ U.

Similar to Assumption 3.1 and 3.2, the above assumption can be guaranteed by f(·, u) being

smooth, which implies the bounded partial derivative of f [i](·, u) on any compact set.

123

Lemma 7.1. Suppose that there exists an order kmax ≥ 1 for a sampled-data system (2.2) such

that Assumption 7.1 holds on X. Let

Mu = sup
1≤i≤kmax,x∈X

∥∥f [i](x, u)
∥∥
∞ , W = sup

[x]⊆X
{wid([x])} .

For any interval [x0] ⊆ X, if τ , ε ∈ (0, 1) and the order k̄ ∈ [1, kmax] are chosen such that

[x0] + [−1, 1](Mu +Kwid([x0]) (eτ − 1)1n + [−2ε, 2ε] ⊆ [X],

τ i

i!
<

2ε

Mu +KW
, ∀k̄ ≤ i ≤ kmax,

then

[̂x0] , [x0] +
k̄−1∑

i=1

[f][i]([x0], u)
[0, τ i]

i!
+ [−2ε, 2ε] (7.8)

is an a priori enclosure, i.e., [̂x0] ⊆ [X].

Proof. For any ε > 0, there exists k̄ ∈ [1, kmax] and τ > 0 such that τ i/i! < 2ε/(Mu + KW)
for all k̄ ≤ i ≤ kmax. Under Assumption 7.1, we can construct a centered inclusion function

[f][i]([x], u) = f [i](x̄, u) + K([x] − x̄) for 1 ≤ i ≤ kmax, where x̄ is the center point of the

interval [x]. Then for any interval [x] ⊆ [X],

wid([f][k̄]([x], u)) = wid(K([x]− x̄)) ≤ KW/2⇒
[f][k̄]([x], u) ⊆ [−1, 1](Mu +KW/2)1n ⇒

[f][k̄]([x], u)
[0, τ k̄]

k̄!
⊆ [−1, 1](Mu +KW/2)

τ k̄

k̄!
1n

⊆ [−2ε, 2ε]1n.

Let x0 be the center point of [x0]. Similarly, we have

k̄−1∑

i=1

(
f [i](x0, u) +K([x0]− x0)

) [0, τ i]

i!

⊆ [−1, 1](Mu +Kwid([x0])

(
∞∑

i=1

τ i

i!
−
∞∑

i=k̄

τ i

i!

)
1n

⊆ [−1, 1](Mu +Kwid([x0]) (eτ − 1)1n.

124

Hence, [x0] + [−1, 1](Mu +Kwid([x0]) (eτ − 1)1n + [−2ε, 2ε]1n ⊆ [X] implies that [̂x0] ⊆
[X]. Furthermore,

[x0] +
k̄−1∑

i=1

[f][i]([x0], u)
[0, τ i]

i!
+ [f][k̄]([̂x0], u)

[0, τ k̄]

k̄!
⊆

[x0] +
k̄−1∑

i=1

[f][i]([x0], u)
[0, τ i]

i!
+ [−2ε, 2ε] = [̂x0],

which means that the [̂x0] de�ned above satis�es (7.7).

7.2 Robust Completeness

It remains to determine the order k for a su�ciently close approximation such that algorithm

(4.27) is still guaranteed to be robustly complete for sampled-data systems. We additionally

de�ne a interval-valued system

[Sτ] : 〈X, U, [Rτ], AP, L〉,

which di�ers from Sτ by the transition relation [Rτ] is given by (7.6). In the following, we let

[Pre]ε be the set of intervals de�ned in (5.2) with A returned by Pre([Sτ], B,A, ε).

Theorem 7.1 (Soundness and Robustly Completeness). Consider system Sτ and a DBA con-

vertible LTL or reach-and-stay formula ϕrs. Suppose that Assumption 7.1 holds for a sampled-

data system of (7.1). Let W be the output of Algorithm 6.1 (or algorithm (4.27)) by using [Pre]ε

to construct [T]ε (or P̂re = [Pre]ε). Then

Win
δ
Sτ (ϕ) ⊆ W ⊆WinSτ (ϕ), (7.9)

if the a priori enclosure [̂x0] and the corresponding order k̄ are constructed by Lemma 7.1 for

any interval [x0] ⊆ X with wid([x0]) < ε, and additionally,

k ≥ max

{
k̄ − 1,

⌈
log (1−α)δ

Kw̄
+ log(k̄ + 1)!

log τ

⌉}
, (7.10)

ε ≤ ατ

2Keτ
δ, (7.11)

where d·e is the ceiling function, α ∈ (0, 1), w̄ = wid([̂x0]).

125

The fraction α is used to distribute the error allowed in interval approximation for the �rst

k terms and the remainder. The proof of Theorem 7.1 is based on Proposition 7.1 below.

Proposition 7.1. Let D ⊆ X. Assume that ‖f(x, u)− f(y, u)‖∞ ≤ ρL ‖x− y‖∞ for all x, y ∈
D and u ∈ U. The reachable set of (7.1) at time τ from an initial set of states X0 ⊆ D under a

control signal u : [0, τ)→ U satis�es

R∗τ (X0,u)⊕ Br1 ⊆ Rδ
τ (X0,u) ⊆ R∗τ (X0,u)⊕ Br2 , (7.12)

where r1 = δτ and r2 = δρ−1
L (eρLτ − 1).

Proof. Consider solutions x(t) and y(t) of ẋ(t) = f(x(t), u(t)) + d(t) and ẏ(t) = f(y(t), u(t))
with x(0) = y(0), respectively. Then

‖ẋ(t)− ẏ(t)‖∞ = ‖f(x(t), u(t))− f(y(t), u(t)) + d(t)‖∞
≤ ρL ‖x(t)− y(t)‖∞ + ‖d(t)‖∞ .

Letting z(t) = ‖x(t)− y(t)‖∞ ≥ 0 gives ż(t) ≤ ρLz(t) + δ. By Gronwall’s Lemma, we obtain

that ‖z(t)‖∞ ≤ δρ−1
L (eρLτ − 1), which proves the right part of (7.12).

To prove the left part, let

d(t) = δ
f(x(t), u(t))− f(y(t), u(t))

‖f(x(t), u(t))− f(y(t), u(t))‖∞
.

It follows that

ż(t) = δ + ‖f(x(t), u(t))− f(y(t), u(t))‖∞ ≥ δ.

Hence z(τ) ≥ δτ and the left part is proved.

Proof of Theorem 7.1. For any interval [x0] ⊆ X, by Lemma 7.1, there exists an order k̄ and an

a priori enclosure [̂x0] such that R̂τ ([x0], u) obtained by (7.6) is an over-approximation of the

reachable setRτ ([x0], u).

We �rst derive a su�cient condition such that Pre
δ(B|A) ⊆ [Pre]ε(B|A) ⊆ Pre(B|A),

where B ⊆ A ⊆ X. It is trivial that [Pre]ε(B|A) ⊆ Pre(B|A) for all k and τ , so we only

consider the conditions such that Pre
δ(B|A) ⊆ [Pre]ε(B|A) here. Let x0 be the center point of

an arbitrary interval [x0] ⊆ X with wid([x0]) ≤ 2ε. Under Assumption 7.1, we rewrite (7.6) in

126

the following centered form

R̂k
τ ([x0], u) =

k∑

i=0

f [i](x0, u)
τ i

i!
+ [f][k+1]([̂x0], u)

τ k+1

(k + 1)!︸ ︷︷ ︸
truncation error

+
k∑

i=0

K([x0]− x0)
τ i

i!
︸ ︷︷ ︸

propagated enclosure

.

For the propagated enclosure,

wid

(
k∑

i=0

K([x0]− x0)
τ i

i!

)
≤ 2Kε

k∑

i=0

τ i

i!

≤ 2Kε
∞∑

i=0

τ i

i!
= 2Kεeτ .

For the truncation error, we have

wid([f][k+1]([̂x0], u)
τ k+1

(k + 1)!
) ≤ Kw̄

τ k+1

(k + 1)!
.

Let α ∈ (0, 1), k ≥ k̄ and

Kw̄
τ k+1

(k̄ + 1)!
≤ (1− α)δτ, (7.13)

2Kεeτ ≤ αδτ. (7.14)

Then w
(
R̂k
τ ([x0], u)

)
≤ (1−α)δτ +αδτ = δτ , which leads to R̂k

τ ([x0], u) ⊆ Rτ (x0, u)⊕Bδτ .

Solving for k and ε in (7.13) and (7.14) gives k ≥
⌈
log(Kw̄)−1(1− α)δ + log(k̄ + 1)!/ log τ

⌉

and (7.11). We take the maximum of k and k̄ − 1 to guarantee that [̂x0] is an a priori enclosure.

Hence, we arrive at (7.10).

Suppose that x0 ∈ Pre
δ(B|A), i.e., Rδ

τ (x0, u) ⊆ B for some u ∈ U. Assumption 7.1 implies

that f(·, u) is Lipschitz over X for all u ∈ U. Then we have R̂k
τ ([x0], u) ⊆ R∗τ (x0, u) ⊕ Bτδ ⊆

Rδ
τ (x0, u) ⊆ B by Proposition 7.1. It implies that x /∈ [x] ∈ Ac, because R̂k

τ ([x], u) ∩ B 6= ∅.
Any interval [x] ∈ ∆A that contains x0 satis�es [x] ⊆ [x0]. It then follows that R̂k

τ ([x], u) ⊆ B,

127

but R̂k
τ ([x], u) 6⊆ B by Algorithm 5.1. Hence, x0 /∈ [x] ∈ ∆A and thus it is only possible that

x0 ∈ [x] ∈ A, which means x0 ∈ [Pre]ε(B|A).

If ϕ is DBA convertible, the resulting interval [T]ε operator satis�es (6.17) by Lemma 6.1.

By Theorem 6.2, (7.9) is proved. If ϕ is a reach-and-stay formula, then (5.21) is satis�ed, which

shows (7.9).

Remark 7.1. Evaluating the constantK over the entire state space X will make the choice of ε

conservative. A remedy is to compute K locally based on a guess of the a priori enclosure [̂x0]
and a given order threshold kmax:

K = max
i=1,··· ,kmax

u∈U

{
wid([f][i]([̂x0], u))

wid([̂x0])

}
.

The a priori enclosure [̂x0] is then updated by Lemma 7.1. If the updated enclosure is not con-

tained in [̂x0], then [̂x0] needs to be enlarged. The size of [̂x0] is related to the initial interval

[x0]. In the modi�ed algorithm, the size of [x0] is managed though subdivision. The coe�cient

K will then be updated to determine the local maximum size of the intervals. The defect of

using such local evaluation, however, is that it will incur extra computational cost in a single

loop.

Example 7.1. Consider a sampled-data system S with sampling time τs = 0.05s and the re-

versed Van der Pol dynamics:

{
ẋ1 = −x2,

ẋ2 = x1 + (x2
1 − 1)x2.

Suppose that S is subject to a uniformly distributed disturbance with bound δ = 10. The

following sampled position in the state space are analyzed: p1 = (0.5, 0.3), p2 = (−1.2,−0.6)
and p3 = (−2.3,−1.7), where p1 and p2 are inside of the limit cycle while p3 is outside.

Table 7.1: Local parameters for reachable set computation.

Samples p1 p2 p3

k 3 3 4

K 15.27 64.78 49137.10

ε 0.01557 0.00367 4.8× 10−6

128

Table 7.1 lists the parameters addressed in Theorem 7.1, which are computed based on local

dynamics. It can be seen that K is large since the system is unstable around p3, and thus we

need to use a much smaller interval in order that the approximation error of the reachable set

is no bigger than the one caused by disturbance.

7.3 Examples

In this section, we give two examples showing the e�ectiveness of the proposed interval-based

method for control synthesis for sampled-data systems with respect to LTL speci�cations. One

is an application to the estimation of regions of attraction for nonlinear systems and the other

is the stabilization of inverted pendulum on cart. Both cases have been studied extensively in

the literature.

7.3.1 Estimation of Regions-of-A�raction

A problem of interest in the study of dynamical systems is to determine the Region of Attrac-

tion (ROA) of an equilibrium point. This problem has important applications in safety-critical

industries such as aviation and power systems, where determining the operating envelope of

an aircraft or a power network is vital. In the literature, computational methods for determin-

ing the ROA for nonlinear systems have been developed by way of Lyapunov functions. The

key aspect is to search Lyapunov functions that maximize the estimated ROA. For this pur-

pose, linear matrix inequalities [29] and sum-of-square programming techniques [126, 127] are

used for the construction of such Lyapunov functions for polynomial systems. Using Lyapunov

functions with �xed forms, subsets of the ROAs can also be obtained by solving a constraint

satisfaction problem [125]. How to choose the form of Lyapunov functions, however, remains

a challenging problem.

Consider the continuous-time system

ẋ(t) = f(x(t)), (7.15)

where x ∈ Rn
, f is continuously di�erentiable and the origin is a hyperbolic stable equilibrium

point. Let ξ(t, x0) denote the solution of (7.15) with initial condition x0. Its ROA is a subset of

initial conditions from which the solution converges to the origin, i.e.,

{
x0 ∈ Rn : lim

t→∞
ξ(t, x0) = 0

}
.

129

System (7.15) is a special case of (7.1) with a single input value and zero disturbance. We

show next that the ROA approximation problem for system (7.15) can be interpreted as a reach-

and-stay control problem with the speci�cation ϕ(Ω), where Ω ⊆ Rn
is a subset of the exact

ROA of system (7.15) containing the origin.

