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Abstract

Searchable symmetric encryption (SSE) allows a data owner to outsource its data to a

cloud server while maintaining the ability to search over it. Most existing SSE schemes

leak access-pattern leakage, and thus are vulnerable to attacks like the IKK attack. Obliv-

ious RAM and PIR can be used to construct SSE schemes that fully hide access patterns.

However, such schemes suffer from heavy communication overhead or computation over-

head making them impractical. Chen et al. proposed an obfuscation mechanism to protect

existing SSE schemes against access-pattern leakage. This mechanism can produce differ-

entially private access patterns per keyword. However, it cannot hide whether or not the

same keyword is being searched multiple times or, in other words, the search patterns,

making this mechanism vulnerable to search-pattern attacks.

In this thesis, we propose a stronger security definition for differentially private search-

able symmetric encryption schemes and present a real construction, DP-SSE, fulfilling it.

On the one hand, DP-SSE is adaptively semantically secure and provides differential pri-

vacy for both keywords and documents implying search-pattern hiding and access-pattern

hiding, respectively. On the other hand, DP-SSE has communication overhead as small

as O(log log n) and computation complexity of O(n · log log n) when querying relatively

frequent keyword w. When assuming queries follow Zipfian distribution, the amortized

communication overhead would be O(log n · log log n). By replicating the IKK attack, we

show that DP-SSE can actually hide access patterns and make it difficult to extract useful

information from differentially private access-pattern leakage. Finally, we perform KMeans

clustering, we were able to show that inferring search patterns from differentially private

access-pattern leakage is difficult, namely search patterns are hidden.
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Chapter 1

Introduction

Searchable symmetric encryption (SSE) allows a client to outsource its database to another

party (server) in a private way, while enabling the database to be searched by the client

without revealing the content of queries or documents. In a typical SSE scenario, the client

first locally produces an encrypted version of its database under one key, together with an

encrypted index with another key, to be outsourced to the server. Later, the client can

issue queries to search the outsourced encrypted index, and retrieve matched encrypted

results to be decrypted locally.

During the interaction, the server will learn which documents are accessed. This type

of leakage is known as access-pattern leakage. Most existing SSE schemes [8, 29, 17, 16, 3,

15, 2] allow such leakage for performance considerations. However, recent studies [14, 4, 32]

demonstrated that with some prior knowledge of the outsourced database, an honest-but-

curious server is able to recover the underlying keywords of queries with high accuracy.

One solution to hide access patterns is oblivious RAM (ORAM). An ORAM algorithm

allows a client to access remote documents without revealing which documents are accessed.

Such property is achieved by requiring clients to continuously shuffle and re-encrypt data as

they are accessed which involves high communication overhead. In particular, to obliviously

access one of n documents, at least O(log n) documents need to be accessed [13]. As pointed

by [25], in some cases, such overhead is larger than downloading the entire database.
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Chen et al. [5] proposed an obfuscation framework to protect SSE schemes from access-

pattern leakage. The framework obfuscates the index of a database in a differentially

private way before applying any SSE scheme. Later, client and server engage in an SSE

scheme as usual. Since the index used to build an SSE scheme is obfuscated, the server

only learns obfuscated access patterns making it more difficult to extract useful information

from such leakage. Although the framework has much smaller communication overhead

compared with ORAM, it cannot hide search patterns, namely whether a keyword has

been searched multiple times, due to the fact that the access pattern for each keyword is

deterministic after outsourcing. Moreover, it might happen that a true positive document

is never returned due to the obfuscation, i.e. the permanent false negative problem.

Motivated by the above differentially private obfuscation framework, we propose a

differentially private searchable symmetric encryption scheme (DP-SSE) based on inner

product predicate encryption to mitigate access-pattern and search-pattern leakage. In

DP-SSE, both access-pattern leakage and search-pattern leakage are differentially private

and the level of such leakage can be configured per query. In particular, during one query

for keyword w, a document D will be returned with probability p if w ∈ D; otherwise,

it can also be returned with probability q, where p, q are determined per query. In this

way, DP-SSE can overcome the permanent false negative problem of [5], hide both access

patterns and search patterns providing stronger privacy guarantees than in [5] while still

maintaining lower communication overhead than in ORAM (O(log log n) v.s. O(log n)),

where n is the number of documents.

The paper is structured as follows. In chapter 2 we review related work, before we in-

troduce preliminaries in chapter 3. We define a stronger privacy definition for differentially

private SSE in chapter 4 and describe scheme construction in chapter 5. We analyze the

security, differential privacy, and complexity of the scheme in chapters 6, 7, 8, respectively.

In chapter 9 we summarize the results of evaluation and present our conclusions in chapter

10.
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Chapter 2

Related Work

2.1 Searchable symmetric encryption

SSE is an encryption scheme which allows search. It enables a data owner to outsource its

encrypted database to an untrusted server while still preserving the search functionality.

SSE was put forward by Song et al. [29] which suggested several practical constructions

whose search complexity were linear in the size of database and secure under Chosen

Plaintext Attack (CPA). Goh et al. [12] pointed out CPA was not adequate for SSE schemes.

Formal notions of security and functionality for SSE were provided in [8], as well as the first

constructions satisfying them with search complexity linear in the number of results (sub-

linear in the size of the database). From then on, a long line of research has investigated

SSE with various security features, efficiency properties, and flexible functionalities [17, 16,

3, 26, 2, 15]. However, all the above SSE schemes reveal access patterns to gain efficiency,

where access pattern means which documents are accessed and returned in each query.

This access-pattern leakage is proved to have opened the door for powerful query recovery

attacks [14, 32, 4, 22].
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2.2 Query Recovery Attacks

In 2012, Islam, Kuzu and Kantarcioglu [14] demonstrated that when knowing some statis-

tics about a database and the content of a small fraction of queries, a semi-honest server

could recover the contents of all queries with more than 90% accuracy. This is the first

powerful attack (known as IKK attack) utilizing access-pattern leakage. An improved IKK

attack is provided in [4] if additional information, i.e. the size of query results, is given.

An attack targeting dynamic SSE called file-injection attack appeared in [32]. The authors

of [32] showed that an active adversary could inject only a small number of carefully de-

signed files in order to recover the content of queries by observing the access patterns of

the injected files. Liu et al. [22] introduced another attack utilizing search-pattern leakage,

which could be revealed through access patterns or query tokens. They showed that an

adversary who had some prior knowledge about the client’s search habits could uncover

the underlying keywords of the client’s queries.

2.3 Oblivious RAM

ORAM, first introduced by Goldreich and Ostrovsky [13], was designed to hide memory ac-

cess patterns of CPU. ORAM is formalized in a game between CPU and memory where the

CPU holds a sequence of memory block locations, say {l1, l2, ...., lm}, to be accessed, and

the memory stores the database, say {d1, d2, ..., dn}. In this game, the CPU wants to blind

memory about which (true) blocks have been accessed for how many times. The authors

of [13] showed that a client could hide entirely the access patterns by continuous shuffling

and re-encrypting data as they accessed with a poly(log n) communication overhead and

O(log n) client-side storage. Since its proposal, there has been a fruitful line of research on

further reducing this overhead [30, 1, 24, 31, 9]. Path ORAM [30], popular for its simplic-

ity and efficiency, achieved O(log n) communication overhead with O(log n) client storage

but required block size to be Ω(log n). Apon et al. [1] showed that one can construct an

ORAM scheme with constant communication overhead by fully homomorphic encryption.

Inspired by the idea of utilizing homomorphic encryption(HE) in ORAM, Circuit ORAM

[31], Onion ORAM [9], and optimized Onion ORAM [24] were proposed to further reduce
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the communication overhead to a smaller constant. However, those constants are still too

large (say 100) to be practical with a reasonably small block size. On the other hand, ho-

momorphic encryption operations induce very expensive computation which makes them

far from being practical. It is still open whether or not a non-HE-based ORAM construc-

tion can break the communication overhead lower bound of O(log n) given by [13, 21].

Garg et al. [11] proposed an ORAM-based SSE scheme to hide access pattern with a

communication overhead O(log n · log log n). However, this O(log n · log log n) communi-

cation overhead seems to be too large, since it might lead to, when searching for frequent

keywords, a communication volume larger than directly downloading the entire database

[25].

2.4 Private Information Retrieval

PIR is used to hide access patterns to public databases. It enables a client holding an

index i to retrieve the ith item di from a server holding a public database {d1, d2, ..., dn}
without revealing the index i to the server. PIR was put forward by Chor et al. [6] in

1995 in the setting where there are many non-cooperating copies of the same databases.

They also showed that single-database PIR, in the information-theoretic sense, does not

exist. Later in 1997, Kushilevitz and Ostrovsky [20] demonstrated a method to construct

a computationally secure single-database PIR based on Quadratic Residuosity Problem

assuming a computationally bounded server. Unlike in ORAM, single-database PIR may

induce a lower communication overhead. However, it naturally requires to touch every bit

in the database per access in order to hide access patterns, namely a O(n) computation

overhead. Therefore, PIR either requires multiple non-cooperating servers to work or have

a computation overhead linear in size of the database. Moreover, PIR considers a different

threat model where the content of the database is public.
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2.5 Differentially Private Access Patterns

Chen et al.[5] proposed to use a differentially private obfuscation framework to mitigate

access-pattern leakage. The framework is compatible with existing SSE schemes with only

a slight change when building the index. Instead of building an SSE upon the true index

IND = {IND[i, j], i ∈ [|∆|], j ∈ [n]} (where IND[i, j] ∈ {0, 1}, [|∆|] = [1, 2, ..., |∆|] similar

to [n] , and |∆| and n are the number of keywords and documents, respectively) of a

database D, the mechanism first obfuscates IND to IND′ in a way that

IND′[i, j] =


if IND[i, j] = 1

1 with probability p;

0 otherwise;

if IND[i, j] = 0

1 with probability q;

0 with probability 1 - q.

As a consequence of this obfuscation, the server only learns the obfuscated version of the

access patterns from which it is much harder to derive useful information. However, the

obfuscation is fixed after outsourcing. If a client searches for a keyword w multiple times,

the same obfuscated access pattern repeats. This repetition actually reveals search patterns

which can be used to perform a query recovery attack with high accuracy [22]. Chen et al.

suggested to use the grouping-based construction(GBC) proposed in [22] to mitigate such

attack. In a high level, when a client wants to search for a keyword w, GBC suggested to

search for addtional t keywords, say {w1, w2, ..., wt} besides w in order to make the query

frequency of keywords uniform. However, GBC itself suffers from the following drawbacks:

• The communication overhead grows linearly with the privacy level of GBC. With

GBC, a client needs to search for t redundant keywords per query leading to a O(t)

communication overhead. On the other hand, t defines the privacy level of GBC, the

larger the better since what GBC can provide is a (t + 1)-anonymity notion. [22]

empirically suggested t to be larger than 2.

• GBC leaks group search patterns. Although the server cannot tell which exact key-

word is queried due to GBC redundancy, it can tell that the keyword must be in the
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set {w,w1, ..., wt}. As pointed in the same paper as GBC, it is not guaranteed that

leaking group search patterns is secure enough. One example is, if redundancy group

{wi,0, wi,1, ..., wi,t} is leaked to server, then the next time for searching wi,j, i ∈ [t],

the server has a better chance to guess the underlying keyword, which is 1/(t + 1).

With some prior knowledge, the chance of a successful guess could be higher.
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Chapter 3

Preliminaries

Let ∆ = {w(1), w(2), ..., w(|∆|)} be the keyword universe of size |∆|, and 2∆ be the power

set of ∆ which denotes the set of all possible documents. Let id(D) be the identifier

of document D, D ⊂ 2∆ be an ordered (based on their ids) list of n documents D =[
D[1],D[2], ...,D[n]

]
, and 22∆

be the set of all possible document collections. Let id(D)

be an ordered list of identifiers of all documents in D. Without loss of generality, we

set id(D[i]) = i. Let D(w) denote the ordered (based on their ids) list of all documents

containing keyword w.

3.1 Searchable Symmetric Encryption

Definition 3.1.1. (Index). The index IND of D over ∆ is a binary matrix of size |∆|×n
such that

IND[i, j] =

1 if wi ∈ D[j];

0 otherwise.

Definition 3.1.2. (Searchable Symmetric Encryption Scheme) (SSE) An SSE

scheme is a collection of four polynomial-time algorithms (Keygen, BuildIndex,Trapdoor,

Search) such that:
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• Keygen(1λ) is a probabilistic key generation algorithm that is run by the client to

setup the scheme. It takes a security parameter λ and returns a secret key sk such

that the length of sk is polynomially bounded in λ.

• BuildIndex(sk,D) is a (possibly probabilistic) algorithm run by the client to generate

an index. It takes a secret key sk and document collection D as inputs, and returns

an encrypted index I such that the length of I is polynomially bounded in λ.

• Trapdoor(sk, w) is run by the client to generate a trapdoor τw for a given keyword

w. It takes a secret key sk and a word w as inputs, and returns a trapdoor τw.

• Search(I,τw) is run by the server in order to search for D(w). It takes an encrypted

index I for a collection D and a trapdoor τw for keyword w as inputs, and returns

id(D(w)), the set of identifiers of documents containing w.

We borrow definitions for history, view and trace from [8] to ease the later algorithm

description and security analysis.

Definition 3.1.3. (History). A t-query history over D is a tuple Ht = (D, ~w) (sometimes

denoted by H~w) where ~w = [~w[1], ~w[2], ..., ~w[t]] is the vector of underlying keywords of the

t queries.

An initiation of such a history is called an interaction. A partial history of Ht, say

Hs
t , is a tuple (D, ~w′) where ~w′ = [~w[1], ~w[2], ..., ~w[s]] and 0 ≤ s ≤ t. A history models

the sensitive information that the client wants to keep private. During an interaction of a

history H, what the server can “see” is the view.

Definition 3.1.4. (View). A view of a history Ht under a secret key sk is defined as

Vsk(Ht) = (id(D), E(D[1]), , ..., E(D[n]), I, τ1, ..., τt) where τi is the query token for the ith

query. The partial view V s
sk(Ht) of a history Ht under secret key sk is the tuple V s

sk(Ht) =

(id(D), E(D[1]), ..., E(D[n]), I, τ1, ..., τs).

A view includes the encrypted search index of D, search tokens as well as some ad-

ditional common information, like the number of documents and the size of encrypted

documents. It should be noted that a partial view also includes the entire encrypted

9



search index I. However, a view should not reveal any sensitive information about a his-

tory. This leads to the notion of trace of a history. The trace models the leakage allowed

by an SSE scheme. We will omit the subscript sk when sk does not need to be addressed.

Before defining trace, we first define formally the access pattern and the search pattern.

Definition 3.1.5. (Access Pattern) The access pattern Π~w over an t-query history

Ht = (D, ~w) is a binary matrix of size t× n such that

Π~w[i, j] =

1 if ~w[i] ∈ D[j];

0 otherwise.

Definition 3.1.6. (Search Pattern) The search pattern Φ~w over a t-query history

Ht = (D, ~w) is a symmetric binary matrix of size t× t such that

Φ~w[i, j] =

1 if ~w[i] = ~w[j];

0 otherwise.

Definition 3.1.7. (Trace). The trace of Ht = (D, ~w) is the sequence T (Ht) = (id(D),

|D[1]|, ..., |D[n]|, Π~w, Φ~w) where Π~w and Φ~w are the access patterns and search patterns

of history Ht , respectively.

It should be noted that the search patterns Φ~w can be revealed in two possible ways. If

the query token is deterministic for each keyword, then (τ1, ..., τt) directly reveals Φ~w. Π~w

can also reveal Φ~w since two identical access patterns of two queries are expected to have

the same underlying keyword.

Definition 3.1.8. (Adaptive Semantic Security for SSE[8]) An SSE scheme is

adaptively semantically secure if for all t ∈ N and for all (non-uniform) probabilistic

polynomial-time adversaries A, there exists a (non-uniform) probabilistic polynomial-time

algorithm (the simulator) S such that for all traces Tt of length t, all polynomially samplable

distributions Ht over {Ht : T (Ht) = Tt}, i.e. the set of histories with trace Tt, all functions

f : {0, 1}|Ht| → {0, 1}poly(|Ht|), all 0 ≤ s ≤ t and all polynomials P and sufficiently large k:∣∣Pr[A(V s
sk(Ht)) = f(Hs

t )]− Pr[S(T (Hs
t )) = f(Hs

t )]
∣∣ < 1

P (k)
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where Ht ← Ht, sk ← Keygen(1k), and probabilities are taken over Ht and the internal

coins of A,S and the underlying Keygen, BuildIndex, Trapdoor, Search algorithms.

