
Scala with Explicit Nulls

by

Abel Nieto Rodriguez

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Abel Nieto Rodriguez 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Scala programming language unifies the object-oriented and functional styles of
programming. One common source of errors in Scala programs is null references. In
this dissertation, I present a modification to the Scala type system that makes nullability
explicit in the types. This allows us to turn runtime errors into compile-time errors. I
have implemented this design for explicit nulls as a fork of the Dotty (Scala 3) compiler. I
evaluate the design by migrating a number of Scala libraries to use explicit nulls.

In the second part of the dissertation, I give a theoretical foundation for explicit nulls.
I do this in two, independent ways. First, I give a denotational semantics for type nulli-
fication, a key part of the explicit nulls design. Separately, I present a core calculus for
null interoperability that models how languages with explicit nulls (like Scala) interact
with languages where null remains implicit (like Java). Using the concept of blame from
gradual typing, I show that if a well-typed program fails with certain kinds of nullability
errors, an implicitly-nullable subterm can always be blamed for the failure.

iii

Acknowledgements

I would like to thank my advisor, Ondřej Lhoták, for his prescient advice on the projects
that underlie this thesis, both with “big picture” items and thorny technical details. I
would also like to thank the members of my thesis committee, Prabhakar Ragde and
Gregor Richards, for their thoughtful comments.

The implementation of Scala with explicit nulls described in this thesis would not
have been possible without the help of our undergraduate research assistants. Yaoyu Zhao
contributed many new features and bug fixes to our implementation, making it more robust
and usable. Angela Chang and Justin Pu carried out most of the migration work described
in the empirical evaluation section.

The explicit nulls project also benefited tremendously from the feedback and guidance
of members of the LAMP team at EPFL. In particular, I want to thank Martin Odersky,
Guillaume Martres, and Fengyun Liu.

Gregor Richards provided valuable advice on how the calculus for null interoperability
relates to the larger field of gradual typing. Marianna Rapoport made possible the mech-
anization of the blame-related proofs, by sharing her wealth of knowledge about Coq and
setting up the entire proof infrastructure using Ott and LNGen.

Even though the work I carried out at Microsoft Research during the summer of 2019
is not part of this thesis, I would like to thank my then-manager, David Tarditi, for his
mentorship during the internship. David remains a role model for how a senior researcher
can effectively lead a research or product team.

The work described in this thesis was supported by the Natural Sciences and Engineer-
ing Research Council of Canada.

iv

Dedication

The past September marked ten years since I moved to Canada to start my undergrad-
uate studies. This has turned out to be probably the most consequential event in my life,
and would not have been possible without the help of my parents. I thank them for this,
and for their lifelong support and love.

v

Table of Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 The Null Problem . 2

1.2 My Thesis . 3

1.3 Future Work . 4

2 Scala With Explicit Nulls 6

2.1 The Dotty Compiler . 6

2.1.1 Structure of Dotty . 7

2.1.2 Types . 7

2.1.3 Denotations . 9

2.1.4 Symbols . 10

2.2 A New Type Hierarchy . 12

2.2.1 Fixing a Soundness Hole . 14

2.3 Java Interoperability . 17

2.3.1 Interpreting Java Types . 18

2.3.2 Type Nullification . 19

2.3.3 The JavaNull Type . 24

vi

2.3.4 More Precise Nullification . 26

2.4 Flow Typing . 28

2.4.1 Supported Cases . 28

2.4.2 Inferring Flow Facts . 33

2.5 Asserting Non-Nullability . 35

2.6 Dropped Features . 36

2.6.1 Arrays . 36

2.6.2 Override Checks . 37

2.6.3 Binary Compatibility . 38

2.7 Evaluation . 40

2.7.1 Assessing Migration Effort . 42

2.7.2 An Interesting But Hard Question 52

2.8 Related Work . 53

2.8.1 Nullability in the Mainstream . 53

2.8.2 Functional Programming . 58

2.8.3 Sound Initialization . 59

2.8.4 Pluggable Type Checkers . 63

2.9 Conclusions . 65

3 Denotational Semantics of Nullification 66

3.1 Reasoning about Nullification with Sets . 66

3.2 System F, λj, and λs . 68

3.2.1 λj Type System . 69

3.2.2 λs Type System . 73

3.3 Denotational Semantics . 74

3.3.1 λj Semantic Model . 77

3.3.2 Meaning of λj Kinds . 78

3.3.3 Meaning of λj Types . 80

vii

3.3.4 λs Semantic Model . 82

3.3.5 Meaning of λs Kinds . 82

3.3.6 Meaning of λs Types . 83

3.4 Type Nullification . 86

3.4.1 Soundness . 89

3.4.2 Discussion . 98

3.5 Related Work . 99

3.6 Conclusions . 100

4 Blame for Null 102

4.1 Nullability Errors . 102

4.2 Blame Calculus . 106

4.2.1 Well-typed Programs Can’t Be Blamed 109

4.3 A Calculus with Implicit and Explicit Nulls 109

4.3.1 Values of λnull . 110

4.3.2 Terms of λnull . 111

4.3.3 Types of λnull . 111

4.3.4 Typing λnull . 112

4.3.5 Evaluation of λnull . 114

4.3.6 Metatheory of λnull . 118

4.3.7 Coq Mechanization . 123

4.4 Who is to Blame? . 124

4.5 A Calculus for Null Interoperability . 125

4.5.1 Terms and Types of λsnull . 125

4.5.2 Typing λsnull . 126

4.5.3 Desugaring λsnull to λnull . 127

4.5.4 Metatheory of λsnull . 131

4.6 Related Work . 138

4.7 Conclusions . 139

viii

5 Conclusions 140

Bibliography 141

APPENDICES 149

A Evaluating Explicit Nulls 150

ix

List of Figures

1.1 Uninitialized fields can cause nullability errors. 4

2.1 High-level structure of the Dotty compiler, showing the frontend phases . . 7

2.2 Alternative Scala type hierarchies with implicit and explicit nulls 13

2.3 The combination of null and type members can lead to unsoundness. Ex-
ample taken from [Amin and Tate, 2016]. 15

2.4 Scala code using a Java library . 17

2.5 Java code using a Scala library . 18

2.6 Type nullification functions . 21

2.7 Flow facts inference . 34

3.1 Terms and types of System F . 68

3.2 Types, kinds, and kinding rules of λj. Differences with System F are high-
lighted. 70

3.3 Types, kinds, and kinding rules of λs. Differences with λj are highlighted. . 75

4.1 Terms and types of λnull . 110

4.2 Typing and compatibility rules of λnull . 112

4.3 Evaluation rules of λnull, along with auxiliary predicates and the normal-
ization relation . 115

4.4 Positive and negative subtyping . 120

4.5 Safe for relation . 121

x

4.6 Type casts between Scala and Java . 125

4.7 Terms and types of λsnull . 126

4.8 Typing rules of λsnull . 128

4.9 Nullification and erasure relations . 129

4.10 Desugaring λsnull terms to λnull terms . 130

xi

List of Tables

2.1 Community build libraries. We have not migrated the greyed-out libraries
to explicit nulls yet. The size of each library is given in lines of code (LOC). 41

2.2 Run configurations for migrating community build libraries 43

2.3 Error frequency by run configuration. The unit is number of (type) errors
per thousand LOC. 45

2.4 Error classification. Libraries were migrated under optimistic configura-
tion. Normalized count is in errors per thousand LOC. 46

2.5 Comparison of explicit nulls in Scala and Kotlin 56

3.1 Java types and their corresponding λj types 72

xii

Chapter 1

Introduction

Scala is a general-purpose object-oriented and functional programming language [EPFL].
Initially released in 2004, the language has seen both wide industry adoption, as well as
interest from academia.

Scala probably owes a large part of its industry success to the idea that Scala is a “better
Java”. Because Scala programs are compiled to Java Virtual Machine (JVM) bytecode, it
is straightforward to use a Java library from Scala code. Additionally, Scala has a number
of language features, mostly within its type system, that are not present in Java, but are
popular among Scala practitioners. These features, like an expressive module system and
type-level programming, turn certain classes of run-time errors into compile-time errors,
arguably increasing the robustness of the resulting code. Measuring programming language
“popularity” or “use” is a fuzzy undertaking, but the programming language rankings that
we do have show Scala in positions 12 to 30 [TIOBE, RedMonk, PYPL] (the TIOBE index
shows Scala right behind Fortran! [TIOBE]). Scala’s main bi-annual conference, Scala
Days, started in 2010 with 150 attendees, and has grown to around 1500 participants for
its 2019 edition [ScalaDays].

On the academic side, Scala is interesting mainly because it has a rich type system with
unique challenges. These challenges come out of Scala’s desire to unify object-oriented and
functional programming. The most prominent example of academic work inspired by Scala
is probably the Dependent Object Types (DOT) calculus, which serves as the theoretical
foundation for the language [Amin et al., 2016]. There is a long line of papers studying
properties of DOT [Amin et al., 2016, Amin and Rompf, 2017, Rapoport et al., 2017, Wang
and Rompf, 2017, Kabir and Lhoták, 2018, Rapoport and Lhoták, 2019, Hu and Lhoták,
2019]. There also has been work on Scala’s module system, as well as its “implicits”

1

mechanism, among other features [Odersky and Zenger, 2005, Odersky et al., 2017].

1.1 The Null Problem

Scala inherited elements of good design from Java, but it also inherited at least one mis-
feature: the null reference. In Scala, like in many other object-oriented programming
languages, the null reference can be typed with any reference type. This leads to runtime
errors, because null does not (and cannot) support almost any operations. For example,
the program below tries to read the length field of a string, only to find out that the
underlying reference is null. The program then terminates by reporting the infamous
NullPointerException1.

val s : String = null

println (s”s has length ${s. length}”) // throws a NullPointerException

Errors of this kind are very common, and can sometimes lead to security vulnerabilities.
Indeed, “Null Pointer Dereference” appears in position 14 of the 2019 CWE Top 25 Most
Dangerous Software Errors, a list of vulnerabilities classes maintained by the MITRE
Corporation [MITRE]. As of November 2019, a search for “null pointer dereference” in
MITRE’s vulnerability database2 returned 1429 entries.

The root of the problem lies in the way that Scala structures its type hierarchy. The
null reference has type Null, and Null is considered to be a subtype of any reference
type. In the example above, Null is a subtype of String, and so the assignment s =

null is allowed. We could say that in Scala, (reference) types are implicitly nullable.
The alternative is to have a language where nullability has to be explicitly indicated. For
example, we can re-imagine the previous example in a system with explicit nulls:

val s : String = null // type−error: ‘ Null ‘ is not a subtype of ‘ String ‘.

val s2: String |Null = null // ok: s is explicitly marked as nullabe .

if (s2 != null) {
println (s”s has length ${s. length}”) // ok: we checked that s2 is not null .

}

In a world with explicit nulls, the type system can keep track of which variables are
potentially null, and prevent us from making unsafe dereferences. In the last example, we
are forced to check that s2 is not null before accessing it.

1https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
2Reachable at https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+Pointer+

Dereference.

2

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+Pointer+Dereference
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+Pointer+Dereference

In this dissertation, I describe and study a type system just like the one above. It is my
hope that this version of Scala with explicit nulls can contribute to the creation of robust
software with fewer runtime errors.

1.2 My Thesis

My thesis is that

we can retrofit the Scala language with explicit nulls. The resulting type system
can be formally studied and understood.

This dissertation substantiates the claims above:

1. In Chapter 2, I present a design for a version of Scala with explicit nulls. I have
implemented this design as a modification to Dotty, a new compiler for the upcoming
version 3 of Scala. The result is a system where many (but not all) nullability-related
errors can be detected at compile-time. The changes to the compiler are currently
being considered for inclusion in the official compiler codebase. Finally, I evaluated
the implementation by migrating to explicit nulls a set of 13 libraries totalling over
90,000 lines of Scala code.

2. In Chapter 3, I look for a formal model of type nullification, a key part of the explicit
nulls design. Using tools from denotational semantics, I show how nullification can
be understood as an element-preserving transformation on types.

3. In Chapter 4, I define a core calculus for interoperability between languages with
explicit nulls and languages with implicit nulls. This is relevant in the Scala context,
because Scala code often interacts with Java code, where nulls remain implicit. I
characterize the nullability errors that can occur in this calculus using the concept of
blame, from gradual typing. Finally, I show that if a program in this calculus is well-
typed, then the implicitly typed terms are responsible for certain kinds of evaluation
errors. Most of the proofs in this chapter have been mechanized in the Coq proof
assistant.

3

class Person(name: String) {
println (s”created person ${toString()}”)

override def toString (): String = name

}

class Employee(name: String) extends Person(name) {
var company: String = ””

def setCompany(company: String): Unit = this.company = company

override def toString (): String =

if (company.isEmpty) name else s”${name}@${company}” // ‘company‘ can be uninitialized

}

new Employee(”Jane”) // throws a ‘NullPointerException‘

Figure 1.1: Uninitialized fields can cause nullability errors.

1.3 Future Work

There is a second class of problems related to nullability, different from the type hierarchy
issue we saw before. This problem has to do with initialization, and can be summarized
as saying that, even in a type system with explicit nulls, nullability errors are possible
in the presence of uninitialized class fields. The example in Figure 1.1 illustrates this
situation. We have an Employee class that extends (inherits) Person. Employee has a
company field, which is kept mutable, because an employee can change employers over
time. company is initialized to the empty string. However, when a new Employee is
created, Employee’s constructor calls Person’s constructor, which in turn calls toString.
Due to dynamic dispatch, Employee’s toString is called, at which point a field selection
on company happens. Because all the above events take place during object construction,
the statement initializing company has not executed yet, and so company is null at this
point (null is the default value for uninitialized fields of reference types in Scala). The
expression company.isEmpty then generates a NullPointerException, even though null

does not appear in the program, and all fields would seem to be initialized.

The problem of guaranteeing sound initialization is an interesting and challenging one,
and Section 2.8.3 surveys some of the existing work in this area. It is, however, not a

4

problem I tackle in this dissertation. Designing a sound initialization system for Scala
remains future work.

5

Chapter 2

Scala With Explicit Nulls

In this chapter, I describe our design for retrofitting Scala’s type system with a

mechanism for tracking nullability. The main idea is to make all reference types

non-nullable by default. Nullability can then be recovered using union types. So

that Scala programs can interoperate with Java code, where nulls remain implicit,

I present a type nullification function that turns Java types into equivalent Scala

types. To improve usability of nullable values in Scala code, I have also added a

simple form of flow typing to Scala. I have implemented this design on top of the

Dotty (Scala 3) compiler. Finally, I present an evaluation of the design by migrating

multiple Scala libraries into the world of explicit nulls.

2.1 The Dotty Compiler

We start this chapter with a brief overview of the Dotty compiler, focusing on the parts of
Dotty that are relevant to the explicit nulls project.

Dotty is a research compiler, in development since at least 2013 at École Polytechnique
Fédérale de Lausanne (EPFL) [Dotty Team], that will become the reference implementation
for the upcoming Scala 3 language (scheduled for release in 2020). The goals of the Dotty
project are dual: Dotty will serve as a re-architected version of the current scalac compiler
(one that is more modular and maintainable); additionally, Dotty is a research platform
for designing and trialling experimental Scala features.

Because of these reasons, we decided to implement our explicit nulls project by mod-
ifying Dotty. Our current implementation of explicit nulls is being considered for inclu-

6

def phases: List [List [Phase]] =

frontendPhases ::: picklerPhases ::: transformPhases ::: backendPhases

// Phases dealing with the frontend up to trees ready for TASTY pickling

protected def frontendPhases: List [List [Phase]] =

// Compiler frontend : scanner, parser , namer, typer

List (new FrontEnd) ::

// Sends information on classes ’ dependencies to sbt via callbacks

List (new sbt.ExtractDependencies) ::

// Additional checks and cleanups after type checking

List (new PostTyper) ::

// Sends a representation of the API of classes to sbt via callbacks

List (new sbt.ExtractAPI) ::

// Set the ‘rootTreeOrProvider‘ on class symbols

List (new SetRootTree) ::

Nil

Figure 2.1: High-level structure of the Dotty compiler, showing the frontend phases

sion in the official Dotty distribution. The code can be found as a git “pull request” at
https://github.com/lampepfl/dotty/pull/6344. As of November 2019, the changes to
the compiler in the pull request involved 3627 new lines of code (LOC) spread over 127
files.

2.1.1 Structure of Dotty

The high-level structure of Dotty is shown in Figure 2.1. As usual, the compiler consists of
a list of independent phases that create and transform abstract syntax tree (AST) nodes
[Petrashko et al., 2017]. Most changes required by our design happen in the FrontEnd

phase, which is in charge of parsing and type-checking.

2.1.2 Types

Scala has a rich type system that includes features from functional and object-oriented
programming. On its functional side, Scala includes algebraic data types (ADTs), pattern
matching, local type inference, parametric polymorphism (generics), and higher-kinded

7

https://github.com/lampepfl/dotty/pull/6344

types, among others. From the object-oriented world, Scala includes classes, nominal
subtyping via inheritance, and definition and use site variance, among others. The reason
for listing all these features is to highlight that any changes to the type system (such as
those required by explicit nulls) need to interoperate with a potentially very large surface
of already existing concepts.

Below I highlight some Scala types that are particularly relevant to explicit nulls.

Union Types

Union types [Pierce, 2002] are handled by Dotty and are not currently available in Scala
2. Informally, given types A and B, the union type A|B contains all the “elements” of A
and B. The following programs are then type-correct:

val u1: String | Int = ”hello”

val u2: String | Int = 42

Notice that, unlike ADTs, union types do not have to be disjoint (e.g. String|Object).
Union types can be deconstructed via runtime checks; for example, using pattern matching:

val u: String | Int = ”hello”

val i : Int = u match {
case s : String => i.length

case i2 : Int => i2

}

After pattern matching is desugared, a test like case s: String becomes an explicit
runtime tag check that looks like if u.isInstanceOf[String].

Union types are key for our design of explicit nulls, because they allow us to represent
nullable types. For example, a local val containing a string will have type String|Null.

Path-Dependent Types

Path-dependent types are a limited form of dependent types that is unique to Scala. A
path-dependent type (of length one) has form

a.T

8

where a is a val, and T is a type member (a type member is like a class field, but it declares
a type as opposed to a value). Path-dependent types of length greater than one are also
possible; for example, the type a.b.c.T has length three. In this case, we say that a.b.c is
a path. b and c are class fields. The following example shows that path-dependent types
depend on values:

class Tree {
type Node

val root : Node

}

// Is ‘n1‘ an ancestor of ‘n2‘ in tree ‘ t ‘?

def isAncestor (t : Tree, n1: t .Node, n2: t .Node): Boolean

val t1: Tree

val t2: Tree

// Type error : expected ‘t1.Node‘, but got ‘t2 .Node‘

isAncestor (t1, t1. root , t2 . root)

We declare a Tree class with a root field and a Node type member. The type of root is
Node. Next, we declare an isAncestor method that checks whether a node is an ancestor
of another node. Notice, however, that the type of n1 and n2 is not Node, but t.Node,
which is a path-dependent type. This path-dependent type guarantees that only nodes
that belong to tree t can be passed into isAncestor. In particular, when we later try to
check whether a node of t1 is an ancestor of a node from a different tree t2, the compiler
issues a type error, because t1.Node and t2.Node are different, incompatible types.

The paths in path-dependent types are relevant to explicit nulls; in particular, we only
do flow typing on stable paths. See Section 2.4 for details.

The theoretical foundations of path-dependent types are explored in the Dependent
Object Types (DOT) calculus, developed in Amin et al. [2016], Amin and Rompf [2017],
Rapoport et al. [2017], Rapoport and Lhoták [2019], among others.

2.1.3 Denotations

Denotations are a Dotty abstraction to express the meaning of path-dependent types (and
symbols). Consider the following example:

9

object x {
object y {

type T = List[String]

}
}

val z: x.y.T

Because types are immutable in Dotty, the type of z is the path-dependent type x.y.T

throughout the compilation process. However, if we want to typecheck a field selection
z.length, we need a way to go from the path-dependent type to its “underlying” type;
that is, to its denotation. In this case, we would say that the denotation of x.y.T is
List[String], a type application. The reality is a bit more complicated, because deno-
tations, unlike types, are mutable and change over time. For example, after erasure, the
denotation of x.y.T becomes List, since erasure eliminates generics.

Denotations play an important role in our implementation of flow typing.

2.1.4 Symbols

Symbols are a Dotty abstraction for definitions. Alternatively, we can think of symbols as
referring to concrete locations in source files. All of the following have associated symbols:
classes, fields, methods and their arguments, and local variables. In Scala, there are four
main kinds of definitions, each with its own evaluation strategy:

• vals are evaluated just once, when defined. Additionally, vals are immutable.

val x: String = {
println (”eval x”) // prints ”eval x” once, while ‘x‘ is initialized

” hello ”

}
x = ”world” // error , cannot assign to a val

• vars are like vals, but mutable.

var x: String = {
println (”eval x”) // prints ”eval x” once

” hello ”

}
x = ”world” // ok, vars are mutable

10

• defs are lazily evaluated every time they are referenced (and defs can take argu-
ments, so they can define methods).

def x: String = {
println (”eval x”)

” hello ”

}
x // prints ”eval x”

x // prints ”eval x” again

• lazy vals are lazily evaluated, but then memoized (i.e. they are evaluated at most
once). They have a combination of val and def semantics.

lazy val x: String = {
println (”eval x”)

” hello ”

}
x // prints ”eval x”

x // ‘x‘ is memoized, so this statement does not print ”eval x” again

The distinction between vals, vars, and defs is relevant to flow typing, since we only
infer the types of vals and lazy vals (only these two classes of symbols can be part of
stable paths).

Implicits

Some definitions (e.g. vals and method parameters) can be annotated as implicit. The
implicit keyword is overloaded to have different meanings, but one use case is that the
compiler will fill in implicit definitions for implicit parameters. For example, we can create
a Context object that contains state, mark it as implicit, and it will then be passed
around automatically by the compiler:

case class Context(margin: Int)

def lenPlusMargin(name: String)(implicit ctx : Context): Int = {
name.length + ctx.margin

}

implicit val ctx : Context(margin = 10)

11

val l = lenPlusMargin(”hello”) // desugared into ‘ val l = lenPlusMargin(”hello”)(ctx)‘ by the compiler

assert (l == 15)

In this case, upon seeing the function call lenPlusMargin("hello"), the compiler
will notice the missing implicit argument, and search for an implicit definition of type
Context. It will then fill in ctx for the missing argument. This generates the call
lenPlusMargin("hello")(ctx).

The theoretical foundations of implicits are described in d. S. Oliveira et al. [2012]
and Odersky et al. [2017], among others. Implicits are germane to explicit nulls because
they inform our implementation of flow typing (specifically, flow typing within blocks of
statements).

2.2 A New Type Hierarchy

To understand the special status of the Null type, we can inspect the current Scala type
hierarchy, shown in Figure 2.2. Roughly, Scala types can be divided into value types
(subtypes of AnyVal) and reference types (subtypes of AnyRef). The type Any then stands
at the top of the hierarchy, and is a supertype of both AnyVal and AnyRef (in fact, a
supertype of every other type). Conversely, Nothing is a subtype of all types. Finally,
Null occupies an intermediate position: it is a subtype of all reference types, but not of
the value types. This justifies the following typing judgments:

val s : String = null // ok, since String is a reference type

val i : Int = null // error : expected a ‘ Int ‘ but got a ‘ Null ‘

This is what makes nulls in Scala implicit. In order to make nulls explicit, we need
to dislodge the Null type from its special position, so that it is no longer a subtype of all
reference types. We achieve this by making Null a direct subtype of Any. This new type
hierarchy, which underlies our design, is also shown in Figure 2.2.

With the new type hierarchy we get new typing judgments:

val s : String = null // error : expected a ‘ String ‘ but got a ‘ Null ‘

val i : Int = null // error : expected a ‘ Int ‘ but got a ‘ Null ‘

val sn: String |Null = null // ok: Null <: String |Null

We can still express nullable types using union types, as the last example shows.

This new type hierarchy is still unsound in the presence of uninitialized values:

12

Implicit nulls

Any

AnyVal

Int Boolean Unit ...

AnyRef (java.lang.Object)

String (java.lang.String)

Null

Nothing

List YourClass ...

Explicit nulls

Any

AnyVal

Int Boolean Unit ...
Null

AnyRef (java.lang.Object)

String (java.lang.String)

Nothing

List YourClass ...

Figure 2.2: Alternative Scala type hierarchies with implicit and explicit nulls

13

1 class Person {
2 val name: String = getName()

3 def getName(): String = ”Person” + name.len // name is ‘null‘ here

4 }
5

6 val p = new Person() // throws NullPointerException

Because after allocation the fields of Scala classes are initialized to their “default”
values, and the default value for reference types is null, when we try to access name.len

in line 3, name is null. This produces a NullPointerException.

We will accept this source of unsoundness for the purposes of the explicit nulls project.
Developing a sound initialization scheme for Scala, while balancing soundness with expres-
sivity, remains future work (also see existing approaches in Section 2.8).

2.2.1 Fixing a Soundness Hole

Even though explicit nulls do not make the Scala type system sound, they do remove one
specific source of unsoundness that results from combining null with type members with
arbitrary lower and upper bounds. An illustrative example, taken from Amin and Tate
[2016], is shown in Figure 2.3. Here is how the unsoundness happens:

• The two traits, LowerBound and UpperBound, declare a type member M and give it
an arbitrary lower bound T and upper bound U, respectively.

• It follows that if we can construct an element of type

LowerBound[T] with UpperBound[U]

(with here means type intersection), that element will have a type member M, where
T <: M <: U. Since subtyping is not always transitive in Scala [Nieto, 2017], this
does not quite imply that T <: U, but we can use the following two assignments to
turn a T into a U:

val t : T = ...

val m: M = t // ok: since T <: M

val u: U = m // ok: since M <: U

14

object unsound {
trait LowerBound[T] {

type M >: T

}

trait UpperBound[U] {
type M <: U

}

def coerce[T, U](t : T): U = {
def upcast(lb : LowerBound[T], t: T): lb .M = t

val bounded : LowerBound[T] with UpperBound[U] = null

upcast(bounded, t)

}

def main(args: Array[String]): Unit = {
val zero = coerce[Int , String](0)

}
}

Figure 2.3: The combination of null and type members can lead to unsoundness. Example
taken from [Amin and Tate, 2016].

15

• Now notice that T and U are completely abstract, so we could instantiate them to any
two types, even ones that are not related by subtyping. Example 2.3 sets T = Int

and U = String. Then, if we can construct a reference of type LowerBound[Int]

with UpperBound[String], we can use its type member M to turn an Int into a
String.

• We would expect that no reference has type

LowerBound[Int] with UpperBound[String]

, but in fact there is one: null. This happens because null is an element of every
reference type. The example uses this “trick” to give the local binding bounded this
impossible type. In the literature, bounded.M is said to have “bad bounds” [Amin
et al., 2016].

• With bounded in place, the code uses upcast to turn an Int into a String. The result
is that the program is type-correct, but running it produces a ClassCastException,
raised by the JVM. This is unsound! Notice that no downcasts were used in the
example.

The soundness hole described above, reported in 2016, is still present in Scala and Dotty.
However, it is fixed by our type system with explicit nulls. Specifically, the definition of
bounded is no longer type-correct, because null is not a subtype of LowerBound[T] with

UpperBound[U]. The definitions of bounded and upcast need to be adjusted as follows:

def upcast(lb : LowerBound[T]|Null, t : T): lb .M = t

val bounded : (LowerBound[T] with UpperBound[U])|Null = null

Our typechecker then complains

-- [E008] Member Not Found Error -------------------------------

| def upcast(lb: LowerBound[T]|Null, t: T): lb.M = t

| ^^^^

| type M is not a member of unsound.LowerBound[T] | Null

We just turned a runtime error into a compile-time error. The unsoundness was averted!

16

// Scala

val s = new StringDecorator(”hello”)

val s2 = s.repeat(2)

val l = s2.length

// Java

class Decorator {
String s ;

Decorator(String s) { this . s = s; }

// Returns a copy of ‘ s ‘ concatenated ‘n‘ times.

String repeat(int n) {
// code implementing ‘repeat ‘

}
}

Figure 2.4: Scala code using a Java library

2.3 Java Interoperability

One of Scala’s strengths is its ability to seamlessly use Java libraries. For example, Figure
2.4 shows Scala code that uses a Java Decorator library (implementing a Decorator pattern
[Pree and Gamma, 1995]) to access methods on a String that are not available by default.

Notice that there is no Foreign Function Interface (FFI) or other inter-language com-
munication mechanism that the user needs to go through in order to call the Java code.
Instead, the Java library appears to the Scala code as any other Scala library would.

The interaction can also happen in the opposite direction: Java code can use Scala
libraries. Figure 2.5 shows an example of this.

This interoperability style between Java and Scala is possible because both languages
are compiled down to Java Virtual Machine (JVM) bytecode (the bytecode is stored in
Java class files) [Lindholm et al., 2014].

17

// Java

val ops = new LengthOps

ops.getLength(”hello”)

// Scala

class LengthOps {
def getLength(val s : String): Int = s.length

}

Figure 2.5: Java code using a Scala library

2.3.1 Interpreting Java Types

When a Java library is used from Scala, the Scala compiler needs to decide which types it
is going to assign to the symbols defined in the Java class file. For example, in Figure 2.4,
upon detecting that method repeat is Java-defined, the Scala compiler needs to decide
what the return type of repeat will be. Since the Scala compiler knows that the method
returns the Java type String (this is indicated in the class file), the compiler needs then
to “interpret” the Java type as a Scala type. The current implementation of the Scala
compiler implements this “type translation” with the identity function. That is, the types
are left unchanged. In our example, the return type of repeat would be String.

Now suppose that we are working with a version of Scala with explicit nulls. Consider
what happens if we have the following implementation of repeat (from Figure 2.4):

// Java

String repeat(int n) {
return null ;

}

This implementation is type-correct in Java, because the Java type system remains
implicitly nullable. However, if we use repeat from Scala like so

new StringDecorator("hello").repeat(2).length

Then the final call to the length method throws a NullPointerException, since the
receiver (repeat’s return value) is null. The problem is that even though Scala interprets
repeat’s return type as String, which is non-nullable, the method returns a null value.
This example shows how interoperability with Java can introduce unsoundness into the
Scala type system.

18

Here is a dual problem that arises because of Scala’s naive type translation being the
identity. Suppose we have a Java method isAtLeast that determines whether a string
has at least a certain length, but the method is designed to handle null values, so that
isAtLeast(null, n) is true iff n = 0.

boolean isAtLeast(String s , int n) {
return (n == 0) || (s != null && s.length >= n);

}

In the world of Scala with explicit nulls, the call isAtLeast(null, 0) is not type-
correct, because null is not an element of String, which is the type the Scala compiler
selects for the first argument of isAtLeast. However, this call is semantically well-behaved,
since as we saw the method can handle null arguments. In this case, the interaction of
Java interoperability with explicit nulls prohibits what should be a valid method call.

The solution for both problems is to modify how the Scala compiler interprets the types
of Java-defined symbols. In the first case, the signature of repeat really should be (written
in Scala syntax)

def repeat(n: Int): String|Null

Similarly, the signature of isAtLeast should be

def isAtLeast(s: String|Null, n: Int): Boolean

In general, when interpreting a Java type, we need to make sure to mark as nullable
all reference types that appear “in the right places”. This we do in the next section.