A routine to determine the subset Ω is to use the linearization at the origin. Let A be the

Jacobian matrix at the origin. Then a quadratic Lyapunov function V (x) = xTPx exists and

can be constructed by solvingATP +PA = −Q, where P,Q are positive de�nite matrices and

P is symmetric [69, Theorem 4.7]. To estimate the neighborhood around the origin where the

quadratic Lyapunov function V (x) decreases along the system solution, we write ẋ = f(x) =
Ax + g(x), where g(x) contains higher-order terms of x, i.e., lim‖x‖2→0 ‖g(x)‖2 / ‖x‖2 = 0.

Hence, by the de�nition of function limit, for any r > 0, there exits e > 0 such that

‖x‖2 < e =⇒ ‖g(x)‖2 / ‖x‖2 < r ⇔ ‖g(x)‖2 < r ‖x‖2 .

Let λmin(Q) denotes the minimum eigenvalue of Q. Then

V̇ (x) = xTPf + fTPx

= xTP (Ax+ g(x)) + (xTAT + gT (x))Px

= xT (PA+ ATP)x+ 2xTPg(x)

= −xTQx+ 2xTPg(x)

≤ (−λmin(Q) + 2r ‖P‖2) ‖x‖2
2 .

Given r, c > 0, let Sr , {x ∈ Rn : ‖g(x)‖2 < r ‖x‖2} and Ωc ,
{
x ∈ Rn : xTPx ≤ c

}
.

We can �rst choose r to satisfy

−λmin(Q) + 2r ‖P‖2 < 0 (7.16)

and then determine c such that Ωc ⊆ Sr. This will guarantee that Ωc is invariant and any

solution staying inside Ωc will converge to the origin. Consequently, any state in Rn
that can

reach Ωc in a �nite time horizon will also converge to the origin. In this case, the ROA is

equivalent to the winning set of ϕ(Ωc).

To demonstrate the correctness and e�ectiveness of such an interpretation, we consider a

sampled-data system S with sampling time τs = 0.05s and the reversed Van der Pol dynamics

in Example 7.1. The state space is assumed to be X = [−4, 4]× [−4, 4]. LettingQ be the identity

matrix gives

P =

[
1.5 −0.5
−0.5 1

]
.

130

We choose r = 0.2754, c = 1.43 and Ωc =
{
x ∈ Rn : xTPx ≤ c

}
.

We approximate the ROA of the Van der Pol equations using algorithm (4.27) with di�erent

precision control parameters and display the results together with the real limit cycle in Fig.

7.1. As observed, a higher precision yields a closer inner-approximation to the real ROA. By

setting ε su�ciently small, the estimated boundary of ROA can be of arbitrarily close to the

real limit cycle.

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

Limit cycle

ε = 0.03

ε = 0.01

ε = 0.005

Figure 7.1: Comparison of inner-approximations of the ROA for reversed Van der Pol sampled-

data system with three di�erent precisions.

Formulating the problem of ROA approximation as a reachability or reach-and-stay control

synthesis problem releases the burden of choosing proper Lyapunov functions. The required

smoothness condition is less strict than being polynomial in many of the methods for ROA

estimation.

7.3.2 Stabilization of Inverted Pendulum

In the example, we aim to stabilize the inverted pendulum, through which the scalability of the

proposed method can be demonstrated by using adaptive precisions.

131

Consider an inverted pendulum on a cart (see Figure 7.2) modeled by the continuous-time

ODEs: {
ẋ1 = x2,

ẋ2 = mgl
Jt

sinx1 − b
Jt
x2 + l

Jt
cosx1u,

(7.17)

where x1 = θ (rad) is the angle of the pendulum to the upper vertical line, x2 is the angle change

rate θ̇ (rad/s), and u is the force applied to the cart; Jt = J + ml2, m = 0.2kg, g = 9.8m/s
2
,

l = 0.3m, J = 0.006kgm
2
, b = 0.1N/m/s.36 CHAPTER 2. SYSTEM MODELING

(a) Segway (b) Saturn rocket

M
F

p

θ
m

l

(c) Cart–pendulum system

Figure 2.5: Balance systems. (a) Segway Personal Transporter, (b) Saturn rocket and (c)
inverted pendulum on a cart. Each of these examples uses forces at the bottom of the system
to keep it upright.

their hand.
Balance systems are a generalization of the spring–mass system we saw earlier.

We can write the dynamics for a mechanical system in the general form

M(q)q̈+C(q, q̇)+K(q) = B(q)u,

where M(q) is the inertia matrix for the system, C(q, q̇) represents the Coriolis
forces as well as the damping, K(q) gives the forces due to potential energy and
B(q) describes how the external applied forces couple into the dynamics. The spe-
cific form of the equations can be derived using Newtonian mechanics. Note that
each of the terms depends on the configuration of the system q and that these terms
are often nonlinear in the configuration variables.
Figure 2.5c shows a simplified diagram for a balance system consisting of an

inverted pendulum on a cart. To model this system, we choose state variables that
represent the position and velocity of the base of the system, p and ṗ, and the an-
gle and angular rate of the structure above the base, θ and θ̇ . We let F represent
the force applied at the base of the system, assumed to be in the horizontal direc-
tion (aligned with p), and choose the position and angle of the system as outputs.
With this set of definitions, the dynamics of the system can be computed using
Newtonian mechanics and have the form

⎧
⎪⎪⎩ (M+m) −ml cosθ

−ml cosθ (J+ml2)

⎫
⎪⎪⎭
⎧
⎪⎪⎩ p̈
θ̈

⎫
⎪⎪⎭+

⎧
⎪⎪⎩cṗ+ml sinθ θ̇ 2
γθ̇ −mgl sinθ

⎫
⎪⎪⎭=

⎧
⎪⎪⎩F0

⎫
⎪⎪⎭ , (2.9)

whereM is the mass of the base,m and J are the mass and moment of inertia of the
system to be balanced, l is the distance from the base to the center of mass of the
balanced body, c and γ are coefficients of viscous friction and g is the acceleration
due to gravity.
We can rewrite the dynamics of the system in state space form by defining the

state as x= (p,θ , ṗ, θ̇), the input as u=F and the output as y= (p,θ). If we define

Figure 7.2: Inverted pendulum on cart [90].

We aim to control the pendulum to the upright position. This speci�cation can be writ-

ten as the LTL formula ϕ = ♦�G, where Ω = L−1(G) = [−0.05, 0.05] × [−0.01, 0.01].
Let the state space X = [−2, 2] × [−3.2, 3.2]. The sampled-data system of (7.17) with the

sampling time τs = 0.01s is used, and the control input u is chosen from the �nite set U =
{−0.5,−0.45, · · · , 0.45, 0.5} obtained by a sampling granularity µ = 0.05.

The modi�ed Algorithm 4.27 with (7.6) is used to perform reach-and-stay control synthesis,

as opposed to using the local growth bound [113]:

β(η, u) = eL(u)τsη, L(u) =

[
0 1√

24.52 + 12.52u2 −4.17

]
,

where η = [η1, η2] is the grid width.

In this case, the target stabilization area G is tiny compared to the entire state space X . In

order to maintain the pendulum angle and angle change rate in the region G, the value of the

precision control parameter ε has to be determined according to the size of G. Thus, we use

132

a precision ε = 0.001 for [Preµ]ε(Xj
i+1|W j

i) as an implementation of P̂re(X̂j
i+1|W j

i) in (4.27).

Since the state space X is nearly 40 times the size of G, the partition of X will contain a huge

number of cells if a uniform precision ε = 0.001 is used in Algorithm 4.27. To obtain an accept-

able computational complexity, we use a relative precision, which is determined with respect to

the size of the winning set throughout iterations, for the computation of Zi = [Pre]ε(X̂∞i+1|Vi).

The inner loop precision re�ects the bound of the perturbation that can be tolerated by the

resulting switching strategy.

For an initial condition (θ0, θ̇0) = (1, 1) , the closed-loop simulation result (see Figure 7.3)

shows that, applying the extracted switching strategy, the angle of pendulum is stabilized to

zero with a steady-state error of 0.05 within 0.5s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2

-1

0

1

2

3

θ
,
θ̇

θ(t)

θ̇(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(s)

-10

-5

0

5

10

u

Figure 7.3: Closed-loop simulation with the initial condition (θ0, θ̇0) = (1, 1) for system (7.17).

This system is neither globally asymptotically stable nor incrementally asymptotically sta-

ble around the upright position. Hence, abstraction-based methods using bisimulation relations

[53] do not apply while over-approximations [139, 86, 84, 113] based on uniform grids can be

used. To achieve equivalent stabilization precisions, the grid size needs to be at least 0.001 ac-

cording to the size of the stabilization area. Using uniform partitions as in abstraction-based

methods, the entire safe region JasK is discretized to overall 2.56× 107
cells with grid points of

width 0.001. Using SCOTS [118], computation of the abstraction lasts for more than 12 hours

without returning any result. In contrast, our algorithm generates a winning set covering most

133

of the state space in around 480 seconds with 26340 partitions.

7.4 Summary

This chapter extended the previous results on sound and robustly complete LTL control syn-

thesis to sampled-data systems. The results in this chapter can also be found in [82].

For sampled-data systems, the problem of applying the proposed interval-based control

synthesis algorithms is that predecessors can not be approximated by Algorithm 5.1 using a

convergent interval function [f] of f . This is because system state at the next time step is not

determined by the function f in (7.1) as in the cases for discrete-time systems. We resolved

this problem by using higher-order Taylor model for the validated (over) approximation of the

reachable setRτ (X0, u) from an initial set of statesX0 ⊆ X, which essentially plays the role of

[R](X0, u) in Algorithm 5.1. The Taylor model has been used for computing validated solutions

of initial value problems [95, 94] and reachability analysis for nonlinear and hybrid systems

[27, 26]. Unlike the application of Taylor model in the literature, where the approximation

precision is adjusted by the small time steps in a �xed horizon, we showed in this chapter that

the approximation can be arbitrarily precise by controlling the order of the Taylor model. This

is usually what we hope for the control synthesis for sampled-data systems, in which the system

information is updated every sampling time.

In addition to the consistency with the proposed interval-based control synthesis scheme,

using interval in reachable set approximation also shows that the proposed control synthesis

algorithms can still be made sound and robustly complete by choosing a su�ciently high order

in the computation of the Taylor model.

134

Chapter 8

Application to Reactive Locomotion
Planning in Constrained Environments

In the �eld of robotics, planning and control of bipedal locomotion has been one of the attrac-

tive topics. Due to the complexity of whole-body dynamic locomotion (WBDL) behaviors and

requirements of being reactive to the dynamic environment, planning and control often live on

a hierarchical structure [14]. In this way, the complicated control problem is decomposed into

simpler problems which are solved at di�erent levels. The WBDL model, therefore, is simpli�ed

accordingly at di�erent levels to serve di�erent control purposes.

This chapter illustrates an application of the proposed control synthesis method in previous

chapters to a reactive locomotion planning problem, in which the bipedal robot is expected to

behave in respond to the changes of the environment. Recently, formal methods have gained

increasing attention for solving such problems because of the correctness guarantee and LTL

formulas are favored for specifying temporal and reactivity properties [9, 103, 58, 132, 136].

Contact-based decision and planning method, which operates over a set of robotic maneu-

vers determined by contact points [128], is applied in the design of control hierarchy. At the

high level, a motion plan, which is sequence of locomotion modes (chosen from a library of sim-

pli�ed locomotion models) and corresponding setpoints, are generated by solving a two-player

game between the planner and the dynamic environment with the constraints expressed in LTL

formulas. At the low level, the bipedal robot is controlled so that the robot behaviors can be

classi�ed into di�erent locomotion modes. To guarantee that such a plan can be realized by

actual system dynamics, transitions between two locomotion modes need to be veri�ed and

mode-switching control strategies need to be constructed.

In the literature, formal methods are often used at the planner level, where the underlying

135

system is �nite, to reason about reactive planning strategies. In this chapter, we will demon-

strate how the proposed control synthesis method can be applied to a middle level in which

locomotion switching strategies are designed.

8.1 Reactive Locomotion Planning Problem

First of all, we introduce the reactive locomotion planning problem in this section, which is for-

malized as a switching control problem between abstracted multi-contact locomotion models.

8.1.1 Hybrid System Model of Bipedal Locomotion

In general, dynamics of mechanical systems are described by their rate of linear and angular

momenta, which are usually a�ected by external force and/or torque:

l̇ = mp̈com =
Nc∑

i

f i +mg, (8.1)

k̇ =
Nc∑

i

(pi − pcom)× f i + τ i, (8.2)

whereNc is the number of limb contacts, l ∈ R3
and k ∈ R3

represent the centroidal linear and

angular momenta, respectively, f i ∈ R3
is the ith ground reaction force, m is the total mass of

the robot, τ i ∈ R3
is the contact torque of the ith limb, the variables

g =




0
0
−g


 , pi =



pi,x
pi,y
pi,z


 , pcom =



x
y
z




correspond to the gravity �eld, the position of the ith limb contact position, and the center of

mass (CoM) position respectively.

The above general model can be simpli�ed based on di�erent contact modes under the as-

sumptions that are commonly imposed to make the problem tractable [6]. In this WBDL control

problem, six locomotion modes are considered to produce various behaviors [140], which are

also pictured in Figure 8.1.

