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Abstract

In this thesis we characterize the minimal non-planar extensions of a signed
graph. We consider the following question: Given a subdivision of a planar
signed graph (G,X), what are the minimal structures that can be added to
the subdivision to make it non-planar? Sergey Norin and Robin Thomas an-
swered this question for unsigned graphs, assuming almost 4-connectivity for
G and H. By adapting their proof to signed graphs, we prove a generalization
of their result.
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Chapter 1

Introduction

In this thesis, graphs are finite and simple unless otherwise specified. Given
a planar graph, we are interested in knowing what are the minimal structures
that can be added to the graph to make it non-planar.

A graph G is almost 4-connected if it is simple, 3-connected, has at least
five vertices, and V' (G) cannot be partitioned into three sets A, B, C' in such
a way that |C| = 3, |A| > 2, |B| > 2, and no edge of G has one end in A and
the other end in B. Almost 4-connectivity is a weakening of 4-connectivity
that allows for vertices of degree three. A graph S is a subdivision of G if
S can be obtained by replacing each edge of G by a path of length at least
one that has the same ends, where the paths are internally vertex-disjoint
from each other. The paths in S that correspond to the edges of G are called
the segments of S, and the ends of segments are called branch-vertices. If
S is a subgraph of H and S is a subdivision of G, then we say that S is a
G-subdivision in H. Suppose that S is a G-subdivision in H. An S-path is
a path P in H such that P has length at least one and its ends and only its
ends belong to V (5).

In [3], Norin and Thomas proved a result for unsigned graphs. The main
theorem describes the minimal non-planar extensions of planar graphs if we
assume that our graphs are almost 4-connected. The following is their result,
stated as (1.1) in [3]:

Theorem 1.1. Let G be an almost 4-connected planar graph on at least seven
vertices, let H be an almost 4-connected non-planar graph, and let there exist
a G-subdivision in H. Then there exists a G-subdivision S in H such that
one of the following conditions holds:



(i) there exists an S-path in H joining two vertices of S not incident with
the same face, or

(i) there exist two vertez-disjoint S-paths with ends s1, t1 and sq, ty Tespec-
tively such that the vertices sy, s, t1, ta belong to some face boundary
of S wn the order listed Moreover, for i = 1,2 the vertices s; and t; do
not belong to the same segment of S, and if two segments of S include
all of s1, t1, S, ta, then those segments are vertex-disjoint.

1.1 Signed Graphs and Rerouting

Our goal in this thesis is to prove a generalization of Theorem 1.1 for signed
graphs. A signed graph is a pair (G, Y) such that G is a graph and ¥ is a
subset of E(G). The edges of G that are in ¥ are odd and the other edges are
even. The parity of a subgraph F' of G is defined as the parity of |E(F)NX|.

We say that I is a signature of a signed graph (H,T") if each cycle in H
has the same parity in both (H,I') and (H,I”). Since every cycle uses an
even number of edges on a cut, we know that if F'is a cut of H, then ' A F’
is also a signature of (H,T"). In fact, I' is a signature of (H,I") if and only if
' AT is a cut of H.

When we consider a path P in (H,T), it will often be helpful to assume
that T’ has been replaced by a signature I for which E(P)NT" = (). In that
case we say that (H,T') has been resigned so that every edge of P is even.
Since a path is bipartite, this resigning can always be done.

We will now define the concept of subdivisions for signed graphs. Let
(G,X) and (H,T') be signed graphs. Let (S, A) be a signed graph such that
S is a subdivision of G. Suppose that there exists a signature ¥’ of G such
that for each edge e € E(G), the parity of e in (G,Y') is the same as the
parity of the segment Z of (S, A) corresponding to e. In those circumstances,
we say that (S, A) is a subdivision of (G,I"). If S is a subgraph of H and
(S,I' N E(S)) is a subdivision of (G, ), then we say that S is a (G,%)-
subdiwvision in (H,T).

It will often be necessary to transform one (G, X)-subdivision into another,
and for this purpose we will use rerouting. Suppose that there exists a (G, 3)-
subdivision S in (H,I"). If there exists another (G, X)) subdivision S’ that can
be obtained from S by deleting vertices and edges of S and adding vertices



and edges from H that are not in S, then we say that S’ is obtained from S
by rerouting. We will introduce two kinds of rerouting that will be especially
common.

Let B be a subgraph of H such that E(B) C E(H) — E(S) and some
segment Z of S contains every vertex of V(B) N V(S). The shadow of B is
the minimal subpath of Z that contains all attachments of B. We denote the
shadow of B by shadow(B).

Let Z be a segment of S. By possibly resigning (H,I"), we may assume
that every edge of Z is even. Let P be an even S-path with endpoints on
Z. Let S’ be obtained from S by replacing shadow(P) by P. Then S’ is a
(G, X)-subdivision in (H,T'), and we say S’ is obtained from S by rerouting
Z along P. See Figure 1.1.

Now let P, and P, be S-paths with endpoints on Z such that P, and P,
have the same parity. Suppose shadow(P;) Z shadow(P;) and shadow(FPz) €
shadow(P). Let S’ be obtained from S by replacing shadow (P;) A shadow (Fs)
by Py U P,. Then S’ is a (G, ¥)-subdivision in (H,I'), and we say S’ is ob-
tained from S by rerouting Z along P; and P,. See Figure 1.2. If S’ can
be obtained from S by a series of these two kinds of reroutings, then we say
that S is related to S.

e —

Figure 1.1: Rerouting Z along P. The new segment is Z’.



Figure 1.2: Rerouting Z along P; and P,. The new segment is Z’.

1.2 Disk Systems

Instead of working directly with the facial cycles of a planar graph, we will
work with a set of cycles that have the specific properties of facial cycles that
we need. We will use the concept of disk systems that was used in [3].

A cycle C'in a graph G is called peripheral if C'is an induced subgraph of
G and G — V(C) is connected. We will need the following three well-known
results about planar graphs [4, 5].

Lemma 1.2.1. Let G be a subdivision of a 3-connected planar graph, and
let C be a cycle in G. Then the following conditions are equivalent:

(i) the cycle C' bounds a face in some planar embedding of G,
(i) the cycle C' bounds a face in every planar embedding of G,
(iii) the cycle C' is peripheral.

Lemma 1.2.2. Let G be a subdivision of a 3-connected planar graph, and
let C1, Cy be two distinct peripheral cycles in G. Then the intersection of C
and Csy is either null, a one-vertex graph, or a segment.

Lemma 1.2.3. Let G be a subdivision of a 3-connected planar graph, let
v € V(G), and let ey, eq, e3 be three distinct edges of G incident with v. If
there exist peripheral cycles Cy, Ca, Cs in G such that e; € E(C;) for all
distinct indices i, j € {1,2,3}, then v has degree three.



A weak disk system in a graph G is a set C of distinct cycles of G, called
disks, such that

(X0) every edge of G belongs to exactly two members of C, and

(X1) the intersection of any two distinct members of C is either null, a one-
vertex graph, or a segment.

A weak disk system is a disk system if it satisfies (X0), (X1), and

(X2) if ey, ey, e3 are three distinct edges incident with a vertex v of G and
there exist disks C, Cy, C5 such that e; € E(C}) for all distinct integers
i, j € {1,2,3}, then v has degree three.

By Lemmas 1.2.1, 1.2.2, and 1.2.3, the peripheral cycles of a subdivision
of a 3-connected planar graph form a disk system. If S’ is obtained from S
by rerouting, then a weak disk system C in S induces a weak disk system C’
in S’. If C is a disk system, then so is C’.

1.3 Main Theorem

We will need several definitions before stating our main theorem. For all the
definitions below, let (G, %) and (H,T') be signed graphs, let S be a (G, X)-
subdivision in (H,T"), and let C be a weak disk system in S. If z and y are
vertices on a path Z, we use xZy to denote the subpath of Z with ends x
and .

An S-path P is an S-jump if no disk in C includes both ends of P. Suppose
that P, P,, P3; are internally vertex-disjoint S-paths. Let z;, y; be the
ends of P;. Suppose C; and Cs are two disks that share a segment Z. If
x3, y3 € V(Z), x1 and o are in the interior of z3Zys, y1 € V(Cy — Z),
y2 € V(Cy — Z), and P; and x3Zys have opposite parity, then we say that
Py, P, P; forms an interrupted S-jump. See Figure 1.3.

Let C' € C, and let P, and P, be two vertex-disjoint S-paths with ends
uy,v1 and us, ve respectively, such that up, us, v1, v belong to V(C') and
occur on C' in the order listed. Then we say that the pair P, P, is an S-
cross and that the vertices uy, us, vy, vy are its feet. We say that the cross
Py, Py is weakly free if, for ¢« = 1,2, no segment of S includes both ends of
P;. We say that a cross Py, P is free if it is weakly free and no two segments
of S that share a vertex include all the feet of the cross.
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Figure 1.3: An interrupted S-jump. Dotted paths are odd.

Let P, P, be a weakly free cross in C' that is not free. Then there exist
two distinct segments Z; and Zs, both incident with a branch-vertex v of S,
such that Z; U Z5 includes all the feet of P;, P,. In that case we say that the
cross P, Py is centred at v and based at Zy and Zs. If v has degree three, let
Z3 be the third segment incident with v. For i = 1,2, let C; be the other disk
containing Z;. Let v; be the other end of Z;. Let x; and y; be the ends of P;.
We may assume that xq, xo, v occur on Z; in the order listed and that ys, y1,
v occur on Z, in the order listed. We may also assume that (H,I") has been
resigned so that every edge of 71U Z, is even. Suppose there exists a path )y
with ends s; and ¢; such that s; is in the interior of vZsy,. Suppose further
that y € V(Cy — (Z2 U Z3)) if v has degree three and that y € V(Cy — Z5) if
v has degree four or greater. Suppose that at least one of P, and P; is odd.
Then we say that Py, P, Q1 is a type-1 extended S-cross. See Figure 1.4.