2.3.2 Type Nullification

Type nullification is the process of translating Java types to their Scala “equivalents”, in
the presence of explicit nulls. By “equivalent”, I mean that if type nullification sends type
A to type B, the “elements” of A and B must be the same. Below are two examples of
the behaviour we want from nullification:

• The elements of the StringJava type are all finite-length strings (e.g. "hello world"

and ""), plus the value null. By contrast, the element of StringScala are just
all finite-length strings (but not null). This means that nullification must map
StringJava to StringScala|Null.

• Similarly, we can think of a Java method with signature

19

StringJava getName(StringJava s)

as being implemented by a function from StringJava to StringJava (i.e. getName:

StringJava → StringJava). Suppose that f ∈ StringJava → StringJava. Notice that
f can take null as an argument, and return null as a result. This means that
nullification should return StringScala|Null → StringScala|Null in this case.

We can go through other kinds of Java types and informally reason about what the
result of nullification should be in order to preserve the type’s elements. For now, I only
provide “preserves elements in a type” as an informal argument for the correctness of
nullification. Chapter 3 formalizes this idea using denotational semantics.

Nullification can be described with a pair of mutually-recursive functions (Fnull, Anull)
that map Java types to Scala types. The functions are defined in Figure 2.6 and described
below. But first, a word about how nullification is applied. The Dotty compiler can load
Java classes in two ways: from source or from bytecode. In either case, when a Java class
is loaded, we apply Fnull to:

• The types of fields.

• The argument types and result type of methods.

The resulting class with modified fields and methods is then made accessible to the
Scala code. Below is some intuition and example for the different nullification rules.

• Case (FN-Ref and FN-Val) These two rules are easy: we nullify reference types
but not value types, because only reference types are nullable in Java. Here is an
example Java class and its translation (given in Java syntax enhanced with union
types and a Null type):

// Original Java class

class C {
String s ;

int x;

}

Fnull===⇒
// Nullified class as seen by the Scala compiler

class C {

20

Fnull(R) = R|Null if R is a reference type (FN-Ref)

Fnull(R) = R if R is a value type (FN-Val)

Fnull(T) = T |Null if T is a type parameter (FN-Par)

Fnull(C<R>) = C<Anull(R)>|Null if C is Java-defined (FN-JG)

Fnull(C<R>) = C<Fnull(R)>|Null if C is Scala-defined (FN-SG)

Fnull(A&B) = (Anull(A)&Anull(B))|Null (FN-And)

Anull(R) = R if R is a reference type (AN-Ref)

Anull(T) = T if T is a type parameter (AN-Par)

Anull(C<R>) = C<Anull(R)> if C is Java-defined (AN-JG)

Anull(C<R>) = C<Fnull(R)> if C is Scala-defined (AN-SG)

Anull(R) = Fnull(R) otherwise (AN-FN)

Fnull is applied to the types of fields, and argument and return types of methods of every
Java-defined class. We try the rules in top-to-bottom order, until one matches.

Figure 2.6: Type nullification functions

String |Null s ;

int x;

}

• Case (FN-Par) Since in Java, type parameters are always nullable, we need to
nullify them.

class C<T> {
T foo() {

return null ;

}
}

Fnull===⇒
class C<T> {

T|Null foo() {
return null ;

}

21

}

Notice that this rule is sometimes too conservative (leads to backwards-incompatible
behaviour), as witnessed by

// Scala

class S {
val c: C[Bool] // C defined as above

// The line below no longer typechecks, since ‘foo‘ now returns a Bool|Null .

val b: Bool = c.foo()

}

• Case (FN-JG) This rule handles generics C<T>, where C is Java-defined. The rule
is designed so that it reduces the number of redundant nullable types we need to add.
Let us look at an example:

// Java

class Box<T> { T get(); }
class BoxFactory<T> { Box<T> makeBox(); }

Fnull===⇒
// Nullified class as seen by the Scala compiler

class Box<T> { T|Null get(); }
class BoxFactory<T> { Box<T>|Null makeBox(); }

Suppose we have a BoxFactory<String>. Notice that calling makeBox on it returns a
Box<String>|Null, not a Box<String|Null>|Null, because of FN-JG. This seems
at first glance unsound, because the box itself could contain null. However, it is
sound because calling get on a Box<String> returns a String|Null.

Generalizing from the example, we can see that it is enough to nullify the type
application C<T> as C<T>|Null. That is, it is enough to mark the type as nullable
only at the top level, since uses of T in the body of C will be nullified as well, if C is
Java-defined.

Notice that the correctness argument relies on our ability to patch all Java-defined
classes that transitively appear in the argument or return type of a field or method
accessible from the Scala code being compiled. Since all such classes must be visible
to the Scala compiler in any case, and since every Java class visible to the compiler
is nullified, we think rule FN-JG is sound.

In fact, the rule is a bit more complicated than I have shown so far. The full rule is

22

Fnull(C<R>) = C<Anull(R)>|Null if C is Java-defined (FN-JG)

Notice that in fact we do transform the type argument, but do so using Anull instead
of Fnull. Anull is a version of Fnull that does not add |Null at the top level. Anull is
needed for cases where we have nested type applications, and it is explained in more
detail below.

Here is a sample application of Fnull to a nested type application, assuming that C,
D, and String are all Java-defined:

Fnull(C<D<String>>) = C<Anull(D<String>)>|Null
= C<D<Anull(String)>>|Null
= C<D<String>>|Null

Notice how we only add |Null at the outermost level. This minimizes the number of
changes required to migrate existing Scala code with Java dependencies.

• Case (FN-SG) This rule handles the mirror case, where we have a generic C<T>,
and C is Scala-defined. For example,

// Box is Scala defined

class BoxFactory<T> { Box<T> makeBox(); }

Fnull===⇒
class BoxFactory<T> { Box<T|Null>|Null makeBox(); }

Notice that unlike the previous rule, FN-SG adds |Null to the type argument, and
not just that top level. This is needed because nullification is only applied to Java
classes, and not to Scala classes. We then need a way to indicate that, in the example,
the returned Box may contain null.

• Case (FN-And) This rule just recurses structurally on the components of the type.
Even though Java does not have intersection types, we sometimes encounter them
during nullification, because the Scala compiler desugars some Java types using in-
tersections. For example, the Java type Array[T], where T has no supertype, is
represented in Scala as Array[T & Object].

23

Fnull vs Anull

As previously mentioned, Anull is a helper function that behaves mostly like Fnull, but never
nullifies types at the top level. Anull is useful because we want to avoid adding superfluous
|Null unions, when possible.

Suppose getBox is a Java method that returns a Box<String>. Then there might
be references to getBox from Scala: e.g. val b: Box[String] = foo.getBox() or def

withBox(b: Box[String]) = If nullification turns the return type of getBox into
Box<String|Null>|Null, then the Scala code will require changes when ported to explicit
nulls.

Implementation Note

The examples above give the impression that nullification involves somehow modifying
the contents of a Java class (e.g. its source code). In our implementation, however,
nullification only transforms types, and does not change the source code or bytecode of
a class. As illustrated below, in the compiler, the nullification module sits between the
different parsers and the typechecker. After a Java class is parsed, but before it can be
used within the typechecking phase, the types of fields and methods are nullified. That is,
nullification is an online process that happens during compilation.

classfile parser

java parser

nullification typechecking

type

type
Fnull(type)

2.3.3 The JavaNull Type

While experimenting with our implementation of explicit nulls, we found that a common
pattern is to chain method or field selectors on a Java-returned value.

val s = ”hello world”.trim (). substring (2). toLowerCase()

All of the methods called above are Java-defined, and they all return String. After
nullification, the return type of the methods becomes String|Null. This means that every
method selector above will fail to type-check (because the type String|Null does not have
any methods). Assuming that flow typing is available (flow typing is described in Section
2.4), we would need to change the example above to

24

val ret = someJavaMethod()

val s = if (ret != null) {
val tmp = ret.trim()

if (tmp != null) {
val tmp2 = tmp.substring(2)

if (tmp2 != null) {
tmp2.toLowerCase()

} else ???

} else ???

} else ???

The code is now type-correct, but it has become unacceptably verbose. Additionally,
the user needs to explicitly handle every case where a null might be returned. Even
though the latter is conceptually a good thing, we think it imposes too high of a burden
for migrating Scala code with Java dependencies.

Our solution is to give up some soundness to gain on usability. We introduce a special
JavaNull type alias with “magic powers”.

type JavaNull = Null

JavaNull behaves just like Null, except it allows (unsound) member selections:

val s : String |Null = ???

s .toLowerCase() // error : String |Null has no member named ‘toLowerCase‘

val s2: String |JavaNull = ???

s2.toLowerCase() // type−correct, but might throw at runtime

The original problematic example that chains method calls is now again type-correct,
but can throw a NullPointerException at runtime if any of the methods returns null.

Notice that we need JavaNull = Null, and not just JavaNull <: Null, since oth-
erwise we cannot e.g. pass an Array[String|Null] to a method expecting an Array[
String|JavaNull]. Types like Array[String|JavaNull] arise because we make our nul-
lification function (shown in Figure 2.6) generate union types using JavaNull instead of
Null. That is, the true of form of rule FN-Ref is

Fnull(R) = R|JavaNull if R is a reference type (FN-Ref)

This gives us another intuition for JavaNull, which is that JavaNull denotes null val-
ues that “flow in” from Java into Scala code. Theoretically, however, it seems problematic
that JavaNull = Null, but they behave differently. If we were to formalize this part of
our explicit nulls system, modelling JavaNull would be future work.

25

2.3.4 More Precise Nullification

In this section, I present several strategies that we use to improve the precision of the
baseline nullification function. Some of the optimizations in this section are sound, and
others are theoretically unsound, but based on, I will argue, reasonable assumptions.

Java Language Semantics

We can use the Java semantics to argue that certain terms can never be null:

• The return type of a constructor should not be nullable, since constructors either fail
with an exception, or return a new object (but never return null). Given a Java class
C, the Scala compiler models its constructor as a method C <init>(), where <init>
is a compiler-internal name identifying constructors. We make sure that nullification
recognizes constructors and does not nullify their return types. The type of new C()

is then C, and not C|JavaNull.

• Elements of a Java enum (enumeration) cannot be null. The Scala compiler represents
the enum

enum DaysOfWeek {
MON, TUE, WED, THU, FRI, SAT, SUN

}

as a class with fields MON, TUE, etc. The type of every field is (in Java) DaysOfWeek.
We have specialized nullification so that the enum fields are not nullified.

Standard Library Metadata

Naive application of type nullification can be too conservative. Consider again the example
from Section 2.3.3.

val s = ”hello world”.trim (). substring (2). toLowerCase()

All of trim, substring, and toLowerCase are methods defined in the Java standard
library within the String class. Consulting the documentation for these methods, it is
clear that even though their return type String is a reference type, none of the methods
are expected to return null. If we trust that the implementations in the Java standard

26

library are likely to be well-tested and bug-free, then we might want to special case some
standard library methods during nullification.

We obtained a version of the Java standard library where methods and fields that are
non-nullable were annotated with @NonNull annotations. This class file was generated by
the Checker Framework Project [Papi et al., 2008]. From the class file, we generated a list
of methods and fields in the standard library that can be special cased, because they are
annotated as not returning null. The list currently contains 4414 methods and 1712 fields
spread over 847 classes (see Section 2.7 for more details). For example, all of the methods
in the String example above are in our list. This means that we recognize the return type
of trim as String, and not String|JavaNull.

The aforementioned list of methods and fields is loaded by the compiler and used during
nullification to avoid introducing unnecessary nullable types.

Nullability Annotations

Inspired by similar functionality in Kotlin [Kotlin Foundation, b], we modified the Scala
compiler to recognize any of several nullability annotations that have been developed over
the years to support e.g. static analyzers. For example, the class below has a method
whose return type is marked as @NonNull, and so after nullification the return type of
getName is String and not String|JavaNull.

// Java

class Person {
@NonNull

String getName() { ... }
}

Widespread use of nullability annotations reduces the number of types marked as nul-
lable by nullification, and so makes it easier to migrate code with Java dependencies to the
world of explicit nulls.

Nullability annotations are recognized without any runtime enforcement. That is, mis-
labelling e.g. a field as @NonNull can lead to a NullPointerException if the field does
end up being null during execution.

27

2.4 Flow Typing

To improve usability of nullable values, we added a simple form of flow-sensitive type
inference to Scala [Guha et al., 2011]. The general idea is that sometimes, by looking at
the control flow, we can infer that a value previously thought to be nullable (due to its
type) is no longer so.

2.4.1 Supported Cases

Below I list the cases supported by flow typing. In the examples, the notation ??? stands
for an unspecified expression of the appropriate type1.

Branches of an If Expression

If an if-expression has a condition s != null, where s satisfies some restrictions (see
below), then in the then branch we can assume that s is non-nullable.

val s : String |Null = ???

if (s != null) {
val l = s.length // ok, ‘ s ‘ has type ‘ String ‘ in the ‘then‘ branch

}
val l = s.length // error , ‘ s ‘ has type ‘ String |Null ‘

We can reason similarly about the else branch if the test is p == null.

if (s == null) {
val l = s.length // error : ‘ s ‘ has type ‘ String |Null ‘

} else {
val l = s.length // ok, ‘ s ‘ has type ‘ String ‘ in the ‘ else ‘ branch

}

The following operators are considered a comparison for the purposes of flow typing:
==, !=, eq, and ne.

Logical Operators

We also support the logical operators &&, ||, and ! in conditions:

1??? is actually valid Scala code, and is simply a method with return type Nothing.

28

val s : String |Null = ???

val s2: String |Null = ???

if (s != null && s2 != null) {
val l = s.length // ok, ‘ s ‘ has type ‘ String ‘

val l2 = s2.length // ok, ‘s2‘ has type ‘ String ‘

}

if (s == null || s2 == null) {
// s : String |Null

// s2: String |Null

} else {
val l = s.length // ok, ‘ s ‘ has type ‘ String ‘

val l2 = s2.length // ok, ‘s2‘ has type ‘ String ‘

}

if (!(s == null)) {
val l = s.length // ok, ‘ s ‘ has type ‘ String ‘

}
// s : String |Null

}

Propagation Within Conditions

We support type specialization within a condition, taking into account that && and || are
short-circuiting.

val s : String |Null

// In the condition , the test ‘ s . length ‘ is type correct because the right−hand side

// of the condition will only be evaluated if ‘ s ‘ is non−null.

if (s != null && s.length > 0) {
// s : String

}

// Similar case for ‘||‘.
if (s == null || s . length > 0) {

// s : String |Null

} else {

29

// s : String |Null

}

Nested Conditions

Our inference works in the presence of arbitrarily-nested conditions. Sometimes, the rea-
soning can be tricky, even for humans!

val a: String |Null = ???

val b: String |Null = ???

val c: String |Null = ???

if (!(a = null || b = null) && (c != null)) {
// ‘a ‘, ‘b ‘, and ‘c‘ all inferred to be non−null

}

Early Exit from Blocks

If a statement does an early exit from a block based on whether a value is null, we can
soundly assume that the value is non-null from that point on.

def len(s : String |Null): Int = {
if (s == null) return 0

return s . length // ok, ‘ s ‘ inferred to have type ‘ String ‘ from this point on

}

This is also the case with exceptions.

def len(s : String |Null): Int = {
if (s == null) throw new IllegalArgumentException(”null argument”)

return s . length // ok, ‘ s ‘ inferred to have type ‘ String ‘ from this point on

}

In general, if we have a block s1, . . . , si, si+1, . . . , sn, where the si are statements, and si
is of the form if (cond) exp, where exp has type Nothing, then depending on cond we
might be able to infer additional nullability facts for statements si+1, . . . , sn. The reason
is that type Nothing has no values, so an expression of type Nothing cannot terminate
normally (it either throws or loops). It is then safe to assume that statement si+1 executes
only if cond is false.

30

There is one extra complication here, which is that Scala allows forward references to
be defs, which combined with nested methods can lead to non-intuitive control flow.

def foo() = {
val s : String |Null = ???

bar() // forward reference

if (s != null) return

def bar (): Int = {
// cannot infer s : String

s . length // type error : ‘ s ‘ has type ‘ String |Null ‘

}
}

In this example, we test whether s is null and, if so, return from the outer method
foo. Since the inner method bar is declared after the null check is complete, we might
be tempted to infer that in the body of bar, s is non-null, so s.length is type-correct.
Unfortunately, there is a forward reference to bar that happens before the null check is
done. This means that bar could execute with s being null, so we cannot do flow typing.
In our implementation, we have logic for detecting forward references like in the example
above, and “disabling” flow typing to preserve soundness. If there is no forward reference,
flow typing can be triggered.

def foo() = {
val s : String |Null = ???

// no forward references

if (s != null) return

def bar (): Int = {
// can infer s : String

s . length

}
}

Stable Paths

We use flow typing on vals, but not on vars or defs. The example below shows why
using (naive) flow typing on a var would be unsound.

var s : String |Null = ”hello”

if (s != null && {s = null; true}) {
// s == null

31

}

The expression {s = null; true} is valid Scala because it is a block, and blocks are
expressions. The value of a block is the value of its last expression; in this case, true.
This means that when the then branch executes, s will be null, even though we checked
against it in the condition.

Similarly, flow typing on defs would be problematic, because a def is not guaranteed
to return the same value after every invocation.

var b: Boolean = false

def getS: String |Null = {
b = !b

if (b) ” hello ” else null

}

if (getS != null) {
getS. length // unsound to infer getS: String , since it would throw a NullPointerException

}

In general, given a path p = v.s1.s2.sn, where v is a local or global symbol, and
the si are selectors, it is safe to do flow inference on p only if p is stable. That is, all of
v, s1, . . . , sn need to be vals or lazy vals. If p is stable, then we know that p is immutable
and so the results of a check against null are persistent and can be trusted.

Unsupported Idioms

Our current support for flow typing is limited and does not include:

• Reasoning about non-stable paths (vars and defs): conceptually, it should be pos-
sible to do flow typing for local vars that are not captured by closures. This would
also require “killing” some flow facts once a var is re-assigned.

• Generating flow facts about types other than Null.

val x: String |Null = ???

if (x. isInstanceOf [String]) {
// could infer that x: String

}

32

• Support for pattern matching.

val s : Animal|Null = ???

s match {
case Dog(name) => // could infer that ‘s‘ is non−null

case null =>

case => // could infer that ‘ s ‘ is non−null

}

• Tracking aliasing between non-nullable paths.

val s : String |Null = ???

val s2: String |Null = ???

if (s != null && s == s2) {
// s : String inferred

// s2: String not inferred

}

2.4.2 Inferring Flow Facts

The goal of flow typing is to discover nullability facts about stable paths that are in scope.
A fact is an assertion that a specific path is non-null at a given program point.

At the core of flow typing we have a function N : Exp × Bool → P(Path). N takes a
Scala expression e (where e evaluates to a boolean) and a boolean b, and returns a set of
paths known to be non-nullable if e evaluates to b. That is, N (e, true) returns the set of
paths that are non-null if e evaluates to true; and N (e, false) returns the set of paths
known to be non-null if e evaluates to false. N is defined in Figure 2.7.

Denote the set of stable paths that are non-null if e evaluates to b by Nall(e, b). Clearly,
computing Nall is undecidable, since conditions in Scala can contain arbitrarily complex
logic (for example, they can contain statements, class definitions, etc). Below, we argue
informally that N correctly under-approximates Nall.

Lemma 2.4.1 (Soundness of N). N (e, b) ⊆ Nall(e, b)

Sketch. By induction on e. We only look at the cases where Fnull returns a non-empty set.

Case (N (p == null, false)) Immediate, provided that p is stable.

Case (N (p != null, true)) Immediate, provided that p is stable.

33

N (p == null, true) = {}
N (p == null, false) = {p} if p is stable

N (p != null, true) = {p} if p is stable

N (p != null, false) = {}
N (A && B, true) = N (A, true) ∪N (B, true)

N (A && B, false) = N (A, false) ∩N (B, false)

N (A || B, true) = N (A, true) ∩N (B, true)

N (A || B, false) = N (A, false) ∪N (B, false)

N (!A, true) = N (A, false)

N (!A, false) = N (A, true)

N ({s1; ..., sn, cond}, b) = N (cond, b)

N (e, b) = {} otherwise

Figure 2.7: Flow facts inference

Case (N (A && B, true)) Here we know thatN (A && B, true) = N (A, true)∪N (B, true).
By the induction hypothesis, we get that N (A, true) ⊆ Nall(A, true), and N (B, true) ⊆
Nall(B, true). Now consider the semantics of conjunction in Scala. If A&&B is true, then
both A and B must evaluate to true. This means that Nall(A && B, true) includes at least
the elements in Nall(A, true) ∪Nall(B, true). The result follows.

Case (N (A && B, false)) We know thatN (A && B, false) = N (A, false)∩N (B, false).
Again from the Scala semantics, we know that if A&&B evaluates to false, either A eval-
uates to false or B evaluates to false. This implies that Nall(A && B, false) contains
at least every element in Nall(A, false) ∩Nall(B, false). We can then apply the induction
hypothesis and we are done.

Case (N (A || B, true)) We know that N (A || B, true) = N (A, true)∩N (B, true).
We also know that the expression A||B evaluates to true if either A or B is true.
This means that Nall(A || B, true) must contain at least the elements that are both in
Nall(A, true) and Nall(B, true). The result follows by the induction hypothesis.

Case (N (A || B, false)) We have N (A || B, false) = N (A, false) ∪ N (B, false).
Observe that A||B is false if both A and B are false. This means that Nall(A || B, false)
must contain at least the elements in both Nall(A, false) and Nall(B, false). The result
then follows from the induction hypothesis.

34

Case (N (!A, true)). This follows from the induction hypothesis and the fact that !A
evaluates to true iff A evaluates to false.

Case (N (!A, true)) Similar to the case above.

Case (N ({s1; ..., sn, cond}, b)) This follows from the induction hypothesis and
the fact that a block evaluates to its last expression.

Using Flow Facts

We can use N to support the flow typing scenarios I previously outlined:

• Given an if expression if (cond) e1 else e2 we compute F then = N (cond, true)
and Felse = N (cond, false). The former gives us a set of paths that are known to be
non-null if cond is true. This means that we can use Fthen when typing e1. Similarly,
we can use Felse when typing e2.

• To reason about nullability within a condition e1 && e2, notice that e2 is evaluated
only if e1 is true. This means that we can use the facts in N (e1, true) when typing
e2. Similarly, in a condition e1 || e2, we only evaluate e2 if e1 is false. Therefore,
we can use N (e1, false) when typing e2.

• Given a block with statements if (cond) e; s, where e has type Nothing, or a
block of the form if (cond) return; s, we know that s will only execute if cond

is false. Therefore, we can use N (cond, false) when typing s.

2.5 Asserting Non-Nullability

For cases where flow typing is not powerful enough to infer non-nullability and, more
generally, as an “escape hatch” from the explicit nulls type system, we added a .nn (“assert
non-nullable”) “extension method” to cast away nullability from any term.

var s : String |Null = ???

if (s != null) {
val l = s.nn.length // ok: .nn method ‘‘casts away” nullability

}

In general, if e is an expression with type T|Null (or T|JavaNull), then e.nn has type
T. The implementation of .nn is interesting, because it is done purely as part of the Scala
standard library, and does not touch compiler internals.

35

def (x: T|Null) nn[T]: T =

if (x == null) throw new NullPointerException(”tried to cast away nullability , but value is null ”)

else x.asInstanceOf [T]

The nn method is defined as an extension method. This is a kind of implicit definition
that makes nn available for any receiver of type T|Null. We see that nn fails if the value
being asserted is equal to null.

2.6 Dropped Features

The features described below were either considered but not implemented as part of the
explicit nulls project, or implemented and then dropped for different reasons. They are
documented here as a kind of “negative result”, because I think there is value in describing
everything we tried during the project.

2.6.1 Arrays

Arrays are problematic for explicit nulls, because constructing an array through the con-
structor allocates the array, but the elements are initialized to null. This means that
accessing an uninitialized array slot is both easy and unsound.

// Scala

val a = new Array[String](10)

a(0). length // throws NullPointerException

To fix the unsoundness, we considered forcing arrays to have nullable element types.

// Not implemented: force arrays to have a nullable element type

val a = new Array[String](10) // type error : ‘ String ‘ is not nullable

val a = new Array[String|Null](10) // ok: element type is nullable

We decided against this after looking at the implementation of the Scala standard
library. The standard library makes widespread use of arrays, for efficiency. In particular,
it uses arrays of value types. Unfortunately, if we enforce the restriction above about the
element type being nullable, arrays of value types are no longer possible:

val a: Array[Boolean](10) // not allowed if the restriction above is implemented

val a: Array[Boolean|Null](10) // ok

36

This is problematic, because e.g. Boolean|Null is erased to Object, meaning that it
is no longer possible to have arrays with unboxed elements. Even if we are able to special
case e.g. Array[Boolean], there are more complicated cases. Consider

def foo[T](): Array[T] = ???

In the current version of Scala, a call foo[Boolean] returns an Array[Boolean], which
can be efficiently represented in the JVM as an array of a primitive (unboxed) type. How-
ever, if we force the element type to be nullable, we could only call foo[Boolean|Null] and
get back an Array[Boolean|Null]. Such an array cannot be represented as a primitive
array of booleans, because null might very well be an element of it.

So it seems that we can either handle arrays unsoundly, or give up our ability to
have arrays of primitive types. We choose the former. As future work, we are consid-
ering issuing warnings for uses of the array constructor with a reference type (e.g. new

Array[String](10)). In those cases, we would suggest one of two safe alternatives:

• If the user knows the array’s elements at creation time, they can use an (existing)
helper method that specifies them: Array[String]("hello", "world").

• Alternatively, if the size of the array is determined at runtime, the user can call any of
several (existing) helper methods like fill or iterate, which require an initializer:
val names = Array.fill(10)("") (creates an array of ten elements, all of which
the empty string).

2.6.2 Override Checks

If we have a Scala class that extends a Java class and overrides one of its methods, then
after switching to explicit nulls the Scala class will need to adjust the argument and return
types in the override.

// Java

class Animal {
String getName(String language)

}

// Scala

class Dog extends Animal {
override def getName(language: String): String

}

37

After compiling Dog with explicit nulls, we will get a type error because the override
is no longer valid. We need to adjust getName to reflect the fact that the argument and
return type can be nullable.

// Scala

class Dog extends Animal {
override def getName(language: String|Null): String |Null

}

From the correctness perspective, this is the right thing to do, but it affects usability
because the required changes are non-local : if another Scala class depends on Dog, it too
needs to be modified.

We initially implemented the following relaxation of the override check: if the base
and derived types differ only in their nullability, report a warning instead of an error.
Eventually, we decided to disable this relaxed override check, because we did not encounter
many cases where a Scala class overrides a method coming from a Java class, and so the
usability gains did not seem to outweigh the added unsoundness. We might revisit this
decision in the future if this type of override is common.

2.6.3 Binary Compatibility

Our strategy for binary compatibility with Scala binaries that predate explicit nulls is
to leave the types unchanged and be compatible but unsound. The problem is how to
interpret the return type of foo below

// As compiled by e.g. Scala 2.12, pre explicit nulls

class Old {
def foo (): String = ???

}

There are two options:

• def foo(): String

• def foo(): String|Null

The first option is unsound. The second option matches how we handle Java methods.
However, this approach is too conservative in the presence of generics:

38

// Scala pre explicit nulls

class Old[T] {
def id(x: T): T = x

}

// The same class, seen by Scala with explicit nulls

class Old[T] {
def id(x: T|Null): T|Null = x

}

If we instantiate Old[T] with a value type, then id now returns a nullable value, even
though it should not.

val o: Old[Boolean] = ???

val b = o.id(true) // b: Boolean|Null

So really the options are between being unsound and being too conservative. The
unsoundness only kicks in if the Scala code being used returns a null value. We hypothesize
that null is used infrequently in Scala libraries, so we go with the first option.

If using an unported Scala library that produces null, the user can wrap the (hopefully
rare) API in a type-safe wrapper:

// Scala pre explicit nulls

class Old {
def foo (): String = null

}

// User code in explicit −nulls world

def fooWrapper(o: Old): String |Null = o.foo() // ok: String <: String |Null

val o: Old = ???

val s = fooWrapper(o) // s: String |Null

If the offending API consumes null, then the user can cast the null literal to the right
type (the cast will succeed, since at runtime Null is a subtype of any reference type).

// Scala pre explicit nulls

class Old() {
// s should be a String , or null to signal a special case

def foo(s : String): Unit = ???

}

39

// User code in explicit −null world

val o: Old = ???

o.foo(null . asInstanceOf [String]) // ok: cast will succeed at runtime

Another reason for choosing the unsound approach is that it eases migration. Imagine
two Scala libraries, A and B, where B has a dependency on A. Suppose that we treat Scala
libraries conservatively, and that B is migrated before A. Then B will need to be modified
to handle A’s nullable methods and fields. However, if A is later migrated to explicit nulls,
then B would need to be modified a second time. If we treat Scala libraries unsoundly,
then B only needs to be migrated once, after A is migrated. This higlights a key difference
between Scala and Java libraries, which is that we expect Scala libraries to eventually be
migrated to explicit nulls, while Java libraries will remain implicitly nullable.

2.7 Evaluation

There are at least two evaluative questions we could ask about our design for explicit nulls:

1. Are explicit nulls useful? That is, how effective are explicit nulls in reducing the
number of runtime errors in Scala programs?

2. Are explicit nulls a reasonable extension to the type system? Specifically, given that
existing Scala code would need to be modified to compile under explicit nulls, how
much effort would it be to undertake such a migration?

Our evaluation addresses the second question. I explain why the first question is inter-
esting, but hard to measure, in Section 2.7.2.

As mentioned earlier, we implemented our design for explicit nulls as a modification of
the Dotty (Scala 3) compiler. We evaluated our design by migrating (most of) the libraries
in the Dotty “community build” 2 to compile under explicit nulls. The community build is a
set of open-source libraries that are used to test the Dotty compiler (additionally, Dotty has
its own internal tests). These libraries are shown in Table 2.1. We have not migrated the
three libraries that appear greyed-out in the table. We focused on these libraries because
Dotty is not backwards-compatible with Scala 2. The libraries in the community build had
previously been modified to compile under a version of Dotty without our changes.

2https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/

communitybuild

40

https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/communitybuild
https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/communitybuild

Name Description Size (LOC) Files
scala-pb Scala protocols buffer compiler 37,029 275
squants DSL for quantities 14,367 222
fastparse Parser combinators 13,701 80
effpi Verified message passing 5,760 60
betterfiles IO library 3,321 29
algebra Algebraic type classes 3,032 75
scopt Command-line options parsing 3,445 28
shapeless Type-level generic programming 2,328 18
scalap Class file decoder 2,210 22
semanticdb Data model for semantic information 2,154 49
intent Test framework 1,866 48
minitest Test framework 1,171 32
xml-interpolator XML string interpolator 993 20
Subtotal 91,377 958
stdlib123 Scala standard library 31,723 588
scala-xml XML support 6,989 115
scalactic Utility library 3,952 53
Total 134,041 1,714

Table 2.1: Community build libraries. We have not migrated the greyed-out libraries to
explicit nulls yet. The size of each library is given in lines of code (LOC).