The prismatic inverted pendulum mode (PIPM). In a normal environment, the bipedal

robot exhibits a normal walking gait: there is a single foot contact with the �oor in each walking

136

next step terrain

hind leg and
hind arm contact

hind leg and
hind arm contact

hind leg and
no arm contact

hind leg and
fore arm contact

hugely upward terrain hugely downward terrainmoderately upward terrain

hind leg and
fore arm contact

no leg and
fore arm contact

terrain crackmoderately downward terrain
grasp

hind leg and
hind arm contact

hind leg and
no arm contact

hind leg and
fore arm contact

contact location

crouch and slide
with dual feet contact

narrow passage

slide

jumping without contact

terrain crack and high ceiling

dual leg and
fore arm contact

human appear

leap

unforeseen hugely
downward terrain

replanning with arm grasp

unforeseen large terrain
crack and high ceiling

leap graspfail

replanning with fore arm contact

Figure 8.1: Contact-based planning strategies for locomotion in rough terrains [141]. Events

motivated by ordinary accidents in human daily lives, such as a crack on the terrain and the

sudden appearance of a human, are treated as emergency events, and incorporated into the

allowable environment.

period. Such walking dynamics can be considered as a inverted pendulum model. SinceNc = 1
in this mode, we can simplify (8.2) to

(pcom − pfoot)× (f com +m g) = −τ com,

where f foot is the force imposed at the contact foot point, and f com is the vector of CoM inertial

forces:

f com = mp̈com = m



ẍ
ÿ
z̈


 ,

Assume that the bipedal locomotion follows a piece-wise linear CoM path surface

ψcom(x, y, z) = z − ax− by − c = 0, (8.3)

137

where a, b and c are the coe�cients of the surface. Thus, the dynamics in the vertical direction

are represented by z̈ = aẍ+ bÿ and not explicitly shown here.

Hence, the mathematical model for this mode is

[
ẍ
ÿ

]
= ω2

PIPM

[
x− xfoot − τy

mg

y − yfoot − τx
mg

]
, (8.4)

where ẍ and ÿ are CoM accelerations aligned with sagittal and lateral directions, and

ωPIPM =

√
g

zapex
PIPM

, zapex
PIPM = (a · xfoot + b · xfoot + c− zfoot)

is the PIPM phase-space asymptotic slope [140]. The control input is

u =




xfoot

yfoot

ωPIPM

τx
τy



.

The prismatic pendulummode (PPM).. When the terrain is cracked, the robot has to grasp

the overhead support to swing over an unsafe region using brachiation. The system dynamics

can be approximated as a pendulum model. For a single hand contact, we have

[
ẍ
ÿ

]
= −ω2

PPM

[
x− xhand − τy

mg

y − yhand − τx
mg

]
, (8.5)

where similarly

ωPPM =

√
g

zapex
PPM

, zapex
PPM = (zhand − a · xhand − b · xhand − c)

given the same surface given in (8.3). Similarly, vertical direction dynamics are represented by

z̈ = aẍ+bÿ. A di�erence between PIPM and PPM lies in that PPM dynamics is inherently stable

since the CoM is always attracted to move towards the apex position while the PIPM dynamic

is not. This study assumes the robot can �rmly grasp the overhead support once receiving the

upper limb contact command.

The stop-launch mode (SLM). When a human appears, the robot has to come to a stop,

wait until human disappears, and start to move forward. The task in this mode consists on

138

decelerating the CoM motion to zero and accelerating it from zero again. We name this model

as a SLM with a constant CoM sagittal accelerations:

l̇x = max, l̇y = may, l̇z = maz,

where ax, ay, az are the control inputs. The resulting phase-space trajectory is a parabolic man-

ifold.

The multi-contact mode (MCM). When the robot maneuvers through unstructured rough

terrains, arms and legs in contact can accelerate and decelerate the CoM according to terrain

height variations. To make the dynamics tractable, we assume a known constant vertical accel-

eration az in each step and neglect of the angular momentum kz around the z-axis [6], which

leads to

Nc∑

i

fi,z = m(z̈ − g).

With multiple point contacts, we let τ i = 0 for all i ≤ Nc in (8.2), and the dynamics can be

simpli�ed to




ẍ

ÿ

ϕ̈

θ̈


 =




∑Nc
i fi,x/m∑Nc
i fi,y/m

−(z̈ − g) · y + z ·∑Nc
i fi,y/m−

∑Nc
i pi,z · fi,x/m+

∑Nc
i pi,z · fi,z/m

(z̈ − g) · x− z ·∑Nc
i fi,x/m+

∑Nc
i pi,z · fi,x/m−

∑Nc
i pi,y · fi,y/m



,

whereϕ and θ are torso roll and pitch angles aligned with the CoM sagittal and lateral directions

as derived from (8.2). The external force vector (fi,x, fi,y, fi,z) represents the ith contact force.

The vertical position z is a function of x and y de�ned a priori.

The hoppingmode (HM). This model applies when the locomotion model needs to jump over

an unsafe region. In this case, the CoM dynamics follow a free-falling ballistic trajectory. We

have

ẍ = ÿ = 0, z̈ = −g.

The trajectory is fully controlled by the initial condition, where a discontinuous jump in the

CoM state can occur and be used to generate a desired linear momentum. For instance, when

the robot jumps over a cracked terrain, it needs to push the ground as the foot lifts to generate

a su�ciently large sagittal linear acceleration.

139

The sliding mode (SM). This model applies when the robot needs to slide through a con-

strained region. The CoM dynamics are subject to a constant friction force. Thus, ẍ is a constant

negative value, and we assume ÿ = 0, z̈ = 0. The sagittal linear velocity decays at a constant

rate.

In this research, the considered locomotion modes are selected from the set

M , {pPIPM, pMCM, pPPM, pSLM, pHM, pSM}.

The switched system representation. Given the continuous locomotion modes above, we

formulate the WBDL as a switched system:

ξ̇(ζ) = fp(ζ)
(
ξ(ζ),u(ζ),d(ζ)

)
, p(ζ) ∈M, (8.6)

where ξ(ζ) ∈ Ξ ⊆ R12
denotes the 12 dimensional CoM position and angular state vector of

the robot at ζ ≥ 0 on the manifolds of the dynamics (cf. (8.17)), the phase progression variable

ζ , analogous to time, represents the current phase progression on a locomotion trajectory, the

functions p(·) : R→M and d(·) ∈ D ⊆ Rd
(0 ≤ d ≤ 12) are the switching signal and external

disturbance, respectively, and fp denotes the dynamics under mode p ∈ M. The control input

is denoted by

u =




pcontact

ω
τx
τy
τz



∈ U ⊆ R7,

where pcontact represents a set of contact position vectors in which each contact position vector

is three-dimensional, ω represents the slope of the phase-space asymptote dependent on speci�c

locomotion modes as de�ned in the above modes, and τx, τy, and τz represent the torso torques

along x, y, and z axis, respectively.

The sampled-data system of (8.6) with a constant sampling time ∆ζ ≥ 0 can be written in

the form of a transition system (see De�nition 2.1)

SL = (Ξ,M× U, RL, AP, L), (8.7)

where RL : Ξ× U×M→ Ξ is determined by

RL(ξ,u, p) ,
{
ξ(∆ζ) ∈ Ξ : ξ̇(ζ) = fp

(
ξ(ζ),u,d(ζ)

)
, ξ(0) = ξ,∀d(ζ) ∈ D,∀ζ ∈ [0,∆ζ]

}
.

140

8.1.2 Reactive Locomotion Planning via Hierarchical Strategy

In order to be responsive to any changes in the environment, it is often necessary to predict

di�erent scenarios that could happen in the environment and include it in the design of overall

motion planning strategy.

De�nition 8.1 (Environment System). The environment can be modeled as a �nite transition

system:

Se , (E , Ie, Re, APe, Le), (8.8)

where E is a �nite set of environmental states, Re : E → E is a transition relation, Ie = E0 ⊆ E
is a set of initial states, APe is a set of atomic propositions, Le : E → 2APe is a labeling function

mapping the state to an atomic proposition.

The following de�nition of product system incorporates the external environment Se as the

model that generates uncontrollable exogenous inputs.

De�nition 8.2 (Product System). The product system of system SL and Se is a tuple:

Sprod , (Ξ,M× U, E , Rprod, ÃP , L̃), (8.9)

where Ξ,M, U are de�ned in (8.7), and E is a �nite set of uncontrollable environmental actions,

which is de�ned in (8.8) as the set of environmental states, Rprod : Ξ ×M× U × E → 2Ξ
is

the transition relation, ÃP is a set of atomic propositions, L̃ : Ξ → 2ÃP is a labeling function

mapping the state to an atomic proposition.

De�nition 8.3 (Execution of A Product System). An execution π of system Sprod is an in-

�nite sequence π = (ξ0,p0,u0, e0)(ξ1,p1,u1, e1)(ξ2,p2,u2, e2) · · · , where ξi ∈ Ξ, pi ∈ M,

ui ∈ U, and ei ∈ E for all i ∈ N. The word generated from π is wπ = L̃(ξ0)L̃(ξ1)L̃(ξ2) · · · .

The execution π is said to satisfy an LTL formula ϕ, if and only if the word wγ satis�es ϕ.

If all executions of Sprod satisfy ϕ, we say that Sprod satis�es ϕ, i.e., Sprod |= ϕ.

Planning and control of a complex robotic system as (8.6), which is high dimensional, con-

tains multiple control inputs, and is subject to environmental constraints, is often achieved via

hierarchical design [141]:

• The high-level planner works on an abstracted state space called keyframe state space Q.

A keyframe state q = (pcontact, ẋapex) ∈ Q of a locomotion system is in general a pair

of contact location pcontact and the apex state ẋapex when the CoM velocity reaches the

141

local minimal or maximal value. The planner determines the sequence of non-periodic

keyframe states and locomotion modes by the planning strategy

κh :M×Q× E →M×Q, (8.10)

• The low-level controller within each mode directly control system dynamics in local re-

gion in the state space so that the assumptions for the modeling of di�erent modes can

be satis�ed. A controller at this level is usually pre-designed and not considered in the

planning problem.

• The middle-level mode-transition controller guarantees the feasibility of mode switching

required by the planner. It also generate a control strategy κl that takes in the command

from the planner:

κl :M×Q× Ξ→ 2U. (8.11)

In this way, the overall control strategy de�ned as (2.7) for the locomotion planning problem

can be decomposed to a planning strategy (8.10) and a mode-transition control strategy (8.11).

Figure 8.2 shows the hierarchical framework of locomotion planning described above.

locomotion plant

switching
signal p

p

p

locomotion
template 1

locomotion
template N

mode p
1

N

contact decision
maker

control
input u

phase
space

trajectory

discretized
environment

action e

keyframe q

contact
config s

keyframe q

next

current

synthesized
controller

library

keyframe q current

measured CoM state

controller
execution

Figure 8.2: Hierarchical locomotion planner structure [141].

The speci�cations for the product system that cover the reactivity property is often given

in the assume-guarantee form [19]:

ϕ =
(
ϕe ⇒ (ϕq ∧ ϕs)

)
, (8.12)

where ϕe and ϕq, ϕs are propositions for the admissible environment actions, the keyframe

states, and the correct overall system behavior, respectively. In particular, ϕs speci�es the con-

ditions of mode switching.

142

The formula ϕv (v ∈ {e, q, s}) in (8.14) is expressed in the form

ϕv = ϕvinit

∧

i∈Isafety

�ϕvtrans,i

∧

i∈Igoal

�♦ϕvgoal,i, (8.13)

where ϕvinit, ϕ
v
trans,i, and ϕvgoal,i are propositional formulas that pose constraints to the initial

conditions, transitions, and goals, respectively.

Let the set of states E for the environment Se be

E , Eterrain ∪ Eemergency = {emd, ehd, emu, ehu} ∪ {etc-nc, etc-hc, eha, enp}, (8.14)

where the elements in Eterrain denote di�erent height terrain actions, as illustrated in Figure 8.1.

For instance, emd denotes moderatelyDownward terrain. The actions in Eemergency represent sud-

den events, i.e. terrainCrack-normalCeiling, terrainCrack-highCeiling, humanAppear, and narrow-
Passage.

Example 8.1 (Examples of formulas in ϕe). An example of the initial speci�cation of the envi-

ronment is

ϕeinit = ¬etc-nc ∧ ¬etc-hc ∧ ¬eha ∧ ¬enp,

which means the initial environment should not be tough situations as terrain crack in normal

or high ceiling, human appear, and narrow passages. The safety speci�cations will be given such

as “if the current environment action is terrainCrack-highCeiling, then the next environmental

action can not be terrainCrack-highCeiling, humanAppear, nor narrowPassage” with the equivalent

LTL form:

�
(
esc-hc ⇒ ¬(esc-hc ∧ eha ∧ enp)

)

To determine the sequence of locomotion modes, the set of robot actions corresponding to

di�erent modes is de�ned as follows:

F , {sli-aj, : ∀(i, j) ∈ Iindex}, (8.15)

where l and a are short for leg and arm, respectively, the set of contact limb relative positions is

Iindex = {(h, n), (h, h), (h, f), (d, h), (d, f), (d, d), (d, n), (n, f), (n, n)} with h, f, d and n repre-

sent hind, fore, dual and no contacts, respectively.

143

Example 8.2 (Example of ϕs). An example for the term ϕstrans of ϕs in response to varying-

height terrain Eterrain is speci�ed as

�
(

(emd ∨ emu)⇒ (pPIPM ∧ slh-an) ∨
(
pMCM ∧ (slh-ah ∨ slh-af)

))

∧
�(ehu ⇒ pMCM ∧ slh-ah)

∧
�(ehd ⇒ pMCM ∧ slh-af),

where slh-af , for example, means the legHindArmFore contact con�guration in the sense that the

robot’s hind leg and the fore arm are in contact for that action while the other two limbs are

not in contact.

The keyframe states consist of ordinary and special types:

Q := Qordinary ∪Qspecial ={qi-j-k, i ∈ Iordinary-behavior, ∀(j, k) ∈ Ilevel × Ilevel}
∪ {qi-j, i ∈ Ispecial-behavior, ∀j ∈ Ilevel} (8.16)

where Iordinary-behavior = {walk, brachiation} and Ispecial-behavior = {stop, hop, slide} are ordinary

and special behaviors, respectively. An apex velocity index j and a step length index k refer

to the set Qlevel = {s,m, l} whose elements are three di�erent keyframe levels: s (Small), m
(Medium) and l (Large). For instance, qwalk-s-l represents walkSmallVelocityLargeStep, a walking

keyframe with a small apex velocity, and a large step length.