Now suppose that there exist paths ()1 and ()5, where (); has endpoints s;
and t;. Suppose that s; is in the interior of vZsys, t; € V(yaZova) — {ya},
Sg € V(yaZaty) —{t1}, and ty € V(C — (Z, U Z3)). Suppose that at least one
of P, and P, is odd and that ()1 is odd. Then we say that Py, P, @1, Q2 is
a type-2 extended S-cross. See Figure 1.5.



Figure 1.4: A type-1 extended S-cross

(%1

Figure 1.5: A type-2 extended S-cross

Now suppose that there exist paths )1, ()2, )3 where (); has endpoints s;
and t;. Suppose that s; is in the interior of vZyys, t; € V(yaZova) — {ya},
So € V(yQZQtl) — {tl}, ty € V(alelvl) — {.731}, S3 € V(x]_Z]_tQ) — {tg}, and
ts € V(Cy — Z1). Suppose that at least one of P; and P, is odd and that Q)
is odd. Then we say that P, Ps, Q1, Q2, Q3 is a type-3 extended S-cross.
See Figure 1.6.

Now suppose that there exist paths @1, (Q2, @3, Q4 where (); has endpoints
s; and t;. Suppose that s; is in the interior of vZsys, t1 € V(y2Zov2) — {42},
S9 € V(yQZQtl) — {tl}, tg S V(lelvl) — {(L‘l}, S3 € V(l’1th2) — {tg}, t3 c
V(taZyva) — {ta}, s4 € V(taZys3) —{t3}, and ty € V(C — (Z1 U Z3)). Suppose

7



Figure 1.6: A type-3 extended S-cross

that at least one of P, and P, is odd and that ); and Q3 are odd. Then we
say that Py, Py, QQ1, Q2, Q3, Q4 is a type-4 extended S-cross. See Figure 1.7.

Figure 1.7: A type-4 extended S-cross

Now suppose that there exist paths @1, ()2, @3, Q4, Q5 where (); has end-
points s; and ¢;. Suppose that s is in the interior of vZyys, t; € V(Yo Zovs) —
{yQ}, So € V(yQZQtl) - {tl}, t2 S V(Ilzﬂ)l) - {[L’l}, S3 € V($1Z1t2> — {tg},
t3 € V(thl?}Q) — {tg}, S4 € V(thlsg) — {t3}, t4 € V(tlZQUQ) — {tl},
s5 € V(t1Z5ty) — {t4}, and t5 € V(Cy — Z). Suppose that at least one



of P, and P, is odd and that ); and Q3 are odd. Then we say that Py, P,
Q1, Q2, Q3, Q4, Qs is a type-5 extended S-cross. See Figure 1.8.

Figure 1.8: A type-5 extended S-cross

Let S be a subgraph of a graph H. An S-bridge in H is a connected
subgraph B of H such that E(B) N E(S) = () and either E(B) consists of
a single edge with both ends in S, or for some component C' of H — V/(5)
the set F(B) consists of all edges of H with at least one end in V(C'). The
vertices in V(B) N V(S) are called the attachments of B. Let G be a graph
with no vertices of degree two, and let S be a G-subdivision in a graph H.
If B is an S-bridge of H, then we say that B is unstable if some segment of
S includes all the attachments of B; otherwise we say that B is stable. If B
is an unstable S-bridge of H, then we say B is S-planar if B has a planar
embedding in a disk with all attachments of B on the boundary of the disk.

Let B be an unstable S-bridge that is not S-planar. Let Z be the segment
that contains all the attachments of B, and let C' be a disk that contains
Z. Let xq, x9, w3, x4 be distinct attachments of B that occur on Z in that
order. Let P;, P, be vertex-disjoint S-paths with endpoints wq, z; and ws, 2o
respectively such that wy, wy € V(29Zx3) and z1, 25 € V(C — Z). Suppose
that (H,T") can be resigned such that every edge of B is even, any one edge
of x9Zx3 is odd, and every other edge of Z is even. Then we say that B, P,
Py is an S-umbrella. See Figure 1.9.



w1 W2

O O
1 T2 r3 T4
P | P
O
Z1 %2

Figure 1.9: An S-umbrella

We are now ready to state the main theorem.

Theorem 1.3.1. Let (G,X) be an almost 4-connected planar signed graph
on at least siz vertices, let (H,T') be an almost 4-connected non-planar signed
graph, and let S be a (G, X)-subdivision in (H,I'). Then there exists a (G,X)-
subdivision S” in (H,T") obtained from S by repeated reroutings such that S’
and the disk system of peripheral cycles in S’ satisfy one of the following
conditions:

(i) there exists an S'-jump,

(ii) there exists a free S'-cross,
(iii) there exists an interrupted S’-jump,
(iv) there exists an S'-umbrella, or

v) for some 7 € {1.2.....5}, there exists a type-j extended S’-cross.
(v) f je{1,2,..,5}, ype-j

1.4 Outcomes

The outcomes in Theorem 1.3.1 that are not present in Theorem 1.1 are
there because we have fewer options when rerouting with signed graphs. We
will give a brief explanation of why the extra outcomes are not present in
Theorem 1.1.

10



In the case of an interrupted S-jump, P3 and z3Zys are required to have
opposite parity. If P3 and x3Zys were both even, we could reroute Z along
P5 to obtain a new (G, X)) subdivision S” and an S’-jump.

If 3 = (), then there exists a (G, X)-subdivision S such that every S-bridge
is stable [3]. Thus we can eliminate unstable S-bridges in the unsigned case.

In the case of a weakly free S-cross that is not free, if both of the crossing
paths are even, then we can reroute the two segments along the crossing
paths in what is described in [3] as an X-rerouting. In the case where P, and
P, are both even, we do not need the extended S-cross outcomes. Extended

S-crosses become unavoidable outcomes when at least one of P, and P; is
odd.

11



Chapter 2

Unstable Bridges

2.1 An Unstable Bridge Lemma

In [2], Naismith proved a minimal non-planar extension theorem assum-
ing only 3-connectivity for (G, ) and no restrictions on the connectivity of
(H,T). These results were improved in [1], which has not yet been published.
We will be quoting several results from [1].

By eventually assuming almost 4-connectivity for both (G, ¥) and (H,T'),
we will be able to eliminate several outcomes from Naismith’s theorem. In
order to eliminate most of the outcomes involving unstable bridges, we will
need to prove a lemma about the structure of unstable bridges.

First we introduce some terminology used in [1]. Let By and B, be unstable
S-bridges. If By has an attachment in the interior of shadow(Bsy), then we
say that By is over an attachment of By. If By is over an attachment of B,
and Bs is over an attachment of By, then we say that By and By cross.

A
O % >

Figure 2.1: B; and By are unstable bridges that cross.



Let (G,X) and (H,I') be signed graphs, and let S be a (G, ¥)-subdivision
in (H,I"). We say that an S-bridge B is type-0 if B is stable. If B is an
unstable S-bridge, B is over an attachment of a type-j S-bridge, and B is not
over an attachment of any type-k S-bridge for k < j, then B is type-(j+1).

A separation of a graph H is a pair (A, B) of subsets of V(H) such that
AU B = V(H) and there is no edge between A — B and B — A. The order
of a separation is the size of the set AN B.

A clump is a maximal non-empty set C' of unstable bridges such that, for
every pair B, B’ of bridges in C, there exists a sequence B, By, ..., By, B’ of
bridges in C' such that consecutive bridges in the sequence are crossing. Let
B be a clump of S-bridges on a segment Z. We define the shadow of B to be
the minimal subpath of Z that contains the attachments of every bridge in
B. Let x, y be the endpoints of shadow(B). Let A =V (BUxZy)). We say
B is 2-separated from S in H if (A, V(H) — (A — {z,y})) is a separation of
H with order at most 2.

Suppose that some S-bridge has an attachment a on Z. Let B be a set of
unstable S-bridges with attachments on Z. We say a is B-significant if a is
interior to shadow(B) for some S-bridge B € B.

In [1], Naismith proved a useful result about clump structure.

Lemma 2.1.1. Let (G, %) and (H,T") be signed graphs where G has no ver-
tices of degree two. Let S be a (G, X)-subdivision in (H,T"). Then there exists
a (G, X)-subdivision S’ related to S such that, for every clump B of S bridges
on a segment Z, one of the following occurs:

(a) B is 2-separated from S’.

(b) A unique verter w of Z is a B-significant attachment of a stable S’-
bridge, and every S’'-bridge in B is over w. Suppose (H,I') has been
resigned such that every edge of Z is even. There exist distinct vertices
Y1, Y2 such that y,, w, yo are distinct and occur on Z in the order stated,
and there exist odd S"-paths Py and P, in S'-bridges of B such that, for
1 =1, 2, P, has endpoints y;, w. Furthermore, for all B € B, every
S'-path P in B with w in the interior of shadow(P) is odd, and every
S'-path P in B with w ¢ shadow(P) is even.

(c) Every S'-bridge in B is over an attachment of a stable S’-bridge. There
exist vertices x1, xo, x3, T4 that occur on Z in the order stated such that

13



o # x3, each of v1Zxy, w3214 contains an attachment of each bridge in
B, and every attachment of B is in x1Zx9 U x3Z24. Every B-significant
attachment of any stable S’-bridge is in xoZxs3, and xoZx3 contains at
least one such attachment. Furthermore, (H,T") can be resigned such that
every edge of every S'-bridge in B is even, any one edge of xoZx3 is odd,
and every other edge of Z is even.