41

2.7.1 Assessing Migration Effort

We estimated the effort required to migrate the community build libraries in two ways:

1. We ran our version of Dotty with explicit nulls under different configurations, by turn-
ing on and off different features of our system. For each configuration, we recorded
the number of errors reported by the compiler when building each library. Our results
show that the vast majority of null-related type errors happen because of interaction
with Java. Specifically, most errors happen because of the conservative assumptions
we make about the return types of Java fields and methods being nullable. Addi-
tionally, the results suggest that neither JavaNull nor flow typing are effective in
reducing the number of nullability errors (but see the caveats about flow typing in
Section 2.7.1).

2. Using a compiler configuration that makes “optimistic” assumptions (see below),
we manually migrated the libraries, while classifying the remaining null-related type
errors. Our results confirm the intuition that uses of null in Scala code (without
interoperation with Java) is relatively rare, generating 5.34 errors per thousand lines
of Scala code.

Later in this section I present some takeaways about how we could modify our design
to address the results of the evaluation. I now describe the evaluation process and results
in more detail.

Estimating Error Counts

In the first experiment, we modified Dotty so that we could independently turn on and off
different features of our implementation. Specifically, we added the following flags:

Flag Purpose
-Yexplicit-nulls Turns on just the new type hierarchy, where nulls

are explicit.
-Yjava-null If set, JavaNull allows field selections.
-Yflow-typing Controls flow typing.
-Yjava-interop-checker-framework Enables use of Checker Framework annotations.
-Yjava-interop-optimistic If set, assume that all Java fields are non-null, and

that the return types of Java methods are non-
nullable.

42

Name ex
pl

ic
it

nu
lls

Ja
va
Nu
ll

flo
w

ty
pi

ng

nu
lla
bi
lit
y
an
no
ta
ti
on
s

op
ti
m
is
ti
c
in
te
ro
p

naive X
java-null X X
flow X X X
checker X X X X
optimistic X X X X

Table 2.2: Run configurations for migrating community build libraries

Here is an example for the use of -Yjava-interop-optimistic. Suppose we have a
Java method with signature

Array[String] => Array[String]

Under -Yjava-interop-optimistic, this method will be interpreted as having signa-
ture Array[String|Null]|Null => Array[String|Null].

In particular, notice how the return type of the method is non-nullable (even though
the inner element type remains nullable).

Using these flags, we defined four run configurations (flag states) that we used when
evaluating the libraries. The configurations are shown in Table 2.2. They start with
the naive configuration, which has explicit nulls, but where all other features are turned
off, all the way to the optimistic configuration, where all feature flags are turned on
(-Yjava-interop-optimistic subsumes -Yjava-interop-checker-framework). We then
ran the Dotty compiler on each library/configuration pair. The results are shown in Table
2.3, and allow us to make a few observations:

• There is significant variance among libraries in how common nullability errors are.
The number of errors per library (reported in Table 2.3 as errors per thousand lines
of Scala code) can serve as a proxy for how much work it would be to migrate each
of them. The number of errors ranged from zero (for squants), to very few errors
(algebra and effpi), to a relatively large number of errors (betterfiles, scala-pb,
and stdlib123).

43

• “Higher level” or more “abstract” libraries like effpi, algebra, and shapeless, had
fewer errors. These are libraries that focus on sophisticated uses of the Scala type sys-
tem, and have fewer Java dependencies. “Lower level” libraries, like scala-pb (which
deals with serialization and de-serialization of objects) and betterfiles (needs to
interact with the operating system) had more errors. I speculate that lower level
libraries have more errors because they interact with Java APIs more often, as well
as use null for efficiency reasons (for caching, or to avoid the performance penalty
of using Option types).

• The Scala collections library, stdlib123, had a relatively large number of errors
(37.61 errors per thousand LOC). Since this library is also large (31, 723 LOC), it
will be challenging to migrate it, if and when explicit nulls is adopted upstream by
Scala.

• The java-null and flow configurations were ineffective in reducing the number of
errors, when compared to naive. In particular, flow typing only made a difference
in two cases, stdlib123 and scala-xml. I offer some possible explanations for this
later in the section.

• The use of annotation information generated by the Checker Framework reduced the
number of errors in all cases, and sometimes significantly, such as in scalap and
semanticdb. Since this is a sound optimization (assuming that the annotations are
well-placed), this confirms the value of annotations in a type system for explicit nulls.

• The optimistic configuration drastically reduced the number of errors. Looking
at the totals row, we can see that using checker the number of errors is 18.52 per
thousand LOC, while optimistic brings that number down to 5.34. This is evidence
in favour of the “common wisdom” within the Scala community that Scala programs
rarely use null, and that most null values flow in from Java.

Classifying Nullability Errors

In the second experiment, we first set the compiler to the optimistic configuration. We
then manually migrated most libraries, except for stdlib123, scala-xml, and scalactic,
to explicit nulls. By “migrated”, I mean that we fixed type errors in the libraries until
they compiled. We also categorized the errors as we fixed them. The results are shown in
Table 2.4.

44

Name naive java-null flow checker optimistic

scalactic 72.37 71.86 71.86 57.19 3.04
betterfiles 38.54 37.04 37.04 32.22 1.51
stdlib123 37.61 36.88 36.54 33.54 17.24
scala-pb 24.71 24.66 24.66 24.49 1.11
minitest 18.79 17.93 17.93 12.81 6.83
scalap 15.84 14.93 14.93 7.24 1.81
scala-xml 13.88 13.59 13.31 11.3 9.3
semanticdb 10.68 9.29 9.29 6.04 1.39
intent 8.57 8.04 8.04 6.97 0.54
scopt 5.22 4.64 4.64 4.64 2.32
xml-interpolator 2.01 2.01 2.01 2.01 2.01
shapeless 1.72 1.29 1.29 0 0
fastparse 1.61 1.61 1.61 1.53 1.46
effpi 0.35 0.35 0.35 0.35 0
algebra 0.33 0.33 0.33 0.33 0
squants 0 0 0 0 0
Total (weighted mean) 20.62 20.29 20.2 18.52 5.34
Mean 15.76 15.28 15.24 12.54 3.04
Standard deviation 19.65 19.46 19.44 16.28 4.57

Table 2.3: Error frequency by run configuration. The unit is number of (type) errors per
thousand LOC.

45

Error class Count Normalized count
Declaration of nullable field or local symbol 74 0.81
Use of nullable field or local symbol (.nn) 52 0.57
Overriding error due to nullability 46 0.5
Generic received from Java with nullable inner type 19 0.6
Generic passed to Java requires nullable inner type 6 0.07
Incorrect Scala standard library definition 4 0.04
Limitation of flow typing 1 0.01
Total 202 2.21

Modified Total %
LOC 484 91,337 0.53
Files 88 958 9.19

Table 2.4: Error classification. Libraries were migrated under optimistic configuration.
Normalized count is in errors per thousand LOC.

The use of the optimistic configuration has advantages and disadvantages. On the
one hand, it makes it easier to do the migration, since many of the errors are no longer
present. On the other hand, the results become more illustrative of a “best case” scenario
for migration than a “worst case” scenario.

The different classes of observed errors are described below:

• Declaration of nullable field or local symbol. These are cases where the Scala code
declares a var or val (as a field, or locally within a method) that is provably nullable.
For example, in scala-pb we have the code

def messageCompanionForFieldNumber(number: root .scala.Int): ... = {
var out : root . scalapb .GeneratedMessageCompanion[] = null

...

out

}

The out variable is set to null when defined, so its type must be changed to
GeneratedMessageCompanion[]|Null.

• Use of nullable field or local symbol (.nn). This is the dual of the case above, and
happens when a variable like out (in the example above) is later used. At that
point, we need to cast away the nullability using out.nn.

46

• Overriding error due to nullability. This error happens when a Scala class overrides a
Java-defined method that takes a reference type as an argument. Because arguments
must be overriden contravariantly, the Scala method must then be updated to take
a nullable argument as well.

• Generic received from Java with nullable inner type. Sometimes we encounter a Java
method that returns a generic with a nullified inner type. The common example
are Java methods returning arrays of reference types. For example, String’s split

method

// Splits this string around matches of the given regular expression .

public String [] split (String regex)

Looking at split’s documentation, it is clear that the elements of the returned
array should not be null. However, since we only detect annotations at the out-
ermost level of a type, nullification turns split’s return type into Array[String

|JavaNull]|JavaNull.

This creates problems for the client Java code. For example, scopt does

s . split (sep). toList .map(implicitly [Read[A]]. reads)

The method selection .toList works because of the outer JavaNull. The map,
however, is operating over a list of nullable elements (mistakenly marked as such),
which later causes an error when searching for the implicit. The fix is to eta-expand
the argument to map and add a .nn.

s . split (sep). toList .map(x => implicitly[Read[A]]. reads(x.nn))

• Generic passed to Java requires nullable inner type. This happens when a Java
method expects as argument a generic of some reference type. After nullification, the
array is sometimes assigned a nullable element type. Again, arrays are the common
case. For example, java.nio.file.Path3 defines a method

// Registers the file located by this path with a watch service .

WatchKey register(WatchService watcher, WatchEvent.Kind<?>... events)

After nullification, the method signature changes to

def register [T](watcher: WatchService|JavaNull,

events : Array[WatchEvent.Kind[]|JavaNull]| JavaNull)

3https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html

47

https://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html

In betterfiles, we try to call register

path. register (service , events .toArray)

The problem is that events has type Seq[WatchEvent.Kind[]], and toArray pro-
duces a Array[WatchEven.Kind[]]. The expected type is

Array[WatchEvent.Kind[]|JavaNull]|JavaNull.

The outer JavaNull is not a problem, because T <: T|JavaNull for all T. The inner
JavaNull causes a type error, because arrays are invariant in Scala. One possible
fix is to use a cast (asInstanceOf) to convince the compiler that the array elements
might be nullable

path. register (service , events .toArray.map(.asInstanceOf[WatchEvent.Kind[] | Null]))

Notice that this is sound, because even though the original list contained non-nullable
elements, what we pass to register is a copy of the list (in the form of an array).

Another, better, solution, would be to modify Scala’s type inference to handle this
case. We start by observing toArray’s signature4:

def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]

Right now Scala infers B = A = WatchEvent.Kind[], but in fact we could infer B

= WatchEvent.Kind[]|Null. This is because WatchEvent.Kind[] = A <: B =

WatchEvent.Kind[]|Null. With this fix, no changes would be required to the code.

• Incorrect Scala standard library definition. This class contains type errors that could
be prevented by changing a definition in the Scala standard library (it is hard to
actually make the required changes without first migrating the standard library,
which is why we fixed these errors in a roundabout way). In practice, every single
error we recorded for this class was due to a use of Option type to wrap nullable
values. The Option companion object (a singleton used in Scala to define a class’
static methods) defines an apply5 method as follows:

// An Option factory which creates Some(x) if the argument is not null , and None if it is null .

def apply[A](x: A): Option[A]

Scala treats apply specially: it uses it to define function application. This provides a
convenient idiom for working with nullable values: wrap them in an apply and then
work within the Option monad. For example (in Scala with implicit nulls)

4https://www.scala-lang.org/api/current/scala/collection/Seq.html
5https://www.scala-lang.org/api/current/scala/Option.html

48

https://www.scala-lang.org/api/current/scala/collection/Seq.html
https://www.scala-lang.org/api/current/scala/Option.html

val x: String = null

// Option(x) is desugared by Scala to Option.apply[String](x)

val y = Option(x).map(s => s.length) // y: Option[Int] inferred , and y = None

The problem is again with the interaction between explicit nulls and type inference:

val x: String |Null = null

val y = Option(x).map(s => s.length) // error: s is inferred to have type String |Null ,

// which does not have a ‘ length ‘ field

Specifically, type inference leads to desugaring Option(x) to

Option.apply[String|Null](x)

Instead, we want Option.apply[String](x). That is, the type argument to apply

should be a non-nullable type. We could accomplish this by changing Option.apply

to

// An Option factory which creates Some(x) if the argument is not null , and None if it is null .

def apply[A <: NotNull](x: A|Null): Option[A]

where NotNull contains all non-nullable types. For example, we could set NotNull

= AnyVal|AnyRef.

• Limitation of flow typing. The idea of this class was to capture situations where our
implementation of flow typing is too primitive. In practice, we only found one error
in this class, which is due to a bug in our implementation that is not yet fixed. When
migrating some of the libraries under configurations that are more error-prone than
optimistic, we saw additional errors that fall within this class. The more-common
one was due to flow typing not having support for local vars.

Flow Typing

I would like to offer a few hypotheses for the disappointing (lack of) results of flow typing:

• First, it seems plausible that flow typing would be more useful for vars, which we do
not support, than for vals, which we support. This is because state (local variables,
fields) that starts out as null does not remain so for the duration of the program: it
is eventually mutated to be non-null. In order to handle these cases, we would need
support for vars.

49

• Some of the instances where flow typing might be useful are probably “hidden” by
the use of the optimistic configuration. For example, in the snippet

val s = javaMethodReturnsString()

if (s != null) {
val l = s.length

}

With optimistic or even JavaNull, the assignment val l = s.length would type-
check, even in the absence of flow typing.

• Null checks à la if (x != null) might not be very common in Scala. Instead, it
seems that Scala programs often wrap nullable values flowing from Java using the
Option idiom previously described.

Takeaways

Below I sketch some changes we could make to our design that are motivated by the
evaluation results.

• Adding an optimistic mode. Table 2.3 shows a large variability in the number of
errors per library. If we take the number of errors as a proxy for the effort required
to migrate a library, then some libraries like squants will be easy to migrate (no
changes required), while others like stdlib123 will take substantial effort (because
it is both a large library and null errors are relatively frequent). One way to make
the migration of a library like stdlib123 easier would be to have a “loose” or “opti-
mistic” configuration as part of our design. Such a configuration would behave like
optimisic, but could possibly be even more permissive.

For example, we could make T|JavaNull a subtype of T. From a theoretic point of
view, this change would be problematic, because it goes against our intuition of types
as sets of values. Informally, this rule would express the idea that when we see a
Java method

String foo(String s)

unless we have annotations that make the nullability of foo’s argument and return
type clear, we really do not know whether e.g. the return type is nullable or not.
The type T|JavaNull would express this idea: T might or might not be nullable. We
would then have three kinds of nullability: T (non-nullable type), T|Null (nullable
type), and T|JavaNull (nullability unknown).

50

Assigning a T|JavaNull to a T would typecheck, but perhaps generate a warning
and a runtime check. Assigning a T to a T|JavaNull would always be sound, so
no warnings would be needed. This is the idea behind platform types in Kotlin (see
Section 2.8.1).

• Supporting annotations within Java generics. Table 2.4 shows that Java gener-
ics with nullable inner types are not common, but do occur sometimes. Type anno-
tations [Oracle], introduced in Java 8, allow us to mark a generic’s inner type as
non-nullable. We should add support for type annotations.

• Relaxing override checks. Table 2.4 shows that instances of Scala code overriding
Java methods do occur. We should revisit our decision to drop relaxed override
checks, from Section 2.6.2.

Threats to Validity

It is difficult to accurately estimate the effort that a code migration will take without
carrying out the migration. Table 2.3 shows error counts for the different configurations,
but the results are only a lower bound. If we tried to carry through the migration, we
would find additional errors due to different reasons:

• Some of the libraries consist of multiple modules, some of which depend on others
as dependencies. If a module A depends on B, and B fails to compile because of
nullability errors, the compiler will sometimes not report the errors in A (because it
did not even try to build A).

• Some nullability errors only appear in later phases of the compiler. For example,
overriding-related errors are only reported if the program typechecks.

• Even reported errors might be masking other would-be errors in the same phase. For
example, suppose we have a symbol definition val s: String whose type needs to
be changed to String|Null. Any other symbol that s is assigned to, e.g. val s2:

String = s, will need to have its type adjusted as well (generated another error).

Reproducibility

The way in which I generated the tables in this chapter is described in Appendix A.

51

2.7.2 An Interesting But Hard Question

Recall the first question at the beginning of Section 2.7, which was about how effective
explicit nulls are in preventing runtime errors. This first question is perhaps the more
interesting one, if only because it would be useful to know how beneficial explicit nulls are
before deciding whether the pain of a migration is justified. We know that explicit nulls
are useful, because they close a soundness hole in the Scala type system, but determining
just how useful they are is trickier.

One can imagine a possible experiment: pick a few Scala libraries, migrate them to ex-
plicit nulls, and then look for uses of nullable variables. Every use of a nullable variable not
preceded by a null check is a potential NullPointerException-in-waiting. Unfortunately,
this analysis is complicated by two factors:

• Our type system conservatively assumes that the return types of Java methods are
nullable. This leads to false positives. We can eliminate some of the false positives
by looking at nullability annotations (as in Section 2.3.4), or by consulting the doc-
umentation of the Java method in question. However, sometimes the documentation
is not explicit about whether the return value can indeed be null. For example,
the Java class java.net.URL6 defines two getContent methods with the following
signatures:

public final Object getContent() throws IOException

public final Object getContent(Class [] classes) throws IOException

The documentation for the second method specifies that the returned value can be
null. However, the first method’s documentation just says

Returns:

the contents of this URL.

It is unclear, without looking at getContent’s implementation, whether we should
interpret its return type as Object or Object|Null.

• Our type system does not enforce sound initialization patterns. That is, even when
e.g. a class field starts out as null, it might become non-null, and therefore safe
to access later on. For example, the following fragment from Dotty shows a nul-
lable field reductionContext that starts out as null, is initialized in a method
updateReductionContext and accessed in another method isUpToDate:

6https://docs.oracle.com/javase/7/docs/api/java/net/URL.html

52

https://docs.oracle.com/javase/7/docs/api/java/net/URL.html

private var reductionContext : mutable.Map[Type, Type] = null

...

def updateReductionContext(): Unit = {
reductionContext = new mutable.HashMap

...

}
...

def isUpToDate: Boolean =

reductionContext . keysIterator . forall {...}

As long as updateReductionContext is always called by the time isUpToDate is
called, all is well. However, this is hard to manually check.

Both of the problems above can be sometimes solved by manual inspection, which does
not scale. Designing an experiment to evaluate the effectiveness of explicit nulls remains
future work.

2.8 Related Work

The related work I have identified can be divided into four classes:

• Type systems for nullability in modern, widely used programming languages.

• Handling of absence of values in functional programming.

• Schemes to guarantee sound initialization. These have been mostly implemented as
research prototypes, or as pluggable type systems (see below).

• Pluggable type systems that are not part of the “core” of a programming language,
but are used as checkers that provide additional guarantees (in our case, related to
nullability).

2.8.1 Nullability in the Mainstream

Kotlin

Kotlin is an object-oriented, statically-typed programming language for the JVM [Kotlin
Foundation, a]. Because Kotlin, like Scala, targets the JVM, it needs to address many of

53

the issues surrounding Java interoperability and nullability that I have described in this
chapter. Indeed, the design of Kotlin was a source of inspiration for us as we set up to
retrofit Scala with a type system for nullability.

Table 2.5 compares the support for explicit nulls in Scala and Kotlin. In summary,
Kotlin has more mature support; specifically, its flow typing handles more cases, and Kotlin
can recognize more kinds of non-null annotations. I highlight some of the differences below.

Nullable types Like in Scala with explicit nulls, reference types are non-nullable by
default in Kotlin. Nullability can be recovered with special syntax: if T is a non-nullable
type, then T? is T’s nullable counterpart. By contrast, in Scala, nullability is expressed
using union types (which Kotlin does not have).

Flow typing Kotlin’s flow typing can handle not only vals, but also local vars. In
order to handle vars, Kotlin needs to “kill” (in the sense of dataflow analysis) flow facts
about vars that are mutated. For example

// Kotlin

var b: String? = null

if (b != null) {
val len = b.length // ok: ‘b‘ is non−null

b = null

val len2 = b.length // type error : flow fact about ‘b‘ was killed

}

Similarly, the Kotlin compiler needs to detect vars that have been captured by closures
and not do flow typing on them (since such vars could be unexpectedly mutated by the
closure).

// Kotlin

var b: String? = null

if (b != null) {
val f = { x: Int −> b = null } // closure that captures ‘b‘

val len = b.length // type error : Smart cast to ’ String ’ is impossible ,

// because ’b’ is a local variable that is captured by a changing closure

}

54

Detecting when local variables are captured by closures is hard in Scala, because Scala
allows forward references to defs:

var a: String |Null = ???

if (a != null) {
mutateA() // forward reference is allowed

a. length // should issue a type error

}
def mutateA(): Unit = { a = null }

In the example above, mutateA sets the local variable to null after the test in the
if expression. The problem is that call to mutateA is a forward reference, and the body
of mutateA is not typed until after we have processed the if. This means that by the
time when we have to decide whether to allow a.length, we do not yet know whether a

is captured or not.

Platform types Kotlin handles Java interoperability via platform types. A platform
type, written T!, is a type with unknown nullability. Kotlin turns all Java-originated types
into platform types. For example, if a Java method returns a String, then Kotlin will
interpret the method as returning a String!. Given a type T!, Kotlin allows turning it
(automatically) into both a T? and a T. The cast from T! to T? always succeeds, but the
cast from T! to T might fail at runtime, because the Kotlin compiler automatically inserts a
runtime assertion that the value being cast is non-null. Informally, the Kotlin type system
includes the following two subtyping rules: T! <: T and T! <: T?. Additionally, Kotlin
allows member selections on platform types, just like we do in Scala via JavaNull. In fact,
we can think of platform types as a generalization of JavaNull that allows not only member
selections, but also subtyping with respect to non-nullable types.

Swift

Swift is a statically-typed programming language, originally designed for the iOS and
macOS ecosystems [Apple Inc, a]. Swift has a nil reference, which is similar to null in
Scala [Apple Inc, b]. Types in Swift are non-nullable by default, but one can use optionals
to get back nullability. For example, the type Int?, an optional, is either an integer or
nil. Optionals can be force unwrapped using the ! operator, which potentially raises a
runtime error if the underlying optional is nil. Swift also has a notion of optional binding,
which is similar to the monadic bind operator in Haskell [Wadler, 1995], but specialized
for optionals. Additionally, Swift has implicitly unwrapped optionals, which are similar to

55

Scala with explicit nulls Kotlin

types are non-nullable by
default

yes yes

can express nullable types yes, using union types (e.g.
String|Null)

yes, with special syntax
(e.g. String?)

special nullability operators yes, through library sup-
port: assert non-null (.nn)

yes, through compiler inter-
nals: assert non-null (!!),
safe-call (??), and “Elvis
operator” (?:)

flow typing only for vals supports both vals and
vars not captured by
closures

java interoperability nullification using JavaNull through platform types

arrays with non-nullable el-
ements

not enforced by the type
system, since arrays can be
created with uninitialized
elements

enforced by the type sys-
tem, because non-nullable
arrays must be initialized
when the array is created

nullability annotations recognized only at the top-
level: e.g. Array[String]

@NonNull is handled,
but not Array[String

@NonNull] @NonNull

recognized everywhere, in-
cluding in type arguments

Table 2.5: Comparison of explicit nulls in Scala and Kotlin

56

Kotlin’s platform types. That is, the type Int!, an implicitly unwrapped optional, need
not be forced unwrapped explicitly before a value can be retrieved, but if the underlying
value is nil, it will produce a runtime error.

C#

Versions of C# prior to 8.0 supported only nullable value types [Microsoft, b]: these are
types of the form Nullable<T>, which could contain either a T or null. However, T could
not be a reference type, only a value type. There is flow typing and a null coalescing
operator ??, such that a ?? b evaluates to a unless the left-hand side is null, in which
case the entire expression evaluates to b. This is the same as Kotlin’s “Elvis” operator
(shown in Table 2.5).

Version 8.0 extends nullable types so that they can be used with references as well
[Microsoft, a]. The syntax is familiar: string? denotes a nullable string. Interestingly,
the compiler issues warnings as opposed to errors if a nullable reference is dereferenced,
unless flow typing can show that the underlying value is non-null.

This last version of the language changes the semantics of regular reference types. While
in previous versions reference types (e.g. string) were nullable, they are now non-nullable.
Swift and Kotlin are relatively recent languages, and were designed from the start with non-
nullable references. By contrast, C# needs a mechanism to migrate existing codebases into
the world of nullable references, because of the new semantics. The migration is managed
through two different nullable contexts. We can think of each context as an (independent)
flag that can be turned on or off at the project, file, or line range level:

• Nullable annotation context: if this context is enabled, then regular reference types
are non-nullable, and the user can write nullable references using the ? syntax (e.g.
string?). If the annotation context is disabled, then C# uses the pre version 8.0
semantics where nullable types are nullable, and the ? syntax is not available.

• Nullable warning context: if this context is enabled, then the compiler will issue a
warning if we try to dereference a reference that is classified as “maybe nullable”,
among other cases. Notice that this flag can be enabled even when the annotation
context is disabled. In that case, the user cannot write a type like string?, but the
compiler will still issue warnings if a reference of type string is accessed, but cannot
be proven to be non-null. If the warning context is disabled, then compiler will not
issue warnings in the presence of unsafe accesses.

57

Summarizing, the annotation context controls the type system, and the warning context
turns the static analysis on and off.

Compared to our implementation of explicit nulls in Scala, C# offers more fine-grained
control over where the type system is enabled. In our system, explicit nulls can only be
enabled or disabled at the project level. In C#, the user can additionally opt-in to explicit
nulls via “pragmas” (program metadata). For example, the code below enables both the
annotation and warning contexts for the code contained within the #nullable pragmas,
and then restores the previous state of both contexts upon exiting the delimited range:

#nullable enable

// Both contexts enabled here

...

#nullable restore

2.8.2 Functional Programming

In functional programming languages such as Haskell [O’Sullivan et al., 2008] and OCaml
[Minsky et al., 2013], the absence of values is usually handled using an abstract data type
(ADT) with two constructors, one of which (typically named None or Nothing) corresponds
to null. For example, in OCaml this ADT is called option, and is thus defined

type ‘a option =

Some of ‘a

| None

Notice that option takes a type argument ‘a, and so None has type ‘a option for any
‘a. In particular, None does not have type ‘a. That is, the only terms that can evaluate
to None are those with type ‘a option. The OCaml compiler can then make sure that
all such terms are deconstructed via pattern matching before the underlying value can be
examined. During pattern matching, both the Some and None cases need to be handled, so
there is no possibility of runtime errors. For example, in OCaml the following expression
evaluates to 42.

match (None: int option) with

| Some num −> num

| None −> 42

A common pattern is to have a sequence of computations, each producing an optional
value and depending on the previous ones. The naive approach for sequencing these compu-
tations leads to deeply nested pattern matching expressions, which is hard to understand.

58

For such cases, some functional languages like Haskell, Agda [Bove et al., 2009], and Idris
[Brady, 2013] provide syntactic sugar in the form of do notation [Wadler, 1995], to make
the sequencing more succint and understandable. For example, in Haskell we would write

f :: int −> Maybe int

g :: int −> Maybe int

h :: int −> Maybe int

do x <− f 42

y <− g x

z <− h y

return z

Here we have sequenced three functions, f, g, and h, each producing an optional int
value (Maybe int in Haskell). If any of the functions fails to produce a value (returns
Nothing), then the result of the do expression is also Nothing. Otherwise, the returned
values are threaded as x, y, and z for the subsequent function to consume. The type of
the entire expression is then Maybe int.

Scala, being a functional language, also has an Option[T] type. It even has a form of
do notation via for-comprehensions [Odersky et al., 2004]. Unfortunately, because of the
JVM baggage, reference types used to be nullable and so a value of type Option[T] can
in fact have three forms: Some x, None, or null!

2.8.3 Sound Initialization

As mentioned in Section 1.3, even with a type system that has non-nullable types, there
is a possibility of unsoundness because of incomplete initialization. Specifically, in main-
stream object-oriented languages, it is possible to manipulate an object before it is fully-
constructed. This can happen, for example, due to dynamic dispatch, or leaking of the
this reference from the constructor to helper methods. The problem is that in an unitial-
ized (or partially uninitialized) object, the invariants enforced by the type system need
not hold yet. Specifically, fields that are marked as non-null might nevertheless be null

(or contain nonsensical data) because they have not yet been initialized.

Over the years, many solutions have been proposed to this initialization problem, usu-
ally involving a combination of type system features and static analyses. These prior
designs include raw types [Fähndrich and Leino, 2003], masked types [Qi and Myers,
2009], delayed types [Fähndrich and Xia, 2007], the “Freedom Before Commitment” (FBC)
scheme [Summers and Müller, 2011], and X10’s “hardhat” design [Zibin et al., 2012].

59

Even though this chapter is not about sound initialization, I would like to describe in
some detail the FBC and X10 approaches. These two schemes have been identified in Liu
et al. [2018] as the bases for a sound initialization scheme for Scala.

Freedom Before Commitment

Freedom Before Commitment is presented in Summers and Müller [2011]. FBC is a sound
initialization scheme for object-oriented languages (like Java or C#), that strikes a balance
between expressivity (it can correctly handle realistic initialization patterns, like cyclic data
structures) and ease-of-use (it requires fewer annotations than e.g. delayed types). The
initialization state of expressions is tracked via their types. For example a non-nullable
string that is fully initialized will have type committed String!, while a non-nullable
string that that is potentially uninitialized has type free String!.

FBC can be combined not only with a type system for nullability, but in general can
be used to track any invariant that is monotonic: that is, any invariant that is established
during object construction, and continues to hold thereafter (another such invariant would
be immutability). Initialization with respect to null is monotonic because once a (non-
null) field has been assigned a value, the type system guarantees that its value is non-null
(because only assignments to non-null values are allowed).

In FBC, objects are in one of two (logical) initialization states: under initialization,
or initialized. The program point when an object changes from under initialization to
initialized is called the commitment point. Commitment points happen when certain new
expressions terminate.

Initialized objects must have all their fields initialized in a recursive manner. That is,
if we start at an initialized object, all other objects that we encounter while traversing the
graph of object references must also be initialized. This they call the deep initialization
guarantee.

FBC tracks both nullability and initialization state of expressions via types. As usual,
types are either non-nullable or nullable, denoted with a ! or ? suffix, respectively. For
example, nullable strings are denoted by String?. Initialization state is conveyed via
initialization modifiers, which are also part of types. There are three modifiers:

• committed : the relevant expression evaluates to an initialized object.

• free: the expression evaluates to an object under initialization.

60

• unclassified : the expression can evaluate to an object that is either initialized, or
under initialization. This is a “super type” of the previous two (e.g. committed C!

<: unclassified C!).

The initialization state is independent from the nullability of the expression. This
means we have 2× 3 = 6 possible “variants” of the same underlying class type C.

Their system limits the number of annotations required by specifying defaults. For
example, most expressions are committed, non-null by default. The this reference is
implicitly free within the constructor, but committed within methods. Methods must
indicate initialization state of their parameters.

Field updates x.f = y are allowed only if x is free, or y is committed. For example,
the assignment is not allowed if x is committed and y is free, because this would violate
the deep initialization guarantee (we would have an initialized object that points to an
uninitialized one).

On field reads, initialization interacts with nullability. For example, if we have a read
x.f where x is free and f has type C! (non-null), then the resulting type is unclassified
C?, because in a free object we have no guarantees that the field invariants hold.

Commitment points happen when we have a new expression where all arguments to
the constructor call are already committed. Specifically, all objects created during that
constructor call move to the committed state after the new terminates. The typing rule is
simple: given a constructor call new C(a1, . . . , an), we have two options:

• if all the ai are committed, the type of the call is committed C!

• otherwise, the type is free C!