Example 8.3 (Example for ϕq). One of the formulas for ϕqtrans,i in ϕq is:

�
(
© enp ⇒©(qslide-s ∨ qslide-m ∨ qslide-l)

)
,

which means that if there is a narrow passage, i.e., enp, then the next key frame state is qslide

relying on a speci�c apex velocity, regardless of the current q.

Details on the full set of speci�cations that consist the LTL speci�cation (8.12) can be found

in [141, Section 4].

Based on the above de�nitions, the locomotion planning problem can be described as:

Problem 8.1 (Contact-Based Reactive WBDL Planning). Given bipedal robot SL in (8.7) with a

set of initial condition Ξ0 ⊆ Ξ, environmental system Se in (8.8), and an LTL speci�cation ϕ in

the form of (8.12), synthesize a planning strategy (8.10) and a mode-transition control strategy

(8.11) such that the resulting execution π de�ned in De�nition 8.3 satis�es ϕ in the sense that

π |= ϕ for all initial conditions in Ξ0.

A two-player game problem can be formulated and analyzed to synthesize a planning strat-

egy over a high-level �nite abstract state spaceM×Q × E as illustrated in [141, Section 4].

The rest of the chapter will focus on the synthesis of the mode-transition control strategy for

the middle layer.

144

8.2 Robust Switching Between Locomotion Modes

Uncertainty is ubiquitous in the modeling of the WBDL and environment, e.g. sensor noise,

model inaccuracy, external disturbance, sudden environmental changes, contact surface geom-

etry uncertainty. As a result, commands from the symbolic task planner are possible unrealiz-

able for the low-level dynamics. Mismatches in real-time plan execution are not desired, and

hence the task of the middle layer is to verify if the transitions between two modes at certain

keyframe states can be achieved and construct a mode-transition strategy if possible.

The synthesis of the mode-transition strategy for every single walking step is performed on

the robust abstractions for the dynamics of two successive modes with respect to reachability

control speci�cations, which is given by the high-level planner. The �nite abstractions as well

as the robustness margin sets are constructed over the phase-space manifolds of the locomotion

for the sake of consistency with the dynamics.

Assuming the x and y axes can be decoupled, we focus on the the dynamics along x axis (the

dynamics along y axis is similar) and de�ne a mapping between the Euclidean and Riemmanian:

[
ζ
σ

]
= Zp(ξ) =

[
Zp,ζ(x, ẋ)
Zp,σ(x, ẋ)

]
(8.17)

where ζ is phase progression variable, σ is the tangent manifold, which can be used to measure

deviations from the nominal locomotion trajectory in the phase-space, andZp(ξ) is a nonlinear

mapping of the CoM state (x, ẋ) to the Riemannian space states for locomotion mode p. The

inverse mapping Zp is denoted by Z−1
p .

The speci�c mapping for each of the 6 locomotion modes are given in Appendix B.

8.2.1 Robustness Margin Sets in One Walking Step

Mode transitions usually take place in one walking step. A one walking step (OWS) is then

composed of two consecutive semi-step phase-space trajectories. The �rst semi-step trajectory

starts at the �rst keyframe state q1 and ends at the contact switch, which will be determined by

the mode-transition control strategy, and the second semi-step trajectory starts at the contact

switch and ends at the second keyframe state q2.

To guarantee that the motion planner yields plans that are robust to disturbances, we in-

troduce ε1 and ε2 as initial and �nal robustness margins in the one walking step, respectively

so that the neighborhood of nominal initial and �nal keyframe states q1 and q2 can also be

considered for mode transition. The formal de�nition of robustness margin sets is provided

below.

145

De�nition 8.4 (Robustness Margin Sets). Given initial and �nal keyframe states q1 and q2,

let ζ0 = Zp,ζ(q1), 0 = Zp,σ(q1), ζf = Zp,ζ(q2), and 0 = Zp,σ(q2), where Zp,ζ(·) and Zp,σ(·) are

given in (8.17). Also let ε1 = [δζε1 , δσε1] and ε2 = [δζε2 , δσε2]. The robustness margin set of q1

and q2 are

Bε1(q1) ,
{
Z−1
p (ζ, σ) | ζ ∈ [ζ0 − δζε1 , ζ0 + δζε1], σ ∈ [−δσε1 , δσε1]

}
, (8.18)

Bε2(q2) ,
{
Z−1
p (ζ, σ) | ζ ∈ [ζf − δζε2 , ζf + δζε2], σ ∈ [−δσε2 , δσε2]

}
, (8.19)

Remark 8.1. The keyframe states q1 and q2 and their robustness margin setsBε1(q1) andBε2(q2)
are de�ned in the Euclidean space while the margins ε1 and ε2 are in the phase space.

Figure 8.3 gives an intuition of how the robustness margin sets de�ned in a walking step.

Figure 8.3: One walking step with robustness margin sets. The horse shoe shape of the robust-

ness margin sets is the result of mapping from phase space to Euclidean space. The robustness

margins are shown in the upper right box. The green dot in a state trajectory is the point where

mode switching takes place.

Recall that the high-level planner chooses keyframe states from the set Q de�ned in (8.16).

These keyframe states represent the cells that are obtained by partitioning the robustness mar-

gin sets de�ned in De�nition 8.4. In our case, the ordinary locomotion behaviors (i.e., walk and

brachiation) comprise 9 keyframe states, respectively while the special locomotion behaviors

(i.e., stop, hop and slide) comprise 3 keyframe states, respectively. The goal of mode-transition

control synthesis is to determine the possible transitions between these keyframe states. The

construction of the set of possible transitions is shown in Figure 8.4.

146

ql-l

ql-n

qs-s

qn-s

ql-s

qs-l qn-l

qn-n

qs-n

ql-lqs-l qn-l

qn-n

qn-s

qs-s

qs-n
ql-n

ql-s

...

ql-l

ql-n

ql-s

qs-n

qs-s

qn-n

qn-s

qs-l qn-l

ql-l

ql-n

ql-s

qn-n

qn-s

qs-l qn-l

ql-l

ql-n

ql-s

qn-n

qs-n

qs-l qn-l
ql-l

qs-n

qs-s

ql-n

ql-s

qn-s

qs-s

qn-n

qn-s

qs-l qn-l

ql-l

ql-n

ql-s

qs-n

qs-s

qn-n

qn-s

qs-l qn-l

ql-l

ql-n

ql-s

qn-n

qn-s

qs-l qn-l

ql-l

ql-n

qs-s

qn-s

ql-s

qs-l qn-l

qn-n

qs-nqn-n

qs-l qn-l
ql-l

qs-n

qs-s

ql-n

ql-s

qn-s

5 neighbouring grids

Step 2: assignment of -neighbourhood grids

Step 1: decision-making on nominal keyframe pair

Step 3: solve for feasible robust transitions of all the assigned grids

...

......
ql-l

ql-n

ql-s

qs-n

qs-s

qn-n

qn-s

qs-l qn-l

ql-l

ql-n

ql-s

qs-n

qs-s

qn-n

qs-l qn-l

qn-s

...

5 neighbouring grids 8 neighbouring grids 3 neighbouring grids

qs-n

qs-s

qs-n

qs-s

...

Figure 8.4: Construction of a library of possible robust keyframe transitions. The set Q of

keyframe states is obtained by discritizing some neighborhood in the state space Ξ around nom-

inal setpoints. The mode-transition control synthesis veri�es the possibility of the transitions

between these keyframe states and generate corresponding mode-transition control strategy.

147

8.2.2 Mode-Transition Control Synthesis for One Walking Step

The goal of mode-transition control synthesis for one walking step is to solve the closed-loop

phase-space trajectories starting from the initial robustness margin setBε1(q1) and reaching the

�nal robustness margin set Bε2(q2) as de�ned in De�nition 8.4 while switch from a locomotion

mode p1 to mode p2. It is fair to consider one walking step as two sequential semisteps with

the �rst semistep in mode p1 and second in mode p2.

To complete the switching between two locomotion modes in one walking step, as shown

in Figure 8.3, the region Ξinter where the switching happens has to be determined. For the �rst

semistep, the region Ξinter can be treated as the target set that robot state is expected to reach

in �nite time, and the �nal robustness margin set Bε2(q2) is the target set to reach in the second

semistep. Hence, region Ξinter must lie in the overlap of the winning sets for both semisteps

with respect to reachability speci�cations.

Additionally, we assume that the function fp (for all p ∈M) in (8.6) is of a particular form:

fp(ξ,u,d) = gp(ξ) + hp(ξ)u+ d, ∀p ∈M, (8.20)

where gp is Lipschitz continuous and hp is bounded on Ξ for all p ∈M.

Consider one walking step transiting from keyframe state q1 to q2 with robustness mar-

gins ε1 and ε2, respectively. The locomotion mode has to switch from p1 to p2. Suppose that

Ξ1 ⊆ Ξ and Ξ2 ⊆ Ξ are two local regions where the �rst and second semistep takes place, re-

spectively. Based on the above discussion, we propose the following two-semistep reachability
control synthesis for a mode transition:

(i) Perform reachability control synthesis with precision ε2 (see algorithm (4.19) with (5.2)

as the implementation of P̂re) for the second semistep (under mode p2) in the state space

Ξ2. The reachability formula is ϕr2 = ♦G2, where L−1(G) = Bε2(q2) is the target set.

(ii) Determine the intermediate region Ξinter by

Ξinter =
{
ξ : ξ ∈Winfp2

(ϕr2) ∧ ‖Zp1,σ(ξ)−Zp1,σ(q1)‖∞ ≤ δσε1
}

(8.21)

(iii) Perform reachability control synthesis with precision ε1 for the �rst semistep (under

mode p1) in the state space Ξ2. The reachability speci�cation isϕr1 = ♦G1 withL−1(G1) =
Ξinter.

Since the winning set Winfp1
(ϕr1) of the �rst semistep is unknown before the determination

of Ξinter and by de�nition Ξinter ⊆Winfp1
(ϕr1), the set Ξinter can be de�ned as the intersection

148

of the winning set Winfp2
(ϕr2) and the tube centered at nominal state trajectory from the

initial keyframe state q1 bounded by the robustness margin δσε1 , i.e., (8.21). To make sure

the intersection is not always empty we need to choose Ξ1 and Ξ2 such that Ξ1 ∩ Ξ2 6= ∅. We

write the intermediate set as Ξinter((p1, p2), (q1, q2)) because Ξinter is dependent on the given

keyframe states q1, q2 and locomotion modes p1, p2.

The control strategy generated from the reachability control synthesis for two semisteps are

κ1 : Ξ1 → 2U
and κ2 : Ξ2 → 2U

. The control strategy for one walking step can be constructed

as

κ((p1, p2), (q1, q2), ξ) =

{
κp1(ξ) ξ ∈ Ξ1 \ Ξinter((p1, p2), (q1, q2)),

κp2(ξ) ξ ∈ Ξinter((p1, p2), (q1, q2)).

8.3 Simulation Results

8.3.1 Evaluation of Mode-Transition Control Strategy

Case I Let us �rst consider the transition between two PIPM modes, i.e., p1 = p2 = PIPM. For

the sake of simplicity, the PIPM dynamics in (8.4) is reformulated as

[
ẋ(ζ)
v̇x(ζ)

]
=

[
vx(ζ)

ω2
PIPM(x(ζ)− xfoot)

]
+

[
d1

d2

]
(8.22)

by assuming (τx, τy) = 0 and xfoot is a prede�ned constant. The continuous control input

ωPIPM ∈ [ω̄− δω, ω̄ + δω], where ω̄ is the nominal control input and δω is a prede�ned bound.

The disturbance d = (d1, d2) satis�es d1,2 ∈ Dr, where Dr ⊆ R2
is a bounded set. Hence (8.22)

satis�es (8.20).

Suppose that the high-level planner generates the parameters xfoot,1, xfoot,2 and ω̄ and two

nominal keyframe states. Let δζ = 2ms be the sampling time. The setting of the mode transition

problem for the considered one walking step is given in Table 8.1.

In this example, we use a precision ε = (0.005m, 0.005m/s) and sample the control space

with a granularity µ = 0.02rad/s. Given the setting above, we perform the two-semistep reach-

ability control synthesis. The computed winning sets are shown in Figure 8.5a. As the result

shows, the one-walking step reachability is realizable as long as the winning set overlaps (at

least partially) the initial and �nal robustness margin sets. Five simulated trajectories under

randomly-sampled bounded disturbances are shown as the black lines. The blue trajectory rep-

resents a trial su�ering a large disturbance, i.e., a velocity jump in the phase-space. Figure 8.5b

149

Table 8.1: Parameters of the PIPM-PIPM mode transition. q1 and q2 are the initial and �nal

keyframe states, respectively.

Parameters Values Parameters Values
q1 (0m, 0.5m/s) q2 (0.5m, 0.6m/s)
δζε1 0.05 δσε1 0.002
δζε1 0.05 δσε2 0.006

modes PIPM→ PIPM Dr (0.05m, 0.1m/s)
Ξp [−0.1m, 0.7m]× [0.1m/s, 1.2m/s] Uows [2rad/s, 4rad/s]

shows the change of the winning set under di�erent levels of the disturbance. The winning set

shrinks as the disturbance set increases because the synthesized controller needs to reach the

goal robust set against a larger set of disturbances.