A proof for the equivalence of adaptive semantic security and adaptive indistinguisha-

bility for SSE is provided in the same paper [8]. We will show, in later chapter, our SSE

construction provides adaptively semantic security.

3.2 Cryptographic Tools

Let Σ denote a finite set of plaintexts, and let F denote a finite set of predicates f : Σ→
{0, 1}. We say that x ∈ Σ satisfies a predicate f if f(x) = 1.

Definition 3.2.1. (Symmetric-Key Inner Product Predicate Encryption) A

symmetric-key Inner Product predicate encryption scheme for the class of predicates F over

the set of attributes Σ consists of the following probabilistic polynomial-time algorithms.

• Setup(1λ) takes as input a security parameter 1λ and outputs a secret key skp.

• Encrypt(skp, x) takes as input a secret key skp and a plaintext x ∈ Σ and outputs a

ciphertext ctx.

• GenToken(skp, f) takes as input a secret key skp and a description of a predicate

f ∈ F and outputs a search token stf .

• Query(stf , ctx) takes as input a token stf for a predicate f and a ciphertext ctx for

plaintext x. It outputs either 0 or 1, indicating the value of f(x).

Correctness. For correctness, we require the following conditions. For all λ, all

x ∈ Σ, and all f ∈ F , letting skp ← Setup(1λ), stf ← GenToken(skp, stf ), and ctx ←
Encrypt(skp, x),

1. If 〈x, f〉 = 0, then Query(stf , ctx) = 1.

2. If 〈x, f〉 6= 0, then Pr[Query(stf , ctx) = 0] > 1− δ(λ) where δ is a negligible function.
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Inner product predicate encryption scheme can be used to build predicate encryption

schemes for classes of predicates corresponding to polynomial evaluation [18]. In general, a

symmetric-key inner-product predicate encryption (IPPE) scheme of dimension d+ 1 can

be used to construct a predicate encryption scheme for the family of polynomials of degress

at most d, i.e. Ψpoly
≤d = {fP , |P ∈ ZN [x], deg(P ) ≤ d} where:

fP (x) =

1 if P (x) = 0 mod N

0 otherwise.

as follows:

Given a polynomial of degree d, i.e. P (x) =
d

Σ
i=0
ai ·xi = 〈~α, ~β〉 where ~α = (a0, a1, ..., ad), ~β =

(x0, x1, ..., xd).

- The IPPE.Setup algorithm keeps unchanged.

- To encrypt an attribute ~α ∈ Zd+1
N , the ciphertext will be ct~α ← IPPE.Encrypt(skp, ~α).

- To generate a token corresponding to a variable x, the token will be

stβ ← IPPE.GenToken (skp, ~β).

Then, whenever a variable x satisfies a polynomial(P(x) = 0), the token generated from it

will also satisfy the encrypted attribute corresponding to the same polynomial.

Full Security of a symmetric-key inner product predicate encryption scheme is defined

by the following game G between an adversary A and a challenger holding IPPE.

Setup: The challenger runs IPPE.Setup(1λ) and keep sk to itself. The challenger

picks a random bit b.

Queries: A adaptively issues queries, where each query is one of two types:

- Ciphertext query. On the jth ciphertext query,A outputs two plaintexts xj,0, xj,1 ∈
Σ. The challenger responds with IPPE.Encrypt(sk, xj,b)

- Token query. On the ith token query A outputs descriptions of two predicates

fi,0, fi,1 ∈ F . The challenger responds with IPPE.GenToken(sk, fi,b).

A’s queries are subject to the restriction that, for all ciphertext queries (xj,0, xj,1)

and all predicate queries (fi,0, fi,1), fi,0(xj,0) = fi,1(xj,1).
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Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA = |Pr[b′ = b]− 1
2
|.

Definition 3.2.2. (Full Security for IPPE). A symmetric-key inner product predicate

encryption scheme is fully secure if, for any probabilistic polynomial adversary A, the

advantage of A in winning the above game is negligible in λ.

Roughly speaking, full security guarantees that given a set of tokens of predicates

f1, ..., fk and a set of encryptions of plaintexts x1, ..., xt, no adversary can gain any in-

formation about any predicate or any plaintext other than the value of each predicate

evaluated on each of the plaintexts. The notion of predicate privacy is inherently impossi-

ble in the public-key setting, which is the reason why our idea of construction works only

in the private-key setting.

There is another stronger security notion in the context of IPPE which is simulation-

based security (SIM-security). SIM-security requires that every efficient adversary A that

interacts with the real IPPE can be simulated given only oracle access to the inner products

between each pair of vectors that A submits to the real IPPE. It should be noted that

SIM-security implies full security.

Definition 3.2.3. (SIM-Security for IPPE). Let IPPE = (IPPE.Setup, IPPE.Encrypt,

IPPE.GenToken, IPPE.Query) be an inner product predicate encryption scheme. Then IPPE

is SIM-secure if IPPE is fully secure and for any efficientA, there exists an efficient simulator

S such that the following two games are computationally indistinguishable:

RealA(1λ) :

1. sk ← IPPE.Setup(1λ)

2. b′ ← GA,IPPE(1λ)

3. output b′.

IdealA,S(1λ) :

1. sk′ ← S.Setup(1λ)

2. b′′ ← GA,S(1λ)

3. output b′′.

where game G represents the game defined in full security, GA,IPPE is such a game between

A and IPPE, and GA,S is such a game between A and S.
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Chapter 4

Definitions

As mentioned in Chapter 1, leaking access patterns or search patterns in SSE might lead

to leaking sensitive information, while hiding them entirely like in ORAM or PIR has

large computation or communication overhead (or both). Motivated by this, we explore a

middle-ground solution that consists in hiding access patterns and search patterns in SSE

in a differentially private way. There are two possible ways to define a differentially private

SSE: one is based on differential privacy for keywords (similar to [5]) and the other one

is based on differential privacy for documents that we define later. In the following parts

of this chapter, we will show implications of the two definitions, demonstrate the relation

between them, and finally give our definition of a differentially private SSE.

4.1 Differential Privacy For Keywords

Definition 4.1.1. (Differential Privacy for Keywords) A searchable encryption

scheme SE : (22∆
,∆|~w|) → T (H~w) gives ε-differential privacy for keywords, iff for any

database D ∈ 22∆
and for any pair of neighboring keyword lists ~w, ~w′ ∈ ∆|~w|, namely ~w

and ~w′ differ in only one element, say ~w[i] 6= ~w′[i],

Pr[SE(D, ~w) ∈ S] ≤ ed×εPr[SE(D, ~w′) ∈ S]
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where S ⊂ T (SE), T (SE) represents the set of possible traces of SE , and d is the number

of different documents between D(~w[i]) and D(~w′[i]).

Intuitively, this definition implies hiding search patterns since it guarantees that no one

can determine, through observing the trace (allowed leakage) of the SE, whether a client is

searching one keyword list or the other. However, there is no implication for hiding access

patterns in the above definition. Based on the definition of access pattern, hiding it means

no one can determine whether a document contains a keyword or not. This leads to our

definition of differential privacy for documents.

4.2 Differential Privacy For Documents

Definition 4.2.1. (Differential Privacy for Documents) A searchable encryption

scheme SE(22∆
,∆|~w|) → T (H~w) gives ε-differential privacy for documents, iff for any key-

word list ~w ∈ ∆|~w| and for any pair of neighboring databases D,D′ ∈ 22∆
, namely there

exists only one position i and exactly one keyword w, such that w is in either D[i] or D′[i]
but not both,

Pr[SE(D, ~w) ∈ S] ≤ e|~w|×εPr[SE(D′, ~w) ∈ S]

where S ⊂ T (SE) and T (SE) represents the set of possible traces of SE .

Intuitively, satisfying the above definition gives the guarantee that no one can determine

whether a document contains a keyword or not based only on the trace of the SE. Recalling

the definition of access pattern which is just the reflection of which document contains

which keyword, an SE providing differential privacy for documents automatically hide

access patterns. However, the above definition is not directly related to hiding search

patterns.

4.3 Relations

By intuition, differential privacy for keywords implies search-pattern hiding while differen-

tial privacy for documents implies access-pattern hiding. If one can imply the other, we
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can just focus on one notion. However, neither of the above two definitions can imply the

other one.

Theorem 4.3.1. Neither differential privacy for documents nor differential privacy for

keywords imply the other one.

Proof. Refer to appendix A.1.

4.4 Utility

An SE scheme with high utility should satisfy the following two requirements when search-

ing keyword w:

1. Almost all documents in D(w) are returned. In other words, the true positive rate

is high.

2. Not many documents in D \ D(w) are returned. In other words, the false positive

rate is low.

Based on this, we define the utility of an SE scheme as follows.

Definition 4.4.1. (Utility) The utility of an SE scheme is p(1 − q), where p and q are

true positive rate and false positive rate, respectively.

It is easy to see that, when searching for w, an SE which always returns D(w) has utility

of 1, while an SE which always returns the entire database D has utility
|D(w)|
|D|

≈ 0.

4.5 Differentially Private SSE

We define (u, ε1, ε2)-differentially private SSE as follows.

Definition 4.5.1. ((u, ε1, ε2)-Differentially Private Searchable Symmetric En-

cryption Scheme) A (u, ε1, ε2)-differentially private SSE is an SSE of utility u which

provides ε1-differential privacy for keywords and ε2-differential privacy for documents.
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Chapter 5

Algorithm Description

In this chapter, we first describe in a very high level how our proposed scheme operates, then

we construct a naive SSE scheme (denoted by SSE-Naive) by function-hiding inner product

predicate encryption scheme. Later we modify SSE-Naive to construct our differentially

private SSE denoted by DP-SSE, and finally we introduce 3 variants of DP-SSE: denoted

by DP-SSE-1,DP-SSE-2 and DP-SSE-3. Those 3 variants provide different performance

and privacy guarantees. For reference, table 5.1 contains the main notation used in this

section.

5.1 Construction Overview

We construct an SSE scheme from a functional encryption scheme, in particular a function-

hiding inner product predicate encryption (FHIPPE) scheme. An FHIPPE is an IPPE

scheme which provides SIM-security. FHIPPE is first probabilistic (encrypting the same

message several times usually yields different ciphertexts) which prevents inferring search

patterns from search tokens. Second, FHIPPE’s function-hiding property prevents addi-

tional leakage of search process besides access patterns. To hide real access patterns, we

dedicate a search token generation function to only leak a differentially private version of

real access patterns. The function also makes it hard to infer search patterns from access
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Notation Description

D a document.

id(D) an identifier of a document D.

Cmax the maximum keyword frequency. Note that a document can con-

tribute at most 1 in one keyword’s.

Cw frequency of keyword w.

Smax the maximum number of distinct keywords that a single document

can have.

∆ the keyword universe of the entire database.

| · | the size of ·.
a‖b a concatenates b. a and b are 0-padded to fixed length.

γ an integer distinct from any keyword in ∆.

k−1 an integer distinct from any keyword in ∆ and γ.

[t] {1, 2, 3, ..., t}.
n number of documents.

D a list of all documents ordered by their ids.

D(w) a list of all documents that contain w ordered by their ids.

Φ search pattern.

Π access pattern.

H history.

V view.

T trace.

Γ search token list.

τ a search token.

Table 5.1: Notations

patterns. The reason for this is that the access-pattern leakage is obfuscated in a differen-

tially private way per query, namely the access patterns for two queries searching for the

same keyword are expected to be different with high probability. To summarize, besides

leakage from initialization our scheme would only leak a differentially private version of
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access patterns.

To better understand such access-pattern leakage, we visualize it in Figure 5.1. The

real access pattern of a search for w, denoted by Π̂w, is a binary vector of length n, i.e.

(a1, a2, ..., an) where ai ∈ {0, 1} representing whether D[i] is matched (ai = 1) or not

(ai = 0). In Figure 5.1, when searching for w, a1 = 0 and a2 = 1 mean that D[1] is not

matched while D[2] is matched. The access pattern leaked in our scheme while searching

for w, denoted by Πw, is no longer a binary vector of length n but a multinary vector of

length n+ |h|, i.e. (b1, b2, ..., bn, bn+1, bn+|h|) where bi ∈ {0, 1, 2, ...}, h is a label distribution

function which will be discussed later and |h| represents the size of the range of h which is

quite smaller than n. For i ≤ n, bi represents the times that D[i] is matched. The reason

why bi is multinary is because multiple tokens would be issued per query and one document

might be matched by more than one token. For i ≤ |h|, bn+i represents the number of

non-match tokens that have label i. The reason for these additional dimensions is because

there are tokens that match no documents. Here, h is a function that assigns a label to each

document. Each query token will also have a label assigned by query generation function

to ensure that a query token can only match documents with the same label. It should be

noted that the labels of documents and tokens are known to the server who utilizes them

to reduce computation complexity as will be discussed in 8.2.

Figure 5.1: Access Pattern Leakage

The differential privacy guarantee for such access-pattern leakage comes from the fact

that each bi satisfies some special distribution. In particular, if ai = 1, then bi can be
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viewed as sum of two random variables ui and vi following a Bernoulli distribution and a

geometric distribution, respectively, i.e. ui ∼ Bern(p) and vi ∼ G0(1 − q) where p and q

are two probabilities; while if ai = 0, then bi follows geometric distribution, i.e. bi ∼
G0(1 − q). Similarly, for i ≤ |h|, bn+i can be viewed as sum of two random variables, i.e.

bn+i = un+i + vn+i where un+i and vn+i follow a binomial distribution and a geometric

distribution, respectively, i.e. un+i ∼ B(g(w, i), p) and vn+i ∼ G0(1 − q). Here, g(·, i) is

a database-specific function which will be discussed later. As we will see in 5.3.2, g has

a close relation to h. It should be noted that all the above random variables ui and vi

are independent. Also, for i ≤ |h| + n, j ∈ N, Pr[bi = j] > 0, in other words, the access

pattern for any keyword could be any value in Nn+|h| no matter what the content of each

document is. As a consequence, we can make the following claim.

Claim 5.1.1. The access-pattern leakage of our scheme is differentially private.

5.2 SSE-Naive: A Naive SSE Scheme from FHIPPE

In this section, we introduce a naive SSE scheme that use a function-hiding inner prod-

uct predicate encryption scheme (FHIPPE). For this naive SSE scheme (denoted by

SSE-Naive), we use traditional symmetric encryption denoted by E to encrypt the content

of each document D, and append to the resulting ciphertext denoted by E(D) a search key

generated by an FHIPPE. In particular, SSE-Naive has the following four polynomial-time

algorithms (Keygen, BuildIndex, Trapdoor, Search) such that:

• Keygen(1λ): takes as input a security parameter 1λ and returns FHIPPE.Setup(1λ),

which outputs a secret key sk.

• BuildIndex(sk, D): takse as input the secret key sk and the document collection

D. For every document D[i], it calls FHIPPE.Encrypt(sk, genVector(D[i], i)) where

genVector is a function that takes as input a document’s content and its id i, and

outputs a vector vi ∈ Σ. The output of FHIPPE.Encrypt(sk, vi) denoted by I[i] will

be appended to E(D[i]) as search key. We call the collection of all search keys the

search index of D denoted by I which is the output of the function BuildIndex.
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• Trapdoor(sk, w): takes as input the secret key sk and a keyword w, and calls gen-

Predicate(w) to get a predicate set Fw ⊂ F . For every predicate f ∈ Fw, this function

calls FHIPPE.GenToken(sk, f) and outputs a query token τf . Therefore, the output

of Trapdoor(sk, w) is a set of query tokens ΓFw .

• Search(I,ΓFw): takes as input the search index I and query token set ΓFw , then for ev-

ery search key I[i] ∈ I and every query token τf ∈ ΓFw , it calls FHIPPE.Query(I[i], τf )

and, if the output is 0, it returns the corresponding document identifier i. Therefore,

the output of Search(I,ΓFw) is a set of document identifiers id(D̄(w)). Note that

those identifiers are readable to the server, namely the server can respond to the

client with the corresponding encrypted documents {E(D[i]) | i ∈ id(D̄(w))} in one

round.