Intuitively, this rule is sound because if a constructor’s arguments are all committed,
then the constructed object is unable to reference any outside uninitialized objects.

Finally, the authors tested FBC by implementing their type system on top of the Spec#
compiler [Barnett et al., 2004], a version of C# enhanced to allow program verification
(and now superseded by the Dafny [Leino, 2010] language). The authors then migrated
two large Spec# projects to the FBC scheme, as well as several smaller examples. In total,
they migrated around 60K LOC, which required 121 initialization annotations when ported
to the new system.

61

Object Initialization in X10

X10 is an object-oriented programming language designed for parallel computing, devel-
oped at IBM [Charles et al., 2005]. Instead of carefully tracking the initialization state
of expressions via the type system, like in FBC, X10 takes a different approach. X10 has
a “hardhat” design that prohibits leaking the this reference or doing dynamic dispatch
during object construction [Zibin et al., 2012]. As a result, the language is safe from
initialization errors, but cannot create cyclic immutable data structures.

Additionally, the language guarantees that the user will never be able to read unini-
tialized fields. Because of this, the runtime does not need to zero-initialize data structures.
This is in contrast with FBC, where the user can read uninitialized fields, which results
in a type with a free tag (but does require the runtime to e.g. set all fields of an object
to null before the constructor runs). Interestingly, the cost of zero-initialization has been
reported to be non-negligible in some applications [Yang et al., 2011].

As mentioned, the paper identifies two important sources of initialization errors: leak-
ing this and dynamic dispatch. The hardhat design addresses these issues with two
annotations on methods:

• NonEscaping: the method is not allowed to leak this.

• NoThisAccess: the method cannot access this. This is more restrictive than
NonEscaping.

The main restrictions in the system are as follows:

• Constructors and non-escaping methods can only call other non-escaping methods.
Non-escaping methods must be private or final, so they cannot be overridden.

• Only methods marked with NoThisAccess can be overridden, but dynamic dispatch
is not a problem in this case, because the methods cannot leak this.

Additionally, they implement an inter-procedural, intra-class static analysis for ensuring
that a field is read only after it has been written to, and that final fields are assigned
exactly once. For final fields, they compute for each non-leaking method which final fields
the method (transitively) reads. The non-leaking method can only be called from the
constructor if the right final fields have been set. A similar process happens for non-final
fields, except that this one requires a fixpoint computation.

Their main result is migrating 200K LOC (the X10 compiler) to the new system. By
setting the right default annotations on methods, the migration required adding only 104
annotations.

62

2.8.4 Pluggable Type Checkers

Another line of work that is relevant to nullability is pluggable type checkers. A pluggable
type checker is a custom-built typechecker that refines the typing rules of a host system
[Papi et al., 2008]. That is, the pluggable type checker rules out programs that the “built-
in” type system considers valid, but that for some reason need to be classified as type-
incorrect. Nullability is a fitting example of a property that a built-in type system, such
as Java’s, might not take into consideration, but that a user might want to check using a
pluggable type checker.

A typical workflow for a pluggable type system might look as follows:

• The programmer identifies a property of interest that they would like to enforce via
a type system (for example, that non-nullable fields are never assigned a null value).

• Using one of the frameworks mentioned below, the programmer then writes a plug-
gable type system. Because of facilities provided by the framework (e.g. ability to
write a typechecker using a declarative specification), this step is usually significantly
less involved than writing a full-blown type system (say, the type system of the host
language).

• Once the custom type checker is written, the user adds metadata to the source code.
Typically, this metadata comes in the form of domain or problem-specific annotations.
For example, in order to use the type checker for nullability, the user might annotate
certain fields or method arguments as @NonNull, using for example Java annotations.

• The pluggable type checker can then be run on the annotated code, and reports
warnings or errors. False positives or negatives are possible, so manual inspection of
the results might be required.

Checker Framework

The Checker Framework [Papi et al., 2008] is a framework for building pluggable type
checkers for Java. Users have the option of writing their typecheckers in a declarative style,
which requires less work (they do not need to write Java code) but is less expressive, or in
a procedural style, where the checker can have arbitrarily complex logic, but is therefore
harder to implement. Many checkers have been built using the Checker Framework; see
Papi et al. [2008], Dietl et al. [2011], Brotherston et al. [2017], among others.

63

One of the checkers that comes “pre-packaged” with the framework is the Nullness
Checker. In fact, “the Nullness Checker is the largest checker by far that has been built with
the Checker Framework” [Dietl et al., 2011]. As of 2017, the Nullness Checker implemented
a variant of the Freedom Before Commitment scheme, as well as support for flow typing
and multiple heuristics to improve the accuracy of its static analysis [Brotherston et al.,
2017, Dietl et al., 2011].

Dietl et al. [2011] conducted an extensive evaluation of the Nullness Checker (among
others) in production code, finding multiple errors in the Google Collections library for
Java.

Granullar

The Granullar project [Brotherston et al., 2017] combines the null checker from the Checker
Framework with techniques from gradual typing [Siek and Taha, 2006]. Granullar allows
the user to migrate only part of a project to use null checks. To that effect, the code under
consideration is divided into checked and unchecked regions.

Nullability checks are done statically within the checked region, using the Freedom
Before Commitment scheme implemented by the Checker Framework. No checks are done
for the unchecked portion of the code.

The contribution in Granullar is insulating the checked region from unsafe interactions
with the unchecked region, by inserting runtime non-null checks at the boundary. To this
effect, they define three nullability annotations: the usual NonNull and Nullable, and
an additional Dynamic annotation that means “unknown nullability”. The subtyping is
NonNull <: Dynamic <: Nullable.

Values that flow from unchecked code to checked code are automatically tagged as
Dynamic. The tool then detects conversions from Dynamic to NonNull values (generated,
for example, from assignments and calls into unchecked code), and allows them, but also
generates runtime non-null checks. The treatment of Dynamic in Granullar is similar to
Kotlin’s platform types. Additionally, Granullar ensures that calls from unchecked code to
checked code are similarly checked at the boundary at runtime.

NullAway

NullAway is a nullness checker for Android applications, developed at Uber [Banerjee et al.,
2019]. NullAway is implemented as a pluggable type system on top of the Error Prone

64

framework [Aftandilian et al., 2012]. In contrast with the Nullness Checker described
above, NullAway trades away soundness for efficiency. Specifically, the tool is unsound in
multiple ways:

• NullAway’s custom initialization scheme ignores the problem of leaking the this

reference.

• In interactions with unchecked code (for example, unannotated libraries), the tool
makes optimistic assumptions. That is, all unchecked methods are assumed to return
non-null values, and be able to handle nullable arguments.

• NullAway’s flow typing assumes that all methods are pure (free of side effects) and
deterministic (e.g. a getter method will always return the same value).

In exchange for the unsoundness, NullAway has a lower build-time (2.5×) and anno-
tation overheads than similar tools (2.8 − 5.1×) [Banerjee et al., 2019]. Perhaps more
surprisingly, the authors note that after extensive use of the tool in both open-source code
and Uber’s internal codebase (including integration of the tool in their continuous inte-
gration pipeline), none of the detected NullPointerExceptions were due to the unsound
assumptions made by NullAway. Instead, the exceptions happened “due to interactions
with unchecked code, suppression of NullAway warnings, or post-checking code modifica-
tion [reflection]” [Banerjee et al., 2019].

2.9 Conclusions

In this chapter, I described a modification to the Scala type system that makes nullabil-
ity explicit in the types. Reference types are no longer nullable, and nullability can be
recovered using type unions. Because interoperability with Java is important, a type nul-
lification phase translates Java types into Scala types. A simple form of flow typing allows
for more idiomatic handling of nullable values. I implemented the design as a modifica-
tion to the Dotty (Scala 3) compiler. To evaluate the implementation of explicit nulls, I
migrated several Scala libraries to use the new type system. The results of the evaluation
suggest some improvements to the current implementation, including a mechanism to ease
the migration of Scala libraries that have many Java dependencies.

65

Chapter 3

Denotational Semantics of
Nullification

Type nullification is the key component that interfaces Java’s type system, where

null is implicit, and Scala’s type system, where null is explicit. In this chapter, I give

a theoretical foundation for nullification using denotational semantics. Specifically,

I present λj and λs, two type systems based on a predicative variant of System F.

In λj , nullability is implicit, as in Java. By contrast, in λs nullability is explicit, like

in Scala. Nullification can then be formalized as a function that maps λj types to

λs types. Following a denotational approach, I give a set-theoretic model of λj and

λs. I then prove a soundness theorem stating that the meaning of types is largely

unchanged by nullification.

3.1 Reasoning about Nullification with Sets

As we set out to design a version of Scala with explicit nulls, there was nothing I wished
for more than to be able to completely disregard the question of what to do about Java
code. Alas, this is a question that must be answered, because one of Scala’s big selling
points is its ability to use Java code, and null remains implicit in Java. To be concrete,
suppose we have a Java class representing movies

class Movie { public String title ; }

We then want to write Scala code for testing whether a movie is good.

66

def isGood(m: Movie): Bool = m.title . length > 15

What should the type of m.title be? In other terms, if we call our type nullification
function Fnull, what is Fnull(Stringj)

1. We can try a few alternatives:

• The lazy approach would be to make Fnull the identity, and say that Fnull(Stringj) =
Strings. However, this potentially leads to runtime errors because if m.title is
indeed null, then m.title.length fails with an exception. That is, forgetting to
include null in the result set leads to unsoundness.

• Another option is to say that Fnull(Stringj) = Any, a Scala type that is a super type of
all other types. This is safe (will not lead to runtime exceptions), but m.name.length
will no longer typecheck, because Any has no field named length. Making the result
set too large leads to loss of precision.

• Both underapproximating and overapproximating the set of values contained in the
type leads to problems, so what if we designed Fnull so that the representable values
remain unchanged? We can do this using union types by setting Fnull(Stringj) =
Strings|Null. This is the case because anything typed as Stringj by the Java
type system is either a string literal or null. If we think of types as sets, the type
String|Null contains exactly the set of values {null} ∪ strings, where strings

stands for the set of all string literals.

Once again, the method above will no longer typecheck, because String|Null has no
field named length. However, this time we can fix things by handling the null case
explicitly:

def isGood(m: Movie): Bool = m.title != null && m.title. length > 15

This works because if we know that m ∈ {null} ∪ strings but m 6= null, then we
must have m ∈ strings, and it is safe to access m.title.length.

Now that we have established that Fnull(Stringj) = Strings|Null, what should we do
about other types? As I have shown in Section 2.3.2, we can carry out a similar analysis
for each of the “kinds” of Java types (value types, methods, generics, etc.). The important
property is that for every type T , we want the values contained in T and Fnull(T) to be the
same.

1We will differentiate between Java and Scala types with the same name by subscripting them with j

and s, respectively

67

s, t ::= Terms
λ(x : T).s abstraction

s t application
Λα.s type abstraction
s [T] type application

x variable

S, T ::= Types
S → T function
ΠX.S universal

X type variable

Figure 3.1: Terms and types of System F

It is this last claim that we set out to prove in this chapter, for a particular choice of
nullification function Fnull, and with the usual caveat that the theorems that follow apply
not to Java and Scala, but to simplified type systems that model some of the features of
their real-world counterparts. Beyond the specifics, however, I want to show how we can
use the language of denotational semantics to put the correctness arguments we saw before
onto solid formal footing. The first step is to define these simplified type systems.

3.2 System F, λj, and λs

We will model the Java and Scala type systems as variants of System F [Reynolds, 1974],
the polymorphic lambda calculus. Figure 3.1 shows the terms and types of System F. The
defining property of this calculus is its ability to abstract not only over terms but also over
types. The precise mechanism is described by the typing rules below for type abstraction
and type application.

Γ, X ` s : S

Γ ` ΛX.s : ΠX.S
(SF-TAbs)

Γ ` s : ΠX.S

Γ ` s [T] : [X/T]S
(SF-TApp)

The specific variant of System F that we use is predicative, which in this case means
that in the universal type ΠX.S, X ranges over all types that are not themselves universal.
For example, given a term s of type ΠX.S, s [Y] and s [Y → Z] would be valid type
applications, but s [ΠU.U] would not, because the latter uses a type argument (ΠU.U)
that is itself a universal type. By contrast, in the (more common) impredicative version of
the calculus, X ranges over all possible types, so applications like s [ΠU.U] are perfectly
valid. By using the predicative variant, we incur a loss of expressivity: notably, we can no
longer typecheck recursive data structures (which are ubiquitous in both Java and Scala).
On the other hand, giving a denotational semantics for the predicative variant is much

68

easier, because one can use a semantic model purely based on sets. I will say more about
this in Section 3.3.

Even though the predicative variant of System F is simpler than either Java’s or Scala’s
type system, it is nevertheless a useful starting point for modelling both of them for the
purposes of nullification. There are at least two reasons for this:

• Nullification turns Java types into Scala types, so when defining nullification we
mostly need to worry about Java types, which are simpler. For example, we do not
need to define Fnull on the type class Monad[M[]], because Java does not support
higher-kinded types.

• The main difficulty in designing nullification was handling Java generics. As it turns
out, given a generic such as class List<T>, Java only allows instantiations of List
with a reference type that is not itself generic. For example, List<String> is a valid
type application, but List<List> is not. This is precisely the kind of restriction
imposed by predicative System F!

That said, System F is too spartan: it lacks a distinction between value and reference
types, does not have records (present in both Java and Scala), and does not have union
types (needed for explicit nulls). To remedy this we can come up with slight variations
of System F that have the above-mentioned features. I call these λj (“lambda j”) and
λs (“lambda s”), and they are intended to stand for the Java and Scala type systems,
respectively. Figures 3.2 and 3.3 show the types of these two calculi. From now on we
will focus solely on the types and will forget about terms: this is because nullification is a
function from types to types.

3.2.1 λj Type System

As previously mentioned, the λj type system models elements of the Java type system,
notably generics and implicit nullability. λj extends System F with several types. These
are informally described below:

• The intj type contains all integers; that is, if n ∈ Z, then Γ ` n : intj. intj is a
value type, so it is non-nullable, meaning that the judgment Γ ` null : intj does not
hold.

• The Stringj type contains all string literals (like "" and "hello world"), plus the
value null, so it is implicitly nullable.

69

S, T ::= Types
intj int

Stringj string

S ×j T product

S →j T function
Πj(X:: ∗n).S generic

Appj(S, T) type application

X type variable

K ::= Kinds
∗n kind of nullable types
∗v kind of non-nullable types
∗ kind of proper types

∗n ⇒ K kind of type operators

Γ ::= Contexts
∅ empty context

Γ, X :: ∗n nullable type binding

Γ `j S :: K

Γ `j intj :: ∗v (KJ-Int)

Γ `j Stringj :: ∗n (KJ-String)

Γ `j S :: ∗ Γ `j T :: ∗
Γ `j S ×j T :: ∗n

(KJ-Prod)

Γ `j S :: ∗ Γ `j T :: ∗
Γ `j S →j T :: ∗v

(KJ-Fun)

Γ, X :: ∗n `j S :: K

Γ `j Πj(X :: ∗n).S :: ∗n ⇒ K
(KJ-Pi)

Γ `j S :: ∗n ⇒ K Γ `j T :: ∗n
Γ `j Appj(S, T) :: K

(KJ-App)

Γ(X) = ∗n
Γ `j X :: ∗n

(KJ-Var)

Γ `j S :: ∗n
Γ `j S :: ∗
(KJ-Null)

Γ `j S :: ∗v
Γ `j S :: ∗

(KJ-NonNull)

Figure 3.2: Types, kinds, and kinding rules of λj. Differences with System F are high-
lighted.

70

• A product type S ×j T contains all pairs where the first component has type S, and
the second has type T . It is also implicitly nullable, so that Γ ` null : S ×j T
holds for all S and T that are well-kinded. Product types are implicitly nullable
because they emulate Java classes, which are also implicitly nullable: e.g. if we have
a variable Movie m, where Movie is a class, then m can be null.

• A generic type Πj(X :: ∗n).S is conceptually a function that maps types to types.
This kind of type represents generic Java classes. What is different from System
F here is that X can only be instantiated with nullable types (where nullability is
determined by the kind system, as described below). This matches Java’s behaviour:
in Java, if class List<T> is a generic class, we can instantiate the generic with
List<String> and List<Person>, but not with List<int>, because int is non-
nullable.

• Finally, Appj(S, T) is a type application. Following the intuition about generics
being functions from types to types, type applications represent the application of
the function associated with S to the type argument T . System F doesn’t have type
applications at the type level; instead, the user can write the type application as a
term s [T]. Java however does have explicit type applications: e.g. List<String>,
so we will find it useful to have explicit type applications at the type level in order
to model Java more closely.

Figure 3.1 shows some Java types and their corresponding representation in λj. Some
Java types (notably recursive classes) do not have counterparts in λj.

Kinding Rules

In subsequent sections, we will try to give meaning to types. However, we can only interpret
types that are well-kinded. Intuitively, we need a way to differentiate between a type like
Πj(X :: ∗n).X, where all variables are bound, from Πj(X :: ∗n).Y , where Y is free and so
cannot be assigned a meaning.

The kinding rules in Figure 3.2 fulfill precisely this purpose. The judgment Γ `j T :: K
establishes that type T has kind K under context Γ, and is thus well-kinded. Further, we
can look at K to learn something about T :

• K = ∗n. In this case, we say that T is a nullable type. If JT Kj is the set of values
that have type T , we expect null ∈ JT Kj (we will make this statement precise when

71

Java type λj type Comments
int intj non-nullable
Integer — no nullable integers in λj
String Stringj

class Movie {
String director ;

int releaseYear ;

}

Stringj ×j intj λj, like System F, is a structural
type system, as opposed to Java,
which is nominal.

class Pair<A, B> {
A first ;

B secondl

}

Πj(A :: ∗n).Πj(B :: ∗n).A×j B

Pair<String, Movie> ? PairApp (see below) because λj is structural, we need
to inline all type definitions every
time

class List<T> {
T first ;

List<T> next;

}

— λj does not have recursive types

class Box<

? extends Movie> {}
— λj does not have wildcards or sub-

typing
? PairApp ≡ Appj(Appj(Πj(A :: ∗n).Πj(B :: ∗n).A×j B, Stringj), Stringj ×j intj)

Table 3.1: Java types and their corresponding λj types

72

we give denotations to types in Section 3.3.3). Inspecting the kinding rules, we can
notice that KJ-String marks Stringj as nullable, and similarly KJ-Prod marks all
product types as nullable. Notice that all type variables in a context are nullable as
well.

• K = ∗v. This means that T is non-nullable, which will later turn out to mean
that null 6∈ JT Kj. Only intj and function types are non-nullable. The idea behind
making function types non-nullable is to model the fact that in Java methods cannot
be null: e.g. in

class Movie { String getTitle (String language) {...} }
Movie m = new Movie();

m.getTitle (‘‘ Spanish”)

there cannot be a null pointer exception due to getTitle being null.

• K = ∗. T is a proper type in this case. These are non-generic types. Syntactically,
∗ is a “superkind” (think “supertype”, but for kinds) of ∗n and ∗v. We could draw
an “inheritance” diagram that looks like

∗n

∗

∗v

The KJ-Null and KJ-NonNull rules ensure the above. We need ∗ so we can form
products and functions of both nullable and non-nullable types.

Semantically, we will show that the set of values in ∗ is exactly the union of those in
∗n and ∗v: J∗Kj = J∗nKj ∪ J∗vKj.

• K = ∗n ⇒ K ′. In this case, we say T is a generic type. Two points of note: in the
premise of KJ-Pi, we make sure that the context is extended with a nullable type
variable; correspondingly, in KJ-App, the type argument must have a nullable kind.

Definition 3.2.1 (Base Kinds). We say K is a base kind if K ∈ {∗, ∗n, ∗v}.

3.2.2 λs Type System

We can now take a look at the λs type system, which is our stand-in for Scala. The types
and kinds of λs are shown in Figure 3.3. λs differs from λj by adding a Null type and
type unions (σ + τ). Additionally, λs types are explicitly nullable, which can be seen by
contrasting KS-String with the corresponding KJ-String rule in λj:

73

Γ `j Stringj :: ∗n (KJ-String) Γ `s Strings :: ∗v (KS-String)

If we want to say that a type is nullable in λs, we need to use type unions:

KS-String
Γ `s Strings :: ∗v Γ `s Null :: ∗n

KS-Null

Γ `s Strings + Null :: ∗v t ∗n
KS-Union

The kinding derivation above uses the least upper bound operator t on kinds. In this
case, we reason that since Strings is non-nullable and Null is nullable, then their union
is nullable and ∗v t ∗n = ∗n.

In general, to track nullability via kinds in the presence of type unions, we use the
KS-Union rule from Figure 3.3 and its associated nullability lattice:

∗v −→ ∗ −→ ∗n

For example, suppose that `s σ :: ∗v and `s τ :: ∗. If we view σ and τ as sets (which
we will do in Section 3.3), then we know that null 6∈ JσKs and null might or might not be
in JτKs. This, in turn, means that we cannot know (statically) whether null ∈ Jσ + τKs,
so `s σ + τ :: ∗ = ∗v t ∗ as per KS-Union. However, if either σ or τ have kind ∗n, then we
must have null ∈ Jσ + τKs (this is why ∗n is at the top of the lattice).

One additional difference between λj and λs is that in λs, generics can take as arguments
any type of kind ∗ (as opposed to ∗n in λj). This reflects the fact that in Scala, generic
classes can be instantiated with any type as argument, and not just with reference types.
For example, if List[T] is a generic Scala list, then the type applications List[int]

and List[String] are both well-kinded, even though the argument in the former is non-
nullable (List<int> would not be valid in Java).

3.3 Denotational Semantics

Now that we have a formal type system with implicit nullability, as well as one with explicit
nullability, one can imagine how to formalize the nullification function. Nullification will
need to turn λj types into λs types. However, before we can prove properties of nullification,
we need a semantics for our types and kinds. That is, so far types and kinds are just

74

σ, τ ::= Types
Null null
ints int

Strings string
σ + τ union
σ ×s τ product
σ →s τ function

Πs(X :: ∗).σ generic

Apps(σ, τ) type application
X type variable

K ::= Kinds
∗n kind of nullable types
∗v kind of non-nullable types
∗ kind of proper types

∗ ⇒ K kind of type operators

Γ ::= Contexts
∅ empty context

Γ, X :: ∗ nullable type binding

Γ `s σ :: K

Γ `s ints :: ∗v (KS-Int)

Γ `s Strings :: ∗v (KS-String)

Γ `s Null :: ∗n (KS-NullType)

Γ `s σ :: K1

Γ `s τ :: K2

K1, K2 ∈ {∗n, ∗v, ∗}
Γ `s σ + τ :: K1 tK2

(KS-Union)

t is least-upper bound operation on the lat-
tice ∗v −→ ∗ −→ ∗n

Γ `s σ :: ∗ Γ `s τ :: ∗
Γ `s σ ×s τ :: ∗v

(KS-Prod)

Γ `s σ :: ∗ Γ `s τ :: ∗
Γ `s σ →s τ :: ∗v

(KS-Fun)

Γ, X :: ∗ `s σ :: K

Γ `s Πs(X :: ∗).σ :: ∗ ⇒ K
(KS-Pi)

Γ `s σ :: ∗ ⇒ K Γ `s τ :: ∗
Γ `s Apps(σ, τ) :: K

(KS-App)

Γ(X) = ∗
Γ `s X :: ∗

(KS-Var)

Γ `s σ :: ∗n
Γ `s σ :: ∗
(KS-Null)

Γ `s σ :: ∗v
Γ `s σ :: ∗

(KS-NonNull)

.

Figure 3.3: Types, kinds, and kinding rules of λs. Differences with λj are highlighted.

75

syntactic objects, and kinding rules are syntactic rules devoid of meaning. For this task of
assigning meaning we turn to the machinery of denotational semantics.

The basic idea of denotational semantics is to map the syntactic objects under con-
sideration (procedures, types, kinds) to mathematical objects (functions, sets, families of
sets) [Scott and Strachey, 1971]. Once this is done, we can prove interesting properties
about programs using standard mathematical tools. The mapping is done via a denotation
function, typically written JK.

Example 3.3.1 (Constant Folding). To argue the correctness of a constant folding pass
in a compiler, we might define the denotation of binary addition thus

JE1 + E2K = JE1K + JE2K

This might look like mere symbol shuffling: the two sides look pretty similar! The key
difference is that the plus on the left is a syntactic symbol without meaning, whereas the
one on the right is the addition operator in the group of integers.

If we think of constant folding as rewriting E1 + E2 → E3, where E3 is the result of
adding E1 and E2 if they are both constants, then correctness of constant folding amounts
to showing that JE1 + E2K = JE3K.

Roadmap

Since the rest of Section 3.3 is rather technical and dry, here is a summary of what will
happen:

• First, I construct a set-theoretic model J for λj (Section 3.3.1). This is just a family
of sets2 that contains denotations of λj types and kinds.

• I then show how to map λj kinds (Section 3.3.2) and types (Section 3.3.3) to their
denotations in the model. The mapping is roughly as follows:

2Models in denotational semantics can get rather complicated, involving algebraic structures with fancy-
sounding names like complete partial orders and categories. For our type systems based on predicative
System F, however, regular sets will suffice.

76

kinds −→ families of sets

proper types −→ sets

generic types −→ functions from sets to sets

• I then prove a soundness lemma for λj kinding rules that says that if a type is well-
kinded, then its denotation is defined and, further, it is contained in the denotation
of the corresponding kind: Γ `j T :: K =⇒ JT Kjη ∈ JKKj (Lemma 3.3.3).

• Finally, sections 3.3.4 to 3.3.6 and Lemma 3.3.6 repeat the work above for λs.

The technical presentation is based on the treatment of predicative System F in Mitchell
[1996].

3.3.1 λj Semantic Model

Definition 3.3.1 (String Literals). strings denotes the set of finite-length strings.

The model for λj is a pair J = (U1, U2) of universes (families of sets).

• U1 is the universe of proper types. It is the least set closed under the following
inference rules3:

Z ∈ U1 (U1-Int)

strings ∈ U1 (U1-String)

{null} ∈ U1 (U1-Null)

u ∈ U1 v ∈ U1

u× v ∈ U1

(U1-Prod)

u ∈ U1 v ∈ U1

u ∪ v ∈ U1

(U1-Union)

u ∈ U1 v ∈ U1

uv ∈ U1

(U1-Fun)

3For sets u and v, uv denotes the set of functions with domain u and range v.

77

Additionally, we define two families of sets that contain nullable and non-nullable
types, respectively:

Unull
1 = {u|u ∈ U1, null ∈ u}
Uval
1 = {u|u ∈ U1, null 6∈ u}

Notice that both Unull
1 and Uval

1 are subsets of U1, and that U1 = Unull
1 ∪ Uval

1 .

• The universe U2 is a superset of U1 that, additionally, contains all generic types.

First, we define a family of sets {U i
2}, for i ≥ 0.

U0
2 = U1 (3.1)

U i+1
2 = U i

2 ∪ {f : Unull
1 → U i

2} (3.2)

Then we set U2 =
⋃
i≥0 U

i
2.

Equation 3.2 is where the fact that we are working with a predicative type system
comes into play. In an impredicative system, we would want to define

U2 = U1 ∪ {f : U2 → U2}

but such a self-reference leads to inconsistencies in the style of Russell’s paradox.
In fact, we know that no set-theoretic model exists for the impredicative variant of
System F [Reynolds, 1984].

3.3.2 Meaning of λj Kinds

Definition 3.3.2 (Number of Arrows in a Kind). Let K be a kind. Then arr(K) denotes
the number of arrows (⇒) in K.

Example 3.3.2.

arr(∗v) = 0

arr(∗n ⇒ ∗n ⇒ ∗v) = 2

78

Definition 3.3.3 (Meaning of λj Kinds). We give meaning to λj kinds via a function JKj
inductively defined on the structure of a kind K.

J∗nKj = Unull
1

J∗vKj = U val
1

J∗Kj = U1

J∗n ⇒ KKj = {f : Unull
1 → JKKj}

We now show that the meaning of kinds is contained within the model J .

Lemma 3.3.1. Let K be a kind. Then JKKj ⊆ U
arr(K)
2 .

Proof. By induction on the number of arrows in K.

If K has no arrows, then we must have K ∈ {∗n, ∗v, ∗}.

• If K = ∗n, then JKKj = Unull
1 ⊆ U1 = U0

2 , as needed.

• If K = ∗v, then JKKj = Uval
1 ⊆ U1.

• If K = ∗, then JKKj = U1.

In general, suppose K has m ≥ 1 arrows. Then K can only be of the form ∗n ⇒ K ′,
where K ′ has m− 1 arrows. We have

J∗n ⇒ K ′Kj = {f : Unull
1 → JK ′Kj}

Now consider an arbitrary function f : Unull
1 → JK ′Kj. By the induction hypothesis, we

know that JK ′Kj ⊆ Um−1
2 . This means we can think of f as a function with range Um−1

2 ,
which means that f : Unull

1 → Um−1
2 as well. But then by Definition 3.2 we have f ∈ Um

2 .
This means that J∗n ⇒ K ′Kj ⊆ Um

2 , as required.

Corollary 3.3.2 (λj Kinds are Well-Defined). Let K be a kind. Then JKKj ⊆ U2.

Proof. Follows directly from Lemma 3.3.1 and the definition of U2.

79

3.3.3 Meaning of λj Types

We would now like to repeat our exercise from the previous section (assigning meaning to
kinds), but for types. Right away, we face two complications:

1. How do we assign a meaning to types that are not closed (e.g. Πj(X :: ∗n).Y)?.

2. How do we deal with variable shadowing within types (e.g. Πj(X :: ∗n).Πj(X ::
∗n).X)?

The first complication is solved by making the denotation function take two arguments:
the type whose meaning is being computed and an environment that gives meaning to the
free variables (JKj : Types→ Env → U2).

The second problem is solved by making the simplifying assumption that types have
been alpha-renamed so that there are no name collisions. I believe that the results in this
chapter would still hold without alpha-renaming, but the proofs are simpler if we make
this assumption.

Definition 3.3.4 (λj Environments). A λj environment η : V ar → Unull
1 is a map from

variables to elements of Unull
1 . The empty environment is denoted by ∅. An environment

can be extended with the notation η[X → a], provided that X was not already in the domain.

Definition 3.3.5 (Environment Conformance). An environment η conforms to a context
Γ, written η � Γ, if dom(η) = dom(Γ).

Notice that contexts in λj map type variables to kinds, but only variables of kind ∗n
are allowed in contexts. We could have elided the kind and make contexts just be sets of
variables. When we look at λs, however, we will see that contexts store variables with kind
∗, so I have left the kind in the context as a disambiguator.

Definition 3.3.6 (Meaning of λj Types). We define the meaning of types by induction on
the structure of the type:

JintjKjη = Z
JStringjKjη = {null} ∪ strings
JS ×j T Kjη = {null} ∪ (JSKjη × JT Kjη)
JS →j T Kjη = JSKjηJT Kjη

JΠj(X :: ∗n).SKjη = λ(a ∈ Unull
1).JSKj(η[X → a])

JAppj(S, T)Kjη = JSKjη(JT Kjη)
JXKjη = η(X)

80

Example 3.3.3.

JΠj(X :: ∗n).XKj∅ = λ(a ∈ Unull
1).JXKj∅[X → a]

= λ(a ∈ Unull
1).∅[X → a](X)

= λ(a ∈ Unull
1).a

= id

That is, the denotation of Πj(X :: ∗n).X is the identity function that maps sets (types)
in Unull

1 to themselves.