Case II Consider another locomotion mode transition from the PIPM to PPM. Similarly, we can

simplify (8.5) to

[
ẋ(ζ)
v̇x(ζ)

]
=

[
vx(ζ)

−ω2
PPM(x(ζ)− xhand)

]
+

[
d1

d2

]
(8.23)

with the assumption of τx = τy = 0 and a prede�ned hand contact position xhand. Other

parameters are de�ned in Table 8.2.

Table 8.2: Parameters of the PIPM-PPM mode transition. q1 and q2 are the initial and �nal

keyframe states, respectively.

Parameters Values Parameters Values
q1 (0m, 0.5m/s) q2 (0.6m, 1.7m/s)
δσε1 0.002 δζε1 0.05
δσε2 0.06 δζε2 0.005

modes PIPM→ PPM Dr (0.15m, 0.3m/s)
Ξp [−0.1m, 0.7m]× [0.1m/s, 1.8m/s] Uows [2rad/s, 4rad/s]

To evaluate the performance of the control strategy generated by two-semistep reachabil-

ity control synthesis, we examine the success rate of reaching the goal robustness margin set

150

-0.2 -0.1 0 -0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

x [m]

x
[m

/s
]

(a) Controlled trajectories.
x

[m
/s

]

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x [m]

D = [0.1, 0.2]r

D = [0.09, 0.16]r

D = [0.07, 0.12]r

D = [0.05, 0.1]r

D = [0.01, 0.02]r

D = [0, 0]r

(b) Winning sets under disturbances.

Figure 8.5: Control synthesis results for the walking step from PIPM to PPM. (a) The shaded

yellow region represents the winning set of this walking step and the orange region is the inter-

mediate robustness margin set. The black trajectories are 5 simulated closed-loop trajectories.

(b) Comparison of winning sets under di�erent levels of disturbance.

through 50 simulation tests under di�erent granularities and bounded disturbances. In Fig-

ure 8.6a, each trial is run for the one walking step with PIPM to PPM mode transition. The

exerted disturbance in the simulation is the same as the one used in the controller synthesis

process. As shown in Figure 8.6a, all the trials reach the �nal robustness margin successfully.

We evaluate the e�ect of the control synthesis precision and the magnitude of disturbances

used in the controller synthesis process as shown in Figure 8.6b. Figure 8.6b shows 4 sets of

simulation results for di�erent control precisions ranging from 0.002 to 0.005. For each set of

simulations, the success rate increases as the modeled disturbance in the controller synthesis

increases, and it reaches 100% when the modeled disturbance matches the actual disturbance

Dr used in the simulation. If we compare the results for di�erent control synthesis precisions

under a same disturbance Di (i = 0, 1, 2, 3, 4), the success rate almost remains the same. This

is because we use the same disturbance for simulation and control analysis. In addition, it

can be observed that the success rates for all the synthesized controllers are greater than 97%,

even in the case no disturbance is considered in the controller synthesis. Moreover, under the

same disturbance Dr, the nominal phase-space planner with a �xed open-loop control input

only achieves a success rate of 29%. This huge discrepancy in success rate clearly shows the

advantage of using the proposed method in the middle-layer of control synthesis within the

planning framework.

151

-0.2 0 0.2 0.4 0.6 0.8

˙

x [m]

x
[m

/s
]

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

(a) 50 simulated trajectories.

granularity

s
u

c
c
e

s
s
 r

a
te

0.995

0.99

0.985

0.98

0.975

0.97

0.965

0.96

1

0.002 0.003 0.004 0.005

D0 = [0,0]
D1 = [0.01,0.02]
D2 = [0.05,0.1]
D3 = [0.07,0.12]
D4 = [0.1,0.2]

(b) Histogram of success rates.

Figure 8.6: Performance evaluation result for PIPM to PPM walking step. (a) All the 50 simula-

tion trails can reach the goal robustness margin set successfully. (b) 1000 trials are run for each

case with a speci�c precision and a bounded disturbance Dr = (0.1m, 0.2m/s).

8.3.2 Multi-Step Locomotion Transition

Now we simulate the closed-loop multi-step given the mode switching sequence generated by

the high-level planner:

PIPM→ PIPM→ PPM→ PIPM→ MCM→ PIPM→ PIPM

To enable the initial and �nal keyframe robustness margin sets to cover a su�ciently larger

phase space, we extend the default 3× 3 keyframe grid to a 5× 5 keyframe grid for each mode.

This allows the mode-transition control strategy to be applicable to a larger set of keyframe

states. For each locomotion mode transition, we synthesize all the possible control strategies

that reach the �nal keyframe robustness margin set under a bounded disturbance. We enumer-

ate all the combinations of the allowable locomotion mode pairs and generate all the reachabil-

ity control policies o�ine. These controllers are saved as a control library and are executed at

runtime according to the high-level decision and measured states under bounded disturbances.

Parameters used in this simulation as follows. The controller synthesis and execution pro-

cess use the same disturbance bound Dr = (0.05m, 0.1m/s). The full state space is Ξfull =
[−0.2m, 3.8m]× [0.2m/s, 1.9m/s]. The local state space of each walking step is chosen so that it

is su�ciently large to cover the space around the two keyframe states. A time step δζ = 0.02ms

is used for the abstraction construction of each walking step. The control inputs for PIPM, PPM

152

and MCM satisfy ωPIPM ∈ [2, 4], ωPPM ∈ [2, 4] and ωMCM ∈ [1, 3]. We obtain the sets of

sampled control values by a granularity of 0.02. The robustness margins of the phase space

manifolds are δσPIPM = 0.002, δζPIPM = 0.002; δσPPM = 0.04, δζPPM = 0.003; δσMCM = 0.15,

δζMCM = 0.9× 10−5
.

We perform the two-semistep reachability control synthesis for each walking step with the

precision (0.003m, 0.003m/s). The computational time is around 30s by average for synthesiz-

ing a reachability controller corresponding to each keyframe pair. Since we run 625 (i.e., 25×25)

times of such reachability control synthesis for each walking step, the time of generating all the

controller policies is approximately 90 mins for each walking step. In the simulation of these

six consecutive walking steps, all the local reachability control strategies are patched together

to cover the overall state space. The time for simulating a single closed-loop walking trajectory

is around 2s. As the results show in Figure 8.7, we simulate six di�erent trials with di�erent

initial conditions, i.e., starting from di�erent initial robustness margin sets. Each locomotion

trajectory is guaranteed to reach one of the robustness margin sets at the next walking step via

using the reachability controller from the control library.

x [m]

x
[m

/s
]

PIPM PIPM

PPM

PIPM MCM PIPM PIPM

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5

Figure 8.7: The state trajectories of multi-step mode transition under bounded disturbances.

153

Chapter 9

Conclusions and Future Work

Within the scope of control synthesis for nonlinear systems with temporal logic speci�cations,

the purpose of this research is to understand and bridge (if possible) the gap between two ways

of control synthesis from state-space point of view: the one based on analytical analysis of

system dynamics on a continuous state space and the one performed by designing computer

algorithms that operate on a discretized state space. To this end, we explored in this thesis

the possibility of being sound and complete in LTL control synthesis and introduced a concept

of robust completeness to capture the property of a control system that can tolerate numerical

errors, which is inevitable in set computation of continuous-state systems.

In this chapter, we summarize the main contributions in three aspects and also bring up

some related open questions worthwhile for future research.

Theoretical Results for General Dynamics

We showed that LTL control synthesis for general nonlinear dynamics can be made sound

and complete by using �xed-point algorithms without assuming any stability properties. Specif-

ically, the main theoretical contributions are:

(i) Based on the assumption that the system dynamics is determined by a continuous func-

tion in the system and control input spaces, we proved that the predecessor map Pre is

both open and closed. A property that is crucial for proving �xed-point characterizations

of winning sets for invariance and reachability speci�cations is also shown: countable set

intersections and unions of decreasing sequence of compact and open sets are distributive

for Pre, respectively.

154

(ii) For basic LTL formulas such as invariance, reachability and reach-and-stay that can for-

mulate regulation problems, we characterized the corresponding winning sets by �xed

points (sets) of iterative algorithms, which are based on the computation of predecessors,

directly over the continuous state space of the original nonlinear systems. Memoryless

control strategies can be constructed during �xed-point algorithms for the computation

of winning sets. Such �xed-point characterizations for in�nite-state systems are not as

straightforward as for �nite-state systems, which is commonly used in abstraction-based

methods. This is our soundness and completeness result.

(iii) Similar to the basic formulas, we provide a sound and complete algorithm for computing

the winning set with respect to a DBA-recognizable LTL formula for nonlinear systems

over the in�nite state space. As opposed to the control synthesis with respect to basic

LTL formulas, the resulting control strategies need �nite memories.

(iv) Approximation of predecessors is usually required for a concrete implementation of the

proposed algorithms, because the exact computation of predecessors are nontrivial under

nonlinear dynamics. We provided su�cient conditions for the approximation of prede-

cessors such that the control synthesis algorithms are sound and robustly complete in the

sense that control strategies can be found whenever the speci�cations can be realized for

the system with additional disturbance.

However, there are still some questions have not been answered:

• For reach-and-stay and DBA-recognizable LTL speci�cations, the robust completeness is
valid based on the assumption that the iterative control synthesis algorithms generate their
own �xed points. Can we derive a condition that is easier to check?

• Can we extend the method to any LTL formula that can only to translated into NBA? The
di�culty lies in the nondeterminism of the NBA. A possible solution is to convert the NBA
into a deterministic Rabin automaton (DRA). But how di�cult it is to extend the similar idea
to solving a Rabin game, which is more complex than a Büchi game?

Implementation and E�ciency

Practical implementation of the proposed conceptual algorithms is one of the major prob-

lems that this research is concerned with. In this aspect, the main contributions are highlighted

as follows:

155

(i) To deal with general nonlinearity, we proposed an interval implementation of the pro-

posed control synthesis algorithms, in which predecessors are approximated by unions of

intervals. The approximation procedure is carried out by integrating interval arithmetic

in a bisection scheme. Under this scheme, set approximation is re�ned according to both

speci�cations and system dynamics so that discretization is only performed on the region

where necessary. For any given precision, such interval-based algorithms are guaranteed

to be �nitely terminating.

(ii) We establish the criteria of choosing the precision control parameter in the interval ap-

proximation of predecessors so as to satisfy the conditions proposed for basic and general

LTL control problems. This shows that the LTL control synthesis can be made sound and

robustly complete in practice.

(iii) We extended the sound and robustly complete algorithms for solving LTL control syn-

thesis problems for nonlinear discrete-time systems to sampled-data systems. For this

purpose, we rely on bounded approximation of the reachable set of a given initial set

after one sampling step. This is achieved by computing Taylor expansion of the system

solution over one sampling period based on interval arithmetic. We derived the condition

for choosing the order of Taylor expansion in the interval approximation of reachable sets

such that the proposed algorithm is sound and robustly complete.

(iv) For the control synthesis with respect to DBA-recognizable LTL formulas, we proposed

a pre-processing procedure to reduce the computational complexity. The pre-processing

is performed on the graph form of the deterministic Büchi automaton in prior to control

synthesis.

(v) To show the e�ectiveness and e�ciency of our method compared with abstraction-based

methods in the literature, we analyze the complexities and the performances on bench-

marking examples for both approaches. The worst case complexity of our proposed

method is similar to the one of abstraction-based methods, but the experimental results

show that our method enjoys higher computational e�ciency.

Even though we have shown that, by using interval computation, the approximation of

winning sets can be lower bounded within an arbitrary precision, the question is still open

regarding to the convergence of the proposed method:

Can the inner approximations of the winning sets with respect to LTL speci�cations, such as
invariance, reachability, reach-and-stay, that are commonly used for the control of dynamical
systems converge to the real winning sets?

156

Applications

The third aspect we consider is how well the proposed method applies to solving real-world

control problems. Therefore, in this thesis, we studied examples drawn from di�erent practical

applications including the voltage regulation problem of boost DC-DC converters, the stabi-

lization problem of an inverted pendulum, the ROA estimation problem, the parallel parking

problem, and motion planning problems with respect to di�erent LTL speci�cations. In partic-

ular, we showed that the proposed formal control synthesis algorithms can be used to generate

a middle-layer control strategy that synergizes high-level plan and low-level control in solving

the reactive locomotion planning problem.

157

Bibliography

[1] R. Alur., C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorith-

mic approach to the speci�cation and veri�cation of hybrid systems. In Hybrid Systems,
pages 209–229. 1993.

[2] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Proceedings
of International Colloquium on Automata, Languages, and Programming (ICALP), pages

322–335. 1990.

[3] Aaron D. Ames, Xiangru Xu, Jessy W. Grizzle, and Paulo Tabuada. Control barrier func-

tion based quadratic programs for safety critical systems. IEEE Transactions on Automatic
Control, 62(8):3861–3876, 2017.

[4] David Angeli. A lyapunov approach to incremental stability properties. IEEE Transactions
on Automatic Control, 47(3):410–421, 2002.

[5] Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Introduction for Scien-
tists and Engineers. Princeton, 2008.

[6] Hervé Audren, Joris Vaillant, Abderrahmane Kheddar, Adrien Escande, Kunihiko

Kaneko, and Erika Yoshida. Model preview control in multi-contact motion-application

to a humanoid robot. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 4030–4035, 2014.

[7] Ebru Aydin Gol, Mircea Lazar, and Calin Belta. Language-guided controller synthesis for

linear systems. IEEE Transactions on Automatic Control, 59(5):1163–1176, 2014.

[8] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of Model
Checking. MIT press, 2008.

158

[9] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George

Pappas. Symbolic planning and control of robot motion. IEEE Robotics & Automation
Magazine, 14(1):61–70, 2007.

[10] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal Methods for Discrete-Time
Dynamical Systems, volume 89. Springer International Publishing, 2017.