The function Keygen, BuildIndex, and Trapdoor are executed in the client side and

the output of BuildIndex denoted by I will be outsourced to the server together with the

encrypted documents E(D). The function Search is executed in server side during keyword

search.

SSE-Naive achieve a 1 true positive rate and an approximate 0 false positive rate, so

its utility is approximate 1 according to Definition 4.4.1.

5.2.1 genVector and genPredicate

Function genVector takes as input a document D[i] = {w1, ..., w|D[i]|}1 and its document

id i, and outputs an attribute vector vi used later for encryption. Basically, the attribute

vector vi should be satisfied by any token generated from wj ∈ D[i]. A straightforward

idea is first derive a polynomial P (x) such that for every wj ∈ D[i], P (wj) = 0, and then

obtain the attribute vector from the coefficients of P (x). The following polynomial satisfies

such requirements:

P (x) =

|D[i]|∏
j=1

(x− wj) =

|D[i]|∑
j=0

aj · xj

1We abuse the notation D[i] to represent both the document D[i] and its keyword list.
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Due to the fact that FHIPPE scheme requires every attribute (predicate) to be of the

same length, the polynomial should have the ability to encode the largest document. Thus,

the following polynomial is actually used:

P (x) =

|D[i]|∏
j=1

(x− wj) ·
Smax∏

j=|D[i]|+1

(x− γ) =
Smax∑
j=0

aj · xj

where wj ∈ D[i] for j ∈
[
|D[i]|

]
, and γ 6∈ ∆. (Note that all terms with γ are acting as

placeholders, and γ will never be used to generate predicates.)

Directly, we can obtain vi = (a0, a1, ..., aSmax).

The token generation function is much more straight forward given the polynomial

P (x). Let fi be the output of genPredicate(wi), then we can simply assign:

fi = (w0
i , w

1
i , ..., w

Smax
i )

Now, genVector and genPredicate are both well-defined. It can be easily verified that the

above implementations of genVector and genPredicate satisfy the correctness requirements

and give utility of 1.

5.3 DP-SSE: A Differentially Private SSE from FHIPPE

In this section, we detail our construction of differentially private SSE (denoted by DP-SSE)

which achieves what has been described in 5.1 by modifying SSE-Naive. Specifically,

DP-SSE is a (u, εh1 , ε
h
1)-differentially private SSE where u = (p + q − pq)(1 − p) and the

values of εh1 and εh2 depend on how h is constructed. For example, if h is chosen as a hash

function of range [Cmax], then εh1 = εh2 = ln (1 + p/(q(1− p))). DP-SSE can be viewed as

the meta-scheme of all the other 3 variants. It captures (almost) all the details needed for

their security proofs and privacy analyses.

DP-SSE utilizes vector and token generation functions different from those utilized

by SSE-Naive. Let genVectorRd and genPredicateRd be the vector and token generation
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functions in DP-SSE, respectively. DP-SSE reveals one more thing, a label distribution

function h, to server, which is used in both genVectorRd and genPredicateRd.

(a) Without Revealing Label Distribution (b) Revealing Label Distribution

Figure 5.2: Search Complexity in DP-SSE.

Another difference in DP-SSE is the Search function. By revealing h and the label of

each query token, the server can simplify the search process by evaluating FHIPPE.Query

only on the search key and query token pairs which share the same label (refer to Figure

5.2).

• DP-SSE.Search(I,ΓFw): takes as input the search index I and a query token set ΓFw .

Then for every query token (τf , label) ∈ ΓFw , it calls FHIPPE.Query(I[i], τf ),∀i ∈
{j|D[j].label = label}; if the output is 0, then it returns the corresponding document

identifier i. Therefore, the output of Search(I,ΓFw) is a set of document identifiers
~id. Note that those identifiers are readable to the server, namely the server can still

respond to the client with the corresponding encrypted documents {E(D[i]) | i ∈ ~id}
in one round.

It should be noted that, except for what is mentioned above, all the other parts of

DP-SSE are the same as in SSE-Naive.
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5.3.1 genVectorRd

Function genVectorRd takes as input a document D[i] = {w1, w2, ..., w|D[i]|} and its docu-

ment id i, and outputs an attribute vector vi used later for encryption. Like genVector,

genVectorRd should also be able to be satisfied by any token generated from wj ∈ D[i].

The difference is genVectorRd should also have the ability to be satisfied by a manually

created query token in order to generate false positive results. Following the same idea as

in genVector, we define the following polynomial (given document D[i]):

P (x) =

|D[i]|∏
j=1

(
x− wj‖h(i)‖counterwj ,i

)
·

Smax∏
j=|D[i]|+1

(x− γ‖0‖0) · (x− i‖0‖-1) =
Smax+1∑
j=0

aj · xj

where wj ∈ D[i], for j ∈
[
|D[i]|

]
,γ 6∈ ∆, h(·) ∈ [|h|] is a label distribution function, and

counterwj ,i is a global variable indicating how many times wj‖h(i)‖· have been previously

generated. It should be noted that those three parts of (·‖ · ‖·) are allocated fixed length of

bits each meaning that a difference in any part will lead to a totally different concatenation.

Thus, (γ‖0‖0), (idi‖0‖-1) and (w‖h‖counter) are different from each other. Another thing

to mention is that h takes as input explicitly the document identifier and implicitly all

global variables, then outputs a label.

Similarly, all terms with γ are acting as placeholders and will never be used to generate

predicates. Terms like (i‖0‖-1) will be used when document D[i] is going to be returned

as a false positive result.

Directly, we can assign vi = (a0, a1, ..., aSmax+1) which can be satisfied by any token

generated by predicate f produced by genPredicate(wj‖h(i)‖counterwj ,i) where wj ∈ D[i]

to generate true positive results. In the meantime, such assignment of vi also allows

satisfaction by a token generated by genPredicateRd(i‖0‖-1) to produce false positive result.

The reason for using a counter in genVectorRd function is that we want every token

to at most match one document due to the fact that a false positive token (generated

from id‖0‖-1) can only match at most one document (since every document has a unique

id). Otherwise, if a token could match multiple documents, the server could determine

that this token must be a true positive token (a token that only matches a true positive
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document) and the matched document is a true positive. Such token matching multiple

documents could actually exist if we did not use counter. Suppose that two documents

D[i] and D[j] such that there exists a keyword w ∈ D[i], w ∈ D[j] and h(i) = h(j) (it will

normally happen since |h| is quite smaller than n). Then a token generated by f produced

by genPredicate(w‖h(i)) would match both D[i] and D[j]. With the help of counter, we

solve this issue.

The candidates of h is discussed in section 5.4.

5.3.2 genPredicateRd

Function genPredicateRd takes as input a keyword w, and outputs, instead of a single

predicate as in genPredicate a predicate, a set of predicates Fw, each of which can only

satisfy at most one document (a predicate f satisfies one document D means that the

query token generated from f satisfies the search key generated from attribute v derived

from D). The algorithm is as follows.

In a high level, algorithm 1 flips a coin over every possible true positive predicate to

realize that a true positive document will be returned when selected with probability p and

will not be returned when not selected with probability 1 − p. A true positive predicate

when searching for w is a predicate that will match a document which contains w. Note

that the set of all true positive predicates can be predetermined due to the construction

of search index I. The algorithm does the same thing to true negative documents to give

them a chance of q to be matched.

The algorithm first initializes two empty sets FalsePosSet and TruePosSet. As indi-

cated by their names, they are to carry possible candidates for generating false positive

predicates and true positive predicates, respectively. A false positive predicate when search-

ing for w is a predicate that will match a document which does not contain w. However,

their names only reflect our intention. In fact, candidates in FalsePosSet might also match

true positive documents and candidates in TruePosSet might match no documents. Each

candidate in either set shares the same structure, say X‖Y ‖Z. A candidate is called true

positive candidate if it can be used to generate a true positive predicate. Given a keyword
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Algorithm 1 Generating Predicates When Searching Keyword w

1: procedure genPredicateRd(w)

2: FalsePosSet← ∅
3: TruePosSet← ∅
4: for label in [1, |h|] do

5: counter ← 0

6: for counter < countermax do

7: with probability p, TruePosSet.add
(
[w‖label‖counter, label]

)
8: counter ++

9: for id in IDdb do

10: with probability q, FalsePosSet.add
(
[id‖0‖-1, h(id)]

)
11: TValSet← FalsePosSet ∪ TruePosSet
12: PredicateSet← ∅
13: for tval, label ∈ TValSet do

14: PredicateSet.add
(
[genPredicate(tval), label]

)
15: return PredicateSet
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w, all positive documents share the property that they can be matched by some predicate

generated from some candidates in which X = w. Thus, by enumerating all possible value

of Y and Z, the algorithm can simulate the coin flipping process over all true positive

documents. As for true negative documents, the algorithm has not too much information

other than they must be in the n documents. Recall that the search key of each document

has one more term which enables to generate a false positive match. This special term

shares the same structure X‖0‖-1 where X ∈ [n]. Therefore, the algorithm can realize the

coin flipping process for true negative documents by enumerating all possible values of X.

Finally, the algorithm calls genPredicate to convert all selected candidates into predicates.

Algorithm 1 guarantees that one predicate can only satisfy at most one document. How-

ever, it might happen that a document is satisfied by multiple predicates when searching

for keyword w, i.e.

∃D ∈ D, w ∈ D, s.t. f and f ′ are both in PredicateSet.

where f = genPredicate
(
w‖h(id(D)‖counterw,id(D)

)
, and f ′ = genPredicate(id(D)‖0‖-1).

It can be shown that both f and f ′ satisfy document D, and they can be generated

together by genPredicateRd(w) with some probability. The reason why this issue should

be avoided is that it reveals that D must have keyword w since a document can only be

matched by at most one false positive predicate, if D is matched by two predicates, the

other one must be a true positive predicate revealing the document is a true positive.

In order to resolve the issue, an idea is to make the matching count for a document

differentially private, i.e. only by the number of time that a document is matched, one can

not tell whether a document is a true positive or a false positive.

Algorithm 2 adds another process when generating false positive candidates. It repeats

the coin flipping process on potential false positive candidates until the candidate set

becomes empty. In this way, an id can be added to FalsePosSet multiple times (note

that FalsePosSet is a multiset which allows duplicates) meaning that for a document, it

is possible to be matched by multiple false positive predicates. It also means if there is

a document which is matched multiple times, one cannot determine whether it is a true

positive or a false positive. It should be noted that the number of times for a single false
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Algorithm 2 Generating Predicates When Searching Keyword w

1: procedure genPredicateRd(w)

2: FalsePosSet← ∅
3: TruePosSet← ∅
4: for label in [1, |h|] do

5: counter ← 0

6: for counter < countermax do

7: with probability p, TruePosSet.add
(
[w‖label‖counter, label]

)
8: counter ++

9: tmpSet← {1, 2, ..., n}
10: while tmpSet 6= ∅ do

11: for id in tmpSet do

12: with probability q, FalsePosSet.add
(
[id‖0‖-1, h(id)]

)
. FalsePosSet

is a multiset, it allows duplicates

13: else tmpSet.remove(id)

14: TValSet← FalsePosSet ∪ TruePosSet
15: PredicateSet← ∅
16: for tval, label ∈ TValSet do

17: PredicateSet.add
(
[genPredicate(tval), label]

)
18: return PredicateSet
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positive candidate to be added to FalsePosSet follows a geometric distribution, which

makes the process of generating false positive tokens converges quickly.

Another issue with Algorithm 2 is that a non-match token, i.e. a token that matches

no documents, must be from TruePosSet. Since there is an upper bound of the size of

TruePosSet, i.e. STmax = countermax · |h|, if there are STmax non-matches, it reveals

that all matched documents are from FalsePosSet which violates the differential privacy

guarantee. To avoid this, we use a similar trick as above to make the number of non-

matches differentially private.

In Algorithm 3 (the actual algorithm used in DP-SSE), some manually made non-match

candidates are added according to a geometric distribution. The geometric distribution

guarantees that the predicate generation process will quickly converge and the number

of manually made non-match candidates will be small. It should be noted that utilizing

algorithm 3 will result in a true positive rate p+ q−pq and a false positive rate q. In other

words, algorithm 3 leads to a differentially private SSE of utility (p+ q − pq)(1− q).

Figure 5.3: Access Pattern Leakage in DP-SSE

In the rest of this section, we show how the properties introduced in section 5.1 are

achieved in algorithm 3. In a high level, as displayed by Figure 5.3, the process of generating

TruePosSet contributes all the Bernoulli distributions and binomial distributions; the

process of generating FalsePosSet contributes all the first n geometric distributions; the
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Algorithm 3 Generating Predicates When Searching Keyword w

1: procedure genPredicateRd(w)

2: FalsePosSet← ∅
3: TruePosSet← ∅
4: for label in [1, |h|] do

5: counter ← 0

6: for counter < countermax do

7: with probability p, TruePosSet.add
(
[w‖label‖counter, label]

)
8: counter ++

9: tmpSet← {1, 2, ..., n}
10: while tmpSet 6= ∅ do

11: for id in tmpSet do

12: with probability q, FalsePosSet.add
(
[id‖0‖ − 1, h(id)]

)
. FalsePosSet

is a multiset, it allows duplicates

13: else tmpSet.remove(id‖0‖ − 1))

14: NonMatchSet← ∅
15: for label in [1, |h|] do

16: mark← True

17: while mark do

18: with probability q, NonMatchSet.add
(
[w−1‖-1‖0, label]

)
19: else mark← False

20: TValSet← FalsePosSet ∪ TruePosSet ∪ NonMatchSet
21: PredicateSet← ∅
22: for tval, label ∈ TValSet do

23: PredicateSet.add
(
[genPredicate(tval), label]

)
24: return PredicateSet
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process of generating NonMatchSet contributes the remaining geometric distributions. Now

we discuss them in detail. Recall the real access pattern and access pattern in DP-SSE

are denoted by (a1, a2, ..., an) and (b1, b2, ..., bn, bn+1, ..., bn+|h|), respectively. Recall that

for i ≤ n, bi = ui + vi if ai = 1 where ui ∼ Bern(p) and vi ∼ G0(1 − q). This is

because a true positive document indicated by ai = 1 can be matched by a true positive

token originated from TruePosSet which is generated from a Bernoulli distribution and

a false positive token originated from FalsePosSet which is generated from a geometric

distribution. For i ≤ n and if ai = 0, the corresponding document can only be matched

by false positive tokens which are generated from a geometric distribution, in other words,

bi ∼ G0(1 − q). For i ≤ |h|, bn+i represents the number of non-match tokens of label

i. The non-match tokens comes from two sources: TruePosSeti and NonMatchSeti where

TruePosSeti and NonMatchSeti represent the subset of TruePosSet and NonMatchSet with

label i, respectively. NonMatchSeti is generated from a geometric distribution. While for

TruePosSeti, each element in it is generated from a Bernoulli distribution and there are

countermax − |{D[j] | w ∈ D[j], h(j) = i}| candidates for non-match tokens, therefore this

contributes a Binomial distribution to bn+i. In the meantime, we obtain the real value of

g(w, i), i.e. g(w, i) = countermax − |{D[j] | w ∈ D[j], h(j) = i}|.

5.4 Label Distribution Function: h and countermax

Label distribution function h works in genVectorRd and affects the construction of genPredicateRd

(since they are highly correlated) and the value of countermax (since it reflects how uniform

h is). Recall the polynomial P (x) used to define genVectorRd(D[i], i).

P (x) =

|D[i]|∏
j=1

(
x−wj‖h(i)‖counterwj ,i

)
×

Smax∏
j=|D[i]|+1

(x− γ‖0‖0)× (x− i‖0‖-1)) =
Smax+1∑
j=0

aj · xj

In P (x), every keyword w ∈ D[i] is concatenated with the label of D[i] denoted by h(i)

and a counter counterw,i to make such concatenation w‖h(i)‖counterw,i different for every

document which has w, i.e. w‖h(i)‖counterw,i 6= w‖h(j)‖counterw,j for all i 6= j where

w ∈ D[i] and w ∈ D[j]. To achieve this, h is first used to label every document which can
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be viewed as a way of grouping documents by label; then for each small group with the

same label, counterw,· is used to distinguish documents containing w by assigning different

values (choose from N one by one) to counterw,i and counterw,j for every i and j where

h(i) = h(j), w ∈ D[i] and w ∈ D[j]. countermax models the number of distinct values

counter could be.