The following lemma says that the kinding rules correctly assign kinds to our types.

Lemma 3.3.3 (Soundness of λj Kinding Rules). Let Γ `j T :: K and η � Γ. Then JT Kjη
is well-defined and, further, JT Kjη ∈ JKKj.

Proof. By induction on a derivation of Γ `j T :: K.

Case (KJ-Int) JintjKjη = Z and JKKj = J∗vKj = Uval
1 . Since null 6∈ Z and Z ∈ U1,

we have Z ∈ Uval
1 as needed.

Case (KJ-String) JStringjKjη = {null}∪strings and J∗nKj = Unull
1 . Since strings ∈

U1, then {null} ∪ strings ∈ Unull
1 .

Case (KJ-Prod) We have T = S1×S2 and K = ∗n. Then JT Kjη = {null}∪(JS1Kjη×
JS2Kjη) and J∗nKj = Unull

1 . By the induction hypothesis, JS1Kjη ∈ U1 and JS2Kjη ∈ U1.
Then JS1Kjη × JS2Kjη ∈ U1, and so the result follows.

Case (KJ-Fun) We have T = S1 → S2 and K = ∗v. Then JT Kjη = JS1KjηJS2Kjη

and J∗vKj = Uval
1 . By the induction hypothesis, JS1Kjη ∈ U1 and JS2Kjη ∈ U1. Then

JS1KjηJS2Kjη ∈ U1, and so the result follows (because null is not a function).

Case (KJ-Pi) We have T = Πj(X :: ∗n).S and K = ∗n ⇒ K ′. JΠj(X :: ∗n).SKjη =
λ(a ∈ Unull

1).JSKj(η[X → a]) and J∗n ⇒ K ′Kj = {f : Unull
1 → JK ′Kj}. Now take an

arbitrary a ∈ Unull
1 . Notice that JΠj(X :: ∗n).SKjη(a) = JSKjη[X → a]. From the typing

derivation, we know that Γ, X :: ∗n `j S :: K ′. Also η[X → a] � Γ, X :: ∗n. We can then
use the induction hypothesis to conclude that JSKjη[X → a] ∈ JK ′Kj. This means that
JΠj(X :: ∗n).SKjη is a function from Unull

1 to JK ′Kj, which implies that JΠj(X :: ∗n).SKjη ∈
J∗n ⇒ K ′Kj as needed.

Case (KJ-App) We have T = Appj(S1, S2) and K can be an arbitrary kind.

JAppj(S1, S2)Kjη = JS1Kjη(JS2Kjη)

81

From the typing rule, we know that Γ `j S1 :: ∗n ⇒ K and Γ `j T :: ∗n. Then by the
induction hypothesis, we get two facts: JSKjη ∈ J∗n ⇒ KKj and JS2Kjη ∈ J∗nKj = Unull

1 .
This means that JSKjη must be a function from Unull

1 to JKKj. But then the result of the
function application JS1Kjη(JS2Kjη) must be in JKKj, as needed.

Case (KJ-Var) We have T = X (or some other type variable) and K = ∗n. From the
premise of the typing rule we know that Γ(X) = ∗n and, in particular, X is in the domain
of Γ. Since η � Γ, then X must be in the domain of η as well. Since η maps variables to
elements of Unull

1 , then JXKjη = η(X) ∈ Unull
1 , as needed.

Case (KJ-Null) We have K = ∗. From the premise of the typing rule, we know that
Γ `j T :: ∗n. By the induction hypothesis, we have JSKjη ∈ Unull

1 ⊆ U1.

Case (KJ-NonNull) We have K = ∗. From the premise of the typing rule, we know
that Γ `j T :: ∗v. By the induction hypothesis, we have JSKjη ∈ Uval

1 ⊆ U1.

3.3.4 λs Semantic Model

The model for λs is very similar to that from Section 3.3.1, except for how we represent
generics. Once again, the model is a pair S = (U1, U

′
2), where U1 is as defined in Section

3.3.1 and U ′2 is defined below.

First, we define a family of sets {U ′i2 }, for i ≥ 0.

U ′02 = U1 (3.3)

U ′i+1
2 = U ′i2 ∪ {f : U1 → U ′i2 } (3.4)

Highlighted is the fact that generics in λs take arguments from U1, as opposed to Unull
1 .

Then we set U ′2 =
⋃
i≥0 U

′i
2 .

3.3.5 Meaning of λs Kinds

Definition 3.3.7 (Meaning of λs Kinds). We give meaning to λs kinds via a function JKs
inductively defined on the structure of a kind K.

J∗nKs = Unull
1

J∗vKs = U val
1

J∗Ks = U1

J∗n ⇒ KKs = {f : U1 → JKKs}

82

We now show that the meaning of kinds is contained within the model S.

Lemma 3.3.4. Let K be a kind. Then JKKs ⊆ U
′arr(K)
2 .

Proof. By induction on the number of arrows in K.

If K has no arrows, then we must have K ∈ {∗n, ∗v, ∗}.

• If K = ∗n, then JKKs = Unull
1 ⊆ U1 = U ′02 , as needed.

• If K = ∗v, then JKKs = Uval
1 ⊆ U1.

• If K = ∗, then JKKs = U1.

In general, suppose K has m ≥ 1 arrows. Then K can only be of the form ∗ ⇒ K ′,
where K ′ has m− 1 arrows. We have

J∗ ⇒ K ′Ks = {f : U1 → JK ′Ks}

Now consider an arbitrary function f : U1 → JK ′Ks. By the induction hypothesis, we
know that JK ′Ks ⊆ U ′m−12 . This means we can think of f as a function with range Um−1

2 ,
which means that f : U1 → Um−1

2 as well. But then by definition 3.4 we have f ∈ U ′m2 .
This means that J∗n ⇒ K ′Ks ⊆ U ′m2 , as required.

Corollary 3.3.5 (λs Kinds are Well-Defined). Let K be a kind. Then JKKs ⊆ U ′2.

Proof. Follows directly from Lemma 3.3.4 and the definition of U ′2.

3.3.6 Meaning of λs Types

Definition 3.3.8 (λs Environment). A λs environment η : V ar → U1 is a map from
variables to elements of U1.

Definition 3.3.9 (Environment Conformance). An environment η conforms to a context
Γ, written η � Γ, if dom(η) = dom(Γ).

83

Definition 3.3.10 (Meaning of λs Types). We define the meaning of types by induction
on the structure of the type:

JNullKsη = {null}
JintsKsη = Z
JStringsKsη = strings

Jσ ×s τKsη = JσKsη × JτKsη
Jσ →s τKsη = JσKsηJτKsη

JΠs(X :: ∗).SKsη = λ(a ∈ U1).JSKs(η[X → a])

JApps(S, T)Ksη = JSKsη(JT Ksη)

JS + T Ksη = JSKsη ∪ JT Ksη
JXKsη = η(X)

Lemma 3.3.6 (Soundness of λs Kinding Rules). Let Γ `s T :: K and η � Γ. Then JT Ksη
is well-defined and, further, JT Ksη ∈ JKKs.

Proof. By induction on a derivation of Γ `s T :: K.

Case (KS-Int) JintsKsη = Z and JKKs = J∗vKs = Uval
1 . Since null 6∈ Z, we have

Z ∈ Uval
1 as needed.

Case (KS-String) JStringsKsη = strings and J∗vKs = Uval
1 . Since null 6∈ strings,

then strings ∈ Unull
1 .

Case (KS-NullType) We have T = Null and K = ∗n. JNullKsη = {null}, and the
result follows immediately.

Case (KS-Union) We have T = T1 + T2, K = K1 tK2, and JT1 + T2Ksη = JT1Ksη ∪
JT2Ksη. Notice that t is symmetric. Then we consider the following cases:

• K1 = ∗n, K2 = ∗n, K = ∗n. By the induction hypothesis, JT1Ksη ∈ Unull
1 and JT2Ksη ∈

Unull
1 . Because U1 is closed under set union, we know that JT1Ksη ∪ JT2Ksη ∈ U1.

Further, since null ∈ JT1Ksη, we have null ∈ JT1Ksη ∪ JT2Ksη, so JT1Ksη ∪ JT2Ksη ∈
Unull
1 as needed.

• K1 = ∗n, K2 = ∗v, K = ∗n. Similar to the previous case.

• K1 = ∗n, K2 = ∗, K = ∗n. Similar to the previous case.

• K1 = ∗, K2 = ∗, K = ∗. Follow directly from the induction hypothesis and the fact
that U1 is closed under unions.

84

• K1 = ∗, K2 = ∗v, K = ∗. Similar to the previous case.

• K1 = ∗v, K2 = ∗v, K = ∗v. Follows from the fact that null 6∈ JT1Ksη and null 6∈
JT2Ksη implies null 6∈ JT1Ksη ∪ JT2Ksη.

Case (KS-Prod) We have T = S1 × S2 and K = ∗v. Then JT Ksη = JS1Ksη × JS2Ksη
and J∗vKs = Uval

1 . By the induction hypothesis, JS1Ksη ∈ U1 and JS2Ksη ∈ U1. Then
JS1Ksη × JS2Ksη ∈ Uval

1 , and so the result follows.

Case (KS-Fun) We have T = S1 → S2 and K = ∗v. Then JT Ksη = JS1KsηJS2Ksη

and J∗vKs = Uval
1 . By the induction hypothesis, JS1Ksη ∈ U1 and JS2Ksη ∈ U1. Then

JS1KsηJS2Ksη ∈ U1, and so the result follows (because null is not a function).

Case (KS-Pi) We have T = Πs(X :: ∗).S and K = ∗ ⇒ K ′. JΠs(X :: ∗).SKsη =
λ(a ∈ U1).JSKs(η[X → a]) and J∗n ⇒ K ′Ks = {f : U1 → JK ′Ks}. Now take an arbitrary
a ∈ U1. Notice that JΠs(X :: ∗).SKsη(a) = JSKsη[X → a]. From the typing derivation, we
know that Γ, X :: ∗ `s S :: K ′. Also η[X → a] � Γ, X :: ∗. We can then use the induction
hypothesis to conclude that JSKsη[X → a] ∈ JK ′Ks. This means that JΠs(X :: ∗).SKsη is a
function from U1 to JK ′Ks, which implies that JΠs(X :: ∗).SKsη ∈ J∗n ⇒ K ′Ks as needed.

Case (KS-App) We have T = Apps(S1, S2) and K can be an arbitrary kind.

JApps(S1, S2)Ksη = JS1Ksη(JS2Ksη)

From the typing rule, we know that Γ `s S1 :: ∗ ⇒ K and Γ `s T :: ∗. Then by the
induction hypothesis, we get two facts: JSKsη ∈ J∗ ⇒ KKs and JS2Ksη ∈ J∗Ks = U1. This
means that JSKsη must be a function from U1 to JKKs. But then the result of the function
application JS1Ksη(JS2Ksη) must be in JKKs, as needed.

Case (KS-Var) We have T = X (or some other type variable) and K = ∗. From the
premise of the typing rule we know that Γ(X) = ∗ and, in particular, X is in the domain
of Γ. Since η � Γ, then X must be in the domain of η as well. Since η maps variables to
elements of U1, then JXKsη = η(X) ∈ Unull

1 , as needed.

Case (KS-Null) We have K = ∗. From the premise of the typing rule, we know that
Γ `s T :: ∗n. By the induction hypothesis, we have JSKsη ∈ Unull

1 ⊆ U1.

Case (KS-NonNull) We have K = ∗. From the premise of the typing rule, we know
that Γ `s T :: ∗v. By the induction hypothesis, we have JSKsη ∈ Uval

1 ⊆ U1.

85

3.4 Type Nullification

Now that we have formal definitions for both λj and λs, we can also formally define type
nullification. Recall that type nullification makes nullability explicit as we go from a type
system where null is implicit (Java’s) to one where null is explicit (Scala’s). For example,

class Movie { // Java

int views;

String getTitle (String language) {...}
}

becomes

class Movie { // Scala

var views: Int ;

def getTitle (language: String |Null): String |Null {...}
}

Or, using our newly-introduced type systems:

(intj)×j (Stringj →j Stringj)

becomes

(ints)×s (Strings + Null→s Strings + Null)

That is, type nullification is a function that turns λj types into λs types. One wrinkle
remains, which is that in the implementation, we decided not to nullify arguments in type
applications. That is, given a Java class List<T>, type applications such as List<String>
are translated as List<String>, and not List<String|Null>. Section 2.3.2 gives an
informal argument for why this is correct. The motivation for special casing type arguments
is maximizing backwards-compatibility.

Because of the different treatment for types based on whether they are in an argument
position or not, we will model nullification as a pair of functions (Fnull, Anull). These are
defined below.

Definition 3.4.1 (Type Nullification).

86

Fnull(intj) = ints
Fnull(Stringj) = Strings + Null

Fnull(S ×j T) = (Fnull(S)×s Fnull(T)) + Null

Fnull(S →j T) = Fnull(S)→s Fnull(T)
Fnull(Πj(X :: ∗n).S) = Πs(X :: ∗).Fnull(S)
Fnull(Appj(S, T)) = Apps(Fnull(S), Anull(T))
Fnull(X) = X + Null

Anull(intj) = ints
Anull(Stringj) = Strings
Anull(S ×j T) = Fnull(S)×s Fnull(T)
Anull(S →j T) = Fnull(S)→s Fnull(T)
Anull(Appj(S, T)) = Apps(Fnull(S), Anull(T))
Anull(X) = X

As the name suggests, Anull handles types that are arguments to type application,
and Fnull handles the rest. Anull differs from Fnull in that it does not nullify types at the
outermost level (see e.g. the Stringj case).

The following example shows that type nullification faithfully models our implementa-
tion.

Example 3.4.1 (Pairs). Let Pair ≡ Πj(A :: ∗n).Πj(B :: ∗n).A×j B. Then

Fnull(Pair) = Fnull(Πj(A :: ∗n).Πj(B :: ∗n).A×j B)

= Πs(A :: ∗).Fnull(Πj(B :: ∗n).A×j B)

= Πs(A :: ∗).Πs(B :: ∗).Fnull(A×j B)

= Πs(A :: ∗).Πs(B :: ∗).(Fnull(A)×s Fnull(B)) + Null

= Πs(A :: ∗).Πs(B :: ∗).(A+ Null ×s A+ Null) + Null (3.5)

Nullifying the type application “Pair<String, Pair<int, int>>” expands to

87

Fnull(Appj(Appj(Pair, Stringj),Appj(Appj(Pair, intj), intj)))

= Apps(Fnull(Appj(Pair, Stringj)), Anull(Appj(Appj(Pair, intj), intj)))

= Apps(Fnull(Appj(Pair, Stringj)), Anull(Appj(Appj(Pair, intj), intj)))

= Apps(Fnull(Appj(Pair, Stringj)), Anull(Appj(Appj(Pair, intj), intj)))

= Apps(Apps(Fnull(Pair), Anull(Stringj)), Anull(Appj(Appj(Pair, intj), intj)))

= Apps(Apps(Fnull(Pair), Strings), Anull(Appj(Appj(Pair, intj), intj)))

= Apps(Apps(Fnull(Pair), Strings),Apps(Fnull(Appj(Pair, intj)), Anull(intj)))

= Apps(Apps(Fnull(Pair), Strings),Apps(Apps(Fnull(Pair), Anull(intj)), ints))

= Apps(Apps(Fnull(Pair) , Strings),Apps(Apps(Fnull(Pair) , ints), ints)) (3.6)

The corresponding Java and nullified Scala code are shown below.

Java
type nullification−−−−−−−−−→ Scala

class Pair<A, B> {
A a;

B b;

}

class Pair [A, B] {
var a: A|Null ;

var b: B|Null ;

}

Pair<String,Pair<int,int>> p var p:Pair [String , Pair [int , int]]| Null

This is all verbose and hard to follow, but the important part is that Fnull matches the
behaviour of type nullification in the implementation. In particular, notice how all of a, b
and p were nullified in equation 3.5, but none of the type arguments were nullified in type
application 3.6.

Definition 3.4.2 (Context Nullification). We lift nullification to work on contexts.

Fnull(∅) = ∅
Fnull(Γ, X :: ∗n) = Fnull(Γ), X :: ∗

Notice how nullification turns λj contexts into (syntactic) λs contexts.

Definition 3.4.3 (Kind Nullification). We also lift nullification to work on kinds.

88

Fnull(K) = K if K is a base kind

Fnull(∗n ⇒ K ′) = ∗ ⇒ Fnull(K
′) otherwise

That is, nullification turns λj kinds into λs kinds.

3.4.1 Soundness

Summary: the main results of this section are Lemma 3.4.2 and Theorem 3.4.3.

We can finally prove a soundness result for type nullification. But what should sound-
ness mean in this case? One plausible, but as it turns out incorrect, definition is that
nullification leaves the meaning of types unchanged.

Conjecture 3.4.1 (Soundness — Incorrect). Let Γ `j T :: K, and let η be an environment
such that η � Γ. Then JT Kjη = JFnull(T)Ksη.

This conjecture is false because the meaning of generics differs between λj and λs. In
both cases, generics are denoted by functions on types, but the domains of the functions
are different:

• JΠj(X :: ∗n).SKjη = f |∀a ∈ Unull
1 , f(a) = JSKj(η[X → a])

• JΠs(X :: ∗).SKsη = f |∀a ∈ U1 , f(a) = JSKs(η[X → a])

That is, λj generics take arguments that are in Unull
1 (nullable arguments) and λs gener-

ics have wider domains and take arguments from all of U1. This matches the behaviour in
Java and Scala, where the generic class class List<A> gets “mapped” by nullification to
the scala class class List[A]. List<int> is then not valid in Java (because int is not a
nullable type), but List<int> is valid in Scala.

What are we to do then? Is nullification wrong as presented in Definition 3.4.1. Luckily,
the answer is no! We can arrive at an alternative, and this time correct, definition by
observing the following:

• Consider a generic Java class List<T> and its nullified Scala counterpart List[T]:

89

class List<T> { // Java

T head;}
class List [T] { // Scala

var head: T|Null}

• As we previously saw, their denotations are different because the Java generic can
only take nullable type arguments. However, consider a Java type application and
its nullification:

List<Integer> =

class List {
Integer head;

}

List [Integer] =

class List {
var head: Integer |Null

}

• What we see here is that the denotations on both sides actually match! That is,
accessing the head field on both sides gives us back an element from Z ∪ {null}.

• In general, if G is a generic, even though JGKj and JGKs are not equal, for any
valid type application G<T> in Java, JG < T >Kj = JFnull(G < T >)Ks. That is,
our soundness theorem will say that nullification leaves fully-applied generic types
unchanged. This is just as well because users can only manipulate values of type
G<T> and never values of type G directly.

Before we state the soundness theorem we need a few ancillary definitions. These are
needed because our nullification function is complicated by the presence of Anull, which
does change the meaning of types (albeit only slightly).

Definition 3.4.4 (Similar Types). Let S, T ∈ U1. Then we say S is similar to T , written
S ∼ T , if S ∪ {null} = T ∪ {null}.

Note that ∼ is symmetric.

Definition 3.4.5 (Similar Type Vectors). Let ~S = (S1, . . . , Sn) and ~T = (T1, . . . , Tn) be

vector of types, where ~S and ~T have the same number of elements. Then ~S ∼ ~T if they are
similar at every component.

Definition 3.4.6 (Similar Environments). Let η, η′ be environments (either from λj or
λs). Then η′ is similar to η′, written η ∼ η′, if dom(η′) = dom(η) and for all type variables
X in the domain, we have η′(X) ∼ η(X).

90

Note this relation is also symmetric.

Definition 3.4.7 (Similar Kinds). Let K1 and K2 be two base kinds. Then K1 K2 is
defined by case analysis.

∗ ∗ (SK-Prop)

∗v ∗v (SK-NonNull)

∗n ∗n (SK-Null1)

∗n ∗v (SK-Null2)

∗n ∗ (SK-Null3)

Note this relation is not symmetric.

Lemma 3.4.1. If K is a base kind, then K K.

Proof. Immediate from Definition 3.4.7.

The rules in Definition 3.4.7 capture what happens to the kind of a type after being
transformed by Anull. For example, Stringj has kind ∗n in λj, but Anull(Stringj) =
Strings has kind ∗v in λs. This is described by rule (SK-Null2).

Before proving soundness, we can prove a weaker lemma that says that nullification
preserves well-kindedness. Proving this lemma is a useful exercise, because if T is well-
kinded and nullification turns T into Fnull(T), the latter had better be well-kinded as well.

Lemma 3.4.2 (Nullification Preserves Well-Kindedness). Let Γ `j T :: K and Γ′ =
Fnull(Γ). Then

1. Γ′ `s Fnull(T) :: Fnull(K).

2. If K is a base kind, there exists a kind K ′ with K K ′ such that Γ′ `s Anull(T) :: K ′.

Proof. By induction on a derivation of Γ `j T :: K. For some cases, we need to prove both
claims, and for some just claim 1.

Case (KJ-Int) Claim 1. T = intj, K = ∗v, and Fnull(∗v) = ∗v. We have Fnull(T) =
ints, and Γ′ `s ints :: ∗v as needed.

Claim 2. Anull(intj) = ints. We can then take K ′ = ∗v.

91

Case (KJ-String) Claim 1. T = Stringj, K = ∗n, and Fnull(∗n) = ∗n. We have
Fnull(T) = Strings + Null, and Γ′ `s Strings + Null :: ∗n.

Claim 2. Anull(Stringj) = Strings. We can take K ′ = ∗v because ∗n ∗v.
Case (KJ-Prod) Claim 1. T = T1 ×j T2, K = ∗n, and Fnull(∗n) = ∗n. We have

Fnull(T) = (Fnull(T1)×Fnull(T2))+Null. From the antecedent of the rule, we get Γ `j T1 :: ∗
and Γ `j T2 :: ∗. By the induction hypothesis, we then get Γ′ `s Fnull(T1) :: ∗ and
Γ′ `s Fnull(T2) :: ∗. But then using KS-Prod we can put them back together in Γ′ `s
Fnull(T1)×Fnull(T2) :: ∗. Then using KS-Union we get Γ′ `s (Fnull(T1)×Fnull(T2)) +Null ::
∗n, as needed.

Claim 2. Anull(T1 ×j T2) = Fnull(T1)×s Fnull(T2). By the induction hypothesis, we have
Γ′ `s Fnull(T1) :: ∗ and Γ′ `s Fnull(T2) :: ∗. Using KS-Prod we get Γ′ `s Fnull(T1) ×s
Fnull(T2) :: ∗v. We can take K ′ = ∗v since ∗n ∗v.

Case (KJ-Fun) Claim 1. T = T1 →j T2 and K = ∗v. Fnull(T1 →j T2) = Fnull(T1)→s

Fnull(T2). From the antecedent of the kinding rule, we know that Γ `j T1 :: ∗ and Γ `j T2 ::
∗. By the induction hypothesis, we then have Γ′ `s Fnull(T1) :: ∗ and Γ′ `s Fnull(T2) :: ∗.
Using KS-Fun, we get Γ′ `s Fnull(T1)→s Fnull(T2) :: ∗v, as needed.

Claim 2. Notice that Anull(T) = Fnull(T). Then using the argument above, we can then
take K ′ = ∗v and K K ′.

Case (KJ-Pi) Claim 1. T = Πj(X :: ∗n).S, K = ∗n ⇒ K1 for some K1, and Fnull(∗n ⇒
K1) = ∗ ⇒ Fnull(K1). We have Fnull(T) = Πs(X :: ∗).Fnull(S). From the antecedent of the
rule, we know that Γ, X :: ∗n `j S :: K1. By the induction hypothesis, this means that
Fnull(Γ, X :: ∗n) `s Fnull(S) :: Fnull(K1). Notice that Fnull(Γ, X :: ∗n) = Γ′, X :: ∗. Then
using KS-Pi we get Γ′, X :: ∗ `s Fnull(S) :: ∗ ⇒ Fnull(K1), as needed.

Claim 2. Does not apply because K is not a base kind.

Case (KJ-App) Claim 1 T = Appj(T1, T2), K is an arbitrary kind, and Fnull(T) =
Apps(Fnull(T1), Anull(T2)). From the antecedent of the rule, we know that Γ `j T1 :: ∗n ⇒
K and Γ `j T2 :: ∗n. By the induction hypothesis, Γ′ `s Fnull(S) :: Fnull(∗n ⇒ K).
Simplifying, we get Γ′ `s Fnull(S) :: ∗ ⇒ Fnull(K). Using the induction hypothesis for
claim 2 we get that there exists a kind K ′ with ∗n K2 such that Γ′ `s Anull(T2) :: K ′. By
inversion of the rules for similar kinds, we get that K ′ ∈ {∗n, ∗v, ∗}. Notice that if K ′ = ∗n,
Γ′ `s Anull(T2) :: ∗n implies Γ′ `s Anull(T2) :: ∗ by KS-Null. A similar argument applies if
K ′ = ∗v using KS-NonNull. So no matter the value of K ′, we know that Γ′ `s Anull(T2) :: ∗.
Then we can use KS-App to conclude Γ′ `s Apps(Fnull(T1), Anull(T2)) :: Fnull(K

′), as needed.

Claim 2. If K is a base kind, we need to show there exists some kind K ′ with K K ′

such that Γ′ `s Anull(T) :: K ′. Anull(T) = Apps(Fnull(T1), Anull(T2)). Notice that Fnull(T) =

92

Anull(T). Also, since K is a base kind, Fnull(K) = K. Then from the result for claim 1
above we get Γ′ `s Anull(T) :: K. But K K for all base kinds, so we can take K ′ = K,
as needed.

Case (KJ-Var) Claim 1. T = X and K = ∗n. Fnull(T) = X+Null. Since Γ′ = Fnull(Γ)
and X ∈ dom(Γ), we know that X ∈ dom(Γ′). This means that Γ′(X) = ∗. We then have
Γ′ `s X :: ∗ and Γ′ `s Null :: ∗n. Using KS-union, we get Γ′ `s X + Null :: ∗n as needed.

Claim 2. Anull(X) = X and as we saw Γ′ `s X :: ∗. We can then take K ′ = ∗, because
∗n ∗.

Case (KJ-Null) Claim 1. T is an arbitrary type and K = ∗. From the antecedent,
we have Γ `j T :: ∗n. By the induction hypothesis, Γ′ `s Fnull(T) :: ∗n. But then using
KS-Null we get Γ′ `s Fnull(T) :: ∗ as needed.

Claim 2. By the induction hypothesis, there exists a kind K ′′ such that ∗n K ′′

with Γ′ `s Anull(T) :: K ′′. By inversion, we get K ′′ ∈ {∗, ∗n, ∗v}. If K ′′ = ∗, we’re done.
Otherwise, we can use either SK-Null or SK-NonNull to get Γ′ `s Anull(T) :: ∗ and then
we take K ′ = ∗ as needed.

Case (KJ-NonNull)

Claim 1. T is an arbitrary type and K = ∗. From the antecedent, we have Γ `j T :: ∗v.
By the induction hypothesis, Γ′ `s Fnull(T) :: ∗v. But then using KS-NonNull we get
Γ′ `s Fnull(T) :: ∗ as needed.

Claim 2. By the induction hypothesis, there exists a kind K ′′ such that ∗v K ′′ with
Γ′ `s Anull(T) :: K ′′. By inversion, we get K ′′∗v. We can then use either SK-NonNull to
get Γ′ `s Anull(T) :: ∗ and then we take K ′ = ∗ as needed.

Definition 3.4.8 (Curried Type Application). If f is a function of m arguments and
~x = (x1, . . . , xm), we use the notation f(~x) to mean the curried function application
f(x1)(x2) . . . (xm). In the degenerate case where f is not a function (i.e. m = 0), we
set f(~x) = f .

We can finally show soundness. We need to strengthen the induction hypothesis to talk
about both Fnull and Anull.

Theorem 3.4.3 (Soundness of Type Nullification). Let Γ `j T :: K. Let η, η′ be environ-
ments such that η � Γ and η ∼ η′. Then the following two hold:

1. If K is a base kind, then

93

(a) JT Kjη = JFnull(T)Ksη′ and

(b) JT Kjη ∼ JAnull(T)Ksη′.

2. If K is a type application with arr(K) = m, let ~x and ~y be two m-vectors of elements
of Unull

1 and U1, respectively, with ~x ∼ ~y. Then JT Kjη(~x) = JFnull(T)Ksη′(~y).

Proof. By induction on a derivation of Γ ` S :: K.

Case (KJ-Int) K = ∗v, T = intj, Fnull(T) = ints = Anull(intj).

Claim 1a.

JintjKjη = Z = JintsKsη

Claim 1b. Identical.

Claim 2. Does not apply.

Case (KJ-String) K = ∗n, T = Stringj, Fnull(T) = Strings + Null, and Anull(T) =
Strings.

Claim 1a.

JStringjKη = {null} ∪ strings
= JNullKsη′ ∪ JStringsKsη

′

= JNull + StringsKsη
′

Claim 1b.

JStringsKsη′ = strings, and strings ∼ {null} ∪ strings.

Claim 2. Does not apply.

Case (KJ-Prod) K = ∗n, T = T1×j T2, Fnull(T) = (Fnull(T1)×s Fnull(T2)) + Null and
Anull(T) = Fnull(T1)×s Fnull(T2).

Claim 1a.

JT1 ×j T2Kjη = {null} ∪ (JT1Kjη × JT2Kjη)

= {null} ∪ (JFnull(T1)Ksη′ × JT2Kjη) by the I.H. using Γ `j T1 :: ∗
= {null} ∪ (JFnull(T1)Ksη′ × JFnull(T2)Ksη′) by the I.H. using Γ `j T2 :: ∗
= J(Fnull(T1)×s Fnull(T2)) + NullKsη′

Claim 1b. Notice that JFnull(T)Ksη′ = JAnull(T)Ksη′ ∪ {null}. This implies that
JAnull(T)Ksη′ ∼ JFnull(T)Ksη′ = JT Kjη, as needed.

94

Claim 2. Does not apply.

Case (KJ-Fun)

K = ∗v, T = T1 →j T2, Fnull(T) = (Fnull(T1)→s Fnull(T2)) = Anull(T).

Claim 1a.

JT1 →j T2Kjη = JT1KjηJT2Kjη

= JFnull(T1)Ksη′JT2Kjη by the I.H. using Γ `j T1 :: ∗
= JFnull(T1)Ksη′JFnull(T2)Ksη′ by the I.H. using Γ `j T2 :: ∗
= JFnull(T1)→s Fnull(T2)Ksη′

Claim 1b. Follow from the previous claim and Fnull(T) = Anull(T).

Claim 2. Does not apply.

Case (KJ-Pi) K = ∗n ⇒ K ′, T = Πj(X :: ∗n).T ′, Fnull(T) = Πs(X :: ∗).Fnull(T).
Anull(T) is not defined in T because K is not a base kind.

Claim 1a. Does not apply.

Claim 1b. Does not apply.

Claim 2.

Let arr(K) = m. Let ~x = (x1, . . . , xm) where the xi are in Unull
1 . Similarly, let ~y =

(y1, . . . , ym) where the yi are in U1. We can also assume that ~x ∼ ~y. We need to show that
JT Kjη(~x) = JFnull(T)Ksη′(~y).