[11] Dimitri P. Bertsekas. In�nite-time reachability of state-space regions by using feedback

control. IEEE Transactions on Automatic Control, 17(5):604–613, 1972.

[12] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume II. 2017.

[13] D.P. Bertsekas and I.B. Rhodes. On the minimax reachability of target sets and target

tubes. Automatica, 7(2):233–247, 1971.

[14] Amit Bhatia, Matthew R. Maly, Lydia E. Kavraki, and Moshe Y. Vardi. Motion planning

with complex goals. IEEE Robotics & Automation Magazine, 18(3):55–64, 2011.

[15] A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized control systems.

IEEE Transactions on Automatic Control, 47(4):546–563, 2002.

[16] F. Blanchini. Minimum-time control for uncertain discrete-time linear systems. In Pro-
ceedings of the 31st IEEE Conference on Decision and Control (CDC), pages 2629–2634, 1992.

[17] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999.

[18] Franco Blanchini. Ultimate boundedness control for uncertain discrete-time systems via

set-induced lyapunov functions. IEEE Transactions on Automatic Control, 39(2):428–433,

1994.

[19] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’Ar. Syn-

thesis of reactive(1) designs. Journal of Computer and System Sciences, 78(3):911–938,

2012.

[20] Mireille Broucke. A geometric approach to bisimulation and veri�cation of hybrid sys-

tems. In Proceedings of the 2nd International Workshop on Hybrid Systems: Computation
and Control, HSCC’99, pages 61–75, 1999.

[21] Mireille E. Broucke. Reach control on simplices by continuous state feedback. SIAM
Journal on Control and Optimization (SICON), 48(5):3482–3500, 2010.

159

[22] Mireille E. Broucke and Marcus Ganness. Reach control on simplices by piecewise a�ne

feedback. SIAM Journal on Control and Optimization (SICON), 52(5):3261–3286, 2014.

[23] J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by �nite-

state strategies. Transactions of the American Mathematical Society, 138:295, 1969.

[24] P.E. Caines and Y.J. Wei. The hierarchical lattices of a �nite machine. Systems & Control
Letters, 25(4):257–263, 1995.

[25] P.E. Caines and Yuan-Jun Wei. Hierarchical hybrid control systems: a lattice theoretic

formulation. IEEE Transactions on Automatic Control, 43(4):501–508, 1998.

[26] Xin Chen. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models. PhD

thesis, RWTH Aachen University, 2015.

[27] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Taylor model �owpipe con-

struction for non-linear hybrid systems. In Proceedings of Real-Time Systems Symposium,

pages 183–192, 2012.

[28] Xin Chen, Sriram Sankaranarayanan, and Erika Ábrahám. Under-approximate �owpipes

for non-linear continuous systems. In Proceedings of 2014 Formal Methods in Computer-
Aided Design (FMCAD), pages 59–66, 2014.

[29] Graziano Chesi. Estimating the domain of attraction for non-polynomial systems via LMI

optimizations. Automatica, 45(6):1536–1541, 2009.

[30] Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 1999.

[31] Pieter Collins. Optimal semicomputable approximations to reachable and invariant sets.

Theory of Computing Systems, 41(1):33–48, 2007.

[32] Pieter Collins and Alexandre Goldsztejn. The reach-and-evolve algorithm for reachability

analysis of nonlinear dynamical systems. Theoretical Computer Science, 223:87–102, 2008.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. Introduc-
tion to Algorithms. The MIT Press, 3rd edition, 2009.

[34] Sumanth Dathathri and Richard M Murray. Decomposing GR(1) games with singleton

liveness guarantees for e�cient synthesis. In Proceedings of the 56th IEEE Conference on
Decision and Control (CDC), pages 911–917, 2017.

160

[35] L. de Alfaro, T.A. Henzinger, and R. Majumdar. From veri�cation to control: dynamic

programs for omega-regular objectives. In Proceedings of 16th Annual IEEE Symposium
on Logic in Computer Science, pages 279–290, 2001.

[36] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms for

in�nite-state games. In Kim G. Larsen and Mogens Nielsen, editors, CONCUR 2001 –
Concurrency Theory, pages 536–550. Springer Berlin Heidelberg, 2001.

[37] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Éti-

enne Renault, and Laurent Xu. Spot 2.0 — a framework for ltl and ω-automata manipu-

lation. In Proceedings of the 14th International Symposium on Automated Technology for
Veri�cation and Analysis (ATVA’16), pages 122–129. Springer, 2016.

[38] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property spec-

i�cations for �nite-state veri�cation. In Proceedings of the 21st international conference
on Software engineering - ICSE ’99, pages 411–420, 1999.

[39] E. Allen Emerson and Chin-Laung Lei. E�cient model checking in fragments of the

propositional mu-calculus. In Proceedings of the 1st Annual IEEE Symposium on Logic in
Computer Science, pages 267–278, 1986.

[40] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy. In Proceedings
of 32nd Annual Symposium of Foundations of Computer Science, pages 368–377, 1991.

[41] Georgios E Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J Pappas. Temporal

logic motion planning for dynamic robots. Automatica, 45(2):343–352, 2009.

[42] T. Faulwasser, B. Kern, and R. Findeisen. Model predictive path-following for constrained

nonlinear systems. In Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) held jointly with 28th Chinese Control Conference (CCC), pages 8642–8647, 2009.

[43] B.A. Francis and W.M. Wonham. The internal model principle of control theory. Auto-
matica, 12(5):457–465, 1976.

[44] Emilio Frazzoli, Munther A. Dahleh, Emilio Frazzoli, Munther A Dahleh, and Eric Feron.

Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans-
actions on Robotics, 21(6):1077–1091, 2005.

[45] Laurent Fribourg and Romain Soulat. Control of Switching Systems by Invariance Analysis:
Application to Power Electronics. Wiley-ISTE, 2013.

161

[46] Sicun Gao, Soonho Kong, Wei Chen, and Edmund M. Clarke. Delta-complete analysis

for bounded reachability of hybrid systems. The Computing Research Repository (CoRR),
abs/1404.7171, 2014.

[47] Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In Proceedings of
the 13th International Conference on Computer-Aided Veri�cation (CAV), volume 52, pages

53–65, 2001.

[48] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple On-the-�y Automatic Veri�cation
of Linear Temporal Logic, pages 3–18. Springer US, Boston, MA, 1996.

[49] Antoine Girard, Gregor Gossler, and Sebti Mouelhi. Safety controller synthesis for incre-

mentally stable switched systems using multiscale symbolic models. IEEE Transactions
on Automatic Control, 61(6):1537–1549, 2016.

[50] Antoine Girard and George J. Pappas. Approximate bisimulations for constrained linear

systems. In Proceedings of the 44th IEEE Conference on Decision and Control (CDC) and
European Control Conference (ECC), pages 4700–4705, 2005.

[51] Antoine Girard and George J. Pappas. Approximate bisimulations for nonlinear dynami-

cal systems. In Proceedings of the 44th IEEE Conference on Decision and Control (CDC) and
European Control Conference (ECC), pages 684–689, 2005.

[52] Antoine Girard and George J. Pappas. Approximation metrics for discrete and continuous

systems. IEEE Transactions on Automatic Control, 52(5):782–798, 2007.

[53] Antoine Girard, Giordano Pola, and Paulo Tabuada. Approximately bisimilar symbolic

models for incrementally stable switched systems. IEEE Transactions on Automatic Con-
trol, 55(1):116–126, 2010.

[54] Laurent Granvilliers. On the combination of interval constraint solvers. Reliable Com-
puting, 7(6):467–483, 2001.

[55] Per-Olof Gutman and Michael Cwikel. Admissible sets and feedback control for discrete-

time linear dynamical systems with bounded controls and states. IEEE Transactions on
Automatic Control, 31(4):373–376, 1986.

[56] L.C.G.J.M. Habets, P.J. Collins, and J.H. Van Schuppen. Reachability and control synthesis

for piecewise-a�ne hybrid systems on simplices. IEEE Transactions on Automatic Control,
51(6):938–948, 2006.

162

[57] Esfandiar Haghverdi, Paulo Tabuada, and George J. Pappas. Bisimulation relations for

dynamical, control, and hybrid systems. Theoretical Computer Science, 342(2):229–261,

2005.

[58] Keliang He, Morteza Lahijanian, Lydia E Kavraki, and Moshe Y Vardi. Towards manipula-

tion planning with temporal logic speci�cations. In Proceedings of 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 346–352, 2015.

[59] Mohamed K. Helwa and Peter E. Caines. In-block controllability of a�ne systems on

polytopes. IEEE Transactions on Automatic Control, 62(6):2950–2957, 2017.

[60] Thomas A. Henzinger. Hybrid automata with �nite bisimulations. In Proceedings of
International Colloquium on Automata, Languages, and Programming (ICALP), pages 324–

335. 1995.

[61] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Multi-layered

abstraction-based controller synthesis for continuous-time systems. In Proceedings of the
21st International Conference on Hybrid Systems: Computation and Control, Part of CPS
Week, HSCC’18, pages 120–129, 2018.

[62] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Multi-layered

abstraction-based controller synthesis for continuous-time systems. In Proceedings of the
21st International Conference on Hybrid Systems: Computation and Control, Part of CPS
Week, HSCC’18, pages 120–129, 2018.

[63] Bronislaw Jakubczyk and Eduardo D. Sontag. Controllability of nonlinear discrete-time

systems: A lie-algebraic approach. SIAM Journal on Control and Optimization (SICON),
28(1):1–33, 1990.

[64] Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun, and Andrew Packard.

Control applications of sum of squares programming. In Proceedings of the 42nd IEEE
Conference on Decision and Control (CDC), volume 5, pages 4676–4681, 2003.

[65] Luc Jaulin. Applied Interval Analysis: with Examples in Parameter and State Estimation,
Robust Control and Robotics, volume 1. Springer Science & Business Media, 2001.

[66] Manuel Mazo Jr., Anna Davitian, and Paulo Tabuada. Pessoa: a tool for embedded con-

troller synthesis. In Proceedings of the 22nd International Conference on Computer-Aided
Veri�cation (CAV), pages 566–569, 2010.

163

[67] Eric C Kerrigan. Robust Constraint Satisfaction: Invariant Sets and Predictive Control. PhD

thesis, Department of Engineering, University of Cambridge, 2000.

[68] Mahmoud Khaled, Eric S Kim, Murat Arcak, and Majid Zamani. Synthesis of symbolic

controllers: A parallelized and sparsity-aware approach. In Proceedings of the 24th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2019.

[69] Hassan K Khalil. Nonlinear Systems. Prentice Hall, 2002.

[70] Eric S. Kim, Murat Arcak, and Majid Zamani. Constructing control system abstractions

from modular components. In Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control, Part of CPS Week, HSCC’18, pages 137–146, 2018.

[71] Marius Kloetzer and Calin Belta. Dealing with nondeterminism in symbolic control.

In Proceedings of the 11th International Conference on Hybrid Systems: Computation and
Control, Part of CPS Week, HSCC’08, pages 287–300. 2008.

[72] Marius Kloetzer and Calin Belta. A fully automated framework for control of linear

systems from temporal logic speci�cations. IEEE Transactions on Automatic Control,
53(1):287–297, 2008.

[73] Ilya Kolmanovsky and Elmer G. Gilbert. Theory and computation of disturbance invari-

ant sets for discrete-time linear systems. Mathematical Problems in Engineering, 4(4):317–

367, 1998.

[74] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dreach: δ-reachability analysis

for hybrid systems. In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 200–205, 2015.

[75] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

[76] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-logic-based

reactive mission and motion planning. IEEE Transactions on Robotics, 25(6):1370–1381,

2009.

[77] Shengbo Li, Keqiang Li, Rajesh Rajamani, and Jianqiang Wang. Model predictive multi-

objective vehicular adaptive cruise control. IEEE Transactions on Control Systems Tech-
nology, 19(3):556–566, 2011.

164

[78] Yinan Li and Jun Liu. Computing maximal invariant sets for switched nonlinear sys-

tems. In Proceedings of 2016 IEEE Conference on Computer-Aided Control System Design
(CACSD), pages 862–867, 2016.

[79] Yinan Li and Jun Liu. An interval analysis approach to invariance control synthesis for

discrete-time switched systems. In Proceedings of the 55th IEEE Conference on Decision
and Control (CDC), pages 6388–6394, 2016.

[80] Yinan Li and Jun Liu. Invariance control synthesis for switched nonlinear systems: An

interval analysis approach. IEEE Transactions on Automatic Control, 63(7):2206–2211,

2018.

[81] Yinan Li and Jun Liu. Robustly complete reach-and-stay control synthesis for switched

systems via interval analysis. In Proceedings of 2018 American Control Conference
(ACC’18), pages 2350–2355, 2018.

[82] Yinan Li and Jun Liu. Robustly complete synthesis of memoryless controllers for nonlin-

ear systems with reach-and-stay speci�cations. arXiv:1802.09082, 2018.

[83] Yinan Li and Jun Liu. ROCS: A robustly complete control synthesis tool for nonlinear

dynamical systems. In Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control, Part of CPS Week, HSCC’18, pages 130–135, 2018.

[84] Yinan Li, Jun Liu, and Necmiye Ozay. Computing �nite abstractions with robustness

margins via local reachable set over-approximation. IFAC-PapersOnLine, 48(27):1–6, 2015.

[85] Jun Liu. Robust abstractions for control synthesis: Completeness via robustness for

linear-time properties. In Proceedings of the 20th International Conference on Hybrid Sys-
tems: Computation and Control, Part of CPS Week, HSCC’17, pages 101–110, 2017.