Scheme h countermax

DP-SSE-1 constant function Cmax

DP-SSE-2 one hash function O

(
log n

log log n

)
DP-SSE-3 two hash functions O(log log n)

Table 5.2: countermax

In this section, we introduce 3 candidates of h, compute the corresponding countermax

(Table 5.2 summarize the results) and apply each of them to DP-SSE to get 3 differentially

private SSE, denoted by DP-SSE-1, DP-SSE-2 and DP-SSE-3, respectively. As will be

discussed in section 8.3, given |h|, the smaller countermax is, the smaller the communication

complexity and the computation complexity will be. There are some other options of h.

However, we will show in section 8.3 that it is NP-hard to find an h with |h| ≥ 3 such that

countermax is minimized.

5.4.1 h As A Constant Function

The most naive way to choose h is to make it a constant function. In order to distinguish

from concatenations for other purposes (false positive or non-match), we can choose h to

be equal to any positive integer. Without loss of generality, we choose h ≡ 1. Then |h| = 1.

By replacing h(·) with 1 and |h| with 1 in DP-SSE, we obtain DP-SSE-1. It is easy to

check that countermax in this case is Cmax.

One might be surprised that such causal choice of h will result in a differentially private

SSE which has the least communication complexity. However, the computation complexity

of DP-SSE-1 is huge. Both communication complexity and computation complexity will

be discussed in section 8.
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5.4.2 h As a Hash Function

Another straightforward way is to choose h as a hash function. By defining h as a hash

function of range [Cmax], i.e. h : [n]→ [Cmax] and applying such h directly to DP-SSE, we

obtain DP-SSE-2.

To calculate countermax in DP-SSE-2, we formulate the following equivalent Balls into

Bins problem: sequentially throw k balls into k bins by placing each ball into a bin chosen

independently and uniformly at random; what is the maximum number of balls in any

bin? The only difference is that we need to distribute |∆| keywords which is analogous

to playing the Balls into Bins game |∆| times. By doing so, we implicitly assume that

keywords are distributed independently.

We first show a Lemma in Balls into Bins problems and then apply it to approximate

countermax with the help of the union bound.

Lemma 5.4.1. Sequentially throw k balls into k bins by placing each ball into a bin chosen

independently and uniformly at random, the maximum number of balls in any bin is
c ln k

ln ln k

where c ≥ 3 with probability at least 1− 1

kc−1
.

Proof. Refer to Appendix A.2

Theorem 5.4.2. If h is chosen as a hash function of range [Cmax], i.e. h : [n] → [Cmax],

countermax = O

(
logCmax

log logCmax

)
= O

(
log n

log log n

)
with probability at least 1− 1

n
assuming

|∆| = O(n) and Cmax = O(n).

Proof. Refer to Appendix A.4

DP-SSE-2 has larger communication complexity but much smaller computation com-

plexity than DP-SSE. The detailed analysis of complexity is in section 8.
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5.4.3 h As the Better Choice of Two Hash Functions

In the Balls into Bins problems, there is a 2-choice solution in which each ball is put

into the bin with less balls out of two uniformly at random chosen bins. In this way, the

maximum number of balls in any bin is O (log log k) when throwing k balls into k bins.

Inspired by this greedy solution, we can define the output of h as the better output

(the output which makes counter smaller) of two hash functions h1, h2 : [n] → [Cmax],

which will also make countermax smaller. As we will see later, smaller countermax makes a

smaller communication complexity and a smaller computation complexity.

Applying such h to DP-SSE involves modifications of genVectorRd, genPredicateRd and

Search. The reason of modifying Search is as follows. Two choices of h means that there

are two label candidates for every document. With a high probability, both two label

candidates, say l1 and l2, for a document D would be used to generate concatenations

of some keywords wi and wj ∈ D, i.e. wi‖l1‖counterwi,id(D) and wj‖l2‖counterwj ,id(D).

Therefore, we cannot assign just one label to D, instead we need to preserve both labels

for each document and evaluate FHIPPE.Query on document (search key) and token pairs

as long as the token’s label matches either label of the document.

• DP-SSE-3.Search(I,ΓFw): takes as input the search index I and query token set

ΓFw , for every query token (τf , label) ∈ ΓFw , it calls FHIPPE.Query(I[i], τf ),∀i ∈
{j|label ∈ D[j].labels}. If the output is 0, then it returns the corresponding document

identifier i. Therefore, the output of Search(I,ΓFw) is a set of document identifiers ~id.

Note that those identifiers are readable to the server, namely the server can respond

to the client with the corresponding encrypted documents {E(D[i]) | i ∈ ~id} in one

round.

The new DP-SSE-3.Search function is actually a composition of two DP-SSE-2.Search

functions in which one is using h1 to label documents and the other using h2 to do so.

The result of DP-SSE-3.Search is the union of the results of the two. Therefore, the access

pattern observed by the server, which is originally a vector of length n + |h|, changes to

two vectors of length n + |h1| and n + |h2|, respectively. Since |h1| and |h2| are chosen
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the same as |h| = Cmax, the new access pattern becomes two vectors of length n + |h|
where |h| = Cmax. Let (Π

(1)
w ,Π

(2)
w ) be the access pattern of DP-SSE-3 when searching for

w where Π
(1)
w = (b

(1)
1 , ..., b

(1)
n , b

(1)
n+1, ..., b

(1)
n+|h|) and Π

(2)
w = (b

(2)
1 , ..., b

(2)
n , b

(2)
n+1, ..., b

(2)
n+|h|). For

i ≤ n, b
(t)
i represents the number of times that D[i] is matched when it is only labeled by

ht for t ∈ {1, 2}. For i ≤ |h|, b(t)
n+i represents the number of non-match tokens to have label

i when all documents are labeled by ht for t ∈ {1, 2}. In order to preserve the properties

introduced in section 5.1, genVectorRd and genPredicateRd need to be changed. Recall the

polynomial P (x) used to define genVectorRd(D[i], i).

P (x) =

|D[i]|∏
j=1

(
x− wj‖h(i)‖counterwj ,i

)
·

Smax∏
j=|D[i]|+1

(x− γ‖0‖0) · (x− i‖0‖-1) =
Smax+1∑
j=0

aj · xj

genVectorRd. For each document D[i] and for each keyword w in D[i], choose h(i) as

hb(i) where b ∈ {0, 1} and the number of times that w‖hb(i) is chosen as h(i) is less than

w‖h1−b(i). In other words, h(i) is chosen as the value that makes counterw,i smaller. After

h(i) is determined, counterw,i can be determined. In order to add geometrically distributed

variables to both of the two access patterns Π
(1)
w and Π

(2)
w to hide whether a document is

matched by a true positive token or not, we need to modify P (x) in such a way that it

supports adding false positives for both cases while using 2 hash functions. The following

polynomial achieves such property.

P ′(x) =

|D[i]|∏
j=1

(
x− wj‖h(i)‖counterwj ,i

)
·

Smax∏
j=|D[i]|+1

(x− γ‖0‖0)

· (x− i‖h1(i)‖-1)) · (x− i‖h2(i)‖-1)

=
Smax+2∑
j=0

aj · xj

It should be noted that i‖ht(i)‖-1 will never be equal to some w‖h‖counter or γ‖0‖0,

meaning that i‖ht(i)‖-1 can only be used to generate false positive for t ∈ {1, 2}. With
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the new polynomial P (x) and the new way to assign values to h(i) and counterw,i, the new

genVectorRd is well-defined by preserving all the other parts of the old genVectorRd.

Figure 5.4: Access Pattern Leakage in DP-SSE-3

genPredicateRd. The new construction of genPredicateRd is shown in Algorithm 4. Figure

5.4 demonstrates how this algorithm can achieve properties that are similar to the old

algorithm 3. It should be noted that, when searching for w, TruePosSet can only add one

Bernoulli distribution to either Π
(1)
w or Π

(2)
w in every position i where ai = 1, i ≤ n unless

h1(i) = h2(i) in which case the Bernoulli distribution will be added to both. For example

in Figure 5.4, for i = 2, the Bernoulli distribution is added to Π
(1)
w ; while for i = n, the

Bernoulli distribution is added to Π
(2)
w . The existence of those geometric distributions acts

as an important role to provide differential privacy.

With the above modifications, we obtain DP-SSE-3 by preserving all the other parts of

DP-SSE. It should be noted that the true positive rate and false positive rate of DP-SSE-3

become 1− (1− p)(1− q)2 and 1− (1− q)2, respectively, namely the utility of DP-SSE-3

is (1− (1− p)(1− q)2)(1− (1− q)2).
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Algorithm 4 Generating Predicates When Searching Keyword w

1: procedure genPredicateRd(w)

2: FalsePosSet1, FalsePosSet2, TruePosSet, NonMatchSet← ∅
3: for label in [1, |h|] do

4: counter ← 0

5: for counter < countermax do

6: with probability p, TruePosSet.add
(
[w‖label‖counter, label]

)
7: counter ++

8: tmpSet← {1, 2, ..., n}
9: while tmpSet 6= ∅ do

10: for id in tmpSet do

11: with probability q, FalsePosSet1.add
(
[id‖h1(id)‖ − 1, h1(id)]

)
12: else tmpSet.remove(id) . FalsePosSet1 is a multiset, it allows duplicates

13: tmpSet← {1, 2, ..., n}
14: while tmpSet 6= ∅ do

15: for id in tmpSet do

16: with probability q, FalsePosSet2.add
(
[id‖h2(id)‖ − 1, h2(id)]

)
17: else tmpSet.remove(id) . FalsePosSet2 is a multiset, it allows duplicates

18: for label in [1, |h|] do

19: mark← True

20: while mark do

21: with probability q, NonMatchSet.add
(
[w−1‖-1‖0, label]

)
22: else mark← False

23: TValSet← FalsePosSet1 ∪ FalsePosSet2 ∪ TruePosSet ∪ NonMatchSet
24: PredicateSet← ∅
25: for tval, label ∈ TValSet do

26: PredicateSet.add
(
[genPredicate(tval), label]

)
27: return PredicateSet
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We can use a similar Balls into Bins problem as in section 5.4.2 to show that the

countermax of DP-SSE-3 is O(log log n).

Lemma 5.4.3. Sequentially throw k balls into k bins by placing each ball into the bin

that has less balls out of two independently and uniformly at random chosen bins. The

maximum number of balls in any bin is O (log log k) with probability at least 1− 1

k3
.

Proof. Refer to Appendix A.3

Theorem 5.4.4. In DP-SSE-3, countermax = O (log logCmax) = O (log log n) with proba-

bility at least 1− 1

n
assuming |∆| = O(n) and Cmax = O(n).

Proof. Refer to Appendix A.5

DP-SSE-3 has exponentially smaller countermax than DP-SSE-2 which makes commu-

nication complexity and computation complexity smaller. However, we shall see later in

section 7, the privacy level of DP-SSE-3 is weaker while providing the same utility com-

pared to others.

38



Chapter 6

Security

In this chapter, we first show the leakage of DP-SSE. The leakage includes not only (dif-

ferentially private) access patterns like in other schemes but also some meta data specific

to DP-SSE. Then, we prove that with such leakage a simulator can simulate the view of an

adversary who is allowed to adaptively issue queries, namely DP-SSE is adaptively seman-

tically secure in the condition that the underlying FHIPPE scheme is SIM-secure. It should

be noted that the following arguments is based on an abstract h. With minor changes,

one could prove that DP-SSE-1,DP-SSE-2 and DP-SSE-3 are all adaptively semantically

secure.

6.1 Leakage

The leakage here refers to the information that the server can learn about the database

D and the underlying keyword list ~w of queries when hosting the searchable encryption

scheme. In other words, the leakage is the trace of a history. It can be divided into two parts

by the time point when the client begins issuing query tokens, namely L = {Linit, Lsearch}.

Before the client begins the search, the server can learn |D[i]|, Smax, and Cmax, as well

as the id of each document. Let Linit be such leakage during initialization, i.e. Linit ={
{id(D[i])}, {|D[i])|}, Smax, Cmax

}
. It should be noted that id(D[i]) = i.
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After the client begins the search, the server will learn (differentially private) access

patterns Π~w for a list of keywords ~w (allowing repeated keywords) that the client has

searched. Note that Π~w is a differentially private version of the real access patterns Π̂~w. As

discussed in chapter 8, the client reveals the label assignments to server due to performance

considerations. In that case, label distribution function h would be learned by the server

in addition. We argue that leaking h is of no harm to the scheme since h is independent of

all sensitive information, say the history. Let L~w
search be such leakage after searching, i.e.

L~w
search = {Π~w, h}.

After analyzing the leakage of the scheme, we reach a stage to rewrite the definition of

trace which defines the leakage of an SSE scheme (definitions of history and view remain

unchanged).

Definition 6.1.1. (New Trace) The trace of a history H~w for searching for a list of

keywords ~w in DP-SSE is defined as T~w = {Linit, L~w
search}.

Compared with the old definition of trace, the access patterns are replaced with their

differentially private versions and the search patterns are removed. Some additional infor-

mation is included in the new trace, namely label distribution function h,Cmax and Smax.

We will show in the next section that DP-SSE is adaptively semantically secure under the

new definition of trace.

6.2 Security

Theorem 6.2.1. DP-SSE is an adaptively semantically secure SSE scheme.

Proof. We are going to construct a simulator S that can simulate the partial view of

an adversary given only a trace of a partial history. To be precise, given T (Hs
t ), S can

generate a view (V s
t )∗ such that (V s

t )∗ is indistinguishable from V s
sk(Ht) for all 0 ≤ s ≤ t,

all polynomial-bounded function fp, all probabilistic polynomial-time adversary A, all

distribution Ht, except with a negligible probability, where q ∈ N, Ht
R←− Ht and sk ←

Keygen(1k).
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Before describing the details about S, let’s recall the notions of view and trace when

searching for ~w = [~w[1], ~w[2], ..., ~w[t]] in the context of DP-SSE:

• Vsk(Ht) = (1, ..., n, E(D[1]), ..., E(D[n]), I,Γ1, ...,Γt);

• V s
sk(Ht) = (1, ..., n, E(D[1]), ..., E(D[n]), I,Γ1, ...,Γs), where 0 ≤ s ≤ t;

• T (Ht) = (1, ..., n, |D[1]|, ..., |D[n]|, h, Smax, Cmax,Π~w[1], ...,Π~w[t]);

• T (Hs
t ) = (1, ..., n, |D[1]|, ..., |D[n]|, h, Smax, Cmax,Π~w[1], ...,Π~w[s]), where 0 ≤ s ≤ t.

There are three types of data to simulate the view of an adversary A: document

encryption E(D[i]), search key I[i], and search token list Γ.

Simulate E(D[i]):

E(D[i]) is indistinguishable from a random string e∗i
R←− {0, 1}|D[i]| since E is semantically

secure.

Γi cannot be simulated directly as E(D[i]) since it should embed some functionalities in

order to enable search. When it comes to the simulation of I, things become more complex.

In order to provide adaptively security, S must commit to an index I∗ before any

queries are issued. In other words, S must generate, at time s = 0, an index I∗ which will

be included in all partial views (V s
t )∗ used to simulateA for any 0 ≤ s ≤ t. I∗ should satisfy

two requirements: first, it should be indistinguishable from I; second, it should be able to

simulate all A’s views, namely answer future unknown queries. Recall that I is composed

of n search keys, say I[1], I[2], ..., I[n], generated from documents, say D[1],D[2], ...,D[n],

respectively. S first runs Keygen(1λ) to get a secret key sk∗; then S simulates each I[i] and

each Γ as follows.

Simulate I[i]:

At time s = 0, S only holds T (H0
t ) = (1, ..., n, |D[1]|, ..., |D[n]|, h, Smax, Cmax) by

which S generates I[i] as follows: first, S uniformly at random samples Smax + 1 ran-

dom numbers, say U , from a range disjoint with [n], e.g., [5n, 5n+ 1, ..., 6n]; then, S calls

FHIPPE.Encrypt(sk∗, genVectorRd(U, i)) to compute I∗[i]. I∗ can be otained by combining
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all I∗[i] together. We claim that I∗ is indistinguishable from I which will be proved later

in correctness part.