(d) A unique vertexw of Z is a B-significant attachment of a stable S’-bridge,
and some S’-bridge of B is not over w. Let Cy denote the set of all S’-
bridges B in B such that B is over w. Let C, ..., C} denote the mazximal
non-empty sets of S'-bridges in B such that, fori =1, ..., k, no member
of C; is over w, and for every pair of S'-bridges B, B" € C;, there exists
a sequence B, By, ..., B;, B' of S'-bridges in C; such that consecutive
S’-bridges in the sequence are crossing. Then B = CyU Cy U ...C},.

If G is a graph and X is a subset of V(G), then we use G[X]| to denote
the graph G — (V(G) — X).

Let G and H be graphs where GG has no vertices of degree two, and let S
be a G-subdivision in H. A separation (X,Y') of H is called an S-separation
if the order of (X,Y) is at most three, X — Y includes at most one branch-
vertex of S, and the graph H[X] does not have a planar embedding in a
disk with X N'Y drawn on the boundary of the disk. When we introduce
almost 4-connectivity for (H,I'), we will be able to show that (H,I') does
not contain an S-separation.

Let (G,X) and (H,I') be signed graphs where G has no vertices of degree
two. We say that (H,I) contains a standard obstruction if there exists a
(G, ¥)-subdivision S in (H,I") with a weak disk system C such that (H,T")
contains an S-jump, an interrupted S-jump, a weakly free S-cross, or an
S-separation.

Now, using Lemma 2.1.1, we will prove a result that restricts the kinds of
unstable bridge cases that we will have to consider.

Lemma 2.1.2. Let (G,X) and (H,T") be signed graphs where G has no ver-
tices of degree two. Let S be (G, X)-subdivision in (H,T") with a weak disk
system C. Suppose that (H,T") does not contain a standard obstruction. Then
if " is the (G, X)-subdivision guaranteed by Lemma 2.1.1, (H,T') does not
contain any crossing unstable S’'-bridges.

14



Proof. Let S’ be the subdivision guaranteed by Lemma 2.1.1. For a contra-
diction, we assume that there exist two crossing unstable bridges with all
their attachments on a segment Z of S’. Let z; and 2z, be the endpoints
of Z. We consider a clump B on Z that contains at least two bridges. We
know that one of the outcomes of Lemma 2.1.1 holds. If any of (a), (b), or
(d) holds, then H contains an S’-separation of order two or three. Thus (c)
holds.

Since outcome (c) of Lemma 2.1.1 holds, we may characterize the structure
of B as follows. Every S-bridge in B is over an attachment of a stable S’-
bridge. There exist vertices xq, w9, x3, x4 that occur on Z in the order
stated such that xy # x3, each of x1Zx5, x3Z x4 contains an attachment of
each bridge in B, and every attachment of B is in 1 Zxs U x3Zx4. Every B-
significant attachment of any stable S’-bridge is in xo Zx3, and x9Zx3 contains
at least one such attachment. Furthermore, (H,I") can be resigned such that
every edge of every S’-bridge in B is even, any one edge of x5Zx3 is odd, and
every other edge of Z is even. In addition, we may assume that xy, x2, x3,
x4 are chosen with |z Zx9| + |x3Z2,4| minimum.

Suppose that z; = x; = x5. Then H contains an S’-separation (X,Y") with
X NY = {zy,23,24}. Thus we may assume that z; # xo and zp # x3. If
there were only one attachment w of a stable bridge in x9Zx3, then (H,T)
would contain an S’-separation (X,Y) with X NY = {zy, x4, w}. Thus there
exist vertex-disjoint paths P;, P, with ends wq, v; and ws, vy respectively,
where wy, we € V(x9Zx3). Since (H,I') does not contain an S’-jump, vy,
vg € (V(C1)AV(Cy)) where C; and Cy are the two disks that contain Z. If
v; € V(C) and vy € V(Cy), then (H,T') contains an interrupted S’-jump.
Thus we may assume that zy, 2o € V(Cy). If wq, wy, ve, v; occur on C}
in that order, then (H,T") contains a weakly free S’-cross since z; # x5 and
29 # x3. Thus we may assume that the vertices wy, ws, vy, v1 occur on Cy
in that order.

Let By, Bs,..., B, be the bridges in B, listed so that for each i > 1, B;
crosses at least one bridge in the set {Bj, Bs, ..., B;_1}. We may construct
this list as follows. Let any bridge in the clump be B;. For each i > 1, there
must exist a bridge B € B not yet in the list that crosses a bridge in the set
{By, By, ..., Bi_1}; otherwise B would not be a clump. Let B; = B. Thus we
can construct the required listing.
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We claim that there exist bridges B; with attachments s;, ¢; and B; with
attachments s;, ¢; such that s;, ¢;, s;, t; are all distinct, s; and s; appear on
x1Z 9 in that order, and ¢; and ¢; appear on x3Zx, in that order.

Suppose that By has at least two attachments in x1Zz5 and at least two
attachments in x3Zx4. Since B, crosses Bj, there must exist si, t1, So, to
such that the claim holds. Thus, by symmetry, we may assume that B; has
exactly one attachment u € V(x1Zz5). If By has an attachment in z7Zx3
distinct from wu, then the claim holds. Thus we may assume that By has
exactly one attachment u € V(x;Zx5). Now suppose that for all & from 1
to i — 1, By has u as its only attachment in V(z1Zx,). Consider B;. Let B,
be a bridge in the set {B, B, ..., Bi—1} such that B; crosses B;. The only
attachment of B; in V(x1Zx3) is u. If B; has an attachment in V(x;Zx3)
distinct from wu, then the claim holds. Thus we may assume that By has
exactly one attachment u € V(21 Zx5). Thus x; = x5 = u. But then (H,T)
contains an S’-separation (X, Y) with XNY = {u, x3,z4}. Therefore we may
assume that the claim holds. Thus there exist bridges B; with attachments
si, t; and B; with attachments s;, ¢; such that s;, t;, s;, t; are all distinct,
s; and s; appear on x1Zxy in that order, and ¢; and t; appear on x3Zz4 in
that order.

Let @; be a path from s; to ¢; in B;, and let ); be a path from s; to ¢; in
B;. By rerouting Z along () and (), we obtain a subdivision S” from S’ in
which ws, wy, 29, z; appear on a disk in that order, and thus P, P, form a
weakly free S”-cross, which is a contradiction. H

2.2 Using the Unstable Bridge Lemma

We will now use Lemma 2.1.2 to narrow down the unstable bridge outcomes
to a single non-planar unstable bridge.

Let S be a G-subdivision in H with a weak disk system C = {C}, Cy, ..., Cy }.
We say that C is locally planar in H if there exists a partition Py, Pa, ..., Pk
of the S-bridges such that for each ¢ from 1 to k there is a disk C; where all
the bridges in P; have all their attachments in C; and C; U P; has a planar
embedding with C; bounding the infinite face.

The following lemma will deal with the case that the unstable S-bridges
are part of the obstruction to planarity.
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Lemma 2.2.1. Let (G,X) and (H,T") be signed graphs where G has no ver-
tices of degree two. Let S be a (G, X)-subdivision in (H,I") with a weak disk
system C. Let H be obtained from H by deleting all unstable S-bridges. Sup-
pose C is locally planar in H but is not locally planar in H. Suppose that
(H,T) does not contain a standard obstruction. Then there exists a (G,X)-
subdivision S’ related to S and an S’'-umbrella.

Proof. Let S" be the (G, ¥)-subdivision such that one of the outcomes of
Lemma 2.1.1 holds. Suppose there does not exist an unstable S’-bridge B
such that B is not S’-planar. There are no crossing unstable S’-bridges by
Lemma 2.1.2.

Let By, Bs, ..., B, be the unstable S’-bridges of H. Suppose that C is
locally planar in H + B; for each i. Thus C is locally planar in H + B.
Now suppose that C is locally planar in H + By + By + ... + Bj for some
j. Since Bji; does not cross any bridge in {By, Bs, ..., Bj}, Bji1 may be
added to H + By + By + ... + B; in a planar way, and thus C is locally
planar in H + By + By + ... + Bj 1. By induction, C is locally planar in H,
which contradicts the hypothesis of the lemma. Therefore there must exist
an unstable S’-bridge B such that C is not locally planar in H + B.

Let Z be the segment that contains all the attachments of B. We may
assume that (H,T') has been resigned so that every edge of Z is even. Let
x and y be the attachments of B such that |rZy| is maximum. Then there
exists an S-path @) in B with endpoints x and y. Let C; and C5 be the
disks that contain Z. There must exist an S-path P; with endpoints w;
in the interior of xZy and z, € V(C, — Z); otherwise H + B has a planar
embedding with B drawn inside C4. There must exist an S-path P, with
endpoints wsy in the interior of zZy and z, € V(Cy — Z); otherwise H+ B
has a planar embedding with B drawn inside Cs. If @) is even, then we may
reroute Z along ) to obtain a (G, ¥)-subdivision S” and an S” jump. If @ is
odd, then (H,T') contains an interrupted S’-jump. Therefore we may assume
that there exists an unstable S’-bridge B such that B is not S’-planar.

Since there do not exist crossing unstable S’-bridges, there exists a clump
B that contains only B. We apply Lemma 2.1.1 to B. One of the outcomes
from that lemma must hold. If any of (a), (b), or (d) holds, then (H,T")

contains an S’-separation of order two or three. Thus (c) holds.

Since outcome (c) of Lemma 2.1.1 holds, we may characterize the structure
of B as follows. B is over an attachment of a stable S’-bridge. There exist
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vertices x1, s, 3, T4 that occur on Z in the order stated such that xo # x3,
each of x1Zxy, x3Zx4 contains an attachment of B, and every attachment of
Bisin x1ZxosUr3Zxy. Every B-significant attachment of any stable S’-bridge
is in x9Zx3, and x9Zx3 contains at least one such attachment. Furthermore,
(H,T") can be resigned such that every edge of B is even, any one edge of
xoZx3 is odd, and every other edge of Z is even. In addition, we may assume
that xq, xo, x3, x4 are chosen with |z Zxs| + |23Z 24| minimum.