[86] Jun Liu, N. Ozay, U. Topcu, and R.M. Murray. Synthesis of reactive switching protocols

from temporal logic speci�cations. IEEE Transactions on Automatic Control, 58(7):1771–

1785, 2013.

[87] Jun Liu and Necmiye Ozay. Finite abstractions with robustness margins for temporal

logic-based control synthesis. Nonlinear Analysis: Hybrid Systems, 22:1–15, 2016.

[88] David Q. Mayne. Model predictive control: Recent developments and future promise.

Automatica, 50(12):2967–2986, 2014.

[89] Robert McNaughton. In�nite games played on �nite graphs. Annals of Pure Applied Logic,
65(2):149–184, 1993.

165

[90] Bill Messner and Dawn Tilbury. Inverted pendulum: System model-

ing. http://ctms.engin.umich.edu/CTMS/index.php?example=
InvertedPendulum§ion=SystemModeling, 2014.

[91] Pierre-Jean Meyer and Dimos V. Dimarogonas. Hierarchical decomposition of ltl synthe-

sis problem for nonlinear control systems. IEEE Transactions on Automatic Control, pages

1–1, 2019.

[92] Ramon E Moore. Interval Analysis. Prentice-Hall, 1966.

[93] Sebti Mouelhi, Antoine Girard, and Gregor Gössler. CoSyMA: a tool for controller syn-

thesis using multi-scale abstractions. In Proceedings of the 16th International Conference
on Hybrid Systems: Computation and Control, Part of CPS Week, HSCC’13, pages 83–88,

2013.

[94] Nedialko S. Nedialkov, Kenneth R. Jackson, and John D. Pryce. An e�ective high-order

interval method for validating existence and uniqueness of the solution of an ivp for an

ode. Reliable Computing, 7(6):449–465, 2001.

[95] N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. Validated solutions of initial value

problems for ordinary di�erential equations. Applied Mathematics and Computation,

105(1):21–68, 1999.

[96] Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D Ames, Jessy W

Grizzle, Necmiye Ozay, Huei Peng, and Paulo Tabuada. Correct-by-construction adap-

tive cruise control: Two approaches. IEEE Transactions on Control System Technology,

24(4):1294–1307, 2016.

[97] Petter Nilsson, Omar Hussien, Yuxiao Chen, and et al. Preliminary results on correct-by-

construction control software synthesis for adaptive cruise control. In Proceedings of the
53rd IEEE Conference on Decision and Control (CDC), 2014.

[98] Petter Nilsson, Necmiye Ozay, and Jun Liu. Augmented �nite transition systems as ab-

stractions for control synthesis. Discrete Event Dynamic Systems, 27(2):301–340, 2017.

[99] Melkior Ornik, Miad Moarref, and Mireille E. Broucke. An automated parallel parking

strategy using reach control theory. IFAC-PapersOnLine, 50(1):9089–9094, 2017.

[100] George J. Pappas. Bisimilar linear systems. Automatica, 39(12):2035–2047, 2003.

166

http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling

[101] George J. Pappas and Shankar Sastry. Towards continuous abstractions of dynamical

and control systems. In Panos J. Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry,

editors, Hybrid Systems IV, pages 329–341. Springer Berlin Heidelberg, 1997.

[102] Gilberto Pin and Thomas Parisini. On the robustness of nominal nonlinear minimum-

time control and extension to non-robustly controllable target sets. IEEE Transactions on
Automatic Control, 59(4):863–875, 2014.

[103] Erion Plaku and Sertac Karaman. Motion planning with temporal-logic speci�cations:

Progress and challenges. AI Communications, 29(1):151–162, 2015.

[104] Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In

Automata, Languages and Programming. ICALP 1989. Lecture Notes in Computer Science,
volume 372, pages 652–671. 1989.

[105] Giordano Pola, Antoine Girard, and Paulo Tabuada. Approximately bisimilar symbolic

models for nonlinear control systems. Automatica, 44(10):2508–2516, 2008.

[106] Giordano Pola and Paulo Tabuada. Symbolic models for nonlinear control systems: Al-

ternating approximate bisimulations. SIAM Journal on Control and Optimization (SICON),
48(2):719–733, 2009.

[107] S.Joe Qin and Thomas A. Badgwell. A survey of industrial model predictive control

technology. Control Engineering Practice, 11(7):733–764, 2003.

[108] S.V. Rakovic, E.C. Kerrigan, D.Q. Mayne, and J. Lygeros. Reachability analysis of discrete-

time systems with disturbances. IEEE Transactions on Automatic Control, 51(4):546–561,

2006.

[109] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event pro-

cesses. SIAM Journal on Control and Optimization (SICON), 25(1):206–230, 1987.

[110] Nacim Ramdani and Nedialko S. Nedialkov. Computing reachable sets for uncertain non-

linear hybrid systems using interval constraint-propagation techniques. Nonlinear Anal-
ysis: Hybrid Systems, 5(2):149–162, 2011.

[111] Stefan Ratschan. Safety veri�cation of non-linear hybrid systems is quasi-decidable. For-
mal Methods in System Design, 44(1):71–90, 2014.

[112] Stefan Ratschan and Zhikun She. Safety veri�cation of hybrid systems by constraint

propagation-based abstraction re�nement. ACM Transactions on Embedded Computing
Systems, 6(1):8, 2007.

167

[113] Gunther Reissig, Alexander Weber, and Matthias Rungger. Feedback re�nement rela-

tions for the synthesis of symbolic controllers. IEEE Transactions on Automatic Control,
62(4):1781 – 1796, 2017.

[114] Michael Rinehart, Munther A. Dahleh, Dennis Reed, and Ilya Kolmanovsky. Suboptimal

control of switched systems with an application to the disc engine. IEEE Transactions on
Control System Technology, 16(2):189–201, 2008.

[115] R Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis. Springer, 2009.

[116] Matthias Rungger, Manuel Mazo Jr., and Paulo Tabuada. Speci�cation-guided controller

synthesis for linear systems and safe linear-time temporal logic. In Proceedings of the 16th
International Conference on Hybrid Systems: Computation and Control, Part of CPS Week,
HSCC’13, pages 333–342, 2013.

[117] Matthias Rungger and Paulo Tabuada. Computing robust controlled invariant sets of

linear systems. IEEE Transactions on Automatic Control, 62(7):3665–3670, 2017.

[118] Matthias Rungger and Majid Zamani. SCOTS: a tool for the synthesis of symbolic con-

trollers. In Proceedings of the 19th International Conference on Hybrid Systems: Computa-
tion and Control, Part of CPS Week, HSCC’16, pages 99–104, 2016.

[119] Paulo Tabuada. An approximate simulation approach to symbolic control. IEEE Transac-
tions on Automatic Control, 53(6):1406–1418, 2008.

[120] Paulo Tabuada. Controller synthesis for bisimulation equivalence. System & Control
Letters, 57(6):443–452, 2008.

[121] Paulo Tabuada. Veri�cation and Control of Hybrid Systems: A Symbolic Approach. Springer

Science & Business Media, 2009.

[122] Paulo Tabuada and George J. Pappas. Model checking LTL over controllable linear sys-

tems is decidable. In Proceedings of the 6th International Conference on Hybrid Systems:
Computation and Control, Part of CPS Week, HSCC’03, pages 498–513, 2003.

[123] Paulo Tabuada and George J Pappas. Linear time logic control of discrete-time linear

systems. IEEE Transactions on Automatic Control, 51(12):1862–1877, 2006.

[124] Wolfgang Thomas. In�nite games and veri�cation. In Proceedings of the 14th International
Conference on Computer-Aided Veri�cation (CAV), Lecture Notes in Computer Science,

pages 58–65. Springer Berlin Heidelberg, 2002.

168

[125] B. Tibken and O. Hachicho. Estimation of the domain of attraction for polynomial sys-

tems using multidimensional grids. In Proceedings of the 39th IEEE Conference on Decision
and Control (CDC), volume 4, pages 3870–3874, 2000.

[126] Ufuk Topcu, Andrew Packard, and Peter Seiler. Local stability analysis using simulations

and sum-of-squares programming. Automatica, 44(10):2669–2675, 2008.

[127] Ufuk Topcu, Andrew K. Packard, Peter Seiler, and Gary J. Balas. Robust region of attrac-

tion estimation. IEEE Transactions on Automatic Control, 55(1):137–142, 2010.

[128] Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, and Joshua B. Tenenbaum. Di�eren-

tiable physics and stable modes for tool-use and manipulation planning - extended ab-

tract. In Proceedings of the 28th International Joint Conference on Arti�cial Intelligence,
pages 6231–6235, 2019.

[129] Harry Trentelman, Anton A. Soorvogel, and Malo Hautus. Control Theory for Linear
Systems. Springer-Verlag London, 2001.

[130] Harry L. Trentelman, Anton A. Stoorvogel, and Malo Hautus. Tracking and regulation,

pages 195–209. Springer London, 2001.

[131] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for
Concurrency. Lecture Notes in Computer Science, volume 1043, pages 238–266. Springer

Berlin Heidelberg, 1996.

[132] Cristian Ioan Vasile and Calin Belta. Reactive sampling-based temporal logic path plan-

ning. In Proceedings of IEEE International Conference on Robotics and Automation, vol-

ume 53, pages 4310–4315, 2014.

[133] Jian Wan, Josep Vehí, Ningsu Luo, and Pau Herrero. Control of constrained nonlinear

uncertain discrete-time systems via robust controllable sets: a modal interval analysis

approach. ESAIM: Control, Optimisation and Calculus of Variations (COCV), 15(1):189–

204, 2009.

[134] Peter Wieland and Frank Allgöwer. Constructive safety using control barrier functions.

IFAC Proceeding, 40(12):462–467, 2007.

[135] Eric M. Wol�, Ufuk Topcu, and Richard M. Murray. Automaton-guided controller syn-

thesis for nonlinear systems with temporal logic. In Proceedings of 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 4332–4339, 2013.

169

[136] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding horizon tem-

poral logic planning. IEEE Transactions on Automatic Control, 57(11):2817–2830, 2012.

[137] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M. Mur-

ray. TuLiP: a software toolbox for receding horizon temporal logic planning. In Proceed-
ings of the 14th International Conference on Hybrid Systems: Computation and Control, Part
of CPS Week, HSCC’11, pages 313–314, 2011.

[138] Bai Xue, Zhikun She, and Arvind Easwaran. Under-approximating backward reachable

sets by polytopes. In Proceedings of the 28th International Conference on Computer-Aided
Veri�cation (CAV), pages 457–476, 2016.

[139] Majid Zamani, Giordano Pola, Manuel Mazo Jr., and Paulo Tabuada. Symbolic models for

nonlinear control systems without stability assumptions. IEEE Transactions on Automatic
Control, 57(7):1804–1809, 2012.

[140] Ye Zhao, Benito R Fernandez, and Luis Sentis. Robust optimal planning and control of

non-periodic bipedal locomotion with a centroidal momentum model. The International
Journal of Robotics Research, 36(11):1211–1242, 2017.

[141] Ye Zhao, Yinan Li, Luis Sentis, Ufuk Topcu, and Jun Liu. Reactive task and mo-

tion planning for robust whole-body dynamic locomotion in constrained environments.

arXiv:1811.04333, 2018.

[142] Wieslaw Zielonka. In�nite games on �nitely coloured graphs with applications to au-

tomata on in�nite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

170

APPENDICES

171

Appendix A

ROCS: A Tool for Robustly Complete
Control Synthesis

This appendix presents ROCS, which is an algorithmic control synthesis tool for general discrete-

time or sampled-data systems. It is based on the theoretical results in this thesis. At the core of

ROCS is the interval branch-and-bound scheme with a precision control parameter that re�ects

the robustness of the realizability of the speci�cation.

As opposed to other formal control synthesis tools [118, 93, 66, 137] the distinct features of

ROCS include:

• Synthesis is performed directly on the continuous state space, without having to abstract

the system into a �nite-state model.

• Synthesis algorithms are sound and robustly complete in the sense that control strategies

can be found whenever the given speci�cation is robustly realizable [80]. This is similar

to what dReach [74] o�ers for bounded reachability analysis, but in the context of control

synthesis.

• Parameter setting is simple and �exible. ROCS generates partition-based control strate-

gies, where the partitions are adaptively re�ned with respect to both the dynamics and

given speci�cations. The precision of a partition is controlled by a single parameter,

which can be easily con�gured by the user. By setting di�erent values of this parameter,

ROCS can be used for robustness analysis. Furthermore, ROCS allows one to use multiple

and variable precisions to expedite computation.

• It currently supports a wider class of LTL speci�cations for the control synthesis purpose.

172

The tool is implemented as a C++ library providing algorithms, as well as their interface to

matlab, for the proposed speci�cation-guided control synthesis via interval computation. The

source code and examples can be downloaded from: https://git.uwaterloo.ca/hybrid-systems-

lab/rocs.

The description of the initial version of ROCS can be found in [83], and here we present

ROCS in its current format.

A.1 Design and Structure

ROCS

Control

Synthesis

Solver

System

Templates

Winning

Set

Control

Table

Interval Paver

Matlab Interface

Dynamics

Speci�cation

Simulation

Internals

Flow Taylor

Interval

Externals

Armadillo

Boost

Figure A.1: The architecture of ROCS.

Figure A.1 shows the current architecture of ROCS. The user input includes system dynamics
and speci�cations of a speci�c control synthesis problem. ROCS is composed of 6 core modules:

• System Templates de�nes di�erent system types including discrete-time systems

(2.2), discrete-time switched systems (3.6), and continuous-time systems (7.1). It mounts

the user input Dynamics to the corresponding system template.

173

• Flow Taylor works as a wrapper of the continuous-time dynamics (i.e., ODE) and

produces reachable sets of the ODE in one sampling time.