Simulate Γ[i]:

For 1 ≤ s ≤ t, S simulates E(D[i]) and I as above. To construct Γ∗s such that Γ∗s is

indistinguishable from Γs, S does the following (Γ∗i for i < s can be constructed similarly):

first, S defines a set X = D̄(~w[s]) which is the id set of all returned documents and label

each element j ∈ X by h(j); second, S extends X into a multiset X∗ where each element in

X is duplicated according to Πws , i.e., if D[i] is matched by Γs for Π~w[s][i] times, there would

be Π~w[s][i] elements of value i in X∗; third, S adds Π~w[s][n+ j] non-match predicates with

label j to X∗ for j ∈ [|h|]; finally, set TValSet = X∗ and run all the remaining parts (lines

after 19) of algorithm 3 (together with sk∗) to get Γ∗s. We claim Γ∗s is indistinguishable

from Γs which will be proved later in correctness part.

Correctness:

We prove I∗ is indistinguishable from I by contradiction. If there exists an adversary A
which can distinguish I∗ from I, we show that A breaks SIM-security.

Assume A can distinguish I∗[i] from I[i]. Consider a simulator S ′ which simulates

everything like S but with secret key sk. Let I ′[i] and Γ′i be the simulation of I and Γi in

S ′, respectively. Since FHIPPE is SIM-secure, it must be also fully secure. Therefore, no

adversary including A can distinguish I ′[i] from I[i]. Since A can distinguish I∗[i] from

I[i], A must be able to distinguish I ′[i] from I∗[i].

On the other hand, since FHIPPE is SIM-secure, there exists a simulator SFHIPPE such

that it can simulate all A’s views about I ′[i] by some I ′FHIPPE[i]. Since A can distinguish

I ′[i] from I∗[i], it must also be able to distinguish I ′FHIPPE[i] from I∗[i]. However, I ′FHIPPE[i]

should be an indistinguishable simulation of I∗[i] due to the fact the underlying secrets of

I ′[i] and I∗[i] (plus Γ′i and Γ∗i ) are identical (or in other words, the information that SFHIPPE

is able to use to simulate I ′[i] and I∗[i] is identical). Thus, if A can distinguish I ′[i] from

I∗[i], A can break SIM-security contradicting the condition that FHIPPE is SIM-secure.

Using the same proof strategy, we can prove that Γ∗i is indistinguishable from Γi.
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Chapter 7

Differential Privacy

In this chapter, we will show that the meta-scheme DP-SSE is a differentially private

SSE. Then we will show using a similar analysis strategy that DP-SSE-1,DP-SSE-2 and

DP-SSE-3 are all differentially private SSEs.

Recall that a differentially private SSE is an SSE which provides differential privacy for

both documents and keywords.

Differential privacy for documents requires an SSE to satisfy that for any pair of neigh-

bouring databases D,D′ ∈ 22∆
, and for any keyword list ~w ∈ ∆|~w|,

Pr[SE(D, ~w) ∈ S] ≤ e|~w|·εPr[SE(D′, ~w) ∈ S]

where S ⊂ T (SE).

Differential privacy for keywords requires an SSE to satisfy that for any database D ∈
22∆

, and for any pair of neighbouring keyword lists ~w, ~w′ ∈ ∆|~w| where ~w[i] 6= ~w′[i],

Pr[SE(D, ~w) ∈ S] ≤ ed·εPr[SE(D, ~w′) ∈ S]

where S ⊂ T (SE) and d = d(D(~w[i]),D(~w′[i])).

In the above two definitions, the output of SE is defined as the trace over some history.

Recall the trace T (H~w) of history H~w = (D, ~w) is defined as

(1, ..., n, |D[1]|, ..., |D[n]|, h, Smax, Cmax,Π~w[1], ...,Π~w[t]).
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One might have noticed that except for the access patterns in the trace, all the other

parts are identical among T (D, ~w), T (D, ~w′) and T (D′, ~w). Therefore, we only need to show

that the access-pattern leakage is differentially private in DP-SSE.

Theorem 7.0.1. DP-SSE is a (u, ε, ε)-differentially private SSE where u = (p+q−pq)(1−q)

and ε = ln

(
1 +

p

q(1− p)

)
if the output of h only depends on document ids.

Proof. Let M denote the mechanism in DP-SSE and let the output of M be the access

pattern. Since the output of h only depends on document ids, this means that h(i) is fixed

no matter what the content of D[i] is.

Differential Privacy for Documents. Consider a pair of neighbouring databases D and

D′ where D[i] 6= D′[i] and |D[i]| = |D′[i]|, and a list of query keywords ~w ∈ ∆|~w|. Let w be

the keyword such that w is only in one of D and D′.

If w 6∈ ~w, then Pr[M(D, ~w) ∈ S] = Pr[M(D′, ~w) ∈ S].

If w ∈ ~w, let Λ = {j | ~w[j] = w} and ~wΛ = (~w[Λ[1]], ~w[Λ[2]], ..., ~w[Λ[|Λ|]]) where Λ[j]

represents the jth smallest element in Λ.

Pr[M(D, ~w) ∈ S]

Pr[M(D′, ~w) ∈ S]
=
Pr[M(D, ~wΛ) ∈ S]

Pr[M(D′, ~wΛ) ∈ S]
=

(
Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]

)|Λ|
Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]
≤ max

Π∈S

{
Pr[M(D, w) = Π]

Pr[M(D′, w) = Π]

}

≤


maxα,β

Pr[ui + vi = α, bn+h(i) = β]

Pr[v′i = α, b′n+h(i) = β
, if w ∈ D[i], but w 6∈ D′[i],

maxα,β
Pr[vi = α, bn+h(i) = β]

Pr[u′i + v′i = α, b′n+h(i) = β
, if w ∈ D′[i], but w 6∈ D[i]

where α = Π[i], β = Π[n+ h(i)]

Recall that for i ≤ n, ui ∼ Bern(p), vi ∼ G0(1−q); for i ≤ |h|, un+i ∼ B(g(w, i), p), vn+i ∼
G0(1− q).
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When w ∈ D[i], but w 6∈ D′[i], let g(w, h(i)) = G where G = countermax − |{j|h(j) =

h(i), w ∈ D[j]}|,

P r[ui + vi = α, bn+h(i) = β]

Pr[v′i = α, b′n+h(i) = β
=
Pr[ui + vi = α]

Pr[v′i = α]
·
Pr[bn+h(i) = β]

Pr[b′n+h(i) = β]

Pr[ui + vi = α]

Pr[v′i = α]
=


(1− p)(1− q)

1− q
= 1− p, when α = 0;

pqα−1(1− q) + (1− p)qα(1− q)
qα(1− q)

=
p+ (1− p)q

q
, when α ≥ 1.

(7.1)

Let As,t =
t∑

k=0

(
s
k

)
pk(1− p)s−kqβ−k(1− q),

Pr[bn+h(i) = β]

Pr[b′n+h(i) = β]
=

min(G,β)∑
k=0

Pr[un+h(i) = k, vn+h(i) = β − k]

min(G+1,β)∑
k=0

Pr[u′n+h(i) = k, v′n+h(i) = β − k]

=
AG,min(G,β)

AG+1,min(G+1,β)

=
1

1− p
·

min(G,β)∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

min(G+1,β)∑
k=0

(
G+1
k

)
pk(1− p)G−kqβ−k(1− q)

≤ 1

1− p
(7.2)

since that

(
G

k

)
≤
(
G+ 1

k

)
.

As a consequence,

Pr[ui + vi = α, bn+h(i) = β]

Pr[v′i = α, b′n+h(i) = β
≤ 1

1− p
· p+ (1− p)q

q
≤ 1 +

p

q(1− p)
.

When w ∈ D′[i], but w 6∈ D[i], let g′(w, h(i)) = G where G = countermax − |{j|h(j) =
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h(i), w ∈ D[j]}|,

P r[vi = α, bn+h(i) = β]

Pr[u′i + v′i = α, b′n+h(i) = β]
=

Pr[vi = α]

Pr[u′i + v′i = α]
·
Pr[bn+h(i) = β]

Pr[b′n+h(i) = β]

Pr[vi = α]

Pr[u′i + v′i = α]
=


1− q

(1− p)(1− q)
=

1

1− p
, when α = 0;

qα(1− q)
pqα−1(1− q) + (1− p)qα(1− q)

=
q

p+ (1− p)q
, when α ≥ 1.

(7.3)

Pr[bn+h(i) = β]

Pr[b′n+h(i) = β]
=
AG+1,min(G+1,β)

AG,min(G,β)

When β ≤ G,

AG+1,min(G+1,β)

AG,min(G,β)

=

β∑
k=0

(
G+1
k

)
pk(1− p)G+1−kqβ−k(1− q)

β∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

=

β∑
k=0

((
G
k

)
+
(
G
k−1

))
pk(1− p)G+1−kqβ−k(1− q)

β∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

= (1− p) +

β∑
k=1

(
G
k−1

)
pk(1− p)G−(k−1)qβ−k(1− q)

β∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

= (1− p) +

β−1∑
k=0

(
G
k

)
pk+1(1− p)G−kqβ−(k+1)(1− q)

β∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

< 1− p+
p

q
; (7.4)
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when β ≥ G+ 1 ,

AG+1,min(G+1,β)

AG,min(G,β)

=

G+1∑
k=0

(
G+1
k

)
pk(1− p)G+1−kqβ−k(1− q)

G∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

=

G+1∑
k=0

((
G
k

)
+
(
G
k−1

))
pk(1− p)G+1−kqβ−k(1− q)

G∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

= 1− p+

G+1∑
k=1

(
G
k−1

)
pk(1− p)G−(k−1)qβ−k(1− q)

G∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

= 1− p+

G∑
k=0

(
G
k

)
pk+1(1− p)G−kqβ−(k+1)(1− q)

G∑
k=0

(
G
k

)
pk(1− p)G−kqβ−k(1− q)

= 1− p+
p

q
; (7.5)

As a consequence,

Pr[vi = α, bn+h(i) = β]

Pr[u′i + v′i = α, b′n+h(i) = β
≤ 1

1− p
·
(

1− p+
p

q

)
= 1 +

p

q(1− p)
.

Therefore, we obtain

Pr[M(D, ~w) ∈ S]

Pr[M(D′, ~w) ∈ S]
≤
(

1 +
p

q(1− p)

)|Λ|
≤
(

1 +
p

q(1− p)

)|~w|
.

Differential Privacy for Keywords. Consider a database D, and a pair of neighbouring

keyword lists ~w, ~w′ ∈ ∆|~w| where ~w[i] 6= ~w′[i]. Let w be ~w[i], w′ be ~w′[i] and Λ = {j |Π̂w[j] 6=
Π̂w′ [j]} where Π̂w is the real access pattern while searching for w. Define h(Λ) = {n +
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h(j)|j ∈ Λ}. Let U be a list and define UΛ = (UΛ[1], UΛ[2], ..., UΛ[|Λ|]) where Λ[j] represents

for the jth smallest element in Λ.

Pr[M(D, ~w) ∈ S]

Pr[M(D, ~w′) ∈ S]
=
Pr[M(D, ~w[i]) ∈ S]

Pr[M(D, ~w′[i]) ∈ S]
=
Pr[M(D, ~w[i]) = Π]

Pr[M(D, ~w′[i]) = Π]

=
Pr[M(D, ~w[i])Λ∪h(Λ) = ΠΛ∪h(Λ)]

Pr[M(D, ~w′[i])Λ∪h(Λ) = ΠΛ∪h(Λ))]

=
∏

j∈Λ∪h(Λ)

Pr[Πw[j] = Π[j]]

Pr[Πw′ [j] = Π[j]]

Let η = |{j |1 = Π̂w[j] > Π̂w′ [j], j ≤ n}|. In other words, η is the number of documents

which contain w but not w′. Then the number of documents which contain w′ but not w

is ρ = |Λ| − η. Let ηt = |{j | 1 = Π̂w[j] > Π̂w′ [j] and h(j) = t, j ≤ n}| and ρt = |{j | 1 =

Π̂′w[j] > Π̂w[j] and h(j) = t, j ≤ n}|, namely ηt and ρt are the number of documents

which contain w but not w′ and the number of documents which contain w′ but not w,

respectively. Therefore, η =
∑

j∈h(Λ)

ηj and ρ =
∑

j∈h(Λ)

ρj.

When j ∈ Λ, based on what have been proved in equation (7.1), (7.3),

Pr[Πw[j] = Π[j]]

Pr[Πw′ [j] = Π[j]]
=



Pr[ui + vi = Π[j]]

Pr[vi = Π[j]]
≤ p+ (1− p)q

q
, if w ∈ D[j] but w′ 6∈ D[j];

Pr[vi = Π[j]]

Pr[ui + vi = Π[j]]
≤ 1

1− p
, if w 6∈ D[j] but w′ ∈ D[j];

Therefore, ∏
j∈Λ

Pr[Πw[j] = Π[j]]

Pr[Πw′ [j] = Π[j]]
=

(
p+ q(1− p)

q

)η
·
(

1

1− p

)ρ
(7.6)

When j ∈ h(Λ), let β = Π[n+ j] and As,t =
t∑

k=0

(
s
k

)
pk(1− p)s−kqβ−k(1− q). Let g(w, j) =

G where G = countermax − |{t|h(t) = j, w ∈ D[t]}| and g(w′, j) = G+ ηj − ρj.

Pr[Πw[n+ j] = Π[n+ j]]

Pr[Πw′ [n+ j] = Π[n+ j]]
=
Pr[bn+j = β]

Pr[b′n+j = β]
=

AG,min(G,β)

AG+η−ρ,min(G+ηj−ρj ,β)
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When ηj ≥ ρj, then G ≤ G+ ηj − ρj.

AG,min(G,β)

AG+ηj−ρj ,min(G+ηj−ρj ,β)

=

ηj−ρj∏
j=1

AG+j−1,min(G+j−1,β)

AG+j,min(G+j,β)

≤
(

1

1− p

)ηj−ρj
. (7.7)

When ηj < ρj, then G ≥ G+ ηj − ρj.

AG,min(G,β)

AG+ηj−ρj ,min(G+ηj−ρj ,β)

=

ρj−ηj∏
j=1

AG−j+1,min(G−j+1,β)

AG−j,min(G−j,β)

≤
(

1− p+
p

q

)ρj−ηj
. (7.8)

The last inequation holds is because of what has been proved in equation (7.4), (7.5)

in the part of proving differential privacy for documents. Therefore,

∏
j∈h(Λ)

Pr[Πw[n+ j] = Π[n+ j]]

Pr[Πw′ [n+ j] = Π[n+ j]]
=

(
1

1− p

)η̂−ρ̂
·
(

1− p+
p

q

)ρ−ρ̂−(η−η̂)

(7.9)

where η̂ =
∑

j∈Λ,ηj≥ρj
ηj and ρ̂ =

∑
j∈Λ,ηj≥ρj

ρj.

Combining equation (7.6), (7.9), we can obtain that

∏
j∈Λ

Pr[Πw[j] = Π[j]]

Pr[Πw′ [j] = Π[j]]
≤
(
p+ (1− p)q

q

)η
·
(

1

1− p

)ρ
·
(

1

1− p

)η̂−ρ̂
·
(

1− p+
p

q

)ρ−ρ̂−(η−η̂)

=

(
1− p+

p

q

)ρ−ρ̂+η̂

·
(

1

1− p

)η̂−ρ̂+ρ

=

(
1 +

p

q(1− p)

)ρ−ρ̂+η̂

≤
(

1 +
p

q(1− p)

)ρ+η

=

(
1 +

p

q(1− p)

)d(D(~w),D(~w′))

.

Therefore,

Pr[M(D, ~w) ∈ S]

Pr[M(D, ~w′) ∈ S]
=
∏
j∈Λ

Pr[Πw[j] = Π[j]]

Pr[Πw′ [j] = Π[j]]
≤
(

1 +
p

q(1− p)

)d(D(~w),D(~w′))

.

where d(D(~w),D(~w′)) = |{j | Π̂w[j] 6= Π̂w′ [j]}| = η + ρ.

Utility. The true positive rate and false positive rate of DP-SSE are (p + q − pq) and q,

respectively. Therefore, the utility of DP-SSE is (p+ 1− pq)(1− q).
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Using the same proof strategy as above, we can prove the follow theorems.

Theorem 7.0.2. DP-SSE-1 is a (u, ε, ε)-differentially private SSE where u = (p + q −

pq)(1− q) and ε = ln

(
1 +

p

q(1− p)

)
.