If either 1 = x9 or x3 = x4, then there exists an S’-separation of or-
der three. Thus B has distinct attachments xq, x5, x3, 4. If there were
only one attachment w of a stable bridge in xyZx3, then (H,I") would con-
tain an S-separation (X,Y) with X NY = {xy,24,w}. Thus there exist
vertex-disjoint paths Py, P, with ends wy, z; and ws, 2o respectively, where
wy,wy € V(xeZx3). Since (H,T") does not contain an S’-jump, z1,29 €
(V(C1)AV(Cy)) where Cy and Cy are the two disks that contain Z. If
2z € V(C1) and 2z € V(Cy), then (H,T') contains an interrupted S’-jump.
Thus we may assume that zy, zo € V(Cy). Therefore B, P, P, is an S'-
umbrella. O

From now on, we may assume that the non-planarity of H comes from
the stable S-bridges.
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Chapter 3

An Intermediate Theorem

In this chapter we will introduce and prove a theorem which will serve as our
starting point for proving the main theorem in Chapter 4.

3.1 Introducing the Intermediate Theorem

Let G and H be graphs where G has no vertices of deegree two, and let .S
be a G-subdivision in H with a weak disk system C. Let z1, 29, 3 € V(S),
let z € V(H) —V(S), and let Ry, Ry, Rs be three paths in H such that R;
has ends z and z;, they are pairwise vertex-disjoint except for z, and each is
vertex-disjoint from V(S) — {x1, 22, 23}. Assume further that for each pair
x;, x; there exists a disk C;; containing both z; and x;, but no disk contains
all of x1, xo, x3. In those circumstances we say that the triple Ry, Ry, R3 is
an S-triad. The vertices x1, xo, x3 are its feet.

A subgraph J of S is a detached Kj4-subdivision if J is isomorphic to a
subdivision of K4, every segment of .J is a segment of S, and each of the four
cycles of J consisting of precisely three segments is a disk.

The goal of this chapter is to prove the following theorem, which is an
analogue of (4.2) in [3]:

Theorem 3.1.1. Let (G,X) and (H,T') be signed graphs where G has no
vertices of degree two. Let S be a (G, X)-subdivision in (H,T") with a weak
disk system C. Then (H,T') has a (G, X)-subdivision S’ obtained from S by
repeated reroutings such that S' and the weak disk system C' in S" induced by
C satisfy one of the following conditions:

(i) there exists an S'-jump,
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Figure 3.1: An S-triad

(ii) there exists a weakly free S’-cross,
(i11) there exists an S’-separation,
(iv) there exists an S’'-triad,

(v) S" has a detached K4-subdivision J, and H has an S’-bridge B such
that the attachments of B are precisely the branch-vertices of J,

(vi) there exists an S’-umbrella,
(vii) there exists an interrupted S’-jump, or

(viii) the weak disk system C' is locally planar in H.
In Chapter 4 we will improve the above theorem.

We will need the following lemma, stated as (3.2) in [3]:

Lemma 3.1.2. Let G be a graph, and let C be a cycle in G. Then one of
the following conditions holds:

(i) the graph G has a planar embedding in which C bounds a face,
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(i1) there exists a separation (A, B) of G of order at most three such that
V(C) C A and G[B] does not have a drawing in a disk with the vertices
in AN B drawn on the boundary of the disk,

(i11) there exist two vertex-disjoint paths in G with ends sy, t, € V(C) and
So, to € V(C), respectively, and otherwise vertex-disjoint from C such
that the vertices s1, So, t1, ty occur on C' in the order listed.

We will also need this lemma, stated as (4.1) in [3]:

Lemma 3.1.3. Let G be a graph with no vertices of degree two, let S be
a G-subdivision in a graph H, let C be a weak disk system in S, and let B
be an S-bridge with at least two attachments such that no disk includes all
attachments of B. Then one of the following conditions holds:

(i) there exists an S-jump,
(i) there exists an S-triad, or

(iii) S has a detached K,-subdivision J such that the attachments of B are
precisely the branch-vertices of J.

3.2 S-tripods and S-leaps

Lemma 3.2.1. Let (G,X) and (H,T) be signed graphs where G has no ver-
tices of degree two. Let S be a (G, X)-subdivision in (H,T') with a weak disk
system C such that none of outcomes (i), (i), or (v) of Theorem 3.1.1 hold
for S. Then for every stable S-bridge B of H there exists a unique disk C' € C
such that V(C) contains all attachments of B.

Proof. Since B is a stable S-bridge, then by Lemma 3.1.3, there exists a
disk C' that includes all attachments of B, or else one of (i), (iv), or (v) of
Theorem 3.1.1 holds. Since B is stable, no one segment of C' contains all the
attachments of B. Because two disks do not share more than one segment,
C' is unique. O

Let (G,Y) and (H,T") be signed graphs. Let S be a (G, X)-subdivision
in (H,T') with weak disk system C, and suppose none of outcomes (i)-(v) of
Theorem 3.1.1 holds for S. For every disk C of C, let Ho be the union of C'
and all stable S-bridges B having all attachments in C. By Lemma 3.2.1,
H¢ is well-defined. The definition of Ho depends on the choice of S and C,
but these will always be clear from context, and so they will not be included
in the notation of He.
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Let Z be a segment of S with ends z and w, and let C' be a disk of C that
contains Z. Let Py, P, be two vertex-disjoint S-paths in H with ends 1, y;
and xy, ¥o, respectively, such that z, x1, x9, y1, w occur on Z in the order
listed, and y, € V(C'— Z). Let P be a path vertex-disjoint from V' (S) —{y2}
with one end z3 € V(P;) and the other y3 € V(P;) and otherwise vertex-
disjoint from P; U P,. We say that the triple Py, P5, P3 is an S-tripod in C'
based at Z, and that z1, y1, T2, yo are its feet. We say that zZzq, y; Zw and
ys Poys are the legs of the tripod.

z T ) U1 w

Figure 3.2: An S-tripod

Let Z, Z5 be distinct segments of S with a common end v such that they
are both subgraphs of a disk C' € C, and, for i = 1, 2, let v; be the other end
of Z;. Let Py, P,, P3 be paths such that

e the ends of P; are z; and y;,

® vy, T1, T3, U, Y3, Y1, U2 appear on 4, U Zy in the order listed, where v,
and x; may coincide and v, and y; may coincide, but all other pairs
are distinct,

e 15 is an internal vertex of P, and y, = v,

e the paths P, P, P; share no internal vertices with each other or with

S.

In those circumstances we say that Py, Ps, P3 is an S-leap based at Z and
Zy. We call x1Zyvy, y1 Zyvy its legs, and x4, 3, v, y3, 1, (in that order) are
its feet.
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Figure 3.3: An S-leap

Lemma 3.2.2. Let (G,X) and (H,T) be signed graphs where G has no ver-
tices of degree two. Let S be a (G, X)-subdivision in (H,T") with a weak disk
system C, and suppose none of outcomes (i)-(v) of Theorem 3.1.1 hold for
any (G, X)-subdivision S' related to S. Let H be the graph obtained from H
by deleting the unstable S-bridges, and suppose for some disk C of C, He
does not have a planar embedding with C bounding the infinite face. Then
(H,T) contains an S-tripod or an S-leap.

Proof. We apply Lemma 3.1.2 to H and C. Because H does not have a
planar embedding in which C' bounds a face, outcome (i) of Lemma 3.1.2
does not hold. Since outcome (iii) of Theorem 3.1.1 does not hold, outcome
(ii) of Lemma 3.1.2 does not hold. Thus outcome (iii) of Lemma 3.1.2 holds,
and thus there exists an S-cross P, P, in C. For ¢ = 1, 2, let z;, y; be the
ends of P;, and let B; be the S-bridge that contains P;. We may assume
that there is a segment Z of S such that x, xs9, y; € V(Z); otherwise P;, Ps
is a weakly free S-cross, and outcome (ii) of Theorem 3.1.1 holds. Suppose
Yo € V(Z). By the definition of H, B, and B, are both stable S-bridges.
It follows that there exists a path P from P, U P, to C' — V(Z), where P is
internally vertex-disjoint from both P,U P, and S. Then P, U P,U P contains
an S-cross with at least one foot in V/(C'— Z). So we may assume yo ¢ V(2).

If By = By, then there exists a path P; with one end x3 in the interior of
P, and the other end y3 in the interior of P, internally vertex-disjoint from
P, P, and S. So P, P,, P53 is an S-tripod. Now suppose By # Bs. Since
B is a stable S-bridge, there exists a path P; in B; with one end z3 in the
interior of P; and the other end y3 € V(C) — V(Z). If y3 = yo, then Py, P,
Pj is an S-tripod. If y3 # ys, either Py U P, U P3 contains a weakly free cross
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or either x1, ya, Y3 Or Y1, Y2, Y3 occur on some segment Z' of S in that order.
By symmetry we may assume that 1, y2, y3 occur on Z’ in that order. Then
y1 is an endpoint of both Z and Z’. Thus x1Pix3 U Ps, y; Pix3, Ps forms an
S-leap. m

In [1], the graph G is allowed to have parallel edges. The disk system
axioms are modified to allow for a trivial disk, which is a disk bordered by
the two segments corresponding to a pair of parallel edges in G. Another
outcome called an S-passage comes from the introduction of trivial disks.
The results from [1] that we will quote originally included S-passages, but if
G is simple, then C contains no trivial disks. Thus S-passages do not occur.