• Control Synthesis Solver is the core module that integrates di�erent control

synthesis algorithms, which operate on Interval Paver. It accesses to system dy-

namics and Specification speci�ed by the user.

• Interval Paver is a binary tree data structure that represent the interval partition of

the system state space or S-domains in Chapter 6. The information of Winning Set
and Control Table, which is the form of control strategy, is also contained in this

structure.

• Matlab Interface is designed to convert the data representing the winning set and

control strategy to Matlab data format.

• Interval is the basic data structure that computation relies on.

Two external libraries Armadillo1
and Boost2

are used in the design of the internal

modules Flow Taylor and Interval for handling linear operations and boolean valued

vectors, respectively.

A.2 Usage

To solve a control synthesis problem using ROCS, the user needs to provide:

• an interval inclusion function of the discrete-time system or the ODEs of the continuous-

time system to be controlled, and

• a main program that de�nes the control problem and executes control synthesis.

To manage a control synthesis process, the user has to write a main function for each con-

trol problem. Figure A.2 is a sample main function coded with the invariance control synthesis

work�ow of a boost DC-DC converter in Section 5.5.1.

First, in the main function, the state and input spaces are speci�ed by their lower and upper

bounds. Next, after loading the customized dynamics, a control problem will be instantiated as

1
http://arma.sourceforge.net/

2
https://www.boost.org/

174

,

1 #include "dcdc.hpp"
2 int main()
3 {
4 /* set the state space */
5 double xlb[] = {-2, 0.70};
6 double xub[] = {2, 1.50};
7

8 /* define the control system */
9 rocs::DTSwSys<dcde> dcdcInv("dcdc", tau, dcde::n, dcde::m);

10 dcdcInv.init_workspace(xlb, xub);
11

12 /* set the specifications */
13 double glb[] = {1.15, 1.09};
14 double gub[] = {1.55, 1.17};
15

16 /* solve the problem */
17 rocs::CSolver solver(&dcdcInv);
18 solver.init(rocs::GOAL, glb, gub);
19 solver.init_goal_area();
20

21 solver.invariance_control(&dcdcInv, 0.001, rocs::RELMAXG);
22 solver.print_controller_info();
23

24 /* save the problem data and the solution */
25 rocs::matWriter wtr("data_dcdcInv.mat");
26 wtr.open();
27 wtr.write_problem_setting(dcdcInv, solver);
28 wtr.write_sptree_controller(solver);
29 wtr.close();
30

31 return 0;
32 }

Figure A.2: A sample main function for the invariance control synthesis of a boost DC-DC

converter. A partition precision of 0.001 and the relative bisection type RELMAXG are used

when calling invariance_control, which is a member function of CSolver.

175

speci�ed by the user. For example, a switched system template DTSwSys, which is de�ned in

the �le system.hpp, is used for the boost DC-DC converter to create the control problem

dcdcInv in Figure A.2. The dynamics of the converter is provided in another �le dcdc.hpp
(shown in Figure A.3). After the target sets are de�ned, a solver (aCSolver object) is created to

attach to the problem and gradually re�nes the the partition (an interval_paver object) of

the system state space under the corresponding control synthesis algorithm. Finally when the

iteration terminates, in order to test and visualize the control performance, the user can write

the entire case information, including system and speci�cation setups, and control strategy to

.mat �les. Utility functions for Matlab display are provided under the matlab folder of the

ROCS package.

To perform control synthesis, the user chooses an algorithm provided by theCSolver class

according to the control objective. For example, in Figure A.2, the invariance_control
algorithm is used. Other available algorithms include reachability_control, buchi,

cobuchi, and Algorithm 6.1 and 6.2.

These algorithms take three types of arguments:

• a precision parameter for control synthesis,

• a bisection type (choosing from RELMAXW, RELMAXG or ABSMAX), and

• a boolean indicating variable or �xed precision.

The precision control parameter determines the precision of the resulting partition and is re-

lated to the robustness margin of the speci�cation (see [80, 81]). The bisection type indicates

whether to subdivide an interval along the dimension of the greatest absolute or relative width

to the state space/target area.

For speci�cations related to reachability, it is usually more e�cient to use a variable preci-

sion (by setting the boolean argument to be true). For detailed descriptions and usage of the

parameters of each algorithm, the user may refer to the documentation of the CSolver class.

In the package, we provide complete sets of examples under the subfolder example of the

repository, including interval inclusion functions, main program �les, and �les for Matlab sim-

ulation, to show how to use ROCS for control synthesis. These examples have been illustrated

in Chapter 5, 6, and 8:

• dcdc: invariance and reach-and-stay control of a boost DC-DC converter.

• car : motion planning problems considered in Section 5.5.3 and Examples 6.4 and 6.5 in

Chapter 6, and the parallel parking problem in Section 5.5.2.

176

,

1 /* Parameters of the model */
2 const double tau = 0.5;
3 const double xc = 70.0;
4 const double xl = 3.0;
5 const double rc = 0.005;
6 const double rl = 0.05;
7 const double r0 = 1.0;
8 const double vs = 1.0;
9

10 arma::mat I = arma::eye<arma::mat>(2, 2);
11 arma::vec b = {vs/xl, 0};
12 arma::mat A1 = {{-rl/xl, 0}, {0, -1/(xc*(rc+r0))}};
13 arma::mat F1 = arma::expmat(A1 * tau);
14 arma::vec g1 = arma::inv(A1) * (F1 - I) * b;
15 arma::mat A2 = { {(-1/xl)*(rl+r0*rc/(r0+rc)),(-1/xl)*(r0/(r0+rc))}, {(1/xc)

(r0/(r0+rc)),(-1/xc)(1/(r0+rc))} };
16 arma::mat F2 = arma::expmat(A2 * tau);
17 arma::vec g2 = arma::inv(A2) * (F2 - I) * b;
18

19 /* Discrete-time dynamics of the boost DCDC converter */
20 struct dcde {
21 static const int n = 2; // state dimension
22 static const int m = 2; // number of modes
23

24 /**
25 * Constructors:
26 * real-valued (arma::vec) and interval-valued (rocs::ivec)
27 * @param[out] y the next state after the sampling time.
28 * @param[in] x the current state.
29 * @param[in] m the mode.
30 */
31 dcde(rocs::ivec &y, const rocs::ivec &x, const int m) {
32 switch (m) {
33 case 1:
34 y = linmap(F1, g1, x);
35 break;
36 case 2:
37 y = linmap(F2, g2, x);
38 break;
39 default:
40 break;
41 }
42 }
43 };

Figure A.3: The header �le dcdc.hpp containing the dynamics of a boost DC-DC converter.

177

• ipdl: the problem of regulating an inverted pendulum to the upright position (Section

7.3.2).

• temp: control the room temperature (4-mode system) to a desired temperature (a setpoint)

and keep the temperature around the setpoint.

• vdp: estimation of the ROA for Van der Pol equations (Section 7.3.1).

• locomotion: the simulations given in Chapter 8.

The future development of ROCS will focus on:

• Implement the interface between user input and the actual control synthesis so that the

user does not have to write compatible C++ �les to perform control synthesis.

• Improve the computational e�ciency by designing a more proper data structure or search-

ing algorithm.

178

Appendix B

Euclidean-to-Riemmannian Mapping for
Locomotion Modes

Closed-form solutions of the phase-space manifolds are required to de�ne the robustness mar-

gin sets in De�nition 8.4. The followings are the closed-form solutions the locomotion modes

presented in Section 8.1.1. A detailed derivation can be found in [140].

Proposition B.1 (PIPM phase-space tangent manifold). Given the PIPM mode de�ned in

(8.4) with initial conditions (x0, ẋ0) = (xfoot, ẋapex) and known foot placement xfoot, the phase-

space tangent manifold is characterized by the states (x, ẋ, xfoot, ẋapex) such that

σ(x, ẋ, xfoot, ẋapex) =
ẋ2

apex

ω2
PIPM

(
ẋ2 − ẋ2

apex − ω2
PIPM(x− xfoot)

2
)
, (B.1)

where σ denotes the Riemannian distance to the nominal phase-space manifold i.e., σ = 0).

Proposition B.2 (PIPM phase-space cotangent manifold). Let ζ0 be a nonnegative scaling

value representing the initial phase of a cotangent manifold. Given the PIPM in (8.4) and a

speci�c initial state (x0, ẋ0) di�erent from the keyframe (xfoot, ẋapex), the cotangent manifold

is characterized by the states (x, ẋ, x0, ẋ0) such that

ζ(x, ẋ, x0, ẋ0) = ζ0(
ẋ

ẋ0

)ω
2
PIPM

x− xfoot

x0 − xfoot

, (B.2)

where ζ0 is chosen as the phase progression value at the keyframe state in this study.

This cotangent manifold represents the arc length along the tangent manifold σ in Eq. (B.1).

We use this cotangent manifold to quantify the length of a phase-space robustness margin.

179

Detailed derivations of these two closed-form solutions above, i.e., σ(x, ẋ, xfoot, ẋapex) = 0 and

ζ(x, ẋ, x0, ẋ0) = 0, are provided in [140].

Proposition B.3 (PPM phase-space tangent manifold). Given the PPM in (8.23) with ini-

tial conditions (x0, ẋ0) = (xfoot, ẋapex) and known arm placement xfoot, the PPM phase-space

tangent manifold is de�ned as

σ(x, ẋ, ẋapex, xfoot) =
ẋ2

apex

−ω2
PPM

(
ẋ2 − ẋ2

apex + ω2
PPM(x− xfoot)

2
)
, (B.3)

Compared to the PIPM tangent manifold in Proposition B.1, the PPM tangent manifold has

a negative asymptote slope square, i.e., −ω2
PPM. Thus, the tangent manifold with σ > 0 locates

beneath the nominal σ = 0 tangent manifold. This property is in contrast to that of the PIPM

tangent manifold.

Proposition B.4 (PPMphase-space cotangentmanifold). Given the PPM in (8.23), the PPM

cotangent manifold is

ζ = ζ0(
ẋ

ẋ0

)−ω
2
PPM

x− xfoot

x0 − xfoot

, (B.4)

Proposition B.5 (MCM phase-space tangent manifold). Given the MCM with a constant

acceleration ωMCM (i.e., the control input), an initial condition (x0, ẋ0) = (xfoot, ẋapex), and a

known foot placement xfoot, the MCM phase-space tangent manifold is

σ(x, ẋ, xfoot, ẋapex) = 2ωMCM(x− xapex)− (ẋ2 − ẋ2
apex), (B.5)

where σ = 0 represents the nominal phase-space tangent manifold.

Proposition B.6 (MCMphase-space cotangentmanifold). Given the MCM with a constant

acceleration and initial conditions (x0, ẋ0) = (xfoot, ẋapex) and known foot placement xfoot, the

phase-space cotangent manifold is

ζ(x, ẋ, xfoot, ẋapex) = ωMCM · ln(
ẋ

ẋapex

)− (x− xfoot), (B.6)

The phase-space manifolds of the hopping model are trivial since its tangent phase-space

manifold is a horizontal line. The stop-launch model and sliding model have similar phase-space

manifolds (i.e., parabolic trajectories) as those of the multi-contact model since all of them has

a constant sagittal acceleration. Their derivations are omitted for brevity.

180

	List of Figures
	List of Tables
	Acronyms
	List of Symbols
	Introduction
	Motivation
	Thesis Overview

	Problem Formulation
	Control System
	Transition System
	Control System as Transition System

	Linear Temporal Logic
	Control Synthesis Problem
	Overview of Control Synthesis Approach
	Abstraction-Based Control
	Specification-guided control

	Preliminaries for Set-Theoretic Control Synthesis
	The Pontryagin Difference
	Set Convergence
	Predecessor

	Robustly Complete Invariance and Reachability Control
	Invariance Control
	Maximal Controlled Invariant Set
	Robust Completeness

	Reachability Control
	Robustly Backward Reachable Set
	Robust Completeness

	Reach-and-Stay Control
	Summary

	Robust Completeness via Interval Analysis
	Interval Analysis
	Bounded Approximation of Predecessors
	Finite Control Values
	Infinite Control Values

	Finite Termination and Robust Completeness
	Finite Termination
	Robust Completeness Based on Interval Partitions

	Complexity Analysis
	Experiments on Benchmarking Examples
	Boost DC-DC Converter
	Parallel Parking
	Motion Planning
	Comparison on Performance

	Convergence in Set Approximations
	Summary

	Robustly Complete Control Synthesis with LTL Formulas
	From LTL To Büchi Automata
	Control Structure with Finite Memory
	S-Domains of Automaton States
	Fixed-Point Characterization of S-Domains
	Automata-Embedded Control Structure

	Robust Completeness of LTL Control Synthesis
	Control Synthesis with Pre-processing
	Application to Motion Planning Problems
	Summary

	Control Synthesis for Sampled-Data Systems
	Reachable Set Approximation Using Interval Analysis
	Robust Completeness
	Examples
	Estimation of Regions-of-Attraction
	Stabilization of Inverted Pendulum

	Summary

	Application to Reactive Locomotion Planning
	Reactive Locomotion Planning Problem
	Hybrid System Model of Bipedal Locomotion
	Reactive Locomotion Planning via Hierarchical Strategy

	Robust Switching Between Locomotion Modes
	Robustness Margin Sets in One Walking Step
	Mode-Transition Control Synthesis for One Walking Step

	Simulation Results
	Evaluation of Mode-Transition Control Strategy
	Multi-Step Locomotion Transition

	Conclusions and Future Work
	Bibliography
	APPENDICES
	ROCS: A Tool for Robustly Complete Control Synthesis
	Design and Structure
	Usage

	Euclidean-to-Riemmannian Mapping for Locomotion Modes