Theorem 7.0.3. DP-SSE-2 is a (u, ε, ε)-differentially private SSE where u = (p + q −

pq)(1− q) and ε = ln

(
1 +

p

q(1− p)

)
.

However, DP-SSE-3 is slightly different from the other two schemes since the output of

the label distribution function depends on the content of the document. This does not affect

the analysis in differential privacy for keywords. However, in the analysis of differential

privacy for documents, removing or adding a single keyword w to one document D[i] will

affect at most Cmax search keys. Therefore, we have the following theorem.

Theorem 7.0.4. DP-SSE-3 is a (u, ε1, ε2)-differentially private SSE where u = (1 − (1 −

p)(1− q)2)(1− (1− q)2), ε1 = ln

(
1 +

p

q(1− p)

)
, ε2 = 2Cmax · ln

(
1 +

p

q(1− p)

)
.

Proof. Refer to Appendix A.6.
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Chapter 8

Complexity

In this chapter, we will discuss the complexity of DP-SSE, namely communication com-

plexity and computation complexity. Note that the initialization is not discussed here,

since it can be done efficiently in practice. After the analysis of the meta-scheme DP-SSE,

the communication complexity and computation complexity of DP-SSE-1, DP-SSE-2 and

DP-SSE-3 can be obtained by replacing the hyper parameters(like countermax and |h|) with

corresponding values.

Communication complexity refers to the total network traffic between the client and

the server during the query process for one keyword. It has two parts: the network traffic

from client to server, i.e. all tokens, and the network traffic from server to client, i.e. all

matched documents. Computation complexity refers to the complexity of the function

Trapdoor and the function Search which consume the most computation resources.

8.1 Communication Complexity

When searching for keyword w, the client will generate a list of tokens instead of one and

send them to the server. These tokens are originated from three sources: TruePosSet,

FalsePosSet, and NonMatchSet. The expected size of them is |h| · countermax · p, n ·
∞
Σ
i=0
iqi(1 − q) =

nq

1− q
, and |h| · q

1− q
, respectively. Therefore, the expected number of
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tokens sent from client to server, denoted by Eclient, is

Eclient = |h| · countermax · p+
nq

1− q
+ |h| · q

1− q
= O(|h| · countermax), assuming nq = O(Cmax). (8.1)

It should be noted that |h| · countermax ≥ Cmax. It should also be noted that the number

of issued tokens is independent from the keyword being searched.

The other part of communication complexity comes from network traffic sent from server

to client, i.e. the matched documents. When searching for keyword w, there would be two

types of documents returned (a document would be returned if it is matched at least once),

i.e. true positives and false positives. The expected numbers of them are |D(w)|·(p+q−pq)
and (n− |D(w)|)q, respectively. Therefore, the expected number of document returned in

total when searching for w, denoted by Eserver
w , would be

Eserver
w = |D(w)| · (p+ q − pq) + (n− |D(w)|)q

≤ Cmax + Cmax = O(Cmax) (8.2)

It should be noted that the above bound for Eserver
w also holds in big-O notation for

DP-SSE-3 even the true positive rate and false positive rate change in DP-SSE-3.

Note that the size of each document is not necessarily equal. To simplify the analysis,

we assume all documents are of the same size Smax. Therefore, the expected traffic volume

when searching for w is

VDPSSE = (Eserver
w + Eclient) · Smax = O(|h| · countermax · Smax). (8.3)

Note that VDPSSE is independent of the queried w in big-O notation.

In order to compute the communication overhead of DP-SSE, we need to make assump-

tions on the distributions of keywords and queries. Here we give our analysis assuming

keywords follow uniform distribution and Zipfian distribution, respectively.

As for a traditional searchable encryption scheme, it should be able to return all true

positive documents in order to provide high utility, so there is a lower bound of communi-

cation complexity in SSE.
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8.1.1 Keywords Following Uniform Distribution

If keywords are uniformly distributed in the database, i.e. |D(wi)| = |D(wj)| = Cmax, the

communication volume in an SSE when searching for keyword w is

V u
SSE = |D(w)| · Smax = Cmax · Smax (8.4)

Note that V u
SSE is independent of w. Therefore, we can compute the communication

overhead of DP-SSE.

Theorem 8.1.1. DP-SSE has O

(
|h| · countermax

Cmax

)
(amortized) communication overhead

when keywords follow the uniform distribution.

Proof.

VDPSSE
V u
SSE

=
O(|h| · countermax · Smax)

Cmax · Smax
= O

(
|h| · countermax

Cmax

)
(8.5)

It should be noted that the exact value of countermax and |h| both depend on the label

distribution function, i.e. h.

8.1.2 Keywords Following Zipfian Distribution

Zipf’s law states that the frequency of an individual word in a corpus of natural language

utterances is inversely proportional to its rank (the position of it in a sorted list in decreas-

ing order of frequency) [33]. Let w(i) be the ith most frequent keyword in ∆. ∆ is said to

follow Zipfian distribution if the frequency Rw(i) of the keyword w(i) of ∆ satisfies

Rw(i)

Rw(j)

=
j

i
.

Due to the fact that Rw(1) = Cmax, we have

Rw(i) =
Cmax
i

,∀i ∈ [|∆|] . (8.6)
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Note. Usually some stopwords like the, is, and, etc. in ∆ would be removed when building

the index. In this case Cmax would be the frequency of the (t + 1)th keyword (assuming

there are t such stopwords) resulting that Rw(i) =
t+ 1

i
Cmax,∀t + 1 ≤ i ≤ |∆|. However,

such difference will not change the following approximation of communication complexity

or overhead. Therefore, we use Rw(i) = Cmax/i for simplicity in the following.

To approximate the communication complexity of an SSE, we also need to assume some

query distribution. Here we give our analysis when assuming queries are following Zipfian

distribution. Let ei be the event that w(i) is queried, queries are said to follow Zipfian

distribution if

Pr[ei] =
1
i

N|∆|
,where N|∆| =

|∆|∑
j=1

1

j
. (8.7)

The assumption that queries also follow Zipfian distribution suggests that the more

frequent a keyword appears, the more likely it would be queried.

Theorem 8.1.2. DP-SSE has O

(
log |∆| · |h| · countermax

Cmax

)
amortized communication

overhead when keywords and queries both follow the Zipfian distribution.

Proof. Define w(i) and ei as above.

In order to search for a keyword, the (average) communication volume in an SSE (when

retrieving them in plaintext) would be:

V z
SSE =

|∆|∑
i=1

Pr[ei] · |D(w(i))| · Smax

=

|∆|∑
i=1

1/i

N|∆|
· Cmax

i
· Smax (refer to (8.6), (8.7))

= O

(
Cmax · Smax

log |∆|

)
. (8.8)

due to the fact that
|∆|∑
i=1

1

i
= O(log |∆|) and

∞∑
i=1

1

i2
=
π2

6
.
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Thus, the communication overhead of DP-SSE would be

VDPSSE
V z
SSE

=
O(|h| · countermax · Smax)

O

(
Cmax · Smax

log |∆|

)
= O

(
log |∆| · |h| · countermax

Cmax

)
. (8.9)

Note: In the above analysis, the size of one document is treated the same as the size

of its keyword list. In the case where the size of a document is much larger than its

keyword list, the communication overhead of DP-SSE would be smaller. The reason is

that communication overhead comes mostly from query tokens in DP-SSE which is of

the same size as keyword list. If every document is
|h| · countermax

Cmax
times larger than its

keyword list, the above amortized overhead could decrease to O(log |∆|) = O(log n).

8.2 Computation Complexity

In this section, we focus on the efforts that the server needs to compute the query results

given the tokens searching for keyword w. Specifically, we use the number of calls for

function FHIPPE.Query to measure the computation complexity. It worth mentioning that

each call for FHIPPE.Query will take O(Smax) time.

DP-SSE reveals the label distribution and the labels of the tokens. Then the server

only needs to call FHIPPE.Query for each pair of search key and token which share the

same label. For every label, there are approximately O(countermax) query tokens sharing

such label. Therefore, the computation complexity for DP-SSE is O(n · countermax) where

n is the number of documents.
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8.3 Complexity and Label Distribution Function h

From the previous analysis, the communication overhead of DP-SSE is eitherO

(
|h| · countermax

Cmax

)
or O

(
log n · |h| · countermax

Cmax

)
depending on the keyword and query distribution and the

computation complexity of DP-SSE is O(n · countermax). Therefore, we can compute the

complexity of DP-SSE-1,DP-SSE-2 and DP-SSE-3 as shown in Table 8.1. Note that each

scheme has two values in communication overhead cell where the first value is in the setting

of uniformly distributed keywords while the second one is in the setting where keywords

and queries both follow the Zipfian distribution.

Scheme |h| countermax
Communication Overhead

Computation Complexity

Uniform Zipfian

DP-SSE-1 1 Cmax O(1) O(log n) O(n2)

DP-SSE-2 Cmax O

(
log n

log logn

)
O

(
log n

log logn

)
O

(
log2 n

log logn

)
O

(
n · log n

log log n

)
DP-SSE-3 Cmax O(log log n) O(log log n) O(log n · log log n) O(n · log log n)

Table 8.1: Complexity of DP-SSE-1, DP-SSE-2 and DP-SSE-3

DP-SSE-1 has the least communication overhead but the highest computation com-

plexity. DP-SSE-2 reduces the computation complexity to O

(
n · log n

log log n

)
by utilizing

a hash function at the expense of increasing the communication overhead by a factor of

O

(
log n

log log n

)
. DP-SSE-3 further reduces the computation complexity to O(n · log log n)

compared to DP-SSE-2. It also reduces the communication overhead but at the expense

of decreasing the privacy level compared to DP-SSE-2 as pointed out in Theorem 7.0.4.

As what can be seen from Table 8.1, the label distribution function h can influence

the communication and computation complexity. It is not hard to see that when |h| de-

creases, countermax will remain or increase and when countermax decreases the computation

complexity decreases no matter what |h| is. To make DP-SSE computationally efficient,
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countermax should not be too large. In other words, |h| should not be too small. There

might also be some other options of h where |h| is not too small besides the candidates

introduced in 5.4. In general, given a not-too-small |h|, we can formalize the problem

of finding the best assignment of labels to documents in DP-SSE such that countermax

is minimized as a defective vertex coloring problem. Unfortunately, the defective vertex

coloring problem is proved to be NP-complete[7].

Theorem 8.3.1. Given |h| = c ≥ 3, finding the best assignment of labels to documents

such that countermax is minimized is NP-hard.

Proof. This problem can be formalized as follows:

Given n (0, 1)-binary vectors {X1, X2, ..., Xn} of length Smax, group them into c disjoint

groups, {g1, g2, ..., gc} such that A is minimized over i, h where

A = max
i,h
‖(
∑
gi

Xj)‖∞

where h is the grouping strategy and ‖Xj‖∞ = maxi |Xj[i]|. Call the decision version of

this problem Fp, namely 〈X, c, A〉 is said to be in Fp if and only if there exists a grouping

strategy such that X can be grouped into c groups and no group has sum whose maximum

norm is greater than A.

Let Color = {〈G, k, d〉 |G is (k,d)-colorable} where G is (k,d)-colorable means one can

color all vertices of G with at most k colors such that no vertex is adjacent to more than

d vertices of the same color. Now we reduce Color to Fp. Assume G = 〈V,E〉 where

|V | = n and |E| = Smax,

• Every vertex vi ∈ V is mapped to a vector Xi and set X = {X1, X2, ..., Xn};

• Every edge ej ∈ V is mapped to a number j;

• In a vector Xi, set Xi[j] = 1 if edge ej is incident on the vertex vi; otherwise set

Xi[j] = 0;

• c = k;

• A = d;

57



We now claim that 〈G, k, d〉 ∈ Color if and only if 〈X, c, A〉 ∈ Fp. As pointed by [7],

in general graphs, the (k, d)-coloring problem is NP-complete for k ≥ 3, d ≥ 0. Therefore,

given |h| ≥ 3, the problem of finding the best assignment of labels to documents such that

countermax is minimized is NP-hard.
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Chapter 9

Evaluation

In this chapter, we will evaluate the effectiveness and efficiency of our proposed differentially

private SSE. For effectiveness, we empirically show that DP-SSE can resist access pattern

attacks, i.e. the IKK attack. We also show that the search pattern is hard to recover by

evaluating a clustering algorithm, KMeans clustering. Our experimental results suggest

that the accuracy for both the IKK attack and Kmeans clustering are less than 20%

(baseline 15%) and 17% (baseline 5%), respectively, even when only a small fraction of false

positive documents are added. For efficiency, we report the running time when running

DP-SSE-3 as a representative on Enron dataset in an Intel(R) E7-8870 160-core Ubuntu

16.04 machine clocked at 2.40 GHz with 2 TB of system memory. The results suggest that

one can perform one search in 25 minutes while utilizing 128 cores in parallel.

The rest of this chapter is organized as follows. We first describe the experiment

settings, then describe the experiments and explain their results, and finally show the

running time of DP-SSE-3.

9.1 Experiment Settings

Dataset Used and Keyword Generation. We use Enron email dataset for our following

experiments. The Enron email dataset has 30109 emails in sent directory which we
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considered as our document collection. We conduct the same keyword extraction process

as in the IKK paper [14] and then we remove the 200 most common keywords and use the

x most common keywords remaining as keyword universe. We vary the value of x in our

experiments.

Query Generation. It is hard to describe the query distribution even when the whole

dataset is available since search habits of users are expected to vary significantly. Therefore,

we use the Zipfian distribution as in [14, 5] to sample queries from the keyword universe

when conducting access pattern attacks in order to maintain comparability. While con-

ducting search pattern clustering attacks, we use the Zipfian distribution and the uniform

distribution to sample queries from the keyword universe in order to show the general ef-

fectiveness of the clustering algorithm, since this algorithm is expected to be sensitive to

query distributions.

Unified Access Patterns. Recall that the access pattern in DP-SSE is a multinary vector

of length n + |h| denoted by Π = (b1, ..., bn, bn+1, ..., bn+|h|), while the access pattern of a

traditional SSE is a binary vector of length n. To apply IKK -like attacks, we need to unify

these two types of access patterns. Since performing an IKK -like attack on a multinary

vector is non-trivial, we map Π into a length-n binary vector Π′ = (b′1, ..., b
′
n) where b′i = 0

if bi = 0 otherwise b′i = 1 for i ≤ n.

9.2 Hiding Access Pattern

We replicated the IKK attack on Enron email dataset as in the IKK paper [14] with a

keyword universe size x of 500, 1000, 1500, 2000 and 2500.

Unlike in the original IKK attack setting where the queries are all unique, we allow

repeated queries. In each keyword universe setting, we generate 200 queries to be issued.

15% of them are known to the attacker, which are chosen from all queries uniformly at

random. We also modifies the IKK attack to adapt to the new setting where queries can

be repeated. The modified IKK denoted by mIKK is detailed in Appendix B.2.

We compare the attack resistance of DP-SSE to this attack with a traditional SSE

scheme (denoted by SSE) and the mechanism in [5] (denoted by OSSE) in their iIKK
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setting where the attacker knows the shards distribution. The true positive rate and false

positive rate are set to be 99.99% and 2%, respectively. In other words, the utility is fixed

as 0.9999(1− 0.02) ≈ 0.98. In each keyword universe setting, we run each attack 20 times

for long enough and take the average recovery rate.

Figure 9.1: Access Pattern Attack Accuracy Varying Keyword Universe Size

Figure 9.1 displays the query recovery rate versus the keyword universe size. The

query recovery rate for SSE, which leaks access patterns, is 97% when the size of keyword

universe is set to 500. The query recovery rate goes down to 60.8% steadily as the keyword

universe size gets larger. This is because the search space becomes larger which makes

it harder for the IKK algorithm (a heuristic algorithm) to find a good solution. After

applying DP-SSE, the query recovery rate drops sharply to 19.5% from 97%. Since 15%

of queries are prior knowledge indicated by baseline, only 4.5% more queries are actually

recovered. Although OSSE [5] also greatly decreases the query recovery rate (from 97%
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to 23.5%), it is still slightly worse than DP-SSE for all universe sizes. The advantage of

DP-SSE over OSSE in resisting the attack comes from two parts. First, DP-SSE provides

independent randomness per query, i.e. two queries searching for the same keyword will

almost always get different results. Therefore, the attacker cannot easily recover queries

which are searching for keywords previously known to the attacker. Second, the mIKK

attack to DP-SSE has to search in a larger space for good solutions. Perfectly conducting

the IKK attack needs solving an NP -complete problem, which is infeasible. Thus, usually

a heuristic solution is taken to look for good but maybe suboptimal solutions. The solution

space in DP-SSE is |∆||∆| which is much larger than |∆|!, the size of the solution space in

the other setting.