The following two results are from [1], adapted here to the case that G has
no parallel edges.

Lemma 3.2.3. Let (G,X) and (H,T') be signed graphs where G has no ver-
tices of degree two. Let S be a (G, X)-subdivision with a weak disk system C,
and suppose none of outcomes (i)-(v) of Theorem 3.1.1 hold for any (G,%)-
subdivision S’ related to S. If there exists an S-leap, then there exists an
interrupted S-jump.

Lemma 3.2.4. Let (G,Y) and (H,T) be signed graphs where G has no ver-
tices of degree two. Let S be a (G, X)-subdivision in (H,T") with a weak disk
system C. Suppose none of outcomes (i)-(v) of Theorem 3.1.1 hold for any
(G, X)-subdivision S’ related to S. If there exists an S-tripod, then for some
(G, X)-subdivision S" related to S there exists an interrupted S'-jump.

We now proceed to prove Theorem 3.1.1.

Proof. Suppose for a contradiction that none of the outcomes of Theorem
3.1.1 hold. Thus C is not locally planar in H. Let H be the graph obtained
from H by deleting all the unstable S-bridges. If C is locally planar in H,
then by Lemma 2.2.1 there exists an S-umbrella, and so (vi) holds. Thus we
may assume that C is not locally planar in H.

By Lemma 3.2.1, for every stable bridge B, there exists a disk C' such that
C includes all the attachments of B. Since C is not locally planar in H,
there exists a disk C' such that He does not have a planar embedding with
C bounding the infinite face. By Lemma 3.2.2, there exists an S-tripod or
an S-leap.
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Suppose there exists an S-tripod. By Lemma 3.2.4, there exists a (G, X)-
subdivision S’ related to S and an interrupted S’-jump. Suppose there exists
an S-leap. By Lemma 3.2.3, there exists a (G, X)-subdivision S’ related to
S and an interrupted S’-jump. Thus (vii) holds. ]
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Chapter 4

Main Result

Our goal in this chapter is to improve outcome (ii) of Theorem 3.1.1 and
eliminate outcome (iv). If G and H are almost 4-connected, then neither of
these outcomes is minimal. Adding either a weakly free cross or a triad to
an almost 4-connected graph causes the new graph to contain a separation
of order three. Therefore we will be able to further specify the structure of
a cross and show that the triad outcome is not necessary.

4.1 Minimality

To improve outcomes (ii) and (iv) of Theorem 3.1.1, we will need to use the
minimality of the non-planar extensions. Using rerouting, Norin and Thomas
were able to prove their result without making full use of minimality. But in
the case of signed graphs, the limited possibilities for rerouting require us to
make greater use of a minimality argument.

Let G and H be graphs, and let S be a G-subdivision in H. Suppose that
G is planar and that H is non-planar. Suppose that H does not contain an
S-separation. Then there exists a subgraph H’ of H such that H contains a
G-subdivision S’, H' is non-planar, and H' does not contain an S’-separation.
We may assume that H' is chosen with a minimal number of edges.

In the proofs of several lemmas in this chapter, we will assume that H is a
minimal counterexample to the lemma. We use “minimal counterexample”
to mean a counterexample having the fewest edges. Then we will show that
there exist edges of H that can be deleted so that the resulting graph is
also a counterexample to the lemma. If we can do that, then we arrive at a
contradiction. The goal is a theorem with a list of outcomes in which each
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outcome prevents H from being planar, does not cause an S-separation in
H, and uses a minimal number of edges.

4.2 Augmenting sequences

We will now introduce the concept of augmenting sequences. An augmenting
sequence is a sequence of paths that is needed to preserve a given level of
connectivity. For example, adding a weakly free cross to a G-subdivision S
introduces an S-separation (X,Y’), so we know that H must contain a path
with one end in X —Y and the other end in Y — X. But if adding that path
causes another S-separation, then we must add another path. The process
continues until the resulting graph does not contain an S-separation.

Let G be a graph. Let X and Y be disjoint subsets of V' (G). Suppose that
there are k vertex-disjoint XY -paths Py, P,..., P, where the endpoints of P,
arer; € X and y; € Y. Let @1, Qo,..., Q,, be internally vertex-disjoint paths
in G. Let f:[1,m —1] — [1,k] be a function. Suppose that the following
conditions hold:

e (); has ends s; and {;,

o 51 € X —{x1,29,..., 7},

o fori <m, t; € V(Pyy),

e fori>1,s; € V(xf(i_1)Pf(i—1)tz>1 —{ti-1}),

e for all 7, j, ; and P; are internally vertex-disjoint.

In these circumstances, we say that @)y, Qs,..., Q. is a partial augmenting
sequence. If t,, € Y — {y1, 9o, ...,y }, then the partial augmenting sequence
is an augmenting sequence from X to Y. The vertices s; and t,, are the
endpoints of the sequence.

The function f describes which P; contains the endpoint ¢; of @);. In Figure
4.1 below, f(1) =1, f(2) =3, f(3) =2, and f(4) = 1.

Let Q1, Qs,..., Q,, be an augmenting sequence from X to Y. Suppose that
for each 7 from 1 to m — 1, x4 Prgyt; does not contain s; for any j > + 1.
We call such an augmenting sequence basic.

Lemma 4.2.1. If there exists an augmenting sequence from X to Y, then
there exists a basic augmenting sequence with the same endpoints.
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1 S2 1 P S5 ta Y1

O o)
S1 t
Q4 %
2 Q1 \Q2 P, sy Qs »
i3
Q3
3 P3 [R]
0 O
S3 to

Figure 4.1: An example of a basic augmenting sequence from X to Y

Q4

71 P t3 syt Y
S t4
, Ql Q3 QQ
$C2 P S4 %2
53 to

Figure 4.2: An augmenting sequence that is not basic

Proof. We choose the augmenting sequence @1, Qa,..., @, from X to Y such
that m is minimum. Suppose that the augmenting sequence is not basic.
Thus there exist ¢ and j such that j > ¢+ 1 and xy; Pyt contains s;.
Then Q1, Q2,..., Qi, Qj11,..., @ is a shorter augmenting sequence from X
to Y, which contradicts our choice of sequence. Therefore there exists a basic
augmenting sequence with endpoints s; and ¢,,. O

Lemma 4.2.2. Let G = (V, E) be a graph. Let X and Y be disjoint subsets
of V.. Suppose that there are k vertex-disjoint XY -paths. Then there exist

k+ 1 XY -paths if and only if there exists an augmenting sequence from X
toY.

Proof. Suppose that there exists an augmenting sequence @)1, Qs,..., @, from
X to Y. By Lemma 4.2.1, we may assume that the augmenting sequence is
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basic. Let Z be the set of interior vertices of the paths t; Py;)s;41 for ¢ < m.
Let G’ be the graph (PLUP,U...UP,UQ UQ2U...UQ,,) — Z. Let v
be a vertex in G'. If v has degree 2 in G, then it also has degree 2 in G'.
Note that v € {s1, 21, T2, ..., Tk, tm, Y1, Y2, -, Yx } if and only if v has degree 1
in G'. If v has degree 3 in G, then v is the endpoint of @); for exactly one i
and v ¢ {s1,t,,}, and thus v has degree 2 in G’. If v has degree 4 in G, then
v =s; =t; for some ¢ # j, and thus v has degree 2 in G’. Since the sequence
Q1,Qs, ...,Q,, is basic, v cannot have degree greater than 4. Therefore all
the vertices of G’ have degree 2 in G’ except for s1, 1, Ta,..., T, timy Y1, Y2,eee
yr which have degree 1. Thus there are k + 1 vertex-disjoint XY -paths in G.

Now suppose that there is no augmenting sequence from X to Y. Let U
be the set of all vertices u such that there is a partial augmenting sequence
ending with u or u € z; P;w and there is a partial augmenting sequence ending
with w. Let S = X UU. Let T =V — §. Since there is no augmenting
sequence, SNY C {y1,y2,...,yx}. For each i from 1 to k, let z; € S be
the vertex in P; such that the length of z; Py; is minimal. We claim that
{z1, 29, ..., 23} is a k-vertex cut separating S — {z1, 29, ..., 23} and T". Suppose
that there exists a path R with ends 1 € S — {21, 22, ..., 23} and ry € T.
First suppose that r; € P; for some i. Since z; € S , there is a partial
augmenting sequence ending with z;. Now we add R to the sequence, which
results in a partial augmenting sequence ending with ro. Now if there does
not exist ¢ such that r € P;, then r € X — {x1,29,...,25}. Thus R is
a partial augmenting sequence ending with r,. Therefore ro € S, which is
a contradiction. Therefore {z1, 29, ..., 23} is a k-vertex cut separating S —
{z1,29,...,23} and T. Since X C S and Y — {21, 29, ..., 2.} C T, there do not
exist k + 1 vertex-disjoint XY -paths. O

4.3 Weakly Free Crosses

In this section, we improve outcome (i) of Theorem 3.1.1. We will show
that either a weakly free cross is free or else the augmenting sequence that
extends the cross can be defined as one of several types.

The proofs proceed differently depending on whether the weakly free cross
is centred at a vertex of degree three or degree four and whether the paths
that cross are odd or even. We will begin with a preliminary lemma that
deals with the case that the cross is centred at a vertex of degree three and
one of the crossing paths is even.
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U1

V2
Zo

Figure 4.3: A weakly free S-cross

Lemma 4.3.1. Let (G,X) and (H,T") be signed graphs where G has no ver-
tices of degree two. Let S be a (G,X)-subdivision in (H,T") with a weak disk
system C, let C € C, let v € V(C) have degree in S exactly three, and let P,
P be a weakly free S-cross in C centred at v. Then either Py and P, are both
odd or there exists a (G, X)-subdivision S’ obtained from S by one rerouting
and an S'-triad.