We can calculate denotations on both sides of the equation:

• JT Kjη(~x) = JΠj(X :: ∗n).T ′Kjη(~x)

= (
∏

a∈Unull
1

JT ′Kj(η[X → a]))(~x)

= (JT ′Kjη[X → x1])(x2, . . . , xm) since x1 ∈ Unull
1

• JFnull(T)Ksη′(~y) = JFnull(Πj(X :: ∗n).T ′)Ksη′(~y)

= JΠs(X :: ∗).Fnull(T
′)Ksη′(~y)

= (
∏
a∈U1

JFnull(T
′)Ks(η′[X → a]))(~y)

= (JFnull(T
′)Ksη′[X → y1])(y2, . . . , ym) since y1 ∈ U1

95

So we need to show that

(JT ′Kjη[X → x1])(x2, . . . , xm) = (JFnull(T
′)Ksη′[X → y1])(y2, . . . , ym)

Now recall the form of (KJ-Pi)

Γ, X :: ∗n ` T ′ :: K ′

Γ ` Πj(X :: ∗n).T ′ :: ∗n ⇒ K ′
(KJ-Pi)

There are two cases, depending on whether K ′ is a base kind or not.

• IfK ′ is a base kind, thenm = 1 and we need to show JT ′Kjη[X → x1] = JFnull(T
′)Ksη′[X →

x1]. From Γ, X :: ∗n `j T ′ :: K ′ and the induction hypothesis we get that JT ′Kjη′′ =
JFnull(T

′)Ksη′′′ for all environments η′′ and η′′′, where η′′ � Γ, X :: ∗n and η′′ ∼ η′′′.
Notice that we can set η′′ = η[X → x1] and η′′′ = η′[X → y1]. This works because
x1 ∈ Unull

1 and x1 ∼ y1.

• If K ′ is a type application, we must have arr(K ′) = m − 1 >= 1. We need to show
that (JT ′Kjη[X → x1])(x2, . . . , xm) = (JFnull(T

′)Ksη′[X → y1])(y2, . . . , ym). Again,

from the induction hypothesis we get that JT ′Kjη′′(~x′) = JFnull(T
′)Ksη′′′(~y′), where

η′′ � Γ, X :: ∗n, η′′ ∼ η′′′, ~x′ is a vector of elements of Unull
1 of length m − 1,

~y′ is similarly a vector of elements of U1 of length m − 1, and ~x′ ∼ ~y′. All of
η′′, η′′′, ~x′, ~y′ can be chosen arbitrarily as long as they satisfy the conditions above.
We claim that we can choose η′′ = η[X → x1], η

′′′ = η′[X → y1], ~x′ = (x2, . . . , xm)
and ~y′ = (y2, . . . , ym). First notice that x1 ∈ Unull

1 and y1 ∈ U1 with x1 ∼ y1, so
η′′ � Γ[X → ∗n] and η′′ ∼ η′′′. Finally, ~x ∼ ~y implies ~x′ ∼ ~y′.

Case (KJ-App) K is an arbitrary kind.

T = Appj(T1, T2), Fnull(T) = Apps(Fnull(T1), Anull(T2))

Recall the rule in question

Γ `j T1 :: ∗n ⇒ K Γ `j T2 :: ∗n
Γ `j Appj(T1, T2) :: K

(KJ-App)

There are two cases:

96

• If K is a base kind, then we need to prove claims 1a and 1b.

Claim 1a. We need to show that JAppj(T1, T2)Kjη = JApps(Fnull(T1), Anull(T2))Ksη′.

We can compute the denotations on both sides:

– JAppj(T1, T2)Kjη = JT1Kjη(JT2Kjη)

– JApps(Fnull(T1), Anull(T2))Ksη′ = JFnull(T1)Ksη′(JAnull(T2)Ksη′)
By the induction hypothesis, we know that for arbitrary types x ∈ Unull

1 and y ∈
U1 with x ∼ y, we have JT1Kjη(x) = JFnull(T1)Ksη′(y). Again by the induction
hypothesis, we have JT2Kjη ∼ JAnull(T2)Ksη′. Additionally, by Lemma 3.3.3, we
know that Γ `j T :: ∗n implies JT2Kjη ∈ Unull

1 . This means that we can choose
x = JT2Kjη and y = JT2Ksη′ as needed.

Claim 1b. Notice that Anull(T) = Apps(Fnull(T1), Anull(T2)) = Fnull(T). The claim
then follows from 1a above.

• If K is a type application, we need to prove claim 2. Let arr(K) = m ≥ 1. Then
arr(∗n ⇒ K) = m + 1. Let ~x and ~y be arbitrary m-vectors as in the statement
of the theorem, such that ~x ∼ ~y. We need to show that JAppj(T1, T2)Kjη(~x) =

JApps(Fnull(T1), Anull(T2))Ksη′(~y). Now build the vectors ~x′ = (JT2Kjη, x1, . . . , xm) and
~y′ = (JAnull(T2)Ksη′, y2, . . . , ym). Notice that JT2Kjη ∼ JAnull(T2)Ksη′ by the induction

hypothesis, so ~x′ ∼ ~y′. Further, both new vectors have m + 1 elements. By the
induction hypothesis applied to Γ `j T1 :: ∗n ⇒ K we can conclude that JT1Kjη(~x′) =

JFnull(T1)Ksη′(~y′). But

JAppj(T1, T2)Kjη(~x) = (JT1Kjη(JT2Kjη))(~x)

= JT1Kjη(~x′)

And similarly,

JApps(Fnull(T1), Anull(T2))Ksη′(~y) = (JFnull(T1)Ksη′(JAnull(T2)Ksη′))(~y)

= JFnull(T1)Ksη′(~y′)
And we are done.

Case (KJ-Var) K = ∗n, T = X,Fnull(T) = X + Null, and Anull(T) = X.

Claim 1a.

JXKjη = η(X) and JX+NullKsη′ = η′(X)∪{null}. Notice that η(X) = η(X)∪{null}
since null ∈ η(X), because η � Γ. But then η ∼ η′ implies η(X)∪{null} = η′(X)∪{null}
as needed.

97

Claim 1b. We need to show that η(X) ∼ η′(X). This follows directly from η ∼ η′.

Claim 2. Does not apply.

Case (KJ-Null) K = ∗ and T is an arbitrary type.

Claims 1a and 1b.

From the antecedent of the rule, we know that Γ `j T :: ∗n. By the induction hypothe-
sis, we have JT Kjη = JFnull(T)Ksη′ and JT Kjη ∼ JAnull(T)Ksη′. This is exactly what we need
to show, so we are done.

Claim 2. Does not apply.

Case (KJ-NonNull)

Claims 1a and 1b.

From the antecedent of the rule, we know that Γ `j T :: ∗v. By the induction hypothesis,
we have JT Kjη = JFnull(T)Ksη′ and JT Kjη ∼ JAnull(T)Ksη′. This is exactly what we need to
show, so we are done.

Claim 2. Does not apply.

3.4.2 Discussion

Theorem 3.4.3 (soundness) has a couple of interesting implications.

• First, the theorem shows that our intuitive criteria for correctness of type nullification,
“nullification does not change the meaning of types”, was not far off the mark. The
formal version that we showed correct could be summarized as “nullification does not
change the meaning of types that have base kinds”.

• Second, we were able to prove correct a slightly more sophisticated version of nullifi-
cation where the type arguments are not nullified. This version is more useful than
naive nullification (where type arguments are nullified), because it minimizes changes
required to “migrate” Scala code to the world of explicit nulls. For example, suppose
we are working with a Java library ListOps that provides operations on Java lists of
the form List<T>. Further, suppose that List<T> is an invariant generic, meaning
that List<A> is a subtype of List only if A is equal to B. Now imagine using the
Java library from Scala:

98

val lst : List [Int] = ...

val gt3 = ListOps.filter (lst , (x: Int) => x > 3)

After naive nullification, the definition of gt3 will no longer typecheck. This is
because the signature of filter (which is Java-defined), changes from

List<T> filter(List<T> lst, ...)

to

List<T|Null>|Null filter(List<T|Null>|Null lst, ...)

Since List<T> is invariant, we need to update the type of lst from List[Int] to
List[Int|Null].

By contrast, with our version of nullification, filter becomes

List<T>|Null filter(List<T>|Null lst, ...)

and now no changes are required.

• Additionally, the theorem implies that it does not matter whether we use nullable
or non-nullable type arguments with a generic that has been nullified. For example
(still thinking about List<T>), on the Java side, List<T> can only be instantiated
with a nullable type: List<Integer> is valid, but List<int> is not. From Scala,
however, both List[Int|Null] (nullable argument) List[Int] (non-nullable) are
valid. Theorem 3.4.3 says that the sets denoting both of these last two types are
equal, because Int|Null ∼ Int.

3.5 Related Work

The model of predicative System F that I used in this chapter is based on the one given in
Mitchell [1996] (which, in turn, is based on Bruce et al. [1990]). The denotations for sums
and product types are standard in the literature.

There is one deviation from Mitchell [1996] in how I construct denotations for generics.
The standard way is to say that the denotation of a generic type is an (infinite) Cartesian
product, whereas I use a simple function on types. That is, instead of saying

JΠs(X :: ∗).SKsη =
∏
a∈U1

JSKj(η[X → a])

99

I define

JΠs(X :: ∗).SKsη = λ(a ∈ U1).JSKs(η[X → a])

Given a family of sets {Xi} indexable by a set I, the infinite Cartesian product
∏

i∈I Xi

is defined as

∏
i∈I

Xi =

{
f : I →

⋃
i∈I

Xi|∀i.f(i) ∈ Xi

}

The reason for the discrepancy is that λj and λs have type applications at the type
level (e.g. Appj(S, T)), whereas in System F, type applications are terms (t [T]). If we use
the variant with the Cartesian product, then JApps(Πs(X :: ∗).X, ints)Ks∅ would be an
element of JintsKs (an element of Z). However, what we need for the soundness theorem
is that JApps(Πs(X :: ∗).X, ints)Ks∅ be equal to JintsKs, hence the second definition.

The novelty in this chapter is the use of denotational semantics for reasoning specifi-
cally about nullification. I am not aware of any related work that formalizes and proves
soundness of nullification.

3.6 Conclusions

In this chapter, I showed how the intuitive reasoning about nullification based on sets
can be given a solid formal footing, via denotational semantics. First, I presented λj and
λs, two type systems based on predicative System F. These type systems formalize the
implicit and explicit nature of null in Java and Scala, respectively. I then gave simple
set-theoretic models for λj and λs, which in turn allow us to define denotations for types
and kinds. I formalized nullification as a function from λj types to λs types. Finally, I
proved a soundness theorem that says that nullification leaves the meaning of types largely
unchanged.

That the meaning of types with base kinds remains unchanged is important, because
program values always have base kinds. If nullification underapproximated type denota-
tions (e.g. by mapping Java’s String to Scala’s String), then we would see unexpected
values during execution, leading to unsoundness. On the other hand, if nullification over-
approximated type denotations (e.g. by mapping Java’s String to Scala’s Any), then

100

usability would suffer. Preservation of type denotations then gives us the most usable
interoperability that is still sound.

The meaning of generics is changed by nullification. This reflects the fact that, in λs
and Scala, type arguments can be either value or reference types, while in λj and Java
only reference types can be used. The soundness theorem (Theorem 3.4.3) in this chapter
shows that fully-applied generics (which have base kinds) remain unchanged. This means
that Java types corresponding fully-applied generics (e.g. ArrayList<String>), can be
represented exactly in Scala. The other direction does not hold; e.g. the Scala type
List[Int] cannot be represented directly in Java (because Int is a value type). Instead,
List[Int] must be translated as List<Integer> or List<Object>, where Integer is the
Java type for boxed integers. The type translation from Scala to Java is not modelled in
this chapter and remains as future work.

101

Chapter 4

Blame for Null

Even though type nullification preserves the meaning of types, when we run Scala

code that depends on Java code, nullability errors can still occur. In this chapter,

I show how to reason about the presence and provenance of such errors using the

concept of blame from gradual typing [Wadler and Findler, 2009]. Specifically, I

introduce a calculus, λnull, where some terms are typed as implicitly nullable and

others as explicitly nullable. Just like in the original blame calculus, interactions

between both kinds of terms are mediated by casts with attached blame labels, which

indicate the origin of errors. On top of λnull, I then create a second calculus, λsnull,

which closely models the interoperation between Java and Scala code as it relates to

nullability. The main result of this chapter is a theorem that says that if an interop

cast in λsnull fails, an implicitly nullable term is to blame. Most of the results in this

chapter have been formalized in the Coq theorem prover.

4.1 Nullability Errors

The soundness theorem (Theorem 3.4.3) from Chapter 3 showed that type nullification
leaves the meaning of types (almost) unchanged. Since we already have a “soundness”
theorem, are we done? Unfortunately, the answer is no, because Theorem 3.4.3 talks only
about types and says nothing about terms. In particular, we do not know whether in a
world where Scala has explicit nulls, there can still be nullability (runtime) errors. As
it turns out, such errors are still possible. We are then in need of new theorems that
characterize whether errors can occur in specific programs and, when they do occur, are
able to trace back the cause of the errors.

102

Here are two hypotheses about nullability errors, both of which will turn out to be
incorrect:

1. Explicit nulls statically rule out nullability errors.

This seems plausible (and is what we would like to be true): after all, the type system
will disallow some programs that would lead to runtime errors, such as

val s : String = null // error: expected a value of type ‘String ‘,

// but got ‘Null‘

val len = s.length

or its dual

val s : String |Null = null // ok, nullable string

val len = s.length // error: ‘String |Null‘ has no ’length ’ field

However, Scala programs can use Java-defined methods, and Java code is still typed
with implicit nulls. This can lead to errors while executing Java-defined code:

1 // Java−defined

2 int javaGetLength(String s) {
3 return s.length()

4 }

1 // Scala−defined

2 def scalaGetLength(s: String|Null): Int = {
3 return javaGetLength(s) // Defer to Java helper.

4 }
5

6 scalaGetLength(null) // throws NullPointerException

The problem here is that type nullification changes javaGetLength’s argument type
from String to String|Null. That is, the Java-defined method advertises itself as
being able to handle all strings and null. However, it violates its own contract by
not performing any null checks, leading to an error if the argument s is null.

This leads us to our second incorrect attempt at characterizing when nullability errors
occur.

103

2. Nullability errors do happen, but only while running Java code.

The first step is to clarify what we mean by “running”. Looking at the example
above, we could refine the hypothesis to be

If an error (null pointer exception) occurs, the instruction currently being
executed must be “Java-generated”.

Even though this definition is still informal, it seems to hold for the example we saw
above. Unfortunately, this will not do either; consider

1 // S.scala

2 class StringOps {
3 def len(s : String): Int = s.length

4 }
5

6 def main() = {
7 val dec = new Decorator(new StringOps)

8 val len2x = dec.twiceLen(null) // throws NullPointerException

9 }

1 // J.java

2 class Decorator {
3 StringOps ops;

4

5 Decorator(StringOps ops) {
6 this.ops = ops

7 }
8

9 int twiceLen(String s) {
10 return ops.len(s) ∗ 2;

11 }
12 }

When the exception is thrown, the call stack looks as follows (assuming the stack
grows upwards):

StringOps.len (S.scala:3)

104

Decorator.twiceLen (J.java:10)

StringOps.main (S.scala:8)

That is, the exception occurred while executing Scala code! This invalidates our
hypothesis. The problem is that Java code can access Scala code, but the Java type
system does not track nullability. In this case, Decorator::twiceLen, which is Java-
defined, calls StringOps::len, which is Scala-defined. Crucially, because of erasure,
Java “casts”1 StringOps::len’s original Scala type

StringScala → Int

to
StringJava → Int

Informally, for such a cast to be sound, we need the first type to be a subtype of the
second:

StringScala → Int <: StringJava → Int

The subtyping rule for functions is contravariant in the argument type, so we need
StringJava <: StringScala. However, when viewed as sets, StringJava = StringScala∪
{null}, so StringJava is not a subtype of StringScala. This makes the cast unsound,
as witnessed by the exception.

To summarize, we have seen that nullability errors do happen even in the presence of
explicit nulls. Further, they can happen while executing not only Java code, but also Scala
code. This is disappointing, because the motivation for making nulls explicit in Scala was
precisely to avoid runtime errors. However, if we take the presence of errors as given, what
is the next best thing? That is, what can we say or guarantee about nullability errors in
these dual Java-Scala programs?

Intuitively, the reason there are errors is that the Java type system is “leaking” the
unsoundness that comes from being implicitly nullable into the Scala world. If we had a
way of assigning responsibility to Java or Scala every time a runtime error occurs, we would
then expect that Java could always be blamed for such errors. In fact, we can re-purpose
techniques from gradual typing to make this kind of blame assignment.

1This is a conceptual cast; there are no runtime checks.

105

Roadmap

Here is an outline of the rest of the chapter:

• Section 4.2 briefly reviews the blame calculus of Wadler and Findler [2009].

• Section 4.3 adapts the ideas of the blame calculus to the nullability setting. We
will introduce a new core calculus, λnull, that can express both implicit and explicit
nullability in its types. The main results of this section are theorems 4.3.10 and
4.3.11. Taken together, they constrain how λnull terms can fail during evaluation.

• Section 4.5 builds on λnull to construct a higher-level calculus, λsnull. λsnull models
language interoperability more closely, because terms are stratified into an “explicit
nulls” sublanguage and an “implicit nulls” one. The main result in this section
is Theorem 4.5.4, which implies that if interop casts in λsnull fail, then the implicit
sublanguage can be blamed.

• Finally, Section 4.4 informally explains how we can use the concept of blame to assign
responsibility for nullability errors in the Java/Scala setting.

4.2 Blame Calculus

The blame calculus of Wadler and Findler [2009] models the interactions between less-
precisely and more-precisely typed code. For example, the less-precisely typed code could
come from a dynamically-typed (or unityped [Harper, 2016]) language, and the more-
precisely typed code could come from a statically-typed language like Scala. The goal of
the calculus is twofold:

• To characterize situations where errors can or cannot occur as a result of the interac-
tion between both languages: e.g. “there will not be runtime errors, unless the typed
code calls the untyped code”.

• If runtime errors do occur, to assign blame (responsibility) for the error to some term
present in the evaluation.

To do the above, the blame calculus extends the simply-typed lambda calculus with
casts that contain blame labels2. The notation for casting a term s from a type S to another

2The original presentation in Wadler and Findler [2009] also adds refinement types, but we will not
need them here.

106

type T with blame label p is3

s : S =⇒p T

During evaluation, a cast might succeed, fail, or be be broken up into further casts.
For example, suppose that we have a cast that turns 4 from an integer into a natural
number. Such a cast would naturally succeed, and one step of evaluation then makes the
cast disappear:

4 : Int =⇒p Nat 7−→ 4

A cast can also fail. This is when we use the blame label. For example, if we try to
turn an integer into a string using a cast with blame label p, then we fail and blame p,
written ⇑ p:

4 : Int =⇒p String 7−→⇑ p

If the cast is higher-order, however, things get tricky. How are we to determine whether
a function of type Int→ Int also has type Nat→ Nat?

(λ(x : Int).x− 2) : Int→ Int =⇒p Nat→ Nat

Informally, the cast above is saying: “if you provide as input a Nat that is also an
Int, the function will return an Int that is also a Nat”. Intuitively, the cast is incorrect,
because the function can return negative numbers. In general, however, we cannot hope to
statically ascertain the validity of a higher-order cast. The insight about what to do here
comes from work on higher-order contracts [Findler and Felleisen, 2002]. The key idea is
to delay the evaluation of the cast until the function is applied. That is, we consider the
entire term above, the lambda plus its cast, a value. Then, if we need to apply the lambda
wrapped in a cast, we use the following rule:

((v : (A→ B) =⇒p (A′ → B′)) w) 7−→ (v (w : A′ =⇒p A)) : B′ =⇒p B

Notice how the original cast was decomposed into two separate casts on subterms. This
rule says that applying a lambda wrapped in a cast involves three steps:

• First, we cast the argument w, which is expected to have type A′, to type A.

• Then we apply the function v to its argument, as usual.

• Finally, we cast the result of the application from B′ back to the expected type B.

3The notation for casts used in this chapter comes from [Ahmed et al., 2011].

107

Also notice how the blame label in the cast w : A′ =⇒p A′ changed from p to
its complement p. We can think of blame labels as strings (or, more abstractly, ar-
bitrary sentinel values). We assume the existence of a complement function with type
Blame label → Blame label, and write p for the label that is the complement of blame
label p. The complement operation is involutive, meaning that it is its own inverse: p = p.

When a runtime error happens, complementing blame labels leads to two kinds of
blame: positive and negative:

Positive blame Given a cast with blame label p, positive blame happens when the term
inside the cast is responsible for the failure. In this case, the (failed) term will evaluate to
⇑ p. For example, recall our example with the faulty function that subtracts two from its
argument:

((λ(x : Int).x− 2) : Int→ Int =⇒p Nat→ Nat) 1

7−→ ((λ(x : Int).x− 2) (1 : Nat =⇒p Int)) : Int =⇒p Nat

7−→ ((λ(x : Int).x− 2) 1) : Int =⇒p Nat

7−→ (1− 2) : Int =⇒p Nat

7−→ − 1 : Int =⇒p Nat

7−→ ⇑ p

The term being cast (the lambda) is reponsible for the failure, because it promised to
return a Nat, which −1 is not.

Negative blame If the cast fails because it is provided an argument of an incorrect type
by its context (surrounding code), then we will say the failure has negative blame. In this
case, the term will evaluate to ⇑ p. For example, suppose our example function is used
in a unityped context, where the only type is ?. Without help from its type system, the
context might try to pass in a String as argument:

((λ(x : Int).x− 2) : Int→ Int =⇒p ?→ ?) "one"

7−→ ((λ(x : Int).x− 2) ("one" : ? =⇒p Int)) : Int =⇒p ?

7−→ ⇑ p

Because the context tried to pass an argument that is not an Int, we blame the failure
on the context.

108

4.2.1 Well-typed Programs Can’t Be Blamed

The central result in Wadler and Findler [2009] is a blame theorem that provides two
guarantees:

• Casts from less-precise to more-precise types, like v : Int → Int =⇒p Nat → Nat,
only fail with positive blame.

• Casts from more-precise to less-precise types, like v : Int → Int =⇒p ? → ?, only
fail with negative blame.

In both cases, the less precisely typed code is assigned responsibility for the failure.
Wadler and Findler [2009] summarize this result with the slogan “well-typed programs
can’t be blamed”, itself a riff on an earlier catchphrase, “well-typed programs cannot go
wrong”, due to Milner [Milner, 1978].

In the next section, I will show how we can adapt ideas from the blame calculus to
reason about nullability errors.

4.3 A Calculus with Implicit and Explicit Nulls

In this section, I introduce the λnull (“lambda null”) calculus. λnull is based on the blame
calculus of Wadler and Findler [2009], and the presentation in Wadler [2015].

λnull contains the two key ingredients we need to model interoperation between Java
and Scala, as it relates to null:

• Types that are implicitly nullable and types that are explicitly nullable.

• Casts that mediate the interaction between the types above, along with blame labels
to track responsibility for failures, should they occur.

The terms and types of λnull are shown in Figure 4.1, and are explained below. Sec-
tion 4.5 shows how to use λnull to model the interaction between two languages, each
treating nullability differently (like Java and Scala). This section focuses on λnull and its
metatheory.

109

x, y, z Variables

p, q Blame labels
p Blame complement

f, s, t ::= Terms
x variable
null null literal
λ(x : T).s abstraction
s t application
app(f, s, t) safe application
s : S =⇒p T cast

u, v ::= Values
λ(x : T).s abstraction
null null literal
v : S =⇒p T cast

r ::= Results
t term
⇑ p blame

S, T, U ::= Types
Null null
#(S → T) presumed non-nullable function
?(S → T) safe nullable function
!(S → T) unsafe nullable function

Figure 4.1: Terms and types of λnull

4.3.1 Values of λnull

A value in λnull is any of the following: an abstraction λ(x : T).s, the null literal null, or
another value v wrapped in a cast, v : S =⇒p T .

The motivation for classifying certain casts as values is as follows. Consider the cast
null : Null =⇒p!(S → T). As we will see later, !(S → T) is an unsafe nullable function
type, so the cast can fail. However, the cast does not fail immediately; instead, the cast
only fails if we try to apply the (null) function to an argument, like so (null : Null =⇒p

!(S → T)) w. This matches Java’s behaviour, where passing a null when an object is
expected only triggers an exception if we try to select a field or method from the null

object:

String s = null; // no exception is raised here

s . length () // an exception is raised only when we try to select a method or field

110

4.3.2 Terms of λnull

A term of λnull is either a variable x, the null literal null, an abstraction λ(x : T).s, an
application s t, a safe application app(s, t, u), or a cast s : S =⇒p T . The meaning of most
terms is standard; the interesting ones are explained below:

• The null literal is useful for modelling null pointer exceptions. Specifically, an
application s t, where s reduces to null, results in a failure (I will say more about
this later on).

• A safe application app(s, t, u) is a regular application that can also handle the case
where s is null. If s is non-null, then the safe application behaves like the regular
application s t. However, if s is null then the entire safe application reduces to u.

Safe applications could be desugared into a combination of if-expressions and flow
typing, if we had the latter:

app(s, t, u) ≡ if (s != null) then s t else u

For this desugaring we would need flow typing, because within the then branch we
need to be able to assume that s is non-null. Safe applications allow us to work with
nullable values without introducing flow typing.

Safe applications are similar to Kotlin’s “Elvis” operator [Kotlin Foundation, b].

• The cast s : S =⇒p T is used to change the type of s from S to T . The blame label
p will be used to assign blame for a failure that happens due to a cast.

Finally, the result of evaluating a λnull term is either a value v or an error with blame
p, denoted by ⇑ p.

4.3.3 Types of λnull

The types of λnull are also shown in Figure 4.1. There are four kinds of types:

• The Null type contains a single element: null.

• The presumed non-nullable function type #(S → T), as the name indicates, contains
values that should not be null. However, the value might still end up being null,
through casts. This corresponds to non-nullable types like StringScala. To be more
concise, from now on I will refer to these types simply as non-nullable function types.

111

Γ ` t : T

Γ(x) = T

Γ ` x : T
(T-Var)

Γ ` null : Null (T-Null)

Γ, x : S ` s : T

Γ ` λ(x : S).s : #(S → T)
(T-Abs)

Γ ` s : �#,!(S → T) Γ ` t : S

Γ ` s t : T
(T-App)

Γ ` f : �?,!(S → T) Γ ` s : S
Γ ` t : T

Γ ` app(f, s, t) : T
(T-SafeApp)

Γ ` s : S S T

Γ ` (s : S =⇒p T) : T
(T-Cast)

S T

Null Null (C-NullRefl)

Null �?,! (S → T) (C-Null)

S ′ S T T ′

�#,?,!(S → T) �#,?,! (S ′ → T ′)
(C-Arrow)

Figure 4.2: Typing and compatibility rules of λnull

• A value with safe nullable function type ?(S → T) is allowed to be null. The type
system will ensure that any such functions are applied using safe applications. This
corresponds to nullable union types like StringScala|Null.

• By contrast, a value with unsafe nullable function type !(S → T) is also allowed to be
null, but the type system does not enforce a null check before an application. That
is, if s has type !(S → T), the type system will allow both s t and app(s, t, u), even
though the former might fail. This corresponds to types in Java, which are implicitly
nullable.

4.3.4 Typing λnull

The typing rules for λnull are shown in Figure 4.2. The three interesting rules are T-App,
T-SafeApp, and T-Cast:

112

• (T-App) The rule for a type application s t is almost standard, except that s can
not only have type #(S → T), but also the unsafe nullable function type !(S → T).
This represents the fact that in a type system with implicit nullability (like Java’s),
the type system allows operations (in this case, function applications) that can lead
to null-related errors. We use the syntax Γ ` s : �#,!(S → T) to indicate that either
Γ ` s : #(S → T) or Γ ` s :!(S → T). This kind of judgment, where the type is
ambiguous, is purely a convenience to simplify the presentation: we could instead
have two rules, T-App1 and T-App2, each using a different function type.

• (T-SafeApp) To type a safe application app(f, s, t), we check that f is a nullable
function type; that is, it must have type ?(S → T) or !(S → T) (if f had type
#(S → T) we would use T-App). Notice that the type of s must be S (the argument
type), but t must have type T (the return type). This is because t is the “default”
value that we return if f is null.

• (T-Cast) To type a cast s : S =⇒p T we check that s indeed has the source type
S. The entire cast then has type T . Additionally, we make sure that S and T are
compatible, written S T . Type compatibility is described below.

Notice that the type of null is always Null, so in order to get a nullable function we
need to use casts4. For instance,

T-Null ` null : Null Null ?(Null→ Null)
C-Null

` null : Null =⇒p?(Null→ Null) : ?(Null→ Null)
T-Cast

Compatibility

Compatibility is a binary relation on types that is used to limit (albeit only slightly) which
casts are valid. Given types S and T , we can cast S to T only if S T . The compatibility
rules are shown in Figure 4.2.

Lemma 4.3.1. Compatibility is reflexive, but is neither symmetric nor transitive.

Proof. The reflexive case follows by a simple induction.

4In an implementation of λnull, some of the verbosity in this example could be avoided via desugaring,
and the casts might be ellided.

113

A counter-example to symmetry is that Null #(Null → Null), but the latter is
not compatible with the former.

A counter-example to transitivity is that Null ?(Null → Null) and ?(Null →
Null) #(Null→ Null), but Null is not compatible with #(Null→ Null).

4.3.5 Evaluation of λnull

The evaluation rules for λnull are given in Figure 4.3. λnull has a small-step operational
semantics that uses evaluation contexts. Notice that the result r of an evaluation step can
be a term or an error, denoted by ⇑ p.

The decision tree below shows a simplified view of the evaluation rules:

R-SafeAppNorm

R-SafeAppNull

R-AppNorm

R-AppCast

R-AppFail

t =
app(v1, v2, v3)

abs(v1)

null(v1)

t = v1 v2

abs(v1)

otherwise

v1 is a cast to
#(S → T)

null(v1)

t

The unary predicates on types null and abs test whether a value v is equal to null

or to a lambda abstraction, respectively. Additionally, these predicates are able to “see
through” casts.

Example 4.3.1. The following hold:

• null(null)

• null(null : Null =⇒p #(Null→ Null))

• abs(λ(x : Null).x)

• abs(λ(x : Null).x : #(Null→ Null) =⇒p?(Null→ Null))

114

s 7−→ r

E[(λ(x : T).s) v] 7−→ E[[v/x]s] (R-App)

null(v)

E[(v : S =⇒p!(T → U))u] 7−→⇑ p
(R-AppFailExt)

null(v)

E[(v : S =⇒p #(T → U))u] 7−→⇑ p
(R-AppFailSelf)

abs(v) v � v′

E[v u] 7−→ E[v′ u]
(R-AppNorm)

null(v)

E[app(v, u, u′)] 7−→ E[u′]
(R-SafeAppNull)

abs(v) v � v′

E[app(v, u, u′)] 7−→ E[v′ u]
(R-SafeAppNorm)

abs(v)

E[(v : #(S1 → S2) =⇒p #(T1 → T2)) u] 7−→ E[(v (u : T1 =⇒p S1)) : S2 =⇒p T2]
(R-AppCast)

E ::= Evaluation contexts

[]
E s

v E
E : S =⇒p T

app(E, s, s)
app(v, E, s)

app(v, v, E)

Auxiliary predicates
null(v)

null(null) (N-Null)

null(v)

null(v : S =⇒p T)
(N-Cast)

abs(v)

abs(λ(x : T).s) (A-Abs)

abs(v)

abs(v : S =⇒p T)
(A-Cast)

Normalization
v � u

λ(x : T).s� λ(x : T).s (Norm-Abs)

v � u

v : �#,?,!(S1 → S2) =⇒p �#,?,!(T1 → T2)� u : #(S1 → S2) =⇒p #(T1 → T2)
(Norm-Cast)

Figure 4.3: Evaluation rules of λnull, along with auxiliary predicates and the normalization
relation

115

The evaluation rules can be divided into two groups: rules for applications (R-App, R-
AppFail, R-AppCast, and R-AppNorm), which might fail, and rules for safe applications
(R-SafeAppNull, R-SafeAppNorm), which never fail. The rules are described below:

• R-App is standard beta reduction.