9.3 Hiding Search Pattern

In order to show DP-SSE can actually hide search patterns, we run a clustering algorithm

(KMeans) to cluster queries based on their access patterns. If the queries cannot be well-

clustered, it means that it is difficult to determine whether a set of queries are searching

for the same keywords or not, namely the search patterns are hidden.

The set to be clustered is composed of unified access patterns, namely (0,1)-binary

vectors of length n where n is the number of documents. The size of the dataset is limited

to 500, namely 500 binary vectors per set. The underlying keywords per dataset are

sampled from a keyword population of size 25 based on some distribution (Zipfian or

uniform distribution). The keyword population contains either 25 consecutive keywords

in a sorted keyword universe list in decreasing order of frequency or 25 randomly chosen

keywords in ∆. Let ∆i→j be a keyword population of size j − i which contains w(t) for

t ∈ (i, j] where w(t) is the tth most frequent keyword in ∆.

We run KMeans clustering algorithm for 15 times per access pattern set and report

the average clustering accuracy. The clustering accuracy is measured by the ratio of the

number of vectors that are correctly clustered v.s. the total number of vectors. By correctly

clustered, we mean that a vector is generated by searching for the same keyword as the

label of its cluster. The label of a cluster is the keyword which generates the most vectors
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in it.

Figure 9.2: Clustering Accuracy, Queries Are Sampled From Uniform Distribution

Figure 9.2 and figure 9.3 show the clustering accuracy for different keyword populations

when varying the false positive rate when queries are sampled from a Zipfian distribution

and a uniform distribution, respectively. The true positive rate is fixed as 99.99%. The

baseline represents the clustering accuracy for random guessing. It should be noted that the

mechanism in [5] does not hide search patterns and simply running our clustering algorithm

on that mechanism has an accuracy of approximately 100%. While for our scheme, DP-SSE,

the clustering accuracy decreases sharply when increasing the false positive rate from 0 to

0.1%, then the accuracy decreases smoothly when further increasing the false positive rate.

When the false positive rate is larger than 0.5%, the clustering accuracy becomes less than

17% which is sufficiently low to hide search patterns. While focusing on each false positive

rate, where the keyword populations are sampled seem to have no clear impact on clustering

accuracy, namely queries are all hard to cluster no matter whether they are generated from
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Figure 9.3: Clustering Accuracy, Queries Are Sampled From Zipfian Distribution

frequent or relatively non-frequent keywords. Comparing figure 9.2 to figure 9.3, it can be

seen that how queries are sampled does not influence the clustering accuracy significantly.

The reason might be the sample size is too small to show the potential impact of query

distributions.

Figure 9.4 shows the clustering accuracy when the keyword population is sampled

uniformly at random from a large keyword universe of size 2500. It should be noted that

such keyword population might contain both frequent and non-frequent keywords whose

real access patterns are quite different and easy to distinguish. However, the experimental

results show that the differentially private access patterns for such keywords are still hard

to separate.
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Figure 9.4: Clustering Accuracy, Keyword Population are Randomly Chosen from ∆0→2500.

9.4 Running Time

Here we report the running time to build and run DP-SSE-3 on Enron dataset including the

running time of Keygen, BuildIndex, Trapdoor and Search which compose DP-SSE-3.

Here we assume the index of the database is already generated and the content of documents

is already encrypted under some symmetric encryption scheme since these are all common

operations for almost all SSE schemes. In all of the following experiments, we set p and

q be 0.9999 and 0.01, respectively. In other words, the true positive rate is set to be

1− (1− p)(1− q)2 ≈ 0.9999 and the false positive rate is set to be 1− (1− q)2 ≈ 0.02.

In our implementation, we use the function-hiding inner product encryption scheme

(denoted by IPE) proposed in [19] to implement our function-hiding inner product predicate

encryption scheme FHIPPE (refer to Appendix B.1 for details). We limit the number of

keywords for each document to be no more than 300 by splitting large documents into
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smaller ones. It should be noted that more than 97% of documents have no more than

300 keywords. After splitting, the number of documents increases by 1.5% to 30562, i.e.

n = 30562 and Cmax becomes approximate 2000. By using 2 hash functions, we manage

to limit countermax to 3.

Keygen FHIPPE.Encrypt FHIPPE.GenToken FHIPPE.Query

17.1 hours 1.77s 0.28s 1.25s

Table 9.1: Running Time

# cores BuildIndex(min) Trapdoor(s) Search(min)

4 272.5 580.7 933.1

8 136.3 290.5 463.4

16 68.2 145.3 235.21

32 34.1 72.8 119.9

64 17.1 36.4 62.2

128 8.5 18.2 34.0

160 6.9 14.7 27.9

Table 9.2: Running Time in Parallel

Table 9.1 displays the running time for functions Keygen, FHIPPE.Encrypt, FHIPPE.GenToken

and FHIPPE.Query. Due to their computation nature, such functions cannot be trivially

parallelized. It should be noted that although Keygen takes long to run, it only needs to

run once in the setup phase. Recall that in section 5.2, BuildIndex, Trapdoor and Search

are constructed by constantly invoking Encrypt, GenToken, Query in FHIPPE, respectively.

Such property makes it easy to parallelize these functions. It should be noted that BuildIn-

dex only needs to run once in setup phase. For each keyword search, Trapdoor and Search

are both invoked once. In each invocation of Trapdoor, FHIPPE.GenToken is invoked ap-

proximately Cmax · countermax · p+ 2 · q · n+ q ·Cmax ≈ 6630 times. Since each invocation

of FHIPPE.GenToken takes about 0.35s, the function Trapdoor takes about 38.5 minutes

while running in single CPU core. In each invocation of Search, FHIPPE.Query would be

invoked approximately 2 · n · (countermax · p + q) ≈ 183965 times. Since each invocation
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of FHIPPE.Query takes about 1.25s, the function Search takes about 64 hours in single

thread.

Table 9.2 shows the running time for BuildIndex, Trapdoor and Search when running

on multiple CPU cores. BuildIndex only needs to run once and it takes 4.5 hours on 4

cores and only 6.9 minutes on 160 cores in parallel. Trapdoor and Search are invoked per

query. It takes about 10 minutes to run Trapdoor on 4 cores and less than 1 minute when

running on more than 64 cores. Search, which is the most computationally intensive, takes

more than 15 hours on 4 cores and less than 30 minutes on 160 cores.
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Chapter 10

Conclusions

Searchable symmetric encryption allows a data owner to outsource its data to a cloud server

while maintaining the ability and therefore to search over it. Most existing SSE schemes

leak access patterns, and therefore are vulnerable to attacks like the IKK attack. Oblivious

RAM can be used to construct SSE scheme that fully hides access patterns. However such

schemes suffer from heavy communication overhead making them impractical. Chen et al.

proposed an obfuscation framework to protect existing SSE schemes against access-pattern

leakage. The framework can produce differentially private access patterns per keyword.

However, it cannot hide whether the same keyword is being searched multiple times or, in

other words, the search patterns.

In this work, we proposed a stronger security definition for differentially private search-

able symmetric encryption scheme and presented a real construction, DP-SSE, fulfilling it.

On the one hand, DP-SSE is adaptively semantically secure and provides differential pri-

vacy for both keywords and documents implying search-pattern hiding and access-pattern

hiding. On the other hand, DP-SSE has communication overhead as small as O(log log n)

and computation complexity of O(n · log log n) while searching for relatively frequent key-

words. When assuming queries follow Zipfian distribution, the amortized communication

overhead would be O(log n log log n). By replicating the IKK attack, we showed that our

proposed scheme could actually hide access patterns and make it difficult for the server to

extract useful information from differentially private access-pattern leakage. By performing
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KMeans clustering, we were able to show that inferring search patterns from differentially

private access pattern leakage is difficult, namely search patterns are hidden.
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[10] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggre-

gatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC

conference on computer and communications security, pages 1054–1067. ACM, 2014.

[11] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. Tworam: efficient

oblivious ram in two rounds with applications to searchable encryption. In Annual

International Cryptology Conference, pages 563–592. Springer, 2016.

[12] Eu-Jin Goh et al. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[13] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious

rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[14] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern

disclosure on searchable encryption: Ramification, attack and mitigation. In Ndss,

volume 20, page 12, 2012.

[15] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with worst-

case sub-linear complexity. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 94–124. Springer, 2017.

[16] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable sym-

metric encryption. In International Conference on Financial Cryptography and Data

Security, pages 258–274. Springer, 2013.

71



[17] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable

symmetric encryption. In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 965–976. ACM, 2012.

[18] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-

junctions, polynomial equations, and inner products. In Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, pages 146–162.

Springer, 2008.

[19] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J

Wu. Function-hiding inner product encryption is practical. In International Confer-

ence on Security and Cryptography for Networks, pages 544–562. Springer, 2018.

[20] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,

computationally-private information retrieval. In Proceedings 38th Annual Symposium

on Foundations of Computer Science, pages 364–373. IEEE, 1997.

[21] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious ram lower

bound! In Annual International Cryptology Conference, pages 523–542. Springer,

2018.

[22] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan. Search pattern leakage

in searchable encryption: Attacks and new construction. Information Sciences, 265:

176–188, 2014.

[23] Michael Mitzenmacher. The power of two choices in randomized load balancing. IEEE

Transactions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

[24] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Constant communication

oram with small blocksize. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 862–873. ACM, 2015.

[25] Muhammad Naveed. The fallacy of composition of oblivious ram and searchable

encryption. IACR Cryptology ePrint Archive, 2015:668, 2015.

72



[26] Muhammad Naveed, Manoj Prabhakaran, and Carl A Gunter. Dynamic searchable

encryption via blind storage. In Security and Privacy (SP), 2014 IEEE Symposium

on, pages 639–654. IEEE, 2014.

[27] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Annual Cryptology

Conference, pages 502–519. Springer, 2010.

[28] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.

In Theory of Cryptography Conference, pages 457–473. Springer, 2009.

[29] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In Security and Privacy, 2000. S&P 2000. Proceedings.

2000 IEEE Symposium on, pages 44–55. IEEE, 2000.

[30] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-

angyao Yu, and Srinivas Devadas. Path oram: an extremely simple oblivious ram

protocol. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-

munications security, pages 299–310. ACM, 2013.

[31] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On tightness of the goldreich-

ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 850–861. ACM, 2015.

[32] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are

belong to us: The power of file-injection attacks on searchable encryption. In USENIX

Security Symposium, pages 707–720, 2016.

[33] George Kingsley Zipf. Selected studies of the principle of relative frequency in lan-

guage. 1932.

73



APPENDICES

74



Appendix A

Proofs

It should be noted that proofs of Lemma A.2 and A.3 are inspired by the proofs in section

1.2 of Mitzenmacher’s thesis [23].

A.1 Proof of Theorem 4.3.1

Proof by example. Here we give two SSE schemes in which each only gives either differential

privacy for keywords (dp-keywords) or differential privacy for documents (dp-documents)

but not both.

An SSE gives only dp-keywords. Let A be an SSE scheme. Modify A to A′ in the

following way:

• When intending to query w, query w′ instead where w′ = w with probability p and

w′ = w′′ with probability q =
1− p
|∆ \ w|

for w′′ ∈ ∆ \ w.

It can be shown that A only gives dp-keywords but not dp-documents.

An SSE gives only dp-documents. We modify DP-SSE to DP-SSE′ in the following

way:
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• When intending to query w, add plaintext w into query tokens set.

• All the other parts remain the same.

It can be shown that DP-SSE′ gives dp-documents but not dp-keywords. The reason is the

actual search content is revealed in each query token set. Anyone can obtain the search

pattern once upon receiving the query tokens.

A.2 Proof of Lemma 5.4.1

Let ei,j be the event that the ith bin has at least j balls, then

Pr[ei,j] ≤
(
k

j

)(
1

k

)j
≤
(
ke

j

)j
·
(

1

k

)j
=

(
e

j

)j
Let j =

c ln k

ln ln k
where c ≥ 3 is a constant,

Pr[ei,j] ≤
(
e

j

)j
= exp

(
c ln k

ln ln k
· ln e ln ln k

c ln k

)
= exp

(
c ln k

ln ln k
· (1 + ln ln ln k − ln ln k − ln c)

)
≤ exp

(
c ln k

ln ln k
· (ln ln ln k − ln ln k)

)
= exp

(
−c ln k +

c ln k · ln ln ln k

ln ln k

)
≤ exp (−(c− 1) ln k) when k is large.

=
1

kc−1
.

A.3 Proof of Lemma 5.4.3

We first define some notations, Lemmas and Claims. Then we use such things to do the

proof.
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Define the height of a ball as i if it is the ith ball thrown into the bin. Let Ball#≤i and

Bin#≤i be the number of balls of height at most i and the number of bins that has at most

i balls, respectively. Define Ball#=i, Ball#≥i, Bin#≥i and Bin#=i in a similar way, then

we can obtain

Ball#=i ≥ Bin#≥i.

Lemma A.3.1. Suppose at most an α fraction of the bins have been marked. Let X be

the number of marked balls (a ball is marked if both of the bins it inspects are marked).

Then E[X] ≤ kα2.

Claim A.3.2. Suppose α2 ≥ 3c log k

k
, then X ≤ 2kα2 with probability at least 1 − 1

kc

where c is a constant.

Proof. Let µ = E[X], δ =
λ

µ
=
nα2

µ
, use the Chernoff bound,

Pr[X ≥ 2kα2] ≤ Pr[X − µ ≥ kα2]

≤ exp

(
− δ2µ

2µ+ λ

)
= exp

(
− λ2

2µ+ λ

)
≤ exp

(
−λ

3

)
, since λ ≥ µ

≤ exp (−c log k) ≤ 1

kc
, since λ = kα2 ≥ 3c log k.

Define α3 =
1

3
and αi = 2α2

i−1 for i ≥ 4, then we have

αi =
1

2
·
(

2

3

)2i−3

.

Define ei be the event that Bin#≥i ≤ kαi. Notice that at most a third of the bins can have

3 balls or more, we have

Pr[e3] = Pr[Bin#≤ k
3
] = 1.

Claim A.3.3. If α2
i ≥

3c log k

k
, then Pr[¬ei+1] ≤ i+ 1

kc
.
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Proof. Proof by induction.

Base case. When i = 3, Pr[¬e3] = 1− Pr[e3] = 0 <
4

k
.

When i = j, assume Pr[¬ej] ≤
j

kc
for j ≥ 3.

When i = j + 1, since ¬ej+1 ⊂ ¬ej.

Pr[¬ej+1] = Pr[¬ej+1|ej]Pr[ej] + Pr[¬ej] ≤ Pr[¬ej+1|ej] + Pr[¬ej].

By Claim A.3.2,

Pr[¬ej+1|ej] = Pr[Bin#≥k2α2
j
|Bin#≤kαj

] ≤ 1

kc
.

Therefore,

Pr[¬ej+1] ≤ Pr[¬ej+1|ej] + Pr[¬ej] ≤
1

kc
+

j

kc
=
j + 1

kc
.

Now we do the final proof in two steps. We first show that when i is small i.e. i =

O(log log k), Bin#≤i is bounded by kαi which will decrease quadratically. Then we show

that when i becomes larger than O(log log n), Bin#≥i will be smaller than 1 with high

probability, in other words, no bin will have balls more than O(log log n).

When α2
i ≥

3c log k

k
, by union bound

Pr[∪i¬ei] ≤
∑
i

Pr[¬ei] ≤
1

kc−2
. (A.1)

This means that the fraction of bins to have at most i balls is bounded by αi. The

largest i denoted by i∗ to make α2
i ≥

3c log k

k
is i∗ ≈ log2 log3/2 k + 2.
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When α2
i ≤

3c log k

k
, or in other words, i ≥ i∗, by union bound,

Pr[Ball#=i∗+1 = j] ≤
(
k

j

)
(α2

i∗)
j ≤

(
k

j

)(
3c log k

k

)j
≤
(
ke

j

)j
·
(

3c log k

k

)j
=

(
3ce log k

jk

)j
≤ 1

kj−1
, when k is large.