Proof. 1If P, and P, are both odd, then the lemma holds. By symmetry, we
may assume that P, is even. For ¢ = 1, 2 let x;, y; be the ends of P;, and
let Py, P, be based at Z; and Z5. Let Z3 be the third segment of S incident
with v, and for ¢ € {1,2,3}, let v; be the other end of Z;. Then we may
assume that x1, xo, v € V(Z;) occur on Z; in the order listed; then ys, y1,
v € V(Zy) occur on Z, in the order listed. We may assume that (H,I") has
been resigned so that every edge of Z; U Z, is even. Let S’ be the (G, X)-
subdivision obtained from S by replacing vZsys by P,. The segments of S’
that correspond to Zy, Zs, and Z3 are Z| = x9Z1v1, Zy = Py U yaZov,, and
Zh = x9Z1v U Zs. Then z1 € V(Z7), yo € V(Z)), and v € V(Z}). Thus Py,
Y129y, Y1290 is an S’-triad. O

Now we deal with the case that the cross is centred at a vertex of degree
at least four and both of the crossing paths are even.

Lemma 4.3.2. Let (G,X) and (H,T") be signed graphs where G has no ver-
tices of degree two. Let S be a (G,X)-subdivision in (H,T") with a weak disk
system C, and assume that H contains a weakly free S-cross centred at a ver-
tex of degree at least four. Then there exists a (G, X)-subdivision S" obtained
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from S by repeated reroutings such that S’ and the disk system C' induced in
S’ by C satisfy one of the following conditions:

i) there exists an S’'-jump,
J
11) there exists a free S'-cross
( ) )
191) there exists an S’—se aration, or
( ) p K

(iv) there exists a weakly free S'-cross Py, Py based at the segments Zy and
Zy such that when (H,T') has been resigned so that every edge of Z1U Zy
18 even, at least one of Py and Py is odd.

Proof. Let Pi, P, be a weakly free S-cross in H centred at a vertex v of degree
at least four. Thus there exist two segments Z;, Z5 of S, both incident with
v, such that Z;, Zs include all the feet of the cross. For i = 1, 2, let z;, v;
be the ends of P;. We may assume that xq, x5, v € V(Z;) occur on Z; in
the order listed; then ys, y1, v € V(Z3), and they occur on Z5 in the order
listed. For ¢ = 1,2, let v; be the other end of Z; and let L = x1Z;v; and
Lo = y3Z5v9. We call Ly and Ly the legs of the cross Py, P;. We may assume
that (H,I") has been resigned so that every edge of Z; U Z5 is even. Then
we may also assume that the paths P, and P, are both even since otherwise
(iv) holds.

Consider all triples (5', P{, Py), where S’ is a (G, ¥)-subdivision obtained
from S by repeated reroutings and Pj, Pj is a weakly free S’-cross based at
Zy, Zy where Z|, Z} are the segments of S’ corresponding to Z;, Z;. We
may assume that among all such triples the triple (S, P, P) is chosen with
\V(L1)| + |V (Ls)| minimum.

Let X’ be the vertex-set of P, U P, UvZyz1 UvZays, and let Y/ = V(S) —
(X" —{v,21,y2}). If there is no path in H — {v, x1,y>} with one end in X’
and the other in Y, then there exists a separation (X, Y') of order three with
X' C X and Y’ C Y. This separation satisfies (iii), and so we may assume
that there exists a path P in H — {v,x1,y2} with one end x € X and the
other end y € Y. From the symmetry we may assume that = belongs to
V(Pl U UZQZJQ).

If y € V(Ly), then replacing P, by P if z ¢ V(P;) and by P U zPyy;
otherwise produces a cross that has legs yLivy and Ly. Since |V (yLqivq)| +
\V(La)| < |V(L1)| + |V(L2)|, this new cross contradicts our choice of the
triple (S, P, Py). If y € V(Ly), then let S” be obtained from S by replacing
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ToZ1x1 U y1Zoys with PL U P,. If x € Py, then ©Z1x9, P forms a weakly
free S’-cross. If x ¢ Py, then 7,9, y1 Zoxy U P forms a weakly free S’-

cross. In either case, the cross contradicts our choice of (S, Py, P»). Thus

Let C be the disk that includes both Z; and Z,, and for i = 1, 2, let C; be
the other disk that includes Z;. If y € V(C), then P, U P, U P includes a free
S-cross, and so (ii) holds. Thus we may assume that y ¢ V(C). If y ¢ V(Cy),
then P, U P includes an S-jump with one end y and the other end z or y,
and so we may assume that y € V(Cy). Since v has degree at least four, disk
system axioms (X1) and (X2) imply that V(Cy) NV (Cy) = {v}. It follows
that y ¢ V(C1). Now let S’ be obtained from S by replacing xo 2121 Uy Zoys
with P, U P, and let Z], Z), be the segments of S’ corresponding to Z;, Z,
respectively. Thus Z] = vZx1 U Py Uy Zov and ZY) = vy Zsys U Py U 2971 0.
Now P U xZ5y; includes an S’-jump with one end y and the other end in the
interior of Z7, and so (i) holds. O

In the next lemma, we will use Lemmas 4.3.1 and 4.3.2 to prove a strength-
ening of Theorem 3.1.1. We use augmenting sequences and minimality to
show that the paths added to a weakly free cross to prevent an S-separation
belong to one of a limited number of types.

Lemma 4.3.3. Let (G,X) and (H,T) be signed graphs where G has no ver-
tices of degree two and is not the complete graph on four vertices. Let S
be a (G, X)-subdivision in (H,T') with a disk system C. Then there ezists a
(G, X)-subdivision S’ obtained from S by repeated reroutings such that S’ and
the disk system C' induced in S’ by C satisfy one of the following conditions:

i) there exists an S'-jump,
(i)
(ii) there exists a free S’-cross,
(iii) there exists an interrupted S’-jump,
(iv) for some j € {1,2,...,5}, there exists a type-j extended S’-cross,
(v) there exists an S'-triad,
vi) there exists an S'-umbrella
(vi) th st S’-umbrella,
vii) there exists an S’-separation, or
1) th 5t S’ t

(viii) the disk system C' is locally planar in H.
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Proof. Suppose that (H,T") is a counterexample to the lemma such that H
has a minimal number of edges. (H,I') must satisfy one of the outcomes of
Theorem 3.1.1. We know that outcome (v) of Theorem 3.1.1 does not hold
since C satisfies disk system axiom (X2) and G is not K. Thus outcome (ii)
of Theorem 3.1.1 holds, or otherwise the lemma holds. Therefore H contains
a weakly free cross P, Ps.

For i = 1,2 let z;, y; be the ends of P;, and let P;, P, be centred at v and
based at Z; and Z,. We may assume that 1, z9, v € V(Z;) occur on Z; in
the order listed; then ys, 11, v € V(Z3) occur on Zj in the order listed. For
1 = 1,2, let v; be the other end of Z; and let L| = x1Z v, and Ly = y2Z5v5.
We may assume that (H,I") has been resigned so that every edge of Z; U Z,
is even.

Consider all triples (5', P{, Py), where S’ is a (G, ¥)-subdivision obtained
from S by repeated rerouting and P|, Pj is a weakly free S’-cross based at
Z1, Zy where Zy, Zi are the branches of S’ corresponding to Z;, Z,. We

may assume that among all such triples the triple (S, P, P) is chosen with
\V(Ly)| + |V (L2)| minimum.

There are two cases to consider: the case in which v has degree three and
the case in which v has degree four or greater. First we assume that v has
degree three. Let Z3 be the third segment incident with v, and let v3 be the
other end of Z3. One of the outcomes from Lemma 4.3.1 must hold, so we
can assume that P, and P, are both odd since otherwise (v) holds.

Let X be the vertex set of vZyx1UvZyys U PLUP,. Let Y be the vertex set
of H— (X UZ3UZyU Z;). We know there exist three vertex-disjoint paths
from X to Y in H. There must exist a fourth XY-path or else (vii) holds.
Thus by Lemma 4.2.2 there must exist an augmenting sequence from X to
Y. Let @1, Qs,..., @, be an augmenting sequence from X to Y. By Lemma
4.2.1, we may assume that the augmenting sequence is basic. For ¢ =1 ,2
..., M, let s; and t; be the endpoints of ();. Consider ();. By symmetry we
may assume that s; € V(P UvZsys).

Suppose that s; € V(P;). If t; € V(Ly), then there exists an S-cross
that contradicts our choice of (S, Py, P5). If t; € V(Z3), then there exists an
S-triad, and so (v) holds. If t; € V(C — (Z; U Z,)), then there exists a free
S’-cross, and so (ii) holds. If ¢; ¢ V(C U Z3) then there exists an S-jump,
and so (i) holds. If t; € V(Ly), then we consider the parity of y;P1s1 U Q1.
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If it is even, we reroute Z, along y; Pys; U @1, which results in a cross that
contradicts our choice of (S, Py, Py). If y; Pis; U @ is odd, then we consider
Q2. We know that sy € yoZoty. If t5 € V(Ly), then there exists an S-cross
that contradicts our choice of (S, Py, Py). If to € V(Cs), there exists an
interrupted S-jump satisfying (iii). So we assume that ty € V(t1 Zvs).

If Q, is even, then we let S’ be the (G, )-subdivision formed by rerouting
Zsy along Q2. Let H' be the graph obtained from H by deleting the interior
of s9Z5t;. We note that Py, P, form a weakly-free S’-cross in H’, so the disk
system C’ is not locally planar in H'. Also, Q1 Ut Z35,UQ3U...UQ,, contains
an augmenting sequence from X to Y, and thus H' does not contain an S’-
separation. Therefore H' is also a counterexample to the lemma. But H' has
fewer edges than H. This contradicts our choice of H as the counterexample
with the fewest edges. Future cases will be similar. We will discover that,
after rerouting, a certain portion of H is not necessary for non-planarity or
connectivity and thus it may be deleted to produce a smaller counterexample.
In those cases, we will simply specify the rerouting and the part of H that
may be deleted.