• R-AppFailExt handles the case where we have a function application and the value
in the function position is in fact null. This last fact is checked via the auxiliary
predicate null(v). In this case, the entire term (and not just the subterm within the
context) evaluates to p. We complement the blame label because the rule requires
that the value in the function position be a cast to an unsafe nullable function type.
As previously mentioned, the code surrounding the cast v : S =⇒p!(T → U) is
responsible for the application failing, since it should be “aware” that the underlying
value v might be null. Notice that there is no corresponding rule where the cast
uses a safe nullable function type (i.e. v : S =⇒p?(T → U)). This is because the
type system ensures that such functions can only be applied via safe applications.

• R-AppFailSelf is like R-AppFailExt, but this time the null term is cast to a non-
nullable function type #(T → U). We fail with label p (as opposed to p), because it
is the term within the cast that is responsible for the failure. Conversely, the code
surrounding cast bears no responsibility, because it was “promised” a non-nullable
function.

• R-AppCast handles the case where the value v′ in the function position is a cast
involving only non-nullable function types; i.e. v′ = v : #(S1 → S2) =⇒p #(T1 →
T2). In this case, the application v′ u reduces to

(v (u : T1 =⇒p S1)) : S2 =⇒p T2

This is the classic behaviour of blame in a function application, and comes from
Findler and Felleisen [2002]. The type system guarantees that the argument u is
typed as a T1, but the function v expects it to have type S1. We then need the
cast u : T1 =⇒p S1 before passing the argument to function. Notice that the blame
label has been negated (p), because it is the context (the code calling the function
v) that is responsible for passing an argument of the right type. Conversely, when
the function v returns, its return value will have type S2, but the surrounding code
is expecting a value of type T2. We then need to cast the entire application from
S2 to T2; this time, the blame label is p. As Findler and Felleisen [2002] remark,
the handling of the blame label matches the rule for function subtyping present in

116

other systems, where the argument and return type must be contra and covariant,
respectively.

• R-AppNorm handles the case where we have an application v u, and v is a cast to
a nullable function type (either a ? function or a ! function). Additionally, we know
that abs(v) holds. In this case, what we would want to do is “translate” the nullable
function type into a non-nullable function type. This is fine because abs(v) implies
that the underlying function is non-null. The normalization relation v � v′ (also
shown in Figure 4.3) achieves this translation of casts.

Example 4.3.2. Let t = λ(x : Null).x. Suppose we are evaluating the application

(t : #(Null→ Null) =⇒p?(Null→ Null)) null

We proceed by first noticing that

abs(t : #(Null→ Null) =⇒p?(Null→ Null))

Then we normalize the value in the function position

t� t
Norm-Abs

t : #(Null→ Null) =⇒p?(Null→ Null)� Norm-Cast
t : #(Null→ Null) =⇒p #(Null→ Null)

Now we can use R-AppNorm to turn the original application into

(t : #(Null→ Null) =⇒p #(Null→ Null)) null

We can then proceed with the evaluation using R-AppCast.

• R-SafeAppNull is simple: if we are evaluating a safe application app(v, u, u′) and
the underlying function v is null, then the entire term reduces to u′ (the “default”
value).

• Finally, R-SafeAppNorm handles the remaining case. We have a safe application
app(v, u, u′) like before, but this time we know that v is an abstraction (via abs(v)).
What we would like to do is to turn the safe application into a regular one:

app(v, u, u′) 7−→ v u

117

However, this can lead to the term getting stuck, if v is a cast to a safe nullable
function (a ? function). The problem is that safe nullable functions are not supposed
to appear in regular applications.

The solution is to normalize v to v′. Since v′ is guaranteed to have a regular function
type after normalization, we can take the step

app(v, u, u′) 7−→ v′ u

and then follow up with R-AppCast or R-App.

This concludes the description of λnull. Let us now prove some theorems about it.

4.3.6 Metatheory of λnull

In developing the metatheory, I followed the approach taken in Wadler and Findler [2009]
closely. All the results in this section have been verified using the Coq proof assistant. The
Coq code is available at https://github.com/abeln/null-calculus.

Safety Lemmas

The first step is establishing that evaluation of well-typed λnull terms does not get stuck.
We do this by proving the classic progress and preservation lemmas due to Wright and
Felleisen [1994].

First, we need an auxiliary lemma that says that normalization preserves well-typedness.

Lemma 4.3.2 (Soundness of normalization). Let Γ ` v : �#,?,!(S → T) and let v � v′.
Then Γ ` v′ : #(S → T).

Then we can prove preservation.

Lemma 4.3.3 (Preservation). Let Γ ` t : T and suppose that t 7−→ r. Then either

• r =⇑ p, for some blame label p, or

• r = t′ for some term t′, and Γ ` t′ : T

118

https://github.com/abeln/null-calculus

Notice that, because of unsafe casts like null : Null =⇒p!(S → T), taking an evaluation
step might lead to an error ⇑ p.

Before showing progress, we need a lemma that says that non-nullable values typed
with a function type can be normalized.

Lemma 4.3.4 (Completeness of normalization). Let Γ ` v : �#,?,!(S → T) and suppose
that abs(v) holds. Then there exists a value v′ such that v � v′.

This lemma is necessary because if we are ever evaluating a well-typed safe application
(e.g. app(v, u, u′)) where the function value (v) is known to be non-nullable, then we need to
be able to turn the safe application into a regular application (v u) using R-SafeAppNorm.

We also need a weakening lemma.

Lemma 4.3.5 (Weakening). Let Γ ` t : T and x 6∈ dom(Γ). Then Γ[x → U] ` t : T for
any type U .

We can then show progress.

Lemma 4.3.6 (Progress). Let ` t : T . Then either

• t is a value

• t 7−→⇑ p, for some blame label p

• t 7−→ t′, for some term t′

Blame Lemmas

The progress and preservation lemmas do not tell us as much as they usually do, because of
the possibility of errors. It would then be nice to rule out errors in some cases. Examining
the evaluation rules, we can notice that errors occur due to casts: specifically, because we
sometimes cast a null value to a function type, which we later try to apply.

R-AppFailExt and R-AppFailSelf show that casts to !(T → U) can lead to negative
blame, and casts to #(T → U) can lead to positive blame. We can then define two
relations: positive subtyping (T <:+ U) and negative subtyping (T <:− U), that identify
which casts cannot lead to positive and negative blame, respectively. The subtyping rules
are shown in Figure 4.4.

119

S <:+ T

Null <:+ Null (PS-NullRefl)

Null <:+ �?,! (S → T) (PS-Null)

S ′ <:− S T <:+ T ′

#(S → T) <:+ �?,! (S ′ → T ′)
(PS-Arrow#)

S ′ <:− S T <:+ T ′

�?,!(S → T) <:+ �?,! (S ′ → T ′)
(PS-ArrowNullable)

S <:− T

Null <:− Null (NS-NullRefl)

Null <:− ?(S → T) (NS-Null)

S ′ <:+ S T <:− T ′

#(S → T) <:− ?(S ′ → T ′)
(NS-Arrow#)

S ′ <:+ S T <:− T ′

!(S → T) <:− �#,? (S ′ → T ′)
(NS-ArrowNullable)

Figure 4.4: Positive and negative subtyping

Example 4.3.3. Since the type system ensures that ?(S → T) functions are only ever
applied through safe applications, we would hope that the cast null : Null =⇒p?(S → T)
will not fail with either blame ⇑ p or ⇑ p. Therefore we have both Null <:+ ?(S → T)
and Null <:− ?(S → T).

Example 4.3.4. Since a cast null : Null =⇒p!(S → T) can fail with blame p, we have
Null <:+ !(S → T), but not Null <:− !(S → T).

Remark 4.3.1. Unfortunately, as currently defined, neither positive nor negative subtyping
are reflexive. For example, #(Null→ Null) 6<:+ #(Null→ Null). The reason is that in
the PS-Arrow# and NS-Arrow# rules we are missing a case that relates e.g. #(S → T)
with #(S ′ → T ′). If we re-add the missing case, then define the following term:

t = (null : Null =⇒q!(Null→ Null)) : !(Null→ Null) =⇒p #(Null→ Null)

We managed to construct a well-typed term such that null(t), yet t has type #(Null→
Null). Then we could cast t again and try to apply it as a function.

(t : #(Null→ Null) =⇒z #(Null→ Null)) null

120

t safe for p

x safe for p (SF-Var)

null safe for p (SF-Null)

s safe for p

λ(x : T).s safe for p
(SF-Abs)

s safe for p t safe for p

s t safe for p
(SF-App)

s safe for p t safe for p
u safe for p

app(s, t, u) safe for p
(SF-SafeApp)

S <:+ T s safe for p

s : S =⇒p T safe for p
(SF-CastPos)

S <:− T s safe for p

s : S =⇒p T safe for p
(SF-CastNeg)

abs(s) s safe for p
T1 <:− S1 S2 <:+ T2

s : #(S1 → S2) =⇒p #(T1 → T2) safe for p
(SF-CastAbsPos)

abs(s) s safe for p
T1 <:+ S1 S2 <:− T2

s : #(S1 → S2) =⇒p #(T1 → T2) safe for p
(SF-CastAbsNeg)

s safe for p
q 6= p q 6= p

s : S =⇒q T safe for p
(SF-CastDiff)

Figure 4.5: Safe for relation

The application above fails with blame label z, so we cannot have #(Null→ Null) <:+

#(Null→ Null).

The following lemma shows that subtyping refines compatibility.

Lemma 4.3.7. Let S and T be types. Then

• S <:+ T =⇒ S T

• S <:− T =⇒ S T

The next step is to lift positive and negative subtyping to work on terms. The “safe
for” relation, shown in Figure 4.5, accomplishes this. We say that a term t is safe for a
blame label p, written t safe for p, if evaluating t cannot lead to an error with blame p.
That is, evaluating t either diverges, results in a value, or results in an error with blame
different from p. I formalize this fact as a theorem below.

121

Most of the rules in the safe for relation just involve structural recursion on the
subterms of a term. The connection with subtyping appears in SF-CastPos and SF-
CastNeg. For example, to conclude that (s : S =⇒p T) safe for p, we require that
s safe for p and S <:+ T . The SF-CastAbsPos and SF-CastAbsNeg rules deal with
the case where we cast a function known to be non-null. For example, we can conclude
s : #(S1 → S2) =⇒p #(T1 → T2) safe for p if we know that abs(s) (plus a few other
conditions); that is, the cast will not fail because the underlying value is non-null. SF-
CastAbsPos and SF-CastAbsNeg cannot be handled purely via subtyping because in gen-
eral a cast s : S =⇒p #(T1 → T2) can fail with positive blame.

Positive and negative subtyping, and safe for, are all adapted from Wadler and Findler
[2009].

The following lemmas say that safe for is preserved by normalization and substitution.

Lemma 4.3.8 (Normalization preserves safe for). Let v be a value such that v safe for p
and suppose that v � v′. Then v′ safe for p.

Lemma 4.3.9 (Substitution preserves safe for). Let t and t′ be terms such that t safe for p
and t′ safe for p. Then [t′/x]t safe for p.

We now arrive at the main results in this section, the progress and preservation theorems
for safe terms.

Theorem 4.3.10 (Preservation of safe terms). Let Γ ` t : T and t safe for p. Now
suppose that t steps to a term t′ (that is, taking an evaluation step from t is possible and
does not result in an error). Then t′ safe for p.

Proof. By induction on a derivation of t 7−→ t′.

Theorem 4.3.11 (Progress of safe terms). Let Γ ` t : T and t safe for p. Suppose that
t 7−→⇑ p′. Then p′ 6= p.

Proof. By induction on a derivation of t 7−→⇑ p.

Notice that the progress theorem does not preclude the term from stepping to an error,
but it does say that the error will not have blame label p.

Here are a few implications of the theorems above. The following claims have not been
mechanized in Coq:

122

• Every application that fails does so with blame. This is a consequence of blame being
the only way for a term to fail.

• A term without casts cannot fail. This is because a term can only fail with some
blame label p, and a term without casts is necessarily safe for p.

• Casts that turn Null into a safe nullable function type ?(S → T) cannot fail either.
This is because Null <:+ ?(S → T) and Null <:− ?(S → T).

• Casts that turn a “Java” type like !(!(Null→ Null)→ Null) into the corresponding
“Scala” type ?(?(Null→ Null)→ Null) via “nullification” can only fail with positive
blame, because of negative subtyping.

• Conversely, casts that turn a “Scala” type like #(#(Null→ Null)→ Null) into the
corresponding “Java” type !(!(Null→ Null)→ Null) via erasure can only fail with
negative blame, because of positive subtyping.

The last two claims form the bases for my model of language interoperability, described
in Section 4.5.

4.3.7 Coq Mechanization

As previously mentioned, the results in Section 4.3.6 have been verified using the Coq
theorem prover. The code is available at https://github.com/abeln/null-calculus.
The two main differences between the presentation of λnull in this chapter and in the Coq
proofs are:

• The definition of evaluation in the Coq code does not use evaluation contexts, unlike
Figure 4.3. Instead, we have explicit rules for propagating errors.

• The definition of terms in the Coq code uses a locally-nameless representation of
terms [Charguéraud, 2012].

In the mechanization of the proofs, I used the Ott [Sewell et al., 2010] and LNgen
[Aydemir and Weirich, 2010] tools, which automate the generation of some useful auxiliary
lemmas from a description of the language grammar. In total, the Coq code has 3627 lines
of code, of which 1341 are manually-written proofs, while the rest are either library code
or automatically-generated by Ott and LNgen.

123

https://github.com/abeln/null-calculus

4.4 Who is to Blame?

Now that we have seen how λnull works, I would like to show how the ideas in λnull can
be used reason about Scala/Java interoperability. Specifically, we will use blame to assign
responsibility in the failure scenarios described in Section 4.1.

Example 4.4.1. Consider the term

(null : StringScala|Null =⇒Scala StringJava).length()

This is precisely the kind of term that would be generated by the call scalaGetLength(null)
in the first incorrect hypothesis from Section 4.1. A null value is typed as a nullable union
in Scala, and then passed as a regular Java string to Java code. The call to length fails
because the underlying receiver is null. The label attached to the cast is Scala because the
term that is being cast (the null literal) is Scala-generated.

The cast should fail with negative blame; i.e. Scala. This is because it is valid for
Java strings to be null, so it is the responsibility of the context (the surrounding Java
code) to do a null check before calling the length method. If we define the blame label
Java ≡ Scala, then Java is to blame in this case.

Example 4.4.2. Recall the second failure scenario from Section 4.1. There, the Scala-
defined len method is accessed from Java code. Erasure changes len’s type from StringScala →
Int to StringJava → Int. If twiceLen is called with a null argument (possible because
twiceLen is Java-defined), then the following (conceptual) cast happens:

(null : StringJava =⇒Java StringScala).length()

The cast’s label is Java because the term being cast is Java-generated. This cast should
fail with positive blame. This is because null is not an element of the StringScala type.
Once again, Java is to blame for the failure.

Remark 4.4.1. In both of the examples above, the casts are conceptual, in that there is
no explicit “cast with labels” instruction in the Java Virtual Machine. However, the null
pointer exceptions produced by trying to select a field or method on a null receiver are very
much real. We can think of null pointer exceptions as resulting from casts (derefs) without
blame labels; adding the latter allows us to assign responsibility for the exception.

In summary, by carefully reifying type casts that take place while Java and Scala
interoperate (Figure 4.6), and tagging the casts with blame labels, we are able to assign
responsibility for null-related failures.

124

StringScala

Scala Java

StringScala|Null

StringJava

erasure

erasure

nullification

Figure 4.6: Type casts between Scala and Java

4.5 A Calculus for Null Interoperability

The λnull calculus is very flexible in that it allows us to freely mix in implicitly nullable
terms with explicitly nullable terms. On the other hand, it is perhaps too flexible. In the
real world, when a language where null is explicit interoperates with a language where
null is implicit, the separation between terms from both languages is very clear (it is
usually enforced at a file or module boundary). For example, in the Java and Scala case,
the Scala typechecker will only allow explicit nulls, while the Java typechecker only allows
implicit nulls. To more faithfully model this kind of language interoperability, this section
introduces a slight modification of λnull that called λsnull (“stratified lambda null”).

4.5.1 Terms and Types of λsnull

The terms and types of λsnull are shown in Figure 4.7. The main difference with respect
to λnull is that terms and types are stratified into the world of explicit nulls (subscript

e) and the world of implicit nulls (subscript i). Notice that the grammar for types in
the “explicit” sublanguage only allows for non-nullable functions (#(S → T)) and safe
nullable functions (?(S → T)). Similarly, the implicit sublanguage only has unsafe nullable
functions (!(S → T)). The only new terms are “imports”, which in the explicit sublanguage
have syntax

importe x : Te = (ti : Ti) in te

125

t ::= Terms
te terms with explicit nulls

ti terms with implicit nulls

fe, se, te ::= Explicit terms
x variable
null null literal
λ(x : Te).se abstraction
se te application
app(fe, se, te) safe application
se : Se =⇒p Te cast

importe x : Te = (ti : Ti) in te import

fi, si, ti ::= Implicit terms
x variable
null null literal
λ(x : Ti).(si : Si) abstraction
si ti application
app(fi, si, ti) safe application
si : Si =⇒p Ti cast

importi x : Ti = (te : Te) in ti import

Se, Te ::= Explicit types
Null null
#(Se → Te) presumed non-nullable function
?(Se → Te) safe nullable function

Si, Ti ::= Implicit types
Null null
!(Si → Ti) unsafe nullable function

Figure 4.7: Terms and types of λsnull

Informally, an import term is similar to a let-binding: it binds x as having type Te in
the body te. However, the term that x is bound to, ti, comes from the implicit sublanguage:
it is a ti and not a te. Furthermore, ti is expected to have type Ti. Dually, the implicit
sublanguage has an import term that binds x to an element of te, as opposed to a ti:

importi x : Ti = (te : Te) in ti

Imports allow us to link the world of explicit nulls with the world of implicit nulls,
in much the same way as Scala’s “import” statements allow us to use Java libraries from
Scala code (similarly, Java’s import statements allow us to use Scala libraries from Java
code).

4.5.2 Typing λsnull

The typing rules for λsnull are shown in Figure 4.8. These rules are almost verbatim copies
of the typing rules for λnull (and the compatibility relation is reused from Figure 4.2). The
two new rules handle imports:

126

• TE-Import handles the case where an implicitly nullable term is used from the world
of explicit nulls. To type importe x : Te = (ti : Ti) in te, we first type te in the context
Γ, x :: Te, obtaining a type Se. This will be the type of the entire term. The interesting
twist comes next: the term ti is typed with the `i relation in an empty context, so
that ∅ `i ti : Ti. Finally, we need to somehow check that the type Ti determined by
the `i relation and the type Te expected by the `e relation are “in agreement”. This
is done by the nullification relation, whose judgment is written Ti ↪→N Te, and is
shown in Figure 4.9.

• TI-Import handles the opposite case, where a term from the world of explicit nulls
is used in an implicitly nullable term. Here we use the “dual” of nullification: the
erasure relation, written Te ↪→E Ti. Erasure is also shown in Figure 4.9.

Remark 4.5.1. In designing TE-Import and TI-import, we have to decide under which
context we will type the “embedded” term that comes from the foreign sublanguage. For
simplicity, I have chosen to do the typechecking under the empty context. This prevents
λsnull from modelling circular dependencies between terms of different languages, but oth-
erwise seems not unduly restrictive.

Nullification and erasure, shown in Figure 4.9, are binary relations on types. They
are inspired by how Java and Scala interoperate; specifically, the types of Java terms
are “nullified” before being used by Scala code, and the types of Scala terms are “erased”
before being used by Java code. Of course, the real-world nullification and erasure are more
complicated than the simple relations presented here, but I believe the formalization in this
section does capture the essence of how these relations affect nullability of types; namely,
nullification conservatively assumes that every component of a Java type is nullable, while
erasure eliminates the distinction between nullable and non-nullable types in the `e type
system.

4.5.3 Desugaring λsnull to λnull

The last step is to give meaning to λsnull terms. We could repeat the approach followed
for λnull using operational semantics, but instead we will do something different. We will
desugar λsnull terms and types to λnull terms and types, respectively. This is useful, because
in Section 4.3.6 we proved many results about λnull terms, and we would like to re-use
these results to reason about λsnull as well.

127

Γ `e te : Te

Γ(x) = Te

Γ `e x : Te
(TE-Var)

Γ `e null : Null (TE-Null)

Γ, x : Se `e se : Te

Γ `e λ(x : Se).se : #(Se → Te)
(TE-Abs)

Γ `e se : #(Se → Te) Γ `e te : Se

Γ `e se te : Te
(TE-App)

Γ `e fe :?(Se → Te) Γ `e se : S
Γ `e te : Te

Γ `e app(fe, se, te) : Te
(TE-SafeApp)

Γ `e se : Se Se Te

Γ `e (se : Se =⇒p Te) : Te
(TE-Cast)

Γ, x :: Te `e te : Se
∅ `i ti : Ti
Ti ↪→N Te

Γ `e importe x : Te = (ti : Ti) in te : Se

(TE-Import)

Γ `i ti : Ti

Γ(x) = Ti

Γ `i x : Ti
(TI-Var)

Γ ` null : Null (TI-Null)

Γ, x : Si `e si : Ti

Γ `e λ(x : Si).(si : Ti) :!(Si → Ti)
(TI-Abs)

Γ `e si :!(Si → Ti) Γ `e ti : Si

Γ `e si ti : Ti
(TI-App)

Γ `i fi :!(Si → Ti) Γ `i si : Si
Γ `i ti : Ti

Γ `i app(fi, si, ti) : Ti
(TI-SafeApp)

Γ `i s : Si Si Ti

Γ `i (si : Si =⇒p Ti) : Ti
(TI-Cast)

Γ, x :: Ti `i ti : Si
∅ `e te : Te
Te ↪→E Ti

Γ `i importi x : Ti = (te : Te) in ti : Si

(TI-Import)

Figure 4.8: Typing rules of λsnull
128

Ti ↪→N Te

Null ↪→N Null (N-Null)

Si ↪→N Se
Ti ↪→N Te

!(Si → Ti) ↪→N ?(Se → Te)
(N-Arrow!)

Te ↪→E Ti

Null ↪→E Null (E-Null)

Se ↪→E Si
Te ↪→E Ti

?(Se → Te) ↪→E !(Si → Ti)
(E-Arrow?)

Se ↪→E Si
Te ↪→E Ti

#(Se → Te) ↪→E !(Si → Ti)
(E-Arrow#)

Figure 4.9: Nullification and erasure relations

We will do the desugaring using a pair of functions (De,Di). De is a function that sends
λsnull terms from the explicit sublanguage to λnull terms. Similarly, Di is a function that
maps λsnull terms from the implicit sublanguage to λnull terms. Both functions are shown
in Figure 4.10.

The first thing to notice is that we do not actually need to desugar types. This is
because λsnull types (from both sublanguages) are also λnull types.

When it comes to terms, most cases in Figure 4.10 are handled by straightforward
structural recursion on the term. There are only three interesting cases:

• (DI-Abs) An abstraction λ(x : Si).(si : Ti) from the implicit sublanguage is typed as
!(Si → Ti) (Figure 4.8). However, the corresponding lambda in λnull, λ(x : Si).Di(si),
will have type #(Si → Ti). So that the metatheory in Section 4.5.4 works out, we
need the types to match; hence the cast. This kind of “automatically inserted”
cast will have blame label Iint: the I stands for “implicit”, indicating that the term
being cast is from the implicit sublanguage. The int subscript indicates that it is an
“internal” cast; that is, it does not occur at the boundary between the implicit and
explicit sublanguages. To do the cast, we need the return type Ti of the function:
this is why abstractions in the implicit sublanguage contain type annotations for the
return type.

• (DE-Import) This handles the case where we import a term from the implicit world
into the explicit world. There are two desugarings that happen in this rule. The

129

De : se −→ s

De(x) = x (DE-Var)

De(null) = null (DE-Null)

De(λ(x : Te).se) = λ(x : Te).De(se) (DE-Abs)

De(se te) = De(se) De(te) (DE-App)

De(app(fe, se, te)) = app(De(fe),De(se),De(te)) (DE-SafeApp)

De(se : Se =⇒p Te) = De(se) : Se =⇒p Te (DE-Cast)

De(importe xe : Te = (ti : Ti) in te) = (λ(x : Te).De(te)) (Di(ti) : Ti =⇒I Te) (DE-Import)

Di : si −→ s

Di(x) = x (DI-Var)

Di(null) = null (DI-Null)

Di(λ(x : Si).(si : Ti)) = (λ(x : Si).Di(si)) : #(Si → Ti) =⇒Iint !(Si → Ti) (DI-Abs)

Di(si ti) = Di(si) Di(ti) (DI-App)

Di(app(fi, si, ti)) = app(Di(fi),Di(si),Di(ti)) (DI-SafeApp)

Di(si : Si =⇒p Ti) = Di(si) : Si =⇒p Ti (DI-Cast)

Di(importi xi : Ti = (te : Te) in ti) = (λ(x : Ti).Di(ti)) (De(te) : Te =⇒E Ti) (DI-Import)

Figure 4.10: Desugaring λsnull terms to λnull terms

130

first is a standard desugaring that turns the import (effectively, a let binding) into a
lambda abstraction that is immediately applied. In this way, we do not need to add
let bindings to λnull. The second desugaring is the insertion of a cast that “guards”
the transformation of the original implicit type Ti into the explicit type Te. The cast
has blame label I to indicate that the term being cast is from the implicit world
(conversely, we could say that the context using the term is from the explicit world).

• (DI-Import) We also need a dual rule for importing a term from the explicit world
into the implicit world. This rule does the same as (DE-Import), except that the cast
now goes in the opposite direction: from Te to Ti. The cast is labelled with blame E ,
indicating that the term being cast comes from the explicit sublanguage.

4.5.4 Metatheory of λsnull

The following two lemmas are key. They show that nullification implies negative subtyping,
and erasure implies positive subtyping.

Lemma 4.5.1. Let S and T be two types, such that S ↪→N T . Then S <:− T and
T <:+ S.

Lemma 4.5.2. Let S and T be two types, such that S ↪→E T . Then S <:+ T and
T <:− S.

This is important because nullification is used to import implicit terms into the explicit
world. The lemma shows that nullification implies negative subtyping, and casts where
the arguments are negative subtypes never fail with negative blame. This means that if
nullification-related casts fail, they do so by blaming the term being cast (which belongs
to the implicit world), and never the context (which belongs to the explicit world). That
is, the code with implicit nulls is at fault!

Dually, erasure is used to import explicit terms into the implicit world. Since erasure
implies positive subtyping, then erasure-related casts can only fail with negative blame.
That is, the context (which belongs to the implicit world) is at fault for erasure-related
failures. Again, implicit nulls are to blame!

The remaining results in this section have not been mechanized in Coq.

Theorem 4.5.3 (Desugaring preserves typing). Let te and ti be explicit and implicit terms
from λsnull, respectively. Then

131

• Γ `e te : Te =⇒ Γ ` De(te) : Te, and

• Γ `i ti : Ti =⇒ Γ ` Di(ti) : Ti

Proof. By induction on a derivation of Γ `e te : Te or Γ `i ti : Ti. In the proof below, “IH”
stands for “induction hypothesis”. The interesting cases are TE-Import, TI-Import, and
TI-Abs.

Γ `e te : Te

Case (TE-Var) te = x and De(te) = x. We know that Γ(x) = Te, so Γ ` x : Te by
T-Var.

Case (TE-Null) te = null and De(te) = null. Then Γ ` null : Null by T-Null.

Case (TE-Abs) te = λ(x : Se).se, Te = #(Se → Ue), and De(te) = λ(x : Se).De(se).
From the premises, we know that Γ, x :: Se `e se : Ue. By the IH we then get Γ, x :: Se `
De(se) : Te. We can then use T-Abs to get Γ ` λ(x : Se).De(se) : #(Se → Ue) as needed.

Case (TE-App) te = se s
′
e, Γ `e se : #(Se → Te), and Γ `e s′e : Se. Additionally,

De(te) = De(se) De(s
′
e). By the IH we get Γ ` se : #(Se → Te) and Γ ` s′e : Se. We can

then use T-App to get what we need.

Case (TE-SafeApp) te = app(fe, se, s
′
e), Γ `e fe :?(Se → Te), Γ `e se : Se, and

Γ `e s′e : Te. Also, De(te) = app(De(fe),De(se),De(s
′
e)). We can then use the IH thrice

and T-SafeApp to get what we need.

Case (TE-Cast) te = se : Se =⇒p Te, Γ `e se : Se, and Se Te. Also, De(te) =
De(se) : Se =⇒p Te. By the IH we get Γ ` De(se) : Se. Notice that the compatibility
relation is shared by λnull and λsnull, and the types do not are not changed by desugaring.
Therefore, we can use T-Cast to get Γ ` De(se) : Se =⇒p Te : Te as needed.

Case (TE-Import) te = importe x : Se = (ti : Si) in t′e, Γ, x :: Se `e te : Te, ∅ `i ti :
Si, and Si ↪→N Se. Also, De(te) = (λ(x : Se).De(t

′
e)) (Di(ti) : Si =⇒I Se).

What do we need for De(t
′
e) to be type-correct?

• De(t
′
e) is an application: the lhs needs to have type #(Se → Te), and the rhs needs

to have type Se.

• Let us look at the rhs first. By the IH, ∅ ` Di(ti) : Si. Weakening (Lemma 4.3.5)
gives us Γ ` Di(ti) : Si. In order to use T-Cast to type the cast, we only additionally
need that Si Se. Lemma 4.5.1 tells us that Si ↪→N Se implies Si Se. This
gives us Γ ` (Di(ti) : Si =⇒I Se) : Se as needed.

132

• To type the LHS, notice that the IH tells us that Γ, x :: Se ` De(t
′
e) : Te. Applying

T-Abs we get Γ ` λ(x : Se).De(t
′
e) : #(Se → Te).

• Finally, we use T-App to give De(te) type Te, as needed.

Γ `i ti : Ti

Case (TI-Var) Similar to TE-Var.

Case (TI-Null) Similar to TE-Null.

Case (TI-Abs) ti = λ(x : Si).(si : T ′i), Ti =!(Si → T ′i), and Γ, x :: Si `i si : T ′i . Also,
Di(ti) = (λ(x : Si).Di(si)) : #(Si → T ′i) =⇒Iint !(Si → T ′i). We need two things to hold
here:

• By the IH, we get that Γ, x :: Si ` Di(si) : T ′i . Applying T-Abs we then get Γ `
λ(x : Si).Di(T

′
i) : #(Si → T ′i).