P r[Ball#=i∗+2 ≥ 1] =
k∑
j=2

(
j

2

)(
j

k

)2

Pr[Ball#=i∗+1 = j]

≤
k∑
j=2

j2

2

(
j

k

)2
1

kj−1

≤ 22

2

(
2

k

)2
1

k
+

32

2

(
3

k

)2
1

k2
+

k∑
j=4

j2

2

(
j

k

)2
1

kj−1

= O(
1

k3
). (A.2)

Combining equation (A.1), (A.2), we can obtain that the number of balls in any bin is no

more than i∗ + 2 = O(log log k) with probability at least min

(
1− 1

kc−2
, 1− 1

k3

)
when

c ≥ 3.

A.4 Proof of Theorem 5.4.2

Recall that applying the 1-choice strategy to DP-SSE is analogous to play the Balls into

Bins game in the 1-choice setting for |∆| times. Since Cmax = O(n), |∆| = O(n), choose c

in Lemma A.2 as c = logk n|∆|+ 1, then by union bound,

Pr[countermax = O

(
ln k

ln ln k

)
] ≥ 1− |∆| · 1

kc
= 1− |∆| 1

klogk n|∆|
= 1− 1

n
.
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A.5 Proof of Theorem 5.4.4

Recall that applying the 2-choice strategy to DP-SSE is analogous to play the Balls into

Bins game in the 2-choice setting for |∆| times. Since Cmax = O(n), |∆| = O(n), choose c

in Lemma A.3 as c = logk n|∆|+ 2 which is no more than 5, then by union bound,

Pr[countermax = O(log log k)] ≥ 1− |∆| · 1

kc
= 1− |∆| 1

klogk n|∆|
= 1− 1

n
.

A.6 Proof of Theorem 7.0.4

We only focus on the differential privacy for documents part of DP-SSE-3.

Recall what has been mentioned in section 5.4.3, the access pattern of DP-SSE-3 when

querying w is (Π
(1)
w ,Π

(2)
w ) where Π

(t)
w is a multinary vector of length n + |h| for t ∈ {1, 2}.

Let Π
(t)
w = (b

(t)
1 , ..., b

(t)
n , b

(t)
n+1, ..., b

(t)
n+h) for t ∈ {1, 2} For and where for enumerating. Let

Π̂w = (a1, ..., an) be the real access pattern when querying w.

Recall that

• for i ≤ n,

– if ai = 0, then b
(1)
i = v

(1)
i and b

(2)
i = v

(2)
i where v

(1)
i ∼ G0(1 − q) and v

(2)
i ∼

G0(1− q);

– if ai = 1 and assuming ht∗(i) is selected by w to generate the concatenation

when generating search key for D(i), then b
(t∗)
i = ui + v

(t∗)
i and b

(1−t∗)
i = v

(1−t∗)
i

where ui ∼ Bern(p), v
(1)
i ∼ G0(1− q), v(2)

i ∼ G0(1− q) and t∗ ∈ {1, 2};

• for i ≤ |h|, b(t)
n+i = u

(t)
n+i + v

(t)
n+i for t ∈ {1, 2} where u

(t)
n+i ∼ B(g(t)(w, i), p) and

v
(t)
n+i ∼ G0(1− q).

The value of g(t)(w, i) indicates the number of possible non-match tokens originated from

TruePosSet to have label i when Search considers only ht to label documents. In other

words,

g(t)(w, i) = countermax − |{D[j] | ht(j) = i, w ∈ D[j] and ht(j) is selected by w}|.
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Now we begin our proof.

Differential Privacy for Documents. Given a pair of neighbouring databases D and

D′ where D[i] 6= D′[i] and |D[i]| = |D′[i]|, and a list of querying keywords ~w ∈ ∆|~w|. Let w

be the keyword such that it is only in one of D and D′.

If w 6∈ ~w, then Pr[M(D, ~w) ∈ S] = Pr[M(D′, ~w) ∈ S].

If w ∈ ~w, let Λ = {j | ~w[j] = w} and ~wΛ = (~w[Λ[1]], ~w[Λ[2]], ..., ~w[Λ[|Λ|]]) where Λ[j]

represents the jth smallest element in Λ.

Pr[M(D, ~w) ∈ S]

Pr[M(D′, ~w) ∈ S]
=
Pr[M(D, ~wΛ) ∈ S]

Pr[M(D′, ~wΛ) ∈ S]
=

(
Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]

)|Λ|
Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]
≤ max

(Π(1),Π(2))∈S

Pr[M(D, w) = (Π(1),Π(2))]

Pr[M(D′, w) = (Π(1),Π(2))]
. (A.3)

It should be noted that when querying w, the distributions of all b
(t)
j s ( and b

′(t)
j ) are

determined given the content of database D (and D′). Let Υ(t) = {j | b(t)
j 6= b

′(t)
j } where

b
(t)
j 6= b

′(t)
j stands for that b

(t)
j and b

′(t)
j follow different distributions. Let Υ

(t)
≤n = {j | j ∈

Υ(t), j ≤ n} and Υ
(t)
>n = {j | j ∈ Υ(t), j > n}. Then we have |Υ(t)

≤n| ≤ Cmax and Υ
(t)
>n ≤ |h| =

Cmax. The reason for such bounds is that adding or removing one keyword w to or from a

document D[i] to obtain D′[i] can only affect the search keys of the documents containing

w of which the number is |D′(w)| ≤ Cmax. Let Υ
(t)
≤n,D>D′ = {j | j ∈ Υ

(t)
j≤n, b

(t)
j > b

′(t)
j } where

b
(t)
j > b

′(t)
j means b

(t)
j = uj + v

(t)
j but b

′(t)
j = v

′(t)
j where uj ∼ Bern(p), v

(t)
j ∼ G0(1− q) and

v
′(t)
j ∼ G0(1− q). Let Υ

(t)
≤n,D<D′ = Υ

(t)
j≤n \Υ

(t)
j≤n,D>D′ . It should be noted that

∀j ∈ Υ
(t)
j≤n,D>D′ ,

P r[b
(t)
j = α]

Pr[b
′(t)
j = α]

≤ p+ (1− p)q
q

( refer to (7.1)) ;

∀j ∈ Υ
(t)
j≤n,D<D′ ,

P r[b
(t)
j = α]

Pr[b
′(t)
j = α]

≤ 1

1− p
( refer to (7.3)) .

Let Υ
(t)
>n,D>D′ = {j | j ∈ Υ

(t)
>n, b

(t)
j > b

′(t)
j } where b

(t)
j > b

′(t)
j means that g(t)(w, j − n) >

g′(t)(w, j − n) where b
(t)
j = u

(t)
j + v

(t)
j and b

′(t)
j = u

′(t)
j + v

′(t)
j where u

(t)
j ∼ B(g(t)(w, j −

n), p), u
′(t)
j ∼ B(g′(t)(w, j − n), p), v

(t)
j ∼ G0(1− q) and v

′(t)
j ∼ G0(1− q). Let Υ

(t)
j>n,D<D′ =
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Υ
(t)
>n \Υ

(t)
>n,D>D′ . It should be noted that

∀j ∈ Υ
(t)
>n,D>D′ ,

P r[b
(t)
j = α]

Pr[b
′(t)
j = α]

≤
(

1− p+
p

q

)g(t)(w,j−n)−g′(t)(w,j−n)

( refer to (7.8));

∀j ∈ Υ
(t)
>n,D<D′ ,

P r[b
(t)
j = α]

Pr[b
′(t)
j = α]

≤
(

1

1− p

)g′(t)(w,j−n)−g(t)(w,j−n)

( refer to (7.7)).

Now we can rewrite Equation (A.3) as

Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]
≤ max

(Π(1),Π(2))∈S

Pr[M(D, w) = (Π(1),Π(2))]

Pr[M(D′, w) = (Π(1),Π(2))]

= max
α

(t)
j

∏
t∈{1,2}

∏
j∈Υ(t)

Pr[b
(t)
j = α

(t)
j ]

Pr[b
′(t)
j = α

(t)
j ]

(A.4)

When w ∈ D[i] but w 6∈ D′[i],∑
t∈{1,2}

|Υ(t)
≤n,D>D′| − |Υ

(t)
≤n,D<D′| = 1 and

∑
t∈{1,2}

∑
j∈Υ

(t)
>n

g(t)(w, j − n)− g′(t)(w, j − n) = −1.

Let A =
∑

t∈{1,2}
|Υ(t)
≤n,D>D′| and B =

∑
t∈{1,2}

∑
j∈Υ

(t)

>n,D<D′

g′(t)(w, j − n) − g(t)(w, j − n). Then

A ≤ Cmax, B ≤ Cmax and

Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]
≤ max

α
(t)
j

∏
t∈{1,2}

∏
j∈Υ(t)

Pr[b
(t)
j = α

(t)
j ]

Pr[b
′(t)
j = α

(t)
j ]

≤
(
p+ (1− p)q

q

)A
·
(

1

1− p

)A−1

·
(

1− p+
p

q

)B−1

·
(

1

1− p

)B
=

(
p+ (1− q)q

(1− p)q

)A+B−1

<

(
1 +

p

(1− p)q

)2Cmax

. (A.5)

When w 6∈ D[i] but w ∈ D′[i],∑
t∈{1,2}

|Υ(t)
≤n,D>D′| − |Υ

(t)
≤n,D<D′| = −1 and

∑
t∈{1,2}

∑
j∈Υ

(t)
>n

g(t)(w, j − n)− g′(t)(w, j − n) = 1.

Let A =
∑

t∈{1,2}
|Υ(t)
≤n,D<D′| and B =

∑
t∈{1,2}

∑
j∈Υ

(t)

>n,D>D′

g(t)(w, j − n) − g′(t)(w, j − n). Then
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A ≤ Cmax, B ≤ Cmax and

Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]
≤ max

α
(t)
j

∏
t∈{1,2}

∏
j∈Υ(t)

Pr[b
(t)
j = α

(t)
j ]

Pr[b
′(t)
j = α

(t)
j ]

≤
(
p+ (1− p)q

q

)A−1

·
(

1

1− p

)A
·
(

1− p+
p

q

)B
·
(

1

1− p

)B−1

=

(
p+ (1− q)q

(1− p)q

)A+B−1

<

(
1 +

p

(1− p)q

)2Cmax

. (A.6)

As a consequence,
Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]
≤
(

1 +
p

(1− p)q

)2Cmax

.

Therefore, we obtain

Pr[M(D, ~w) ∈ S]

Pr[M(D′, ~w) ∈ S]
≤
(
Pr[M(D, w) ∈ S]

Pr[M(D′, w) ∈ S]

)|Λ|
≤
(

1 +
p

q(1− p)

)|~w|·2Cmax

.
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Appendix B

Algorithms

B.1 A Function-Hiding Inner Product Predicate En-

cryption Scheme

Fix a security parameter λ, and let n be a positive integer. The function-hiding inner

product predicate encryption scheme is constructed as follows.

• Setup(1λ): The Setup algorithm takes as input the security parameter and output a

secret key sk as follows. It first samples an asymetric bilinear group (G1,G2,GT , q, e)

and chooses generators g1 ∈ G1, g2 ∈ G2, then it samples B ← GLn(Zq) and sets

B∗ = det(B) · (B−1)T . Finally, it sets sk = (g1, g2,B,B
∗).

• Encrypt(sk, ~x): The Encrypt takes as input the secret key sk and an attribute ~x, then

samples α
R←− Zq and finally outputs

c~x = (C1, C2) =
(
g
α·det(B)
1 , gα·~x·B1

)
.

• GenToken (sk, ~f): The GenToken takes as input the secret key sk and an predicate
~f , then samples β, γ

R←− Zq and finally outputs

τ~f = (T1, T2) =
(
gβ2 , g

βγ·~f ·B∗
2

)
.
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• Query(c~x, τ~f ): The Query algorithm takes as input a ciphertext c~x and a token τ~f ,

then computes

D1 = e(C1, T1) and D2 = e(C2, T2)

finally returns True if D0
1 = D2, otherwise returns False.

Correctness.

D1 = e(C1, T1) = e(g1, g2)αβ·det(B)

D2 = e(C2, T2) = e(g1, g2)αβγ·~xB(B∗)T ~fT = e(g1, g2)αβ·det(B)γ〈~x, ~f〉 since B ·B∗ = det(B) · I

D0
1 = D2 holds if and only if γ〈~x, ~f〉 = 0. Due to the fact that γ is chosen uniformly

random, γ〈~x, ~f〉 holds if and only if 〈~x, ~f〉 = 0 with overwhelming probability.

Security. With the same proof strategy as in [19], the above IPPE scheme can be proved

SIM-secure in the generic group model.
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IKK Attack 
 
Algorithm: Optimizer 

Require:  V: variable List 
  D: domain List 
  K: known assignments 
  Mp, Mc: pair similarity matrices 
 
valList  copy D 
for all cipher vari ∈ V do 
        vali  select random member of valList 
        add {vari = vali} to initState 
        remove vali from valList 
end for 
add K to initState 
return ANNEAL (initState, D, Mp, Mc) 

 
 
 
Algorithm: ANNEAL 

Require: initState, D, Mp, Mc 
  initTempareture, coolingRate, rejectThreshold 
 
currentState  initState 
succReject  0 
curt  initTempareture 
while (temp ≠ 0 and succReject < rejectThreshold ) do 
        currentCost  0, nextCost  0 
        nextState  copy currentState 
        (x, y)  select random pair from nextState  
        y’  select random member of D different from y  
        remove {x = y} from nextState  
        add {x = y’} to nextState  
        if (z, y’) is a member of currentState then 
 remove { z = y’ } from nextState 
 add { z = y } to nextState 
        end if  
        for all cells i, j in Mc 
 (i, k)  currentState.get(i), (i, k’)  nextState.get(i) 
 (j, l )  currentState.get(j), (j, l’ )  nextState.get(j) 
 currentCost += (Mc[i, j] – Mp[k. l])2 

 nextCost += (Mc[i, j] – Mp[k’, l’])2 
        end for 
        E = nextCost – currentCost 
        if (E < 0) then  
 Accept new state 
        else  
 Accept new state with probability exp(-E / currT) 
        end if 
        if new state is accepted then 
  succRehect  0, currentState  nextState 
        else  
 succReject ++ 
        end if 
        currT = coolingRate * currT 
end while 
return currentState  

 
 
 

Modified IKK Attack 
 
Algorithm: Modified_Optimizer 

Require:  V: variable List 
  D: domain List 
  K: known assignments 
  Mp, Mc: pair similarity matrices 
 
valList  copy D 
for all cipher vari ∈ V do 
        vali  select random member of valList 
        add {vari = vali} to initState 
        #remove vali from valList 
end for 
add K to initState 
return Modified_ANNEAL (initState, D, Mp, Mc) 

 
 
 
Algorithm: Modified_ANNEAL 

Require: initState, D, Mp, Mc 
  initTempareture, coolingRate, rejectThreshold 
 
currentState  initState 
succReject  0 
curt  initTempareture 
while (temp ≠ 0 and succReject < rejectThreshold ) do 
        currentCost  0, nextCost  0 
        nextState  copy currentState 
        (x, y)  select random pair from nextState  
        y’  select random member of D different from y  
        remove {x = y} from nextState  
        add {x = y’} to nextState  
        #if (z, y’) is a member of currentState then 
        # remove { z = y’ } from nextState 
        # add { z = y } to nextState 
        #end if  
        for all cells i, j in Mc 
 (i, k)  currentState.get(i), (i, k’)  nextState.get(i) 
 (j, l )  currentState.get(j), (j, l’ )  nextState.get(j) 
 currentCost += (Mc[i, j] – Mp[k. l])2 

 nextCost += (Mc[i, j] – Mp[k’, l’])2 
        end for 
        E = nextCost – currentCost 
        if (E < 0) then  
 Accept new state 
        else  
 Accept new state with probability exp(-E / currT) 
        end if 
        if new state is accepted then 
  succRehect  0, currentState  nextState 
        else  
 succReject ++ 
        end if 
        currT = coolingRate * currT 
end while 
return currentState  

 
 

B.2 IKK Attack and Modified IKK Attack
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