If @5 is odd, then we reroute Z5 along y; Pys1UQ; and ()5. Then by deleting
the interior of y; Zsy,, we obtain a graph that contradicts the minimality of
H.

Now suppose that s; € V(vZyys). If t; € V(L1), then there exists an S-
cross that contradicts our choice of (S, P, Pp). If t1 ¢ V(Z, U Zy U Z3), then
there exists either an S-jump or a type-1 extended S-cross, and so either (i)
or (iv) holds. Suppose that t; € V(Z3). If s; € V(vZ5y;) and @ is even, we
reroute by replacing t; Z3v with @), and delete the interior of t; Z3s5 to obtain
a graph that contradicts the minimality of H. If s; € V(vZyy;1) and Q) is
odd, we reroute by replacing t1 Z3v Uy Zoys U 254121 with Q1 U Py U P, and
delete the interior of t; Z3s5 to obtain a graph that contradicts the minimality
of H. If s1 € V(y1Z5y») and ) is even, we reroute by replacing t1 Z3v with Q)
so that (iii) holds. If s; € V(y1Z2y2) and @ is odd, we reroute by replacing
t1 Z3vUs1 Zayo Uxe Z1 21 With Q1 U P U P, and delete the interior of x1 2z to
obtain a graph that contradicts the minimality of H. Thus we may assume
that ¢, € V(Ly). If @y is even, we reroute Zy along )1, which results in a
cross that contradicts our choice of (S, P, P). If (1 is odd, then we reroute
Zy along both P, and () and delete the interior of t;Z5s, to obtain a graph
that contradicts the minimality of H.
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Now we consider the case that v has degree four or greater. One of the
outcomes of Lemma 4.3.2 must hold, and thus we may assume that at least
one of P, and P, is odd. Let X be the vertex set of vZ 121 UvZyys U P U Ps.
Let Y be the vertex set of H — (X U Z; U Z). We know there exist three
vertex-disjoint paths from X to Y in H. There must exist a fourth XY -path
or else (vii) holds. Thus by Lemma 4.2.2 there must exist an augmenting
sequence from X to Y. Let @)1, Qs,..., @,, be an augmenting sequence from
X to Y. By Lemma 4.2.1, we may assume that the augmenting sequence is
basic. For i = 1,2,...,m, let s; and ¢; be the endpoints of @);. Consider ();.
By symmetry we may assume that s; € V(P UvZsys).

Suppose that s; € V(Py). If t; € V(Ly), then there exists an S-cross that
contradicts our choice of (S, Py, P). If t; € V(C'—(Z1UZ3)), then there exists
a free S-cross, and so (ii) holds. If ¢; ¢ V(C'), then (i) holds. If t; € V(Ls),
then we consider the parity of y, P1s; UQq. If y1 Pys; U@ is even, we reroute
Zy along y; P;s; U (01, which results in a cross that contradicts our choice of
(S, P, Py). If y1 Pis; U@y is odd, then we consider Q5. If £, € V(L;), then
there exists a cross that contradicts our choice of (S, Py, P). If to € V(Cy),
then (iii) holds. So we may assume that ty € V(1 Z5v9). If Q)5 is even, then
we reroute Zy along ()2 and delete the interior of s9Z5t; to obtain a graph
that contradicts the minimality of H. If ()5 is odd, then we reroute Z5 along
both y; Pis; and (5 and delete the interior of y; Z>ys to obtain a graph that
contradicts the minimality of H.

Now suppose that s; € V(vZyys). If t; € V(Ly), then there exists an
S-cross that contradicts our choice of (S, Py, P»). If t1 ¢ V(Z; U Z3), then
there exists either an S-jump or a type-1 extended S-cross, and so either
(i) or (iv) holds. Thus we may assume that t; € V(Ls). If Q) is even, we
reroute Zs along ()1, which results in an S-cross that contradicts our choice
of (S, P1, P»). Thus we may assume that ¢); is odd. We consider Q)s. Suppose
that to € V(Ly). If Q2 is even, we reroute Z5 along () and delete the interior
of s9Z5t; to obtain a graph that contradicts the minimality of H. If @) is
odd, we reroute Zy along both )7 and ()2 and delete the interior of y, Zoys
to obtain a graph that contradicts the minimality of H. If 5 ¢ V(C'), then
one of (i) or (iii) holds. If ¢t € V(C — (Z1 U Zy), then there exists a type-2
extended S-cross, and so (iv) holds. Thus ¢, € V(L;). Now we consider
Qs. If t3 € V(Cy — Zy), then there exists a type-3 extended S-cross, and
so (iv) holds. If t3 € V(C' — (Zy U Zy)), then (ii) holds. If t3 ¢ V(C, U C),
then (i) holds. If t3 € V(Ls), then there exists an S-cross that contradicts
our choice of (S, P, P,). Thus we may assume that t3 € V(L;). If Q3 is
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even, we reroute Z; along (3 and delete the interior of s3Z;t; to obtain a
graph that contradicts the minimality of H. If ()3 is odd, then we consider
Q4. Ity € V(Z;) and Q4 is even, we reroute Z; along (), and delete the
interior of s4Z;t3 to obtain a graph that contradicts the minimality of H. If
ty € V(Z;) and Q4 is odd, we reroute Z; along both Q3 and @4 and delete
the interior of s3Z;ts to obtain a graph that contradicts the minimality of
H. Ifty € V(Ol — Zl), then (111) holds. If t4, € V(C — (Z1 U ZQ)), then
there exists a type-4 extended S-cross, and so (iv) holds. If ¢, ¢ V(C; U C),
then (i) holds. Thus we may assume that ty € V(t1Z5v5). We consider Qs.
If t;V € V(Z;), then there exists an S-cross that contradicts our choice of
(S, Py, P). If t; € V(C — (Z1 U Zy)), then (ii) holds. If t5 € V(Z,) and Q5 is
even, then we reroute Z5 along ()5 and delete the interior of s;Z5t4 to obtain
a graph that contradicts the minimality of H. If t5 € V(Z3) and Q5 is odd,
then we reroute Z5 along both ()1 and ()5 and delete the interior of y; Zoy»
to obtain a graph that contradicts the minimality of H. If t5 ¢ V(C U Cy),
then (i) holds. Thus we may assume that t5 € V(Cy — Z5), and then there
exists a type-5 extended S-cross, and so (iv) holds. O

4.4 Triads

In this section, our goal is to eliminate outcome (v) of Lemma 4.3.3. We say
that an S-triad is local if there exists a vertex v of S of degree three in S
such that each of the three segments of S incident with v includes exactly
one foot of the triad. We say that the local S-triad is centred at v.

In the main proof of this section, we assume that the S-triad is local. Thus
our first task is to show that there are no non-local triads. In order to do
this, we will have to assume that G is almost 4-connected.

Lemma 4.4.1. Let G be an almost 4-connected planar graph, and let S be
a G-subdivision in a graph H. Let C be the disk system in S consisting of
peripheral cycles of S. Then every S-triad is local.

Proof. Suppose that there exists a non-local S-triad, and let F' be the set
of feet of the triad. Let us fix a drawing of S in the plane. Since each pair
of vertices in F' belong to a common face, there exists a simple closed curve
¢ intersecting S precisely in the set F. Let I be the interior of the region
bounded by ¢, and let O be the exterior. If I contains no branch vertex of
S, then there exists a disk that includes every vertex in F, contrary to the
definition of a triad. If I contains exactly one branch vertex of S, then that

36



vertex must be incident with three segments, each of which contains exactly
one vertex in F', and thus the triad is local.

Thus we may assume that [ contains more that one branch vertex of S. If
O contains no branch vertex of .S, then there exists a disk that includes every
vertex in F', contrary to the definition of a triad. If O contains exactly one
branch vertex of S, then that vertex must be incident with three segments
whose other ends are the vertices in F', and thus the triad is local. Thus
I and O both contain more than one branch vertex of S, contrary to the
almost 4-connectivity of G. O]

Adding only a local triad to S introduces an S-separation. Thus H must
also contain an augmenting sequence with the triad. We show that adding
an augmenting sequence to a local triad leads to a non-minimal obstruction
to planarity:.

Lemma 4.4.2. Let (G,X) and (H,T") be signed graphs, where G is almost
4-connected. Let S be a (G, X)-subdivision in (H,T") with a disk system C.
Then there exists a G-subdivision S’ obtained from S by repeated reroutings
such that S" and the disk system C' induced in S’ by C satisfy one of the
following conditions:

(i) there exists an S'-jump,
(ii) there exists a free S’-cross,
(iii) there exists an interrupted S’-jump,
(iv) for some j € {1,2,...,5}, there exists a type-j extended S’-cross,
(v) there exists an S"-umbrella,
(vi) there exists an S'-separation in H, or
vii) the disk system C' is locally planar in H.
Y Y

Proof. Let (H,T') be a minimal counterexample to the lemma such that H
has a minimal number of edges. H must satisfy one of the outcomes of
Lemma 4.3.3. Thus outcome (v) of Lemma 4.3.3 holds, or otherwise the
lemma holds. Thus H contains an S-triad Ry, R, Rs.
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By Lemma 4.4.1, the triad Ry, Ry, R3 must be local. Let the triad Ry,
Ry, R3 be centred at v, let its feet be x1, x9, x3, let Zy, Z5, Z3 be the three
segments of S incident with v numbered so that x; € V(Z;), and let v; be
the other end of Z;. We may assume that (H,I") has been resigned so that
every edge of Z; U Z, U Z3 is even. Let L; be the subpath of Z; with ends v;
and x;, and let P; be the subpath of Z; with ends v and x;. We say that the
paths Ly, Lo, L3 are the legs of the S-triad. We may assume that R;, R,,
R3 are chosen so that there is no S-triad as above such that the sum of the
lengths of its legs is strictly smaller than |E(Ly)| + |E(L2)| + |E(L3)|. Let
X=V(PUP,UPSUR URyUR3)and Y =V(S) — (X ULy ULy U L3).