• For the cast to be valid, we need #(Si → T ′i) !(Si → T ′i). Lemma 4.3.1 says that
compatibility is reflexive, so we know that Si Si and T ′i T ′i . Using C-Arrow
we then get #(Si → Ti) !(Si → T ′i) as needed.

We can then use T-Cast to type Di(ti) with type !(Si → T ′i) as needed.

Case (TI-App) Similar to TE-App.

Case (TI-SafeApp) Similar to TE-SafeApp.

Case (TI-Cast) Similar to TE-Cast.

Case (TI-Import) This is similar to TE-Import, except that instead of Lemma 4.5.1
we use Lemma 4.5.2 to derive compatibility, so that the cast on the argument is well-
formed.

Definition 4.5.1 (Set of blame labels in a term). We will denote the set of blame labels
in a term t of λsnull by labels(t). We do not give an explicit definition here, but labels(t)
can be defined inductively on the structure of terms.

Theorem 4.5.4 (Explicit terms cannot be blamed for interop failures). Let t be a term
of λsnull. Suppose that {I, I, E , E} ∩ labels(t) = ∅, I 6∈ {E , E}, and Iint 6∈ {I, I, E , E}.
Further, suppose that t is well-typed under `e or `i and a context Γ. Then

• If t = te, then De(te) safe for I and De(te) safe for E.

133

• If t = ti, then Di(ti) safe for I and Di(te) safe for E.

Proof. By induction on a derivation of Γ `e te : Te or Γ `i ti : Ti.

Γ `e te : Te

Case (TE-Var) te = x and De(te) = x. Use SF-Var.

Case (TE-Null) te = null and De(te) = null. Use SF-Null.

Case (TE-Abs) te = λ(x : Se).te and De(te) = λ(x : Se).De(te). Use the IH and SF-
Abs.

Case (TE-App) Use the IH twice and SF-App.

Case (TE-SafeApp) Use the IH thrice and SF-SafeApp.

Case (TE-Cast) te = se : Se =⇒p Te. Use the IH and the fact that {I, I, E , E} ∩
labels(t) = ∅ implies I 6= p and I 6= p. Similarly, we get E 6= p and E 6= p. Then we can
use SF-CastDiff.

Case (TE-Import) te = importe x : Se = (ti : Si) in t′e, and

De(te) = (λ(x : Se).De(t
′
e)) (Di(ti) : Si =⇒I Se)

On the LHS, we can use the IH and SF-Abs. On the RHS, we need to show

Di(ti) : Si =⇒I Se safe for I

By the IH, we get that ti safe for I, so it only remains to check that Si <:− Se.
Since te is well-typed, then we know Si ↪→N Se. Lemma 4.5.1 then gives us Si <:− Se, as
needed. We can then apply SF-CastNeg to get that the RHS is safe for I.

Finally, we apply SF-App.

To prove De(te) safe for E , use the IH hypothesis, the fact that E 6∈ {I, I}, and SF-
CastDiff.

Γ `i ti : Ti

Case (TI-Var) Similar to TE-Var.

Case (TI-Null) Similar to TE-Null.

Case (TI-Abs) Similar to TE-Abs, using the fact that Iint 6∈ {I, I, E , E}.
Case (TI-App) Similar to TE-App.

134

Case (TI-SafeApp) Similar to TE-SafeApp.

Case (TI-Cast) Similar to TE-Cast.

Case (TI-Import) ti = importi x : Si = (te : Se) in t′i. Similar to TE-Import, except
that we use Lemma 4.5.2 to prove

De(te) : Se =⇒E Si safe for E

by first noticing that Se ↪→E Si implies Se <:+ Si, and then using SF-CastPos.

Discussion

Taken together, theorems 4.5.3 and 4.5.4 imply the following. Start with a well-typed λsnull
term, desugar it to λnull, and then evaluate it. If evaluation results in an error because
of a cast that was done “at the boundary”, that is, a cast generated when desugaring an
import term, then the blame is either I or E . If the blame is I, then this means the term
being cast, which originated in the implicit sublanguage, is at fault. If the blame is E ,
then the context surrounding the term being cast is at fault; in this case, the term being
cast comes from the explicit sublanguage, so the context is in the implicit sublanguage. In
both cases, the implicit term is at fault!

Just like a central result in gradual typing is that “well-typed programs can’t be blamed”
Wadler and Findler [2009], we can summarize our main result in this section as “explicit
terms can’t be blamed for null interop errors”.

The following examples illustrate how blame is assigned in λsnull. They have been
verified in Coq.

Example 4.5.1. This first example is about importing an explicit term into the implicit
world. After desugaring, the program below evaluates to ⇑ E.

import_i f: !(Null -> Null) =

((null: Null ==> E_int ?(Null -> Null)) : ?(Null -> Null))

in

f null

135

The problem here is with the application f null. The type of f is a nullable type, so
the code using f should have used a safe application. Instead, since a regular application
was used and f is indeed null, then the blame is assigned to the context using the interop
cast; hence the ⇑ E result.

Example 4.5.2. This example shows how erasure is unsound, because it “widens” the do-
main of functions. The explicit world declares a function with type #(#(Null→ Null)→
Null), which is turned by erasure into !(!(Null → Null) → Null). In effect, what this
says is that the function can accept null as an argument, but the function cannot in fact
handle this case.

import_i f: !(!(Null -> Null) -> Null) =

((lam (f’: #(Null -> Null)). f’ null): #(#(Null -> Null) -> Null))

in

f (null: Null ==> I_int !(Null -> Null))

After desugaring the program above and performing a few evaluation steps, we end up
with an application

((null : Null =⇒Iint !(Null→ Null)) :!(Null→ Null) =⇒E #(Null→ Null)) null

The blame label E corresponds to the cast generated for the import. The label appears
negated because it is passed as an argument to a function (recall that arguments behave
contravariantly in the rule for applying a cast, in Figure 4.3). Finally, because the cast is
to a non-nullable function type, the context is not at fault (it is ok to apply a non-nullable
function type without checks); instead, the term being cast is blamed. This gives us a result
of ⇑ E, as expected.

Example 4.5.3. This example shows an implicit term being imported into the explicit
world. In this case, the term being imported is null, but it is masked with a function type
!(Null→ Null). Nullification turns this type into ?(Null→ Null), so the type system for
the explicit sublanguage ensures that a null check happens before the imported term is used.
As a result, no errors occur. The result of evaluation is the null sentinel value passed to
the safe application.

import_e f: ?(Null -> Null) =

((null: Null ==> I_int !(Null -> Null)): !(Null -> Null))

in

app f null null

136

Example 4.5.4. The last example illustrates a limitation of our current strategy for blame
assignment. Consider the code

import_e f: ?(?(Null -> Null) -> Null) =

((lam (f’: !(Null -> Null)). f’ null)

: !(!(Null -> Null) -> Null))

in

app f (null: Null ==> E_int ?(Null -> Null)) null

The idea of this code is that the implicit term takes an argument f ′ of type !(Null →
Null) and unsafely calls it without a null check. Nullification turns the type of term being
imported from !(!(Null → Null) → Null) into ?(?(Null → Null) → Null). This means
that the explicit world will be able to pass null as an argument to the function f . The
problem is that, as we saw, f cannot handle a null argument gracefully, causing an error.

Intuitively, this failure should be blamed on the implicit term, and indeed that happens,
but the blame label for the result is Iint and not I. The problem is that the abstraction
being imported

λ(f ′ : !(Null→ Null)).f ′ null

is desugared by Di into

(λ(f ′ : !(Null→ Null)).f ′ null) : #(!(Null→ Null)→ Null) =⇒Iint !(!(Null→ Null)→ Null)

Now consider what happens when we apply the function above to the argument

a ≡ (null : Null =⇒Eint?(Null→ Null)) :?(Null→ Null) =⇒I !(Null→ Null)

We first apply R-AppNorm, then R-AppCast from Figure 4.3, and wrap the cast above in
an extra cast

a :!(Null→ Null) =⇒Iint !(Null→ Null)

Finally, we apply the above to null, and the application fails with blame Iint = Iint. That
is, in this case the blame is assigned to the internal cast within the implicit code, and not
to the interop cast I as we would perhaps expect. The reason is that the cast with label I
is nested within the outer cast with label Iint, and our current definition of the operational
semantics always assigns blame based only on the outermost case.

137

Limitations

There are at least two limitations in our model for language interop as presented in this
section:

• We assign blame solely based on the outermost cast. This can lead to loss of precision
when casts are nested, as shown by Example 4.5.4. For example, suppose we have
the term (where the Null type is abbreviated as N)

((null : N =⇒z?(N → N)) :?(N → N) =⇒q #(N → N)) : #(N → N) =⇒p #(N → N)

If we try to apply such a cast, we currently fail with blame p. The interpretation of
this blame is that there is something wrong with the term being cast. Or to put it
differently, that the surrounding code is not at fault. While this is true, an arguably
more accurate blame assignment would identify the cast with blame q as responsible
for the failure, since it is an unsound “downcast” that turns a nullable function type
into its non-nullable variant.

More accurate blame assignment would reflect this intuition better.

• Theorem 4.5.4 constrains how interop casts can fail, but it says nothing about “in-
ternal” casts within the implicit or explicit sublanguages. Thinking back to Java
and Scala, we would expect that internal Scala casts cannot fail (for example, the
implicit casts that originate from subtyping judgments should not fail), but internal
Java casts can.

A better model of language interop would be able to reason about internal casts.

4.6 Related Work

The concept of blame comes from work on higher-order contracts by Findler and Felleisen
[2002]. The application of blame to gradual typing was pioneered by Wadler and Find-
ler [2009], which I followed closely when developing the operational semantics and safety
proofs for λnull. My syntax for casts comes from Ahmed et al. [2011]. Wadler [2015]
provided additional context on the use of blame for gradual typing. The design of λsnull
was inspired by our ongoing work in designing a version of Scala where nulls are explicit.
The interoperability between Scala and Java uses real world versions of the erasure and
nullification relations.

138

4.7 Conclusions

In this chapter, I looked at the problem of characterizing the nullability errors that occur
from two interoperating languages: one with explicit nulls, the other with implicit nulls.
I showed how the concept of blame from gradual typing can be co-opted to provide such
a characterization. Specifically, by making type casts explicit and labelling casts with
blame labels, we are able to assign responsibility for runtime failures. To formally study
the use of blame for tracking nullability errors, I introduced λnull, a calculus where terms
can be explicitly nullable or implicitly nullable. I showed that, even though evaluation
of λnull terms can fail, such failures can be constrained if we restrict casts using positive
and negative subtyping. Finally, I used λnull as the basis for a higher-level calculus, λsnull,
which more closely models language interoperability. The main result of the chapter is a
theorem that says that the explicit sublanguage of λsnull is never at fault for failures of
casts that mediate the interop.

139

Chapter 5

Conclusions

Recall the thesis this dissertation argues for:

We can retrofit the Scala language with explicit nulls. The resulting type system
can be formally studied and understood.

I have shown that Scala can be retrofitted with explicit nulls by implementing a type
system for nullability as a modification of the Dotty (Scala 3) compiler. The new type
system makes reference types non-nullable, but nullability can be recovered using union
types. My design for explicit nulls tries to balance soundness and usability, with a special
focus on making Java interoperability practical. I evaluated the design by migrating 90,000
lines of real-world Scala code. The results of the evaluation yielded valuable insights for
future improvements.

To show that a type system with explicit nulls can be well-understood, I presented
theoretical foundations for two key features of the explicit nulls design: type nullification
and language interoperability. I gave a denotational semantics for nullification, and showed
that nullification is an element-preserving transformation. Regarding interoperability, I in-
troduced a core calculus for modelling the interoperability between languages with explicit
nulls (like Scala) and languages with implicit nulls (like Java). Finally, I showed that, using
the concept of blame from gradual typing, we can characterize and rule out certain kinds of
nullability errors. Specifically, one can show that in well-typed programs, implicitly-typed
subterms can be blamed for interoperability errors.

140

Bibliography

Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. Building
Useful Program Analysis Tools Using an Extensible Java Compiler. In 2012 IEEE 12th
International Working Conference on Source Code Analysis and Manipulation, pages
14–23. IEEE, 2012.

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for All. In
Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, pages 201–214. ACM, 2011. doi: 10.1145/1926385.1926409. URL
https://doi.org/10.1145/1926385.1926409.

Nada Amin and Tiark Rompf. Type Soundness Proofs with Definitional Interpreters.
In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 666–679. ACM, 2017. URL http://dl.acm.org/

citation.cfm?id=3009866.

Nada Amin and Ross Tate. Java and Scala’s Type Systems are Unsound: The Existential
Crisis of Null Pointers. In Eelco Visser and Yannis Smaragdakis, editors, Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amster-
dam, The Netherlands, October 30 - November 4, 2016, pages 838–848. ACM, 2016. doi:
10.1145/2983990.2984004. URL https://doi.org/10.1145/2983990.2984004.

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The
Essence of Dependent Object Types. In A List of Successes That Can Change the
World, pages 249–272. Springer, 2016.

Apple Inc. About swift, a. URL https://docs.swift.org/swift-book/. [Online; ac-
cessed 5-November-2019].

141

https://doi.org/10.1145/1926385.1926409
http://dl.acm.org/citation.cfm?id=3009866
http://dl.acm.org/citation.cfm?id=3009866
https://doi.org/10.1145/2983990.2984004
https://docs.swift.org/swift-book/

Apple Inc. Swift language guide, b. URL https://docs.swift.org/swift-book/

LanguageGuide/TheBasics.html. [Online; accessed 5-November-2019].

Brian Aydemir and Stephanie Weirich. LNgen: Tool Support for Locally Nameless Repre-
sentations. 2010.

Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical Type-Based
Null Safety for Java. In Proceedings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 740–750. ACM, 2019.

Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The Spec# Programming System:
An Overview. In International Workshop on Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices, pages 49–69. Springer, 2004.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-Christophe Filli-
atre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy,
et al. The Coq proof assistant reference manual: Version 6.1. 1997.

Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda–a Functional Language
with Dependent Types. In International Conference on Theorem Proving in Higher
Order Logics, pages 73–78. Springer, 2009.

Edwin Brady. Idris, a General-Purpose Dependently Typed Programming Panguage: De-
sign and Implementation. Journal of functional programming, 23(5):552–593, 2013.

Dan Brotherston, Werner Dietl, and Ondřej Lhoták. Granullar: Gradual Nullable Types
for Java. In Proceedings of the 26th International Conference on Compiler Construction,
pages 87–97. ACM, 2017.

Kim B Bruce, Albert R Meyer, and John C Mitchell. The Semantics of Second-Order
Lambda Calculus. Information and Computation, 85(1):76–134, 1990.

Arthur Charguéraud. The Locally Nameless Representation. Journal of automated rea-
soning, 49(3):363–408, 2012.

Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an Object-
Oriented Approach to Non-Uniform Cluster Computing. In Ralph E. Johnson and

142

https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html

Richard P. Gabriel, editors, Proceedings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 519–538. ACM, 2005. doi:
10.1145/1094811.1094852. URL https://doi.org/10.1145/1094811.1094852.

Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.
The Implicit Calculus: A New Foundation for Generic Programming. In Jan Vitek, Haibo
Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages
35–44. ACM, 2012. doi: 10.1145/2254064.2254070. URL https://doi.org/10.1145/

2254064.2254070.

Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and Todd W Schiller.
Building and Using Pluggable Type-Checkers. In Proceedings of the 33rd International
Conference on Software Engineering, pages 681–690. ACM, 2011.

Dotty Team. Dotty, a next-generation compiler for Scala. URL dotty.epfl.ch. [Online;
accessed 7-November-2019].

EPFL. The Scala Programming Language. URL https://www.scala-lang.org/. [Online;
accessed 17-November-2019].

Manuel Fähndrich and K. Rustan M. Leino. Declaring and Checking Non-Null Types
in an Object-Oriented Language. In Ron Crocker and Guy L. Steele Jr., editors,
Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2003, October 26-30, 2003, Ana-
heim, CA, USA, pages 302–312. ACM, 2003. doi: 10.1145/949305.949332. URL
https://doi.org/10.1145/949305.949332.

Manuel Fähndrich and Songtao Xia. Establishing Object Invariants with Delayed Types.
In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr.,
editors, Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2007, October 21-25,
2007, Montreal, Quebec, Canada, pages 337–350. ACM, 2007. doi: 10.1145/1297027.
1297052. URL https://doi.org/10.1145/1297027.1297052.

Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-Order Functions. In
Mitchell Wand and Simon L. Peyton Jones, editors, Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming (ICFP ’02), Pittsburgh,

143

https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/2254064.2254070
https://doi.org/10.1145/2254064.2254070
dotty.epfl.ch
https://www.scala-lang.org/
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/1297027.1297052

Pennsylvania, USA, October 4-6, 2002, pages 48–59. ACM, 2002. doi: 10.1145/581478.
581484. URL https://doi.org/10.1145/581478.581484.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing Local Control and
State Using Flow Analysis. In European Symposium on Programming, pages 256–275.
Springer, 2011.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, 2016.

Jason Hu and Ondřej Lhoták. Undecidability of D {<:} and Its Decidable Fragments.
arXiv preprint arXiv:1908.05294, 2019.

Ifaz Kabir and Ondřej Lhoták. κDOT: Scaling DOT with Mutation and Constructors. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, pages 40–50.
ACM, 2018.

Kotlin Foundation. Kotlin programming language, a. URL https://kotlinlang.org/.
[Online; accessed 5-November-2019].

Kotlin Foundation. Null safety, b. URL https://kotlinlang.org/docs/reference/

null-safety.html. [Online; accessed 5-November-2019].

K Rustan M Leino. Dafny: An Automatic Program Verifier for Functional Correctness. In
International Conference on Logic for Programming Artificial Intelligence and Reason-
ing, pages 348–370. Springer, 2010.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java virtual machine
specification. Pearson Education, 2014.

Fengyun Liu, Aggelos Biboudis, and Martin Odersky. Initialization Patterns in Dotty. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, pages 51–55.
ACM, 2018.

Microsoft. Nullable reference types, a. URL https://docs.microsoft.com/en-us/

dotnet/csharp/nullable-references. [Online; accessed 5-November-2019].

Microsoft. Nullable value types, b. URL https://docs.microsoft.com/en-us/dotnet/

csharp/programming-guide/nullable-types/index. [Online; accessed 5-November-
2019].

144

https://doi.org/10.1145/581478.581484
https://kotlinlang.org/
https://kotlinlang.org/docs/reference/null-safety.html
https://kotlinlang.org/docs/reference/null-safety.html
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index

Robin Milner. A theory of type polymorphism in programming. Journal of computer and
system sciences, 17(3):348–375, 1978.

Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml: Functional
Programming for the Masses. ” O’Reilly Media, Inc.”, 2013.

John C Mitchell. Foundations for Programming Languages, volume 1. MIT press Cam-
bridge, 1996.

MITRE. 2019 CWE Top 25 Most Dangerous Software Errors. URL https://cwe.mitre.

org/top25/archive/2019/2019_cwe_top25.html. [Online; accessed 17-November-
2019].

Abel Nieto. Towards algorithmic typing for dot. arXiv preprint arXiv:1708.05437, 2017.

Martin Odersky and Matthias Zenger. Scalable Component Abstractions. In Ralph E.
Johnson and Richard P. Gabriel, editors, Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 41–57. ACM, 2005.
doi: 10.1145/1094811.1094815. URL https://doi.org/10.1145/1094811.1094815.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias
Zenger. An Overview of the Scala Programming Language. Technical report, 2004.

Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and
Sandro Stucki. Simplicitly: Foundations and Applications of Implicit Function Types.
In 45th ACM SIGPLAN Symposium on Principles of Programming Languages, number
CONF, 2017.

Oracle. Type annotations and pluggable type systems. URL https://docs.oracle.com/

javase/tutorial/java/annotations/type_annotations.html. [Online; accessed 16-
November-2019].

Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. Real World Haskell: Code
You Can Believe In. ” O’Reilly Media, Inc.”, 2008.

Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D
Ernst. Practical Pluggable Types for Java. In Proceedings of the 2008 international
symposium on Software testing and analysis, pages 201–212. ACM, 2008.

145

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://doi.org/10.1145/1094811.1094815
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html

Dmitry Petrashko, Ondrej Lhoták, and Martin Odersky. Miniphases: Compilation Using
Modular and Efficient Tree Transformations. In Albert Cohen and Martin T. Vechev,
editors, Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages
201–216. ACM, 2017. doi: 10.1145/3062341.3062346. URL https://doi.org/10.1145/

3062341.3062346.

Benjamin C Pierce. Programming with Intersection Types, Union Types, and Polymor-
phism. 2002.

Wolfgang Pree and Erich Gamma. Design Patterns for Object-Oriented Software Develop-
ment, volume 183. Addison-wesley Reading, MA, 1995.

PYPL. PYPL PopularitY of Programming Language. URL http://pypl.github.io/

PYPL.html. [Online; accessed 17-November-2019].

Xin Qi and Andrew C. Myers. Masked Types for Sound Object Initialization. In Zhong
Shao and Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, pages 53–65. ACM, 2009. doi: 10.1145/1480881.1480890. URL
https://doi.org/10.1145/1480881.1480890.

Marianna Rapoport and Ondrej Lhoták. A path to DOT: Formalizing Fully Path-
Dependent Types. PACMPL, 3(OOPSLA):145:1–145:29, 2019. doi: 10.1145/3360571.
URL https://doi.org/10.1145/3360571.

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A Simple Soundness Proof
for Dependent Object Types. Proceedings of the ACM on Programming Languages, 1
(OOPSLA):46, 2017.

RedMonk. The RedMonk Programming Language Rankings: June 2019. URL https:

//redmonk.com/sogrady/2019/07/18/language-rankings-6-19/. [Online; accessed
17-November-2019].

John C Reynolds. Towards a Theory of Type Structure. In Programming Symposium,
pages 408–425. Springer, 1974.

John C Reynolds. Polymorphism is not set-theoretic. In International Symposium on
Semantics of Data Types, pages 145–156. Springer, 1984.

146

https://doi.org/10.1145/3062341.3062346
https://doi.org/10.1145/3062341.3062346
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/3360571
https://redmonk.com/sogrady/2019/07/18/language-rankings-6-19/
https://redmonk.com/sogrady/2019/07/18/language-rankings-6-19/

ScalaDays. About ScalaDays. URL https://scaladays.org/2019/lausanne. [Online;
accessed 17-November-2019].

Dana S Scott and Christopher Strachey. Toward a Mathematical Semantics for Computer
Languages, volume 1. Oxford University Computing Laboratory, Programming Research
Group Oxford, 1971.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Sus-
mit Sarkar, and Rok Strnisa. Ott: Effective Tool Support for the Working Semanti-
cist. J. Funct. Program., 20(1):71–122, 2010. doi: 10.1017/S0956796809990293. URL
https://doi.org/10.1017/S0956796809990293.

Jeremy G Siek and Walid Taha. Gradual Typing for Functional Languages. In Scheme
and Functional Programming Workshop, volume 6, pages 81–92, 2006.

Richard Statman. A local translation of untyped λ calculus into simply typed λ calculus.
1991.

Alexander J. Summers and Peter Müller. Freedom Before Commitment: a Lightweight
Type System for Object Initialisation. In Cristina Videira Lopes and Kathleen Fisher,
editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH
2011, Portland, OR, USA, October 22 - 27, 2011, pages 1013–1032. ACM, 2011. doi:
10.1145/2048066.2048142. URL https://doi.org/10.1145/2048066.2048142.

TIOBE. TIOBE Index for November 2019. URL https://www.tiobe.com/tiobe-index/.
[Online; accessed 17-November-2019].

Philip Wadler. Monads for Functional Programming. In International School on Advanced
Functional Programming, pages 24–52. Springer, 1995.

Philip Wadler. A Complement to Blame. In 1st Summit on Advances in Programming
Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

Philip Wadler and Robert Bruce Findler. Well-Typed Programs Can’t Be Blamed. In
Giuseppe Castagna, editor, Programming Languages and Systems, 18th European Sym-
posium on Programming, ESOP 2009, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, volume 5502 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2009. doi: 10.1007/978-3-642-00590-9\ 1. URL https://doi.org/10.1007/

978-3-642-00590-9_1.

147

https://scaladays.org/2019/lausanne
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1145/2048066.2048142
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1

Fei Wang and Tiark Rompf. Towards Strong Normalization for Dependent Object Types
(DOT). In 31st European Conference on Object-Oriented Programming (ECOOP 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness. Infor-
mation and computation, 115(1):38–94, 1994.

Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor, and Kathryn S.
McKinley. Why Nothing Matters: The Impact of Zeroing. In Cristina Videira Lopes and
Kathleen Fisher, editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages 307–324.
ACM, 2011. doi: 10.1145/2048066.2048092. URL https://doi.org/10.1145/2048066.

2048092.

Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat. Object Initializa-
tion in X10. In European Conference on Object-Oriented Programming, pages 207–231.
Springer, 2012.

148

https://doi.org/10.1145/2048066.2048092
https://doi.org/10.1145/2048066.2048092

APPENDICES

149

Appendix A

Evaluating Explicit Nulls

This appendix describes the procedure I followed for generating the data in Section 2.7.

1. Fetch the community build libraries from

Library URL Commit ID

betterfiles https://github.com/dotty-staging/better-files 49b55d6
scala-pb https://github.com/dotty-staging/ScalaPB 329e6d0
minitest https://github.com/dotty-staging/minitest 9e5d9b8
scalap https://github.com/dotty-staging/scala 7ecfce1
semanticdb https://github.com/dotty-staging/dotty-semanticdb cddb67d
intent https://github.com/dotty-staging/intent 580f6cb
scopt https://github.com/dotty-staging/scopt 9155bdc
xml-interpolator https://github.com/dotty-staging/xml-interpolator 7232e3d
shapeless https://github.com/dotty-staging/shapeless 000131d
fastparse https://github.com/dotty-staging/fastparse 79431b0
effpi https://github.com/dotty-staging/effpi f6b0b3f
algebra https://github.com/dotty-staging/algebra 5dda5f9
squants https://github.com/dotty-staging/squants c178ff0
scala-xml https://github.com/dotty-staging/scala-xml 0daee4a
stdlib123 https://github.com/dotty-staging/scala 7ecfce1
scalactic https://github.com/dotty-staging/scalatest 0cf1ffa

2. To estimate the size of each library, use the cloc utility available at https://github.
com/AlDanial/cloc. For most libraries, except for scalactic and stdlib123, cloc
can be run from the root directory of the library. For scalactic, cloc must be run

150

https://github.com/dotty-staging/better-files
https://github.com/dotty-staging/ScalaPB
https://github.com/dotty-staging/minitest
https://github.com/dotty-staging/scala
https://github.com/dotty-staging/dotty-semanticdb
https://github.com/dotty-staging/intent
https://github.com/dotty-staging/scopt
https://github.com/dotty-staging/xml-interpolator
https://github.com/dotty-staging/shapeless
https://github.com/dotty-staging/fastparse
https://github.com/dotty-staging/effpi
https://github.com/dotty-staging/algebra
https://github.com/dotty-staging/squants
https://github.com/dotty-staging/scala-xml
https://github.com/dotty-staging/scala
https://github.com/dotty-staging/scalatest
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

from scalatest/scalactic/src/main/. For stdlib123, cloc should be run from
scala/src/library/.

3. Fetch the version of Dotty used in the evaluation, from https://github.com/abeln/

dotty/tree/dotty-explicit-nulls-evaluation, with commit id 382da84.

4. Modify the build.sbt file for each library to include the desired flags. See Section
2.7 for a description of the flags used during the evaluation.

5. From the Dotty root directory, run sbt community-build/test. sbt will then re-
port the error counts for each library.

The second part of the evaluation involved classifying the errors remaining under an
optimistic run. The patches that migrate the libraries were written by Angela Chang
and Justin Pu, and can be found at

Library Migration Patch
betterfiles https://github.com/changangela/better-files/pull/1.diff

scala-pb https://gist.github.com/abeln/02686005f88f8120a0f1a59e241548a6

minitest https://gist.github.com/abeln/8295eeb6d0980c545b9c65c8217fe751

scalap https://gist.github.com/abeln/8b38d6a9b7ec588c743a2008cd492aac

semanticdb https://gist.github.com/abeln/dc90d8a1aeeceb5638adbf5207e2c024

intent https://github.com/changangela/intent/pull/1.diff

scopt https://gist.github.com/abeln/17f622591da2bdb39575a1081e85f798

xml-interpolator https://github.com/changangela/xml-interpolator/pull/1.diff

fastpartse https://gist.github.com/abeln/9a769d9150521e0d0d5c3114915421d7

The remaining libraries were either not migrated, or did not require additional fixes
when compiled under optimistic. To classify the remaining errors, one can apply the
corresponding patch, verify that the library compiles, and then inspect the patch. Each
error can then be assigned to a class described in Table 2.4.

151

https://github.com/abeln/dotty/tree/dotty-explicit-nulls-evaluation
https://github.com/abeln/dotty/tree/dotty-explicit-nulls-evaluation
https://github.com/changangela/better-files/pull/1.diff
https://gist.github.com/abeln/02686005f88f8120a0f1a59e241548a6
https://gist.github.com/abeln/8295eeb6d0980c545b9c65c8217fe751
https://gist.github.com/abeln/8b38d6a9b7ec588c743a2008cd492aac
https://gist.github.com/abeln/dc90d8a1aeeceb5638adbf5207e2c024
https://github.com/changangela/intent/pull/1.diff
https://gist.github.com/abeln/17f622591da2bdb39575a1081e85f798
https://github.com/changangela/xml-interpolator/pull/1.diff
https://gist.github.com/abeln/9a769d9150521e0d0d5c3114915421d7

	List of Figures
	List of Tables
	Introduction
	The Null Problem
	My Thesis
	Future Work

	Scala With Explicit Nulls
	The Dotty Compiler
	Structure of Dotty
	Types
	Denotations
	Symbols

	A New Type Hierarchy
	Fixing a Soundness Hole

	Java Interoperability
	Interpreting Java Types
	Type Nullification
	The JavaNull Type
	More Precise Nullification

	Flow Typing
	Supported Cases
	Inferring Flow Facts

	Asserting Non-Nullability
	Dropped Features
	Arrays
	Override Checks
	Binary Compatibility

	Evaluation
	Assessing Migration Effort
	An Interesting But Hard Question

	Related Work
	Nullability in the Mainstream
	Functional Programming
	Sound Initialization
	Pluggable Type Checkers

	Conclusions

	Denotational Semantics of Nullification
	Reasoning about Nullification with Sets
	System F, j, and s
	j Type System
	s Type System

	Denotational Semantics
	j Semantic Model
	Meaning of j Kinds
	Meaning of j Types
	s Semantic Model
	Meaning of s Kinds
	Meaning of s Types

	Type Nullification
	Soundness
	Discussion

	Related Work
	Conclusions

	Blame for Null
	Nullability Errors
	Blame Calculus
	Well-typed Programs Can't Be Blamed

	A Calculus with Implicit and Explicit Nulls
	Values of null
	Terms of null
	Types of null
	Typing null
	Evaluation of null
	Metatheory of null
	Coq Mechanization

	Who is to Blame?
	A Calculus for Null Interoperability
	Terms and Types of nulls
	Typing nulls
	Desugaring nulls to null
	Metatheory of nulls

	Related Work
	Conclusions

	Conclusions
	Bibliography
	APPENDICES
	Evaluating Explicit Nulls