We know that there exist three vertex-disjoint XY-paths in H. There
must exist a fourth XY-path or else (vi) holds. Thus by Lemma 4.2.2 there
must exist an augmenting sequence from X to Y. Let @)1, Qs,..., Q,, be an
augmenting sequence from X to Y. By Lemma 4.2.1, we may assume that
the augmenting sequence is basic.

By symmetry, we may assume that s; € V(P; U Ry). Suppose that s; €
V(Rl) If tl g_ﬁ V(Zl U ZQ U Zg), then (1) holds. If tl € V(Ll U LQ U Lg),
then there exists an S-triad that contradicts our choice of Ry, Ry, R3. Thus
we may assume that s; € V(P;). If ¢; is not in either of the disks that
include Z;, then (i) holds. If #; is in one of the disks that include Z; but
tv ¢ V(Z1 U ZyU Zs), then (ii) holds. If ¢; € V(Z3), then deleting the
interior of Ry results in a graph that contradicts the minimality of H. If
t1 € V(Z3), then deleting the interior of R3 results in a graph that contradicts
the minimality of H. Thus we may assume that t; € V(7).

If @, is even, then rerouting Z; along ), and deleting the interior of s1 212
results in a graph that contradicts the minimality of H. So we may assume
that )1 is odd. Now we consider ()o. If t5 is not in either of the disks that
include Z3, then (i) holds. If to ¢ V(Z;) but ¢, is in the disk that contains
both Z; and Zj, then deleting the interior of R, results in a graph that
contradicts the minimality of H. If t5 ¢ V(Z;) but ¢ is in the disk that
contains both Z; and Z3, then deleting the interior of R3 results in a graph
that contradicts the minimality of H. Thus we may assume that ¢, € V(7).

If ()5 is even, then rerouting Z; along ()2 and deleting the interior of s, 71,
results in a graph that contradicts the minimality of H. If () is odd, then
rerouting Z; along both @)1 and ()5 and deleting the interior of s; 7,2z results
in a graph that contradicts the minimality of H. O]
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4.5 Conclusion

Now we are ready to formulate our results in terms of graphs embedded in
the plane. From now on, our disk systems will refer to the disk systems
consisting of peripheral cycles of 3-connected planar graphs. Terms such as
S-jump and S-cross will refer to the disks corresponding to peripheral cycles.

If S is a G-subdivision and S’ is another G-subdivision obtained from S
by rerouting, then the embedding of S uniquely determines an embedding of
S’, and the disk system induced in S’ by C consists of the face boundaries of
S’

Lemma 4.5.1. Let (G,X) be an almost 4-connected planar signed graph, let
(H,T") be a non-planar signed graph, and let S be a (G, X)-subdivision in
(H,T"). Then there exists a G-subdivision S" in (H,T') obtained from S by
repeated reroutings such that S’ and the disk system of peripheral cycles in
S’ satisfy one of the following conditions:

(i) there exists an S'-jump,

(ii) there exists a free S’-cross,

i11) there exists an S’-separation,

191) th 5t S’ t1

iv) there exists an interrupted S’-jump,

v) th 5t nt ted S'-j

(v) there ezists an S'-umbrella, or
(vi) for some j € {1,2,...,5}, there exists a type-j extended S’-cross.

Proof. By Lemma 4.4.2, one of the outcomes of that lemma holds. If one
of outcomes (i)-(vi) of Lemma 4.4.2 holds, then our lemma holds. We know
that outcome (vii) of Lemma 4.4.2 does not hold since S does not extend to
an embedding of H. Thus the result holds. O

The only outcome still to be eliminated is the S-separation. The almost
4-connectivity of H can be used to show that an S-separation leads to a
contradiction. We are now ready to restate and prove Theorem 1.3.1, our
main result.

Theorem 1.3.1. Let (G,X%) be an almost 4-connected planar signed graph
on at least siz vertices, let (H,T') be an almost 4-connected non-planar signed
graph, and let S be a (G, X)-subdivision in (H,T"). Then there ezists a (G, X)-
subdivision S” in (H,T") obtained from S by repeated reroutings such that S’
satisfies one of the following conditions:
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(i) there exists an S’-jump ,
(ii) there exists a free S’-cross,
(iii) there exists an interrupted S’-jump,
(iv) there exists an S'-umbrella, or
(v) for some j € {1,2,...,5}, there exists a type-j extended S’-cross.

Proof. Let (G,%), (H,I'), and S be as stated. By Lemma 4.5.1 there exists a
(G, X)-subdivision S” in (H,T") obtained from S by repeated reroutings such
that one of the conclusions of that lemma holds. We may assume that H
contains an S’ separation (X,Y), for otherwise the theorem holds. Then
| X — Y| > 2 because H[X] does not have a planar embedding in a disk
with X N'Y drawn on the boundary of the disk. The set X — Y includes at
most one branch-vertex of S’ by the definition of S’-separation. Since S has
at least six branch vertices, |Y — X| > 2. But this contradicts the almost
4-connectivity of H. O]

Our main theorem is a generalization of the main theorem in [3]. Suppose
that ¥ = I' = (). Then all the edges of our graphs are even. Some of
the outcomes of Theorem 1.3.1 involve odd edges. We have the following
corollary:

Corollary 4.5.2. Let G be an almost j-connected planar graph on at least
six vertices, let H be an almost 4-connected non-planar graph, and let S be a
G-subdivision in H. Then there exists a G-subdivision S" in H obtained from
S by repeated reroutings such that S’ satisfies one of the following conditions:

(i) there exists an S’-jump in H, or
(ii) there exists a free S’-cross in H on some peripheral cycle of S'.

Proof. We may consider G as (G,X) and H as (H,T") where ¥ =T = (). We
apply Theorem 1.3.1 to (G, %), (H,T"), and S. We may assume that one of the
outcomes (iii)-(v) of Theorem 1.3.1 holds; otherwise the corollary holds. But
these outcomes all require H to have odd edges, which is a contradiction. [J

Corollary 4.5.2 is the main theorem in [3].
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Chapter 5

Future Work

5.1 One Non-Planar Unstable Bridge

We would like to further characterize outcome (iv) of Theorem 1.3.1. As
currently stated, the outcome is not specific enough to be particularly useful
in applications. We would like to show what minimal structures an unstable
S-bridge must contain if it is not S-planar. In particular, we would like to
prove the following conjecture:

Conjecture. Let (G,X) and (H,T') be signed graphs where G has no vertices
of degree two. Let S be a (G, X)-subdivision in (H,I") with weak disk system C,
and suppose none of outcomes (i)-(v) of Theorem 3.1.1 hold for any (G,%)-
subdivision S’ related to S. Let B, Py, Py be an S-umbrella on a segment
Z. Let wy, zy and ws, z5 be the ends of Py and Py respectively, where wy,
wy € V(Z). Then there ezist vertez-disjoint paths Q1 and Qs in B with ends
s1, t1 and s9, ty such that si, so, t1, ty appear on Z in that order and w-,
Wy € V(ngtl).

If this conjecture is true, then we can reroute Z along () and ()5 to turn
P, and P, into a weakly free cross. See the proof of Lemma 2.1.2. Thus we
could remove outcome (iv) from the statement of Theorem 1.3.1.

5.2 Parallel Edges

If (G,Y) is a signed graph, it is natural to allow G to have parallel edges,
where those parallel edges are in even-odd pairs. We would like to prove a
modified version of Theorem 1.3.1 where G is allowed to have some parallel
edges. The disk system axioms can be modified to allow for trivial disks,
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which are disks bounded by the two segments corresponding to a pair of
parallel edges in G.

If we allow parallel edges, then we have to make some changes to the
outcomes. For example, an interrupted S-jump is not necessarily non-planar
if it occurs in a trivial disk. See Figure 5.1.

Y2

Figure 5.1: A planar drawing of an interrupted jump in a trivial disk

5.3 Minors

We will define the concept of a minor for a signed graph. Let (G,X) be a
signed graph. Let I, J, be subsets of F(G) such that INJ = (. If I does not
contain the edges of an odd cycle, then there exists a signature I' of (G, X)
such that 'N I = (). Then the graph ((G/I)— J,I' —J) is a signed minor of
(G,Y).

In [3], Norin and Thomas also prove a version of their main result where the
conclusion is about minors rather than subdivisions. We say that a graph G
is internally 4-connected if it is 3-connected and for every separation (A, B)
of order three one of G[A], G|B] has at most three edges. If u, v € V(G) are
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not adjacent, then we use G 4+ uv to denote the graph obtained from G by
adding an edge with ends v and v.

Theorem 5.3.1. Let G be a triangle-free internally 4-connected planar graph,
and let H be an almost 4-connected non-planar graph such that H has a sub-
graph isomorphic to a subdivision of G. Then there exists a graph G’ such
that G’ is isomorphic to a minor of H, and either

(i) G' = G + uv for some vertices u, v € V(G) such that no peripheral
cycle of G contains both u and v, or

(i) G' = G + uyvy + ugvy for some distinct vertices uy, us, vy, vo € V(Q)
such that uy, ug, vy, vy appear on some peripheral cycle of G in the
order listed.

We would like to prove an analogue of this result for signed graphs and
signed minors.
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